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The purpose of computing is insight, not numbers.
R.W. Hamming [242]

Preface

‘‘Everyone is an artist’’ was a central message of the famous twentieth century artist
Joseph Beuys. ‘‘Everyone models and simulates’’ is a central message of this book.
Mathematical modeling and simulation is a fundamental method in engineering
and science, and it is absolutely valid to say that everybody uses it (even those of us
who are not aware of doing so). The question is not whether to use this method or
not, but rather how to use it effectively.

Today we are in a situation where powerful desktop PCs are readily available
to everyone. These computers can be used for any kind of professional data
analysis. Even complex structural mechanical or fluid dynamical simulations
which would have required supercomputers just a few years ago can be performed
on desktop PCs. Considering the huge potential of modeling and simulation to
solve complex problems and to save money, one should thus expect a widespread
and professional use of this method. Particularly in the field of engineering,
however, complex problems are often still treated largely based on experimental
data. The amount of money spent on experimental equipment sometimes seems
proportional to the complexity and urgency of the problems that are solved, and
simple spreadsheet calculations are used to explore the information content of
such expensive data. As this book will show, mathematical models and simulations
help to reduce experimental costs not only by a partial replacement of experiments
by computations, but also by a better exploration of the information content of
experimental data.

This book is based on the author’s modeling and simulation experience in the
fields of science and engineering and as a consultant. It is intended as a first
introduction to the subject, which may be easily read by scientists, engineers and
students at the undergraduate level. The only mathematical prerequisites are some
calculus and linear algebra – all other concepts and ideas will be developed in
the course of the book. The reader will find answers to basic questions such as:
What is a mathematical model? What types of models do exist? Which model
is appropriate for a particular problem? How does one set up a mathematical
model? What is simulation, parameter estimation, validation? The book aims to
be a practical guide, enabling the reader to setup simple mathematical models on
his own and to interpret his own and other people’s results critically. To achieve
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this, many examples from various fields such as biology, ecology, economics,
medicine, agricultural, chemical, electrical, mechanical and process engineering
are discussed in detail.

The book relies exclusively upon open-source software, which is available to ev-
erybody free of charge. The reader is introduced into CAELinux, Calc,Code-Saturne,
Maxima, R, and Salome-Meca, and the entire book software – including 3D CFD
and structural mechanics simulation software – can be used based on a (free)
CAELinux-Live-DVD that is available in the Internet (works on most machines and
operating systems, see Appendix A).

While software is used to solve most of the mathematical problems, it is
nevertheless attempted to put the reader mathematically on firm ground as much
as possible. Trap-doors and problems that may arise in the modeling process, in
the numerical treatment of the models or in their interpretation are indicated, and
the reader is referred to the literature whenever necessary.

The book is organized as follows. Chapter 1 explains the principles of mathemati-
cal modeling and simulation. It provides definitions and illustrative examples of the
important concepts as well as an overview of the main types of mathematical models.
After a treatment of phenomenological (data-based) models in Chapter 2, the rest of
the book introduces the most important classes of mechanistic (process-oriented)
models (ordinary and partial differential equation models in Chapters 3 and 4,
respectively).

Although it is possible to write a book like this on your own, it is also true that it is
impossible to write a book like this on your own . . . I am indebted to a great number
of people. I wish to thank Otto Richter (TU Braunschweig), my first teacher in
mathematical modeling; Peter Knabner (U Erlangen), for an instructive excursion
into the field of numerical analysis; Helmut Neunzert and Franz-Josef Pfreundt
(TU and Fraunhofer-ITWM Kaiserslautern), who taught me to apply mathematical
models in the industry; Helmut Kern (FH Wiesbaden), for blazing a trail to
Geisenheim; Joël Cugnoni (EPFL Lausanne), for our cooperation and an adapted
version of CAELinux (great idea, excellent software); Anja Tschörtner, Cornelia
Wanka, Alexander Grossmann, H.-J. Schmitt and Uwe Krieg from Wiley-VCH;
and my colleagues and friends Marco Günther, Stefan Rief, Karlheinz Spindler,
and Aivars Zemitis for proofreading.

I dedicate this book to Birgid, Benedikt, Julia, and Theresa for the many weekends
and evenings they patiently allowed me to work on this book, to the Sisters of the
Ursuline Order in Geisenheim and Straubing, and, last but not least, to my parents
and to my brothers Axel and Ulf, to Bettina and Brigi and, of course, to Felix, for
their support and encouragment through so many years.

Geisenheim, May 2008 Kai Velten
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1

Principles of Mathematical Modeling

We begin this introduction to mathematical modeling and simulation with an
explanation of basic concepts and ideas, which includes definitions of terms such
as system, model, simulation, mathematical model, reflections on the objectives of
mathematical modeling and simulation, on characteristics of ‘‘good’’ mathematical
models, and a classification of mathematical models. You may skip this chapter at
first reading if you are just interested in a hands-on application of specific methods
explained in the later chapters of the book, such as regression or neural network
methods (Chapter 2) or differential equations (DEs) (in Chapters 3 and 4). Any
professional in this field, however, should of course know about the principles
of mathematical modeling and simulation. It was emphasized in the preface that
everybody uses mathematical models – ‘‘even those of us who are not aware of
doing so’’. You will agree that it is a good idea to have an idea of what one is doing. . .

Our starting point is the complexity of the problems treated in science and
engineering. As will be explained in Section 1.1, the difficulty of problems treated
in science and engineering typically originates from the complexity of the systems
under consideration, and models provide an adequate tool to break up this
complexity and make a problem tractable. After giving general definitions of
the terms system, model, and simulation in Section 1.2, we move on toward
mathematical models in Section 1.3, where it is explained that mathematics is
the natural modeling language in science and engineering. Mathematical models
themselves are defined in Section 1.4, followed by a number of example applications
and definitions in Sections 1.5 and 1.6. This includes the important distinction
between phenomenological and mechanistic models,which has been used as the
main organization principle of this book (see Section 1.6.1 and Chapters 2–4). The
chapter ends with a classification of mathematical models and Golomb’s famous
‘‘Don’ts of mathematical modeling’’ in Sections 1.7 and 1.8.

1.1
A Complex World Needs Models

Generally speaking, engineers and scientists try to understand, develop, or optimize
‘‘systems’’. Here, ‘‘system’’ refers to the object of interest, which can be a part of
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nature (such as a plant cell, an atom, a galaxy etc.) or an artificial technological
system (see Definition 1.2.3 below). Principally, everybody deals with systems in
his or her everyday life in a way similar to the approach of engineers or scientists.
For example, consider the problem of a table which is unstable due to an uneven
floor. This is a technical system and everybody knows what must be done to
solve the problem: we just have to put suitable pieces of cardboard under the
table legs. Each of us solves an abundant number of problems relating to simple
technological systems of this kind during our lifetime. Beyond this, there is a great
number of really difficult technical problems that can only be solved by engineers.
Characteristic of these more demanding problems is a high complexity of the
technical system. We would simply need no engineers if we did not have to deal
with complex technical systems such as computer processors, engines, and so on.
Similarly, we would not need scientists if processes such as the photosynthesis of
plants could be understood as simply as an unstable table. The reason why we have
scientists and engineers, virtually their right to exist, is the complexity of nature
and the complexity of technological systems.

Note 1.1.1 (The complexity challenge) It is the genuine task of scientists and
engineers to deal with complex systems, and to be effective in their work, they
most notably need specific methods to deal with complexity.

The general strategy used by engineers or scientists to break up the complexity of
their systems is the same strategy that we all use in our everyday life when we are
dealing with complex systems: simplification. The idea is just this: if something is
complex, make it simpler. Consider an everyday life problem related to a complex
system: A car that refuses to start. In this situation, everyone knows that a look at
the battery and fuel levels will solve the problem in most cases. Everyone will do
this automatically, but to understand the problem solving strategy behind this, let
us think of an alternative scenario. Assume someone is in this situation for the
first time. Assume that ‘‘someone’’ was told how to drive a car, that he has used the
car for some time, and now he is for the first time in a situation in which the car
does not start. Of course, we also assume that there is no help for miles around!
Then, looking under the hood for the first time, our ‘‘someone’’ will realize that
the car, which seems simple as long as it works well, is quite a complex system.
He will spend a lot of time until he will eventually solve the problem, even if we
admit that our ‘‘someone’’ is an engineer. The reason why each of us will solve this
problem much faster than this ‘‘someone’’ is of course the simple fact that this
situation is not new to us. We have experienced this situation before, and from our
previous experience we know what is to be done. Conceptually, one can say that
we have a simplified picture of the car in our mind similar to Figure 1.1. In the
moment when we realize that our car does not start, we do not think of the car as
the complex system that it really is, that is, we do not think of this conglomerate of
valves, pistons, and all the kind of stuff that can be found under the hood; rather,
we have this simplified picture of the car in our mind. We know that this simplified
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Tank Battery

Fig. 1.1 Car as a real system and as a model.

picture is appropriate in this given situation, and it guides us to look at the battery
and fuel levels and then to solve the problem within a short time.

This is exactly the strategy used by engineers or scientists when they deal
with complex systems. When an engineer, for example, wants to reduce the fuel
consumption of an engine, then he will not consider that engine in its entire
complexity. Rather, he will use simplified descriptions of that engine, focusing on
the machine parts that affect fuel consumption. Similarly, a scientist who wants
to understand the process of photosynthesis will use simplified descriptions of
a plant focusing on very specific processes within a single plant cell. Anyone
who wants to understand complex systems or solve problems related to complex
systems needs to apply appropriate simplified descriptions of the system under
consideration. This means that anyone who is concerned with complex systems
needs models, since simplified descriptions of a system are models of that system
by definition.

Note 1.1.2 (Role of models) To break up the complexity of a system under
consideration, engineers and scientists use simplified descriptions of that system
(i.e. models).

1.2
Systems, Models, Simulations

In 1965, Minsky gave the following general definition of a model [1, 2]:

Definition 1.2.1 (Model) To an observer B, an object A∗ is a model of an object
A to the extent that B can use A∗ to answer questions that interest him about A.

Note 1.2.1 (Formal definitions) Note that Definition 1.2.1 is a formal definition
in the sense that it operates with terms such as object or observer that are not
defined in a strict axiomatic sense similar to the terms used in the definitions
of standard mathematical theory. The same remark applies to several other
definitions in this book, including the definition of the term mathematical model
in Section 1.4. Definitions of this kind are justified for practical reasons, since
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they allow us to talk about the formally defined terms in a concise way. An
example is Definition 2.5.2 in Section 2.5.5, a concise formal definition of the
term overfitting, which uses several of the previous formal definitions.

The application of Definition 1.2.1 to the car example is obvious – we just have
to identify B with the car driver, A with the car itself, and A* with the simplified
tank/battery description of the car in Figure 1.1.

1.2.1
Teleological Nature of Modeling and Simulation

An important aspect of the above definition is the fact that it includes the
purpose of a model, namely, that the model helps us to answer questions and
to solve problems. This is important because particularly beginners in the field
of modeling tend to believe that a good model is one that mimics the part of
reality that it pertains to as closely as possible. But as was explained in the
previous section, modeling and simulation aims at simplification, rather than at a
useless production of complex copies of a complex reality, and hence, the contrary
is true:

Note 1.2.2 (The best model) The best model is the simplest model that still
serves its purpose, that is, which is still complex enough to help us understand a
system and to solve problems. Seen in terms of a simple model, the complexity
of a complex system will no longer obstruct our view, and we will virtually be
able to look through the complexity of the system at the heart of things.

The entire procedure of modeling and simulation is governed by its purpose
of problem solving – otherwise it would be a mere l’art pour l’art. As [3] puts
it, ‘‘modeling and simulation is always goal-driven, that is, we should know the
purpose of our potential model before we sit down to create it’’. It is hence natural
to define fundamental concepts such as the term model with a special emphasis
on the purpose-oriented or teleological nature of modeling and simulation. (Note that
teleology is a philosophical discipline dealing with aims and purposes, and the
term teleology itself originates from the Greek word telos, which means end or
purpose [4].) Similar teleological definitions of other fundamental terms, such as
system, simulation, and mathematical model are given below.

1.2.2
Modeling and Simulation Scheme

Conceptually, the investigation of complex systems using models can be divided
into the following steps:
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Note 1.2.3 (Modeling and simulation scheme)

Definitions
• Definition of a problem that is to be solved or of a question that

is to be answered
• Definition of a system, that is, a part of reality that pertains to

this problem or question

Systems Analysis
• Identification of parts of the system that are relevant for the

problem or question

Modeling
• Development of a model of the system based on the results of the

systems analysis step

Simulation
• Application of the model to the problem or question
• Derivation of a strategy to solve the problem or answer the

question

Validation
• Does the strategy derived in the simulation step solve the

problem or answer the question for the real system?

The application of this scheme to the examples discussed above is obvious: in
the car example, the problem is that the car does not start and the car itself is the
system. This is the ‘‘definitions’’ step of the above scheme. The ‘‘systems analysis’’
step identifies the battery and fuels levels as the relevant parts of the system as
explained above. Then, in the ‘‘modeling’’ step of the scheme, a model consisting
of a battery and a tank such as in Figure 1.1 is developed. The application of this
model to the given problem in the ‘‘simulation’’ step of the scheme then leads
to the strategy ‘‘check battery and fuel level’’. This strategy can then be applied
to the real car in the ‘‘validation’’ step. If it works, that is, if the car really starts
after refilling its battery or tank, we say that the model is valid or validated. If
not, we probably need a mechanic who will then look at other parts of the car,
that is, who will apply more complex models of the car until the problem is
solved.

In a real modeling and simulation project, the systems analysis step of the above
scheme can be a very time-consuming step. It will usually involve a thorough
evaluation of the literature. In many cases, the literature evaluation will show
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that similar investigations have been performed in the past, and one should
of course try to profit from the experiences made by others that are described
in the literature. Beyond this, the system analysis step usually involves a lot of
discussions and meetings that bring together people from different disciplines who
can answer your questions regarding the system. These discussion will usually
show that new data are needed for a better understanding of the system and for
the validation of the models in the validation step of the above scheme. Hence, the
definition of an experimental program is also another typical part of the systems
analysis step.

The modeling step will also involve the identification of appropriate software
that can solve the equations of the mathematical model. In many cases, it will
be possible to use standard software such as the software tools discussed in the
next chapters. Beyond this, it may be necessary to write your own software in
cases where the mathematical model involves nonstandard equations. An example
of this case is the modeling of the press section of paper machines, which
involves highly convection-dominated diffusion equations that cannot be treated
by standard software with sufficient precision, and which hence need specifically
tailored numerical software [5].

In the validation step, the model results will be compared with experimental data.
These data may come from the literature, or from experiments that have been
specifically designed to validate the model. Usually, a model is required to fit the
data not only quantitatively, but also qualitatively in the sense that it reproduces the
general shape of the data as closely as possible. See Section 3.2.3.4 for an example
of a qualitative misfit between a model and data. But, of course, even a model that
perfectly fits the data quantitatively and qualitatively may fail the validation step of
the above scheme if it cannot be used to solve the problem that is to be solved,
which is the most important criterion for a successful validation.

The modeling and simulation scheme (Note 1.2.3) focuses on the essential
steps of modeling and simulation, giving a rather simplified picture of what really
happens in a concrete modeling and simulation project. For different fields of
application, you may find a number of more sophisticated descriptions of the
modeling and simulation process in books such as [6–9]. An important thing that
you should note is that a real modeling and simulation project will very rarely
go straight through the steps of the above scheme; rather, there will be a lot
of interaction between the individual steps of the scheme. For example, if the
validation step fails, this will bring you back to one of the earlier steps in a loop-like
structure: you may then improve your model formulation, reanalyze the system,
or even redefine your problem formulation (if your original problem formulation
turns out to be unrealistic).

Note 1.2.4 (Start with simple models!) To find the best model in the sense of
Note 1.2.2, start with the simplest possible model and then generate a sequence
of increasingly complex model formulations until the last model in the sequence
passes the validation step.
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1.2.3
Simulation

So far we have given a definition of the term model only. The above modeling
and simulation schemes involve other terms, such as system and simulation, which
we may view as being implicitly defined by their role in the above scheme. Can
this be made more precise? In the literature, you will find a number of different
definitions, for example of the term simulation. These differences can be explained
by different interests of the authors. For example, in a book with a focus on the
so-called discrete event simulation which emphasizes the development of a system
over time, simulation is defined as ‘‘the imitation of the operation of a real-world
process or system over time’’ [6]. In general terms, simulation can be defined as
follows:

Definition 1.2.2 (Simulation) Simulation is the application of a model with
the objective to derive strategies that help solve a problem or answer a question
pertaining to a system.

Note that the term simulation originates from the Latin word ‘‘simulare’’, which
means ‘‘to pretend’’: in a simulation, the model pretends to be the real system.
A similar definition has been given by Fritzson [7] who defined simulation as
‘‘an experiment performed on a model’’. Beyond this, the above definition is a
teleological (purpose-oriented) definition similar to Definition 1.2.1 above, that is,
this definition again emphasizes the fact that simulation is always used to achieve
some goal. Although Fritzson’s definition is more general, the above definition
reflects the real use of simulation in science and engineering more closely.

1.2.4
System

Regarding the term system, you will again find a number of different definitions
in the literature, and again some of the differences between these definitions can
be explained by the different interests of their authors. For example, [10] defines
a system to be ‘‘a collection of entities, for example, people or machines, that act
and interact together toward the accomplishment of some logical end’’. According
to [11], a system is ‘‘a collection of objects and relations between objects’’. In the
context of mathematical models, we believe it makes sense to think of a ‘‘system’’
in very general terms. Any kind of object can serve as a system here if we have
a question relating to that object and if this question can be answered using
mathematics. Our view of systems is similar to a definition that has been given
by [12] (see also the discussion of this definition in [3]): ‘‘ A system is whatever is
distinguished as a system.’’ [3] gave another definition of a ‘‘system’’ very close to
our view of systems here: ‘‘A system is a potential source of data’’. This definition
emphasizes the fact that a system can be of scientific interest only if there is some
communication between the system and the outside world, as it will be discussed
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below in Section 1.3.1. A definition that includes the teleological principle discussed
above has been given by Fritzson [7] as follows:

Definition 1.2.3 (System) A system is an object or a collection of objects whose
properties we want to study.

1.2.5
Conceptual and Physical Models

The model used in the car example is something that exists in our minds only.
We can write it down on a paper in a few sentences and/or sketches, but it does
not have any physical reality. Models of this kind are called conceptual models [11].
Conceptual models are used by each of us to solve everyday problems such as
the car that refuses to start. As K.R. Popper puts it, ‘‘all life is problem solving’’,
and conceptual models provide us with an important tool to solve our everyday
problems [13]. They are also applied by engineers or scientists to simple problems
or questions similar to the car example. If their problem or question is complex
enough, however, they rely on experiments, and this leads us to other types of
models. To see this, let us use the modeling and simulation scheme (Note 1.2.3)
to describe a possible procedure followed by an engineer who wants to reduce the
fuel consumption of an engine: In this case, the problem is the reduction of fuel
consumption and the system is the engine. Assume that the systems analysis leads
the engineer to the conclusion that the fuel injection pump needs to be optimized.
Typically, the engineer will then create some experimental setting where he can
study the details of the fuel injection process.

Such an experimental setting is then a model in the sense that it will typically be
a very simplified version of that engine, that is, it will typically involve only a few
parts of the engine that are closely connected with the fuel injection process. In
contrast to a conceptual model, however, it is not only an idea in our mind but also a
real part of the physical world, and this is why models of this kind are called physical
models [11]. The engineer will then use the physical model of the fuel injection
process to derive strategies – for example, a new construction of the fuel injection
pump – to reduce the engine’s fuel consumption, which is the simulation step of
the above modeling and simulation scheme. Afterwards, in the validation step of
the scheme, the potential of these new constructions to reduce fuel consumption
will be tested in the engine itself, that is, in the real system. Physical models are
applied by scientists in a similar way. For example, let us think of a scientist who
wants to understand the photosynthesis process in plants. Similar to an engineer,
the scientist will set up a simplified experimental setting – which might be some
container with a plant cell culture – in which he can easily observe and measure the
important variables, such as CO2, water, light, and so on. For the same reasons as
above, anything like this is a physical model. As before, any conclusion drawn from
such a physical model corresponds to the simulation step of the above scheme, and
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the conclusions need to be validated by data obtained from the real system, that is,
data obtained from real plants in this case.

1.3
Mathematics as a Natural Modeling Language

1.3.1
Input–Output Systems

Any system that is investigated in science or engineering must be observable in
the sense that it produces some kind of output that can be measured (a system that
would not satisfy this minimum requirement would have to be treated by theolo-
gians rather than by scientists or engineers). Note that this observability condition
can also be satisfied by systems where nothing can be measured directly, such as
black holes, which produce measurable gravitational effects in their surroundings.
Most systems investigated in engineering or science do also accept some kind
of input data, which can then be studied in relation to the output of the system
(Figure 1.2a). For example, a scientist who wants to understand photosynthesis will
probably construct experiments where the carbohydrate production of a plant is
measured at various levels of light, CO2, water supply, and so on. In this case, the
plant cell is the system; the light, CO2, and water levels are the input quantities; and
the measured carbohydrate production is the output quantity. Or, an engineer who
wants to optimize a fuel injection pump will probably change the construction of
that pump in various ways and then measure the fuel consumption resulting from
these modified constructions. In this case, the fuel injection pump is the system,
the construction parameters changed by the engineer are the input parameters and
the resulting fuel consumption is the output quantity.

Note 1.3.1 (Input–output systems) Scientists or engineers investigate ‘‘input–
output systems’’, which transform given input parameters into output
parameters.

Note that there are of course situations where scientists are looking at the system
itself and not at its input–output relations, for example when a botanist just wants

OutputSystemInput

Input 1 Output 1
Input 2 Output 2
Input 3 Output 3

Input n Output n

.

.

.

(a) (b)

Fig. 1.2 (a) Communication of a system with the outside
world. (b) General form of an experimental data set.
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to describe and classify the anatomy of a newly discovered plant. Typically, however,
such purely descriptive studies raise questions about the way in which the system
works, and this is when input–output relations come into play. Engineers, on
the other hand, are always concerned with input–output relations since they are
concerned with technology. The Encyclopedia Britannica defines technology as
‘‘the application of scientific knowledge to the practical aims of human life’’. These
‘‘practical aims’’ will usually be expressible in terms of a system output, and the
tuning of system input toward optimized system output is precisely what engineers
typically do, and what is in fact the genuine task of engineering.

1.3.2
General Form of Experimental Data

The experimental procedure described above is used very generally in engineering
and in the (empirical) sciences to understand, develop, or optimize systems. It is
useful to think of it as a means to explore black boxes. At the beginning of an
experimental study, the system under investigation is similar to such a ‘‘black box’’
in the sense that there is some uncertainty about the processes that happen inside
the system when the input is transformed into the output. In an extreme case,
the experimenter may know only that ‘‘something’’ happens inside the system
which transforms input into output, that is, the system may be really a black
box. Typically, however, the experimenter will have some hypotheses about the
internal processes, which he wants to prove or disprove in the course of his
study. That is, experimenters typically are concerned with systems as gray boxes
which are located somewhere between black and white boxes (more details in
Section 1.5).

Depending on the hypothesis that the experimenter wants to investigate, he
confronts the system with appropriate input quantities, hoping that the outputs
produced by the system will help prove or disprove his hypothesis. This is similar
to a question-and-answer game: the experimenter poses questions to the system,
which is the input, and the system answers to these questions in terms of mea-
surable output quantities. The result is a data set of the general form shown in
Figure 1.2b. In rare cases, particularly if one is concerned with very simple systems,
the internal processes of the system may already be evident from the data set itself.
Typically, however, this experimental question-and-answer game is similar to the
questioning of an oracle: we know there is some information about the system in
the data set, but it depends on the application of appropriate ideas and methods
if one wants to uncover the information content of the data and, so to speak, shed
some light into the black box.

1.3.3
Distinguished Role of Numerical Data

Now what is an appropriate method for the analysis of experimental datasets? To
answer this question, it is important to note that in most cases experimental data
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are numbers and can be quantified. The input and output data of Figure 1.2b will
typically consist of columns of numbers. Hence, it is natural to think of a system
in mathematical terms. In fact, a system can be naturally seen as a mathematical
function, which maps given input quantities x into output quantities y = f (x)
(Figure 1.2a). This means that if one wants to understand the internal mechanics
of a system ‘‘black box’’, that is, if one wants to understand the processes inside
the real system that transform input into output, a natural thing to do is to
translate all these processes into mathematical operations. If this is done, one
arrives at a simplified representation of the real system in mathematical terms.
Now remember that a simplified description of a real system (along with a problem
we want to solve) is a model by definition (Definition 1.2.1). The representation
of a real system in mathematical terms is thus a mathematical model of that
system.

Note 1.3.2 (Naturalness of mathematical models) Input–output systems usu-
ally generate numerical (or quantifiable) data that can be described naturally in
mathematical terms.

This simple idea, that is, the mapping of the internal mechanics of real systems
into mathematical operations, has proved to be extremely fruitful to the under-
standing, optimization, or development of systems in science and engineering.
The tremendous success of this idea can only be explained by the naturalness of
this approach – mathematical modeling is simply the best and most natural thing
one can do if one is concerned with scientific or engineering problems. Looking
back at Figure 1.2a, it is evident that mathematical structures emanate from the
very heart of science and engineering. Anyone concerned with systems and their
input–output relations is also concerned with mathematical problems – regardless
of whether he likes it or not and regardless of whether he treats the system ap-
propriately using mathematical models or not. The success of his work, however,
depends very much on the appropriate use of mathematical models.

1.4
Definition of Mathematical Models

To understand mathematical models, let us start with a general definition. Many
different definitions of mathematical models can be found in the literature. The
differences between these definitions can usually be explained by the different
scientific interests of their authors. For example, Bellomo and Preziosi [14] define
a mathematical model to be a set of equations which can be used to compute the
time-space evolution of a physical system. Although this definition suffices for the
problems treated by Bellomo and Preziosi, it is obvious that it excludes a great
number of mathematical models. For example, many economical or sociological
problems cannot be treated in a time-space framework or based on equations only.
Thus, a more general definition of mathematical models is needed if one wants
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to cover all kinds of mathematical models used in science and engineering. Let us
start with the following attempt of a definition:

A mathematical model is a set of mathematical statements
M = {�1, �2, . . . , �n}.

Certainly, this definition covers all kinds of mathematical models used in science
and engineering as required. But there is a problem with this definition. For
example, a simple mathematical statement such as f (x) = ex would be a mathe-
matical model in the sense of this definition. In the sense of Minsky’s definition
of a model (Definition 1.2.1), however, such a statement is not a model as long
as it lacks any connection with some system and with a question we have relating
to that system. The above attempt of a definition is incomplete since it pertains to
the word ‘‘mathematical’’ of ‘‘mathematical model’’ only, without any reference to
purposes or goals. Following the philosophy of the teleological definitions of the
terms model, simulation, and system in Section 1.2, let us define instead:

Definition 1.4.1 (Mathematical Model) A mathematical model is a triplet
(S, Q , M) where S is a system, Q is a question relating to S, and M is a set of
mathematical statements M = {�1, �2, . . . , �n} which can be used to answer Q .

Note that this is again a formal definition in the sense of Note 1.2.1 in Section 1.2.
Again, it is justified by the mere fact that it helps us to understand the nature
of mathematical models, and that it allows us to talk about mathematical models
in a concise way. A similar definition was given by Bender [15]: ‘‘A mathematical
model is an abstract, simplified, mathematical construct related to a part of reality
and created for a particular purpose.’’ Note that Definition 1.4.1 is not restricted
to physical systems. It covers psychological models as well that may deal with
essentially metaphysical quantities, such as thoughts, intentions, feelings, and
so on. Even mathematics itself is covered by the above definition. Suppose, for
example, that S is the set of natural numbers and our question Q relating to S is
whether there are infinitely many prime numbers or not. Then, a set (S, Q , M) is
a mathematical model in the sense of Definition 1.4.1 if M contains the statement
‘‘There are infinitely many prime numbers’’ along with other statements which
prove this statement. In this sense, the entire mathematical theory can be viewed
as a collection of mathematical models.

The notation (S, Q , M) in Definition 1.4.1 emphasizes the chronological order
in which the constituents of a mathematical model usually appear. Typically, a
system is given first, then there is a question regarding that system, and only then
a mathematical model is developed. Each of the constituents of the triplet (S, Q ,
M) is an indispensable part of the whole. Regarding M, this is obvious, but S and Q
are important as well. Without S, we would not be able to formulate a question Q ;
without a question Q , there would be virtually ‘‘nothing to do’’ for the mathematical
model; and without S and Q , the remaining M would be no more than ‘‘l’art pour



1.5 Examples and Some More Definitions 13

l’art’’. The formula f (x) = ex, for example, is such a purely mathematical ‘‘l’art
pour l’art’’ statement as long as we do not connect it with a system and a question.
It becomes a mathematical model only when we define a system S and a question
Q relating to it. For example, viewed as an expression of the exponential growth
period of plants (Section 3.10.4), f (x) = ex is a mathematical model which can
be used to answer questions regarding plant growth. One can say it is a genuine
property of mathematical models to be more than ‘‘l’art pour l’art’’, and this is
exactly the intention behind the notation (S, Q , M) in Definition 2.3.1. Note that the
definition of mathematical models by Bellomo and Preziosi [14] discussed above
appears as a special case of Definition 1.4.1 if we restrict S to physical systems, M to
equations, and only allow questions Q which refer to the space-time evolution of S.

Note 1.4.1 (More than ‘‘l’art pour l’art’’) The system and the question relating
to the system are indispensable parts of a mathematical model. It is a genuine
property of mathematical models to be more than mathematical ‘‘l’art pour l’art’’.

Let us look at another famous example that shows the importance of Q . Suppose
we want to predict the behavior of some mechanical system S. Then the appropri-
ate mathematical model depends on the problem we want to solve, that is, on the
question Q . If Q is asking for the behavior of S at moderate velocities, classical
(Newtonian) mechanics can be used, that is, M = {equations of Newtonian mechan-
ics}. If, on the other hand, Q is asking for the behavior of S at velocities close to the
speed of light, then we have to set M = {equations of relativistic mechanics} instead.

1.5
Examples and Some More Definitions

Generally speaking, one can say we are concerned with mathematical models in the
sense of Definition 1.4.1 whenever we perform computations in our everyday life,
or whenever we apply the mathematics we have learned in schools and universities.
Since everybody computes in his everyday life, everybody uses mathematical
models, and this is why it was valid to say that ‘‘everyone models and simulates’’
in the preface of this book. Let us look at a few examples of mathematical models
now, which will lead us to the definitions of some further important concepts.

Note 1.5.1 (Everyone models and simulates) Mathematical models in the
sense of Definition 1.4.1 appear whenever we perform computations in our
everyday life.

Suppose we want to know the mean age of some group of people. Then, we apply
a mathematical model (S, Q , M) where S is that group of people, Q asks for their
mean age, and M is the mean value formula x = (∑n

i=1 xi
)
/n. Or, suppose we want

to know the mass X of some substance in the cylindrical tank of Figure 1.3, given
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Fig. 1.3 Tank problem.

a constant concentration c of the substance in that tank. Then, a multiplication of
the tank volume with c gives the mass X of the substance, that is,

X = 5πc (1.1)

This means we apply a model (S, Q , M) where S is the tank, Q asks for the mass
of the substance, and M is Equation 1.1. An example involving more than simple
algebraic operations is obtained if we assume that the concentration c in the tank of
Figure 1.3 depends on the height coordinate, x. In that case, Equation 1.1 turns into

X = π ·
∫ 5

0
c(x) dx (1.2)

This involves an integral, that is, we have entered the realms of calculus now.

Note 1.5.2 (Notational convention) Variables such as X and c in Equation 1.1,
which are used without further specification are always assumed to be real
numbers, and functions such as c(x) in Equation 1.2 are always assumed to be
real functions with suitable ranges and domains of definition (such as c : [0, 5]
→ R+ in the above example) unless otherwise stated.

In many mathematical models (S, Q , M) involving calculus, the question Q asks
for the optimization of some quantity. Suppose for example we want to minimize
the material consumption of a cylindrical tin having a volume of 1 l. In this case,

M = {πr2h = 1, A = 2πr2 + 2πrh → min} (1.3)

can be used to solve the problem. Denoting by r and h the radius and height of the
tin, the first statement in Equation 1.3 expresses the fact that the tin volume is 1 l.
The second statement requires the surface area of the tin to be minimal, which is
equivalent to a minimization of the metal used to build the tin. The mathematical
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problem 1.3 can be solved if one inserts the first equation of (1.3) into the second
equation of (1.3), which leads to

A(r) = 2πr2 + 2

r
→ min (1.4)

This can then be treated using standard calculus (A′(r) = 0 etc.), and the optimal
tin geometry obtained in this way is

r = 3

√
1

2π
≈ 0.54 dm (1.5)

h = 3

√
4

π
≈ 1.08 dm (1.6)

1.5.1
State Variables and System Parameters

Several general observations can be made referring to the examples in the last
section. As discussed in Section 1.1 above, the main benefit of the modeling
procedure lies in the fact that the complexity of the original system is reduced. This
can be nicely seen in the last example. Of course, each of us knows that a cylindrical
tin can be described very easily based on its radius r and its height h. This means
everyone of us automatically applies the correct mathematical model, and hence,
– similar to the car problem discussed in Section 1.1 – everybody automatically

believes that the system in the tin problem is a simple thing. But if we do not apply
this model to the tin, it becomes a complex system. Imagine a Martian or some
other extraterrestrial being who never saw a cylinder before. Suppose we would say
to this Martian: ‘‘Look, here you have some sheets of metal and a sample tin filled
with water. Make a tin of the same shape which can hold that amount of water, and
use as little metal as possible.’’ Then this Martian will – at least initially – see the
original complexity of the problem. If he is smart, which we assume, he will note
that infinitely many possible tin geometries are involved here. He will realize that
an infinite set of (x, y)-coordinates would be required to describe the sample tin
based on its set of coordinates. He will realize that infinitely many measurements,
or, equivalently, algebraic operations would be required to obtain the material
consumption based on the surface area of the sample tin (assuming that he did not
learn about transcendental numbers such as π in his Martian school . . . ).

From this original (‘‘Martian’’) point of view we thus see that the system S of the
tin example is quite complex, in fact an infinite-dimensional system. And we see
the power of the mathematical modeling procedure which reduces those infinite
dimensions to only two, since the mathematical solution of the above problem
involves only two parameters: r and h (or, equivalently, r and A). Originally, the
system ‘‘tin’’ in the above example is an infinite-dimensional thing not only with
respect to its set of coordinates or the other aspects mentioned above, but also
with respect to many other aspects which have been neglected in the mathematical
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model since they are unimportant for the solution of the problem, for example the
thickness of the metal sheets, or its material, color, hardness, roughness and so on.
All the information which was contained in the original system S = ‘‘tin’’ is reduced
to a description of the system as a mere Sr = {r, h} in terms of the mathematical
model. Here, we have used the notation Sr to indicate that Sr is not the original
system which we denote S, but rather the description of S in terms of the math-
ematical model, which we call the ‘‘reduced system’’. The index ‘‘r’’ indicates that
the information content of the original system S is reduced as we go from S to Sr.

Note 1.5.3 (A main benefit) The reduction of the information content of
complex systems in terms of reduced systems (Definition 1.5.2) is one of the main
benefits of mathematical models.

A formal definition of the reduced system Sr can be given in two steps as follows:

Definition 1.5.1 (State variables) Let (S, Q , M) be a mathematical model.
Mathematical quantities s1, s2, . . . , sn which describe the state of the system S in
terms of M and which are required to answer Q are called the state variables of
(S, Q , M).

Definition 1.5.2 (Reduced system and system parameters) Let s1, s2, . . . ,
sn be the state variables of a mathematical model (S, Q , M). Let p1, p2, . . . ,
pm be mathematical quantities (numbers, variables, functions) which describe
properties of the system S in terms of M, and which are needed to compute the
state variables. Then Sr = {p1, p2, . . . , pm} is the reduced system and p1, p2, . . . , pm

are the system parameters of (S, Q , M).

This means that the state variables describe the system properties we are really
interested in, while the system parameters describe system properties needed
to obtain the state variables mathematically. Although we finally need the state
variables to answer Q , the information needed to answer Q is already in the
system parameters, that is, in the reduced system Sr. Using Sr, this information is
expressed in terms of the state variables by means of mathematical operations, and
this is then the final basis to answer Q . For example, in the tank problem above we
were interested in the mass of the substance; hence, in this example we have one
state variable, that is, n = 1 and s1 = X . To obtain s1, we used the concentration
c; hence, we have one system parameter in that example, that is, m = 1 and p1 =
c. The reduced system in this case is Sr = {c}. By definition, the reduced system
contains all information about the system which we need to get the state variable,
that is, to answer Q . In the tin example, we needed the surface area of the tin to
answer Q , that is, in that case we had again one state variable s1 = A. On the other
hand, two system parameters p1 = r and p2 = h were needed to obtain s1, that is,
in this case the reduced system is Sr = {r, h}.
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S r = {r}

(a) (b)

Fig. 1.4 (a) Potted plant. (b) The same potted plant written as a reduced system.

Let us look at another example. In Section 3.10.4 below, a plant growth model will
be discussed which is intended to predict the time evolution of the overall biomass
of a plant. To achieve this, none of the complex details of the system ‘‘plant’’
will be considered except for its growth rate. This means the complex system
S = ‘‘plant’’ is reduced to a single parameter in this model: the growth rate r of
the plant. In the above notation, this means we have Sr = {r} (Figure 1.4). It is not
necessary to be a botanist to understand how dramatic this information reduction
really is: everything except for the growth rate is neglected, including all kinds
of macroscopic and microscopic substructures of the plant, its roots, its stem, its
leaves as well as its cell structure, all the details of the processes that happen inside
the cells, and so on. From the point of view of such a brutally simplified model,
it makes no difference whether it is really concerned with the complex system
‘‘plant’’, or with some shapeless green pulp of biomass that might be obtained after
sending the plant through a shredder, or even with entirely other systems, such as
a bacteria culture or a balloon that is being inflated.

All that counts from the point of view of this model is that a growth rate can
be assigned to the system under consideration. Naturally, botanists do not really
like this brutal kind of models, which virtually send there beloved ones through a
shredder. Anyone who presents such a model on a botanist’s conference should
be prepared to hear a number of questions beginning with ‘‘Why does your model
disregard . . . ’’. At this point we already know how to answer this kind of question:
we know that according to Definition 1.4.1, a mathematical model is a triplet (S, Q ,
M) consisting of a system S, a question Q , and a set of mathematical statements
M, and that the details of the system S that are represented in M depend on the
question Q that is to be answered by the model. In this case, Q was asking for the
time development of the plant biomass, and this can be sufficiently answered based
on a model that represents the system S = ‘‘plant’’ as Sr = {r}. Generally one can
say that the reduced system of a well-formulated mathematical model will consist
of no more than exactly those properties of the original system that are important
to answer the question Q that is being investigated.

Note 1.5.4 (Importance of experiments) Typically, the properties (parameters)
of the reduced system are those which need experimental characterization. In
this way, the modeling procedure guides the experiments, and instead of making
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the experimenter superfluous (a frequent misunderstanding), it helps to avoid
superfluous experiments.

1.5.2
Using Computer Algebra Software

Let us make a few more observations relating to the ‘‘1 l tin’’ example above. The
mathematical problem behind this example can be easily solved using software. For
example, using the computer algebra software Maxima, the problem can be solved
as follows:

1: A(r):=2 *%pi *rˆ2 +2/r;
2: define(A1(r),diff(A(r),r));
3: define(A2(r),diff(A1(r),r));
4: solve(A1(r) =0);
5: r:rhs(solve(A1(r)=0)[3]);
6: r,numer;
7: A2(r)>0,pred;

(1.7)

These are the essential commands in the Maxima program Tin.mac which you
find in the book software. See Appendix A for a description of the book software
and Appendix C for a description of how you can run Tin.mac within Maxima. In
1.7, the numbers 1:, 2:, and so on are not a part of the code, but just line numbers
that we will use for referencing. Line 1 of the code defines the function A(r) from
Equation 1.4, which describes the material consumption that is to be minimized
(note that %pi is the Maxima notation of π ). As you know from calculus, you can
minimize A(r) by solving A′(r) = 0 [16, 17]. The solutions of this equations are the
critical points, which can be relative maxima or minima depending on the sign
of the second derivative A′′ of A. Lines 2 and 3 of the above code define the first
and second derivatives of A(r) as the Maxima functions A1(r) and A2(r). Line 4
solves A′(r) = 0 using Maxima’s solve command, which gives the result shown in
Figure 1.5 if you are using wxMaxima (see Appendix C for details on wxMaxima).

As the figure shows, A′(r) = 0 gives three critical points. The first two critical
points involve the imaginary number i (which is designated as ‘‘%i’’ within
Maxima), so these are complex numbers which can be excluded here [17]. The third
solution in Figure 1.5 is the solution that really solves the tin problem (compare
Equation 1.5 above). Line 5 of Equation 1.7 stores this solution in the variable r,
using ‘‘[3]’’ to address the third element in the list shown in Figure 1.5. Since

(%o9) [r =
3 %i − 1

221/3%pi1/3
, ,r = − r =3 %i + 1

221/3%pi1/3 21/3%pi1/3

1
]

Fig. 1.5 Result of line 4 of Equation 1.7 in wxMaxima.
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this element is an equation, rhs is then used to pick the right-hand side of this
equation. Maxima’s numer command can be used as in line 6 of Equation 1.7 if
you want to have the solution in a decimal numerical format. Finally, Maxima’s
pred command can be used as in line 7 of Equation 1.7 to verify that the value
of the second derivative is positive at the critical point that was stored in r (a
necessary condition for that critical point to be a minimum [17]). In Maxima,
line 7 gives ‘‘true’’, which means that the second derivative is indeed positive as
required.

1.5.3
The Problem Solving Scheme

In this example – and similarly in many other cases – one can clearly distin-
guish between the formulation of a mathematical model on the one hand and
the solution of the resulting mathematical problem on the other hand, which
can be done with appropriate software. A number of examples will show this
below. This means that it is not necessary to be a professional mathematician
if one wants to work with mathematical models. Of course, it is useful to have
mathematical expertise. Mathematical expertise is particularly important if one
wants to solve more advanced problems, or if one wants to make sure that the
results obtained with mathematical software are really solutions of the original
problem and no numerical artifacts. As we will see below, the latter point is
of particular importance in the solution of partial differential equations (PDEs).
However, people with insufficient mathematical expertise may of course just ask
a mathematician. Typically, mathematical modeling projects will have an inter-
disciplinary character. The important point that we should note here is the fact
that the formulation of mathematical models can also be done by nonmathemati-
cians. Above all, the people formulating the models should be experts regarding
the system under consideration. This book is intended to provide particularly
nonmathematicians with enough knowledge about the mathematical aspects of
modeling such that they can deal at least with simple mathematical models on
their own.

Note 1.5.5 (Role of software) Typically, the formulation of a mathematical
model is clearly separated from the solution of the mathematical problems
implied by the model. The latter (‘‘the hard work’’) can be done by software in
many cases. People working with mathematical models hence do not need to be
professional mathematicians.

The tin example shows another important advantage of mathematical modeling.
After the tin problem was formulated mathematically (Equation 1.4), the powerful
and well-established mathematical methods of calculus became applicable. Using
the appropriate software (see 1.7), the problem could then be solved with little
effort. Without the mathematical model for this problem, on the other hand, an
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System S
Question Q

Answer A

Mathematical model (S,Q,M )

Real world

Mathematics

Mathematical
problem M Answer A*

Fig. 1.6 Problem solving scheme.

experimental solution of this problem would have taken much more time. In
a similar way, many other problems in science and engineering can be solved
effectively using mathematics. From the point of view of science and engineering,
mathematics can be seen as a big resource of powerful methods and instruments
that can be used to solve problems, and it is the role of mathematical models to
make these methods and instruments applicable to originally nonmathematical
problems. Figure 1.6 visualizes this process. The starting point is a real-world
system S together with a question Q relating to S. A mathematical model (S, Q , M)
then opens up the way into the ‘‘mathematical universe’’, where the problem can be
solved using powerful mathematical methods. This leads to a problem solution in
mathematical terms (A*), which is then translated into an answer A to the original
question Q in the last step.

Note 1.5.6 (Mathematical models as door opener) Translating originally non-
mathematical problems into the language of mathematics, mathematical models
virtually serve as a door opener toward the ‘‘mathematical universe’’ where pow-
erful mathematical methods become applicable to originally nonmathematical
problems.

As the figure shows, the mathematical model virtually controls the ‘‘problem
solving traffic’’ between the real and mathematical worlds, and hence, its natural
position is located exactly at the borderline between these worlds. The role of
mathematics in Figure 1.6 can be described like a subway train: since it would be
a too long and hard way to go from the system S and question Q to the desired
answer A in the real world, smart problem solvers go into the ‘‘mathematical
underground’’, where powerful mathematical methods provide fast trains toward
the problem solution.

1.5.4
Strategies to Set up Simple Models

In many cases, a simple three-step procedure can be used to set up a mathematical
model. Consider the following
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Problem 1:
Which volumes of fluids A and B should be mixed to obtain 150 l of a fluid
C that contains 70 gl−1 of a substance, if A and B contain 50 gl−1 and 80 gl−1,
respectively?

For this simple problem, many of us will immediately write down the correct
equations:

x + y = 150 (1.8)

50x + 80y = 70 · 150 (1.9)

where x [ l ] and y [ l ] are the unknown volumes of the fluids A and B. For more
complex problems, however, it is good to have a systematic procedure to set up the
equations. A well-proven procedure that works for a great number of problems can
be described as follows:

Note 1.5.7 (Three steps to setup a model)
• Step 1: Determine the number of unknowns, that is, the number

of quantities that must be determined in the problem. In many
problem formulations, you just have to read the last sentence
where the question is asked.

• Step 2: Give precise definitions of the unknowns, including units.
It is a practical experience that this should not be lumped with
step 1.

• Step 3: Reading the problem formulation sentence by sentence,
translate this information into mathematical statements which
involve the unknowns defined in step 2.

Let us apply this to Problem 1 above. In step 1 and step 2, we would ascertain that
Problem 1 asks for two unknowns which can be defined as

• x: volume of fluid A in the mixture [ l ]
• y: volume of fluid B in the mixture [ l ]

These steps are important because they tell us about the unknowns that can
be used in the equations. As long as the unknowns are unknown to us, it will
be hard to write down meaningful equations in step 3. Indeed, it is a frequent
beginner’s mistake in mathematical modeling to write down equations which
involve unknowns that are not sufficiently well defined. People often just pick up
symbols that appear in the problem formulation – such as A, B, C in problem 1
above – and then write down equations like

50A + 80B = 70 (1.10)
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This equation is indeed almost correct, but it is hard to check its correctness as
long as we lack any precise definitions of the unknowns. The intrinsic problem with
equations such as Equation 1.10 lies in the fact that A, B, C are already defined in
the problem formulation. There, they refer to the names of the fluids, although they
are (implicitly) used to express the volumes of the fluids in Equation 1.10. Thus, let
us now write down the same equation using the unknowns x and y defined above:

50x + 80y = 70 (1.11)

Now the definitions of x and y can be used to check this equation. What we see
here is that on the left-hand side of Equation 1.11, the unit is (grams), which results
from the multiplication of 50 gl−1 with x [l]. On the right-hand side of Equation
1.11, however, the unit is grams per liter. So we have different units on the different
sides of the equation, which proves that this is a wrong equation. At the same
time, a comparison of the units may help us to get an idea of what must be done
to obtain a correct equation. In this case, it is obvious that a multiplication of the
right-hand side of Equation 1.11 with some quantity expressed in liter would solve
the unit problem. The only quantity of this kind in the problem formulation is the
150 l volume which is required as the volume of the mixture, and multiplying the
70 in Equation 1.11 with 150 indeed solves the problem in this case.

