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Structures 4 lecture notes 

Buckling 

Buckling calculations are very difficult except for a few special cases, 

and so numerical methods on a computer are almost invariably used in 

practice for buckling modes involving plates, shells and assemblies of 

beams and columns. Single columns and beams aren’t too bad. 

The compression flange of a beam acts more or less like a column 

except that the torsional and warping resistance are involved. 

However the simple special cases are still worth examining because 

they tell us what to look for in a numerical analysis. 

The elastica 

 

The sagging curvature is dψ
ds

. This is the definition of curvature. The 

sagging moment is equal to EI  times the curvature. Sagging moment 

is also equal to −Py  and thus  
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M = EI dψ
ds

= −Py = −P sinψ ds
s=0

s

∫

EI d
2ψ
ds2

= −Psinψ

EI dψ
ds

d 2ψ
ds2

= −Psinψ dψ
ds

EI 1
2

dψ
ds

⎛
⎝⎜

⎞
⎠⎟
2

= P cosψ − cosψ 0( )

 

where ψ 0  is the value of ψ  at s = 0 . 

Hence we have 

EI 1
2

dψ
ds

⎛
⎝⎜

⎞
⎠⎟
2

= P cosψ − cosψ 0( )

s = EI
2P

dψ
cosψ − cosψ 0ψ =ψ 0

ψ

∫
. 

If we write ψ = 2θ , cosψ = cos2θ =1− 2sin2θ  and 

s = EI
2P

2dθ
2 sin2θ0 − sin

2θψ =ψ 0

ψ

∫ = EI
Psin2θ0

dθ
1− k2 sin2θψ =ψ 0

ψ

∫

k = 1
sinθ0

. 

This is an incomplete elliptic integral of the first kind, - see 

http://en.wikipedia.org/wiki/Elliptic_integral 

This means that it cannot be evaluated using elementary functions – 

trigonometric functions, hyperbolic functions etc. 

Alternative derivation: 
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tanψ = dy
dx

sec2ψ dψ
ds

= d
2y
dx2

dx
ds

= d
2y
dx2

cosψ

dψ
ds

=

d 2y
dx2
sec3ψ

=

d 2y
dx2

1+ tan2ψ( )
3
2

=

d 2y
dx2

1+ dy
dx

⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝⎜
⎞

⎠⎟

3
2

 

Thus 

EI d
2y
dx2

1+ dy
dx

⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝⎜
⎞

⎠⎟

3
2

+ Py = 0

EI dy
dx

d 2y
dx2

1+ dy
dx

⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝⎜
⎞

⎠⎟

3
2

+ Py dy
dx

= 0

EI

1+ dy
dx

⎛
⎝⎜

⎞
⎠⎟ 0

2
− EI

1+ dy
dx

⎛
⎝⎜

⎞
⎠⎟
2
+ 1
2
Py2 = 0

 

We can carry on, but we will get stuck again with an elliptic integral. 

However, if we assume that dy
dx

 is small, 

1

1+ dy
dx

⎛
⎝⎜

⎞
⎠⎟
2
≈ 1

1+ 1
2

dy
dx

⎛
⎝⎜

⎞
⎠⎟
2 ≈1−

1
2

dy
dx

⎛
⎝⎜

⎞
⎠⎟
2

 so that EI dy
dx

⎛
⎝⎜

⎞
⎠⎟
2

− dy
dx

⎛
⎝⎜

⎞
⎠⎟ 0

2⎛

⎝⎜
⎞

⎠⎟
+ Py2 = 0 . 

This is satisfied by  
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y = Bsin P
EI
x

⎛
⎝⎜

⎞
⎠⎟

dy
dx

= B P
EI
cos P

EI
x

⎛
⎝⎜

⎞
⎠⎟

dy
dx

⎛
⎝⎜

⎞
⎠⎟ 0

= B P
EI

. 

This gives the Euler column formula, 

P = π 2EI
L2 = π 2EA

L
r

⎛
⎝⎜

⎞
⎠⎟

2

A = cross-sectional area
I = Ar2

r = radius of gyration
L
r
= slenderness ratio

. 