Note 1.5.8 (Check the units!) Always check that the units on both sides of your
equations are the same. Try to ‘‘repair’’ any differences that you may find using
appropriate data of your problem.

A major problem in step 3 is to identify those statements in the problem formula-
tion which correspond to mathematical statements, such as equations, inequalities,
and so on. The following note can be taken as a general guideline for this:

Note 1.5.9 (Where are the equations?) The statements of the problem formu-
lation that can be translated into mathematical statements, such as equations,
inequalities, and so on, are characterized by the fact that they impose restrictions
on the values of the unknowns.

Let us analyze some of the statements in Problem 1 above in the light of this
strategy:

• Statement 1: 150 l of fluid C are required.
• Statement 2: Fluid A contains 50 gl−1 of the substance.
• Statement 3: Fluid B contains 80 gl−1 of the substance.
• Statement 4: Fluid C contains 70 gl−1 of the substance.

Obviously, statement 1 is a restriction on the values of x and y, which translates
immediately into the equation:

x + y = 150 (1.12)
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Statement 2 and statement 3, on the other hand, impose no restriction on the
unknowns. Arbitrary values of x and y are compatible with the fact that fluids
A and B contain 50 gl−1 and 80 gl−1 of the substance, respectively. Statement 4,
however, does impose a restriction on x and y. For example, given a value of x, a
concentration of 70 gl−1 in fluid C can be realized only for one particular value of
y. Mathematically, statement 4 can be expressed by Equation 1.9 above. You may be
able to write down this equation immediately. If you have problems to do this, you
may follow a heuristic (i.e. not 100% mathematical) procedure, where you try to
start as close to the statement in the problem formulation as possible. In this case,
we could begin with expressing statement 4 as

{
Concentration of substance in fluid C

} = 70 (1.13)

Then, you would use the definition of a concentration as follows:

{
Mass of substance in fluid C

}
{
Volume of the mixture

} = 70 (1.14)

The next step would be to ascertain two things:
• The mass of the substance in fluid C comes from fluids A

and B.
• The volume of the mixture is 150 l.

This leads to{
Mass of substance in fluid A

}+ {
Mass of substance in fluid B

}
150

= 70 (1.15)

The masses of the substance in A and B can be easily derived using the
concentrations given in Problem 1 above:

50x + 80y

150
= 70 (1.16)

This is Equation 1.9 again. The heuristic procedure that we have used here to
derive this equation is particularly useful if you are concerned with more complex
problems where it is difficult to write down an equation like Equation 1.9 just
based on intuition (and where it is dangerous to do this since your intuition can be
misleading). Hence, we generally recommend the following:

Note 1.5.10 (Heuristic procedure to set up mathematical statements) If you
want to translate a statement in a problem formulation into a mathematical
statement, such as an equation or inequality, begin by mimicking the statement
in the problem formulation as closely as possible. Your initial formulation
may involve nonmathematical statements similar to Equation 1.13 above. Try
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then to replace all nonmathematical statements by expressions involving the
unknowns.

Note that what we have described here corresponds to the systems analysis and
modeling steps of the modeling and simulation scheme in Note 1.2.3. Equations
1.8 and 1.9 can be easily solved (by hand and . . . ) on the computer using Maxima’s
solve command as it was described in Section 1.5.2 above. In this case, the
Maxima commands

1: solve([
2: x+y =150
3: ,50*x+80*y=70*150
4: ]);

(1.17)

yield the following result:

[[x =50, y =100]] (1.18)

You find the above code in the file Mix.mac in the book software (see Ap-
pendix A). As you see, the result is written in a nested list structure (lists are written
in the form ‘‘[a,b,c,. . . ]’’ in Maxima): the inner list [x = 50,y = 100] gives
the values of the unknowns of the solution computed by Maxima, while the outer
list brackets are necessary to treat situations where the solution is nonunique (see
the example in Section 1.5.2 above).

Note that lines 1–4 of Equation 1.17 together form a single solve command that
is distributed over several lines here to achieve a better readability of the system
of equations. Note also that the comma at the beginning of line 3 could also have
been written at the end of line 2, which may seem more natural at a first glance.
The reason for this notation is that in this way it is easier to generate a larger
system of equations, by using copies of line 3 with a ‘‘paste and copy’’ mechanism
for example. If you do that and have the commas at the end of each line, your
last equation generated in this way will end with a comma which should not be
there – so we recommend this kind of notation as a ‘‘foolproof ’’ method, which
makes your life with Maxima and other computer algebra software easier.

1.5.4.1 Mixture Problem
Since Problem 1 in the last section was rather easy to solve and the various recom-
mendations made there may thus seem unnecessary at least with respect to this
particular problem, let us now see how a more complex problem is solved using
these ideas:

Problem 2:
Suppose the fluids A, B, C, D contain the substances S1, S2, S3 according to the
following table (concentrations in grams per liter):
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A B C D

S1 2.5 8.2 6.4 12.7
S2 3.2 15.1 13.2 0.4
S3 1.1 0.9 2.2 3.1

What is the concentration of S3 in a mixture of these fluids that contains 75%
(percent by volume) of fluids A and B and which contains 4 gl−1 and 5 gl−1 of
the substances S1 and S2, respectively?

Referring to step 1 and step 2 of the three-step procedure described in Note
1.5.7, it is obvious that we have only one unknown here which can be defined as
follows:

• x: concentration of S3 in the mixture (grams per liter)

Now step 3 requires us to write down mathematical statements involving x.
According to Note 1.5.9, we need to look for statements in the above problem
formulation that impose a restriction on the unknown x. Three statements of this
kind can be identified:

• Statement 1: 75% of the mixture consists of A and B.
• Statement 2: The mixture contains 4 gl−1 of S1.
• Statement 3: The mixture contains 5 gl−1 of S2.

Each of these statements excludes a great number of possible mixtures and
thus imposes a restriction on x. Beginning with statement 1, it is obvious that this
statement can not be formulated in terms of x. We are here in a situation where a
number of auxiliary variables is needed to translate the problem formulation into
mathematics.

Note 1.5.11 (Auxiliary variables) In some cases, the translation of a problem
into mathematics may require the introduction of auxiliary variables. These
variables are ‘‘auxiliary’’ in the sense that they help us to determine the unknowns.
Usually, the problem formulation will provide enough information such that the
auxiliary variables and the unknowns can be determined (i.e. the auxiliary
variables will just increase the size of the system of equations).

In this case, we obviously need the following auxiliary variables:
• xA: percent (by volume) of fluid A in the mixture
• xB: percent (by volume) of fluid B in the mixture
• xC: percent (by volume) of fluid C in the mixture
• xD: percent (by volume) of fluid D in the mixture
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Now the above statement 1 can be easily expressed as

xA + xB = 0.75 (1.19)

Similar to above, statement 2 and statement 3 can be formulated as

{
Concentration of S1 in the mixture

} = 4 (1.20)

and {
Concentration of S2 in the mixture

} = 5 (1.21)

Based on the information provided in the above table (and again following a
similar procedure as in the previous section), these equations translate to

2.5xA + 8.2xB + 6.4xC + 12.7xD = 4 (1.22)

and

3.2xA + 15.1xB + 13.2xC + 0.4xD = 5 (1.23)

Since x is the concentration of S3 in the mixture, a similar argumentation
shows

1.1xA + 0.9xB + 2.2xC + 3.1xD = x (1.24)

So far we have the four equations 1.19, 1.22, 1.23, and 1.24 for the five unknowns
x, xA, xB, xC, and xD, that is, we need one more equation. In this case, the missing
equation is given implicitly by the definition of xA, xB, xC, and xD. These variables
express percent values, and hence, we have

xA + xB + xC + xD = 1 (1.25)

Altogether, we have now obtained the following system of linear equations:

xA + xB = 0.75 (1.26)

2.5xA + 8.2xB + 6.4xC + 12.7xD = 4 (1.27)

3.2xA + 15.1xB + 13.2xC + 0.4xD = 5 (1.28)

1.1xA + 0.9xB + 2.2xC + 3.1xD = x (1.29)

xA + xB + xC + xD = 1 (1.30)

Again, this system of equations can be solved similar to above using Maxima.
In the Maxima program Mix1.mac in the book software (see Appendix A), the
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problem is solved using the following code

1: out:solve([
2: xA+xB=0.75
3: ,2.5*xA+8.2*xB+6.4*xC+12.7*xD=4
4: ,3.2*xA+15.1*xB+13.2*xC+0.4*xD=5
5: ,1.1*xA+0.9*xB+2.2*xC+3.1*xD=x
6: ,xA+xB+xC+xD=1
7: ]);
8: out,numer;

(1.31)

which yields the following results in Maxima:

141437 1365 1783 77 14485

(%o6) [[x = ------, xD =----, xC = -----, xB =----, xA =------]]
98620 19724 9862 4931 19724

(%o7) [[x = 1.434161427702292, xD = 0.06920502940580003, xC = 0.1807949705942,

xB = 0.01561549381464206, xA = 0.7343845061853579]]

As can be seen, the equation system 1.26–1.30 corresponds to lines 2–6 of the
above code and these lines of code are embedded into Maxima’s solve command
similar to the code in 1.17 that was discussed in the previous section. The only
new thing is that the result of the solve command is stored in a variable named
out in line 1 of Equation 1.31. This variable out is then used in line 8 of the code
to produce a decimal result using Maxima’s numer command. This is why the
Maxima output above comprises of two parts: The output labeled as ‘‘(%o6)’’ is the
immediate output of the solve command, and as you can see above the solution
is expressed in terms of fractions there. Although this is the most precise way
to express the solution, one may prefer decimal numbers in practice. To achieve
this, the numer command in line 8 of code (1.31) produces the second part of the
above output which is labeled as ‘‘(%o7)’’. So we can finally say that the solution
of problem 2 above is x ≈ 1.43 gl−1, which is the approximate concentration of S3

in the mixture.

1.5.4.2 Tank Labeling Problem
When fluids are stored in horizontal, cylindrical tanks similar to the one shown
in Figure 1.7b, one typically wants to have labels on the front side of the tank as
shown in Figure 1.7a. In practice, this problem is often solved ‘‘experimentally’’,
that is, by filling the tank with well-defined fluid volumes, and then setting the
labels at the position of the fluid surface that can be seen from outside. This
procedure may of course be inapplicable in situations where the fluid surface
cannot be seen from outside. More important, however, is the cost argument: this
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Fig. 1.7 (a) Tank front side with volume labels.
(b) Unknowns and auxiliary variables of the tank labeling
problem.

experimental procedure is expensive in terms of time (working time of the people
who are performing the experiment) and material (e.g. the water that is wasted
during the experiment). It is much cheaper here to apply the mathematical model
that will be developed below. Unfortunately, the situation in this example – where
the problem could be solved cheap and efficiently using mathematical models and
open-source software, but where expensive experimental procedures or, in some
cases, expensive commercial software solutions are used – is still rather the rule
than the exception in many fields.

Let us start with the development of an appropriate mathematical model. Let h
(decimeters) be the height of a label at the front side of the tank as indicated in
Figure 1.7b, and let V(h) (cubic decimeters) be the filling volume of the tank that
corresponds to h. If we want to determine the label height for some filling volume
Vf, then the following equation must be solved for h:

V(h) = Vf (1.32)

Referring to Figure 1.7b, V(h) can be expressed as

V(h) = ACD · L (1.33)

where ACD (square decimeters) corresponds to the surface at the front side of
the tank that is enclosed by the line segments AC, CD and DA. ACD can be
expressed as

ACD = ABCD − ABC (1.34)

where the circular segment ABCD is

ABCD = 2α

2π
πr2 = αr2 (1.35)

In the last equation, α is expressed in radians (which makes sense here since the
problem is solved based on Maxima below, which uses radians in its trigonometric



1.5 Examples and Some More Definitions 29

functions). The surface of the triangle ABC is

ABC = x(r − h) (1.36)

where

x =
√

r2 − (r − h)2 (1.37)

due to the theorem of Pythagoras. Using the last five equations and

α = cos−1
(

r − h

r

)
(1.38)

in Equation 1.32 yields

L · cos−1
(

r − h

r

)
r2 − L

√
r2 − (r − h)2(r − h) = Vf (1.39)

Unlike the equations treated in the last sections, this is now a transcendental
equation that cannot be solved in closed form using Maxima’s solve command as
before. To solve Equation 1.39, numerical methods such as the bisection method
or Newton’s method must be applied [18]. In Maxima, the find_root command
can be applied as follows:

1: for i:1 thru 4 do
2: (
3: out:find root(
4: L*acos((r-h)/r)*rˆ2-L*sqrt(rˆ2-(r-h)ˆ2)*(r-h)=i*1000
5: ,h,0,r
6: ),
7: print("Label for V=",i*1000,"l:",out,"dm")
8: );

(1.40)

This is the essential part of Label.mac, a Maxima code which is a part of the book
software (see Appendix A), and which solves the tank labeling problem assuming
a 10 000 l tank of length L = 2 m based on Equation 1.39. Equation 1.39 appears in
line 4 of the code, with its right-hand side replaced by i*1000 which successively
generates 1000, 2000, 3000, and 4000 as the right-hand side of the equation due
to the for command that is applied in line 1, so the problem is solved for 1000,
2000, 3000, and 4000 l of filling volume in a single run of the code (note that the
5000, 6000, and so on labels can be easily derived from this if required). What the
for. . . thru. . . do command in line 1 precisely does is this: it first sets i = 1 and
then executes the entire code between the brackets in lines 2 and 8, which solves the
problem for Vf = 1000 l; then, it sets i = 2 and executes the entire code between the
brackets in lines 2 and 8 again, which solves the problem for Vf = 2000, and so on
until the same has been done for i = 4 (the upper limit given by ‘‘thru’’ in line 1).
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Note that the arguments of the find_root command are in lines 4 and 5,
between the brackets in lines 3 and 6. Its first argument is the equation that is
to be solved (line 4), which is then followed by three more arguments in line 5:
the variable to be solved for (h in this case), and upper and lower limits for the
interval in which the numerical algorithm is expected to look for a solution of the
equation (0 and r in this case). Usually, reasonable values for these limits can be
derived from the application – in this case, it is obvious that h > 0, and it is likewise
obvious that we will have h = r for 5000 l filling volume since a 10 000–l tank is
assumed, which means that we will have h < r for filling volumes below 5000 l. The
print command prints the result to the computer screen. Note how text, numbers
and variables (such as the variable out that contains the result of the find_root
command, see line 3) can be mixed in this command. Since the print is a part
of the for. . . thru. . .do environment, it is invoked four times and produces the
following result:

Label for V= 1000 l: 3.948086422946864 dm
Label for V= 2000 l: 6.410499677168014 dm
Label for V= 3000 l: 8.582542383270068 dm
Label for V= 4000 l: 10.62571600771833 dm

1.5.5
Linear Programming

All mathematical models considered so far were formulated in terms of equations
only. Remember that according to Definition 1.4.1, a mathematical model may in-
volve any kind of mathematical statements. For example, it may involve inequalities.
One of the simplest class of problems involving inequalities are linear program-
ming problems that are frequently used e.g. in operations research. Consider
the following problem taken from the linear programming article of Wikipedia.
org:

Linear programming example
Suppose a farmer has a piece of farm land, say A square kilometers large, to be
planted with either wheat or barley or some combination of the two. Furthermore,
suppose the farmer has a limited permissible amount F of fertilizer and P of
insecticide which can be used, each of which is required in different amounts
per unit area for wheat (F1, P1) and barley (F2, P2). Let S1 be the selling price
of wheat, and S2 the price of barley. How many square kilometers should be
planted with wheat versus barley to maximize the revenue?

Denoting the area planted with wheat and barley with x1 and x2 respectively, the
problem can be formulated as follows:

x1, x2 ≥ 0 (1.41)

x1 + x2 ≤ A (1.42)
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F1x1 + F2x2 ≤ F (1.43)

P1x1 + P2x2 ≤ P (1.44)

S1x1 + S2x2 → max (1.45)

Here, Equation 1.41 expresses the fact that the farmer cannot plant a negative
area, Equation 1.42 the fact that no more than the given A square kilometers of farm
land can be used, Equations 1.43 and 1.44 express the fertilizer and insecticide
limits, respectively, and Equation 1.45 is the required revenue maximization.
Taking Equations 1.41–1.45 as M, the system S as the farm land and the question
Q , ‘‘How many square kilometers should be planted with wheat versus barley to
maximize the revenue?’’, a mathematical model (S, Q , M) is obtained. For any set
of parameter values for A, F, P, . . . , the problem can again be easily solved using
Maxima. This is done in the Maxima program Farm.mac which you find in the
book software (see Appendix A). Let us look at the essential commands of this code:

1: load(simplex);
2: U:[x1>=0
3: ,x2>=0
4: ,x1+x2<=A
5: ,F1*x1+F2*x2 <=F
6: ,P1*x1+P2*x2<=P];
7: Z:S1*x1+S2*x2;
8: maximize lp(Z,U);

(1.46)

Line 1 of this code loads a package required by Maxima to solve linear program-
ming problems. Lines 2–6 define the inequalities, corresponding to Equations
1.41–1.44 above. Note that lines 2–6 together make up a single command that
stores the list of inequalities in the variable U. Line 7 defines the function Z that
is to be maximized, and the problem is then solved in line 8 using Maxima’s
maximize_lp command. Based on the parameter settings in Farm.mac, Maxima
produces the following result:

[100, [x2 = 50, x1 = 0]]

This means that a maximum revenue of 100 is obtained if the farmer plants
barley only (50 square kilometers).

1.5.6
Modeling a Black Box System

In Section 1.3 it was mentioned that the systems investigated by scientists or
engineers typically are ‘‘input–output systems’’, which means they transform the
given input parameters into output parameters. Note that the previous examples
were indeed referring to such ‘‘input–output systems’’. In the tin example, the
radius and height of the tin are input parameters and the surface area of the tin is
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Fig. 1.8 (a) System 1 with input x (N) and output y (cm).
(b) System 1 data (file spring.csv in the book software).

the output parameter. In the plant growth example, the growth rate of the plant and
its initial biomass is the input and the resulting time–biomass curve is the output
(details in Chapter 3). In the tank example, the geometrical data of the tank and the
concentration distribution are input parameters while the mass of the substance is
the output. In the linear programming examples, the areas planted with wheat or
barley are the input quantities and the resulting revenue is the output. Similarly,
all systems in the examples that will follow can be interpreted as input–output
systems.

The exploration of an example input–output system in some more detail will
now lead us to further important concepts and definitions. Assume a ‘‘system 1’’
as in Figure 1.8 which produces an output length y (centimeters) for every given
input force x [N]. Furthermore, assume that we do not know about the processes
inside the system that transform x into y, that is, let this system be a ‘‘black box’’
to us as described above. Consider the following problem:

Q : Find an input x that generates an output y = 20 cm.

This defines the question Q of the mathematical model (S, Q , M) that we are
going to define. S is the ‘‘system 1’’ in Figure 1.8a, and we are now looking for an
appropriate set of mathematical statements M that can help us to answer Q .

All that the investigator of system 1 can do is to produce some data using the
system, hoping that these data will reveal something about the processes occurring
inside the ‘‘black box’’. Assume that the data in the file spring.csv (which you find
in the PhenMod/LinReg directory of the book software, see Appendix A) have been
obtained from this system, see Figure 1.8b. To see what happens, the investigator
will probably produce a plot of the data as in Figure 1.9a. Note that the plots in
Figure 1.9 were generated using the scatter plot option of OpenOffice.org Calc (see
Appendix A on how you can obtain this software). Figure 1.9a suggests that there
is an approximately linear dependence between the x- and y-data. Mathematically,
this means that the function y = f (x) behind the data is a straight line:

f (x) = ax + b (1.47)

Now the investigator can apply a statistical method called linear regression (which
will be explained in detail in Section 2.2) to determine the coefficients a and b of
this equation from the data, which leads to the ‘‘regression line’’

f (x) = 0.33x − 0.5 (1.48)
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Fig. 1.9 (a) Plot of the data in spring.csv. (b) System 1
data with regression line. Both plots generated using Calc,
see Section 2.1.1.1.

Figure 1.9b shows that there is a good coincidence or, in statistical terminology,
a good ‘‘fit’’ between this regression line and the data. Equation 1.48 can now be
used as the M of a mathematical model of system 1. The question Q stated above
(‘‘Which system input x generates a desired output y = 20 cm? ’’) can then be easily
answered by setting y = f (x) = 20 in Equation 1.48, that is,

20 = 0.33x − 0.5 (1.49)

which gives x ≈ 62.1 N. Of course, this is just an approximate result for several
reasons. First of all, Figure 1.9 shows that there are some deviations between the
regression line and the data. These deviations may be due to measurement errors,
but they may also reflect some really existing effects. If the deviations are due to
measurement errors, then the precise location of the regression line and hence,
the prediction of x for y = 20 cm is affected by these errors. If, on the other hand,
the deviations reflect some really existing effects, then Equation 1.48 is no more
than an approximate model of the processes that transform x into y in system 1,
and hence, the prediction of x for y = 20 cm will be only approximate. Beyond this,
predictions based on data such as the data in Figure 1.8b are always approximate
for principal reasons. The y-range of these data ends at 16 cm, and system 1 may
behave entirely different for y-values beyond 16 cm which we would not be able
to see in such a data set. Therefore, the experimental validation of predictions
derived from mathematical models is always an indispensable part of the modeling
procedure (see Section 1.2). See also Chapter 2 for a deeper discussion of the quality
of predictions obtained from black box models.

The example shows the importance of statistical methods in mathematical model-
ing. First of all, statistics itself is a collection of mathematical models that can be
used to describe data or to draw inferences from data [19]. Beyond this, statistical
methods provide a necessary link between nonstatistical mathematical models and
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the real world. In mathematical modeling, one is always concerned with experi-
mental data, not only to validate model predictions, but also to develop hypotheses
about the system, which help to set up appropriate equations. In the example, the
data led us to the hypothesis that there is a linear relation between x and y. We have
used a plot of the data (Figure 1.9) and the regression method to find the coefficients
in Equation 1.48. These are methods of descriptive statistics, which can be used to
summarize or describe data. Beyond this, inferential statistics provides methods
that allow conclusions to be drawn from data in a way that accounts for randomness
and uncertainty. Some important methods of descriptive and inductive statistics
will be introduced below (Section 2.1).

Note 1.5.12 Statistical methods provide the link between mathematical models
and the real world.

The reader might say that the estimate of x above could also have been obtained
without any reference to models or computations, by a simple tuning of the input
using the real, physical system 1. We agree that there is no reason why models
should be used in situations where this can be done with little effort. In fact, we
do not want to propose any kind of a fundamentalist ‘‘mathematical modeling
and simulation’’ paradigm here. A pragmatic approach should be used, that is, any
problem in science and engineering should be treated using appropriate methods,
may this be mathematical models or a tuning of input parameters using the real
system. It is just a fact that in many cases the latter cannot be done in a simple
way. The generation of data such as in Figure 1.8 may be expensive, and thus,
an experimental tuning of x toward the desired y may be inapplicable. Or, the
investigator may be facing a very complex interaction of several input and output
parameters, which is rather the rule than the exception as explained in Section 1.1.
In such cases, the representation of a system in mathematical terms can be the
only efficient way to solve the problem.

1.6
Even More Definitions

1.6.1
Phenomenological and Mechanistic Models

The mathematical model used above to describe system 1 is called a phenomeno-
logical model since it was constructed based on experimental data only, treating the
system as a black box, that is, without using any information about the internal
processes occurring inside system 1 when x is transformed into y. On the other
hand, models that are constructed using information about the system S are called
mechanistic models, since such models are virtually based on a look into the internal
mechanics of S. Let us define this as follows [11]:
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Definition 1.6.1 (Phenomenological and mechanistic models) A mathematical
model (S, Q , M) is called
• phenomenological, if it was constructed based on experimental

data only, using no a priori information about S,
• mechanistic, if some of the statements in M are based on a priori

information about S.

Phenomenological models are also called empirical models, statistical models,
data-driven models or black box models for obvious reasons. Mechanistic models
for which all necessary information about S are available are also called white box
models. Most mechanistic models are located somewhere between the extreme
black and white box cases, that is, they are based on some information about S
while some other important information is unavailable. Such models are sometimes
called gray box models or semi-empirical models [20].

To better understand the differences between phenomenological and mechanistic
models, let us now construct an alternative mechanistic model for system 1
(Figure 1.8). Above, we have treated system 1 as a black box, that is, we have used
no information about the way in which system 1 transforms some given input x into
the output y (Figure 1.8). Let us now assume that the internal mechanics of system
1 looks as shown in Figure 1.10, that is, assume that system 1 is a mechanical
spring, x is a force acting on that spring, and y is the resulting elongation. This
is now an a priori information about system 1 in the sense of Definition 1.6.1
above, and it can be used to construct a mechanistic mathematical model based
on elementary physical knowledge. As is well known, mechanical springs can be
described by Hooke’s law, which in this case reads

x = k · y (1.50)

where k is the spring constant (newtons per centimeter), a measure of the elasticity
of the spring. The parameter k is either known (e.g. from the manufacturer of the
spring), or estimated based on data such as those in Figure 1.8. Now the following
mechanistic mathematical model (S, Q , M) is obtained:

• S: System 1
• Q : Which system input x generates a desired output of

y = 20 cm?
• M: Equation 1.50

x

x

y
y

Fig. 1.10 Internal mechanics of system 1.
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Based on this model, question Q can be answered as before by setting y = 20 cm
in the model equation (1.50), which leads to

x = k · 20 (1.51)

that is, we can answer the question Q depending on the value of the spring constant,
k. For example, assuming a value of k ≈ 3.11 N cm−1 for the spring constant, we
would get the same estimate x ≈ 62.1 N as above. The mechanistic model of system
1 has several important advantages compared to the phenomenological model, and
these advantages are characteristic advantages of the mechanistic approach. First of
all, mechanistic models generally allow better predictions of system behavior. The
phenomenological model equation (1.48) was derived from the data in Figure 1.8.
These data involve forces x between 10 and 50 N. As mentioned below in our
discussion of regression methods, this means that one can expect Equation 1.48
to be valid only close to this range of data between 10 and 50 N. The mechanistic
model equation (1.50), on the other hand, is based on the well-established physical
theory of a spring. Hence, we have good reason to expect its validity even outside
the range of our own experimental testing.

Mechanistic models do also allow better predictions of modified systems. Assume
for example that system 1 in Figure 1.10 is replaced by a system 2 that consists of
two springs. Furthermore, assume that each of these system 2 springs has the same
spring constant k as the system 1 spring. Then, in the phenomenological approach,
the model developed for system 1 would be of no use, since we would not know
about the similarity of these two systems (remember that the phenomenological
approach assumes that no details are known about the internal mechanics of the
system under consideration). This means that a new phenomenological model
would have to be developed for system 2. A new data set similar to Figure 1.8 would
be required, appropriate experiments would have to be performed, and afterwards, a
new regression line similar to Figure 1.9 would have to be derived from the data. In
the mechanistic approach, on the other hand, Hooke’s law would immediately tell
us that in the case of two springs the appropriate modification of Equation 1.50 is

x = 2k · y (1.52)

Another advantage of mechanistic models is the fact that they usually involve
physically interpretable parameters, that is, parameters which represent real properties
of the system. To wit: the numerical coefficients of the phenomenological model
equation 1.47 are just numbers which cannot be related to the system. The
parameter k of the mechanistic model equation 1.50, on the other hand, can be
related to system properties, and this is of particular importance when we want
to optimize system performance. For example, if we want smaller forces x to be
required for a given elongation y, then in the phenomenological approach we would
have to test a number of systems 2, 3, 4, . . . , until we would eventually arrive at some
system with the desired properties. That is, we would have to apply a trial-and-error
method. The mechanistic model, on the other hand, tells us exactly what we have
to do: we have to replace the system 1 spring with a spring having a smaller spring
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constant k, and this will reduce the force x required for a given elongation y. In
this simple example, it may be hard to imagine that someone would really use
the phenomenological approach instead of Hooke’s law. But the example captures
an essential difference between phenomenological and mechanistic models, and it
tells us that we should use mechanistic models if possible.

So, if mechanistic models could be set up easily in every imaginable situation, we
would not have to talk about phenomenological models here. However, in many
situations, it is not possible or feasible to use mechanistic models. As an essential
prerequisite, mechanistic models need a priori knowledge of the system. If nothing is
known about the system, then we are in the ‘‘black box’’ situation and have to apply
phenomenological models. Suppose, for example, we want to understand why
some roses wilt earlier than others (this example will be explained in more detail in
Section 2.3). Suppose we assume that this is related to the concentrations of certain
carbohydrates that can be measured. Then we cannot set up a mechanistic model as
long as we do not know all the relevant processes that connect those carbohydrate
concentrations with the observed freshness of the rose. Unless these processes
are known, all we can do is to produce some data (carbohydrate concentration
versus some appropriate measure of rose freshness) and analyze these data using
phenomenological models.

This kind of situation where little is known about the system under investigation
is rather the rule than the exception, particularly at early stages of a scientific
investigation, or at the early stages of a product development in engineering. We
may also be in a situation where we principally know enough details about the
system under investigation, but where the system is so complex that it would take
too much time and resources to setup a mechanistic model. An example is the op-
timization of the wear resistance of composite materials: Suppose that a composite
material is made of the materials M1, M2, . . . , Mn, and we want to know how the
relative proportions of these materials should be chosen in order to maximize the
composite materials resistance to wear. Then, the wear resistance of the composite
material can depend in an extremely complex way on its composition. The author
has investigated a situation of this kind where mechanistic modeling attempts
failed due to the complexity of the overall system, and where a black box-type
phenomenological neural network approach (see Section 2.5) was used instead
[21]. An important advantage of phenomenological models is that they can be used in
black box situations of this kind, and that they typically require much less time and
resources. Pragmatic considerations should decide which type of model is used in
practice. A mechanistic model will certainly be a bad choice if we need three weeks
to make it work, and if it does not give substantially better answers to our question
Q compared to a phenomenological model which can be set up within a day.

Note 1.6.1 (Phenomenological vs. mechanistic) Phenomenological models are
universally applicable, easy to set up, but limited in scope. Mechanistic models
typically involve physically interpretable parameters, allow deeper insights into
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system performance and better predictions, but they require a priori information
on the system and often need more time and resources.

1.6.2
Stationary and Instationary models

It was already mentioned above that the question Q is an important factor that
determines the appropriate mathematical model (S, Q , M). As an example, we have
considered the alternative treatment of mechanical problems with the equations of
classical or relativistic mechanics depending on the question Q that is investigated.
In the system 1 example, we have used Q : ‘‘Which system input x generates a
desired output of y = 20 cm? ’’. Let us now modify this Q in order to find other
important classes of mathematical models. Consider the following question:

Q : If a constant force x acts on the spring beginning with t = 0, what is the
resulting elongation y(t) of the spring at times t > 0?

This question cannot be answered based on the models developed above.
The phenomenological model (Equation 1.48) as well as the mechanistic model
(Equation 1.50) both refer to the so-called stationary state of system 1. This means
that the elongation y expressed by these equations represents the time-independent
(= stationary) state of the spring which is achieved after the spring has been
elongated into the state of equilibrium where the force x exactly matches the force
of the spring. On the other hand, the above question asks for the instationary (i.e.
time-dependent) development of the elongation y(t), beginning with time t = 0
when the force x is applied to the spring. To compute this y(t), an instationary
mathematical model (S, Q , M) is needed where the mathematical statements
in M involve the time t. Models of this kind can be defined based on ordinary
differential equations (details in Chapter 3). To make this important distinction
between stationary and instationary models precise, let us define

Definition 1.6.2 (Stationary/instationary models) A mathematical model (S,
Q , M) is called
• instationary, if at least one of its system parameters or state

variables depends on time and
• stationary otherwise.

1.6.3
Distributed and Lumped models

Suppose now that the spring in system 1 broke into pieces under normal operational
conditions, and that it is now attempted to construct a more robust spring. In such
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a situation, it is natural to ask the following question:

Q : Which part of the spring should be reinforced?

Naturally, those parts of the spring which bear the highest mechanical stresses
should be reinforced. To identify these regions, we need to know the distribution
of stresses inside the spring under load. Let σ (x, y, z) denote the mechanical stress
distribution inside the spring depending on the spatial coordinates x, y, and z.
Then we need a mathematical model with σ (x, y, z) as a state variable. Such a
mathematical model can be formulated based on PDEs as will be explained in
Chapter 4. The important difference between this model and the previous models
of system 1 lies in the fact that in this case the state variable depends on the spatial
coordinates. To predict the equilibrium elongation of the spring using Equations
1.47 or 1.50, it was sufficient to describe the spring based on the spring constant k
only. These equations, however, cannot be used to derive any spatially distributed
information regarding the spring. In this kind of models, all spatial information
is lumped together into the parameter k. In the case above, this was justified by
the fact that the equilibrium position of a spring can be predicted with sufficient
precision using k. On the other hand, if one is asking for the internal stress
distribution in the spring, a spatially distributed description of the stresses inside
the spring is needed. This motivates the following:

Definition 1.6.3 (Distributed/lumped models) A mathematical model (S, Q ,
M) is called
• distributed, if at least one of its system parameters or state

variables depends on a space variable,
• lumped otherwise.

1.7
Classification of Mathematical Models

Based on the examples in the last section, the reader can now distinguish between
some basic classes of mathematical models. We will now widen our perspective
toward a look at the entire ‘‘space of mathematical models’’, that is, this section will
give you an idea of various types of mathematical models that are used in practice.

Note 1.7.1 The practical use of a classification of mathematical models lies
in the fact that you understand ‘‘where you are’’ in the space of mathematical
models, and which types of models might be applicable to your problem beyond
the models that you have already used.
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1.7.1
From Black to White Box Models

The ‘‘space of mathematical models’’ evolves naturally from Definition 1.4.1, where
we have defined a mathematical model to be a triple (S, Q , M) consisting of a system
S, a question Q , and a set of mathematical statements M. Based on this definition,
it is natural to classify mathematical models in an SQM space. Figure 1.11a shows
one possible approach to visualize this SQM space of mathematical models, based
on a classification of mathematical models between black and white box models.
Psychological and social systems constitute the ‘‘black box’’ end of the spectrum.
Only very vague phenomenological models can be developed for these systems due
to their complexity and due to the fact that too many subprocesses are involved
which are not sufficiently understood. On the other hand, mechanical systems,
electrical circuits etc. are at the white box end of the spectrum since they can be very
well understood in terms of mechanistic models (a famous example is Newton’s
model of planetary motion).

Note that the three dimensions of a mathematical model (S, Q , M) can be
seen in the figure: the systems (S) are classified on top of the bar, immediately
below the bar there is a list of objectives that mathematical models in each of the
segments may have (which is Q), and at the bottom end there are corresponding
mathematical structures (M) ranging from algebraic equations (AEs) to differential
equations (DEs). Equation 1.47 (Section 1.5.6) is an example of a mathematical
model in the form of an AE. As suggested by Figure 1.11, black box regression
models of this kind are widely used for the modeling for example, of psychological,
social, or economic systems (see Chapter 2 for more on regression models). On the
other hand, the wine fermentation model discussed in Section 3.10.2 exemplifies
the modeling of a biological/chemical system using ODEs (see Chapters 3 and 4
for more examples of DE models).

The ‘‘Q ’’-criteria in Figure 1.11a illustrate that mathematical models can be used
to solve increasingly challenging problems as the model gradually turns from a
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Fig. 1.11 (a) Classification of mathematical models between
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cation of mathematical models in the SQM space.
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black box to a white box model. At the black box end of the spectrum, models can
be used to make more or less reliable predictions based on data. For example, you
may think here of attempts that have been made to predict share prices using the
neural network methods described in Chapter 2 [22]. The model of a biological
predator–prey system discussed in Section 3.10.1 is already ‘‘white enough’’ such
that it can be used for an analysis of the dynamical system behavior in terms of
phase plot diagrams such as Figure 3.17. Beyond this, models of chemical systems
can be so precise that they can be used for a control of a process such as the wine
fermentation process discussed in Section 3.10.2.

At the white box end of the spectrum, mathematical models can be applied to
design, test, and optimize systems and processes on the computer before they
are actually physically realized. This is used e.g. in virtual engineering, which
includes techniques such as interactive design using CFD (see [23] and Section
4.10.3) or virtual prototyping [7, 24, 25]. As an example, you may think of the
computation of the temperature distribution within a three-dimensional device
using finite-element software, as it will be discussed in Section 4.9 below. Based
on the method described there, what-if studies can be performed, that is, it can
be investigated what happens with the temperature distribution if you change
certain characteristics of the device virtually on the computer, and this can then
be used to optimize the construction of the device so as to achieve certain desired
characteristics of the temperature distribution.

1.7.2
SQM Space Classification: S Axis

Since mathematical models are characterized by their respective individual S, Q
and M ‘‘values’’, one can also think of each model as being located somewhere
in the ‘‘SQM space’’ of Figure 1.11b. On each of the S-, Q- and M-axes of the
figure, mathematical models are classified with respect to a number of criteria
which were compiled based on various classification attempts in the literature
[3, 11, 20, 26–30]. Let us explain these criteria, beginning with the S axis of
Figure 1.11b:

Physical – conceptual. Physical systems are part of the real world, for example, a
fish or a car. Conceptual systems are made up of thoughts and ideas, for example,
a set of mathematical axioms. This book focuses entirely on physical systems.

Natural – technical. Naturally, a natural system is a part of nature, such as a fish
or a flower, while a technical system is a car, a machine, and so on. An example of
a natural system is the predator–prey system treated in Section 3.10.1, the stormer
viscometer treated in Section 2.4 exemplifies a technical system.

Stochastic – deterministic. Stochastic systems involve random effects, such as
rolling dice, share prices and so on. Deterministic systems involve no or very little
random effects, for example, mechanical systems, such as the planetary system, a
pendulum, and so on. In a deterministic system, a particular state A of the system
is always followed by one and the same state B, while A may be followed by B,
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C or other states in an unpredictable way if the system is stochastic [31]. Below,
stochastic models will be considered mainly in Chapter 2 and deterministic models
mainly in Chapters 3 and 4.

Continuous – discrete. Continuous systems involve quantities that change con-
tinuously with time, such as sugar and ethanol concentrations in a wine fermenter
(Section 3.10.2). Discrete systems, on the other hand, involve quantities that change
at discrete times only, such as the number of individuals in animal populations
(Section 3.10.1). Note that on the M axis of Figure 1.11, continuous systems can
be represented by discrete mathematical statements and vice versa (e.g. a contin-
uous mathematical formulation is used in Section 3.10.1 to describe the discrete
predator–prey system).

Dimension. Depending on their spatial symmetries, physical systems can be
described using 1, 2, or 3 space variables. As will be discussed in Section 4.3.3, the
number of space variables used to describe a physical system is called its dimension
(frequently denoted 1D, 2D, or 3D). Examples: a 1D temperature distribution is
computed in Section 4.6 and a 3D temperature distribution in Section 4.9.

Field of application. We can distinguish between chemical systems, physical
systems, biological systems, and so on. Systems from these and more fields of
application will be considered below.

1.7.3
SQM Space Classification: Q Axis

On the Q- axis of Figure 1.11b, we have the following categories:

Phenomenological – mechanistic. This has been discussed in detail in Section 1.6.
Phenomenological models are treated in Chapter 2 and mechanistic models in
Chapters 3 and 4.

Stationary – instationary. Again, this has been discussed in Section 1.6. As dis-
cussed there, it depends on the question which we are asking (i.e. on the ‘‘Q ’’ of
a mathematical model (S, Q , M)) whether a stationary (time-independent) or in-
stationary (time-dependent) model is appropriate. See also Problem 1 (instationary)
and Problem 2 (stationary) in Section 4.1.3.

Lumped – distributed. Again, see Section 1.6. As was discussed there, it depends
on the question which we are asking (i.e. on the ‘‘Q ’’ of a mathematical model (S,
Q , M)) whether a lumped (space-independent) or distributed (space-dependent)
model is appropriate. The wine fermentation model (Section 3.10.2) is an example
of a lumped model since it does not use spatial coordinates. On the other hand,
the computation of a 3D temperature distribution in Section 4.9 is based on a
distributed model.

Direct – inverse. Consider an input–output system as in Figure 1.2a. If Q
assumes given input and system parameters and asks for the output, the model
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solves a so-called direct problem [3]. Most of the models below refer to direct
problems. If, on the other hand, Q asks for the input or for parameters of S, the
model solves a so-called inverse problem [32]. If Q asks for parameters of S, the
resulting problem is also called a parameter identification problem. Examples are
the regression and neural network models discussed in Chapter 2, and the fitting
of ODEs to data discussed in Section 3.9. If Q asks for input parameters, the
resulting problem is also called a control problem, since in this case the problem is
to control the input in a way that generates some desired output ([33] and 4.11.3).

Research – management. Research models are used if Q aims at the understand-
ing of S; management models, on the other hand, are used if the focus is on the
solution of practical problems related to S. As pointed out in [20], research models
tend to be more complex and less manageable from a practical point of view.
Depending on Q , the same mathematical equations can be a part of a research or of
a management model. For example, the predator–prey model described in Section
3.10.1 is a research model if the investigator just wants to understand the oscilla-
tions of the predator and prey populations, and it is a management model if is used
to control the predator and prey populations (but as discussed in Section 3.10.1,
this model is so simple that it cannot be seriously used as a management model).

Speculation – design. See the above discussion of Figure 1.11a.
Scale. Depending on Q , the model will describe the system on an appropriate

scale. For example, depending on Q it can be appropriate to virtually follow a fluid
particle on its way through the complex channels of a porous medium, or just to
compute the pressure drop across a porous medium based on its permeability.
Obviously, these cases correspond to a description of a porous medium on two scales
(microscopic/macroscopic). Details of this example will follow in Section 4.10.2.

1.7.4
SQM Space Classification: M Axis

Finally, let us look at the categories on the M-axis of Figure 1.11b:

Linear – nonlinear. In linear models, the unknowns (or their derivatives) are
combined using linear mathematical operations only, such as addition/subtraction
or multiplication with parameters. Nonlinear models, on the other hand, may in-
volve the multiplication of unknowns, the application of transcendental functions,
and so on. Nonlinear models typically have more (and more interesting) solu-
tions but are harder to solve. Examples are linear or nonlinear regression models
(Sections 2.2 and 2.4, respectively) and linear or nonlinear ODEs (Section 3.5).

Analytical – numerical. In analytic models, the system behavior can be expressed
in terms of mathematical formulas involving the system parameters. Based on these
models, qualitative effects of parameters and the entire system behavior can be
studied theoretically, without using concrete values for the parameters. Numerical
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models, on the other hand, can be used to obtain the system behavior for specific
parameter values. See Section 3.6 for a general discussion of analytical models
(which are also called closed form models) versus numerical models.

Autonomous – nonautonomous. This is a mathematical classification of insta-
tionary models (see above). If an equation does not depend explicitly on time, it is
called autonomous, otherwise nonautonomous; see the examples in Section 3.5.

Continuous – discrete. In continuous models, the independent variables may
assume arbitrary (typically real) values within some interval. For example, many of
the ODE models discussed in Chapter 3 use time (within some time interval) as
the independent variable. In discrete models, on the other hand, the independent
variables may assume some discrete values only. An example is the discrete
event simulation technique discussed in Section 2.7.2, or the Nicholson–Bailey
host–parasite interaction model discussed in Section 4.11.1, where the time
variable just counts the number of breeding seasons instead of expressing the
(continuous) physical time.

Difference equations. In difference equations, the quantity of interest is obtained
as a sequence of discrete values. Usually, this is expressed in terms of recurrence
relations in which each term of the sequence depends on previous terms. Differ-
ence equations are frequently used to describe discrete systems. See the examples
in Section 4.11.1.

Differential equations. Differential equations are equations involving derivatives
of an unknown function. They are a main tool to set up continuous mechanistic
models, see the examples in Chapters 3 and 4.

Integral equations. Integral equations are equations involving an integral of an
unknown function.

Algebraic equations. AEs are equations involving the usual algebraic operations
such as addition, subtraction, division, and so on. Examples are Equations (1.1) or
(1.4) in Section 1.5, or the regression equations discussed in Chapter 2.

Note that some of the above categorizations of mathematical models overlap.
For example, both phenomenological and mechanistic models can be lumped or
distributed, stationary or instationary, and so on. Thus, it may have confused the
reader if a single chapter would have been devoted to each of these categorizations.
Instead, it was decided to select the categorization between phenomenological mod-
els (Chapter 2) and mechanistic models (Chapters 3 and 4) as the main perspective
and as a principle to organize the book. The other categorizations are treated
within this perspective, that is, they will be referred to in the context of appropriate
examples. Note that referring to Figure 1.11b we can say that the categorization of
mathematical models between phenomenological and mechanistic models divides
the SQM space of mathematical models into two different ‘‘half-spaces’’ along the
Q-axis. We will repeatedly come back to the above classification of mathematical
models in the course of this book, using it like a compass (or, in more up-to-date
terminology: like a GPS system) so that the reader will always know about his
actual position in the overall space of mathematical models.
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1.8
Everything Looks Like a Nail?

To some extent, the modeling and simulation scheme discussed above is just an
idealistic theory of how mathematical modeling should work, and this must of course
be distinguished from the way in which people are dealing with mathematical
models in practice. Being aware of this fact, Golomb [34] compiled the following:

Note 1.8.1 (Don’ts of Mathematical Modeling)
1. Don’t believe that the model is the reality.
2. Don’t extrapolate beyond the region of fit.
3. Don’t distort reality to fit the model.
4. Don’t retain a discredited model.
5. Don’t fall in love with your model.

Don’t No. 1 reminds us of the limitations of our models, that is, we should
always be aware of the simplifying assumptions made in a model when discussing
its implications for the real system. You may know the cave allegory of the Greek
philosopher Plato, which provides a nice picture of the relationship between a
model and the reality, Figure 1.12 [35]. In this allegory, prisoners are chained deep
inside a cave in a way that restricts their view to one particular wall of the cave.
Behind the prisoners, there is a big fire and some people who are using the light of
that fire to project three-dimensional objects such as puppets, animals, and plants
onto the cave wall. Plato assumes that the prisoners are chained in the cave since
their childhood and thus have never seen anything else apart from the shadows on
that cave wall. Thus, they believe that these shadows are the reality, although the

Fig. 1.12 Plato’s cave allegory: Don’t believe that
the model is the reality! (Figure: B. Blüm, idea:
http://commons.wirimedia.org.)
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shadows are of course no more than simplified, two-dimensional models of the
real, three-dimensional objects behind them. Very similarly, we must be aware of
the fact that we are always ‘‘chained’’ in some way as long as we think about reality
in terms of a scientific model, which restricts our view on the real system more or
less depending on its inherent assumptions.

Don’t No. 2 says that models should be used for prediction only in those regions
of the parameter space where they are sufficiently supported by experimental data
(see Section 2.2.2 and Note 2.2.3 for more details), while Don’ts Nos 3–5 basically
require us to abandon models that fail to pass the validation step of the modeling
and simulation scheme (Note 1.2.3). In [11], the message of Don’t Nos 3–5 is
expressed as follows:

When you have a hammer, you look for a nail.
When you have a good hammer, everything looks like a nail.

You understand the message: People always tend to solve problems similar to the
way in which they successfully solved problems in the past. Yesterday, our problem
might have been to drive a nail into a piece of wood, and we might have solved
this problem adequately using a hammer. Today, however, we may have to drive a
screw into a piece of wood, and it is of course not quite such a good idea to use the
hammer again. Similarly, mathematical models are like tools that help us to solve
problems, and we will always tend to reuse the models that helped us to solve our
yesterday’s problems. This is like a law of nature in mathematical modeling, similar
to Newton’s law of inertia; let us call it the ‘‘law of inertia of mathematical modeling’’.
Forces need to be applied to physical bodies to change their state of motion, and
in a similar way forces need to be applied in a mathematical modeler’s mind
before he will eventually agree to replace established models by more adequate
approaches. Even great scientists such as A. Einstein were affected by this kind
of inertia. Einstein did not like the idea that the physical universe is probabilistic
rather than deterministic (a consequence of the ‘‘Copenhagen interpretation’’ of
quantum mechanics), and he expressed this aversion in his famous quote ‘‘God
does not play dice with the universe’’ [36]. But do not take this as an excuse for
any violation of Golomb’s Don’t’s. It just shows that everybody, including yourself,
should use models with care.
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2

Phenomenological Models

Remember the distinction between phenomenological and mechanistic models in
Definition 1.6.1: Phenomenological models are constructed based on experimental
data only, using no a priori information about S. Mechanistic models, on the other
hand, use a priori information about the ‘‘internal mechanics’’ of S, that is, about
processes occurring in S. They are treated in Chapters 3 and 4. Thus, in this
chapter, our starting point will be a dataset, and we will learn about methods to
analyze this dataset. As we will see, most of the methods treated in this chapter can
be efficiently implemented using freely available open source software: Calc for
elementary statistical computations or as an elementary database, and a software
package called R for professional statistical computations. Real datasets will be
used throughout the chapter whenever possible.

As mentioned, the starting point of phenomenological modeling is a dataset,
and hence a first natural thing to do is to analyse the dataset itself, for example,
in terms of elementary statistical methods. Section 2.1 provides some of the most
important statistical methods of elementary data analysis in the form of a ‘‘crash
course’’, that is, with no attempt to be exhaustive, focusing on what is needed for
this book, and emphasizing practical procedures rather than theory. Section 2.1
will also be used to introduce the reader to the use of Calc and R.

Sections 2.2–2.4 treat regression models. Basically, regression models pro-
vide a mathematical description of input–output systems. The importance of
input–output systems has already been pointed out, cf. Figure 1.2 and Sections 1.3
and 1.5. Using regression models, the output of a system can be computed for a
given input, which can be used for prediction or interpolation of given data. Linear
regression (one input), multiple linear regression (several inputs), and nonlinear
regression (nonlinear equations, one or several inputs) will be treated. Everyone
concerned with data analysis should know these methods which are really easy
to use based on R. Even in cases where mechanistic models are being developed,
the application of regression methods frequently makes sense since they usually
require much less time and resources and allow some quick and rough conclusions
to be drawn from a dataset.

Section 2.5 treats neural network models, providing a look beyond classical
regression models. Although an in-depth treatment of the various types of neural
network models is beyond the scope of this book, Section 2.5 is intended to
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introduce the reader to feedforward neural networks, which can be viewed as a
generalized nonlinear regression method. One reason why feedforward neural
networks are treated here is their ‘‘cost-effectiveness’’, that is, they are a very useful
tool and at the same time easily implemented based on R. As we will see, the
main advantage of feedforward neural networks compared to classical nonlinear
regression is that they can be used without any a priori knowledge of the particular
mathematical form of the nonlinearity.

After introducing some basic methods for an appropriate design of experiments
in Section 2.6, the chapter ends in Section 2.7 with an overview of other phenomeno-
logical approaches that cannot be treated in detail within the scope of this book.

2.1
Elementary Statistics

In Section 1.3 above it was emphasized that a minimum requirement to be
satisfied by a system that is investigated in science and engineering is observability
in the sense that the system produces measurable output. As explained there,
most systems do also accept some kind of input, and most investigations in
science and engineering (except for more theoretically oriented work) thus begin
with a compilation of an input–output dataset having the general form shown in
Figure 1.2b. In this sense, it is valid to say that most modeling and simulation
work starts with a dataset. Elementary statistical methods offer phenomenological
modeling approaches that can be used for a first analysis of datasets.

2.1.1
Descriptive Statistics

The first thing that is usually done with a given dataset is descriptive statistics,
that is, the application of methods that summarize and describe the data [19].
In many cases, datasets will be given in some spreadsheet format such as Calc
(which is a part of the open source OpenOffice package, see Appendix A) or Excel
(a part of the commercial Microsoft Office). Since the focus of this book is on open
source software, we will exclusively refer to Calc in the following. This means no
restriction for people who want to use Excel instead of Calc, since Calc and Excel
work almost the same way from a standard user’s perspective. Beyond this, Calc
imports and exports Excel data without problems (problems may occur if you are
using sophisticated features of Excel which a standard user will never see).

Spreadsheet programs such as Calc usually offer a number of options for a
statistical analysis of the data. Although none of these programs can really compete
with a professional and comprehensive statistical software such as R, it is frequently
efficient to use the statistical facilities of spreadsheet programs. As explained above,
you will obtain most of your datasets in a spreadsheet format, and a quick analysis
of the data in this original format will be faster in many cases compared to an
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Table 2.1 Spring data (see spring.ods in the book software).

x 10 20 30 40 50
y 3 5 11 12 16

analysis within R, which may involve several more steps beginning with an import
of these data into R and so on.

As an example, let us start with the spring dataset in Table 2.1. This dataset
has already been considered in Section 1.5.6 above, and it can be found in
the file spring.ods in the ‘‘PhenMod/Stat’’ directory of the book software (see
Appendix A). Note that the file extension ‘‘ods’’ (‘‘open document sheet’’) is the
standard extension of Calc spreadsheet files.

2.1.1.1 Using Calc
The simplest thing that one can do with a dataset such as spring.ods is to
compute measures of position, which characterize the approximate location of the
data in various ways. The most well known and most frequently used measure of
position is the arithmetic mean, which is defined as follows:

x =
∑n

i=1 xi

n
(2.1)

Here, x1, x2, . . . , xn is some given set of real numbers and n ∈ N. For example,
the arithmetic means of the x and y data in spring.ods are x = 30 and y = 9.4,
respectively, which basically says that the x and y data spread around these values.
Let us now see how this computation can be done in Calc. Although we cannot
provide a general introduction into Calc here, we will try to provide enough
information such that everything should be understandable even for first-time
users (for more information you may refer to the documentation provided under
www.openoffice.org).

Once you open spring.ods in Calc, you see a spreadsheet consisting of cells.
Individual cells are labeled e.g. as A2where A refers to the column and 2 refers to the
line in which you find that cell. The numbers of the x column of spring.ods are
in the group of cells A2,A3, . . . ,A6, which is also denoted as A2:A6 in Calc notation.
Now you can use a Calc function called AVERAGE to compute the arithmetic mean
for this group of cells. To do this, enter the formula =AVERAGE(A2:A6) into an
empty cell of spring.ods (note that every Calc formula begins with an ‘‘=’’). After
performing this procedure, you will see a ‘‘30’’ in the cell where the formula was
entered. To see and eventually edit the formula behind that number, you may use
a double click on the cell containing the ‘‘30’’.

An alternative procedure would have been to select and use the AVERAGE
function within Calc’s Function Wizard which you start using the menu option
Insert/Function. The Function Wizard is particularly useful for inexperienced
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users since it asks the user for all necessary information and then automatically
generates the formula. It also provides a list of the available formulas which are
classified into categories such as ‘‘Financial’’, ‘‘Mathematical’’, and ‘‘Statistical’’,
along with an explanation of what each particular formula is doing. Within the
‘‘Statistical’’ category, you will find a great number of other functions that can
be used to compute alternative measures of position, such as the median (Calc
function MEDIAN()), or the geometric mean (Calc function GEOMEAN()), see [19, 37]
for details.

After computing measures of position, the next step usually is to look at measures
of variation (or measures of statistical dispersion), which basically measure how
widely spread the values in a dataset are. The most popular measure of variation is
the sample standard deviation

s =
√∑n

i=1(xi − x)2

n − 1
(2.2)

which can be computed similar to above using the Calc function STDEV(). STDEV()
yields s ≈ 15.8 and s ≈ 5.3 when applied to the x and y data of spring.ods,
respectively. As Equation 2.2 shows, the sample standard deviation measures the
variability of the data in terms of the deviations from the mean, x1 − x, . . . , xn − x.
Basically, the sample standard deviation expresses an average of these (squared)
deviations. To understand the meaning of this expression a little more, let us look
at what is meant by a ‘‘sample’’ here.

Statistical investigations typically focus on a well-defined collection of objects
which constitute what is called a population [37]. For example, if an investigator
wants to characterize the impact of a nutrient on a particular plant species, then
his investigation will involve a population consisting of all plants of this species. In
many cases, it will be impossible and inefficient to investigate the entire population
due to limited time and resources (e.g. the plant species under investigation may
cover most of the earth’s surface). Statistical investigations will thus typically be
restricted to a subset of a population which is called a sample. A number of strategies
such as random sampling (each member of the population has an equal chance of
being selected) or stratified sampling (which uses a division of the population into
subgroups sharing the same characteristics such as gender or age) are used to make
sure that the sample represents the entire population as good as possible [19, 37].

The sample standard deviation s refers to a sample x1, . . . , xn. Later (in
Section 2.1.2) we will understand that such a sample can be thought of as be-
ing generated by a random variable X . The variability of a random variable can also
be characterized by a standard deviation σ , which expresses a property of the entire
population (Section 2.1.2.6). Under certain assumptions discussed in [37], s can
be shown to be a reasonable (‘‘unbiased’’) estimate of σ , and in the same way the
arithmetic mean x is a reasonable estimate of another property of the population,
the expected value μ (see Section 2.1.2 again).
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Other frequently used measures of variation include e.g. [37]
• the (sample) range, that is, the difference between the

maximum and minimum values in the sample, which can be
computed using Calc’s MAX() and MIN() functions;

• the (sample) average deviation, that is, the mean of the
absolute deviations |xi − x|, which can be computed using
Calc’s AVEDEV() function; and

• various dimensionless measures such as the (sample)
coefficient of variation cv = s/x, which can be computed
using Calc’s MEAN() and STDEV() functions as described
above.

There are also a number of measures that can be used to characterize the
interaction of statistical variables, such as Pearson’s sample correlation coefficient

r =
∑n

i=1 xiyi − n · x · y√(∑n
i=1 x2

i − n · x2) · (∑n
i=1 y2

i − n · y2) (2.3)

which assumes a given sample (x1, y1), . . . , (xn, yn), and which expresses the
strength of an assumed linear correlation of x and y on a scale between −1
and 1 (−1 or 1: the data match a descending or ascending straight line, 0: no inter-
action, anything in between: data scatter around descending or ascending straight
lines depending on the sign of r). Again, r can be interpreted as an approximation
of the correlation of random variables, see [37] for more details on that. Calc’s
CORREL() function can be used to compute r, which yields a value of r ≈ 0.98
when applied to spring.ods, reflecting the fact that the data in spring.ods
almost match an ascending straight line (Figure 1.9).

As you know, ‘‘a picture is worth a thousand words’’. Applied to descriptive
statistics, this can be phrased like this: a picture is worth a thousand numerical
measures of position, variation, and so on, that is, you should use pictures and
graphs to visualize your data whenever possible. Calc offers a great number of
graphical plotting options that can be accessed via the menu ‘‘Insert/Chart’’. This
option has, for example, been used to generate Figure 1.9 in Section 1.5.6.

2.1.1.2 Using the R Commander
Compared to Calc, R is a much more professional and much more comprehensive
tool to perform a statistical analysis on the computer (see Appendix B). As
mentioned above, Calc’s main advantage over R is that it can often be used
very quickly since the analysis can be performed in a spreadsheet format, that
is, in the original format of the data in many cases. However, if your intention
is a thorough analysis of a dataset that involves statistical models or graphical
capabilities beyond Calc’s scope, you will have to use R. For a beginner, an easy
way of getting acquainted with R is the R Commander, a graphical user interface
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(GUI) for R. Appendix B explains the way in which you start the R Commander
within CAELinux.

Before starting the analysis, the data should be saved in the ‘‘csv’’ data format, for
example, by using Calc’s ‘‘Save as’’ menu option. The resulting ‘‘.csv’’ file can then
be imported via the R Commander’s ‘‘Data/Import data/From text file’’ option (be
careful to choose ‘‘,’’ as the field delimiter when saving or importing csv files). After
this, the same descriptive analysis as in the last section can be performed by using
the R Commander menu options. For example, the arithmetic mean and the stan-
dard deviation can be obtained using the ‘‘Statistics/Summaries/Numerical sum-
maries’’ menu option, graphs can be created via the ‘‘Graphs’’ menu option and so
on. (‘‘Graphs/Scatterplot’’ creates scatterplots similar to Figure 1.9 in Section 1.5.6).

If the standard formatting of the graphs produced by the R Commander does not
meet your requirements, you can generate a great variety of possible formats based
on R programs (see Appendix B for details on using R programs). Look through
the various R programs in the book software (Appendix A) to see how this can be
done, or consult the literature that is recommended in Appendix B. As an example,
consider the program HeatClos.r that you find in the MechPDE directory of the
book software. This program generates a plot using R’s plot command, and the
plot involves, for example, a nonstandard font size and a nonstandard line width.
Looking into the plot command in HeatClos.r, you will see that the font size
can be adjusted using a par command which is issued immediately before the
plot command, and the line width can be set using the lwd option of the plot
command.

The R commander provides a script window that can be used to facilitate your
first steps in R programming. Everything you do in the R Commander is translated
into appropriate R code within the script window. For example, after producing a
scatterplot using the R Commander’s ‘‘Graphs/Scatterplot’’ menu option, you will
find a scatterplot(. . .) command in the script window that corresponds exactly
to all the choices that you have made in the ‘‘Graphs/Scatterplot’’ window. If you
then copy and paste the content of the script window into a text file and save that
file with extension ‘‘.r’’, the resulting program can be executed as described in
Appendix B, and it will generate exactly the result that you have produced before
using the R Commander. This R program can then be edited and optimized, for
example, by using formatting commands as described above.

2.1.2
Random Processes and Probability

Suppose you are interested in some quantity which we denote by X , and which may
be temperature, the concentration of some substance, and so on. You will usually
need to have precise measurements of that quantity, so let us assume that you
have a new measurement device and want to know about the measurement errors
produced by that device. Then, a standard procedure is to repeatedly measure that
quantity in a situation where the correct result is known (e.g. by using standardized
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solutions if X is the concentration of some substance). Assuming that the true value
of the quantity of interest is 20, the data produced in this way may look like this:

20.13443 19.83828 20.01702 19.99835 19.94526 20.01415 19.96707

What we see here is that the measurement values oscillate in a random way
around the true value. Most measurement devices produce random errors of this
kind, which is no problem as long as the amplitude of these oscillations is small
enough. Now a natural question regarding the above data is this: what is the
probability with which the deviations of the measurement value from the true value
will be less than some specified value such as 0.1? In this section, methods will be
developed that can be used to answer this kind of questions.

2.1.2.1 Random Variables
In statistical terms, we would say that the above data have been generated by the
random variable X , where [19]

Definition 2.1.1 (Random variable) A random variable is a variable that has a
single numerical value, determined by chance, for each outcome of a procedure.

Everyone of us is concerned with an abundant number of random processes and
random variables in this sense, not only as a scientist or engineer. Perhaps the
most classical example is the random variable

X1 : result of a dice

but you may also think of

X2: waiting time at a bus stop if you arrive there without knowing
the time table

and many other examples.

2.1.2.2 Probability
Let us ask for the probability with which a random variable attains certain values.
This is an easy thing if one is concerned with simple systems such as a dice.
Everyone of us knows that the probability of getting a ‘‘3’’ in a dice play is 1/6 or
16.7%. In statistics, this is usually written as

P(X1 = 3) = 1

6
(2.4)

where P is a ‘‘probability function’’ that yields the probability of the ‘‘event’’ X1 = 3
as a number between 0 and 1. To make this precise, let us define [19]

Definition 2.1.2 (Events and sample space)
• An event is any collection of results or outcomes of a procedure.
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• A simple event is an outcome or an event that cannot be further
broken down into simpler components.

• The sample space for a procedure consists of all possible simple
events.

In the dice example, the sample space would be

S = {1, 2, 3, 4, 5, 6} (2.5)

and all subsets A ⊂ S such as A1 = {1, 2} (‘‘dice result is below 3’’) or A2 = {1, 3, 5}
(‘‘dice result is an odd number’’) would be events in the sense of the above
definition. Examples of simple events would be A3 = {2}, A4 = {5}, and so on. In
the bus-waiting-time example, the sample space would be

S = {x ∈ R|0 ≤ x < 15} (2.6)

if we assume that the buses arrive in 15-min intervals, and a possible event would
be [0, 2[ (‘‘the waiting time is below 2 min’’).

The probability function P is usually defined based on axioms [37]. A less formal
definition, which is sufficient for our purposes, can be given as follows [37]

Definition 2.1.3 (Probability)
Given a sample space S, the probability function P assigns to each event A ⊂ S
a number P(A) ∈ [0, 1], called the probability of the event A, which will give a
precise measure of the chance that A will occur.

Above it was said that the probability to get ‘‘3’’ as a dice result is 1/6. This is
based on the following formula (a consequence of the probability axioms [19, 37]):

Proposition 2.1.1 (Classical approach to probability)
Assume that a given procedure has n different simple events and that each of
those simple events has an equal chance of occurring. If event A can occur in s
of these n ways, then

P(A) = s

n
(2.7)

This formula works well for the dice and many other similar discrete random
variables that involve a finite number of equally likely possible results (note that
discrete random variables may also involve countable infinitely many possible
results, see [19]). It does not work, however, for continuous random variables
with an infinite number of possible results similar to the random variable X2

discussed above that describes the bus waiting time. Note that the sample space
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S = {x ∈ R|0 ≤ x < 15} of this example indeed involves an infinite number of
continuously distributed possible results between 0 and 15 min. In this case, the
following formula can be used [19]:

Proposition 2.1.2 (Relative frequency approximation) Assume that a given
procedure is repeated n times, and let fn(A) denote the relative frequency with
which an event A occurs. Then,

P(A) = lim
n→∞ fn(A) (2.8)

This means that if we, for example, want to approximate the probability of bus
waiting times between 0 and 2 min (i.e. the probability of A = [0, 2[), the following
approximation can be used

P(A) ≈ fn(A) (2.9)

and the quality of this approximation will increase as n is increased.

2.1.2.3 Densities and Distributions
There is another important approach that can be used to compute probabilities,
which is based on an observation that can be made if a random process is repeated
a great number of times. Let X be a continuous random variable with sample
space S ⊂ R, and let us consider two disjunct events [a1, b1], [a2, b2] ⊂ S, that is,
[a1, b1] ∩ [a2, b2] = ∅. Then, suppose that X has been observed n ∈ N times, and
that the same number of observations has been made within [a1, b1] and [a2, b2].
Now assume that b2 − a2 > b1 − a1. Then, we can say that observations near the
interval [a1, b1] are more likely compared to observations near the interval [a2, b2],
since the same number of observations was made in each of the two intervals
although [a1, b1] is smaller. If m is the number of observations made in each of the
intervals, then this difference can be made precise as follows:

m/n

b1 − a1
>

m/n

b2 − a2
(2.10)

In this equation, m/n approximates the probability of either of the two events
[a1, b1] and [a2, b2] in the sense of Proposition 2.1.2. These probabilities are the same
for both events, but a difference is obtained if they are divided by the respective
sizes of the two intervals, which leads to a quantity known as probability density.
Basically, you can expect more observations within intervals of a given size in
regions of the sample space having a high probability density.

Figure 2.1 shows what happens with the probability density if a random exper-
iment (which is based on a ‘‘normally distributed’’ random variable in this case,
see below) is repeated a great number of times. The figure is a result of the code
RNumbers.r which you find in the book software (Appendix A), and which can
be used to simulate a random experiment (more details on this code will follow
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Fig. 2.1 Probability density distributions computed using
RNumbers.r with (a) n = 100 and (b) n = 10 000.

further below). Figure 2.1a and b shows the distribution of the probability density
as a histogram for two cases where the random experiment is repeated (i) 100 and
(ii) 10 000 times. Basically, what can be seen here is that as n is increased, the
probability density approaches the ‘‘bell-shaped’’ function that is indicated by the
dashed line in the figure, and that can be expressed as:

f (x) = 1

σ
√

2π
e− 1

2

( x−μ

σ

)2

(2.11)

with μ = 20 and σ = 0.1 in this case. This function is an example of a probability
density function. Probability density functions characterize the random behavior of
a random variable, that is, the behavior of a random variable can be predicted once
we know its probability density function. For example, given a probability densitiy
function f of a random variable X with sample space S ⊂ R, the probability of an
event [a, b] ⊂ S can be computed by the following integral [37]:

P(a ≤ X ≤ b) =
∫ b

a
f (t) dt (2.12)

Alternatively, the function

F(x) = P(X ≤ x) =
∫ x

−∞
f (t) dt (2.13)

is also often used to characterize the behavior of a random variable. It is called
the probability distribution of the random variable. Basically, probability density
functions or probability distributions provide a compact way to describe the
behavior of a random variable. The probability density function in Equation 2.11,
for example, describes the behavior of the random variable based on only two
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parameters, μ and σ (more details on this distribution and its parameters will
follow below).

Probability density functions always satisfy f (t) ≥ 0 and, if S = R,

∫ ∞

−∞
f (t) dt = 1 (2.14)

that is, the area under the probability density function is always 1 (note that
otherwise Equation 2.12 would make no sense).

2.1.2.4 The Uniform Distribution
The probability density function of the bus waiting time (see above) is

f (x) =
⎧⎨
⎩

1

15
if x ∈ [0, 15[

0 otherwise
(2.15)

that is, in this case the probability density is constant. As discussed above, this
expresses the fact that the same number of observations can be expected within any
interval of a given length within [0, 15]. This makes sense in the bus-waiting-time
example since each particular waiting time between 0 and 15 min is equally likely.
Using Equations 2.12 and 2.15, we can, for example, compute the probability of
waiting times between 3 and 5 min as follows:

P(3 ≤ X2 ≤ 5) =
∫ 5

3
f (t) dt = 1

15
· (5 − 3) = 2

15
(2.16)

Equation 2.15 is the probability density function of the uniform distribution, which
is written generally as

f (x) =
⎧⎨
⎩

1

b − a
if x ∈ [a, b[

0 otherwise
(2.17)

It is easy to show that the area under this probability density function is 1 as
required by Equation 2.14.

2.1.2.5 The Normal Distribution
Random variables that can be described by the probability density function in
Equation 2.11 are said to have the normal distribution, which is also known as the
Gaussian distribution since it was discovered by C.F. Gauss. In a sense, one can say
that the normal distribution is called normal since it is normal for random processes
to be normally distributed. . . A great number of random processes in science and
engineering can be described using this distribution. This can be theoretically
justified based on the central limit theorem, which states that the distribution of a
sum of a large number of independent and identically distributed random variables
can be approximated by the normal distribution (see [37] for details).
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Let us use the notation X ∼ N(μ, σ ) for a random variable X that is normally
distributed with parameters μ and σ (see Equation 2.11; more on these param-
eters will follow in the next section). Remember that a measurement device was
discussed at the beginning of this section, and that we were asking the follow-
ing question: with what probability will the deviation of the measurement value
from the true value be smaller than some specified value such as 0.1? Assum-
ing that the true value of the measured quantity is 20, and assuming normally
distributed measurement errors (which is typically true due to the central limit
theorem), this question can now be answered using Equations 2.11 and 2.12 as
follows:

P(19.9 ≤ X ≤ 20.1) =
∫ 20.1

19.9

1

σ
√

2π
e− 1

2

( x−μ

σ

)2

dt (2.18)

Unfortunately, this integral cannot be solved in closed form, which means that
numerical methods must be applied to get the result (see Section 3.6.2 for a
general discussion of closed form versus numerical solutions). The simplest way
to compute probabilities of this kind numerically is to use spreadsheet programs
such as Calc. Calc offers a function NORMDIST that can be used to compute values
either of the probability density function or of the distribution function of the
normal distribution. If F(x) is the distribution function of the normal distribution
(compare Equation 2.13), the above probability can be expressed as

P(19.9 ≤ X ≤ 20.1) = F(20.1) − F(19.9) (2.19)

which can be obtained using Calc as follows:

P(19.9 ≤ X ≤ 20.1) = NORMDIST(20.1;μ; σ ; 1) − NORMDIST(19.9;μ; σ ; 1)
(2.20)

For example, μ = 20 and σ = 0.1 yield P(19.9 ≤ X ≤ 20.1) ≈ 68, 3%.
We can now explain the background of the code RNumbers.r that was used

above to motivate probability density functions. This code simulates a normally
distributed random variable based on R’s rnorm command. The essential part of
this code is the line

out=rnorm(n,mu,sigma)

where rnorm is invoked with the parameters n (number of random numbers to
be generated), mu and sigma (parameters μ and σ of Equation 2.11). R’s hist
and curve commands are used in RNumbers.r to generate the histogram and the
dashed curve in Figure 2.1, respectively (see the code for details).

2.1.2.6 Expected Value and Standard Deviation
Now it is time to understand the meaning of the parameters of the normal
distribution, μ and σ . Let us go back to the dice example, and let X1 be the random
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variable expressing the result of the dice as before. Suppose two experiments are
performed:

Experiment 1
The dice is played five times. The result is: 5, 6, 4, 6, 5.

Experiment 2
The dice is played 10 000 times.

Analyzing Experiment 1 using the methods described in Section 2.1.1, you
will find that the average value is x = 5.2 and the standard deviation is s ≈ 0.84.
Without knowing the exact numbers produced by Experiment 2, it is clear that the
average value and the standard deviation in Experiment 2 will be different from
x = 5.2 and s ≈ 0.84. The relatively high numbers in Experiment 1, and hence, the
relatively high average value of x = 5.2 has been obtained by chance only, and it
is clear that such an average value cannot be obtained in Experiment 2. If you get
a series of relatively high numbers such as the numbers produced in Experiment
1 as a part of the observations in Experiment 2, then it is highly likely that this
will be balanced by a corresponding series of relatively small numbers (assuming
a fair dice, of course). As the sample size increases, the average value of a sample
stabilizes toward a value that is known as the expected value of a random variable X
which is usually denoted as E(X ) or μ, and which can be computed as

μ = E(X ) = 1

6
· 1 + 1

6
· 2 + 1

6
· 3 + 1

6
· 4 + 1

6
· 5 + 1

6
· 6 = 3.5 (2.21)

in the case of the dice example. This means that we can expect x ≈ 3.5 in
Experiment 2. The last formula can be generalized to

μ = E(X ) =
n∑

i=1

pixi (2.22)

if X is a discrete random variable with possible values x1, . . . , xn having probabil-
ities p1, . . . , pn. Analogously, the (sample) standard deviation of a sample stabilizes
toward a value that is known as the standard deviation of a random variable X which
is usually denoted as σ , and which can be computed as

σ =
√√√√ n∑

i=1

pi(xi − μ)2 (2.23)

for a discrete random variable. This formula yields σ ≈ 2.92 in the dice example,
that is, we can expect s ≈ 2.92 in Experiment 2. For a continuous random variable
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with probability density function f , the expected value and the standard deviation
can be expressed as follows [37]:

μ =
∫ ∞

−∞
t · f (t) dt (2.24)

σ =
√∫ ∞

−∞
(t − μ)2 · f (t) dt (2.25)

As suggested by the notation of the parameters μ and σ of the normal distribution,
it can be shown that these parameters indeed express the expected value and
the standard deviation of a random variable that is distributed according to
Equation 2.11.

2.1.2.7 More on Distributions
Beyond the uniform and normal distributions discussed above, there is a great
number of distribution functions that cannot be discussed in detail here, such as
Student’s t-distribution (which is used e.g. to estimate means of normally distributed
variables) or the gamma distribution (which is used e.g. to describe service times
in queuing theory [38]). Note also that all distribution functions considered so far
were referring to continuous random variables. Of course, the same concept can
also be used for discrete random variables, which leads to discrete distributions. An
important example is the binomial distribution, which refers to binomial random
processes which have only two possible results. Let us denote these two results by
0 and 1. Then, if p is the (fixed) probability of getting a 1 and the experiment is
repeated n times, the distribution function can be written as

F(x) = P(X ≤ x) =
floor(x)∑

j=0

(
n
j

)
pj(1 − p)n−j (2.26)

where floor(x) returns the highest integer less than or equal to x. See [19, 37] for
more details on the binomial distribution and on other discrete distributions.

2.1.3
Inferential Statistics

While the methods of descriptive statistics are used to describe data, the methods
of inferential statistics, on the other hand, are used to draw inferences from data (it
is as simple as that . . . ). This is a big topic. Within the scope of this book, we will
have to confine ourselves to a treatment of some basic ideas of statistical testing
that are required in the following chapters. Beyond this, inferential statistics is e.g.
concerned with the estimation of population parameters such as the estimation of
the expected value from data, see [19, 37] for more on that.
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2.1.3.1 Is Crop A’s Yield Really Higher?
Suppose the following yields of crops A and B have been measured (in g):

Crop A: 715, 683, 664, 659, 660, 762, 720, 715
Crop B: 684, 655, 657, 531, 638, 601, 611, 651

These data are in the file crop.csv in the book software (Appendix A). The
average yield is 697.25 for crop A and 628.5 for crop B, and one may therefore be
tempted to say that crop A yields more than crop B. But we need to be careful: can
we be sure that crop A’s yield is really higher, or is it possible that the difference
in the average yields is just a random effect that may be the other way round
in our next experiment? And if the data indeed give us a good reason to believe
that crop A’s yield is higher, can the certainty of such an assertion be quantified?
Questions of this kind can be answered by the method of statistical hypothesis
testing.

2.1.3.2 Structure of a Hypothesis Test
Statistical hypothesis tests that are performed using software (we do not discuss
the traditional methods here, see [19, 37] for that) usually are conducted along the
following steps:

• Select the hypothesis to be tested: the null hypothesis, often
abbreviated as H0.

• Depending on the test that is performed, you may also have to
select an alternative hypothesis, which is assumed to hold true if
the null hypothesis is rejected as a result of the test. Let H1 be
this alternative hypothesis, or let H1 be the negation of H0 if no
alternative hypothesis has been specified.

• Select the significance level α, which is the probability to
erroneously reject a true H0 as a result of the test. Make α small
if the consequences of rejecting a true H0 are severe. Typical
choices are α = 0.1, α = 0.05, or α = 0.01.

• Collect appropriate data and then use the computer to perform
an appropriate test using the data. As a result of the test, you will
obtain a p value (see below).

• If p < α, reject H0. In this case, H1 is assumed to hold true, and
H1 as well as the test itself are said to be statistically significant at
the level α.

Note that in the case of a nonsignificant test (p ≥ α), nothing can be derived
from the test. In particular – and you need to be careful regarding this point – the
fact that we do not reject H0 in this case does not mean that it has been proved by
the test that H0 is true. The p value can be defined as follows [37]:
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Definition 2.1.4 (P value)
The p value (or observed significance level) is the smallest level of significance at
which H0 would be rejected when a specified test procedure is used on a given
dataset.

In view of the above testing procedure, this definition may seem somewhat
tautological, so you should note that the ‘‘test procedure’’ in the definition refers
to the mathematical details of the testing procedure that cannot be discussed here,
see [19, 37].

A hypothesis test may involve two main types of errors: a type I error, where a
true null hypothesis is rejected, and a type II error, which is the error of failing to
reject a null hypothesis in a situation where the alternative hypothesis is true. As
mentioned above, α is the probability of a type I error, while the probability of a
type II error is usually denoted with β. The inverse probability 1 − β, that is, the
probability of rejecting a false null hypothesis is called the power of the test [19, 37].

2.1.3.3 The t test
Coming back to the problem discussed in Section 2.1.3.1 above, let X1 and X2

denote the random variables that have generated the data of crop A and crop B,
respectively, and let μ1 and μ2 denote the (unknown) expected values of these
random variables. Referring to the general test structure explained in the last
section, let us define the data of a statistical test as follows:

• H0: μ1 = μ2

• H1: μ1>μ2

• α = 0.05

Now a t test can be used to get an appropriate p value [37]. This test can be
performed using the program TTest.r in the book software (Appendix A). If you
run this program as described in Appendix B, it will produce a few lines of text
in which you will read ‘‘p value = 0.00319’’. Since this is smaller compared to the
significance level α assumed above, H0 is rejected in favor of H1, and hence the
test shows what is usually phrased as follows: ‘‘The yield of crop A is statistically
significantly higher (at the 5% level) compared to crop B.’’ Note that this analysis
assumes normally distributed random variables, see [19, 37] for more details.

The main command in TTest.r that does the computation is t.test, which is
used here as follows:

t.test(Dataset$x, Dataset$y
,alternative="greater",paired=FALSE)

Dataset$x and Dataset$y are the data of crop A and crop B, respectively, which
TTest.r reads from crop.csv using the read.table command (see TTest.r
for details). alternative can be set to alternative="less" if H1 : μ1 < μ2 is
used, and to alternative="two.sided" in the case of H1 : μ1 �= μ2. For obvious
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reasons, t tests using H1 : μ1 < μ2 or H1 : μ1 > μ2 are also called one-sided t tests,
whereas t tests using H1 : μ1 �= μ2 are called two-sided t tests. paired must be set
to true if each of the x values has a unique relationship with one of the y values, for
example, if x is the yield of a fruit tree in year 1 and y is the yield of the same tree in
year 2. This is a paired t test, whereas the above crop yield example – which involves
no unique relationships between the data of crop A and crop B – is called an
independent t test [37]. R’s t.test command can also be used to perform one-sample
t tests where the expected value of a single sample (e.g. the concentration of an
air pollutant) is compared with a single value (e.g. a threshold value for that air
pollutant). Note that t tests can also be accessed using the ‘‘Statistics/Means’’ menu
option in the R Commander.

2.1.3.4 Testing Regression Parameters
A detailed treatment of linear regression will follow below in Section 2.2. At this
point, we just want to explain a statistical test that is related with linear regression.
As we will see below, linear regression involves the estimation of a straight line
y = ax + b or of a hyperplane y = a0 + a1x2 + · · · + anxn from data. Let us focus
on the one-dimensional case, y = ax + b (everything is completely analogous in
higher dimensions). In the applications, it is often important to know whether a
variable y depends on another variable x. In terms of the model y = ax + b, the
question is whether a �= 0 (i.e. y depends on x) or a = 0 (i.e. y does not depend on
x). To answer this question, we can set up a statistical hypothesis test as follows:

• H0: a = 0
• H1: a �= 0
• α = 0.05

For this test, the line labeled with an ‘‘x’’ in the regression output in Figure 2.2a
reports a p value of p = 0.00318. This is smaller than α = 0.05, and hence we
can say that ‘‘a is statistically significantly different from zero (at the 5% level)’’,
which means that y depends statistically significantly on x. In a similar way, the p
value p = 0.71713 in the line labeled with ‘‘Intercept’’ in the regression output in
Figure 2.2a refers to a test of the null hypothesis H0 : b = 0, that is, this p value can
be used to decide whether the intercept of the regression line (i.e. the y value for
x = 0) is significantly different from zero. Note that this analysis assumes normally
distributed random variables, and note also that a and b have been used above to
denote the random variables that are generating the slope and the intercept of the
regression line if the regression procedure described in Section 2.2 is performed
based on sample data.

2.1.3.5 Analysis of Variance
The regression test discussed in the previous section can be used to decide
about the dependence of y on x in a situation where x is expressed in terms of
numbers, which is often phrased like this: ‘‘x is at the ratio level of measurement’’
[19]. If x is expressed in terms of names, labels, or categories (the nominal
level of measurement), the same question can be answered using the analysis of
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variance, which is often abbreviated as anova. As an example, suppose that we
want to investigate whether fungicides have an impact on the density of fungal
spores on plants. To answer this question, three experiments with fungicides
A, B, and C and a control experiment with no treatment are performed. Then,
these experiments involve what is called a factor x which has the factor levels
‘‘Fungicide A’’, ‘‘Fungicide B’’, ‘‘Fungicide C’’, and ‘‘No Fungicide’’. At each of
these factor levels, the experiment must be repeated a number of times such
that the expected values of the respective fungal spore densities are sufficiently
characterized.

The results of such an experiment can be found in the file fungicide.csv
in the book software (see Appendix A). Note that the ‘‘Factor’’ column of this
file corresponds to x, while the ‘‘Value’’ column corresponds to y (it reports the
result of the measurement, i.e. the density of the fungal spores on the plants in
an appropriate unit that we do not need to discuss here). Let X1, X2, X3, and X4

denote the random variables that have generated these data, and let μ1, μ2, μ3, and
μ4 denote the expected values of these random variables. Then, we can set up a
hypothesis test as follows:

• H0: μ1 = μ2 = μ3 = μ4

• H1: There are i, j ∈ {1, 2, 3, 4} s.t. μi �= μj

• α = 0.05

Basically, H0 says that the factor x does not have any impact on the fungal spore
density y, while the alternative hypothesis H1 is the negation of H0. An appropriate
p value for this test can now be computed using the R program Anova.r in the
book software, which is based on R’s anova command. If you run this program
as described in Appendix B, it will produce a few lines of text in which you read
‘‘Pr(>F) = 0.000376’’, which means p = 0.000376. Again, the test is significant
since we have p < α. Hence, H0 can be rejected and we can say that the factor
‘‘fungicide’’ has a statistically significant impact on the fungal spore density (again,
at the 5% level).

Note that this analysis assumes random variables that are normally dis-
tributed and which have homogeneous variances (i.e. squared standard devi-
ations), see [19, 37] for more details. The above example is called a one-way
analysis of variance or single-factor analysis of variance since it involves one
factor x only. R’s anova command and the Anova.r code can also be ap-
plied to situations with several factors x1, . . . , xn, which is called a multiway
analysis of variance or multifactor analysis of variance. Note that when you per-
form a multiway analysis of variance using Anova.r, you will have to use a
data file which provides one column for each of the factors, and one more
column for the measurement value. What we have described so far is also
known as the fixed-effects model of the analysis of variance. Within the gen-
eral scope of the analysis of variance, a great number of different modeling
approaches can be used, for example, random effects models which assume a
hierarchy of different populations whose differences are constrained by the hierar-
chy [39].
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2.2
Linear Regression

Generally speaking, regression models involve the analysis of a dependent variable
in terms of one or several independent variables. In regression, the dependent
variable is expressed in terms of the independent variables using various types
of regression equations. Parameters in the regression equations are then tuned
in a way that fits these equations to data. The idea of the regression method has
already been explained based on the spring data spring.ods in Section 1.5. As
it was discussed there referring to the black box input–output system in Figure
1.8, one can say that regression is a really prototypical method among the existing
phenomenological modeling approaches. It contains all the essential ingredients:
an input x, an output y, a black box–type system transforming x into y, and
the attempt to find a purely data-based mathematical description of the relation
between x and y. The term regression itself is due to a particular regression study
that was performed by Francis Galton who investigated human height data. He
found that, independent of their parents’ heights, the height of children tends to
regress toward the typical mean height [40].

2.2.1
The Linear Regression Problem

Assume we have a dataset (x1, y1), (x2, y2), . . . , (xm, ym) (xi, yi ∈ R, i = 1, . . . , m,
m ∈ N). Then, the simplest thing one can do is to describe the data using a
regression function or model function of the form

ŷ(x) = ax + b (2.27)

The coefficients a and b in Equation 2.27 are called the regression coefficients or the
parameters of the regression model. x is usually called the explanatory variable (or
predictor variable, or independent variable), while ŷ (or y) is called the response variable
(or dependent variable). Note that the hat notation is used to distinguish between
measured values of the dependent variable (written without hat as yi) and values of
the dependent variable computed using a regression function (which are written
in hat notation, see Equation 2.27). A function ŷ(x) as in Equation 2.27 is called
a linear regression function since this function depends linearly on the regression
coefficients, a and b [41].

Note 2.2.1 (Linear regression) A general one-dimensional linear regression
function ŷ(x) computes the response variable y based on the explanatory vari-
able x and regression coefficients a0, a1, . . . , as (s ∈ N). If the expression ŷ(x)
depends linearly on a0, a1, . . . , as, it can be fitted to measurement data us-
ing linear regression. Higher-dimensional linear regression functions involving
multiple explanatory variables will be treated in Section 2.3, the nonlinear case
in Sections 2.4 and 2.5.
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Equation 2.27 fits the data well if the differences yi − ŷ(xi) (i = 1, . . . , m) are
small. To achieve this, let us define

RSQ =
m∑

i=1

(
yi − ŷ(xi)

)2
(2.28)

This expression is called the residual sum of squares (RSQ). Note that RSQ
measures the distance between the data and the model: if RSQ is small, the
differences yi − ŷ(xi) will be small, and if RSQ is large, at least some of the
differences yi − ŷ(xi) will be large. This means that to achieve a small distance
between the data and the model, we need to make RSQ small. In regression, this
is achieved by an appropriate tuning of the parameters of the model. Precisely, the
parameters a and b are required to solve the following problem:

min
a,b∈R

RSQ (2.29)

Note that RSQ depends on a and b via ŷ. The solution of this problem can
be obtained by an application of the usual procedure for the minimization of a
function of several variables to the function RSQ(a, b) (setting the partial derivatives
of this function with respect to a and b to zero etc.) [17], which gives [19]

a =
∑m

i=1 xiyi − mx y∑m
i=1 x2

i − mx2 (2.30)

b = y − ax (2.31)

The use of RSQ as a measure of the distance between the model and the data
may seem somewhat arbitrary since several other alternative expressions could
be used here (e.g. RSQ could be replaced by a sum of the absolute differences
|yi − ŷ(xi)|). RSQ is used here since it leads to maximum likelihood estimates of the
model parameters, a and b, if one makes certain assumptions on the statistical
distribution of the error terms, yi − ŷ(xi) (see below). Using these assumptions, the
maximum likelihood estimates of the model parameters derived from minimizing
RSQ make the data ‘‘more likely’’ compared to other choices of the parameter
values [41].

2.2.2
Solution Using Software

Now let us see how this analysis can be performed using software. We refer
to the data in spring.csv as an example again (see Section 1.5.6). Start the R
Commander as described in Appendix B an then import the data spring.csv into
the R Commander using the menu option ‘‘Data/Import data/From text file’’. Then
choose the menu option ‘‘Statistics/Fit models/Linear regression’’ and select x and
y as the explanatory and response variables of the model, respectively. This gives
the result shown in Figure 2.2a.
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Fig. 2.2 (a) Linear regression result obtained using the R
Commander and the data in spring.csv. (b) Compar-
ison of the regression line Equation 2.32 with the data
spring.csv. Figure produced using LinRegEx1.r.

The R output shown in Figure 2.2a first reports the residuals between the data
and the model, that is, the differences yi − ŷ(xi) (i = 1, . . . , m), which yields 5 values
in this case since spring.csv contains 5 lines of data. You can get an idea about
the quality of the fit between data and model based on these values, but it is of
course better to see this in a plot (see below). After this, R reports on the regression
coefficients, in a table comprising two lines, the first one (labeled Intercept)
referring to the coefficient b in Equation 2.27 and the second one (labeled x)
referring to the coefficient a in the same equation. The labels used in this table are
justified by the fact that b describes the intercept of the line given by Equation 2.27,
that is, the position where this line crosses the y-axis, while a is the coefficient that
multiplies the x in Equation 2.27. In the ‘‘Estimate’’ column of Figure 2.2 you see
that a = −0.5 and b = 0.33 have been obtained as the solution of Problem (2.29).
Using Equation 2.27, this means that we have obtained the following regression
line:

ŷ(x) = 0.33x − 0.5 (2.32)

Figure 2.2b compares the regression line, Equation 2.32, with the data in
spring.csv. This figure has been generated using the R program LinRegEx1.r
in the book software. A similar figure can be produced using the R Commander
based on the menu option ‘‘Graphs/Scatterplot’’, but you should note that the R
Commander offers a limited number of graphical options only. Unlimited graphical
options (e.g. to change line thicknesses and colors) can be accessed if you are using
R programs such as LinRegEx1.r. You will find a few comments on the content
of LinRegEx1.r further below in this section.

Note 2.2.2 (Regression coefficients) Estimates of the regression coefficients
in regression equations such as Equation 2.27 can be obtained using formulas
such as Equations 2.30 and 2.31, the R-Commander, or R programs such
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as LinRegEx1.r. Note that no formulas are available for general nonlinear
regression equations, as discussed in Section 2.4.

As Figure 2.2b shows, the regression line captures the tendency in the data. It is
thus reasonable to use the regression line for prediction, extrapolating the tendency
in the data using the regression line. Formally, this is done by inserting x values
into Equation 2.32. For example, to predict y for x = 60, we would compute as
follows:

ŷ(60) = 0.33 · 60 − 0.5 = 19.3 (2.33)

Looking at the data in Figure 2.2b, you see that ŷ(60) = 19.3 indeed is a reasonable
extrapolation of the data. Of course, predictions of this kind can expected to be
useful only if the model fits the data sufficiently well, and if the predictions are
computed ‘‘close to the data’’. For example, our results would be questionable if we
used Equation 2.32 to predict y for x = 600, since this x-value would be far away
from the data in spring.csv. The requirement that predictions should be made
close to the data that have been used to construct the model applies very generally to
phenomenological models, including the phenomenological approaches discussed
in the next sections.

Note 2.2.3 (Prediction) Regression functions such as Equation 2.27 can be
used to predict values of the response variable for given values of the explanatory
variable(s). Good predictions can be expected only if the regression function fits
the data sufficiently well, and if the given values of the explanatory variable lie
sufficiently close to the data.