For columns other than pin-ended columns, L  is the effective 

length. For cantilever columns the effective length is more than twice 

the actual length, depending on how stiff the moment connection at 

the base is. 

Analysis of the elastica shows that if a column remains elastic the load 

continues to increase as the column buckles. 
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The above figure shows a buckled pin ended column of length L  and 

bending stiffness EI . The column is initially perfectly straight. The 

relationship between the buckling load and the shortening due to 

bending is P
PEuler

= 1+ δ
2L

 where PEuler =
π 2EI
L2

 is the Euler buckling load. 

This formula is obtained using complete elliptic integrals as described 

in §2.7 of Timoshenko and Gere, Theory of Elastic Stability and applies 

for small values of δ
L

. 

However, it can be shown that for the truss column below that the load 

F  decreases with deflection (see question 3 in the 2013-14 Structures 

4 exam). This is because as the truss deflects the buckled member 

attracts more than its fair share of the load. 
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Perry Robinson formula 

See the A history of the safety factors by Alasdair N. Beal, The 

Structural Engineer 89 (20) 18 October 2011, 

http://anbeal.co.uk/TSE2011HistoryofSafetyFactors.pdf 

for a fascinating discussion of safety factors including the Perry 

Robertson formula. 

 

Assume column has an initial bend, y = ζLsin π x
L

⎛
⎝⎜

⎞
⎠⎟  (note that ζ  is 

dimensionless) and that dy
dx

 is SMALL. Then the sagging moment, 

M = EI × change of curvature = EI d 2y
dx2 −

d 2

dx2 ζLsin π x
L

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
= −Py

EI d
2y
dx2 + Py = −EIζL π

2

L2 sin π x
L

⎛
⎝⎜

⎞
⎠⎟

 

Try solution y = Bsin π x
L

⎛
⎝⎜

⎞
⎠⎟  then 

−EIBπ
2

L2
sin π x

L
⎛
⎝⎜

⎞
⎠⎟ + PBsin

π x
L

⎛
⎝⎜

⎞
⎠⎟ = −EIζL π

2

L2
sin π x

L
⎛
⎝⎜

⎞
⎠⎟

B =
EIζL π

2

L2

EI π
2

L2
− P

= ζL

1− P
π 2EI
L2

. 

The maximum stress is equal to 
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σ max =
P
A
+ M
Z

= P
A
+ PB
Z

= P
A
+

PLζ
Z

1− P
π 2EI
L2

= P
A
+

P
A
LAζ
Z

1− P
PEuler

. 

Z = I
c

 is the section modulus. 

If we set I = Ar2 , Z = I
c
= Ar2

c
 σ = P

A
, σ max =σ y  and 

σ Euler =
PEuler
A

= π 2EI
AL2

= π 2E
L
r

⎛
⎝⎜

⎞
⎠⎟
2 , then we have 

σ y =σ + θσ

1− σ
σ Euler

. 

in which θ = LAζ
Z

= Lcζ
r2

. 

Therefore 

σ Euler −σ( ) σ y −σ( ) +θσ Eulerσ = 0

σ 2 − σ y + 1+θ( )σ Euler( )σ +σ yσ Euler = 0
. 

σ = 1
2
σ y + 1+θ( )σ Euler( )− 12 σ y + 1+θ( )σ Euler( )2 − 4σ yσ Euler

= 1
2
σ y + 1+θ( )σ Euler( )− 12 σ y + 1+θ( )σ Euler( )2 − 4 1+θ( )σ yσ Euler + 4θσ yσ Euler

= 1
2
σ y + 1+θ( )σ Euler( )− 12 σ y − 1+θ( )σ Euler( )2 + 4θσ yσ Euler

. 

When θ = 0 , 

σ = 1
2
σ y +σ Euler( )− 1

2
σ y −σ Euler

=σ y  or σ Euler

. 
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Note that σ Euler =σ y  when π 2E
L
r

⎛
⎝⎜

⎞
⎠⎟
2 =σ y  so that L

r
= π E

σ y

. 