2.2.3
The Coefficient of Determination

As to the quality of the fit between the model and the data, the simplest approach
is to look at appropriate graphical comparisons of the model with the data such
as Figure 2.2b. Based on that figure, you do not need to be a regression expert to
conclude that there is a good matching between model and data, and that reasonable
predictions can be expected using the regression line. A second approach is the
coefficient of determination, which is denoted as R2. Roughly speaking, the
coefficient of determination measures the quality of the fit between the model and
the data on a scale between 0 and 100%, where 0% refers to very poor fits and 100%
refers to a perfect matching between the model and the data. R2 thus expresses the
quality of a regression model in terms of a single number, which is useful e.g. when
you want to compare the quality of several regression models, or if you evaluate
multiple linear regression models (Section 2.3) which involve higher-dimensional
regression functions ŷ(x1, x2, . . . , xn) that cannot be plotted similar to Figure 2.2b
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(note that a plot of ŷ over x1, x2, . . . , xn would involve an n + 1-dimensional space).
In the R-output shown in Figure 2.2a, R2 is the Multiple R Squared value, and
hence you see that we have R2 = 96.2% in the above example, which reflects the
good matching between the model and the data that can be seen in Figure 2.2b. The
Adjusted R Squared value in Figure 2.2a will be explained below in Section 2.3.

Formally, the coefficient of determination is defined as [37]

R2 =
∑n

i=1

(
ŷi − y

)2

∑n
i=1

(
yi − y

)2 (2.34)

where we have used ŷi = ŷ(xi). For linear regression models, this can be rewritten as

R2 = 1 −
∑n

i=1

(
yi − ŷi

)2

∑n
i=1

(
yi − y

)2 (2.35)

The latter expression is also known as the pseudo-R2 and it is frequently used to
assess the quality of fit in nonlinear models. Note that R2 according to Equation 2.35
can attain negative values if the ŷi values are not derived from a linear regression
(whereas Equation 2.34 guarantees R2 > 0), and if these values are ‘‘far away’’
from the measurement values. If you observe negative R2 values, then your model
performs worse than a model that would yield the mean value y for every input
(i.e. ŷ(xi) = y, i = 1, . . . , m), since such a mean value model would give R2 = 0 in
Equation 2.35.

In a linear model, it can be easily shown that R2 expresses the ratio between the
variance of the predicted values (ŷ1, . . . , ŷ1) and the variance of the measurement
values (y1, . . . , yn). R2 = 100% is thus usually expressed like this: ‘‘100% of the
variance of the measurement data is explained by the model.’’ On the other hand,
R2 values substantially below 100% indicate that there is much more variance in
the measurement data compared to the model, and this means that the variance of
the data is insufficiently explained by the model, which means that one has to look
for additional explanatory variables. For example, if a very poor R2 is obtained for a
linear model ŷ = ax + b, it may make sense to investigate multiple linear models
such as ŷ = ax + bz + c which involves an additional explanatory variable z (see
Section 2.3 below).

Note 2.2.4 (Coefficient of determination) The coefficient of determination, R2,
measures the quality of fit between a linear regression model and data. On a scale
between 0 and 100%, it expresses how much of the variance of the dependent
variable measurements is explained by the explanatory variables of the model. If
R2 is small, one can try to add more explanatory variables to the model (see the
multiple regression models in Section 2.3) or use nonlinear models (Sections 2.4
and 2.5).
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2.2.4
Interpretation of the Regression Coefficients

You may wonder why the values of a and b appear in a column called Estimates in
the R output of Figure 2.2a, and why standard errors are reported for a and b in the
next column. Roughly speaking, this is a consequence of the fact that measurement
data typically are affected by measurement errors. For example, a measurement
device might exhibit a random variation in its last significant digit, which might
lead to values such as 0.856, 0.854, 0.855, and 0.854 when we repeat a particular
measurement under the same conditions several times (beyond this, there may
be several other systematic and random sources of measurement errors, see [42]).
Now suppose that we analyze measurement data (x1, y1), (x2, y2), . . . , (xm, ym) as
above using linear regression, which might lead us to regression coefficients a and
b. If we repeat the measurement, the new data will (more or less) deviate from the
original data due to measurement errors, leading to (more or less) different values
of a and b in a regression analysis. The parameters a and b thus depend on the
random errors in the measurement data, and this means that a and b can be viewed
as realizations of random variables α and β (see Section 2.1.2.1).

Usually, it is assumed that these random variables generate the measurement
data (x1, y1), (x2, y2), . . . , (xm, ym) as follows:

yi = αxj + β + εi, i = 1, . . . , m (2.36)

where the εi expresses the deviation between the model and the data, which
includes the measurement error. The error terms εi are typically assumed to be
normally distributed with zero expectation and a constant variance σ 2 independent
of i (so-called homoscedastic error terms). Using these assumptions, the standard
errors of α and β can be estimated, and these estimates are reported in the column
Std.Error of the R output in Figure 2.2a. As you see there, the standard error
of α is much smaller than the standard error of β, which means that you may
expect larger changes of the estimate of β compared to the estimate of α if you
would perform the same analysis again using a different dataset. In other words,
the estimate of β is ‘‘less sharp’’ compared to that of α. The numbers reported
in the column ‘‘t value’’ of Figure 2.2a refer to the Student’s t distribution, and
they can be used e.g. to construct confidence intervals of the estimated regression
coefficients as explained in [19]. The values in the last column of Figure 2.2a are
the p values that have been discussed in Sections 2.1.3.2 and 2.1.3.4.

2.2.5
Understanding LinRegEx1.r

Above we have used the R program LinRegEx1.r to produce Figure 2.2b. See
Appendix B for any details on how to use and run the R programs of the book
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software. The essential commands in this code can be summarized as follows:

1: eq=y~x
2: FileName="Spring.csv"
3: Dataset=read.table(FileName, . . .)
4: RegModel=lm(eq,data=Dataset)
5: print(summary(RegModel))
6: a=10
7: b=50
8: xprog=seq(a, b, (b-a)/100)
9: yprog=predict(RegModel, data.frame(x = xprog))
10: plot(xprog,yprog, . . .)

(2.37)

As mentioned before, the numbers ‘‘1:’’,‘‘2:’’, and so on in this code are not
a part of the program, but just line numbers that are used for referencing in our
discussion. Line 1 defines the regression equation in a special notation that you
find explained in detail in R’s help pages and in [43]. The command in line 1 stores
the regression equation in a variable eq which is then used in line 4 to setup the
regression model, so y∼x is the part of line 1 that defines the regression equation.
Basically, y∼x can be viewed as a short notation for Equation 2.27, or for Equation
2.36 (it implies all the statistical assumptions expressed by the last equation, see
the above discussion). The part at the left hand of the ‘‘∼’’-sign of such formulas
defines the response variable (y in this case), which is then expressed on the
right-hand side in terms of the explanatory variable (x in this case). Comparing the
formula y∼x with Equation 2.27, you see that this formula notation automatically
implies the regression coefficients, a and b, which do not appear explicitly in the
formula. You should note that the variable names used in these formulas must
correspond to the column names that are used in the dataset. In this case, we are
using the dataset spring.csv where the column referring to the response variable
is denoted as y and the column referring to the explanatory variable is denoted as
x. If, for example, we would have used the column names elongation instead of
y and force instead of x, then we would have to write the regression equation as
elongation∼force instead of y∼x.

Lines 2 and 3 of program 2.37 read the data from the file spring.csv into the
variable Dataset (see LinRegEx1.r for the ‘‘long version’’ of line 3 including all
details). Using the regression equation eq from line 1 and Dataset from line 3,
the regression is then performed in line 4 using the lm command, and the result
is stored in the variable RegModel.

Note 2.2.5 (R’s lm function) Linear regression problems (including the mul-
tiple linear problems treated in Section 2.3) are solved in R using the lm
command.
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The variable RegModel is then used in line 5 of program 2.37 to produce the R
output that is displayed in Figure 2.2a above. Lines 6–9 show how R’s predict
command can be used to compute predictions based on a statistical model such as
RegModel. In lines 6–8, an array xprog is generated using R’s seq command that
contains 101 equally spaced values between a=10 and b=50 (just try this command
to see how it works). The predict command in line 9 then applies the regression
equation 2.27 (which it takes from its RegModel argument) to the data in xprog
and stores the result in yprog. xprog and yprog are then used in line 10 to plot
the regression line using R’s plot command as it is shown in Figure 2.2b (again,
see LinRegEx1.r for the full details of this command).

2.2.6
Nonlinear Linear Regression

Above it was emphasized that there are more general regression approaches. To see
that there is a need for regression equations beyond Equation 2.27, let us consider
the dataset gag.csv which you find in the book software. These data are taken from
R’s MASS library where they are stored under the name GAGurine. As explained
in [44, 45] (and in R’s help pages), these data give the concentrations of so-called
glycosaminoglycans (GAG) in the urine of children aged from 0 to 17 (in units
of milligrams per millimole creatinine). GAG data are measured as a screening
procedure for a disease called mucopolysaccharidosis. As Figure 2.3a shows, the
GAG concentration decreases with increasing age. Pediatricians need such data to
assess whether a child’s GAG concentration is normal. Based on GAG.csv only, it
would be relatively time consuming to compare a given GAG concentration with
the data. A simpler procedure would be to insert the given GAG concentration into
a function that closely fits the data in the sense of regression. So let us try to derive
an appropriate regression function similar to above. In GAG.csv, the Age and GAG
columns give the ages and GAG concentrations, respectively. Using the regression
function Equation 2.27 and proceeding as above, the regression equation can be
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Fig. 2.3 (a) Comparison of the regression line Equation
2.39 with the data GAG.csv. Figure produced using
LinRegEx4.r. (b) Comparison of the regression function
Equation 2.43 with the data GAG.csv. Figure produced using
LinRegEx5.r.
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described in R as follows:

eq=GAG~Age (2.38)

Inserting this into LinRegEx1.r (and changing the file name etc. appropriately),
one arrives at LinRegEx4.r which you find in the book software. Analyzing the R
output generated by LinRegEx4.r as above, we obtain the following equation of
the regression line:

GAG(x) = −1.27 · Age + 19.89 (2.39)

Figure 2.3a compares this linear regression function with the data. As can be
seen, the regression function overestimates GAG for ages below about nine years,
and it underestimates GAG for higher ages. For ages above 15.7 years, the GAG
concentrations predicted by the regression function are negative.

This is due to the fact that the data follow some nonlinear, curved pattern which
cannot be described appropriately using a straight line. An alternative is to replace
Equation 2.27 by a polynomial regression function of the general form

ŷ(x) = a0 + a1x + a2x2 + · · · + asx
s (2.40)

You may wonder why such a regression function is treated here in a section
on ‘‘linear regression’’, since the function in Equation 2.40 can of course be a
highly nonlinear function of x (depending on s, the degree of the polynomial). But
remember, as was explained above in Note 2.2.1, that the term linear in ‘‘linear
regression’’ does not refer to the regression function’s dependence on x, but rather
to its dependence on the regression coefficients. Seen as a function of x, Equation
2.40 certainly expresses a function that may be highly nonlinear, but if x is given, ŷ
is obtained as a linear combination of the regression coefficients a0, a1, . . . , as. In
this sense, all regression functions that can be brought into the general form

ŷ(x) = a0 + a1f1(x) + a2f2(x) + · · · + asfs(x) (2.41)

can be treated by linear regression (where a0, a1, . . . , as are the regression coeffi-
cients as before, and the fi are arbitrary real functions). Whether linear or nonlinear
in x, all these functions can be treated by linear regression, and this explains the
title of this subsection (‘‘nonlinear linear regression’’).

To perform an analysis based on the polynomial regression function 2.40, we can
use R similarly as above. Basically, we just have to change the regression equation
in the previous R program LinRegEx4.r. After some experimentation (or using
the more systematic procedure suggested in [45]) you will find that it is a good idea
to use a polynomial of degree 6, which is written in the notation required by R
analogous to Equation 2.38 as follows:

eq=GAG~Age+I(Ageˆ2)+I(Ageˆ3)+I(Ageˆ4)+I(Ageˆ5)+I(Ageˆ6)

(2.42)
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In this equation, the R function I() is used to inhibit the interpretation of
terms like Age^2 based on the special meaning of the ‘‘^’’ operator in R’s formula
language. Written as ‘‘I(Age^2)’’, the ‘‘^’’ operator is interpreted as the usual
arithmetical exponentiation operator. The R program LinRegEx5.r in the book
software uses the regression function described in Equation 2.42. Executing this
program and analyzing the results as before, the following regression function is
obtained (coefficients are rounded for brevity):

GAG(x) = 29.3 − 16.2 · Age + 6 · Age2 − 1.2 · Age3

+0.1 · Age4 − 5.7e-03 · Age5 + 1.1e-04 · Age6 (2.43)

Figure 2.3b compares this regression function with the data. As can be seen,
this regression function fits the data much better than the straight line that
was used in Figure 2.3a. This is also reflected by the fact that LinRegEx4.r
(regression using the straight line) reports an R2 value of 0.497 and 4.55 as the
mean (absolute) deviation between the data and the model, while LinRegEx5.r
(polynomial regression) gives R2 = 0.74 and a mean deviation of 2.8. Therefore the
polynomial regression obviously does a much better job in helping pediatricians to
evaluate GAG measurement data as described above. Note that beyond polynomial
regression, R offers functions for spline regression that may yield ‘‘smoother’’
regression functions based on a concatenation of low-order polynomials [45, 46].

Note 2.2.6 (Regression of large datasets) Beyond prediction, regression func-
tions can also be used as a concise way of expressing the information content of
large datasets similar to the GAG data example.

2.3
Multiple Linear Regression

In the last section, we have seen how the regression approach can be used to
predict a quantity of interest, y, depending on known values of another quantity,
x. In many cases, however, y will depend on several independent variables such
as x1, x2, . . . , xn (n ∈ N). This case can be treated by the multiple (linear) regression
method. As we will see, the overall procedure is very similar to the approach
described in the last section.

2.3.1
The Multiple Linear Regression Problem

Let us begin with an example. Note that we could really take all kinds of examples
here due to the generality of the regression approach that can be used in all fields of
science and engineering. Every dataset could be used that consists of at least three
columns: two (or more) columns for the explanatory variables x1, x2, . . . , and one
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column for the response variable y. We will refer here to the file volz.csv which
you find in the book software. The data in this file have been produced in a PhD
thesis which was concerned with the prediction of the wilting of roses [47]. More
precisely, the intention of this PhD thesis was to find out whether the wilting of
roses can be predicted based on the concentrations of certain carbohydrates within
a rose. If reliable predictions could be made in this way, then this could serve as a
base for the development of a practical tool for the quality control of roses produced
on a big scale. Opening Volz.csv in Calc, you will see 19 columns of data. The
first 18 columns (Conc1–Conc18) contain concentrations of various carbohydrates
measured at some particular time. The last column called DegWilt characterizes
rose wilting, giving the number of days after the carbohydrate measurements until
a certain, fixed degree of wilting is observed (see [47] for details).

Now to treat these data using regression, we need an equation expressing the
response variable y (corresponding to DegWilt) depending on the explanatory
variables x1, . . . , x18 (corresponding to Conc1–Conc18). A straightforward (linear)
generalization of Equation 2.27 is

ŷ(x1, x2, . . . , x18) = a0 + a1x1 + a2x2 + · · · + a18x18 (2.44)

which is the simplest form of a multiple linear regression equation.

Note 2.3.1 (Multiple regression) Multiple regression functions ŷ(x) compute
a response variable y using explanatory variables x = (x1, . . . , xn) (n > 1) and
regression coefficients a0, a1, . . . , as. If ŷ(x) depends linearly on a0, a1, . . . , as,
it can be fitted to measurement data using multiple linear regression. See
Section 2.4 for multiple nonlinear regression.

Similar to Equation 2.41 above, the general form of a multiple linear regression
equation involving an arbitrary number of n ∈ N explanatory variables is

ŷ(x) = a0 + a1f1(x) + a2f1(x) + · · · + asfs(x) (2.45)

where x = (x1, x2, . . . , xn)t and the fi are arbitrary real functions. Note that this
regression equation is linear since it is linear in the regression coefficients
a0, . . . , as, although the fi may be nonlinear functions (compare the discussion of
the GAG data example in Section 2.2.6). For example, a regression function such as

ŷ(x1, x2) = a0 + a1x1 + a2x2 + a3x2 + a4y2 + a5xy (2.46)

can be treated using multiple linear regression since in this equation ŷ is obtained
as a linear combination of the regression coeffcients a0, . . . , a5, although it depends
nonlinearly on the explanatory variables, x and y.

Similar to the discussion of linear regression above, let us assume a general
dataset that is given in the form (xi1, xi2, . . . , xin, yi) or (xi, yi) where i = 1, . . . , m.
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Then, as before, the coefficients a0, a1, . . . , as of Equation 2.45 are determined from
the requirement that the differences ŷ(xi) − yi should be small, which is again
expressed in terms of the minimization of the RSQ:

RSQ =
m∑

i=1

(
yi − ŷ(xi)

)2
(2.47)

min
a0,a1, ... ,an∈R

RSQ (2.48)

2.3.2
Solution Using Software

To solve this problem using R, the same procedure can be used that was described
in Section 2.2 above. You can use the ‘‘Statistics/Fit models/Linear regression’’
menu option of the R Commander, selecting Conc1,. . . ,Conc18 as the explanatory
variables and DegWilt as the response variable. Alternatively, you can use an R
program such as LinRegEx2.r which you find in the book software. LinRegEx2.r
works very similarly to LinRegEx1.r which was discussed above in Section 2.2
(you will find a few remarks on LinRegEx2.r further below). Either of these two
ways produces the result shown in Figure 2.4a.

The interpretation of Figure 2.4a goes along the same lines as the interpretation
of Figure 2.2 above. First of all, you find the estimates of the regression coeffi-
cients a0, a1, . . . , a18 in the Estimate column of Figure 2.4a: a0 = 6.478323, a1 =
0.016486, . . . , a18 = 1.016512. The regression equation 2.44 thus becomes:

ŷ(x1, x2, . . . , x18) = 6.478323 + 0.016486x1 + · · · + 1.016512x18 (2.49)

The regression coefficients a0, a1, . . . , a18 can be viewed as realizations of corre-
sponding random variables α0, α1, . . . , α18, and the ‘‘Std. Error’’ and ‘‘t value’’
columns of Figure 2.4a report statistical properties of these random variables as
discussed in Section 2.2.4 above. Similar to Equation 2.36, this statistical analysis
is based on the assumption that the data can be expressed as follows:

yi = α0 + α1xi1 + · · · + α18xi18 + εi, i = 1, . . . , m (2.50)

Again, the error terms εi are assumed to be homoscedastic (i.e. normally
distributed with zero expectation and a constant variance σ 2).

Figure 2.4b compares the predicted and measured values of DegWilt in a type of
plot which we call a predicted-measured plot. Note the difference between this figure
and Figure 2.2 in Section 2.2.2: Figure 2.2 plots the response variable against the
explanatory variable, while Figure 2.4b involves the response variable only. A plot of
the response variable against the explanatory variables similar to Figure 2.2 cannot
be done here since this would involve a 19-dimensional space (18 explanatory
variables +1 response variable). Figure 2.4b is an elegant way to get a graphical
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(b)(a)

Fig. 2.4 (a) Result of a multiple regression using R based
on the data Volz.csv (response variable: DegWilt, ex-
planatory variables: Conc1,Conc2,. . . ). (b) Comparison of
predicted (ŷ) and measured (y) values of DegWilt. The cir-
cles are at the coordinates (yi, ŷ(xi)) (i = 1, . . . , m), the line
is ŷ = y. The figure was produced using LinRegEx2.r.

idea about the quality of a regression even in the presence of a great number of
explanatory variables. As to the interpretation of Figure 2.4b, note that the line
ŷ = y displayed in the figure is not a regression line. Rather, it can be used to
assess the prediction error for each of the predicted values, ŷ(xi). If ŷ(xi) coincides
with the corresponding measurement value, yi, we will have ŷ(xi) = yi and hence
this will generate a circle lying exactly on the line ŷ = y. On the other hand, any
deviations between ŷ(xi) and yi will generate corresponding deviations between
the circle (yi, ŷ(xi)) and the line ŷ = y. Therefore, the data will lie very closely to
the line in such a predicted/measured plot if the regression equation matches the
data very well, and they will substantially deviate from that line if the regression
equation substantially deviates from the data. Figure 2.4b thus tells us that this
is an regression model of an average quality: some of the predictions match the
data very well, but predictions and measurements may also deviate by several
days. See also Figure 2.8 for a comparison of a conventional plot with a predicted
measured plot.

Note 2.3.2 (Predicted-measured plot) In a predicted-measured plot such as
Figure 2.4b, predicted values (ŷ(xi)) of the response variable are plotted against
measured values (yi) of the response variable. Deviations between data and
predictions can thus be seen in terms of deviations from the line ŷ = y.
Predicted-measured plots are particularly useful to evaluate regressions involving
more than two explanatory variables, since in that case the response variable
cannot be plotted against all explanatory variables.
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The average quality of this regression is also reflected by the coefficient of
determination shown in Figure 2.4a, R2 = 0.8158. As explained in the previous
section, this means that about 20% of the variation of the measurement data are
not explained by the explanatory variables of the current regression model (see
Note 2.2.4). If we need better predictions, we should thus try to find additional
explanatory variables that could then be used in an extended multiple regression
model. Note that the data circles in Figure 2.4b follow lines parallel to the y-axis of
the plot since the degree of wilting is expressed using integers in Volz.csv.

It can be shown that the R2 value defined as in Equations 2.34 and 2.35
may increase as additional explanatory variables are incorporated into the model,
even if those additional variables do not improve the quality of the model [19].
Therefore, comparisons of R2 values derived from regression models involving
different numbers of explanatory variables can be questionable. A standard way to
circumvent this problem is the use of the adjusted coefficient of determination, which
adjusts the R2 value with respect to the number of variables and sample size [19].
The adjusted R2 value appears in the linear regression results produced by R (see
Adjusted R-squared in Figure 2.4a).

The R program LinRegEx2.r that was used to produce Figure 2.4b is again based
on R’s lm command, and it works very similarly to the corresponding program
LinRegEx1.r that was discussed in Section 2.2.5 above. As was explained there,
the regression equation must be written based on the variable names that are
used in the data. In Volz.csv, Conc1–Conc18 are the explanatory variables and
DegWilt is the response variable. In analogy to line 1 of program 2.37, the multiple
regression equation can thus be written as

eq=DegWilt~Conc1+Conc2+Conc3+ . . .+Conc18 (2.51)

If you are using this kind of notation, all explanatory variables must be explicitly
written in the code, including Conc4–Conc17 which were left out in Equation
2.51 for brevity. In LinRegEx2.r, Equation 2.51 is written using the abbreviated
notation ‘‘eq=DegWilt∼.’’. In this notation, the dot serves as a placeholder
that stands for all variables in the dataset except for the response variable. This
notation can be modified in various ways (see R’s help pages). For example,
‘‘eq=DegWilt∼.-Conc17’’ results in a multiple regression model that uses all
explanatory variables except for Conc17.

2.3.3
Cross-Validation

Although R2 values and plots such as Figure 2.4b give us some idea regarding the
quality of a regression model, they cannot guarantee a good predictive capability of
the model. For example, new data may be affected by a new explanatory variable
that has been held constant in the regression dataset. Suppose we want to predict
the yield of a particular crop based on a regression equation that was obtained
using data of crops growing under a constant temperature of 20 ◦C. Although
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this equation may perform with R2 = 1 on the regression dataset, it will probably
be completely useless on another dataset obtained for crops growing under a
constant temperature of 10 ◦C. To get at least a first idea as to how a particular
regression model performs on unknown data, a procedure called cross-validation
can be used. Cross-validation approaches mimic ‘‘new data’’ in various ways, for
example, based on a partitioning of the dataset into a training dataset which is used
to obtain the regression equation, and a test dataset which is used to assess the
regression equation’s predictive capability (a so-called holdout validation approach,
see [48]).

The R program LinRegEx3.r in the book software performs such a cross-
validation for the rose wilting data, Volz.csv. This program is very similar
to LinRegEx2.r, except for the following lines of code that implement the
partitioning of the data into training and test datasets:

1: Dataset=read.table(FileName, . . .)
2: TrainInd=sample(1:47,37)
3: TrainData=Dataset[TrainInd,]
4: TestData=Dataset[-TrainInd,]
5: RegModel=lm(eq,data=TrainData)
6: DegWiltTrain=predict(RegModel,TrainData)
7: DegWiltTest=predict(RegModel,TestData)

(2.52)

After the data have been stored in the variable Dataset in line 1 of program
2.52, 37 random indices between 1 and 47 (referring to the 47 lines of data in
Volz.csv) are chosen in line 2. See [45] and the R help pages for more details on
the sample command that is used in line 2. The 37 random indices are stored in
the variable TrainInd which is then used in line 3 to assemble the training dataset
TrainData based on those lines of Dataset which correspond to the indices in
TrainInd. The remaining lines of Dataset are then reassembled into the test
dataset TestData in line 4. The regression model RegModel is then computed
using the training dataset in line 5 (note the difference to line 4 of program 2.37
where the regression model is computed based on the entire dataset). Then, the
predict command is used again to apply the regression equation separately to the
training and test datasets in lines 6 and 7 of Equation 2.52.

Figure 2.5 shows an example result of LinRegEx3.r. You should note that if you
run LinRegEx3.r on your machine, the result will probably be different from the
plot shown in Figure 2.5 since the sample command may select different training
and test datasets if it is performed on different computers. As explained in [45],
the sample command is based on an algorithm generating pseudorandom numbers,
and the actual state of this algorithm is controlled by a set of integers stored in the
R object .Random.seed. As a result of this procedure, LinRegEx3.r may generate
different results on different computers depending on the state of the algorithm
on each particular computer. Figure 2.5 compares the measured and predicted
values of DegWilt similar to Figure 2.4b above. As could be expected, there are
larger deviations between the line ŷ = y and the data for the test dataset which
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Fig. 2.5 Comparison of predicted (ŷ) and measured (y) val-
ues of DegWilt using a randomly selected training dataset
(n = 37) and a complementary test dataset (n = 10). In
each of the plots, the circles are at the coordinates (yi, ŷ(xi))
(i = 1, . . . , m) and the line is ŷ = y. The figure was produced
using LinRegEx3.r.

was not used in the regression procedure. This is also reflected by the R2 values
(training data R2: 0.86, test data R2: 0.22) and by the mean deviations (training
data: 0.41 days, test data: 1.13 days) computed by LinRegEx3.r. Repeating the
cross-validation procedure several times and averaging the results, one gets a fairly
good idea of the predictive capability of a regression model, at least referring to
data that are similar to the dataset under consideration (which excludes data that
have e.g. been obtained using different temperatures etc. as discussed above).

2.4
Nonlinear Regression

2.4.1
The Nonlinear Regression Problem

Until now, we have considered (multiple) linear regression functions of the general
form

ŷ(x) = a0 + a1f1(x) + a2f1(x) + · · · + asfs(x) (2.53)

where a0, a1, . . . , as are the regression coefficients, x = (x1, . . . , xn), and f1(x), . . . ,
fs(x) are arbitrary real functions (see the discussion of Equation 2.45 in Section 2.3.1
above). As explained above, regression functions of this kind are called linear since
ŷ(x) is obtained as a linear combination of the regression coefficients. In many
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applications, however, the regression functions will depend in a nonlinear way on
the regression coefficients. Using a = (a1, . . . , as) this can be expressed in a general
form as

ŷ(x) = f (x, a) (2.54)

where f is some general real function (a slightly more general, vectorial form of
this equation will be given at the end of this section). Similar to the procedure
explained in Sections 2.2.1 and 2.3.1 above, ŷ(x) is fitted to measurement data based
on a minimization of the RSQ.

2.4.2
Solution Using Software

Let us look at some examples. Figure 2.6 shows US investment data (expressing
the relative change of investments compared with a reference value) described in
[49, 50]. These data are a part of R’s Ecdat library, and they are a part of the book
software in the file klein.csv. As a result of the economic cycle, the data show
an oscillatory, sinusoidal pattern. This means that if we want to describe these data
using a regression function, it is natural to apply a general sine function such as

ŷ(x) = a0 · sin(a1 · (x − a2)) (2.55)

Using

f (x, a) = f (x, a0, a1, a2) = a0 · sin(a1 · (x − a2)) (2.56)
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Fig. 2.6 (a) Nonlinear regression result produced by R’s
nls function based on Equation 2.55, Klein.csv and
NonRegEx1.r. (b) Comparison of the regression function
Equation 2.55 (line) with the data Klein.csv (circles).
Figure produced using NonRegEx1.r.
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it is seen that Equation 2.55 has the general form of Equation 2.54, and thus it is a
nonlinear regression function. Note that it cannot be brought into the linear form
of Equation 2.53 since a1 and a2 appear in the (nonlinear) sine function. Three
regression coefficients can be used to fit this function to the data: a0 determines the
amplitude of the function, a1 determines its period, and a2 moves the sine along
the x-axis.

Using R, a nonlinear regression based on Equation 2.55 and the data in
Klein.csv can be performed by a simple editing of LinRegEx1.r which was
discussed in Section 2.2 above. This leads to the R program NonRegEx1.r in the
book software. Let us look at the essential commands in NonRegEx1.r that do the
nonlinear regression (everything else is very similar to LinRegEx1.r):

1: eq=inv~a0*sin(a1*(year-a2))
2: parstart=c(a0=5,a1=2*pi/15,a2=1920)
3: FileName="Klein.csv"
4: Dataset=read.table(FileName, . . .)
5: RegModel=nls(eq,data=Dataset,start=parstart)

(2.57)

Line 1 defines the regression function according to Equation 2.55. Note that ŷ
and x have been replaced by the appropriate column names of Klein.csv, inv,
and year, respectively. The equation eq defined in line 1 is then used in line 5
to compute the regression model based on R’s nls function. This is the essential
difference to the linear regression models in the previous sections, which could all
be treated using R’s lm function.

Note 2.4.1 (R’s nls function) In contrast to the lm function which was used
for linear regression above, the nls function determines the parameter estimates
based on an iterative numerical procedure. This means that the computation begins
with certain starting values of the parameters which are then improved step by
step until the problem is solved with sufficient accuracy.

The required accuracy can be controlled via the R function nls.control, see
R’s help pages. Details about the iterative procedure used by nls can be found in
[43, 51]. The starting values must be provided by the user, which is done in line
2 of program 2.57. Generally, the iterative procedure called by nls will converge
better if the starting values of the parameters are chosen close to the solution of the
regression problem. This means that if nls does not converge, you should try other
starting values of the parameters until you obtain convergence. It may also happen
that you do not get convergence for any set of starting values, which usually means
that your regression equation is inappropriate, so try another model in that case.

To choose the starting values, you should of course use any kind of available a priori
information on the parameters that you can get. For example, if you know certain
limits for the parameters based on theoretical considerations it is usually a good
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idea to choose the starting value exactly between those limit values. On the other
hand, you may use parameter values from the literature or try to derive estimated
values from the data. In our case, reasonable estimates can be derived from the
data in Figure 2.6. Looking at the data you see that the amplitude of the oscillation
is about ±5, so it is a good idea to choose a0 = 5. Furthermore, the data suggest
a period length of about 15 years, so we set a1 = 2π/15 since R’s sine function
expects its argument in radians. Finally, the period begins at the x coordinate 1920
and hence we set a2 = 1920. Exactly these starting values for the parameters are
defined in line 2 of program 2.57, and they are then used in line 5 as an argument
of the nls function. Running NonRegEx1.r using these starting values, the result
shown in Figure 2.6a and b is obtained.

Figure 2.6b compares the regression function Equation 2.55 that is obtained
using the estimates of the coefficients a0, a1, and a2 from Figure 2.6a with the data
Klein.csv. As can be seen, the regression function correctly describes the general
tendency of the data. A substantial (but inevitable) scattering of the data around
the regression function remains, which is also expressed by an R2 value of only
0.58 (Figure 2.6a). The confidence intervals in Figure 2.6a have been generated using
R’s confint command, see NonRegEx1.r. These confidence intervals refer to the
random variables which generate the estimates of a0, a1, and a2, and which we
denote as α0, α1, and α2 analogous to Section 2.2.4. For example, for α0 we have a
confidence interval of [2.7204091, 5.8012786] which means that this interval covers
the unknown ‘‘true’’ expected value of α0 with a probability of 95% [19]. In this way,
we get an idea of how sharply α0 and the other parameters can be estimated from
the data. As Figure 2.6a shows, we have smaller confidence intervals around α1 and
α2, which means that these parameters can be estimated with a higher precision
from the data compared to α0.

The nls function also reports correlations between the parameter estimates
(Figure 2.6b). For example, Figure 2.6a reports a correlation of 0.01 between α0

and α1 and a correlation of 0.81 between α1 and α2 (where we have used Greek
letters α0, α1, and α2 to denote the random variables which generate the estimates
of a0, a1, and a2, analogous to Section 2.2.4). Such correlations can be used to
improve the experimental design with respect to an improved estimability of the
parameters as discussed in [41]. As discussed there, particularly high correlations
between two estimated parameters may indicate that the information content in
the dataset does not suffice for a discrimination between those two parameters, or
they may indicate degeneracies in the model formulation.

2.4.3
Multiple Nonlinear Regression

The procedure explained in the last section covers a great number of examples
which involve a single independent variable. Similar to linear regression, however,
nonlinear regression may of course also involve several independent variables. As
an example, let us consider the calibration of a Stormer viscometer. Appropriate
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data are a part of R’s MASS library, and you will also find these data in the file
stormer.csv in the book software. In [45], the principle of a stormer viscometer
is explained as follows (see [52] for more details):

Note 2.4.2 (Stormer viscometer) A stormer viscometer measures the viscosity
of a fluid by measuring the time taken for an inner cylinder in the mechanism to
perform a fixed number of revolutions in response to an actuating weight. The
viscometer is calibrated by measuring the time taken with varying weights while
the mechanism is suspended in fluids of accurately known viscosity.

The calibration dataset thus comprises three columns of data: the viscosity v
[10−1 Pa.s], the weight w [g], and the time T [s] which correspond to the three
columns Viscosity, Wt, and Time of the file stormer.csv. It is known from
theoretical considerations that v, w, and T are related as follows [45]:

T = a1v

w − a2
(2.58)

Once a1 and a2 are known, this equation can be used to determine the viscosity v
from known values of w and T . To determine a1 and a2 from the calibration dataset
stormer.csv, we can perform a nonlinear regression using Equation 2.58. Using
the identifications ŷ = T , x1 = v, and x2 = w, Equation 2.58 can be written using
the above notation as

ŷ(x1, x2) = a1x1

x2 − a2
(2.59)

Note that this equation cannot be written in the form of Equation 2.53 since a2

appears in the denominator of the fraction on the right-hand side of Equation 2.59,
and hence it is a nonlinear regression equation. Basically, this regression problem
can be treated by a simple editing of NonRegEx1.r, replacing line 1 of program
2.57 by

eq=Time~a1*Viscosity/(Wt-a2) (2.60)

Note that Equation 2.60 corresponds exactly to Equation 2.58 above as the
columns Viscosity, Wt, and Time of the file stormer.csv correspond to v, w,
and T . Note also that if formulas such as Equation 2.60 are used in the nls
command, all operators such as *, / and so on, will have their usual arithmetical
meaning (see [45] and R’s help pages). This means that you do not have to use
R’s inhibit function I() similar to Equation 2.42 to make sure that all operators
are used as arithmetical operators. The R program NonRegEx2.r implements the
stormer viscometer regression problem using Equation 2.58. It uses a1 = 1 and
a2 = 0 as starting values. nls converges without problems for these values, and
you should note that these values have been chosen without using any a priori
knowledge of the system: a1 = 1 has been chosen based on the simple idea that we
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Fig. 2.7 (a) T(v, w) according to Equation 2.58 using the
starting values a1 = 1 and a2 = 0 (surface) compared with
the data in stormer.csv (spheres). (b) Same plot, but us-
ing the estimates a1 = 29.4013 and a2 = 2.2183 obtained by
nonlinear regression using R’s nls function. Plots generated
by NonRegEx2.r.

need positive T values (which gives a1 > 0 if we assume w > a2), and the choice
a2 = 0 basically expresses that nothing is known about that parameter. In fact,
there is some a priori knowledge on these parameters that can be used to get more
realistic starting values (see [45]), but this example nevertheless shows that nls
may also converge using very rough estimates of the parameters.

Figures 2.7 and 2.8 show the results produced by NonRegEx2.r. First of all,
Figure 2.7a shows that there is substantial deviation between the regression
function Equation 2.58 and the data in stormer.csv if the above starting values
of a1 and a2 are used. Figure 2.7b shows the same picture using the estimates of
a1 and a2 obtained by R’s nls function, and you can see by a comparison of these
two plots that the nonlinear regression procedure virtually deforms the regression
surface defined by Equation 2.58 until it fits the data. As Figure 2.7b shows, the
fit between the model and the data is almost perfect, which is also reflected by
the R2 value computed by NonRegEx2.r (R2 = 0.99). Figure 2.8 compares the
regression result displayed in the conventional plot that really shows the regression
function T(v, w) (Figure 2.8a) with the predicted-measured plot that was introduced
in Section 2.3 above (Figure 2.8b). The message of both plots in Figure 2.8 is the
same: an almost perfect coincidence between the regression function and the data.

Beyond this, Figure 2.8a is of course more informative compared to Figure 2.8b
since you can identify the exact location of any data point in the v/w space,
for example, the location of data points showing substantial deviations from the
regression function. Also, a plot such as Figure 2.8a allows you to assess whether
the regression function is sufficiently characterized by data, and in which regions
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Fig. 2.8 Comparison of the regression equation with the
data (a) in a conventional plot as in Figure 2.7 and (b) in
a predicted-measured plot. Plots generated by NonRegEx2.r.

of the v/w space additional experimental data are needed. Looking at Figure 2.8a,
for example, the nonlinearity of the regression surface obviously is sufficiently
well characterized by the three ‘‘rows’’ of data. You should note, however, that
conventional plots such as Figure 2.8a are only available for regressions involving
up to two independent variables. Regressions involving more than two independent
variables are usually visualized using a predicted-measured plot such as Figure 2.8b,
or by using a conventional plot such as Figure 2.8a that uses two of the independent
variables of the regression and neglects the other independent variables (of course,
such conventional plots must be interpreted with care).

2.4.4
Implicit and Vector-Valued Problems

So far we have discussed two examples of nonlinear regressions referring to
regression functions of the form

ŷ(x) = f (x, a) (2.61)

The particular form of the regression function in the investment data example
was

f (x, a0, a1, a2) = a0 · sin(a1 · (x − a2)) (2.62)

In the viscometer example we had

f (x1, x2, a1, a2) = a1x1

x2 − a2
(2.63)
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This can be generalized in various ways. For example, the regression function
may be given implicitly as the solution of a differential equation, see the example
in Section 3.9. ŷ may also be a vector-valued function ŷ = (ŷ1, . . . , ŷr). An example
of this kind will be discussed below in Section 3.10.2. The nonlinear regression
function then takes the form

ŷ(x) = f (x, a) (2.64)

where x = (x1, . . . , xn) ∈ R
n, a = (a1, . . . , as) ∈ R

s, and ŷ(x) and f (x, a) are real vector
functions ŷ(x) = (ŷ1(x), . . . , ŷr (x)), f (x, a) = (f1(x, a), . . . , fr(x, a)) (r, s, n ∈ N).

2.5
Neural Networks

If we perform a nonlinear regression analysis as described above, we need to know
the explicit form of the regression function. In our analysis of the investment data
klein.csv, the form of the regression function (a sine function) was derived from
the sinusoidal form of the data in a graphical plot. In some cases, we may know
an appropriate form of the regression function based on a theoretical reasoning, as
was the case in our above analysis of the stormer viscometer data stormer.csv.
But there are, of course, situations where the type of regression function cannot
be derived from theory, and where graphical plots of the data are unavailable (e.g.
because there are more than two independent variables). In such cases, we can try
for example, polynomial or spline regressions (see the example in Section 2.2), or
so-called (artificial) neural networks (ANN).

Note 2.5.1 (Application to regression problems) Among other applications (see
below), neural networks can be used as particularly flexible nonlinear regression
functions. They provide a great number of tuning parameters that can be used to
approximate any smooth function.

2.5.1
General Idea

To explain the idea, let us reconsider the multiple linear regression function

ŷ = a0 + a1x1 + a2x2 + · · · + anxn (2.65)

As was discussed above, this equation is a black box–type model of an
input–output system (Figure 1.2), where x1, . . . , xn are the given input quanti-
ties and y is the output quantity computed from the inputs. Graphically, this can be
interpreted as shown in Figure 2.9a. The figure shows a network of nodes where each
of the nodes corresponds to one of the quantities x1, . . . , xn and y. The nodes are
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Fig. 2.9 (a) Graphical interpretation of multiple regression.
(b) Artificial neural network with one hidden layer.

grouped together into one layer comprising the input nodes x1, . . . , xn, and a second
layer comprising the output node y. The arrows indicate that the information flow
is from the input nodes toward the output node, similar to Figure 1.2 above. Now
the multiple linear regression equation (2.65) can be viewed as expressing the way
in which the output node processes the information that it gets from the input
nodes: each of the input node levels x1, . . . , xn is multiplied with a corresponding
constant a1, . . . , an, the results are added up, and the level of the output node y is
then obtained as this sum plus a constant (the so-called bias) a0.

So far, this is no more than a graphical interpretation of multiple regression.
This interpretation becomes interesting in view of its analogy with neural networks
in biological tissues such as the human brain. Formally, such neural networks
can also be described by figures similar to Figure 2.9a, that is, as a system of
interconnected nodes (corresponding to the biological neurons) which exchange
information along their connections [53, 54]. Since the information exchange in
biological neural networks is of great importance if one e.g. wants to understand
the functioning of the human brain, a great deal of research has been devoted
to this topic in the past. As a part of this research effort, mathematical models
have been developed that describe the information exchange in interconnected
networks such as the network shown in Figure 2.9a, but of course involving
more complex network topologies than the one shown in Figure 2.9a, and more
complex (nonlinear) equations than the simple multiple linear regression equation,
Equation 2.65.

It turned out that these mathematical models of interconnected networks of
nodes are useful for their own sake, that is, independently of their biological
interpretation, e.g. as a flexible regression approach that is apt to approximate
any given smooth function. This class of mathematical models of interconnected
networks of nodes are called (artificial) neural network models or ANN models, or
simply neural networks. They may be applied in their original biological context, or in
a great number of entirely different applications such as general regression analysis
(e.g. prediction of tribological properties of materials [55–60], or the permeability
prediction example below), time series prediction (stock prediction etc.), classification
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and pattern recognition (face identification, text recognition, etc.), data processing
(knowledge discovery in databases, e-mail spam filtering, etc.) [53, 54].

Note 2.5.2 (Analogy with biology) Multiple linear regression can be interpreted
as expressing the processing of information in a network of nodes (Figure 2.9a).
Neural networks arise from a generalization of this interpretation, involving
additional layer(s) of nodes and nonlinear operations (Figure 2.9b). Models of
this kind are called (artificial) neural networks (ANN’s) since they have been used
to describe the information processing in biological neural networks such as the
human brain.

2.5.2
Feed-Forward Neural Networks

The diversity of neural network applications corresponds to a great number of
different mathematical formulations of neural network models, and to a great
number of more or less complex network topologies used by these models [53, 54].
We will confine ourselves to the simple network topology shown in Figure 2.9b.
This network involves an input and an output layer similar to Figure 2.9a, and in
addition to this there is a so-called hidden layer between the input and output layers.
As indicated by the arrows, the information is assumed to travel from left to right
only, which is why this network type is called a feedforward neural network. This is
one of the most commonly used neural network architectures, and based on the
mathematical interpretation that will be given now (using ideas and notation from
[45]) it is already sufficiently complex e.g. to approximate arbitrary smooth functions.

Let us assume that there are n ∈ N input nodes corresponding to the given input
quantities x1, . . . , xn, H ∈ N hidden nodes and m ∈ N output nodes corresponding
to the output quantities y1, . . . , ym. Looking at the top node in the hidden layer of
Figure 2.9b, you see that this node receives its input from all nodes of the input
layer very similar to Figure 2.9a. Let us assume that this node performs the same
operation on its input as was discussed above referring to Figure 2.9a, multiplying
each of the inputs with a constant, taking the sum over all the inputs and then
adding a constant. This leads to an expression of the form

n∑
k=1

wik;h1xk + bh1 (2.66)

Here, the so-called weight wik;h1 denotes the real coefficient used by the hidden
node 1 (index h1) to multiply the kth input (index ik), and bh1 is the bias added
by hidden node 1. Apart from notation, this corresponds exactly to the multiple
linear regression equation 2.65 discussed above. The network would thus be no
more than a complex way to express multiple (linear) regression if all nodes in the
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network would do no more than the arithmetics described by Equation 2.66. Since
this would make no sense, the hidden node 1 will apply a nonlinear real function
φh to Equation 2.66, giving

φh

(
n∑

k=1

wik;h1xk + bh1

)
(2.67)

The application of this so-called activation function is the basic trick that really acti-
vates the network and makes it a powerful instrument far beyond the scope of linear
regression. The typical choice for the activation function is the logistic function

f (x) = ex

1 + ex
(2.68)

The state of the hidden nodes l = 1, . . . , H after the processing of the inputs can
be summarized as follows:

φh

(
n∑

k=1

wik;hlxk + bhl

)
, l = 1, . . . , H (2.69)

These numbers now serve as the input of the output layer of the network.
Assuming that the output layer processes this input the same way as the hidden
layer based on different coefficients and a different nonlinear function φo, the
output values are obtained as follows:

yj = φo

(
boj +

H∑
l=1

whl,oj · φh

(
bhl +

n∑
k=1

wik;hl · xk

))
, j = 1, . . . , m (2.70)

Similar as above, the weights whl,oj denote the real coefficient used by the output
node j (index oj) to multiply the input from the hidden node l (index hl), and boj

is the bias added by output node j. Below, we will us R’s nnet command to fit
this equation to data. This command is restricted to single-hidden-layer neural
networks such as the one shown in Figure 2.9b. nnet nevertheless is a powerful
command since the following can be shown [45, 61–63]:

Note 2.5.3 (Approximation property) The single-hidden-layer feedforward neu-
ral network described in Equation 2.70 can approximate any continuous function
f : 	 ⊂ R

n → R
m uniformly on compact sets by increasing the size of the hidden

layer (if linear output units φo are used).

The nnet command is able to treat a slightly generalized version of Equation
2.70 which includes so-called skip-layer connections:

yj = φo

(
boj +

n∑
k=1

wik;oj · xk +
H∑

l=1

whl,oj · φh

(
bhl +

n∑
k=1

wik;hl · xk

))
, (2.71)

j = 1, . . . , m
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Referring to the network topology in Figure 2.9b, skip-layer connections are
direct connections from each of the input units to each of the ouput units, that
is, connections which skip the hidden layer. Since you can probably imagine how
Figure 2.9b will look after adding these skip-layer connections, you will understand
why we skip this here. . . As explained in [45], the important point is that skip layer
connections make the neural network more flexible, allowing it to construct the
regression surface as a perturbation of a linear hyperplane (again, if φo is linear). In
Equation 2.71, the skip layer connections appear in the terms wik;oj · xk, which is the
result of input node k after processing by the output node j. Again, the weights wik;oj

are real coefficients used by the output nodes to multiply the numbers received by
the input nodes along the skip-layer connections.

Similar to above, Equation 2.71 can be fitted to data by a minimization of RSQ
(similar to the discussion in Section 2.2.1, see also [45] for alternative optimization
criteria provided by the nnet command that will be treated in Section 2.5.3 below).
Altogether, the number of weights and biases appearing in Equation 2.71 is

Np = H(n + 1) + mH + mn + 1 (2.72)

So you see that there is indeed a great number of ‘‘tuning’’ parameters that can be
used to achieve a good fit between the model and the data, which makes it plausible
that a statement such as Note 2.5.3 can be proved.