When σ Euler  is very small, 

 

 

σ ! 1
2
σ y + 1+θ( )σ Euler( )− 12 σ y

2 − 2 − 2θ( )σ yσ Euler

= 1
2
σ y + 1+θ( )σ Euler( )− 12σ y 1− 2 1−θ( )σ Euler

σ y

!
1
2
σ y + 1+θ( )σ Euler( )− 12σ y 1− 1−θ( )σ Euler

σ y

⎡

⎣
⎢

⎤

⎦
⎥

!σ Euler

  

and when σ Euler is very large, 

 

 

σ ! 1
2
σ y + 1+θ( )σ Euler( )− 12 1+θ( )2σ Euler

2 − 2 − 2θ( )σ yσ Euler

= 1
2
σ y + 1+θ( )σ Euler( )− 12 1+θ( )σ Euler 1− 2

1−θ( )
1+θ( )2

σ y

σ Euler

!
1
2
σ y + 1+θ( )σ Euler( )− 12 1+θ( )σ Euler 1−

1−θ( )
1+θ( )2

σ y

σ Euler

⎛

⎝⎜
⎞

⎠⎟

= 1
2
σ y 1+

1−θ( )
1+θ( )

⎛
⎝⎜

⎞
⎠⎟
=

σ y

1+θ
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Perry-Robertson graphs with E
σ y

= 1000  and θ = 0,  0.01,  0.1 and 1. 

See http://en.wikipedia.org/wiki/Perry_Robertson_formula 

This is the basis for column design. 

Timoshenko or Cosserat column 
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The figure on the left a shows the buckling of a battened or Vierendeel 

column. The deformation has been exaggerated so that the deflected 

shape can be seen. 

The figure on the right shows a detail of two bays in which the circles 

show the assumed points of contraflexure half way along the members. 

If the column is treated as a Timoshenko or Cosserat beam, the 

differential equations describing deformation of the column are 

M = Py = −EIcomposite
d
dx

dy
dx

−θ⎛
⎝⎜

⎞
⎠⎟

kθ = F = P dy
dx

 

in which x  is the vertical coordinate along the column, y  is the lateral 

displacement of the column, M  is the overall bending moment, P  is 

the overall axial load and F  is the overall shear force. Icomposite  is the 

fully composite second moment of area and k  is the shear stiffness of 

the column. 

Hence 

EIcomposite
d
dx

dy
dx

− P
k
dy
dx

⎛
⎝⎜

⎞
⎠⎟ + Py = 0

EIcomposite 1−
P
k

⎛
⎝⎜

⎞
⎠⎟
d 2y
dx2

+ Py = 0
. 

If the column is pin-ended and its length is length L , the differential 

equation is satisfied by 

y = Bsinπ x
L

 

if 
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P =
π 2EIcomposite

L2
1− P

k
⎛
⎝⎜

⎞
⎠⎟

= PEuler 1−
P
k

⎛
⎝⎜

⎞
⎠⎟

P 1+ PEuler
k

⎛
⎝⎜

⎞
⎠⎟ = PEuler

P = kPEuler
k + PEuler

. 

The shear stiffness k  depends upon the bending stiffness and length 

of the individual members. In the above column all the horizontal 

members all have length 2a  so that the length CF  is a . The vertical 

members all have length 2b  so that the lengths BC  and CD  are both 

b . The horizontal members all have second moment of area Ihorizontal  

and the vertical members all have second moment of area Ivertical  and 

cross-sectional area Avertical . The members are all made from a material 

with Young’s modulus E . 

Shear deformation means that an angle such as DĈF  is deformed from 

a right angle to π
2
+θ  due to bending of the members. The 

connections between the members are assumed to be rigid. 

If we ignore Ivertical , then the parallel axis theorem gives 

Icomposite = 2Averticala
2 . 