2.5.3
Solution Using Software

As a first example, let us look at Klein’s investment data again (klein.csv, see
Section 2.4). Above, a sine function was fitted to the data, leading to a residual sum
of squares of RSQ = 105.23 (Figure 2.6). Let us see how a neural network performs
on these data. An appropriate R program is NNEx1.r, which you find in the book
software. Basically, NNEx1.r is obtained by just a little editing of NonRegEx1.r
that was used in Section 2.4 above: we have to replace the nonlinear regression
command nls used in NonRegEx1.r by the nnet command that computes the
neural network. Let us look at the part of NNEx1.r that does the neural network
computing:

1: eq=inv~year
2: FileName="Klein.csv"
3: Data=read.table(FileName, . . .)
4: Scaled=data.frame(year=Data$year/1941,inv=Data$inv)
5: NNModel=nnet(eq,data=Scaled,size=3,decay=1e-4,
5: linout=T, skip=T, maxit=1000, Hess=T)
6: eigen(NNModel$Hessian)$values

(2.73)

In line 1, year and inv are specified as the input and output quantities of the
model, respectively. Note that in contrast to our last treatment of these data in
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Section 2.4, we do not need to specify the nonlinear functional form of the data
which will be detected automatically by the neural network (compare line 1 of
program 2.73 with line 1 of program 2.57). After the data have been read in lines
2 and 3, the explanatory variable year (which ranges between 1920 and 1941) in
Klein.csv is rescaled to a range between 0 and 1, which is necessary for the
reasons explained in [45]. A little care is necessary to distinguish between scaled
and unscaled data particularly in the plotting part of the code (see NNEx1.r).

Note 2.5.4 (R’s nnet command) In R, the nnet command can be used
to compute a single-hidden layer feedforward neural network (Equation 2.71).
Before using this command, the input data should be scaled to a range between
0 and 1.

The neural network model NNModel is obtained in line 5 using R’s nnet
command. nnet uses the equation eq from line 1 and the scaled data Scaled
from line 4. Beyond this, the size argument determines the number of nodes
in the hidden layer; the decay argument penalizes overfitting, which will be
discussed below; linout=T defines linear activation functions for the output units
(i.e. φo is linear); skip=T allows skip-layer connections; maxit=1000 restricts the
maximum number of iterations of the numerical procedure, and Hess=T instructs
nls to compute the Hessian matrix which can be used to check if a secure local
minimum was achieved by the algorithm (see below). Note that linout and skip
are so-called logical variables which have the possible values ‘‘T’’ (true) or ‘‘F’’ (false).
Line 6 of the code is again related to the Hessian matrix and will be discussed
below.

2.5.4
Interpretation of the Results

When you executeNNEx1.r in R, the nnet command will determine the parameters
of Equation 2.71 such that the yj computed by Equation 2.71 lie close to the data
klein.csv, by default in the sense of a minimal RSQ as explained above.
Remember that there are two kinds of parameters in Equation 2.71: the weights
wik;oj, whl,oj, and wik;hl which are used by the nodes of the network to multiply their
input values, and the biases boj and bhl which are added to the weighted sums
of the values of the hidden layer or of the input layer. NNEx1.r uses a network
with 3 nodes in the hidden layer (line 5 of program 2.73), which means that in
Equation 2.71 we have n = 1, H = 3 and m = 1. Using Equation 2.72, you see that
this gives a total number of Np = 11 parameters that must be determined by nnet.
Since Equation 2.71 is nonlinear, these parameters are determined by an iterative
numerical procedure similar to the one discussed in Section 2.4 above [45, 64].
This procedure needs starting values as discussed above. In some cases, you may
know appropriate starting values, which can be supplied to nnet in a way similar
to the one used above for the nls command (see Section 2.4 and R’s help pages on
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Fig. 2.10 Comparison of the neural network Equation
2.71 based on the parameters in program 2.73 (line) with
the data in klein.csv (circles). Figure produced using
NNEx1.r.

the nnet command). If you do not specify those starting values yourself, the nnet
command uses automatically generated random numbers as starting values.

Note 2.5.5 (Random choice of starting values) Similar to the nls command
that can be used for nonlinear regression (see Section 2.4), R’s nnet command
fits a neural network to data using an iterative procedure. By default, the starting
values for the network weights and biases are chosen randomly, which implies
that the results of subsequent runs of nnet will typically differ.

Executing NNEx1.r several times, you will see that some of the results will be
unsatisfactory (similar to a mere linear regression through the data), while other
runs will produce a picture similar to Figure 2.10. This figure is based on the
skip-layer neural network equation 2.71 using the following parameters:

b->h1 i1->h1
124.29 -125.32
b->h2 i1->h2
357.86 -360.13
b->h3 i1 ->h3
106.45 -107.35
b->o h1->o h2->o h3->o i1->o
41.06 -195.48 136.35 -156.09 48.32

(2.74)

An output similar to 2.74 is a part of the results produced by nnet. The
correspondence with the parameters of Equation 2.71 is obvious: for example,
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‘‘b->h1’’ refers to the bias added by the hidden layer node 1, which is bh1 in the
notation of Equation 2.71, and hence 2.74 tells us that bh1 = 124.29. ‘‘i1->h1’’
refers to the weight used by the hidden layer node 1 to multiply the value of input
node 1, which is wi1;h1 in the notation of Equation 2.71, and hence 2.74 tells us that
wi1;h1 = −125.32. Note that ‘‘i1->o’’ is the weight of the skip-layer connection
(i.e. we have wi1;o1 = 48.32).

Note that the results in Figure 2.10 are very similar to the results obtained above
using a sinusoidal nonlinear regression function (Figure 2.6). The difference is
that in this case the sinusoidal pattern in the data was correctly found by the neural
network without the need to find an appropriate expression of the regression
function before the analysis is performed (e.g. based on a graphical analysis of the
data as above). As explained above, this is particularly relevant in situations where
it is hard to get an appropriate expression of the regression function, for example,
when we are concerned with more than two input quantities where graphical plots
involving the response variable and all input quantities are unavailable. The RSQ
produced by the network shown in Figure 2.10 (RSQ = 103.41) is slightly better
than the one obtained for the nonlinear regression function in Figure 2.6 (RSQ
= 105.23). Comparing these two figures in detail, you will note that the shape
of the neural network in Figure 2.10 is not exactly sinusoidal: its values around
1940 exceed its maximum values around 1925. This underlines the fact that neural
networks are governed by the data only (if sufficient nodes in the hidden layer are
used): the neural network in Figure 2.10 describes an almost sinusoidal shape,
but it also detects small deviations from a sinusoidal shape. In this sense, neural
networks have the potential to perform better compared to nonlinear regression
functions such as the one used in Figure 2.6 which is restricted to an exact
sinusoidal shape.

Note 2.5.6 (Automatic detection of nonlinearities) Neural networks describe
the nonlinear dependency of the response variable on the explanatory variables
without a previous explicit specification of this nonlinear dependency (which is
required in nonlinear regression, see Section 2.4).

The nnet command determines the parameters of the network by a minimization
of an appropriate fitting criterion [45, 64]. Using the default settings, the RSQ will be
used in a way similar to the above discussion in Sections 2.2 and 2.4. The numerical
algorithm that works inside nnet thus minimizes e.g. RSQ as a function of the
parameters of the neural network, Equation 2.71, that is, as a function of the weights
wik;oj, whl,oj, wik;hl and of the biases boj and bhl. Formally, this is the minimization of
a function of several variables, and you know from calculus that if a particular value
of the independent variable is a local minimum of such a function, the Hessian
matrix at that point is positive definite, which means that the eigenvalues of the
Hessian matrix at that point are positive [65]. In line 6 of 2.73, the eigenvalues of
the Hessian matrix are computed (referring to the particular weights and biases
found by nnet), and the result corresponding to the neural network in Figure 2.10
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is this:

Eigenvalues of the Hessian:
362646.5 2397.25 16.52111
1.053426 0.01203984 0.003230483
0.00054226 0.0004922841 0.0003875433
0.0001999698 7.053957e-05

(2.75)

Since all eigenvalues are positive, we can conclude here that this particular neural
network corresponds to a secure local minimum of RSQ.

2.5.5
Generalization and Overfitting

The decay parameter of the nnet command remains to be discussed. In
NNetEx1.r, decay=1e-4 was used (line 5 of program 2.73). If you set decay=0
instead, you can obtain results such as the one shown in Figure 2.11a. Comparing
this with Figure 2.10, you see that this fits the data much better, which is also
reflected by an improved RSQ value (RSQ = 45.48 in Figure 2.11a compared to
RSQ = 103.4 in Figure 2.10). Does this mean that the best results are obtained
for decay=0? To answer this question, let us increase the size of the hidden layer.
Until now, size=3 was used in all computations, that is, a hidden layer comprising
of three nodes. Increasing this parameter, we increase the number of weights and
biases that can be tuned toward a better fit of the neural network and the data, and
hence we increase the flexibility of the neural network in this way. Figure 2.11b
shows a result obtained for a hidden layer with nine nodes (size=9). In terms of
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Fig. 2.11 Illustration of overfitting: results of NNEx1.r using
(a) decay=0 and size=3 (b) decay=0 and size=9.
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the RSQ, this neural network is again better than the previous one (RSQ = 30.88
in Figure 2.11b compared to RSQ = 45.48 in Figure 2.11a). Obviously, this im-
provement is achieved by the fact that the neural network in Figure 2.11b follows
an extra curve compared to the network in Figure 2.11a, attempting to ‘‘catch’’ as
many data points as possible as closely as possible.

This behavior is usually not desired since it restricts the predictive capability of a
neural network. Usually, one wants neural networks to have the following

Definition 2.5.1 (Generalization property) Suppose two mathematical models
(S, Q , M) and (S, Q , M∗) have been setup using a training dataset Dtrain. Then
(S, Q , M) is said to generalize better than (S, Q , M∗) on a test dataset Dtest with
respect to some error criterion E, if (S, Q , M) produces a smaller value of E on
Dtest compared to (S, Q , M∗).

You may think of (S, Q , M) and (S, Q , M∗) as being regression or neural network
models, and of E as being the RSQ as discussed above. Note that the mathematical
models compared in Definition 2.5.1 refer to the same system S and to the same
question Q since the generalization property pertains to the ‘‘mathematical part’’
of a mathematical model. The definition emphasizes the fact that it is not sufficient
to look at a mathematical model’s performance on the dataset which was used to
construct the model if you want to achieve good predictive capabilities (compare the
discussion of cross-validation in Section 2.3.3). To evaluate the predictive capabili-
ties, we must of course look at the performance of the model on datasets that were
not used to setup the model, and this means that we must ask for the generalization
property of a model. Usually, better predictions are obtained from mathematical
models which describe the essential tendency of the data (such as the neural net-
works in Figures 2.10 and 2.11a) instead of following random oscillations in the data
similar to Figure 2.11b. The phenomenon of a neural network fitting the data so
‘‘well’’ that it follows random oscillations in the data instead of describing the gen-
eral tendency of the data is known as overfitting [45]. Generally, overfitting is related
with an increased ‘‘roughness’’ of the neural network function, since overfitted neu-
ral networks follow extra curves in an attempt to catch as many data points as possi-
ble as described above. The overfitting phenomenon can be defined as follows [66]:

Definition 2.5.2 (Overfitting) A mathematical model (S, Q , M) is said to overfit
a training dataset Dtrain with respect to an error criterion E and a test dataset
Dtest, if another model (S, Q , M∗) with a larger error on Dtrain generalizes better
to Dtest.

For example, the neural network model behind Figure 2.11b will overfit the
training data in the sense of the definition if it generates a larger error on unknown
data e.g. compared to the neural network model behind Figure 2.10.

There are several strategies that can be used to reduce overfitting [45, 64]. So-called
regularization methods use modified fitting criteria that penalize the ‘‘roughness’’



2.5 Neural Networks 97

of the neural network, which means that these fitting criteria consider for example,
both the RSQ and the roughness of the neural network. In terms of such a modified
fitting criterion, a network such as the one in Figure 2.11a can be better than the
‘‘rougher’’ network in Figure 2.11b (although the RSQ of the second network is
smaller). One of these regularizations methods called weight decay makes use of the
fact that the roughness of neural networks is usually associated with ‘‘large’’ values
of its weight parameters, and this is why this method includes the sum of squares of
the network weights in the fitting criterion. This is the role of the decay parameter
of the nnet command: decay=0 means there is no penalty for large weights in the
fitting criterion. Increasing the value of decay, you increase the penalty for large
weights in the fitting criterion. Hence decay=0 means that you may get overfitting
for neural networks with sufficiently many nodes in their hidden layer, while
positive values of the decay parameter decrease the ‘‘roughness’’ of the neural
network and will generally improve its predictive capability. Ripley suggests to use
decay values between 10−4 and 10−2 [67, 68]. To see the effect of this parameter,
you may use a hidden layer with nine nodes similar to Figure 2.11b, but with
decay=1e-4. Using these settings, you will observe that the result will look similar
to Figures 2.10 and 2.11a, which means you get a much smoother (less ‘‘rough’’)
neural network compared to the one in Figure 2.11b.

2.5.6
Several Inputs Example

As a second example which involves several input quantities, we consider the data
in rock.csv which you find in the book software. These data are part of the R
package, and they are concerned with petroleum reservoir exploration. To get oil out
of the pores of oil-bearing rocks, petroleum engineers need to initiate a flow of the
oil through the pores of the rock toward the exploration site. Naturally, such a flow
consumes more or less energy depending on the overall flow resistance of the rock,
and this is why engineers are interested in a prediction of flow resistance depending
on the rock material. The file rock.csv contains data that were obtained from
48 rock sample cross-sections, and it relates geometrical parameters of the rock
pores with its permeability, which characterizes the ease of flow through a porous
material [69]. The geometrical parameters in rock.csv are: area, a measure of
the total pore spaces in the sample (expressed in pixels in a 256 × 256 image);
peri, the total perimeter of the pores in the sample (again expressed in pixels);
and shape, a measure of the average ‘‘roundness’’ of the pores (computed as the
smallest perimeter divided by the square root of the area for each individual pore;
approx. 1.1 for an ideal circular pore, smaller for noncircular shapes). Depending
on these geometrical parameters, rock.csv reports the rock permeability perm
expressed in units of milli Darcy (= 10−3 Darcy, see [70]).

In a first attempt to describe these data using a neural network, let us consider
two explanatory variables, area and peri, neglecting the third geometrical variable,
shape. With this restriction we will be able to generate 3D graphical plots of the
neural network below. Moreover, we will take log(perm) as the response variable
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since perm covers several orders of magnitude (see rock.csv). Note that within
R, log denotes the natural logarithm. To compute the neural network, we can
proceed as above and start e.g. with NNEx1.r, editing the model and the name of
the data file. This has been done in the R program NNEx2.r which you find in
the book software. The core of the code in NNEx2.r that does the neural network
computing is very similar to program 2.73 above. Basically, we just have to replace
line 1 of 2.73 with

eq=log(perm)~area+peri (2.76)

Again, a scaling of the explanatory variables must be applied similar to the one
in line 4 of program 2.73 (see Note 2.5.4), but we leave out these technicalities here
(see NNEx2.r for details). If you run NNex2.r within R, you will get results similar
to the one shown in Figure 2.12 (note that you may obtain slightly different results
for the reasons explained in the discussion of NNEx1.r). Figure 2.12 compares the
neural network with the data in a way similar to the one in Section 2.4 above, using
a predicted-measured plot and a conventional 3D plot. The 3D plot shows how
the neural network builds up a nonlinear, three-dimensional surface that attains
a shape that follows the essential tendency in the data much better than what
could be achieved by multiple regression (note that in this case multiple regression
amounts to fitting a flat surface to the data). This is also reflected by the residual
sums of squares computed by NNex2.r: RSQ = 32.7 in the multiple linear model,
and RSQ = 15 for the neural network model.
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Fig. 2.12 Comparison of a neural network predicting perm
depending on area and peri with the data in rock.csv
(a) in a predicted-measured plot and (b) in a conventional
plot in the area-peri-perm 3d-space. Plots generated by
NNEx2.r.
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Until now we have left out the shape variable of rock.csv as an explanatory
variable. Changing the model within NNEx2.r to

eq=log(perm)~area+peri+shape (2.77)

a neural network involving the three explanatory variables area, peri and shape is
obtained, and in this way fits with an even better RSQ around 10 can be obtained.
Similar to NNEx1.r, NNEx2.r plots the eigenvalues of the Hessian matrix so that
you can check if a secure local minimum of the fitting criterion has been achieved
as discussed above (e.g. Figure 2.12 refers to a neural network which has positive
eigenvalues of the Hessian only as required). Finally, you should note that to
evaluate the predictive capabilities of the neural networks discussed in this section,
cross-validation can be used similar to above (Section 2.3.3).

Neural networks are useful not only for prediction, but also to visualize and better
understand a dataset. For example, it can be difficult to understand the effects of
two explanatory variables on a dependent variable (e.g. the effects of area and
peri on perm in the above example) based on a 3D scatterplot of the data (the
spheres in Figure 2.12b) only. In this case, a three-dimensional nonlinear neural
network surface that approximates the data similar to Figure 2.12b can help us to
see the general nonlinear form described by the data. Of course, linear or nonlinear
regression plots such as Figure 2.8 can be used in a similar way to visualize
datasets.

Note 2.5.7 (Visualization of datasets) Neural networks (and mathematical
models in general) can be used to visualize datasets. An example is Figure 2.12b,
where the model surface highlights and accentuates the nonlinear effects of two
explanatory variables on a dependent variable.

2.6
Design of Experiments

Suppose you want to perform an experiment to see if there are any differences in
the durability of two house paintings A and B. In an appropriate experiment, you
would e.g. paint five wall areas using paint A and five other wall areas using paint
B. Then, you would measure the durability of the paintings in some suitable way,
for example, by counting the number of defects per surface area after some time.
The data could then be analyzed using the t test (Section 2.1). This example is
discussed in [71], and the authors comment on it as follows:

You only have to paint a house once to realize the importance of this experi-
ment.
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Since the time and effort caused by an experiment as well as the significance of
its results depend very much on an appropriate design of the experiment, this can
also be phrased as follows:

Note 2.6.1 (Importance of experimental design) You only have to paint a house
once to realize the importance of an appropriate design of experiments.

Indeed, the design of experiments – often abbreviated as DOE – is an important
statistical discipline. It encompasses a great number of phenomenological models
which all focus on an increase of the efficiency and significance of experiments. Only
a few basic concepts can be treated within the scope of this book, and the emphasis
will be on the practical software-based use of these methods. The reader should
refer to books such as [41, 72, 73] to learn about more advanced topics in this field.

2.6.1
Completely Randomized Design

Figure 2.13 shows a possible experimental design that could be used in the house
painting example. The figure shows 10 square test surfaces on a wall which are
labeled according to the paint (A or B) that was applied on each of these test
surfaces. This is a ‘‘naive’’ experimental design in the sense that it reflects the first
thought which many of us may have when we think about a possible organization
of these test surfaces. And, as it is the case with many of our ‘‘first thoughts’’ in
many fields, this is a bad experimental design, even the worst one imaginable.
The point is that most experiments that are performed in practice are affected by
nuisance factors which, in many cases, are unknown and out of the control of the
experimenter at the time when the experiment is designed. A great number of such
possible nuisance factors may affect the wall painting experiment. For example,
there may be two different rooms of a house behind the left (‘‘A’’) and right (‘‘B’’)
halves of the wall shown in Figure 2.13, and the temperature of one of these rooms
and, consequently, the temperature of one half of the wall may be substantially
higher compared to the temperature of the other room and the other half of the
wall. Since temperature may affect the durability of the painting, any conclusions
drawn from such an experiment may hence be wrong.

This kind of error can very easily be avoided by what is called a completely
randomized design or CRD design. As the name suggests, a completely randomized
design is a design where the positions of the A and B test surfaces are determined

Fig. 2.13 House painting example: naive experimental de-
sign, showing a wall (large rectangle) with several test sur-
faces which are painted using paints A or B.
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randomly. Based on the usual technical terminology, this can be phrased as
follows: A completely randomized design is a design where the treatments or
levels (corresponding to A and B in this case) of the factor under investigation
(corresponding to the paint) are assigned randomly to the experimental units
(corresponding to the test surfaces).

Using software, this can be done very easily. For example, Calc’s rand() function
can be used as follows (see Section 2.1.1 and Appendix A for details about Calc):

Completely randomized design using Calc
• Generate a Calc spreadsheet with three columns labeled as

Experimental unit, Random number and Factor level
• Write the desired factor levels in the Factor level column, for

example, ‘‘A’’ in five cells of that column and ‘‘B’’ in another five
cells in the case of the wall painting example.

• Enter the command =rand() in the cells of the Random number
column (of course, it suffices to enter this into the top of that
column, which can then be copied to the other cells using the
mouse – see Calc’s help pages for details).

• Use Calc’s ‘‘Data/Sort’’ menu option to sort the data with respect
to the Random number column.

• Write 1, 2, 3, . . . in the Experimental unit column of the
spreadsheet, corresponding to an enumeration of the
experimental units that was determined before this procedure
was started.

In the wall painting example, this procedure yields e.g. the result shown in
Figure 2.14, which defines a random assignment of the test surfaces (which we can
think of as being enumerated from 1 to 10 as we move from the left to the right
side of the wall in Figure 2.13) to the factor levels A and B. Figure 2.14 has been
generated using the Calc file CRD.ods in the book software (see Appendix A). Note
that when you generate your own completely randomized designs using this file,
you will have to enter the rand() command into the cells of the Random number
column of that file again.

Assuming a higher temperature of the left part of the wall in Figure 2.13 as
discussed above, this higher temperature would affect both the A and B test
surfaces based on the completely randomized design in Figure 2.14. Hence,
although the results still would be affected by the temperature variation along the
wall since the variance of the data would be higher compared to an isothermal
experiment, the completely randomized design would at least prevent us from
wrong conclusions caused by the fact that the higher temperatures would be
attributed to one of the factor levels only as discussed above.

A completely randomized design can also be generated using the design.crd
function which is a part of R’s agricolae package. For the house painting example,
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Fig. 2.14 Completely randomized design for the house paint-
ing example, computed using Calc’s rand() function. See
the file CRD.ods in the book software.

this can be done using the following code (see CRD.r in the book software):

1: library(agricolae)
2: levels=c("A", "B")
3: rep=c(5,5)
4: out=design.crd(levels,rep,number=1)
5: print(out)

(2.78)

After the agricolae package is loaded in line 1, the levels (A and B in the
above example) and the number of replications of each level (5 replications for A
and B) are defined in the variables levels and rep, which are then used in the
design.crd command in line 4 to generate the completely randomized design.
The design is then stored in the variable out, which is printed to the screen using
R’s print command in line 5. The result may look like this (may: depending on
the options that you choose for random number generation, see below):

plots levels r plots levels r
1 1 A 1 6 6 B 3
2 2 B 1 7 7 B 4
3 3 A 2 8 8 A 4
4 4 B 2 9 9 A 5
5 5 A 3 10 10 B 5

Here, the ‘‘plots’’ and ‘‘levels’’ columns correspond to the ‘‘Experimental
unit’’ and ‘‘Factor level’’ column in Figure 2.14, while the ‘‘r’’ column counts
the number of replications separately for each of the factor levels. Note that the
result depends on the method that generates the random numbers that are used
to randomize the design. A number of such methods can be used within the
agricolae package (see the documentation of this package).
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2.6.2
Randomized Complete Block Design

Consider the following experiment that is described in [72]: A hardness testing
machine presses a rod with a pointed tip into a metal specimen with a known
force. The depth of the depression caused by the tip is then used to characterize
the hardness of the specimen. Now suppose that four different tips are used in
the hardness testing machine and that it is suspected that the hardness readings
depend on the particular tip that is used. To test this hypothesis, each of the four
tips is used four times to determine the hardness of identical metal test coupons.
In a first approach, one could proceed similar to the previous section. The hardness
experiment involves one factor (the tip), four levels of the factor (tip 1–tip 4),
and four replications of the experiment at each of the factor levels. Based on this
information, a completely randomized design could be defined using the methods
described above.

However, there is a problem with this approach. Sixteen different metal test
coupons would be used in such a completely randomized design. Now it is possible
that these metal test coupons differ slightly in their hardness. For example, these
metal coupons may come from long metal strips, and temperature variations
during the manufacturing of these strips may result in a nonconstant hardness
of the strips and hence of the metal coupons. These hardness variations would
then potentially affect the comparison of the four tips in a completely randomized
experiment.

To remove the effects of possible hardness variations among the metal coupons,
a design can be used that uses only four metal test coupons and that tests each of
the four tips on each of these four test coupons. This is called a blocked experimental
design, since it involves four ‘‘blocks’’ (corresponding to the four metal test coupons)
where all levels of the factor (tip 1–tip 4) are tested in each of these blocks. Such
blocked designs are used in many situations in order to achieve more homogeneous
experimental units on which to compare the factor levels. Within the blocks, the
order in which the factor levels are tested should be chosen randomly for the same
reasons that were discussed in the previous section, and this leads to what is called
a randomized complete block design (RCBD).

In R, a RCBD for the above example can be computed using the following code
(see RCBD.r in the book software):

1: library(agricolae)
2: levels=c("Tip 1", "Tip 2", "Tip 3", "Tip 4")
3: out=design.rcbd(levels,4,number=1)
5: print(out)

(2.79)

This code is very similar to the code 2.78 above, except for the fact that the
command design.rcbd is used here instead of design.crd. Note that the sec-
ond argument of design.rcbd gives the number of blocks (4 in this case). The
code 2.79 may yield the following result in R (may: see the above discussion of
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Equation 2.78):

plots block levels plots block levels
1 1 1 Tip 2 9 9 3 Tip 3
2 2 1 Tip 1 10 10 3 Tip 2
3 3 1 Tip 4 11 11 3 Tip 4
4 4 1 Tip 3 12 12 3 Tip 1
5 5 2 Tip 1 13 13 4 Tip 2
6 6 2 Tip 3 14 14 4 Tip 4
7 7 2 Tip 4 15 15 4 Tip 3
8 8 2 Tip 2 16 16 4 Tip 1

This result can be interpreted similar to the corresponding result of design.crd
that was discussed in the previous section. Again, the ‘‘plots’’ column just counts
the experiments, the ‘‘block’’ column identifies one of the four blocks correspond-
ing to the four metal test coupons, and the ‘‘levels’’ column prescribes the factor
level to be used in each experiment. Figure 2.15 visualizes this experimental design.
Note that each of the tips is used exactly once on each of the metal test coupons as
required.

2.6.3
Latin Square and More Advanced Designs

Again, there may be a problem with the experimental design described in the
last section. As Figure 2.15 shows, tip 4 is tested three times in the third run
of the experiment that is performed on the metal test coupons A–C. Now it
may very well be that the result of the hardness measurement depends on the
number of hardness measurements that have already been performed on the same
test coupon. Previous measurements that have been performed on the same test
coupon may have affected the structure and rigidity of the test coupon in some
way. To avoid this as much as possible, the experimenter may test the four tips on
different locations on the test coupon with a maximum distance between any two

Fig. 2.15 Randomized complete block design computed us-
ing design.rcbd in R (hardness testing example): metal
test coupons A–D, and numbers indicating the randomly
chosen sequence of the tips 1–4.
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of these locations. But then, the location itself may affect the hardness reading.
Referring to the metal test coupon ‘‘A’’ in Figure 2.15, for example, the hardness
measurements using tips 2 and 3 may be somewhat influenced by the fact that their
measurement positions are more close to the ends of the metal coupon compared
to the measurement positions of tips 1 and 4.

If the hardness measurement really depends on the number of measurements
that have been previously performed on the same metal test coupon, or if the
measurement depends on the measurement location on the metal test coupon, a
design such as the one shown in Figure 2.15 – where one of the tips is used more
than once in one particular position of the measurement order (such as tip 4) – is
obviously an unsuitable design. Based on such a design, differences between the
hardness readings produced by the tips may be observed which are caused by
the particular position of the measurement order where the tips are used (rather
than by the tips itself). Obviously, a better experimental design should randomly
distribute the factor levels on each of the metal test coupons in a way such that any
factor level appears only once in one particular position on the metal test coupons.
A design of this kind is known as a Latin square design.

In R, a Latin square design for the above example can be computed using the
following code (see LSD.r in the book software):

1: library(agricolae)
2: levels=c("Tip 1", "Tip 2", "Tip 3", "Tip 4")
3: out=design.lsd(levels,number=1)
5: print(out)

(2.80)

This code may yield the following result (may: see the discussion of code (2.6.1)
in Section 2.6.1):

plots row col levels plots row col levels
1 1 1 1 Tip 1 9 9 3 1 Tip 4
2 2 1 2 Tip 2 10 10 3 2 Tip 1
3 3 1 3 Tip 3 11 11 3 3 Tip 2
4 4 1 4 Tip 4 12 12 3 4 Tip 3
5 5 2 1 Tip 3 13 13 4 1 Tip 2
6 6 2 2 Tip 4 14 14 4 2 Tip 3
7 7 2 3 Tip 1 15 15 4 3 Tip 4
8 8 2 4 Tip 2 16 16 4 4 Tip 1

Figure 2.16 visualizes this result similar to Figure 2.15 above. As can be seen,
every tip occurs only once in each single row and column of this experimental
design as required.

The design discussed so far can be generalized in various ways. While the Latin
square can be used to treat situations with two sources of extraneous variability
(in the above example, the metal test coupon and the position of a tip in the test
sequence), the Graeco–Latin square design can treat a similar situation with three
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Fig. 2.16 Latin square design computed using design.lsd
in R (hardness testing example): metal test coupons A–D,
and numbers indicating the randomly chosen sequences of
the tips 1–4.

sources of variability. In R’s agricolae package, Graeco–Latin square designs
can be used based on the design.graeco command in a similar way as the
corresponding commands that were discussed above. In some cases, a RCBD may
be too demanding in terms of time and resources, that is, we may be unable to
test every factor level in each block of the design. Then, a randomized balanced
incomplete block design can be used, which can be obtained using the design.bib
function of R’s agricolae package.

2.6.4
Factorial Designs

All experimental designs considered so far involved one factor only. If an experiment
involves two factors or more, factorial designs or response surface designs are applied
[73]. Factorial designs are preferentially used in situations where each factor is
varied on two levels only, a lower level which is typically designated as ‘‘−’’,
and an upper level designated as ‘‘+’’. Designs of this type are called two-level
factorial designs. Response surface methods, on the other hand, focus on situations
where the factors are varied on more than two levels. They provide procedures
that can be used to decide about an optimal choice of the factor levels, based
on an approximation of the response of the system (y) depending on the factors
(x1, x2, . . .) e.g. using polynomials. We will confine ourselves here to the basics of
factorial designs (see [72, 73] for more on response surface methods).

A factorial design involving n ∈ N factors on m ∈ N levels is usually denoted as a
‘‘mn design’’. Hybrid factorial designs such as a 2 × 32 design are also used, which
involves one factor that is varied on two levels and two factors that are varied on three
levels in this case. As was already mentioned, the most frequently used factorial de-
signs are 2n designs, that is, designs involving n factors that are varied on two levels.

As a simple example, consider a chemical reactor which is used to produce some
product, and which is affected by two factors: the amount of a catalyst that is used
and the temperature. Let us denote the catalyst with A and the temperature with B,
and let us assume that an experiment is performed where both factors are varied
at a low and a high level, respectively, which we denote as ‘‘−’’ and ‘‘+’’. Table 2.2



2.6 Design of Experiments 107

Table 2.2 Example of a 22 factorial design.

No. A B Yield

1 − − 50
2 + − 54
3 − + 64
4 + + 90

shows a possible result of such an experiment (the yield of the product is given
in appropriate units which we do not need to discuss here). In the terminology
introduced above, this is a 22 design as it involves two factors being varied on two
levels. Experimental designs that involve all possible combinations of the factor
levels, such as the design in Table 2.2, are also called full factorial designs.

Full factorial designs such as the design in Table 2.2 can be generated very easily
using R’s expand.grid command as follows:

1: levels=c("-", "”)+
2: expand.grid(A=levels,B=levels)

(2.81)

which yields the design that was used in Table 2.2:

A B A B
1 - - 3 - +
2 + - 4 + +

For the same reasons that were explained in Section 2.6.2 above, the exper-
imenter may decide to use a randomized block design in a factorial experiment.
In R, such a design can be realized e.g. using the design.ab command of R’s
agricolae package. The package contains an example experiment that involves
the ‘‘perricholi’’, ‘‘canchan’’, and ‘‘tomasa’’ potato varieties which are cultivated
using three nitrogen levels. A full factorial 32 design involving five replications of
each experiment is used, and the replications are organized in randomized blocks.
To compute such a design, the following code can be used in R (see FacBlock.r
in the book software):

1: library(agricolae)
2: variety=c("perricholi", "canchan", "tomasa")
3: nitrogen=c(40,80,120)
4: out=design.ab(variety, nitrogen, 5, number=1)
5: print(out)

(2.82)

This code works very similar to the codes discussed in the previous section. Since
we use a 32 design here which involves five replications, you can easily anticipate
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that this code will result in a total of 32 · 5 = 45 experimental runs. The first part of
the output looks like this:

plots block variety nitrogen plots block variety nitrogen

1 1 1 tomasa 80 10 10 2 canchan 80

2 2 1 perricholi 120 11 11 2 canchan 40

3 3 1 canchan 120 12 12 2 perricholi 120

4 4 1 perricholi 80 13 13 2 tomasa 80

5 5 1 canchan 80 14 14 2 perricholi 40

6 6 1 perricholi 40 15 15 2 canchan 120

7 7 1 tomasa 40 16 16 2 perricholi 80

8 8 1 canchan 40 17 17 2 tomasa 40

9 9 1 tomasa 120 18 18 2 tomasa 120 ...

As can be seen, the code produces a complete 32 design involving all possible
combinations of the potato varieties and nitrogen levels (randomly ordered) in each
of the blocks.

Of course, time and resources restrictions may prevent us from performing full
factorial experiments involving 45 different experimental runs, and similar to the
‘‘randomized balanced incomplete block design’’ discussed in Section 2.6.3 above,
the experimenter will be interested in clever ways to reduce the overall number
of experimental runs in a way that does not affect the significance of his results.
Factorial designs that do not consider all possible combinations of the factor levels
are called fractional factorial designs. Simple fractional factorial designs are usually
denoted as ‘‘mn−k designs’’, where m (the number of factor levels) and n (the
number of factors) have the same meaning as before, and k expresses the fact
that the total number of experimental runs has been reduced by a factor of 1/2k.
Example: While a full factorial 25 design would require 25 = 32 runs, a fractional
25−2 design needs only 23 = 8 runs. To generate such fractional factorial designs,
one can use R’s ffDesMatrix command (a part of the BHH2 contributed package).
See [72, 73] for more theoretical background on factorial and fractional factorial
designs.

2.6.5
Optimal Sample Size

An important issue in experimental design is the proper selection of sample size,
that is, of the number of repetitions of a particular experiment that are necessary to
achieve the desired results. This is very well supported by a number of R functions
such as power.t.test, power.anova.test, power.prop.test, etc., which are
a part of R’s standard distribution. We will confine ourselves here to a simple
example that demonstrates the way in which these functions can be used. Suppose
the yield of crop variety A is suspected to be higher than the yield of crop variety
B, and suppose you want to show this using a one-sided t test with α = 0.1 and
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β = 0.9 (see Section 2.1.3 for details on the testing procedure). Then, the following
R command can be used to compute an optimal sample size:

power.t.test(sig.level=0.1,power=0.9,delta=2,sd=1
,alternative="one.sided")

This yields an optimal sample size of n ≈ 3.9 in R, which means that n = 4
replications should be used for each of the crop varieties. The delta argument is
the ‘‘true difference in means’’, that is, μ1 − μ2 (see Section 2.1.3). Of course, you do
not know this true difference in means a priori in a practical situation, so it should
be set to a difference that you want to be detected by the experiment. For example,
a difference in the yields of the varieties A and B may be practically important only
if it is larger than 2 kg m−2, so in this situation you would set delta=2 as above.
Of course, it is more difficult to get a significant test result if delta is small, which
is reflected by the fact that n increases as delta decreases (for example, n = 14 if
delta=1 is used in the above command). Hence delta should be chosen as large
as possible such that it still satisfies the above requirement. The sd argument of
power.t.test is the standard deviation of the random variables that generate the
data, which is assumed to be constant here across the crop varieties. Again, this is
not known a priori, and in a practical situation you would set sd according to the
experience made in similar prior experiments (if available), or you would have to
guess an appropriate order of magnitude based on your knowledge of the system
and the measurement procedure.

2.7
Other Phenomenological Modeling Approaches

You should note that there is a great number of phenomenological modeling ap-
proaches beyond the ones introduced above. Only a few of these topics can be briefly
addressed in the following sections: soft computing approaches in Section 2.7.1,
discrete event simulation in Section 2.7.2, and signal processing in Section 2.7.3.

2.7.1
Soft Computing

Soft computing is used as a label for relatively new computational techniques such
as artificial neural networks (ANNs), fuzzy logic, evolutionary algorithms, but also for
recent developments in fields such as rough sets and probabilistic networks [74, 75]. As
it is explained in [75], a common feature of these techniques is that, unlike conven-
tional algorithms, they are tolerant of imprecision, uncertainty, and partial truth.

Artificial neural networks have already been introduced in Section 2.5. The
above discussion was restricted to neural networks used as a tool for nonlinear
regression. As mentioned there, there is a great number of applications in various
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other fields such as time series prediction, classification and pattern recognition,
or data processing. An important feature of neural networks is their ability to
‘‘learn’’ from data. We have seen in Section 2.5 that a neural network is able to
‘‘learn’’ the nonlinear shape of a function from a dataset, that is, there is no need
to specify this nonlinear shape as a mathematical function as it is required in the
classical nonlinear regression approach. This kind of adaptivity, that is, the ability
of a model to adapt to a changing problem environment, is a characteristic feature
of soft computing approaches in general [75].

As explained above, artificial neural networks were originally inspired by an
analogy with biological neural networks (Note 2.5.2). In a similar way, evolutionary
algorithms encompass a class of stochastic optimization algorithms that were
originally inspired by an analogy with the biological ideas of genetic inheritance
and the Darwinian law of the ‘‘survival of the fittest’’. In genetic algorithms – the
most widely used type of evolutionary algorithms – individuals are represented
as arrays of binary digits that can take on the values 0 or 1. Basically, these
arrays can be thought of as representing the genes of the individuals. After a
random initial population has been generated, an iterative process starts where
new generations of the population are generated from the previous population
by applying a certain number of stochastic operators to the previous population,
which basically can be thought of as reflecting the Darwinian law of the ‘‘survival
of the fittest’’. Similar to neural networks, this bio-inspired approach turned
out to be extremely fruitful in the applications. Evolutionary algorithms have
been applied in bio–informatics, phylogenetics, computer science, engineering,
economics, chemistry, manufacturing, mathematics, physics, and other fields. See
the examples in [76–78], and [75] for a detailed case study involving a financial
application (portfolio optimization). Note that evolutionary algorithms are a part
of the larger field of evolutionary computation which includes other techniques
such as swarm intelligence, which describe the collective behavior of decentralized,
self-organized systems [79]. Evolutionary computation itself is usually classified as
a subfield of artifical intelligence, a discipline of computer science.

As regards software for soft computing applications, we have already used
R’s nnet package in Section 2.5 above to do neural network-based nonlinear
regression. The same package can also be used to solve classification problems,
see [45]. R’s contributed package genalg (R Based Genetic Algorithm) can be used
to implement genetic algorithms. While nnet comes as a standard part of the R
distribution, genalg can be obtained from R’s internet site (www.r-project.org). R
may also serve as a platform for the implementation of fuzzy models (there are a
number of fuzzy-based contributed packages, see the list on www.r-project.org).

2.7.1.1 Fuzzy Model of a Washing Machine
We end this section on soft computing with an example of a fuzzy model. Based
on the ideas developed in [80], fuzzy models use logical variables that can take on
any value between 0 and 1. In this sense, these models allow for ‘‘uncertainty’’,
as opposed to the usual concept where logical variables can take on the values 0
and 1 only. This is of interest in many technological applications where a system
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needs to be controlled in a smooth way, that is, not based on conventional ‘‘on/off’’
switches, but rather based on a kind of control that allows a smooth transition
between the various states of a system.

An example of a washing machine controlled by a fuzzy model is discussed in
[81]. In that example, the amount of detergent that is used by the machine must
be determined based on the dirtiness of the load (as measured by the opacity of
the washing water using an optical sensor system), and based on the weight of the
laundry (as measured by a pressure sensor system). Using practical experiences, a
set of control rules can be established which determines the amount of detergent
that should be used as the dirtiness varies between the classes of a so-called fuzzy
subset:

Almost_Clean, Dirty, Soiled, Filthy

and as the weight of the laundry varies between the classes of another fuzzy subset:

Very_Light, Light, Heavy, Very_Heavy

Now practical experience may tell us that the amount of detergent should be
increased by a certain amount in a situation where the weight of the laundry is
in the class Light while the dirtiness increases from Soiled to Filthy. Then, a
fuzzy model will define a smooth transition of the amount of detergent that is used
as the dirtiness changes its class from Soiled to Filthy. Basically, it will allow a
classification of dirtiness partially between the classes Soiled and Filthy, that is,
it will allow for uncertainty as explained above, and the amount of detergent that
is used will reflect this uncertainty in the sense that it will be an average amount
between the amounts that are defined in the rules for the classes Soiled and
Filthy. Control strategies of this kind often produce better results compared to
classical ‘‘on/off’’ strategies. See [75, 81] for a number of other examples such as
vacuum cleaners, antilock brakes, and so on.

Fuzzy models can be described as an approach that leaves the realms of
conventional mathematics to some extent. Beyond fuzzy models, there is a great
variety of other modeling approaches that are located somewhere in a transition
zone between quantitative (i.e. mathematical model based) and qualitative modeling
approaches. See [82] for examples of qualitative approaches used in the social
sciences (such as narrative analysis, action research, critical ethnography, etc.),
and [83, 84] for a case study approach that uses both quantitative and qualitative
methods.

2.7.2
Discrete Event Simulation

In this book, you have already seen (and will continue to see) that there is a great
number of different approaches in mathematical modeling and simulation. With
this in mind, you may be surprised to know that books such as the ‘‘Handbook
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of Simulation’’ by J. Banks (ed.) [6] or ‘‘Modern Simulation and Modeling’’ by
Rubinstein and Melamed [85] both are devoted to one of these approaches only:
discrete event simulation. Two things can be derived from this: (i) These discrete
event simulation people have a very substantial self-esteem and self-confidence,
and they know that what they do is an important part of the overall effort in
modeling and simulation. (ii) You should know what they are doing!

Discrete event simulation can be defined as follows [10]:

Definition 2.7.1 (Discrete event simulation) Discrete event simulation con-
cerns the modeling of a system as it evolves over time by a representation in
which the state variables changes instantaneously at a (countable number of)
separate points in time. These points in time are the ones at which an event
occurs, where event is defined as an instantaneous occurrence that may change
the state of a system.

To understand the way in which discrete event simulation is used in practice,
consider the following example which we cite here (almost unchanged) from [86]:
Suppose that a single server (such as a clerk, a machine, or a computer) services
randomly arriving customers (people, parts, or jobs). The order of service is first
in, first out. The time between successive arrivals has the stationary distribution F,
and the service time distribution is G. At time 0, the system is empty.

We may simulate this system as follows. First, generate a random number A1

using the distribution F, and then a random number B1 using G. See Section 2.1.2.3
for details on distributions, the discussion of RNumbers.r in Sections 2.1.2.3 and
2.1.2.5 for an example of random number generation using R, and [86] for the
theoretical background of random number generation. Customer 1 enters the
system at time A1 (which is an event in the sense of the definition above) and leaves
at time A1 + B1 (another event). Next, generate two more random numbers A2 and
B2. Customer 2 arrives at A1 + A2. If A1 + A2 ≥ A1 + B1, he starts service right
away and finishes at A1 + B1 + B2. And so on. A simulation of this kind can be
used to estimate the number of customers that are served up to a given time, their
average waiting time, and so on.

In a similar way, discrete event simulations can be used to simulate a great
number of systems in various fields. They are used for example, to optimize
and increase the efficiency of systems in manufacturing and material handling,
logistics and transportation, and healthcare, see [6, 10]. Discrete event simulations
are supported on a number of commercial and open source software platforms
such as:

• simcol, open source, contributed package of R, see
www.r-project.org and [87]

• OpenModelica, open source, see
www.ida.liu.se/labs/pelab/modelica/OpenModelica.html and [7]

• jemula, open source, see jemula.origo.ethz.ch/
• eM-Plant, commercial, see www.ugsplm.com
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• SIMPROCESS, commercial, see www.caci.com
• simul8, commercial, see www.simul8.com/

See Section 4.11.2 for an application of R’s simcol package.

2.7.3
Signal Processing

As it will become clear in the following chapters on differential equations, many
mathematical models involve rates of changes of quantities of interest (see Note
3.1.1). Hence, it is a natural task to compute rates of changes from experimental
data. As an example, let us reconsider the dataset spring.csv that was already
analyzed in Section 1.5.6 above. Table 2.3 shows the x and y data of this dataset,
and let us assume that we are interested in the rate of change of y with respect to
x, that is, in the derivative y′(x). Now the question is how y′(x) can be derived from
discrete data of the general form (x1, y1), (x2, y2), . . . , (xn, yn). In a naive approach,
we could use the approximation

y′(xi) ≈ 
yi


xi
= yi − yi−1

xi − xi−1
(2.83)

for i = 2, . . . , n, which is based on the definition of the derivative as

y′(x) = lim
h→0

y(x + h) − y(x)

h
(2.84)

Using this approximation in spring.csv yields the values labeled as ‘‘
y/
x’’
in Table 2.3. As can be seen, these values scatter substantially in an interval
between 0.1 and 0.6, that is, it seems that there are substantial changes of y′(x) as x
is increased. Looking at the plot of the data in Figure 1.9 (Section 1.5.6), however,
it seems more likely here that the scattering of the 
y/
x-data computed from the
naive approach is caused by measurement errors only, which make the data swing
a little bit around the regression line in Figure 1.9b that represents the ‘‘true’’
relation between x and y. Thus, we see that the naive approach is very sensitive
to measurement errors, which makes this approach unusable for what is called
the numerical differentiation of data, that is, for the determination of approximate
derivatives from discrete datasets.