To calculate the shear stiffness we first note that that the tip deflection 

of a cantilever of bending stiffness EI  and span S  loaded with a point 

load W  at its tip is wS
3

3EI
. The shear force in each of the vertical 
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members is F
2

 and the shear force in the horizontal members is 

2 F
2
b

a
= Fb
a

. Thus the shear deformation is 

θ =

F
2
b3

3EIvertical

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

b
+

Fb
a
a3

3EIhorizontal

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

a
= Fb2

6EIvertical
+ Fab
3EIhorizontal

. 

Hence k = 1
b2

6EIvertical
+ ab
3EIhorizontal

. 

Buckling of plates and shells 

See, for example, Don O. Brush and Bo O. Almroth, Buckling of Bars, 

Plates and Shells, McGraw-Hill, New York 1975. 

Plates behave fairly well when they buckle, the load usually does not 

drop off dramatically and may increase after buckling. On the other 

hand shells, including axially compressed cylinders, can be very 

imperfection sensitive so they collapse at a much smaller load than the 

eigenvalue buckling load - see 

Hunt, G. W., 2011. Reflections and symmetries in space and time. IMA 

Journal of Applied Mathematics, 76 (1), pp. 2-26. 

http://imamat.oxfordjournals.org/content/76/1/2 
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Simply supported flat plate 

 

Image from Brush and Almroth, Buckling of Bars, Plates and Shells 

For a straight beam we have 

EI d
2v
dx2

+ Pv = 0

EI d
4v
dx4

+ P d
2v
dx2

= 0
 

where v  is the displacement in the y  direction. The corresponding 

equation for a flat plate is 

D ∂4w
∂x4

+ 2 ∂4w
∂x2 ∂y2

+ ∂4w
∂y4

⎛
⎝⎜

⎞
⎠⎟
+σ x

∂2w
∂x2

= 0

D = Et 3

12 1−υ 2( )
  

in which it is assumed that that there is only a membrane stress σ x  in 

the x  direction. Membrane stress has units force per unit width. w  is 

the displacement in the z  direction, t  is the plate thickness and υ  is 

Poisson’s ratio. D  is the bending stiffness per unit width and it 

replaces the E bd
3

12
 for a rectangular beam. 
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Let us suppose that the plate is simply supported along y = 0  and y = b  

and that it is long in the x  direction. The differential equation is 

satisfied and the y = 0  and y = b  boundary conditions are satisfied by 

w = Asin 2π x
λ
sinπ y

b  

if 

σ x
2π
λ

⎛
⎝⎜

⎞
⎠⎟
2

= D 2π
λ

⎛
⎝⎜

⎞
⎠⎟
4

+ 2 2π
λ

⎛
⎝⎜

⎞
⎠⎟
2 π
b

⎛
⎝⎜

⎞
⎠⎟
2

+ π
b

⎛
⎝⎜

⎞
⎠⎟
4⎛

⎝⎜
⎞

⎠⎟
= D 2π

λ
⎛
⎝⎜

⎞
⎠⎟
2

+ π
b

⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝⎜
⎞

⎠⎟

2

 

so that 

σ x = D
2π
λ

⎛
⎝⎜

⎞
⎠⎟ +

π
b

⎛
⎝⎜

⎞
⎠⎟
2

2π
λ

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

2

 

which is minimum when 

dσ x

dλ
= −2D 2π

λ
⎛
⎝⎜

⎞
⎠⎟ +

π
b

⎛
⎝⎜

⎞
⎠⎟
2

2π
λ

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1−

π
b

⎛
⎝⎜

⎞
⎠⎟
2

2π
λ

⎛
⎝⎜

⎞
⎠⎟
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

2π
λ 2 = 0

λ = 2b

. 

Thus the buckling membrane stress is 

σ x = 4D
π
b

⎛
⎝⎜

⎞
⎠⎟
2

. 

Simple single degree of freedom models 

These will be introduced in lectures, with particular reference to post-

buckled stability and imperfection sensitivity. In particular the 
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difference between non-linear and linear (eigenvalue) buckling will be 

emphasised. 

Linear or eigenvalue buckling 

 
The above structure is loaded by a system of loads that are all 

multiplied by the same load factor λ . Imagine that it is analysed as a 

linear elastic structure with stiffness matrix K  and that the axial 

forces in the members are found. These axial forces will all be 

proportional to λ  and from these forces we can find the geometric 

stiffness matrix −λG . The minus is put there because compressive 

forces produce a negative stiffness. 

Linear buckling occurs when 

K − λG[ ]δ = 0

K−1 K − λG[ ]δ = 0

K−1K − λK−1G⎡⎣ ⎤⎦δ = 0

I − λK−1G⎡⎣ ⎤⎦δ = 0

K−1G − 1
λ
I⎡

⎣⎢
⎤
⎦⎥
δ = 0

. 
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We are only interested in the lowest buckling load for which the load 

factor λ  is equal to one over the highest eigenvalue of K−1G . The 

corresponding eigenvector gives the mode shape. 

Note the similarity to natural frequencies and mode shapes. Buckling 

corresponds to the natural frequency becoming zero. 

Note that linear eigenvalue buckling analysis gives no information 

about imperfection sensitivity. 

Therefore non-linear buckling analysis should always be done if there 

is any question of imperfection sensitivity. 

 
The P − Δ  effect refers to the moment caused by side-sway of a 

column. It is sometimes not clear what is meant by P − Δ  analysis in a 

piece of software regarding linear or non-linear. Note that rotation is 

not a vector unless it is small and this assumption is often made even 

in so called non-linear analysis. 
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Lagrange's Equations of Motion 

Kinetic energy = T = 1
2

Mij
δ i δ j

j=1

n

∑
i=1

n

∑ = 1
2
δTMδ  where n  is the number of 

degrees of freedom. The Mij  are functions of the δ ’s only. 

 

dT
dt

= 1
2

Mij
!!δ i
!δ j +Mij

!δ i
!!δ j +

∂Mij

∂δ k

!δ i
!δ j
!δ k

k=1

n

∑⎛
⎝⎜

⎞
⎠⎟j=1

n

∑
i=1

n

∑

= !δ i

Mij +M ji( )
2

!!δ j +
1
2

∂M jk

∂δ i

+
∂Mkj

∂δ i

⎛
⎝⎜

⎞
⎠⎟

2
!δ j
!δ k

k=1

n

∑
⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

j=1

n

∑

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

i=1

n

∑

= !δ i

Mij +M ji( )
2

!!δ j +

∂M jk

∂δ i

+
∂Mkj

∂δ i

⎛
⎝⎜

⎞
⎠⎟

2
!δ j
!δ k

k=1

n

∑ − 1
2

∂M jk

∂δ i

+
∂Mkj

∂δ i

⎛
⎝⎜

⎞
⎠⎟

2
!δ j
!δ k

k=1

n

∑
⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

j=1

n

∑

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

i=1

n

∑

= !δ i
d
dt

∂T
∂ !δ i

⎛
⎝⎜

⎞
⎠⎟
− ∂T
∂δ i

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

n

∑
 

If U  is the strain energy and G  is the gravitational potential energy, by 

conservation of energy, 

0 = d
dt

T +U +G( ) = δ i
d
dt

∂T
∂ δ i

⎛
⎝⎜

⎞
⎠⎟
− ∂T
∂δ i

+ ∂U
∂δ i

+ ∂G
∂δ i

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

n

∑  

This equation applies for arbitrary δ i  and therefore 

d
dt

∂T
∂ δ i

⎛
⎝⎜

⎞
⎠⎟
− ∂T
∂δ i

+ ∂U
∂δ i

+ ∂G
∂δ i

= 0 . 

These are Lagrange’s equations of motion and apply for i =1 to n . 
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Verlet integration 

If the equations of motion can be rearranged so that: 

δ1 = q1 δ1,δ2,...,δn, δ1, δ2,..., δn, p1, p2,..., pn( )
δ2 = q2 δ1,δ2,...,δn, δ1, δ2,..., δn, p1, p2,..., pn( )
.
.
.
.