A better approach is already suggested by our analysis of spring.csv in Section
1.5.6 above, where we used the regression line in Figure 1.9b as a mathematical

Table 2.3 Naively computed rates of change in the dataset spring.csv.

x 10 20 30 40 50
y 3 5 11 12 16

y/
x 0.2 0.6 0.1 0.4
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model of the data, which was expressed as

ỹ(x) = 0.33x − 0.5 (2.85)

As explained there, this equation expresses the general (linear) tendency of
the data, but it ‘‘damps out’’ the oscillations in the data that are e.g. induced by
measurement errors. Equation 2.85 tells us that the rate of change of y with respect
to x is constant:

ỹ′(x) = 0.33 (2.86)

This contradicts the conclusion that was drawn above from the naive approach,
but a constant rate of change of y with respect to x obviously is in much better
coincidence with the data that we see in Figure 1.9. The idea of differentiating
regression functions is used quite generally as one of the standard procedures for
the numerical differentiation of data. In the general case, the data may of course
be nonlinear, which means that one will have to use, for example, polynomials as
regression functions instead of the regression line that was used above. To obtain
an approximation of y′(xi), one will typically fit a polynomial to a few datapoints
around xi only. This procedure can be viewed as an implementation of certain low
pass filters, termed variously as Savitzky–Golay smoothing filters, least squares filters,
or DISPO (digital smoothing polynomial) filters [88–90]. See [91] for an example
application of this method to an analysis of the resin transfer molding (RTM)
process, a process that is used in the manufacturing of fiber-reinforced composite
materials.

There are many other approaches that can be used to ‘‘damp out’’ measurement
error-induced oscillations of data, such as the moving average approach where a
particular measurement value yi basically is replaced by the average of a certain
number of neighboring measurement values, see [92]. These methods are a
part of the large field of signal processing, which is concerned with the analysis,
interpretation, and manipulation of signals, preferentially signals in the form of
sounds, images, biological signals such as the electrocardiogram (ECG), radar
signals, and so on, but its methods are also used for the analysis of general
experimental datasets [93]. Anyone who has used a MP3 player knows about the
power of modern signal processing methods. Signal processing covers approaches
such as the famous Fourier analysis, which allows a decomposition of a function
in terms of sinusoidal functions, and which is used e.g. to remove unwanted
frequencies or artifacts from audio or video recordings, or the recently developed
wavelet transforms, which can be roughly described as a further development of
the general idea of the Fourier transform and which have a similarly broad range
of application (they are particularly well known for their use in data compression
applications).

The open source software R provides a number of signal processing–related
packages. Examples are the decompose package that can be used for the decompo-
sition of a time series dataset into seasonal, trend, and irregular components using
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moving averages, or the fft package that can be used to compute fast discrete
Fourier transformations. While these packages are a part of R’s base distribution,
there is also a number of contributed signal processing packages that can be ac-
cessed via R’s internet site at www.r-project.org, including several packages that can
be used to perform wavelet-based signal processing (examples are the wavelets,
waveslim, and wavetresh packages).
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3

Mechanistic Models I: ODEs

3.1
Distinguished Role of Differential Equations

As was explained, mechanistic models use information about the internal ‘‘mechan-
ics’’ of a system (Definition 1.6.1). Referring to Figure 1.2, the main difference
between phenomenological models (discussed in Chapter 2) and mechanistic mod-
els lies in the fact that phenomenological models treat the system as a black box,
while in the mechanistic modeling procedure one virtually takes a look inside
the system and uses this information in the model. This chapter and the follow-
ing Chapter 4 treat differential equations, which is probably the most widely used
mathematical structure of mechanistic models in science and engineering. Differ-
ential equations arise naturally, for example, as mathematical models of physical
systems. Roughly speaking, differential equations are simply ‘‘equations involving
derivatives of an unknown function’’. Their distinguished role among mechanistic
models used in science and engineering can be explained by the fact that both
scientists and engineers aim at the understanding or optimization of processes
within systems.

The word ‘‘process’’ itself already indicates that a process involves a situation
where ‘‘something happens’’, that is, where some quantities of interest change
their values. Absolutely static ‘‘processes’’ where virtually ‘‘nothing happens’’ would
be hardly of any interest to scientists or engineers. Now if it is true that some
quantities of interest relating to a process under consideration change their values,
then it is also true that such a process involves rates of changes of these quantities,
which means in mathematical terms that it involves derivatives – and this is
how ‘‘equations containing derivatives of an unknown function’’ or differential
equations come into play. In many of the examples treated below it will turn out
that it is natural to use rates of changes to formulate the mathematics behind the
process, and hence to write down differential equations, while it would not have
been possible to find appropriate equations without derivatives.
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Note 3.1.1 (Distinguished role of differential equations)
1. Mechanistic models consider the processes running inside a

system.
2. Typical processes investigated in science and engineering

involve rates of changes of quantities of interest.
3. Mathematically, this translates into equations involving

derivatives of unknown functions, i.e. differential equations.

Differential equations are classified into ordinary and partial differential equations.
It is common to use ODE and PDE as abbreviations for ordinary and partial
differential equations, respectively. This section is devoted to ODEs that involve
derivatives with respect to only one variable (time in many cases), while PDEs
(treated in Chapter 4) involve derivatives with respect to more than one variable
(typically, time and/or space variables). In Section 3.2, mechanistic modeling is
introduced as some kind of ‘‘systems archaeology’’, along with some first simple
ODE examples that are used throughout this chapter. The procedure to set up ODE
models is explained in Section 3.4, and Section 3.5 provides a theoretical framework
for ODEs. Then, Sections 3.6–3.8 explain how you can solve ODEs either in closed
form (i.e. in terms of explicit formulas) or using numerical procedures on the
computer. ODE models usually need to be fitted to experimental data, that is, their
parameters need to be determined such that the deviation of the solution of the
ODE from experimental data is minimized (similar to the regression problems
discussed in Chapter 2). Appropriate methods are introduced in Section 3.9, before
a number of additional example applications are discussed in Section 3.10.

3.2
Introductory Examples

3.2.1
Archaeology Analogy

If one wants to explain what it really is that makes mechanistic modeling a very
special and exciting thing to do, then this can hardly be done better than by
the ‘‘archaeology analogy’’ of the French twentieth century philosopher Jacques
Derrida [94]:

Note 3.2.1 (Derrida’s archaeology analogy) ‘‘Imagine an explorer arrives in
a little-known region where his interest is aroused by an expanse of ruins,
with remains of walls, fragments of columns, and tablets with half-effaced
and unreadable inscriptions. He may content himself with inspecting what lies
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exposed to his view, with questioning the inhabitants (. . . ) who live in the
vicinity, about what tradition tells them of the history and meaning of these
archaeological remains, and with noting what they tell him – and he proceeds
upon his journey. But he may act differently. He may have brought picks,
shovels, and spades with him, and he may set the inhabitants to work with these
implements. Together with them he may start upon the ruins, clearing away
rubbish and, beginning from the visible remains, uncover what is buried. If his
work is crowned with success, the discoveries are self-explanatory: the ruined
walls are part of the ramparts of a palace or a treasure house; fragments of
columns can be filled out into a temple; the numerous inscriptions, which by
good luck, may be bilingual, reveal an alphabet and a language, and, when they
have been deciphered and translated, yield undreamed-of information about the
events of the remote past . . . ’’

Admittedly, one may not necessarily consider archaeology as an exciting thing to
do, particularly when it is about sitting for hours at inconvenient places, scratching
dirt from pot sherds, and so on. However, what Derrida describes is what might be
called the exciting part of archaeology: revealing secrets, uncovering the buried, and
exploring the unknown. And this is exactly what is done in mechanistic modeling.
A mechanistic modeler is what might be called a system archaeologist. Looking back
at Figure 1.2, he is someone who virtually tries to break up the solid system box
in the figure, thereby trying to uncover the hidden internal system mechanics. A
phenomenological modeler, in contrast, just walks around the system, collecting
and analyzing the data which it produces. As Derrida puts it, he contents himself
‘‘with inspecting what lies exposed to view’’.

The exploration of subsurface structures by archeologists based on ground-
penetrating radar provides a nice allegory for the procedure in mechanistic mod-
eling. In this method, the archaeologist walks along a virtual x axis, producing
scattered data along that x axis similar to a number of datasets that are inves-
tigated below. In the phenomenological approach, one would be content with
an explanation of these data in terms of the input signal sent into the soil, for
example, using appropriate methods from Chapter 2, and with no attempt toward
an understanding of the soil structures generating the data. What the archaeologist
does, however, is mechanistic modeling: based on appropriate models of the mea-
surement procedure, he gains information about subsurface structures. Magnetic
resonance imaging (MRI) and computed tomography (CT) are perhaps the most
fascinating technologies of this kind – everybody knows these fantastically detailed
pictures of the inside of the human body.

Note 3.2.2 (Objective of mechanistic modeling) Datasets contain information
about the internal mechanics of the data-generating system. Mechanistic mod-
eling means to uncover the hidden internal mechanics of a system similar to
an archaeologist, who explores subsurface structures using ground-penetrating
radar data.
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3.2.2
Body Temperature

Now let us try to become system archaeologists for ourselves, starting with simple
data sets and considerations. To begin with, suppose you do not feel so good
today and decide to measure your body temperature. Using a modern clinical
thermometer, you will have the result within a few seconds, usually indicated
by a beep signal of your thermometer. You know that your thermometer needs
these few seconds to bridge the gap between room and body temperature. Modern
clinical thermometers usually have a display where this process of adjustment
can be monitored, or better: could be monitored if you could see the display
during measurement. Be that as it may, the dataset in Figure 3.1a shows data
produced by the author using a clinical thermometer. The figure was produced
using the dataset fever.csv and the Maxima program FeverDat.mac from
the book software (see the description of the book software in Appendix A).
FeverDat.mac does two things: it reads the data from fever.csv using Maxima’s
read_nested_list command, and then it plots these data using the plot2d
command (see FeverDat.mac and Maxima’s help pages for the exact syntax of
these commands).

3.2.2.1 Phenomenological Model
Remembering what we have learned about phenomenological modeling in the
previous chapter, it is quite obvious what can be done here. The data points follow
a very simple and regular pattern, and hence it is natural to use an explicit function
T(t) describing that pattern, which can then be fitted to the data using nonlinear
regression as described in Section 2.4. Clearly, the data in Figure 3.1a describe an
essentially exponential pattern (imagine a 180◦ counterclockwise rotation of the
data). Mathematically, this pattern can be described by the function

T(t) = Tb − (Tb − T0) · e−r · t (3.1)
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Fig. 3.1 (a) Body temperature data. (b) Body temperature
data (triangles) and function T(t) from Equation 3.4.
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The parameters of this function have natural interpretations: T0 is the initial
temperature since T(0) = T0, Tb is the body temperature since limt→∞ T(t) = Tb,
and r controls the rate of temperature adjustment between T0 and Tb. As Figure 3.1a
shows, the values of T0 and Tb should be slightly above 32 and 37 ◦C, respectively.
Based on fever.csv, let us set T0 = 32.2 and Tb = 37.2. To estimate r, we
can, for example, substitute the datapoint (t = 10, T = 36.9) from fever.csv in
Equation 3.1

36.9 = 37.2 − 5 · e−r · 10 (3.2)

which leads to

r = − ln(0.06)

10
≈ 0.281 (3.3)

Note that Equation 3.3 can also be obtained using Maxima’s solve command, see
the code FeverSolve.mac in the book software. Similar to the code (1.7) discussed
in Section 1.5.2, the solve command produces several solutions here. Nine of
these solutions are complex numbers, while one of the solutions corresponds to
Equation 3.3. Using Equation 3.3, T(t) can now be written as

T(t) = 37.2 − 5 · eln(0.06)/10 · t (3.4)

Plotting this function together with the body temperature data from Figure 3.1a,
Figure 3.1b is obtained. Again, this plot was generated using Maxima: see
FeverExp.mac in the book software. As the figure shows, the function T(t) fits the
data very well. Remember our discussion of nonlinear regression in Section 2.4
where a quantity called pseudo-R2 was introduced in formula (2.35) as a measure
of the quality of fit. Here, the Maxima program FeverExp.mac computes an
pseudo-R2 value of 99.8%, indicating an almost perfect fit of the model to the data.
Comparing Equation 2.35 with its implementation in FeverExp.mac, you will note
that

∑n
i=1(yi − ŷi)2 is realized in the form (y-yprog).(y-yprog), where the ‘‘.’’

denotes the scalar product of vectors, which multiplies vectors with components
yi − ŷi in this case (see the Maxima help pages for more details on Maxima’s vector
operation syntax). Note that the parameters of the model T(t) have been obtained
here using heuristic arguments. Alternatively, they could also be estimated using
the nonlinear regression procedure described in Section 2.4.

3.2.2.2 Application
The model in Equation 3.4 can now be used to answer all kinds of questions related
to the body temperature data. For example, it could be used to estimate the variation
of the total measurement time (i.e. the time until the final measurement value is
achieved) with varying starting temperatures of the thermometer. Or, it could be
used to accelerate the measurement procedure using estimates of Tb based on the
available data, and so on. Remember our definition of mathematical models in
Section 1.4 above: a mathematical model is a set of mathematical statements that
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Fig. 3.2 (a) Alarm clock with temperature sensor. (b) Room
temperature data.

can be used to answer a question which we have related to a system. As was pointed
out there and in Note 1.2.2, the best mathematical model is the smallest and
simplest set of mathematical statements that can answer the given question. In this
sense, we can say that the phenomenological model (3.4) is the best mathematical
model of the body temperature data probably with respect to most questions that
we might have regarding the body temperature data. In Section 3.4.1, however,
we will see that Equation 3.4 can also be derived from a mechanistic modeling
approach.

3.2.3
Alarm Clock

Let us consider now a data set very similar to the body temperature data, but
with a little complication that will lead us beyond the realms of phenomenological
modeling. Suppose you enter a warm room with a temperature sensor in your hand,
and you write down the temperature output of that sensor beginning with time t = 0
corresponding to the moment when you enter the warm room. At a first glance,
this is a situation perfectly similar to the body temperature measurement, and you
would probably expect a qualitative pattern of your data similar to Figure 3.1a.
Now suppose that your data look as shown in Figure 3.2b; that is, your data are
qualitatively different from those in Figure 3.1a, showing an initial decrease in the
temperature even after you entered the warm room at time 0. Figure 3.2b has been
produced using the Maxima code RoomDat.mac and the data room.csv in the
book software (similar to FeverDat.mac discussed in Section 3.2.2).

3.2.3.1 Need for a Mechanistic Model
In principle, these data could be treated using a phenomenological model as
before. To achieve this, we would just have to find some suitable function T(t),
which exhibits the same qualitative behavior as the data shown in Figure 3.2b.
For example, a polynomial could be used for T(t) (see the polynomial regression
example in Section 2.2.6) or T(t) could be expressed as a combination of a function
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similar to Equation 3.1 with a second-order polynom. Afterwards, the parameters
of T(t) would have to be adjusted such that T(t) really matches the data, similar
to our treatment of the body temperature data. As before, the function T(t) could
then be used, for example, to estimate the total measurement time depending
on the starting temperature, and so on. However, it is obvious that any estimate
obtained in this way would be relatively uncertain as long as we do not understand
the initial decrease in the temperature in Figure 3.2b. For example, if we would
use the phenomenological model T(t) to estimate the total measurement time for
a range of starting temperatures, then we would implicitly assume a similar initial
decrease in the temperature for the entire range of starting temperatures under
consideration – but can this be assumed? We do not know unless we understand
the initial decrease in the temperature.

The initial decrease in the temperature data shown in Figure 3.2b contains
information about the system that should be used if we want to answer our
questions regarding the system with a maximum of precision. The data virtually
want to tell us something about the system, just as ground-penetrating radar
data tell the archaeologist something about subsurface structures. To construct
a phenomenological model of temperature data, only the data themselves are
required, that is, one virtually just looks at the display of the device generating
the temperature data. Now we have to change our point of view toward a look
at the data-generating device itself, and this means we shift toward mechanistic
modeling.

Note 3.2.3 (Information content of ‘‘strange effects’’) Mechanistic models
should be used particularly in situations where ‘‘strange effects’’ similar to the
alarm clock data can be observed. They provide a means to explain such effects
and to explore the information content of such data.

3.2.3.2 Applying the Modeling and Simulation Scheme
Figure 3.2a shows the device that produced the data in Figure 3.2b: an alarm
clock with temperature display. The data in Figure 3.2b were produced when
the author performed a test of the alarm clock’s temperature sensor, measuring
the temperature inside a lecture room. Initially, he was somewhat puzzled by the
decrease in the measurements after entering the warm lecture room, but of course
the explanation is simple. The alarm clock was cheap and its temperature sensor
an unhasty and lethargic one – an unbeatable time span of 30 min is required to
bridge the gap between 18 and 21 ◦C in Figure 3.2b. Before the author entered the
lecture room at time t = 0, he and the alarm clock were outdoors for some time
at an ambient temperature around 12 ◦C. The initial decrease in the temperature
measurements, thus, obviously meant that the author had disturbed the sensor
inside the alarm clock when it still tried to attain that 12 ◦C.

Now to set up a mechanistic mathematical model that can describe the pattern of
the data in Figure 3.2b, we can follow the steps of the modeling and simulation scheme
described in Note 1.2.3 (Section 1.2.2). This scheme begins with the definitions step,
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where a question to be answered or a problem to be solved is defined. Regarding
Figure 3.2b, a natural question would be

Q1: How can the initial decrease of the temperature data be explained?

Alternatively, we could start with the problem

Q2: Predict the final temperature value based on the first few data points.

In the systems analysis step of the scheme in Note 1.2.3, we have to identity those
parts of the system that are relevant for Q1 and Q2. Remember the car example in
Section 1.1, where the systems analysis step led us from the system ‘‘car’’ in its
entire complexity to a very simplified car model comprising only tank and battery
(Figure 1.1). Here, our starting point is the system ‘‘alarm clock’’ in its entire
complexity, and we need to find a simplified model of the alarm clock now in the
systems analysis step, guided by our questions Q1 and Q2. Obviously, any details of
the alarm clock not related to the temperature measurement can be skipped in our
simplified model – just as any details of the car not related to the problem ‘‘The
car is not starting’’ were skipped in the simplified model of Figure 1.1.

Undoubtedly, the temperature sensor is an indispensable ingredient of any
simplified model that is expected to answer our questions Q1 and Q2. Now
remember that we stated in Note 1.2.2 that the simplest model is the best model,
and that one, thus, should always start with the simplest imaginable model. We
have the simplest possible representation of the temperature sensor in our model
if we just consider the temperature Ts displayed by the sensor, treating the sensor’s
internal construction as a black box. Another essential ingredient of the simplified
model is the ambient temperature Ta that is to be measured by the sensor. With
these two ingredients, we arrive at the simplified alarm clock model in Figure 3.3,
which we call Model A. Note that Model A is not yet a mathematical model, but
rather what we have called a conceptual model in Section 1.2.5. Model A represents
an intermediate step that is frequently used in the development of mathematical
models. It identifies state variables Ts and Ta of the model to be developed and it
provides an approximate sketch of their relationship, with Ts being drawn inside a

Ambient temperature Ta

(b)(a)

Sensor temperature Ts

Internal temperature Tl

Ambient temperature Ta

Sensor temperature Ts

Fig. 3.3 Simplified models of the alarm clock: (a) Model A and (b) Model B.
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rectangle symbolizing the alarm clock, Ta outside that rectangle. But although we
already know the system S and the question Q of the mathematical model to be
developed, Model A is still not a complete description of a mathematical model (S,
Q , M) since mathematical statements M that could be used to compute the state
variables are missing.

3.2.3.3 Setting Up the Equations
In this case, it is better to improve Model A a little bit before going into a for-
mulation of the mathematical statements, M. Based on Model A, the only thing
that the sensor (represented by Ts) ‘‘sees’’ is the ambient air temperature. But if
this were true, then the initial decrease in the temperature data in Figure 3.2b
would be hard to explain. If the sensor ‘‘sees’’ only the ambient air temperature,
then its temperature should increase as soon as we enter the warm room at
time t = 0. The sensor obviously somehow memorizes the temperatures of the
near past, and this temperature memory must be included into our alarm clock
model if we want to reproduce the data of Figure 3.2b. Now there are several
possibilities how this temperature memory could be physically realized within
the alarm clock. First of all, the temperature memory could be a consequence of
the temperature sensor’s internal construction. As a first, simple idea one might
hypothesize that the temperature sensor always ‘‘sees’’ an old ambient temper-
ature Ta(t − tlag) instead of the actual ambient temperature Ta(t). If this were
true, the above phenomenological model for temperature adaption, Equation 3.1,
could be used as follows. First, let us write down the ambient temperature Ta for
this case

Ta(t) =
{

Ta1 t < tlag

Ta2 t ≥ tlag
(3.5)

Here, Ta1 is the ambient temperature before t = 0, that is, before we enter the
warm room. Ta2 is the ambient temperature in the warm room. Since we assume
that the temperature sensor always sees the temperature at time t − tlag instead of
the actual temperature at time t, Equation 3.5 describes the ambient temperature
as seen by the temperature sensor. In Equation 3.1, Ta(t) corresponds to the body
temperature, Tb. This means that for t < tlag we have

T1(t) = Ta1 − (Ta1 − T0) · e−r · t (3.6)

and, for t ≥ tlag

T2(t) = Ta2 − (Ta2 − T1(tlag)) · e−r · (t−tlag) (3.7)

The parameters in the last two equations have the same interpretations as above
in Equation 3.1. Note that T1(tlag) has been used as the initial temperature in
Equation 3.7 since we are shifting from T1 to T2 at time tlag, and T1(tlag) is the
actual temperature at that time. Note also that t − tlag appears in the exponent of
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Equation 3.7 to make sure that we have T2(tlag) = T1(tlag). The overall model can
now be written as

T(t) =
{

T1(t) t < tlag

T2(t) t ≥ tlag
(3.8)

3.2.3.4 Comparing Model and Data
Some of the parameters of the last equations can be estimated based on Figure 3.2b
and the corresponding data in Room.csv:

T0 ≈ 18.5 (3.9)

tlag ≈ 2.5 (3.10)

Ta2 ≈ 21 (3.11)

In principle, the remaining parameters (Ta1 and r) can now either be determined
by heuristic arguments as was done above in the context of Equation 3.1, or by
nonlinear regression methods as described in Section 2.4. However, before this
is done, it is usually efficient to see if reasonable results can be achieved using
hand-tuned parameters. In this case, a hand tuning of the remaining parameters
Ta1 and r shows that no satisfactory matching between Equation 3.8 and the data can
be achieved, and thus any further effort (e.g. nonlinear regression) would be wasted.
Figure 3.4 shows a comparison of Equation 3.8 with the data of Figure 3.2b based
on the hand-fitted values Ta1 = 16.7 and r = 0.09. The figure has been produced
using the Maxima code RoomExp.mac and the data room.csv in the book software.
Looking at RoomExp.mac, you will note that the if. . . then command is used to
implement Equation 3.8 (see Maxima’s help pages for more information on this
and other ‘‘conditional execution’’ commands).
RoomExp.mac computes a coefficient of determination R2 = 92.7%, reflecting

the fact that data and model are relatively close together. Nevertheless, the result
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Fig. 3.4 (a) Comparison of Equation 3.8 (line) with the data
of Figure 3.2b (triangles) using Ta1 = 16.7 and r = 0.09.
(b) Same picture on a different scale, showing a dissimilarity
between model and data.
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is unsatisfactory since the qualitative pattern of the model curve derived from
Equation 3.8 differs from the data. This is best seen if model and data are plotted
for t < 14 as shown in Figure 3.4b. As can be seen, there is a sharp corner in
the model curve, which is not present in the data. Also, the model curve is bent
upward for t > 3 while the data points are bent downward there. Although the
coefficient of determination is relatively high and although we might hence be able
to compute reasonable temperature predictions based on this model, the qualitative
dissimilarity of the model and the data indicates that the modeling approach based
on Equation 3.8 is wrong. As it was mentioned in Section 1.2.2, the qualitative
coincidence of a model with its data is an important criterion in the validation of
models.

3.2.3.5 Validation Fails – What Now?
We have to reject our first idea of how temperature memory could be included
into the model. Admittedly, it was a very simple idea to assume that the sensor
sees ‘‘old’’ temperatures Ta(t − tlag) shifted by a constant time tlag. One of the
reasons why this idea was worked out here is the simple fact that it led us to a
nice example of a model rejected due to its qualitative dissimilarity with the data.
Equation 3.8 also is a nice example showing that one cannot always distinguish in a
strict sense between phenomenological and mechanistic models. On the one hand,
it is based on the phenomenological model of temperature adaption, Equation 3.1.
On the other hand, Equation 3.1 has been used here in a modified form based on
our mechanistic considerations regarding the temperature memory of the system.
As was already mentioned in Section 1.5, models of this kind lying somewhere
between phenomenological and mechanistic models are also called semiempirical
or gray-box models.

Before going on, let us spend a few thoughts on what we did so far in terms of the
modeling and simulation scheme (Note 1.2.3). Basically, our systems analysis above
led us to the conclusion that our model needs some kind of temperature memory.
Equation 3.8 corresponds to the modeling step of Note 1.2.3, the simulation and
validation steps correspond to Figure 3.4. After the validation of the model failed,
we are now back in the systems analysis step. Principally, we could go now into a more
detailed study of the internal mechanics of the temperature sensor. We could, for
example, read technical descriptions of the sensor, hoping that this might lead us
on the right path. But this would probably require a considerable effort and might
result into unnecessarily sophisticated models. Before going into a more detailed
modeling of the sensor, it is better to ask if there are other, simple hypotheses that
could be used to explain the temperature memory of the system.

Remember that Note 1.2.2 says that the simplest model explaining the data is
the best model. If we find such a simple hypothesis explaining the data, then
it is the best model of our data. This holds true even if we do not know that
this hypothesis is wrong, and even if the data could be correctly explained only
based on the temperature sensor’s internal mechanics. If both the models – the
wrong model based on the simple hypothesis and a more complex model based
on the temperature sensor’s internal mechanics – explain the data equally and
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indistinguishably well, then we should, for all practical purposes, choose the simple
model – at least based on the data, in the absence of any other indications that it is
a wrong model.

3.2.3.6 A Different Way to Explain the Temperature Memory
Fortunately, it is easy to find another, simple hypothesis explaining the temperature
memory of the system. In contrast to our first hypothesis above (‘‘temperature
sensor sees old temperatures’’), let us now assume that the qualitative difference
between the data in the body temperature and alarm clock examples (Figures 3.1a
and 3.2b) is not a consequence of differences in the internal mechanics of the
temperature sensors, but let us assume that the temperature sensors used in both
the examples work largely the same way. If this is true, then the difference between
the data in the body temperature and alarm clock examples must be related to
differences in the construction of the clinical thermometer and the alarm clock
as a whole, namely to differences in their construction related to temperature
measurements. There is indeed an obvious difference of this kind: when the
clinical thermometer is used, the temperature sensor is in direct contact with the
body temperature that is to be measured. In the alarm clock, on the other hand,
the temperature sensor sits somewhere inside, not in direct contact with the
ambient temperature that is to be measured. This leads to the following.

Hypothesis:
The temperature memory of the alarm clock is physically realized in terms of the
temperature of its immediate surroundings inside the alarm clock, for example,
as the air temperature inside the alarm clock or as the temperature of internal
parts of the alarm clock immediately adjacent to the temperature sensor.

To formulate this idea in mathematical terms, we need one or more state
variable(s) expressing internal air temperature or the temperatures of internal parts
immediately adjacent to the temperature sensor. Now it was emphasized several
times that we should start with the simplest approaches. The simplest thing that
one can do here is to use an effective internal temperature Ti, which can be thought of
as some combination of internal air temperature and the temperature of relevant
internal parts of the alarm clock. A more detailed specification of Ti would require
a detailed investigation of the alarm clock’s internal construction, and of the way in
which internal air and internal parts’ temperatures affect the temperature sensor.
This investigation would be expensive in terms of time and resources, and it
would hardly improve the results, which is achieved below based on Ti as a largely
unspecified ‘‘black box quantity’’.

Note 3.2.4 (Effective quantities) Effective quantities expressing the cumulative
effects of several processes (such as Ti) are often used to achieve simple model
formulations.
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Introducing Ti as a new state variable in Model A, we obtain Model B as an
improved conceptual model of the alarm clock (Figure 3.3). As a next step, we now
need mathematical statements (the M of the mathematical model (S, Q , M) to be
developed) that can be used to compute the state variables. Since ODEs are required
here, we will go on with this example at the appropriate place below (Section 3.4.2).
It will turn out that Model B explains the data in Figure 3.2b very well.

3.2.3.7 Limitations of the Model
Remember that as a mechanistic modeler you are a ‘‘systems archaeologist’’,
uncovering the internal system mechanics from data similar to an archaeol-
ogist who derives subsurface structures from ground-penetrating radar data.
Precisely in this ‘‘archaeological’’ way, Figure 3.3 was derived from the data
in Figure 3.2b by our considerations above. Our starting point was given by the
data in Figure 3.2b with the puzzling initial decrease in the temperatures, an
effect that obviously ‘‘wants to tell us something’’ about internal system me-
chanics. Model B now represents a hypothesis of what the data in Figure 3.2b
might tell us about the internal mechanics of the alarm clock during temperature
measurement.

Note that Model B is a really brutal simplification of the alarm clock as a real
system (Figure 3.2a), similar to our brutal simplification of the system ‘‘car’’
in Section 1.1. In terms of Model B, nothing remains of the initial complexity
of the alarm clock except for the three temperatures Ts, Ti, and Ta. It must
be emphasized that Model B represents an hypothesis about what is going on
inside the alarm clock during temperature measurement. It may be a right or
wrong hypothesis. The only thing we can say with certainty is that Model B
probably represents the simplest hypothesis explaining the data in Figure 3.2b.
Model B may fail to explain more sophisticated temperature data produced with
the alarm clock, and such more sophisticated data might force us to go into a more
detailed consideration of the alarm clock’s internals; for example, into a detailed
investigation of the temperature sensor, or into a more detailed modeling of the
alarm clock’s internal temperatures, which Model B summarizes into one single
quantity Ti.

As long as we are concerned with the data only in Figure 3.2b, we can be
content with the rather rough and unsharp picture of the alarm clock’s internal
mechanics provided by Model B. The uncertainty remaining when mechanistic
models such as Model B are developed from data is a principal problem that
cannot be avoided. A mechanistic model represents a hypothesis about the internal
mechanics of a system, and it is well known that it is, as a matter of principle,
impossible to prove a scientific hypothesis based on data [95]. Data can be used
to show that a model is wrong, but they can never be used to prove its validity.
From a practical point of view, this is not a problem since we can be content with
a model as long as it explains the available data and can be used to solve our
problems.
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3.3
General Idea of ODE’s

3.3.1
Intrinsic Meaning of π

Simplicity is a characteristic of good mathematical models (Note 1.2.2), but also
a characteristic of good science in general (a fact that does not really surprise us
since good science must of course be based on good mathematical models . . . ).
A scientific result is likely to be well understood if it can be expressed in simple
terms. For example, if there is someone who wants to know about the meaning of
π , you could begin with a recitation like this

π = 3.14159265358979323846264338327950288419716939937510 . . . (3.12)

If that someone is a clever guy, he might be able to do a similar recitation after
some time. But, of course, he would not understand the meaning of π , even if he
could afford the time to recite every digit. Your next idea may be to use formulas
such as [96]

π = 4 ·
∞∑

n=0

(−1)n

2n + 1
(3.13)

Probably, your listener would be happy that it is not so much effort to memorize
π this way. But, of course, he still would not understand. He would not understand
until you say a simple thing: ‘‘π is the surface area of a circle with radius 1.’’ He
would understand it this way because π is treated in the right setting here, namely
in terms of geometry. π can be treated in terms of algebra as above, but its intrinsic
meaning belongs to the realms of geometry, not algebra. This is reflected by the
fact that you have to tell comparatively long and complicated stories about π in
terms of algebra (Equations 3.12 and 3.13 above), while much more can be said by
a very simple statement in terms of geometry. The example may seem trivial, but
its practical importance can hardly be underestimated. To understand things, we
should always try to find a natural setting for our objects of interest.

3.3.2
ex Solves an ODE

With this idea in mind, let us reconsider the body temperature example from
the last section. Remember that the data in Figure 3.1a were described using the
function

T(t) = Tb − (Tb − T0) · e−r · t (3.14)

The main ingredient of this function is the exponential function. Now, sim-
ilar to above, let us ask a naive question: What is the exponential function? If
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you never have thought about this, you may start with similar answers as above.
For example, the exponential function is the power function et having the Euler
number

e = 2.718281828459045235360287471352662497757247093699959 . . . (3.15)

as its base. Or, you may use a formula similar to Equation 3.13 [17]:

ex =
∞∑

n=0

xn

n!
(3.16)

Undoubtedly, answers of this kind would prove that you are knowing a lot more
than those students who believe that ‘‘the exponential function is the ex key on
my pocket calculator’’. But you never would be able to understand the intrinsic
meaning of the exponential function this way. As above, algebra just is not the
right setting if you want to understand et.

The right setting for an understanding of the exponential function are ODEs,
just as geometry is the right setting to understand π . This is related with a fact
that most readers may remember from calculus: The derivative of et is et, that is, et

and its derivative coincide. In terms of ODEs, this is expressed as follows: et solves
the ODE

y′ = y (3.17)

with initial condition

y(0) = 1 (3.18)

3.3.3
Infinitely Many Degrees of Freedom

Let us say a few words on the meaning of the last two equations (precise definitions
are given in Section 3.5). At a first glance, Equation 3.17 looks similar to many
other algebraic equations that the reader will already have encountered during his
mathematical education. There is an unknown quantity y in this equation, and we
have to find some particular value for y such that Equation 3.17 is satisfied. There
is, however, an important difference between Equation 3.17 and standard algebraic
equations: the unknown y in Equation 3.17 is a function. To solve Equation 3.17, y
must be replaced by a function y(t) which satisfies Equations 3.18 and 3.17 for every
t ∈ R. Note that y′ is the derivative of y with respect to the independent variable,
t in this case. Any of the common denotations of derivatives can be used when
writing down differential equations. In particular, ẏ is frequently used to denote a
time derivative.

The fact that functions serve as unknowns of differential equations makes their
solution a really challenging task. A simple analogy may explain this. Consider, for
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example, a simple linear equation such as

3x − 4 = 0 (3.19)

which everyone of us can easily solve for x. Now you know that the number of
unknowns and equations can be increased arbitrarily. For example,

2x − 8y = 4
7x − 5y = 2

(3.20)

is a system of two linear equations in the two unknowns x and y, and this
generalizes to a system of n linear equations in n unknowns as follows:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

an1x1 + an2x2 + · · · + annxn = bn

(3.21)

To solve the last system of equations, the n unknowns x1, x2, . . . , xn must be
determined. Although there are efficient methods to solve equations of this kind
(e.g. Maxima’s solve command could be used, see also [17]), it is obvious that the
computational effort increases beyond all bounds as n → ∞. Now remember that
the unknown of a differential equation is a function. At a first glance, it may seem
that we, thus, have ‘‘less unknowns’’ in an equation such as (3.17) compared to
Equation 3.21: y as the only unknown of Equation 3.17, and x1, x2, . . . , xn as the n
unknowns of Equation 3.21. But now ask yourself how many numbers x1, x2, . . . , xn

you would need to describe a function y = f (x) on some interval [a,b]. In fact, you
would need infinitely many numbers, as you would have to recite all the values of
that function for those infinitely many values of the independent variable x in the
interval [a,b]. This is related to the fact that a real function y = f (x) on some interval
[a,b] is said to have infinitely many degrees of freedom on its domain of definition. If we
solve a differential equation, we thus effectively solve an equation having infinitely
many unknowns corresponding to the solution functions degrees of freedom. The
solution of differential equations is indeed one of the most challenging tasks in
mathematics, and a substantial amount of the scientific work in mathematics has
been devoted to differential equations since many years.

3.3.4
Intrinsic Meaning of the Exponential Function

It was said that to solve Equation 3.17, we need to replace the unknown y by
a function f (t) such that a valid equation results. Choosing f (t) = et and using
f ′(t) = et, Equation 3.17 turns into

et = et (3.22)
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which means that et indeed solves Equation 3.17 in the sense described above.
Note that f (t) = c · et would also solve Equation 3.17, where c ∈ R is some constant.
This kind of nonuniqueness is a general characteristic of differential equations,
usually overcome by imposing appropriate additional initial conditions or boundary
conditions. Equation 3.18 provides an example of an initial condition (boundary
conditions are discussed further below). It is not really hard to understand why this
condition is needed here to make the solution of Equation 3.17 unique. Remember
how we motivated the use of differential equations above (Note 3.1.1): they provide
us with a means to formulate equations in terms of the rates of change of the
quantities we are interested in. From this point of view, we can say that Equation
3.17 fixes the rate of change for the quantity y in a way that it always equals the
current value of y. But it is of course obvious that we cannot derive the absolute
value of a quantity from its rate of change. Although your bank account may
have the same interest rates as the bank account of Bill Gates, there remains a
difference that can be made precise in terms of the concrete values of those bank
accounts at some particular time, which is exactly what is meant by an initial
condition.

Equation 3.18 is an initial condition for the ODE (Equation 3.17) since it
prescribes the initial value of y at time t = 0. f (t) = et, our solution of Equation
3.17, obviously also satisfies Equation 3.18, and it thus solves the so-called initial
value problem comprising Equations 3.17 and 3.18. Thus, we can now answer the
above question ‘‘What is the exponential function?’’ as follows:

The exponential function is the real function f (t) which coincides everywhere
with its derivative and satisfies f (0) = 1.

This statement characterizes the exponential function in a simple and natural
way, similarly simple and natural as the characterization of π in Section 3.3.1.
Note that unique solvability of Equations 3.17 and 3.18 is assumed here – this is
further discussed in Section 3.5. There is indeed no simpler way to explain the
exponential function, and the complexity of algebraic statements such as Equations
3.15 and 3.16 emanates from that simple assertion above just as the algebraic
complexity of π emanates from the assertion that ‘‘π is the surface area of a circle
having radius 1’’. As an alternative, less mathematical formulation of the above
‘‘explanation of the exponential function’’, we could also say (neglecting the initial
condition)

The exponential function describes a process where the rate of change of a
quantity of interest always equals the actual value of that quantity.

This second formulation makes it understandable why the exponential function
appears so often in the description of technical processes. Technical processes
involve rates of changes of quantities of interest, and the exponential function
describes the simplest hypothesis that one can make regarding these rates of
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changes. This is the intrinsical meaning of the exponential function, and this
is why it is so popular. Note that the exponential function can also be used in
situations where the rate of change of a quantity of interest is a linear function of
the actual value of that quantity (Sections 3.4.1 and 3.7.2.1).

3.3.5
ODEs as a Function Generator

Ordinary differential equations also provide the right setting for an understanding
of many other transcendental functions. For example, the cosine function can be
characterized as the solution of

y′′ = −y (3.23)

with the initial conditions

y(0) = 1
y′(0) = 0

(3.24)

cos(t) satisfies Equation 3.23 in the sense described above since cos′′(t) = − cos(t)
for t ∈ R. Equation 3.24 is also obviously valid since cos(0) = 1 and cos′(0) =
− sin(0) = 0. Note that two initial conditions are required here, which is related
to the fact that Equation 3.23 is a so-called second-order equation since it involves
a second-order derivative. The order of an ODE is always the order of its highest
derivative (precise definitions are given in Section 3.5).

Note 3.3.1 (Understanding transcendental functions) Ordinary differential
equations provide a natural framework for an understanding of the intrinsic
meaning of functions that are frequently used to describe technical processes
such as the exponential function and the trigonometric functions.

Beyond this, we will see that ODEs virtually serve as what might be called a
function generator in the sense that they can be used to produce functions that do not
belong to the classical zoo of functions such as the exponential and trigonometric
functions. An example is the function describing the time dependence of cell
biomass during wine fermentation (see Figure 3.20 in Section 3.10.2). This function
cannot by described by any of the classical functions, but it can be described using
a system of ODEs as it is explained below.

Note 3.3.2 (ODEs as function generator) ODEs can be used to generate func-
tions that do not belong to the classical zoo of functions such as the exponential
and trigonometric functions.
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3.4
Setting Up ODE Models

Based on the last section, the reader knows some basic facts about ODEs. As this
section will show, this is already sufficient to set up and solve some simple ODE
models. This is not to say, however, that you should not read the next sections. As
Section 3.8 will show, things can go wrong when you do not know what you are
doing, particularly when you solve ODEs using numerical methods.

3.4.1
Body Temperature Example

The models discussed in Section 3.2 are reformulated here in terms of ODE’s.
Let us begin with a reinvestigation of the body temperature data (Figure 3.1a).
Above, we used the following phenomenological model of these data (compare
Equation 3.1):

T(t) = Tb − (Tb − T0) · e−r · t (3.25)

3.4.1.1 Formulation of an ODE Model
This formulation involves the exponential function, and in the last section we have
learned that the intrinsic meaning of the exponential function becomes apparent
only when it is expressed in terms of an ODE. We may, thus, hope to learn more
about the background of this equation by reformulating it as an ODE. To achieve
this, we need to express T(t) somehow in terms of its derivative. So let us write
down the derivative of T(t):

T ′(t) = r · (Tb − T0) · e−r · t (3.26)

This equation can already be viewed as an ODE, since it is an equation in the
unknown T(t) which involves a derivative of the unknown function. An appropriate
initial condition would be

T(0) = T0 (3.27)

since T0 is the initial temperature at time 0 (see the discussion of Equation 3.1
above). Mathematically, this ODE is easily solved by an integration of the right-hand
side of Equation 3.26, using Equation 3.27 to determine the integration constant.
This leads us back to Equation 3.25, without learning anything about the back-
ground of that equation. Does this mean it makes no sense to reformulate Equation
3.25 as an ODE?

Not at all. Remember the structure of the ODE characterizing the exponential
function, Equation 3.17, where the unknown function appears in the right-hand
side of the equation. The right-hand side of Equation 3.26 can also be expressed in
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terms of the unknown T(t) as follows:

T ′(t) = r · (Tb − T(t)) (3.28)

Together with the initial condition (3.27) we thus arrive at the following initial
value problem:

T ′(t) = r · (Tb − T(t)) (3.29)

T(0) = T0 (3.30)

3.4.1.2 ODE Reveals the Mechanism
Equations 3.29 and 3.30 now are an equivalent formulation of Equation 3.25 in
terms of an ODE as desired. And, as we will see now, these equations indeed help
us to understand the mechanism that generated the data in Figure 3.1a. Similar
to our discussion of the exponential function (Section 3.3), the ODE formulation
reveals the intrinsic meaning of Equation 3.25.

What Equation 3.29 obviously tells us is this: T ′(t), the temperature’s rate
of change, is proportional to the difference between the body temperature, Tb,
and the actual temperature, T(t). Since an almost perfect coincidence between
Equation 3.25 and the data in Figure 3.1a was achieved above (Figure 3.1b), we
may safely assume that it is this mechanism that generated the data in Figure 3.1a.
Qualitatively, the proportionality expressed in Equation 3.29 makes good sense:
Assume we are in a situation where T(t) < Tb, that is, where the temperature
displayed by the clinical thermometer used in our example is smaller than the body
temperature. Then we would expect an increase in T(t), and indeed T′(t), the rate of
change of the temperature, will be positive since we have Tb − T(t) > 0 in this case.
On the other hand, T(t) > Tb implies a decrease in T(t) by the same argument. The
proportionality expressed by Equation 3.29 is also in good coincidence with our
everyday experience: the higher the difference between T(t) and Tb is, the higher is
the temperature adjustment rate, T ′(t).

The parameters of the model can also be better understood based on the ODE
formulation of the model. For example, the meaning of T0 and Tb is much more
evident from Equations 3.29 and 3.30 compared to Equation 3.25. Equation 3.30
immediately tells us that T0 is the initial temperature, while we have to insert
t = 0 into Equation 3.25 to see the same thing in the context of that equation.
Equations 3.29 and 3.30 obviously just provide a much more natural formulation
of the model. Regarding r, one can of course see from Equation 3.25 that this
parameter controls the speed of temperature adjustment. Based on Equation 3.29,
however, we can easily give a precise interpretation of this parameter as follows:
Equation 3.29 implies

r = T ′(t)
Tb − T(t)

(3.31)
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Now since

T ′(t) ≈ T(t + 
t) − T(t)


t
(3.32)

for small 
t, we have

r ≈ (T(t + 
t) − T(t))/(Tb − T(t))


t
(3.33)

This means that r expresses the percent rate of temperature adjustment per unit
of time, expressed relative to the actual difference between sensor temperature
and body temperature, Tb − T(t). The unit of r is s−1. For example, r = 0.1 would
mean that we can expect a 10% reduction in the actual difference between sensor
temperature and body temperature per unit of time (which will slightly overestimate
the actual reduction in that difference in a given unit of time since this difference
is continuously reduced). Interpretations of this kind are important because we
should of course always know what we are doing, and which quantities we are
dealing with. They are also practically useful since they, for example, help us to find
reasonable a priori values of parameters. In this case, since r is a percent value, we
know a priori that its value will probably be somewhere between 0 and 1.

Note 3.4.1 (Natural interpretations of parameters) While the parameters of
phenomenological models are hardly interpretable tuning parameters in many
cases, the parameters of mechanistic models do often have natural interpretations
in terms of the system.

3.4.1.3 ODE’s Connect Data and Theory
Equation 3.29 is also known as Newton’s law of cooling [97]. Newton’s law of
cooling can be derived under special assumptions from the heat equation, which
is the general law describing the variation of temperature in some given region
in time and space (see [97] and Section 4.2 for more details). Precisely, Newton’s
law of cooling can be derived from the heat equation in cases where the surface
conductance of the body under consideration is ‘‘much smaller’’ than the interior
thermal conductivity of that body. In such cases, the temperature gradients within
the body will be relatively small since the relatively high internal conductivity of
the body tends to flatten out any higher temperature gradients. Now if there is
little temperature variation inside the body, so-called lumped models of the body
that neglect the variation of temperature in space, such as Newton’s law of cooling,
become applicable (compare Section 1.6.3). The Biot number expresses the ratio
between surface conductance and interior thermal conductivity of a body [97]. If its
value is less than 0.1, Newton’s law of cooling is usually considered applicable.

In the light of this theory, our mechanistic model, thus, tells us even more about
the ‘‘internal mechanics’’ of the clinical thermometer that generated the data in
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Figure 3.1a. We have seen in Figure 3.1b that there is a good coincidence between
these data and Newton’s law of cooling (Equation 3.29). This means that we have a
good reason to assume the validity of the assumptions on which this law is based,
that is, we can assume a Biot number less than 0.1 for the clinical thermometer.
In other words, the interior conductivity of the thermometers metal head can be
expected to be much higher than its surface conductivity. Generally, what we see
here is this:

Note 3.4.2 (Mechanistic models generate theoretical insights) Mechanistic
models make it easier to see connections with existing theories, and to make use
of the results and insights of these theories.

3.4.1.4 Three Ways to Set up ODEs
Let us make a last point about the body temperature model. When we derived
the ODE model above (Equations 3.29 and 3.30), we took the phenomenological
Equation 3.25 as a starting point. Although the phenomenological Equation 3.25
fitted the data very well (Figure 3.1b), and although one might, thus, be tempted to
say that there is no need to do anything beyond Equation 3.25, we have seen that it
made good sense to derive a mechanistic ODE model from Equation 3.25. In doing
this, we achieved a better understanding of Equation 3.25, and of the way in which
the clinical thermometer generated the data in Figure 3.1a. The derivation of an
ODE model based on a phenomenological model, however, is only one among several
possibilities to set up an ODE model. Starting with the data in Figure 3.1a, we
could also have used a theoretical approach, trying to understand the mechanisms
generating these data based on a study of the relevant literature. This would have
led us to a study of the heat equation and the Biot number as discussed above,
and making the natural assumption that the interior thermal conductivity within
the metal head of the clinical thermometer exceeds the surface conductivity at the
surface where it touches the human body, we might have come up with Newton’s
law of cooling independently from Equation 3.25.