δn = qn δ1,δ2,...,δn, δ1, δ2,..., δn, p1, p2,..., pn( )

 

in which the loads p1, p2,..., pn  are known values of time and if we also 

know the initial values of δ1,δ2,...,δn, δ1, δ2,..., δn , then we can step 

through time updating values as follows: 

δ1 = δ1 + δ1Δt
δ2 = δ2 + δ2Δt
.
.
.
.

δn = δn + δnΔt

 and 

δ1 = δ1 + δ1Δt

δ2 = δ2 + δ2Δt
.
.
.
.

δn = δn + δnΔt

. 

There are a number of essentially similar ‘explicit’ methods like this 

with names such as Verlet Integration, Störmer's method, Gauss–Seidel 

and dynamic relaxation. 
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Definitions of some terms used for non-

aeroelastic vibrations 

Note that single degree of freedom systems are very important 

because multidegree of freedom systems can be reduced to uncoupled 

single degree of freedom systems using modal analysis and the 

orthogonality conditions discussed in lectures – this is ignoring the 

coupling due to damping. 

Summary of results 

In order to solve the equations 

Mδ
••
+Dδ

•
+Kδ = p  

for a system with n  degrees of freedom, we write δ = fr t( )Δ r
r=1

n

∑  where 

Δ r  are the eigenvectors of K−1M . 

If we ignore coupling due to damping, 

mr fr
••
+ λr fr

•
+ kr fr = pr t( )
mr = Δ r

TMΔ r

kr = Δ r
TKΔ r

λr = 2c krmr

pr t( ) = Δ r
Tp

c = non-dimensional damping ratio

 

which is the equation for a single degree of freedom system. 



University of Bath Department of Architecture & Civil Engineering Page 20 of 28 

Single degree of freedom system 

 
Figure 1 

Figure 1 shows a typical ‘random’ load,   p t( ). 

The mean value of   p t( ) is µp =
1
T

p t( )dt
−T

2

T
2

∫  as T →∞ . 

The auto-correlation function is Rpp τ( ) = 1
T

p t( ) p t +τ( )dt
−T

2

T
2

∫  as T →∞ . 

The auto-correlation function of   p t( ) minus its mean is 

1
T

p t( )− µp⎡⎣ ⎤⎦ p t +τ( )− µp⎡⎣ ⎤⎦dt
−T

2

T
2

∫  as T →∞

= Rpp τ( )− µp
2.

 

The mean-square spectral density is 

φpp ω( ) = 1
2π

Rpp τ( )− µp
2⎡⎣ ⎤⎦e

−iωτ dτ
−∞

∞

∫ = 1
2π

Rpp τ( )− µp
2⎡⎣ ⎤⎦cos ωτ( )dτ

−∞

∞

∫ . Here 

  ω = 2π ×  frequency . 

From the theory of Fourier transforms, 

Rpp τ( ) = µp
2 + φpp ω( )eiωτ dω

−∞

∞

∫ = µp
2 + φpp ω( )cos ωτ( )dω

−∞

∞

∫ . 
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Note that   µp ,   Rpp τ( ) and   φ pp ω( ) are all real, and   Rpp −τ( ) = Rpp τ( )  and 

  φ pp −ω( ) = φ pp ω( ). 

  σ p  is the standard deviation of   p t( )  which is defined as 

σ p
2 = 1

T
p t( )− µp⎡⎣ ⎤⎦ p t( )− µp⎡⎣ ⎤⎦dt

−T
2

T
2

∫  as T →∞

= Rpp 0( )− µp
2 = φpp ω( )dω

−∞

∞

∫

 

The mean-square spectral density tells us about the amount of 

‘energy’ at different frequencies, but gives no information about the 

relative phase. 

  ψ p  is the root mean square (rms) value of   p t( )  and 

    ψ p
2 = µp

2 +σ p
2 = Rpp 0( ). 

 
Figure 2 

Figure 2 shows a mass - spring- damper. When the load   p t( )  is 

applied, 

m d 2x
dt2

+ λ dx
dt

+ sx = p t( )  

so that 

1
Ω 2

d 2x
dt2

+ 2c
Ω
dx
dt

+ x =
p t( )
s

 

m

p(t)
x(t)

s λ
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where Ω = s
m

= 2π ×  natural frequency  and the viscous damping factor, 

c = λ
2 sm

. 

The mean value of   x t( )  is µx =
µp

s
. 

The mean-square spectral density of   x t( )  is φxx ω( ) =

φpp ω( )
s2

⎛
⎝⎜

⎞
⎠⎟

1− ω 2

Ω 2
⎛
⎝⎜

⎞
⎠⎟

2

+ 2cω
Ω

⎛
⎝⎜

⎞
⎠⎟
2

. 

Figure 3 shows plots of 1

1− ω 2

Ω 2
⎛
⎝⎜

⎞
⎠⎟

2

+ 2cω
Ω

⎛
⎝⎜

⎞
⎠⎟
2

. 



University of Bath Department of Architecture & Civil Engineering Page 23 of 28 

 
Figure 3 

The standard deviation of   x t( )  is σ x = φxx ω( )dω
−∞

∞

∫ = Rxx 0( )− µx
2  and if 

  c  is small, 

σ x =
1
s

πΩφpp Ω( )
2c

= 1
s

πΩ 1
2π

Rpp τ( )− µp
2⎡⎣ ⎤⎦cos Ωτ( )dτ

−∞

∞

∫
2c

= 1
s

Ω Rpp τ( )− µp
2⎡⎣ ⎤⎦cos Ωτ( )dτ

−∞

∞

∫
4c

 

where   2πΩ  is the natural frequency. 
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The ‘dynamic magnification factor’ is πΩφpp Ω( )
2cσ p

2 . Note that this 

dynamic magnification factor applies only to the dynamic 

component of the load. 

Figure 4 shows the response to the load. 

 
Figure 4 

Note the dynamic magnification which can be seen by comparing the mean and standard 
deviation of the load and the response. 

Multi-degree of freedom systems 

Let us suppose the ‘load’ exciting a particular mode of vibration is 

p t( ) = Aiqi t( )
i=1

N

∑  where the qi t( )  are the pressures and the   Ai  are the 

associated areas times displacement in the mode (which may be 

positive or negative). 

The mean of the load exciting the mode is µp = Aiµqi
i=1

N

∑  and the auto-

correlation function is 
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Rpp τ( ) = AiAjRqiqj τ( )
j=1

N

∑
i=1

N

∑

= µp
2 + AiAj Rqiqj τ( )− µqi

µqj
⎡⎣ ⎤⎦

j=1

N

∑
i=1

N

∑
 

where the cross-correlation, 

Rqiqj τ( ) = Rqjqi −τ( ) = 1
T

qi t( )qj t +τ( )dt
−T

2

T
2

∫  as T →∞ . 

Again φpp ω( ) = 1
2π

Rpp τ( )− µp
2⎡⎣ ⎤⎦e

−iωτ dτ
−∞

∞

∫ . 

Note that in general Rqiqj −τ( ) ≠ Rqiqj τ( )  so that cross mean-square 

spectral density, 

φqiqj ω( ) = φqiqj −ω( ) = φqjqi −ω( ) = 1
2π

Rqiqj τ( )− µqi
µqj

⎡⎣ ⎤⎦e
−iωτ dτ

−∞

∞

∫  will be a 

complex function. 

However in doing the summation φpp ω( ) = AiAjφqiqj ω( )
j=1

N

∑
i=1

N

∑ , the 

imaginary parts will cancel out. 

In terms of correlation functions, the response is given by 

σ x =
1
m

AiAj Rqiqj τ( )− µqi
µqj

⎡⎣ ⎤⎦
j=1

N

∑
i=1

N

∑
⎛

⎝⎜
⎞

⎠⎟
cos Ωτ( )dτ

−∞

∞

∫
4c

. 