Another possibility to set up the ODE model would have been the rate of change
approach. In the rate of change approach (compare Note 3.1.1), we would start
with the data in Figure 3.1a. As a first step, we would have to identify and define
the state variables needed to describe these data in terms of a model. As above,
we would find there is one state variable (temperature), and as above we would
designate it, for example, as T(t). Now in the rate of change approach, the central
question is

What are the rates of change of the state variables?

This question then would lead us to considerations similar to those made above
in our discussion of Equation 3.29. Similar to above, we would ascertain that T ′(t),
the temperature’s rate of change, depends both on the sign and on the absolute
value of Tb − T(t) as described above. The simplest assumption that one can make
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in this case is a linear dependence of T ′(t) on Tb − T(t) as expressed by Equation
3.29, and this would again lead us to the same ODE model as above.

Note 3.4.3 (Phenomenological, theoretical, and rate of change approach) First-
order ODEs can be set up using phenomenological equations, theoretical con-
siderations, or by expressing the state variable’s rate of change.

3.4.2
Alarm Clock Example

As a second example of setting up an ODE model, let us reconsider the alarm clock
data (Figure 3.2b). In Section 3.2, a conceptual Model B was developed for these
data (Figure 3.3). This model involves three state variables:

• Ts(
◦C): the sensor temperature

• Ti(
◦C): the effective internal temperature

• Ta( ◦C): the ambient temperature.

3.4.2.1 A System of Two ODEs
In Section 3.4.1.4, three ways to set up ODEs have been introduced. We cannot
(easily) use the phenomenological approach here since, in contrast to the body
temperature model discussed above, no phenomenological model of the data in
Figure 3.2b has been developed in Section 3.2. The theoretical approach, however,
can be used similar to the discussion in Section 3.4.1, since the relationship
between Ts and Ti as well as the relationship between Ti and Ta follows a similar
logic as the relationship between T and Tb discussed in Section 3.4.1. Looking
at Ts and Ti, we can say that, in the sense of Newton’s law of cooling, Ti is the
temperature of the ‘‘cooling environment’’ that surrounds the sensor described by
Ts. From a theoretical point of view, Newton’s law of cooling is the simplest way to
describe this situation, which leads to

T ′
s(t) = rsi · (Ti(t) − Ts(t)) (3.34)

This equation is exactly analogous to Equation 3.29 (an interpretation of rsi is
given in the next section). As we have just said, this equation is the simplest way to
describe the relationship between Ts and Ti, and it is, thus, appropriate here since
we should always begin with simple approaches (Note 1.2.4). More sophisticated
approaches can be used if we should observe substantial deviations between this
model and the data. Now with the same reasoning as above, we can write down a
corresponding equation relating Ti and Ta as follows:

T ′
i (t) = ria · (Ta − Ti(t)) (3.35)

The last two equations could also have been established using the rate of change
approach and a similar argumentation as it was made above for Equation 3.29.
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Regarding Equation 3.34, for example, the rate of change approach would be based
on the observations

• T ′
s(t) increases with |Ti(t) − Ts(t)|

• Ti(t) − Ts(t) determines the sign of T ′
s (t).

Then, as above, the proportionality expressed by Equation 3.34 is the simplest
way to mathematically express these observations. Denoting the temperatures of
Ti and Ts at time t = 0 with Ti0 and Ts0, respectively, the overall problem can now
be written as an initial value problem for a system of two ODEs as follows:

T ′
s(t) = rsi · (Ti(t) − Ts(t)) (3.36)

T ′
i (t) = ria · (Ta − Ti(t)) (3.37)

Ts(0) = Ts0 (3.38)

Ti(0) = Ti0 (3.39)

Note that this problem involves not only two ODEs, Equations 3.36 and 3.37,
but also two corresponding initial conditions, Equations 3.38 and 3.39. We may,
thus, note here that the number of initial (or boundary) conditions required to
solve ODEs increases not only with the order of the ODE (see the discussion
in Section 3.3.5), but – naturally – also with the number of ODEs under consid-
eration. Every first-order ODE needs its own initial or boundary condition – the
‘‘Gates’’ argument used in Section 3.3.4 applies to every single ODE.

3.4.2.2 Parameter Values Based on A priori Information
To solve Equation 3.36–3.39, we need to specify the following parameters: rsi, ria,
Ta, Ts0, and Ti0. Based on the same argumentation used above for the parameter
r in Section 3.4.1.2, the coefficients of proportionality in Equations 3.36 and 3.37
can be interpreted as follows:

• rsi (min−1) is the percent rate of temperature adjustment
between Ts(t) and Ti(t), expressed relative to the actual
difference Ti(t) − Ts(t)

• ria (min−1) is the percent rate of temperature adjustment
between Ti(t) and Ta, expressed relative to the actual
difference Ta − Ti(t)

We, thus, know a priori that the values of these parameters are positive, probably
somewhere between 0 and 1. Regarding Ta, the data in Figure 3.2b tell us that
it is reasonable to set Ta ≈ 21 ◦C. To see this, you may also look into the raw
data of this figure in the file room.csv, which you find in the book software.
Regarding Ts0, Figure 3.2b or room.csv tells us that we should set Ts0 ≈ 18.5.
Regarding Ti0, finally, it seems that we have a little problem here since we do not
have any measurement values of this quantity. But remember that initial decrease
in the sensor temperature in Figure 3.2b, and remember why we introduced Ti

into Model B (Figure 3.3). Ti serves as the temperature memory of the alarm clock
model: it memorizes the fact that the alarm clock was in a cold environment before
t = 0.
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Physically, this temperature memory is realized in terms of the relatively cold
temperatures of the internal air inside the alarm clock or of certain parts inside the
alarm clock that are immediately adjacent to the alarm clock. We had introduced
Ti above as an ‘‘effective temperature’’ representing internal air temperature and
internal parts’ temperatures. As explained in Section 3.2.3, the temperature sensor
‘‘sees’’ only Ti instead of Ta. Now at time t = 0, when we enter the warm room,
Ti is still colder than the actual sensor temperature, Ts, and this is why that initial
decrease in the sensor temperature in Figure 3.2b is observed. In terms of this
model, the initial decrease in the sensor temperature can, thus, only be explained if
Ti0 < Ts0, even Ti0 < mint≥0 Ts(t). Looking into room.csv, it can be seen that this
means Ti < 18.2. But we know even more. From Figure 3.2b or room.csv you can
see that around t ≈ 2.5 min we have T ′

s = 0. In terms of Equation 3.36, this means
Ti(2.5) ≈ Ts(2.5) or Ti(2.5) ≈ 18.2 (using Room.csv again).

Our a priori knowledge of the parameters of Equations 3.36–3.39 can be
summarized as follows:

• rsi, ria: percent values, probably between 0 and 1
• Ta ≈ 21 ◦C
• Ts0 ≈ 18.5
• Ti0: to be determined such that Ti(2.5) ≈ 18.2.

3.4.2.3 Result of a Hand-fit
The criterion to be applied for the determination of more exact values of the
parameters is a good coincidence between the model and the data. According to
the nonlinear regression idea explained in Section 2.4, the parameters have to be
determined in a way such that Ts as computed from Equations 3.36–3.39 matches
the data in Figure 3.2b as good as possible. Note, however, that if we do not use the
closed form solution of Equations 3.36–3.39 that is discussed in Section 3.7.3, the
methods in Section 2.4 need to be applied in a slightly modified way here since
Ts, which serves as the nonlinear regression function, is given only implicitly as
the solution of Equations 3.36–3.39. This problem is addressed in Section 3.9.
Here, we confine ourselves to a simple hand tuning of the parameters. This is
what is usually done first after a new model has been created, in order to see if
a good fit with the data can be obtained in principle. Figure 3.5 shows the result
of Equations 3.36–3.39 obtained for the following hand-fitted parameter values:
rsi = 0.18, ria = 0.15, Ta = 21, Ts0 = 18.5, and Ti0 = 17.

The figure was produced using the Maxima code RoomODED.mac and the data
room.csv in the book software. This code is similar to FeverExp.mac discussed
in Section 3.2.2.1, and it is based on Equations 3.199 and 3.200, a ‘‘closed form
solution’’ of Equations 3.36–3.39, which is discussed in Section 3.7.3. Obviously,
the figure shows a very good fit between Ts and the data. Note that the Ti curve
in Figure 3.5 intersects the Ts curve exactly at its minimum, as it was required
above. Note also that it is by no means ‘‘proved’’ by the figure that we have found
the ‘‘right’’ values of the parameters. There may be ambiguities, that is, it might
be true that a similarly perfect fit could be produced using an entirely different set
of parameters. Also, you should note that even if there are no ambiguities of this



142 3 Mechanistic Models I: ODEs

kind, the parameter values were obtained from data, and thus are estimates in a
statistical sense as it was discussed in Section 2.2.4.

3.4.2.4 A Look into the Black Box
Our result is a nice example of how mechanistic models allow us a look into the
hidden internal mechanics of a system, that is, into the system viewed as a black
box. Before we applied the model, we had no information about the dynamics of the
temperatures inside the alarm clock. Based on Figure 3.5, we may now conjecture
a pattern of the internal temperatures similar to the Ti curve in the figure, that is,
starting with an initial temperature substantially below the starting temperature of
the sensor (17.0 ◦C as compared to 18.5 ◦C), and reaching room temperature not
before about 20 min. Below, we will see a number of similar applications where
models allow us to ‘‘see’’ things that would be invisibly hidden inside the system
black box without the application of mathematical models.

However, careful interpretations of what we are ‘‘seeing’’ in terms of models are
necessary. We had deliberately chosen to say that the model allows us to conjecture
a pattern of the internal temperatures. We have no proof that this pattern really
describes the pattern of the alarm clock’s internal temperature unless we really
measure that temperature. In the absence of such data, the Ti pattern in Figure 3.5
is no more than a hypothesis about the alarm clock’s internal temperature. Its
validity is somewhere located between a mere speculation and a truth proven in
terms of data. Certainly, we may consider it a relatively well-founded hypothesis as
the Ts data are so nicely explained using our model. But we should know about its
limitation.

Basically, mathematical models are a means to generate clever hypotheses about
what is going on inside the system black box. You as the user of mathematical
models should know that this is different from actually seeing the true ‘‘internal
mechanics’’ of the black box. This is the reason why experimental data will never
become superfluous as a consequence of the application of mathematical models or
computer simulations. The author of this book frequently met experimentalists
who seemed to believe that models and simulations would be a threat to their
jobs. What everyone should learn is that modelers and experimentalists depend on
each other, and that more can be achieved if they cooperate. No experimentalist
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needs to tremble with fear when the modelers come along with their laptops and
mathematical equations. Every modeler, on the other hand, should tremble with
fear if his model is insufficiently validated with data, and he should read the ‘‘Dont’s
of mathematical modeling’’ in Section 1.8 (particularly that ‘‘Do not fall in love
with your model’’. . . ).

Note 3.4.4 (Importance of experimental data) Mechanistic mathematical mod-
els can be viewed as a clever way to generate hypotheses about the inside of
system black boxes, but this is different from actually seeing what is going on
there. Experimental data provide the only way to validate hypotheses regarding
black box systems.

3.5
Some Theory You Should Know

Based on the previous sections, the reader should now have a general idea of ODEs
and how they can be used to formulate mathematical models. This section and the
following sections (Sections 3.6–3.9) are intended to give you a more precise idea
about the mathematical aspects of ODE problems and their various subtypes, and
about what you are doing when you solve ODEs using computer programs, which
is the typical case. You may skip this and the following sections at a first reading if
you just want to get an idea of how ODEs can be used in various applications. In
that case, you may choose to go on with the examples in Section 3.10. But as always
in life, it is a good idea to have an idea of what one is doing, so do not forget to read
this and the following sections.

3.5.1
Basic Concepts

Let us summarize what we already know about ODEs. The first ODE considered in
Section 3.3.2 was

y′ = y (3.40)

y(0) = 1 (3.41)

Note that this is an abbreviated notation. If not stated otherwise, y′ = y means
y′(t) = y(t) for t ∈ R. The order of an ODE is the order of the highest derivative of
the unknown function, so you see that Equation 3.40 is a first-order ODE. Equation
3.41 is the so-called initial condition, which is required to make (3.40) uniquely
solvable. Both equations together constitute what is called an initial value problem.
As stated above, the exponential function is the solution of (3.40) and (3.41) since
both equations are satisfied for t ∈ R if we replace y(t) and y′(t) with et (remember
that et and its derivative coincide).
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Using a reformulation of the body temperature model, an ODE with a slightly
more complex right-hand side was obtained in Section 3.4.1:

T ′(t) = r · (Tb − T(t)) (3.42)

T(0) = T0 (3.43)

Comparing this with Equations 3.40 and 3.41, you see that we can of course use
a range of different notations, and this is also what we find in the literature. You may
write y, y(t), T , T(t) or anything else to designate the unknown function. A simple
y such as in Equations 3.40 and 3.41 is often preferred in the theoretical literature
on ODEs, while the applied literature usually prefers a notation which tells us a
little more about the meaning of the unknown, such as the T in Equations 3.42
and 3.43, which designates temperature.

We also considered a second-order ODE in Section 3.3:

y′′ = −y (3.44)

y(0) = 1 (3.45)

y′(0) = 0 (3.46)

Here, Equation 3.44 is the ODE, while Equations 3.45 and 3.46 are the initial
conditions, which are again required to assure unique solvability as before. Two
initial conditions are required here since Equation 3.44 is a second-order ODE.
Again, the system consisting of Equations 3.44–3.46 is called an initial value
problem, and we saw in Section 3.3 that it is solved by the cosine function.

In Section 3.4.1, we considered the following system of first-order ODEs:

T ′
s(t) = rsi · (Ti(t) − Ts(t)) (3.47)

T ′
i (t) = ria · (Ta − Ti(t)) (3.48)

Ts(0) = Ts0 (3.49)

Ti(0) = Ti0 (3.50)

Here, Equations 3.47 and 3.48 are the ODEs while Equations 3.49 and 3.50 are
the initial conditions. As was mentioned above in connection with these equations,
every first-order ODE needs a corresponding initial condition (if no boundary
conditions are imposed, see below).

First-order ODEs are in an exceptional position in that the majority of ODE models
used in practice is based on first-order equations (which is also reflected by the
examples treated in this book). This is not really surprising since, as discussed
above, many ODE models just express the rates of change of its state variables,
which can be naturally done in terms of a first-order ODE system. The alarm
clock model discussed in Section 3.4.2 is a nice example of how you arrive
at a first-order system based on rate of change considerations. The exceptional
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position of first-order ODEs is underlined by the fact that higher-order ODEs can
be reformulated as first-order ODEs. For example, setting z = y′ in Equations
3.44–3.46, we get the following equivalent first-order formulation:

y′ = z (3.51)

z′ = −y (3.52)

y(0) = 1 (3.53)

z(0) = 0 (3.54)

3.5.2
First-order ODEs

To keep things simple, we will thus confine ourselves here to a formal definition
of first-order ODEs. This can be done as follows [98]:

Definition 3.5.1 (First-order ODE) Let 	 ⊂ R
2, F : 	 → R a continuous func-

tion. Then,

y′(t) = F(t, y(t)) (3.55)

is a first-order ODE in the unknown function y(t). A function y : [a, b] → R is called
a solution of the ODE (3.55) if this equation is satisfied for every t ∈ [a, b] ⊂ R.

Note that the definition implicitly assumes that (t, y(t)) ∈ 	 holds for all t ∈ [a, b].
In many practical cases, we will have 	 = R

2, that is, the ODE will be defined for
any t ∈ R and for any y ∈ R. An exception is, for example, the equation

y′ = 1

y
(3.56)

where the right-hand side is undefined for y = 0, which means we have to set
	 = R

2 \ R × {0}. Applying Definition 3.5.1 to the last equation, we have

F(t, y) = 1

y
(3.57)

which is continuous on 	 = R
2 \ R × {0} as required by the definition. Applied to

(3.40), on the other hand, we have

F(t, y) = y (3.58)

which is again a continuous function on 	 = R
2 as required. For Equation 3.42,

we have instead

F(t, T) = r · (Tb − T) (3.59)
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which is also obviously continuous on 	 = R
2 (remember that we can use any

variable as the unknown of the ODE, and hence as the second argument of ∓!).
We may, thus, conclude that Equations 3.40, 3.42 and 3.57 are indeed first-order
ODEs in the sense of Definition 3.5.1. The last equations should have made it clear
what is meant by F(t, y(t)) on the right-hand side of Equation 3.55. This term just
serves as a placeholder for arbitrary expressions involving t and y(t), which may of
course be much more complex than those in the last examples.

Note that the solution concept used in the definition complies with our discussion
of ODE solutions in the previous sections. For example, as discussed in Section 3.3,
y(t) = et, viewed as a function y : R → R, solves Equation 3.40 since this equation is
satisfied for all t ∈ R. In terms of Definition 3.5.1, this means we have used [a, b] =
[−∞, ∞] here. Similarly, as discussed in Section 3.4.1, T(t) = Tb − (Tb − T0) · e−r·t,
again viewed as a function T : R → R, solves Equation 3.42 since this equation is
satisfied for all t ∈ R.

3.5.3
Autonomous, Implicit, and Explicit ODEs

Equations 3.40 and 3.42 are examples of so-called autonomous ODEs since their
right-hand side does not depend on t explicitly. Note that there is, of course, an
implicit t dependence in these equations via y(t) and T(t), respectively. In terms
of Definition 3.5.1, we can say that the right-hand side of autonomous ODEs can
be written as F(y). Equation 3.42 would turn into a nonautonomous ODE, for
example, if Tb, the room temperature, would be time dependent. Note that in this
case T(t) = Tb − (Tb − T0) · e−r·t would no longer solve Equation 3.42. If Tb is time
dependent, you can verify that the derivative of this function would be

T ′(t) = T ′
b(t)(1 − e−rt) + r(Tb(t) − T0)e−rt (3.60)

which obviously means that Equation 3.42 is not satisfied.

3.5.4
The Initial Value Problem

As it was mentioned above, ODEs without extra conditions are not uniquely
solvable. For example, Equation 3.40 is solved by f (t) = cet for arbitrary c ∈ R. We
have seen that this can be overcome using the initial conditions for the unknown
function, which leads to initial value problems. A formal definition can be given as
follows:

Definition 3.5.2 (Initial value problem) Let 	 ⊂ R
2, F : 	 → R a continuous

function and y0 ∈ R. Then,

y′(t) = F(t, y(t)) (3.61)
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y(a) = y0 (3.62)

is an initial value problem for the first-order ODE, Equation 3.61. A function
y : [a, b] → R solves this problem if it satisfies Equation 3.62 as well as 3.61 for
every t ∈ [a, b] ⊂ R.

Theoretically, it can be shown that this initial value problem is uniquely solvable if
F is Lipschitz continuous [98–100]. Basically, this continuity concept limits F in how
fast it can change. We will not go into a discussion of this concept here since unique
solvability is no problem in the majority of applications, including the examples in
this book. Equations 3.40–3.43 are obvious examples of initial value problems in
the sense of Definition 3.5.2.

3.5.5
Boundary Value Problems

Characteristic of initial value problems is the fact that conditions on the unknown
function are imposed for only one value of the independent variable. Problems
where conditions are imposed at more than one point are called boundary value
problems. Problems of this kind provide another possible way to select one particular
solution among the many solutions of an ODE. As we will see in Chapter 4, boundary
value problems are particularly important in partial differential equation models.
This is related to the fact that many boundary value problems are formulated in
terms of spatial coordinates, while, on the other hand, most differential equation
models involving spatial coordinates are formulated using partial differential
equations. If models involving spatial coordinate are written in terms of an ODE,
they can frequently be generalized in terms of a PDE. For example, the ODE

T ′′(x) = 0 (3.63)

describes the temperature distribution in a one-dimensional, homogeneous body
that is obtained after a very long (in fact, infinite) time when you do not change the
environment of that body. Since this temperature distribution is time independent,
it is usually called the stationary temperature distribution of that body (compare
Definition 1.6.2). You may imagine, for example, a metal rod, which is insulated
against heat flow except for its ends where you keep it at constant temperature for
a long time. Equation 3.63 is a special case of the heat equation, which provides a
general description of the variation of temperature in time and space [97, 101]. The
general form of this equation is

∂T

∂t
= k

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
(3.64)

This equation is a PDE since it involves derivatives with respect to several vari-
ables, and it is discussed in more detail in Section 4.2. Assuming a one-dimensional
body means that temperature variations in the y and z directions can be neglected
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(see the discussion of spatial dimensionality in Section 4.3.3), which means
we have

∂2T

∂y2
= ∂2T

∂z2
= 0 (3.65)

in Equation 3.64. On the other hand, the stationarity of T leads to

∂T

∂t
= 0 (3.66)

Inserting Equations 3.65 and 3.66 into Equation 3.64, Equation 3.63 is obtained
as desired.

Now let us be more specific about that metal rod. Consider a metal rod of length
1 m with constant temperatures 20◦ and 10 ◦C at its ends. Mathematically, this
means that Equation 3.63 turns into the problem

T ′′(x) = 0, x ∈ [0, 1] (3.67)

T(0) = 20 (3.68)

T(1) = 10 (3.69)

This is a boundary value problem in the sense explained above since the
conditions accompanying the ODE are imposed at two different points. The math-
ematical problem (Equations 3.67–3.69) is easily solved based on the observation
that Equation 3.67 is satisfied exactly by the straight lines. The boundary conditions
(3.68) and (3.69) fix the endpoints of this straight line such that the solution
becomes

T(x) = 20 − 10x (3.70)

This equation describes a linear transition between the endpoint temperatures,
and this is of course what one would naturally expect here since we have assumed
a homogeneous metal rod. Looking at our derivation of Equation 3.70, it is
obvious that this is the unique solution of the boundary value problem (Equations
3.67–3.69). Note that Equation 3.67 can be considered as the ‘‘second simplest’’
ODE. The only simpler ODE is this:

T ′(x) = 0 (3.71)

Equation 3.71 describes a straight line with slope zero, parallel to the x axis. It
is again a nice demonstration of the fact that initial or boundary conditions are
needed to obtain unique solution of ODEs. Without such a condition, Equation
3.71 is solved by the entire family of straight lines parallel to the x axis, that is, by
all functions of the form

T(x) = c (3.72)
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for arbitrary c ∈ R. Only after imposing an initial condition such as T(0) = 4, the
c in Equation 3.72 is fixed and a unique solution of Equation 3.71 is obtained
(T(x) = 4 in this case).

3.5.6
Example of Nonuniqueness

Let us go back to our consideration of boundary value problems. Unfortunately,
in contrast to initial value problems, it cannot be proved in general that boundary
value problems would lead us to unique solutions of an ODE. For example, consider

y′′(x) = −y(x) (3.73)

In Equations 3.44–3.46, we have looked at this equation as an initial value
problem. Now without any extra conditions, the general solution of Equation 3.73
can be written as

y(x) = a · sin(x) + b · cos(x) (3.74)

This means: For any values of a, b ∈ R, Equation 3.74 is a solution of Equation 3.73
(see also the remarks on the solution of Equation 3.73 in Section 3.6). Now it
depends on the particular boundary conditions that we impose whether we get
a uniquely solvable boundary value problem or not. Let us first consider the
problem

y′′(x) = −y(x) (3.75)

y(0) = 1 (3.76)

y
(π

2

)
= 0 (3.77)

Inserting the general solution, Equation 3.74, into Equations 3.76 and 3.77, you
can easily verify that a = 0 and b = 1 in Equation 3.74, which means that we get
y(x) = cos(x) as the unique solution of this boundary value problem. On the other
hand, you will find that the boundary value problem

y′′(x) = −y(x) (3.78)

y(0) = 0 (3.79)

y(π ) = 0 (3.80)

is solved by any function of the form y(x) = a · sin(x) (a ∈ R), which means there
is no unique solution of this problem. Finally, inserting the general solution,
Equation 3.74, into conditions (3.82) and (3.83) of the boundary value problem

y′′(x) = −y(x) (3.81)
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y(0) = 0 (3.82)

y(2π ) = 1 (3.83)

you are led to the contradictory requirements b = 0 and b = 1, which means
that there is no solution of this boundary value problem. This means that we
cannot expect any general statement assuring unique solvability of boundary value
problems, as it was possible in the case of initial value problems.

In the problems considered below as well as in our discussion of solution
methods, we will confine ourselves to initial value problems. While it was indicated
in the above discussion of the metal rod problem that boundary value problems
can frequently be seen as special cases of problems that are naturally formulated
in a PDE context, initial value problems, on the other hand, may be considered as
the ‘‘natural’’ setting for ODEs, since time serves as the independent variable in
the majority of applications (note that ‘‘initial value’’ immediately appeals to time
as the independent variable). The fact that unique solvability can be proved only for
initial value problems may be considered as an additional aspect of the naturalness
of these problems. This is not to say, however, that boundary value problems over
ODEs are unimportant. From a numerical point of view, boundary value problems
over ODEs are particularly interesting: they involve numerical methods such as
the shooting method and the multiple shooting method for the solution of ODEs,
as well as global methods like finite differences or collocation methods [102]. All
these, however, are beyond the scope of a first introduction into mathematical
modeling.

3.5.7
ODE Systems

Note that not all initial value problems discussed above are covered by Definitions
3.5.1 and 3.5.2. Equations 3.47–3.50 or 3.51–3.54 involve systems of two ODEs
and two state variables, while the above definitions refer only to one ODE and one
state variable. This is solved in the usual way based on a vectorial notation. Using
boldface symbols for all vectorial quantities, the vector versions of Definitions 3.5.1
and 3.5.2 read as follows:

Definition 3.5.3 (System of first-order ODEs) Let 	 ⊂ R
n+1, F : 	 → R

n a
continuous function. Then,

y′(t) = F(t, y(t)) (3.84)

is an ODE of first order in the unknown function y(t). A function y : [a, b] ⊂
R → R

n is called a solution of the ODE (3.84) if this equation is satisfied for every
t ∈ [a, b].
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Definition 3.5.4 (Initial value problem for a system of first-order ODEs) Let
	 ⊂ R

n+1, F : 	 → R
n a continuous function and y0 ∈ R

n. Then,

y′(t) = F(t, y(t)) (3.85)

y(a) = y0 (3.86)

is an initial value problem for the first-order ODE, Equation 3.85. A function
y : [a, b] → R

n solves this problem if it satisfies Equation 3.86 as well as Equation
3.85 for every t ∈ [a, b] ⊂ R.

As before, unique solvability of the initial value problem can be proved if F is
Lipschitz continuous [99]. The interpretation of Equations 3.47–3.50 or 3.51–3.54
in terms of these definitions goes along the usual lines. For example, using the
identifications

y1 = Ts

y2 = Ti

y01 = Ts0

y02 = Ti0 (3.87)

a = 0

F1(t, y(t)) = rsi · (y2(t) − y1(t))

F2(t, y(t)) = ria · (Ta − y2(t))

Equations 3.47–3.50 turn into

y′
1(t) = F1(t, y(t)) (3.88)

y′
2(t) = F2(t, y(t)) (3.89)

y1(a) = y01 (3.90)

y2(a) = y02 (3.91)

Using the vectors

y =
(

y1

y2

)
, y0 =

(
y01

y02

)
, y′ =

(
y′

1

y′
2

)
, F(t, y(t)) =

(
F1(t, y(t))
F2(t, y(t))

)

(3.92)

you finally arrive at the form of the initial value problem as in Definition 3.5.4
above. So, as usual with vectorial laws, after writing a lot of stuff you see that
(almost) everything remains the same in higher dimensions.
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3.5.8
Linear versus Nonlinear

Particularly when solving ODEs (Section 3.6), it is important to know whether you
are concerned with a linear or nonlinear ODE. As usual, linear problems can be
treated much easier, and nonlinearity is one of the main causes of trouble that
you may have. You remember that linearity can be phrased as ‘‘unknowns may be
added, subtracted, and multiplied with known quantities’’. Applying this to ODEs,
it is obvious that a linear ODE is this:

y′(x) = a(x) · y(x) + b(x) (3.93)

This can be generalized to a system of linear ODEs as follows:

y′
i(x) =

n∑
j=1

aij(x) · yj(x) + bi(x), i = 1, . . . , n (3.94)

Using y(x) = (y1(x), y2(x), . . . , yn(x)), b(x) = (b1(x), b2(x), . . . , bn(x)) and

A(x) =

⎛
⎜⎜⎜⎜⎜⎝

a11(x) a12(x) . . . a1n(x)

a21(x) a22(x) . . . a2n(x)

.

..
.
.. . . .

.

..

an1(x) an2(x) . . . ann(x)

⎞
⎟⎟⎟⎟⎟⎠ (3.95)

Equation 3.94 can be written in matrix notation as follows:

y′(x) = A(x) · y(x) + b(x) (3.96)

Most ODEs considered so far have been linear. For example, the ODE of the
body temperature model (Equation 3.29 in Section 3.4.1.1),

T ′(t) = r · (Tb − T(t)) (3.97)

can be reformulated as

T ′(t) = −rT(t) + r · Tb (3.98)

which attains the form of Equation 3.93 if we identify y = T , x = t, a(x) = −r, and
b(x) = r · Tb. As another example, consider the ODE system of the alarm clock
model (Equations 3.36 and 3.37 in Section 3.4.2.1)

T ′
s(t) = rsi · (Ti(t) − Ts(t)) (3.99)

T ′
i (t) = ria · (Ta − Ti(t)) (3.100)
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Let us write this as

T ′
s(t) = −rsi · Ts(t) + rsi · Ti(t) (3.101)

T ′
i (t) = −ria · Ti(t) + ria · Ta (3.102)

Then, using x = t, y = (y1, y2) = (Ts, Ti), b = (b1, b2) = (0, ria · Ta) and

A(x) =
(

−rsi rsi

0 −ria

)
(3.103)

Equation 3.96 is obtained from Equations 3.99 and 3.100, which means that
Equations 3.99 and 3.100 are a linear system of ODEs.

A nonlinear ODE considered above is (compare Equation 3.57 in Section 3.5.2)

y′ = 1

y
(3.104)

This cannot be brought in the form of Equation 3.93 since it involves a division
operation. As discussed above, we have of course to be careful regarding the domain
of definition of this equations right-hand side, in contrast to the unrestricted
domains of definition of the linear ODEs considered above, which illustrates our
above statement that ‘‘nonlinearity is one of the main causes of trouble that you
may have with ODEs’’. A number of nonlinear ODE models are discussed below,
such as the predator–prey model (Section 3.10.1) and the wine fermentation model
(Section 3.10.2).

3.6
Solution of ODE’s: Overview

3.6.1
Toward the Limits of Your Patience

As it was already mentioned above, solving differential equations is a big challenge
and a big topic in mathematical research since a long time, and it seems unlikely
that mathematicians working in this field will loose their jobs in the near future.
It is the significance of differential equations in the applications that drives this
research effort. While the example applications considered so far referred to simple
technical systems (see the body temperature, alarm clock, and steel rod examples),
the simplicity of these examples is, on the other hand, a nice demonstration of the
broad range of differential equation applications. They are needed not only for an
investigation of sophisticated and complex systems; rather, as it was demonstrated
in Section 3.3, differential equations are frequently a part of the true mathematical
structure of a model as soon as exponential or other transcendental functions
are used.
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In Section 3.3, a comparison of the solution of linear systems of equations versus
the solution of differential equations was used to give you an idea of what it is
that makes differential equations hard to solve. As it was discussed there, it is the
infinite dimensionality of these equations, that is, the fact that these equations ask
for an infinite-dimensional unknown: a function. A great part of what is done by
mathematicians working on the numerical solution of differential equations today
can be described as an effort to deal with the infinite dimensionality of differential
equations in an effective way. This is even more important when we are dealing
with PDEs, since, as explained above, these equations ask for functions depending
on several variables, that is, which are infinite dimensional in the sense explained
above not only with respect to one independent variable (time in many cases), but
also with respect to one or more other variables (such as spatial coordinates).

Particularly when solving PDEs, you will easily be able to explore the limits of
your computer, even if you consider models of systems that do not seem to be
too complex at a first glance, and even if you read this book years after this text is
written, that is, at a time when computers will be much faster than today (since
more complex problems are solved on faster computers). PDE models involving
a complex coupling of fluid flow with several other phenomena, such as models
of casting and solidification or climate phenomena, may require several hours of
computation time or more, even on today’s fastest computers (Section 4.6.8 and
[103, 104]). PDE’s may thus not only help us to explore the limits of our computers,
but also of our patience . . .

3.6.2
Closed Form versus Numerical Solutions

There are two basic ways how differential equations can be solved, which correspond
to Section 3.7 on closed form solutions and Section 3.8 on numerical solutions.
A closed form solution – which is sometimes also called an analytical solution – is a
solution of an equation that can be expressed as a formula in terms of ‘‘well-known’’
functions such as ex and sin(x). All solutions of ODEs considered so far are closed
form solutions in this sense. In the body temperature example above (Section 3.4.1),
Equation 3.25 is a closed form solution of the initial value problem (Equations 3.29
and 3.30). In practice, however, most ODEs cannot be solved in terms of closed
form solutions, frequently due to nonlinear right-hand sides of the equations.
Approximate numerical solutions of such ODEs are obtained using appropriate
numerical algorithms on the computer.

The borderline between closed form and numerical solutions is not really sharp
in the sense that well-known functions such as ex and sin(x) are of course also
computed approximately using numerical algorithms, and also in the sense that it
is a matter of definition what we call ‘‘well-known functions’’. For example, people
working in probability and statistics frequently need the expression

2√
π

∫ x

0
e−t2 dt (3.105)
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The integral in this formula cannot be obtained in closed form. But since this
expression is needed so often in probability and statistics, it received its own name
and is referred to as the error function erf (x) [105]. Using this function as a part
of the ‘‘well-known functions’’, many formulas can be written in closed form in
probability and statistics, which would not have been possible based on the usual
set of ‘‘well-known functions’’.

From a modeling point of view, it is desirable to have closed form solutions since
they tell us more about the system compared to numerical solutions. To see this,
consider Equation 3.25 again, the closed form solution of the body temperature
model, Equations 3.29 and 3.30:

T(t) = Tb − (Tb − T0) · e−r · t (3.106)

In this expression, the effects of the various model parameters on the resulting
temperature curve can be seen directly. In particular, it can be seen that the ambient
temperature, Tb, as well as the initial temperature, T0, affect the temperature
essentially linear, while the rate parameter r has a strong nonlinear (exponential)
effect on the temperature pattern. To make this precise, Equation 3.106 could also
be used for a so-called sensitivity analysis, computing the derivatives of the solution
with respect to its parameters. The expression of T(t) in Equation 3.106 allows T to
be viewed as a multidimensional function

T(T0, Tb, r, t) = Tb − (Tb − T0) · e−r · t (3.107)

where we can take, for example, the derivative with respect to r as follows:

∂T(T0, Tb, r, t)

∂r
= r · (Tb − T0) · e−r · t (3.108)

This is called the sensitivity of T with respect to r. On the basis of a Taylor
expansion, it can be used to estimate the effect of a change from r to r + 
r (
r
being small) as

T(T0, Tb, r + 
r, t) ≈ T(T0, Tb, r, t) + ∂T(T0, Tb, r, t)

∂r
· 
r (3.109)

A numerical solution of Equations 3.29 and 3.30, on the other hand, would give
us the temperature curve for any given set of parameters T0, Tb, r similar to an
experimental data set, that is, it would provide us with a list of values (t1, T1),
(t2, T2), . . . , (tn, Tn) which we could then visualize, for example, using the plotting
capabilities of Maxima (Section 3.8.1). Obviously, we would not be able to see any
parameter effects based on such a list of data, or to compute sensitivities analytically
as above. The only way to analyze parameter effects using numerical solutions is to
compute this list of values (t1, T1), (t2, T2), . . . , (tn, Tn) for several different values of
a parameter, and then to see how it changes. Alternatively, parameter sensitivities
could also be computed using appropriate numerical procedures. However, you
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would have these numerically computed sensitivities only at some particular points,
and it is of course better and gives you more information on the system if you have
a general formula like Equation 3.108. In situations where you cannot get a closed
form solution for a mathematical model, it may, thus, be worthwhile to consider
a simplified version of the model that can be solved in terms of a closed form
solution. You will then have to trade off the advantages of the closed form solution
against the disadvantages of considering simplified versions of your model only.

3.7
Closed Form Solutions

Although mathematical models expressed as closed form solutions are very useful
as discussed above, an exhaustive survey of the methods that can be used to obtain
closed form solutions of ODEs would be beyond the scope of a first introduction
to mathematical modeling techniques. This section is intended to give the reader a
first idea of the topic based on a discussion of a few elementary methods that can
be applied to first-order ODEs. For anything beyond this, the reader is referred to
the literature such as [100].

3.7.1
Right-hand Side Independent of the Independent Variable

Let us start our consideration of closed form solutions with the simplest ODE
discussed above (Equation 3.71 in Section 3.5.5):

T ′ = 0 (3.110)

3.7.1.1 General and Particular Solutions
Basically, we solved this equation ‘‘by observation’’, namely by the observation
that straight lines parallel to the x-axis have the property that the slope vanishes
everywhere as required by Equation 3.110. Here, ‘‘everywhere’’ of course refers
to the fact that we are talking about solutions of Equation 3.110 over the entire
set of real numbers. A more precise formulation of the problem imposed by
Equation 3.110 would be

(P1): Find a function T : R → R such that T ′(x) = 0 holds for all x ∈ R.

In this formulation, it is implicitly assumed that the function T is differentiable
such that T ′(t) can be computed everywhere in R. We could be more explicit (and
more precise) in this point using a specification of the space of functions in which
we are looking for the solution:

(P2) Find a function T ∈ C1(R) such that T ′(x) = 0 holds for all x ∈ R.
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Here, C1(R) is the set of all functions having a continuous first derivative on
R. In the theory of differential equations, particularly in the theory of PDEs, a
precise consideration of the function spaces where the solutions of differential
equations are sought for is of great importance. These functions spaces are used as
a subtle measure of the differentiability or smoothness of functions. For example,
the theory of PDEs leads to the so-called Sobolev spaces that involve functions that
are not differentiable in the classical sense, but are, nevertheless, used to solve
differential equations involving derivatives (see Section 4.7.1 for more details). All
this, however, is beyond the scope of this first introduction into mathematical
modeling techniques.

Note 3.7.1 (Notation convention) If we write down an equation such as
Equation 3.110 with no further comments and restrictions, it will be under-
stood that we are looking for a sufficiently differentiable function on all of R. If
there can be no misunderstanding, a formulation like Equation 3.110 will always
be preferred to alternative formulations such as (P1) or (P2) above.

Now let us go back to the problem of solving Equation 3.110. As discussed in
Section 3.5.5, the observation ‘‘straight lines parallel to the x axis solve Equation
3.110’’ leads to the following expression for the solution of Equation 3.110:

T(x) = c, c ∈ R (3.111)

This is called the general solution of Equation 3.110 since it was derived from that
equation without any extra (initial or boundary) conditions. Note that Equation 3.111
describes an entire family of solutions parameterized by c, that is, for every c ∈ R

we get a particular solution of Equation 3.110 from the general solution (Equation
3.111). General solutions of differential equations are typically described by such
families of solutions that are parameterized by certain parameters. We will see
several more examples of general solutions below. As explained before, initial or
boundary conditions are the appropriate means to pick out one particular solution
from the general solution, that is, to fix one particular value of c in the case of
Equation 3.111.

3.7.1.2 Solution by Integration
To say that we solved Equation 3.110 ‘‘by observation’’ is of course a very un-
satisfactory statement, which cannot be generalized to more complex equations
We obviously need computational procedures to obtain the solution. Regarding
Equation 3.110, we can simply integrate the equation (corresponding to using the
fundamental theorem calculus) which then leads directly to the general solution
(Equation 3.111). The same technique can be applied to all ODEs having the
simple form

T ′(x) = f (x) (3.112)
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Assuming that f (x) is defined and continuous on some interval [a, b], the
fundamental theorem calculus states [17] that

T(x) =
∫ x

a
f (s) ds + c, c ∈ R, x ∈ [a, b] (3.113)

solves Equation 3.112. Since f is assumed to be continuous (Definition 3.5.1), we
know that the integral on the right-hand side of Equation 3.113 can be evaluated. Of
course, continuity of the right-hand side of an ODE was required in Definition 3.5.1
exactly for this reason, that is, to make sure that solution formulas such as Equation
3.113 make good sense. In the sense explained above, Equation 3.113 is the general
solution of Equation 3.112, and it is again a family of solutions parameterized by
c ∈ R. As before, particular solutions of Equation 3.112 are obtained by imposing
an initial condition. From Equation 3.113, you see that T(0) = c, which shows that
c is the initial value of T at x = 0, so you see that the value of c (and hence a
particular case of Equation 3.113) is indeed fixed if you impose an initial condition.

3.7.1.3 Using Computer Algebra Software
You will agree that what we did so far did not really involve a great deal of deep
mathematics. Anyone with that basic mathematical education assumed in this
book will do all this easily by hand. Nevertheless, we have a good starting point
here to see how a computer algebra software such as Maxima can be used to solve
ODEs (Appendix C). As explained before, the Maxima procedures used in this
book translate easily into very similar corresponding procedures in other computer
algebra software that you might prefer. Let us begin with Equation 3.110. In terms
of Maxima, this equation is written as

´diff(T,x)=0; (3.114)

Comparing this with Equation 3.110, you see that the operator ‘diff(.,x)
designates differentiation with respect to x. To work with this equation in Maxima,
it should be stored in a variable like this:

eq: ´diff(T,x)=0; (3.115)

Now you can solve the ODE using the ode2 command as follows:

ode2(eq,T,x); (3.116)

This command instructs Maxima to solve the equation eq for the function
T which depends on the independent variable x. Figure 3.6a shows how this
procedure is realized in a wxMaxima session. As can be seen, Maxima writes the
result in the form

T=%c; (3.117)
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(a) (b)

Fig. 3.6 wxMaxima sessions solving (a) Equation 3.110 and (b) Equation 3.112.

which is Maxima’s way to express our general solution in Equation 3.111. As you
see, an expression such as %c in a Maxima output denotes a constant that may
take on any value in R. This example is a part of the book software (see the file
ODEEx1.mac).

Figure 3.6b shows an analogous wxMaxima session for the solution of Equation
3.112. As the figure shows, Maxima writes the solution as

T =
∫

f (x) dx + %c (3.118)

This corresponds to the general solution derived above in Equation 3.113. Again,
%c is an arbitrary real constant. Maxima expresses the integral in its indefinite
form, which means that appropriate integration limits should be inserted by the
‘‘user’’ of this solution formula similar to those used in Equation 3.113. Note that
the x in Equation 3.118 is just an integration variable, but it is not the independent
variable on which the solution function T depends. Equation 3.113 clarifies this
point. Maxima’s notation may be considered a little bit awkward here, but this is
the usual notation for indefinite integrals, and it is not really a problem when you
read it carefully.

Of course, Maxima can easily evaluate the integral in Equation 3.118 when you
provide a concrete (integrable) expression for f (x). For example, solving

T ′(x) = x2 (3.119)

instead of Equation 3.112 and using the same procedure as above, Maxima produces
the correct general solution

T = x3

3
+ %c (3.120)
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which corresponds to

T(x) = x3

3
+ c, c ∈ R (3.121)

in the usual mathematical notation (see ODEEx3.mac in the book software).

Note 3.7.2 (Computer algebra software solves ODEs) Computer algebra soft-
ware such as Maxima can be used to solve ODEs either in closed form or
numerically. Closed form solutions are obtained in Maxima using the ode2 com-
mand (and/or the ic1, ic2, and desolve commands, see below) and numerical
solutions using the rk command (see below).

3.7.1.4 Imposing Initial Conditions
So far we have seen how general solutions of ODEs can be computed using
Maxima. The next step is to pick out particular solutions using initial or boundary
conditions. Maxima provides the command ic1 to impose initial conditions
in first-order equations and a corresponding command ic2 for second-order
equations. Let us look at the following initial value problem for Equation 3.119:

T ′(x) = x2 (3.122)

T(0) = 1 (3.123)

Using the general solution, Equation 3.113, it is easily seen that the initial
condition, Equation 3.123, leads us to c = 1 such that the solution of Equations
3.122 and 3.123 is

T(x) = x3

3
+ 1 (3.124)

In Maxima, this is obtained using the following lines of code (see ODEEx4.mac
in the book software):

1: eq: ´diff(T,x)=xˆ2;
2: sol: ode2(eq,T,x);
3: ic1(sol,x=0,T=1);

(3.125)

As before, the ‘‘1:’’, ‘‘2:’’, ‘‘3:’’ at the beginning of each line are not a part of
the code, but just line numbers which we will use for reference. The first two lines
of this code produce the general solution (3.120) following the same procedure as
above, the only difference being that the general solution is stored in the variable
sol in line 2 for further usage. Line 3 instructs Maxima to take the general solution
stored in sol, and then to set T = 1 at x = 0, that is, to impose the initial condition
(3.123). Maxima writes the results of these lines as

T = x3 + 3

3
(3.126)

which is the same as Equation 3.124 as required. If you want Maxima to produce
this result exactly in the better readable form of Equation 3.124, you can use the
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expand command as follows:

1: eq: ´diff(T,x)=xˆ2;
2: sol: ode2(eq,T,x);
3: ic1(sol,x=0,T=1);
4: expand(%);

(3.127)

The expand command in line 4 is applied to ‘‘%’’. Here, ‘‘%’’ refers to the last
output produced by Maxima, which is the result of the ic1 command in line 3.
This means that the expand command in line 4 is applied to the solution of the
initial value problem (Equation 3.126). Another way to achieve the same result
would have been to store the result of line 3 in a variable, and then to apply the
expand command to that variable, as it was done in the previous lines of the code.
As you can read in the Maxima manual, the expand command splits numerators
of rational expressions that are sums into their respective terms. In this case, this
leads us exactly from Equation 3.126 to 3.124 as required.

As it was discussed above, the general form of Equation 3.122 is this:

T ′(x) = f (x) (3.128)

We have seen that Equation 3.118 is the general solution of this equation. This
means that solving this kind of ODEs amounts to the problem of integrating f (x).
This can be done using the procedure described above, that is, by treating Equation
3.128 as before. On the other hand, we could also have used a direct integration
of f (x) based on Maxima’s command for the integration of functions: integrate.
For example, to solve Equation 3.119, we could have used the simple command

integrate(xˆ2,x); (3.129)

See ODEEx5.mac in the book software. Maxima writes the result in the form

x3

3
(3.130)

Except for the fact that Maxima skips the integration constant here, we are back
at the general solution (Equation 3.113) of Equation 3.119. In cases where the
integral of the right-hand side of Equation 3.128 cannot be obtained in closed form,
the numerical integration procedures of Maxima can be used (see e.g. Maxima’s
QUADPACK package).