A note on Fourier series 

For our purposes a stochastic random load can be approximated by 

the Fourier series, 

p t( ) = µp + 2φpp ωn( )Δω 2 cos ωnt + βp ωn( )( )( )
n=1

∞

∑  
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 where 
    
ωn =

2πn
T

 and 
    
Δω =

2π
T

 if the period,   T , is sufficiently large. Stochastic means 

‘governed by the laws of probability’. 
The autocorrelation function, 

Rpp τ( ) = 1
T

µp + 2φpp ωn( )Δω 2 cos ωnt + βp ωn( )( )( )
n=1

∞

∑⎡
⎣⎢

⎤
⎦⎥

µp + 2φpp ωn( )Δω 2 cos ωn t +τ( )+ βp ωn( )( )( )
n=1

∞

∑⎡
⎣⎢

⎤
⎦⎥

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

dt
−T

2

T
2

∫  as T →∞

= µp
2 + 1

T
2φpp ωn( )Δω2cos ωn t +τ( )+ βp ωn( )( )cos ωnt + βp ωn( )( )( )

n=1

∞

∑ dt
−T

2

T
2

∫

= µp
2 + 1

T
2φpp ωn( )Δω2

cos ωnτ( )cos2 ωnt + βp ωn( )( )
−sin ωnτ( )sin ωnt + βp ωn( )( )cos ωnt + βp ωn( )( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟n=1

∞

∑ dt
−T

2

T
2

∫

= µp
2 + 2φpp ωn( )Δω cos ωnτ( )( )

n=1

∞

∑

= µp
2 + 2 φpp ωn( )cos ωnτ( )( )

n=1

∞

∑ Δω

 
You can also use the Fourier transform, but this seems to cause problems with spectral 

densities unless you limit the time to − T
2
≤ t ≤ T

2
. 

Duhamel's integral 

Duhamel's integral is a bit like Verlet integration, except that it only 

applies to linear systems. 

The unloaded single degree of freedom system: 

m d 2x
dt2

+ λ dx
dt

+ sx = 0  or 1
Ω 2

d 2x
dt2

+ 2c
Ω
dx
dt

+ x =
p t( )
s

 where 

Ω = s
m

= 2π ×  natural frequency  and the viscous damping factor, 

c = λ
2 sm

 

is satisfied by 
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x = e−cΩt Asin 1− c2( )Ωt( )+ Bcos 1− c2( )Ωt( )( ) . 
If the mass is stationary and receives an impulse I  at t = 0 , then when 

t > 0 , 

x = I
m

e−cΩt sin 1− c2( )Ωt( )
1− c2( )Ω . 

Duhamel's integral treats the load as lots of little impulses so that 

x = 1
m 1− c2( )Ω e−cΩ t−τ( ) sin 1− c2( )Ω t −τ( )( ) p τ( )dτ

0

t

∫ . 

Seismic excitation 

 
The ground motion in the above is y  (note that horizontal ground 

motion is more of a problem than vertical). The equation of motion is 

mx + λ x − y( )+ s x − y( ) = 0 . 

We can rewrite this as 

mx + λ x + sx = λ y + sy  

so that the ‘load’ is λ y + sy . However it is more usual to write 

m x − y( )
••

+ λ x − y( )
•

+ s x − y( ) = −my  
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in which x − y( )  is the motion relative to the ground and it is this 

motion which causes the stresses in the structure. The ‘load’ is now 

simply −my . This is easy to implement in matrix notation for multi-

degree of freedom systems. 

Aeroelasticity 

This is discussed in lectures using the example of the Fokker E.V (later 

the D-VIII) monoplane (divergence) and the Tacoma Narrows bridge 

(single degree of freedom non-classical flutter) - see 

http://books.google.co.uk/books?id=DnQOzYDJsm8C&dq=stall+flutt

er+tacoma&source=gbs_navlinks_s 

Chris Williams 