3.7.2
Separation of Variables

The simple differential equations considered so far provided us with a nice
playground for testing Maxima procedures, but differential equations of this kind
would of course hardly justify the use of computer algebra software. So let us go on
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now toward more sophisticated ODEs. Solving ODEs becomes interesting when
the right-hand side depends on y. The simplest ODE of this kind is this:

y′ = y (3.131)

You remember that this was the first ODE considered above in Section 3.3.
Again, we solved it ‘‘by observation’’, observing that Equation 3.131 requires
the unknown function to coincide with its derivative, which is satisfied by the
exponential function:

y(x) = c · ex , c ∈ R (3.132)

Equation 3.132 is the general solution of Equation 3.131. Of course, it is again
quite unsatisfactory that we got this only ‘‘by observation’’. We saw above that
the fundamental theorem of calculus can be used to solve ODEs having the form
Equation 3.112. Obviously, this cannot be applied to Equation 3.131. Are there any
computational procedures that can be applied to this equation? Let us hear what
Maxima says to this question. First of all, let us note that Maxima solves Equation
3.131 using the above procedure (see ODEEx7.mac in the book software):

1: eq: ´diff(y,x)=y;
2: ode2(eq,y,x); (3.133)

If you execute this code, Maxima expresses the solution as

y = %c%ex (3.134)

As before, %c designates an arbitrary constant. You may be puzzled by the second
percent sign, but this is just a part of the Euler number which Maxima writes as %e.
So we see that Maxima correctly reproduces Equation 3.132, the general solution of
Equation 3.131. But remember that we were looking for a computational procedure
to solve Equation 3.131. So far we have just seen that Maxima can do it somehow.
To understand the computational rule used by Maxima, consider the following
generalization of Equation 3.131:

y′ = f (x) · g(y) (3.135)

Obviously, Equation 3.131 is obtained from this by setting g(y) = y and f (x) = 1.
Equation 3.128 is also obtained as a special case from Equation 3.135 if we set
g(y) = 1. Now confronting Maxima with Equation 3.135, it must tell us the rule
which it uses since it will of course be unable to compute a detailed solution like
Equation 3.134 without a specification of f (x) and g(y). To solve Equation 3.135,
the following code can be used (see ODEEx8.mac in the book software):

1: eq: ´diff(y,x)=f(x)*g(y);
2: ode2(eq,y,x); (3.136)
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Maxima writes the result as follows:∫
1

g(y)
dy =

∫
f (x) dx + %c (3.137)

This leads to the following note:

Note 3.7.3 (Separation of variables method) The solution y(x) of Equation
3.135 satisfies∫

1

g(y)
dy =

∫
f (x) dx + c, c ∈ R (3.138)

In the literature, this method is often formally justified by writing Equation
3.135 as

dy

dx
= f (x) · g(y) (3.139)

that is, by using Leibniz’s notation of the derivative, and then by ‘‘separating the
variables’’ on different sides of the equation as

dy

g(y)
= f (x) dx (3.140)

assuming g(y) �= 0, of course. Then, a formal integration of the last equation yields
the separation of variables method (Equation 3.138).

Note that if g(y) = 1, that is, in the case of Equation 3.128, we get

y =
∫

1 dy =
∫

f (x) dx + c, c ∈ R (3.141)

which means that we correctly get the general solution (3.113), which turns out
to be a special case of Equation 3.138. Now let us look at Equation 3.131, which
is obtained by setting g(y) = y and f (x) = 1 in Equation 3.135 as observed above.
Using this in Equation 3.138 and assuming y �= 0, we get∫

1

y
dy =

∫
1 dx + c, c ∈ R (3.142)

or

ln|y| = x + c, c ∈ R (3.143)

which leads by exponentiation to

|y| = ex+c, c ∈ R (3.144)
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or, resolving the absolute value and denoting sgn(y) · ec as a new constant c,

y = c · ex , c ∈ R\{0} (3.145)

Since y = 0 is another obvious solution of Equation 3.131, the general solution
can be written as

y = c · ex , c ∈ R (3.146)

3.7.2.1 Application to the Body Temperature Model
As another example application of Equation 3.138, let us derive the solution of the
body temperature model (Equation 3.29 in Section 3.4.1):

T ′(t) = r · (Tb − T(t)) (3.147)

To apply Equation 3.138, we first need to write the right-hand side of the last
equation in the form of Equation 3.135, that is,

T ′ = f (t) · g(T) (3.148)

Since Equation 3.147 is an autonomous equation, we can set

f (t) = 1 (3.149)

g(T) = r · (Tb − T) (3.150)

Equation 3.138 now tells us that the solution is obtained from∫
1

r · (Tb − T)
dT =

∫
1 dx + c, c ∈ R (3.151)

Using the substitution z = Tb − T(t) in this integral and an analogous argu-
mentation as above in Equations 3.142–3.146 the general solution is obtained as

T(t) = Tb + c · e−rt, c ∈ R (3.152)

Applying the initial condition

T(0) = T0 (3.153)

one obtains

c = T0 − Tb (3.154)

and hence

T(t) = Tb + (T0 − Tb) · e−r · t (3.155)

which is the solution obtained ‘‘by observation’’ in Section 3.4.1 (Equation 3.25).
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3.7.2.2 Solution Using Maxima and Mathematica
Let us now see how Equation 3.147 is solved using Maxima, and let us first try to
use the same code as it was used, for example, in Equation 3.136 (see ODEEx9.mac
in the book software):

1: eq: ´diff(T,t)=r*(T[b]-T);
2: ode2(eq,T,t); (3.156)

Maxima’s result is as follows:

− log(T − Tb)

r
= t + %c (3.157)

This result is unsatisfactory for two reasons. First, it is an implicit solution of
Equation 3.147 since it expresses the solution in an equation not solved for the
unknown T . More seriously, note that the expression log(T − Tb) in Equation 3.157
is defined only for T > Tb, which means that this solution is valid only in the
case T > Tb. When we introduced the body temperature model in Section 3.2.2,
we were interested exactly in the reverse case, T < Tb. In the case of T > Tb, it
is easy to derive Equation 3.152 from Equation 3.157 by exponentiation as before.
Nevertheless, we are definitely at a point here where we encounter Maxima’s limits
for the first time. Using the commercial Mathematica, Equation 3.147 is solved
without problems using a code very similar to program 3.156:

1: eq=T´[t]==r*(Tb-T[t]);
2: DSolve[eq,T[t],t]

(3.158)

Mathematica’s result is

{{T [t] → Tb + e−rtC[1]}} (3.159)

which is exactly the general solution (Equation 3.152). Note that without going into
details of Mathematica notation, the ‘‘→’’ in Equation 3.159 can be understood as
an equality sign ‘‘=’’ here, and note also that Mathematica writes the arbitrary real
constant as C[1] (instead of %c in Maxima).

Does this mean we should recommend using the commercial Mathematica
instead of Maxima? The answer is a definite ‘‘no and yes’’. You will see in
a minute that although Maxima’s ode2 command fails here, there is a way to
solve Equation 3.147 in Maxima using a different command. This is the ‘‘no’’.
On the other hand, undoubtedly, Mathematica is more comfortable here since
it solves all ODEs considered so far with one single command (DSolve). Also,
comparing Mathematica’s and Maxima’s capabilities to solve ODE, you will see
that Mathematica solves a lot more ODEs. This is the ‘‘yes’’. The true answer lies
in between. It depends on your needs. If you constantly need to solve computer
algebra problems beyond Maxima’s scope in your professional work, then it can
be economically advantageous to pay for Mathematica, at least until your problems
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will be covered by improved versions of Maxima or other open-source computer
algebra software.

At least within the scope of this book where we want to learn about the principles
and ideas of computer algebra software, Maxima’s capabilities are absolutely
satisfactory. This is nicely illustrated by a comparison of the Maxima code 3.156
with the Mathematica code 3.158. Except for different names of the ODE solving
commands and different ways to write derivatives and equations, the structure
of these two codes is very similar, and we can safely say that after you have
learned about Maxima in this book, you will not have any big problems in using
Mathematica or other computer algebra software.

Now it is time to say how to solve Equation 3.147 in Maxima. Maxima provides
a second command solving ODEs called desolve. This command is restricted to
linear ODEs (including systems of linear ODEs), and it can be applied here since
Equation 3.147 is indeed linear (see the discussion of linearity in Section 3.5.8
above). The following code can be used (see ODEEx10.mac in the book software):

1: eq: ´diff(T(x),x)=r*(T[b]-T(x));
2: desolve(eq,T(x));

(3.160)

This is again very similar to the two codes above (programs 3.156 and 3.158).
Note that in contrast to the ode2 command used in Equation 3.156, desolve wants
you to write down the dependence of the unknown on the independent variable in
the form T(x). Equation 3.160 produces the following result:

T(x) = (T(0) − Tb) %e−rx + Tb (3.161)

which is equivalent with Equation 3.155.

3.7.3
Variation of Constants

As was discussed above in Section 3.5, Equation 3.147 is no longer solved by
Equation 3.152 if we assume that the room temperature Tb is time dependent. In
that case, we can write Equation 3.147 as

T ′(t) = r · (Tb(t) − T(t)) (3.162)

The separation of variables method (Note 3.7.3) is not applicable to this equation
since we simply cannot separate the variables here. This method would require the
right-hand side of Equation 3.162 to be written in the form

T ′(t) = f (t) · g(T) (3.163)

but there is no way how this could be done since the right-hand side of Equation
3.162 expresses a sum, not a product. The general form of Equation 3.162 is that
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of a linear ODE in the sense of Equation 3.93 (see the discussion of linear ODEs in
Section 3.5.8):

y′(x) = a(x) · y(x) + b(x) (3.164)

As before, we ask Maxima to tell us how this kind of equation is solved. Analogous
to Equation 3.156, the following Maxima code can be used (see ODEEx11.mac in
the book software):

1: eq: ´diff(y,x)=a(x)*y+b(x);
2: ode2(eq,y,x); (3.165)

In Maxima, this yields

y = %e
∫

a(x) dx

(∫
b(x) · %e− ∫

a(x) dx dx + %c

)
(3.166)

which is known as the

Note 3.7.4 (Variation of constants method) The solution y(x) of Equation 3.164
satisfies

y = e
∫

a(x) dx
(∫

b(x) · e− ∫
a(x) dx dx + c

)
, c ∈ R (3.167)

This method – which is also known as the variation of parameters method – applies
to an inhomogeneous ODE such as Equation 3.164, and it can be generalized to
inhomogeneous systems of ODEs such as Equation 3.96. Remember from your lin-
ear algebra courses that the term ‘‘inhomogeneous’’ refers to a situation where we
have b(x) �= 0 in Equation 3.164. The case b(x) = 0 can be treated by the separation
of variables method as described above. As in the case of the separation of variables
method (Note 3.7.3), the variation of constants method does not necessarily lead
us to a closed form solution of the ODE. Closed form solutions are obtained
only when the integrals in Equation 3.167 (or Equation 3.138 in the case of the
separation of variables method) can be solved in closed form, that is, if the result
can be expressed in terms of well-known functions. In our above applications of the
separation of variables method, we got everything in closed form (e.g. the solution
Equation 3.155 of Equation 3.147).

3.7.3.1 Application to the Body Temperature Model
Now let us see whether we get a closed form solution if we apply the variation of
constants method to Equation 3.162. Comparing Equations 3.162 and 3.164, you
see that we have

a(t) = −r

b(t) = r · Tb(t)
(3.168)
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and hence∫
a(t) dt =

∫
−r dt = −rt (3.169)

Note that we do not need to consider an integration constant here since the∫
a(t) dt in the variation of constant method refers to one particular integral of a(t)

that we are free to choose. Using the last three equations, we get the following
general solution of Equation 3.162:

T(t) = e−rt
(∫

r · Tb(t) · ert dt + c

)
, c ∈ R (3.170)

If this formula is correct, it should give us the general solution that we derived
above in the case Tb = const, Equation 3.152. In this case, the last equation
turns into

T(t) = e−rt
(

Tb ·
∫

r · ert dt + c

)
, c ∈ R (3.171)

or

T(t) = e−rt (Tb · ert + c
)

, c ∈ R (3.172)

which leads us back to Equation 3.152 as required. In the case where Tb depends
on time, we get a closed form solution from Equation 3.170 only when the integral
in that formula can be expressed in closed form. For example, let us assume a
linearly varying room temperature:

Tb(t) = α · t + β (3.173)

such that Equation 3.170 becomes

T(t) = e−rt

(∫
r · (α · t + β) · ert dt + c

)
, c ∈ R (3.174)

The integral in this formula can be expressed in closed form:

∫
r · (α · t + β) · ert dt = ert

(
αt + β − a

r

)
(3.175)

This can be obtained by hand calculation, for example, using an integration
of parts, or by using Maxima’s integrate command (Section 3.7.1.4). Using
Equations 3.174 and 3.175, we get

T(t) = αt + β − α

r
+ c · e−rt, c ∈ R (3.176)

as the general solution of Equation 3.162. If you like, insert T(t) from Equation
3.176 and its derivative T ′(t) into Equation 3.162 to verify that this equation is really
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solved by Equation 3.176. Note that the case Tb = const corresponds to α = 0 and
Tb = β in Equation 3.173. If this is used in Equation 3.176, we get

T(t) = Tb + c · e−rt, c ∈ R (3.177)

that is, we get Equation 3.152 as a special case of Equation 3.176 again. Using
Equation 3.173, Equation 3.176 can be brought in a form very similar to Equation
3.177:

T(t) = Tb

(
t − 1

r

)
+ c · e−rt, c ∈ R (3.178)

This means that we almost get the same solution as in the case Tb = const, except
for the fact that the solution T(t) ‘‘uses’’ an ‘‘old’’ body temperature Tb(t − 1/r)
instead of the actual body temperature Tb(t). This is related to the fact that the
system needs some time until it adapts itself to a changing temperature. The time
needed for this adaption is controlled by the parameter r. In Section 3.4.1.2, we
saw that r is the percent decrease of the temperature difference Tb − T(t) per unit
of time. As a consequence, large (small) values of r refer to a system that adapts
quickly (slowly) to temperature changes. This corresponds with the fact that the
solution formula (3.178) uses almost the actual temperature for a quickly adapting
system, that is, when r is large, since we have Tb(t − 1/r) ≈ Tb(t) in that case.

Note 3.7.5 (Advantage of closed form solutions) A discussion of this kind
is what makes closed form solutions attractive, since it leads us to a deeper
understanding of the effects that the model parameters (r in this case) have
on the solution. No similar discussion would have been possible based on a
numerical solution of Equation 3.162.

Note that there is still a constant c in all solutions of Equation 3.162 derived above.
As before, this constant is determined from an initial condition (Section 3.7.1.4).

3.7.3.2 Using Computer Algebra Software
Equation 3.170, the general solution of Equation 3.162, could also have been
obtained using Maxima’s ode2 command similar to above (see ODEEx12.mac in
the book software):

1: eq: ´diff(T,t)=r*(Tb(t)-T);
2: ode2(eq,T,t); (3.179)

The result is as follows:

T = %e−rt
(

r
∫

%ertTb(t) dt + %c

)
(3.180)
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which is – in Maxima notation – the same as Equation 3.170. Likewise, Equation
3.176 can be obtained directly as the solution of Equation 3.162 in the case of
Tb(t) = αt + β using the following code (see ODEEx13.mac in the book software):

1: eq: ´diff(T,t)=r*(a*t+b-T);
2: ode2(eq,T,t); (3.181)

which leads to the following result in Maxima:

T = %e−rt
(

a(rt − 1)%ert

r
+ b%ert + %c

)
(3.182)

which coincides with Equation 3.176 if we identify a = α and b = β.

3.7.3.3 Application to the Alarm Clock Model
Now let us try to get a closed form solution for the alarm clock model (Section 3.4.2):

T ′
s(t) = rsi · (Ti(t) − Ts(t)) (3.183)

T ′
i (t) = ria · (Ta − Ti(t)) (3.184)

Ts(0) = Ts0 (3.185)

Ti(0) = Ti0 (3.186)

In general, it is, of course, much harder to derive analytical solutions for systems
of ODEs. With the last examples in mind, however, it is easy to see that something
can be done here. First of all, note that Equations 3.184 and 3.186 can be solved
independently from the other two equations since they do not involve Ts. Equations
3.183 and 3.184 are partially decoupled in the sense that the solution Ti of Equation
3.184 affects Equation 3.183, but not vice versa. We will come back to this point
in our next example below (Section 3.7.4). To solve Equations 3.184 and 3.186, it
suffices to say that we have already done this before. Except for different notation,
Equation 3.184 is equivalent with Equation 3.147. Equation 3.155 was derived as
the solution of Equation 3.147, which is

Ti(t) = Ta + (Ti0 − Ta) · e−ria · t (3.187)

in this case if Equation 3.186 is used. Inserting this into Equations 3.183–3.186,
we come up with a single ODE as follows:

T ′
s(t) = rsi · (Ta + (Ti0 − Ta) · e−ria · t − Ts(t)) (3.188)

Ts(0) = Ts0 (3.189)

Except for different notation, again, Equation 3.188 is of the form expressed by
Equation 3.162, which has been generally solved using the variation of constants
method above, as expressed by Equation 3.170. Using this solution, we find that
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the general solution of Equation 3.188 is

Ts(t) = e−rsit
(∫

rsi · (Ta + (Ti0 − Ta) · e−ria · t) · ersit dt + c

)
, c ∈ R (3.190)

Everything that remains to be done is the evaluation of the integral in Equation
3.190, and the determination of the constant in that equation using the initial
condition, Equation 3.189. Similar to above, you can do this by hand calculation, by
using Maxima’s integrate command, or you could also go back to Equations 3.188
and 3.189 and solve these using Maxima’s ode2 or desolve commands as shown
in our previous examples. Instead of proceeding with Equation 3.190, let us go
back to the original system (Equations 3.183–3.186), which can be solved directly
using Maxima’s desolve command as follows (see ODEEx14.mac in the book
software):

1: eq1: ´diff(Ts(t),t)=rsi*(Ti(t)-Ts(t));
2: eq2: ´diff(Ti(t),t)=ria*(Ta-Ti(t));
3: desolve([eq1,eq2],[Ts(t),Ti(t)]);

(3.191)

Note that we cannot use Maxima’s ode2 command here since it is restricted to
single ODEs, that is, it cannot be applied to ODE systems. desolve is applicable
here since Equations 3.183 and 3.184 are linear ODEs in the sense explained in
Section 3.5. The code (3.191) produces a result which (after a little simplification
by hand) reads as follows:

Ts(t) = Ta + (Ts0 − Ta)e−rsit + (Ti0 − Ta) · rsi
e−rsit − e−riat

ria − rsi
(3.192)

Ti(t) = Ta + (Ti0 − Ta)e−riat (3.193)

3.7.3.4 Interpretation of the Result
A number of things can be seen in these formulas. First of all, note that the initial
conditions, Equations 3.185 and 3.186, are satisfied since all the exponential terms
in Equations 3.192 and 3.193 equal 1 for t = 0. Moreover, the formulas show that
we have Ts = Ti = Ta in the limit t → ∞, since all exponential terms vanish as t
reaches infinity. This reflects the fact that both the sensor and the effective internal
temperature will of course equal the ambient temperature after a long time. You
can also see that the solution behaves as expected in the case Ti0 = Ta, that is, in the
case when we start with no difference between internal and ambient temperatures.
In this case, we would expect a constant Ti(t) = Ta, which is obviously true due to
Ti0 − Ta = 0 in Equation 3.193. In Equation 3.192, Ti0 = Ta implies

Ts(t) = Ta + (Ts0 − Ta)e−rsit (3.194)

which is (except for different notation) equivalent with Equation 3.155, the solution
of the body temperature model with constant body temperature, Equation 3.147.
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This is correct since Equation 3.147 expresses the form of Equation 3.183 in the
case of Ti0 = Ta, since Ti is time independent in that case. So you see again that
a lot can be seen from a closed form solution such as Equations 3.192 and 3.193.
Without graphical plots of Ts and Ti, Equations 3.192 and 3.193 already tell us
about the behavior of the solution in special cases such as those discussed above,
and we can see from this that the behavior of Ts and Ti in these special cases is
reasonable. No a priori discussion of this kind would have been possible based on
a numerical solution of Equations 3.183 and 3.184.

Note that Equation 3.192 also shows that we have a problem in the case of
rsi = ria when the denominator in the fraction becomes zero. To understand this
point, we can ask Maxima for the result in the case r = rsi = ria. After some hand
simplification, again, we get (compare ODEEx15.mac in the book software)

Ts(t) = Ta + (Ts0 − Ta)e−rt + (Ti0 − Ta)rte−rt (3.195)

Ti(t) = Ta + (Ti0 − Ta)e−rt (3.196)

Now it is just a matter of simple calculus to see that these two solutions are
compatible. Denoting r = rsi, compatibility of Equation 3.192 with 3.195 requires

lim
ria→r

e−rt − e−riat

ria − r
= te−rt (3.197)

which is indeed true. Based on the usual definition of the derivative, Equation
3.197 just expresses the fact that te−rt is the derivative of e−rt with respect to r.
If you like, you can show this by hand calculation based on any of the methods
used to compute limits in calculus [17]. Alternatively, you can use Maxima’s limit
function to obtain Equation 3.197 as follows [106]:

limit((%eˆ(-r*t)-%eˆ(-(r+h)*t))/h,h,0); (3.198)

Note that the argument of limit in program 3.198 corresponds to the left-hand
side of Equation 3.197 if we identify h = ria − r. The closed form solution of
Equations 3.183–3.186 can now be summarized as follows:

Ts(t) =
{

Ta + (Ts0 − Ta)e−rsit + (Ti0 − Ta) · rsi
e−rsit−e−riat

ria−rsi
, rsi �= ria

Ta + (Ts0 − Ta)e−rt + (Ti0 − Ta)rte−rt, r = rsi = ria

(3.199)

Ti(t) =
{

Ta + (Ti0 − Ta)e−riat, rsi �= ria

Ta + (Ti0 − Ta)e−rt, r = rsi = ria

(3.200)

An example application of this closed form solution has been discussed in
Section 3.4.2.3 (Figure 3.5).
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3.7.4
Dust Particles in the ODE Universe

So far we have introduced the separation of variables method and the variation of
constants method as methods to obtain closed form solutions of ODEs by hand
calculation. You should know that there is a great number of other methods that
could be used to solve ODEs by hand, and that cannot be discussed in a book like
this which focuses on mathematical modeling. There is a lot of good literature
you can refer to if you like to know more [98–100]. Beyond hand calculation, we
have seen that closed form solutions of ODEs can also be obtained efficiently using
computer algebra software such as Maxima.

It was already mentioned above that ODEs having closed form solutions are rather
the exception than the rule. More precisely, those ODEs are something like dust
particles in the ‘‘ODE universe’’. Usually, small changes of an analytically solvable
ODE suffice to make it analytically unsolvable (corresponding to the fact that you do
not have to travel a long way if you want to leave a dust particle toward space). For
example, one may find it impressive that Equations 3.199 and 3.200 can be derived
as a closed form solution of Equations 3.183–3.186. But consider the following
equations, which have a structure similar to Equations 3.183–3.186, and which do
not really look more complicated compared to these equations at a first glance:

x′ = x(a − by) (3.201)

y′ = −y(c − dx) (3.202)

This is the so-called Lotka–Volterra model, which is discussed in Section 3.10.1.
x(t) and y(t) are the unknowns in these equations, t is time, and a, b, c are real
constants. Note that we have used a notation here that is frequently used in practice,
with no explicit indication of the fact that x and y are unknown functions. This is
implicitly expressed by the fact that x and y appear with their derivatives in the
equations. Also, in the absence of any further comments, the usual interpretation
of Equation 3.202 automatically implies that a, b, c, d are real constants.

In a first, naive attempt we could follow a similar procedure as above, trying to
solve this ODE system using a code similar to Equation 3.191 (see ODEEx16.mac
in the book software):

1: eq1: ´diff(x(t),t)=x(t)*(a-b*y(t));
2: eq2: ´diff(y(t),t)=-y(t)*(c-d*x(t));
3: desolve([eq1,eq2],[x(t),y(t)]);

(3.203)

However, this code produces no result in Maxima. Trying to understand why this
is so, you may remember that it was said above that desolve applies only to linear
ODEs. As it was explained in Section 3.5, a linear ODE system has the form of
Equation 3.94 or 3.96, that is, the unknowns may be added, subtracted, or multiplied
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by known quantities. In Equations 3.201 and 3.202, however, the unknowns x(t)
and y(t) are multiplied, which means that these equations are nonlinear and hence
Maxima’s desolve command is not applicable. We also discussed Maxima’s ode2
command above, which is indeed applicable to nonlinear ODEs, but unfortunately
not to ODE systems like Equations 3.201 and 3.202. Fortunately, on the other hand,
this is no problem since ode2 could not solve these equations even if it would be
applicable, since the solution of Equations 3.201-and 3.202 cannot be expressed in
closed form.

Comparing the structure of Equations 3.201 and 3.202 with the analytically
solvable system (3.183)–(3.186), one can say that there are two main differences:
Equations 3.201 and 3.202 are nonlinear, and they involve a stronger coupling of the
ODEs. As it was already noted above, Equation 3.184 can be solved independently
of Equation 3.183, while in the system of Equations 3.201 and 3.202 each of the
two equations depends on the other equation.

Note 3.7.6 (Why most ODEs do not have closed form solutions) Nonlinearity
and a strong coupling and interdependence of ODEs are the main reasons why
closed form solutions cannot be achieved in many cases.

3.8
Numerical Solutions

If there is no closed form solution of an ODE, you know from our discussion in
Section 3.6 that the way out is to compute approximate numerical solutions of the
ODE using appropriate numerical algorithms on the computer. Since our emphasis
is on modeling aspects, we will not go into a detailed explanation of numerical
algorithms here, just as we did not provide an exhaustive discussion of analytical
methods in the previous section. This section is intended to make you familiar
with some general ideas that are applied in the numerical solution of ODEs, and
with appropriate software that can be used to solve ODEs.

Some people have a general preference for what might be called closed form
mathematics in the sense of Section 3.7, that is, for a kind of mathematics where
everything can be written down using ‘‘well-known expressions’’ as explained in
Section 3.6.2. These people tend to believe that in what might be called the house
of mathematics, numerical mathematics has its place at some lower level, several
floors below closed form mathematics. When they write down quantities such as√

2 or π in their formulas, they do not spend too much thoughts on it, and they
believe that numerical mathematics is far away. If they would spend a few thoughts
on their formulas, they would realize that numerical mathematics is everywhere,
and that it gazes at us through most of the closed form formulas that we may
write down. It is easy to write down transcendental numbers such as π or

√
2,

but from a practical point of view, these symbols are just a wrapping around the
numerical algorithms that must be used to obtain numerical approximations of
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these numbers that can really be used in your computations. These symbols denote
something that is entirely unknown until numerical algorithms are applied that
shed at least a little bit of light into the darkness (e.g. a few millions of π ’s digits).
In the same sense, a general initial value problem (Definition 3.5.2) such as

y′(x) = F(x, y(x)) (3.204)

y(0) = a (3.205)

denotes an entirely unknown function y(x), and ODE solving numerical algorithms
help us to shed some light on this quantity.

3.8.1
Algorithms

Although a detailed account of numerical algorithms solving ODEs is beyond the
scope of this book, let us at least sketch same basic ideas here that you should
know when you are using these algorithms in practice. Referring to Equations
3.204–3.205, it is a priori clear that, as it is the case with π , an ODE solving
numerical algorithm will never be able to describe the solution of these equations
in its entirety. Any numerical algorithm can compute only a finite number of
unknowns, and this means that a numerical approximation of the unknown y(x)
will necessarily involve the computation of y(x) at some given points x0, x1, . . . , xn

(n ∈ N), that is, the result will be of the form y0, y1, . . . , yn, where the yi are
numerical approximations of y(xi), that is, yi ≈ y(xi) (i = 0, 1, . . . , n).

3.8.1.1 The Euler Method
The simplest and most natural thing one can do here is the so-called Euler method.
This method starts with the observation that Equations 3.204 and 3.205 already tell
us about two quantities of concern. Assuming x0 = 0, we have

y0 = y(x0) = a (3.206)

y′(x0) = F(x0, y(x0)) = F(x0, y0) (3.207)

This means we know the first point of the unknown function, (x0, y0), and we
know the derivative of the function at this point. You know from calculus that this
can be used for a linear approximation of y(x) in the vicinity of x0. Specifically, if we
assume that y(x) is continuously differentiable, a Taylor expansion of y(x) around
x0 gives

y(x0 + h) ≈ y0 + h · y′(x0) (3.208)

or, using (3.207),

y(x0 + h) ≈ y0 + h · F(x0, y0) (3.209)
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These approximations are valid ‘‘for small h’’, that is, they become better as h is
decreased toward zero. Now assuming constant and sufficiently small differences
h = xi − xi−1 for i = 1, 2, . . . , n, Equation 3.209 implies

y(x1) ≈ y0 + h · F(x0, y0) (3.210)

The Euler method uses this expression as the approximation of y(x) at x1, that is,

y1 = y0 + h · F(x0, y0) (3.211)

Now (x1, y1) is an approximate point of y(x) at x1 and F(x1, y1) is an approximate
derivative of y(x) at x1, so we see that the same argument as before can be repeated
and gives

y2 = y1 + h · F(x1, y1) (3.212)

as an approximation of y(x) at x2. This can be iterated until we arrive at yn, and the
general formula of the Euler method, thus, is

yi = yi−1 + h · F(xi−1, yi−1), i = 1, 2, . . . , n (3.213)

Note that the h in this equation is called the stepsize of the Euler method. Many
of the more advanced numerical methods – including R’s lsoda command that is
discussed below – use nonconstant, adaptive stepsizes. Adaptive stepsizes improve
the efficiency of the computations since they use a finer resolution (corresponding
to small stepsizes) of the solution of the ODE in regions where it is highly variable,
while larger stepsizes are used otherwise.

Numerical methods solving differential equations (ODEs as well as PDEs) such
as the Euler method are also known as discretization methods, since they are based
on a discrete reformulation of the originally continuous problem. Equations 3.204
and 3.205, for example, constitute a continuous problem since the unknown y(x)
depends continuously on the independent variable, x. On the other hand, the
Euler method led us to a discrete approximation of y(x) in terms of the numbers
y0, . . . , yn, that is, in terms of an approximation of y(x) at a few, discrete times
x0, . . . , xn.

3.8.1.2 Example Application
Let us test the Euler method for the initial value problem

y′(x) = y(x) (3.214)

y(0) = 1 (3.215)

As we have seen in Section 3.3.2, the closed form solution of this problem is

y(x) = ex (3.216)
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Thus, we are in a situation here where we can compare the approximate solution
of Equations 3.214 and 3.215 derived using the Euler method with the exact
solution (Equation 3.216), which is a standard procedure to test the performance
and accuracy of numerical methods. A comparison of Equations 3.204 and 3.214
shows that we have F(x, y) = y here, which means that Equation 3.213 becomes

yi = yi−1 + h · yi−1, i = 1, 2, . . . , n (3.217)

Using Equation 3.215, the entire iteration procedure can be written as follows:

y0 = 1 (3.218)

yi = (1 + h) · yi−1, i = 1, 2, . . . , n (3.219)

To compute the approximate solution of Equations 3.214 and 3.215 for x ∈ [0, 4],
the following Maxima code can be used (compare Euler.mac in the book software):

1: h:1;
2: n:4/h;
3: y[0]:1;
4: for i:1 thru n step 1 do
5: y[i]:(1+h)*y[i-1];

(3.220)

After the initializations in lines 1 and 2, the remaining lines are in direct
correspondence with the iteration equations (3.218)–(3.219). Note that ‘‘:’’ serves
as the assignment operator in Maxima [106], that is, a command such as line 1 in
program 3.220 assigns a value to a variable (h receives the value 1 in this case).
Many other programming languages including R (Appendix B) use the equality
sign ‘‘ = ’’ as assignment operator. In Maxima, the equality sign ‘‘ = ’’ serves as
the equation operator, that is, it defines unevaluated equations that can then, for
example, be used as an argument of the solve command (line 4 of program 1.7 in
Section 1.5.2). The for. . . thru command in line 4 iterates the command in line
5 for i = 1, 2, . . . , n, that is, that command is repeatedly executed beginning with
i = 1, then i = 2, and so on. See [106] for several other possibilities to formulate
iterations using Maxima’s do command.

The code (3.220) produces the yi values shown in Table 3.1. In the table,
these values are compared with the corresponding values of the exact solution of
Equations 3.214 and 3.215 (Equation 3.216). As can be seen, the yi values deviate
substantially from the exact values, exi . This is due to the fact that a ‘‘small h’’ was
assumed in the derivation of the Euler method above. Better approximations are
achieved as h is decreased toward zero. This is illustrated in Figure 3.7a. The line
in the figure is the exact solution, and it is compared with the result of program
3.220 obtained for h = 1 (points) and h = 0.25 (triangles). As can be seen, the
approximation obtained for h = 0.25 is much closer to the exact solution. Still
better approximations are obtained as h is further decreased toward zero – test this
yourself using the code (3.220).
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Table 3.1 Result of the Maxima code (3.220), yi, compared
with the values of the exact solution (Equation 3.216), exi .

i 0 1 2 3 4

xi 0 1 2 3 4
yi 1 2 4 8 16
exi 1 2.72 7.39 20.09 54.6
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Fig. 3.7 (a) Solution of Equation 3.214 and
3.215: exact solution (Equation 3.216) (line),
Euler method with h = 1 (points), and Eu-
ler method with h = 0.25 (triangles). Figure
produced using Euler.mac. (b) Thin line:

closed form solution (Equation 3.227). Thick
line: numerical solution of Equations 3.225
and 3.226 obtained using the Euler method,
Equations 3.228 and 3.229. Figure produced
using Stiff.mac.

3.8.1.3 Order of Convergence
There is a great number of other numerical procedures solving ODEs which
cannot be discussed in detail here. An important criterion to select an appropriate
method among these procedures is the order of convergence, that is, how fast each
procedure converges toward the exact solution if the stepsize h is decreased toward
zero. The Euler method’s order of convergence can be estimated fairly simple. Let
us write down Equation 3.213 for i = 1:

y1 = y0 + h · F(x0, y0) (3.221)

Using the above notation and the exact solution y(x) of Equation 3.204 and 3.205,
this can be written as follows:

y1 = y(0) + hy′(0) (3.222)

Now y1 is an approximation of y(h), which can be expressed using a Taylor
expansion as follows:

y(h) = y(0) + hy′(0) + 1

2
h2y′′(0) + O(h3) (3.223)
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where O(h3) summarizes terms proportional to h3. The error introduced in Equation
3.222 is the difference y(h) − y1, which is obtained from the last two equations as

y(h) − y1 = 1

2
h2y′′(0) + O(h3) (3.224)

In this expression, 1/2h2y′′(0) is the dominant term for sufficiently small h. Thus,
we see that the error introduced by a single step of the Euler method (Equation
3.221) is proportional to h2. Now suppose you want to obtain the solution of
Equations 3.204 and 3.205 on an interval [0, L]. If you use the stepsize h, you will
need n = L/h Euler steps. Since the error in each Euler step is proportional to h2

and the number of Euler steps needed is proportional to 1/h, it is obvious that the
total error will be proportional to h. Therefore, the Euler method is said to be a
first-order method. Generally, an algorithm solving an ODE is said to be a kth order
method if the total error is proportional to hk. In practice, higher-order methods
are usually preferred to the Euler method, such as the fourth order Runge–Kutta
method which is used in Maxima’s rk function. In this method, the total error is
proportional to h4, which means that it converges much faster to the exact solution
compared with the Euler method. The use of Maxima’s rk function is explained
below. This function, however, has its limitations. For example, it does not provide
an automatic control of the approximation error, uses a constant stepsize, and may
fail to solve so-called stiff ODEs.

3.8.1.4 Stiffness
Stiff ODEs are particularly difficult to solve in the sense that numerical approxi-
mations may oscillate wildly around the exact solution and may require extremely
small stepsizes until a satisfactory approximation of the exact solution is obtained.
As an example, consider the initial value problem

y′(x) = −15 · y(x) (3.225)

y(0) = 1 (3.226)

Using the methods in Section 3.7, the closed form solution is easily obtained as

y(x) = e−15x (3.227)

Let us apply the Euler method to get the numerical solution. Analogous to
Equations 3.218 and 3.219, the iteration procedure is

y0 = 1 (3.228)

yi = (1 − 15h) · yi−1, i = 1, 2, . . . , n (3.229)

The Maxima code Stiff.mac in the book software compares the numerical
solution obtained by these formulas with the closed form solution, Equation 3.227.
The result is shown in Figure 3.7b. You can see those wild oscillations of the
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numerical solution around the exact solution mentioned above. These oscillations
become much worse as you increase the stepsize h (try this using Stiff.mac), and
they obviously reflect by no means the qualitative behavior of the solution. Stiffness
is not such an unusual phenomenon and may occur in all kinds of applications.
It is frequently caused by the presence of different time scales in ODE systems,
for example, if one of your state variables changes its value slowly on a time scale
of many years, while another state variable changes quickly on a time scale of a
few seconds. There are methods specifically tailored to treat stiff ODEs such as the
backward differentiation formulas (BDF) method which is also known as the Gear
method [107]. This method is a part of a powerful and accurate software called
lsoda which is a part of R’s odesolve package.
lsoda (‘‘livermore solver for ordinary differential equations’’) has been developed

by Petzold and Hindmarsh at California’s Lawrence Livermore National Laboratory
[108, 109]. It features an automatic switching between appropriate methods for stiff
and nonstiff ODEs. In the nonstiff case, it uses the Adams method with a variable
stepsize and a variable order of up to 12th order, while the BDF method with a
variable stepsize and a variable order up to fifth order is used for stiff systems.
Compared to Maxima’s rk function, lsoda is a much more professional software
and it will be used below as the main tool for the numerical solution of ODEs.
From now on, we will use Maxima’s rk and R’s lsoda functions without any more
reference to the numerical algorithms that work inside. Readers who want to know
more on numerical algorithms solving ODEs are referred to an abundant literature
on this topic, for example, [107, 110].

3.8.2
Solving ODE’s Using Maxima

Let us consider the body temperature model again, which was introduced in
Section 3.2.2 as follows:

T(t) = Tb − (Tb − T0) · e−r · t (3.230)

In Section 3.4.1, an alternative formulation of this model as an initial value
problem was derived:

T ′(t) = r · (Tb − T(t)) (3.231)

T(0) = T0 (3.232)

As it was seen in Section 3.4.1, Equation 3.230 solves Equations 3.231 and 3.232.
This means that when we solve Equations 3.231 and 3.232 numerically using
Maxima’s rk function, we will be able to assess the accuracy of the numerical
solution by a comparison with Equation 3.230. Exactly this is done in the Maxima
program FeverODE.mac in the book software. In this program, the solution of
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Equations 3.231 and 3.232 is achieved in the following lines of code.

1: eq: ´diff(T,t) = r*(T[b]-T);
2: sol: rk(rhs(eq),T,T[0],[t,aa,bb,h]); (3.233)

In line 1, the ODE (3.231) is defined as it was done above in Section 3.7. In
that section, the ODE was then solved in closed form using Maxima’s ode2 and
desolve commands. In line 2 of program 3.233, Maxima’s rk command is used
to solve the ODE using the fourth order Runge–Kutta method as discussed above.
As you see, rk needs the following arguments:

• the right-hand side of the ODE, rhs(eq) in this case
(rhs(eq) gives the right-hand side of its argument);

• the variable the ODE is solved for, T in this case;
• the initial value of that variable, T[0] in this case;
• a list specifying the independent variable (t in this case), the

limits of the solution interval (aa and bb), and the
stepsize (h).

The result of the rk command in line 2 of program 3.233 is stored in a variable
sol, which is then used to plot the solution in FeverODE.mac. Of course, all
constants in program 3.233 need to be defined before line 2 of that code is
performed: just see how program 3.233 is embedded into the Maxima program
FeverODE.mac in the book software. Note that the right-hand side of the ODE can
of course also be entered directly in the rk command, that is, it is not necessary
to define eq and then use the rhs command as in Equation 3.233. The advantage
of defining eq as in Equation 3.233 is that it is easier to apply different methods
to the same equation (e.g. ode2 needs the equation as defined in Equation 3.233,
see above). Using the same constants as in Figure 3.1b and a stepsize h = 0.2,
FeverODE.mac produces the result shown in Figure 3.8. As can be seen, the
numerical solution matches the exact solution given by Equation 3.230 perfectly
well.

3.8.2.1 Heuristic Error Control
In the practical use of rk, one will of course typically have no closed form solution
that could be used to assess the quality of the numerical solution. In cases where
you have a closed form solution, there is simply no reason why we should use rk.
But, how can the quality of a numerical solution be assessed in the absence of a
closed form solution? The best way to do this is to use a code that provides you with
parameters that you can use to control the error, such as R’s lsoda function, which
is explained in Section 3.8.3. In Maxima’s rk command, the only parameter that
can be used to control the error is the stepsize h. As it was discussed above, ODE
solving numerical algorithms such as the Runge–Kutta method implemented in
the rk function have the property that the numerical approximation of the solution
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Fig. 3.8 Line: numerical solution of Equations 3.231 and
3.232 using Maxima’s rk command and a stepsize h = 0.2.
Triangles: exact solution (Equation 3.230). Figure produced
using FeverODE.mac.

converges to the exact solution of the ODE as the stepsize h approaches zero. So
you should use a small enough stepsize if you want to get good approximations of
the exact solution. On the other hand, your computation time increases beyond all
bounds if you are really going toward zero with your stepsize. A heuristic procedure
that can be used to make sure that you are not using too big stepsizes is as follows:

Note 3.8.1 (Heuristic error control)
1. Compute the numerical solutions yh and yh/2 corresponding to

the stepsizes h and h/2.
2. If the difference between yh and yh/2 is negligibly small, the

stepsize h will usually be small enough.

But note that this is a heuristic only and that you better should use a code such
as R’s lsoda that provides a control of the local error (see below). Note also that it
depends of course on your application what is meant by ‘‘negligibly small’’. Applied
to Equations 3.231 and 3.232, you could begin to use FeverODE.mac with a big
stepsize such as h = 6, which produces Figure 3.9a Then, halving this stepsize
to h = 3 you would note that you get the substantially different (better) result in
Figure 3.9b, and you would then go on to decrease the stepsize until your result
would constantly look as that of Figure 3.8, regardless of any further reductions
of h.

3.8.2.2 ODE Systems
Maxima’s rk command can also be used to integrate systems of ODEs. To see this,
let us reconsider the alarm clock model. In Section 3.4.2, the alarm clock model
was formulated as an initial value problem as follows:

T ′
s(t) = rsi · (Ti(t) − Ts(t)) (3.234)
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Fig. 3.9 (a) Line: numerical solution of Equations 3.231 and
3.232 using Maxima’s rk command and a stepsize h = 6.
Triangles: exact solution (Equation 3.230). (b) Same plot for
h = 3. Plots generated using FeverODE.mac.

T ′
i (t) = ria · (Ta − Ti(t)) (3.235)

Ts(0) = Ts0 (3.236)

Ti(0) = Ti0 (3.237)

In Section 3.7.3.4, the following closed form solution of Equations 3.234–3.237
was derived:

Ts(t) =
{

Ta + (Ts0 − Ta)e−rsit + (Ti0 − Ta) · rsi
e−rsit−e−riat

ria−rsi
, rsi �= ria

Ta + (Ts0 − Ta)e−rt + (Ti0 − Ta)rte−rt, r = rsi = ria

(3.238)

Ti(t) =
{

Ta + (Ti0 − Ta)e−riat, rsi �= ria

Ta + (Ti0 − Ta)e−rt, r = rsi = ria
(3.239)

Again, the closed form solution Equations 3.238 and 3.239 can be used to
assess the quality of the numerical solution of Equations 3.234–3.237 obtained
using Maxima’s rk command. The numerical solution of Equations 3.234–3.237 is
implemented in the Maxima program RoomODE.mac in the book software. Within
this code, the following lines compute the numerical solution:

1: eq1:´diff(T[s],t)=r[si]*(T[i]-T[s]);
2: eq2:´diff(T[i],t)=r[ia]*(T[a]-T[i]);
3: sol: rk([rhs(eq1),rhs(eq2)],

[T[s],T[i]],[T[s0],T[i0]],[t,aa,bb,h]);

(3.240)

Note that everything is perfectly analogous to program 3.233, except for the fact
that there are two equations eq1 and eq2 instead of a single equation eq, and that
rk needs a list of two right-hand sides, state variables, and initial conditions in this
case. On the basis of the parameter values that were used to produce Figure 3.5
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Fig. 3.10 (a) Line: numerical approximation of Ts based on
Equations 3.234–3.237 using Maxima’s rk command and a
stepsize h = 0.5. Triangles: exact solution (Equation 3.238).
(b) Line: numerical approximation of Ti based on Equations
3.234–3.237 using Maxima’s rk command and a stepsize
h = 0.5. Triangles: exact solution (Equation 3.239).

and a stepsize of h = 0.5, RoomODE.mac produces the result shown in Figure 3.10.
Again, we get a perfect coincidence between the numerical and the closed form
solution.

3.8.3
Solving ODEs Using R

Using the last two examples again, we will now explain how the same numerical
solutions can be obtained using R and lsoda. As it was already emphasized above,
lsoda is a much more professional software for the solution of ODEs (compared
with Maxima’s rk command), and it will be the main instrument to solve ODEs
in the following sections. Details about the numerical algorithms implemented in
lsoda may be found in [108, 109]. Let us start with the body temperature example
again, and let us again compare the closed form solution, Equation 3.230, with
the numerical solution of Equations 3.231 and 3.232. To compute the numerical
solution using R, we use the program ODEEx1.r in the book software.

3.8.3.1 Defining the ODE
Program 3.241 shows the part of ODEEx1.r that defines the differential equation
3.231. Comparing this with the Maxima code 3.233 where the ODE is defined in
a single line (line 1), you see that the Maxima code is simpler and more intuitive
(but, unfortunately, also limited in scope as explained above). To simplify the
usage of the R programs discussed in this book as much as possible, the parts
of the programs where user input is needed are highlighted as it can be seen in
program 3.241.
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1: dfn <-
2: function(t, y, p)
3: {
4: ### User: names of state variables
5: ##################################
6: T=y[1]
7: ### User: differential equation
8: ##################################
9: dTdt=r*(Tb-T)
10: ### User: list of derivatives
11: ##################################
12: list(c(dTdt))
13: }

(3.241)

As a whole, the code 3.241 defines a function dfn that gives the right-hand side
of the ODE and is used later in ODEEx1.r to solve the ODE. In the general case,
this function assumes a system of ODEs of the form (compare Definition 3.5.3)

y′(t) = F(t, y(t), p) (3.242)

where y(t) = (y1(t), y2(t), . . . , yn(t))t expresses the n dependent variables of the
ODE and p = (p1, p2, . . . , ps)t is a vector of parameters on which the right-hand
side of the ODE may depend (n, s ∈ N). We do not use p here, but it is
important in the estimation of parameters of the ODE from experimental
data (Section 3.9). The arguments of dfn in program 3.241 are in obvious
correspondence with the arguments of F(t, y(t), p) in Equation 3.242. The com-
ponents of y and p are accessed as y[1], y[2], . . . and p[1], p[2], . . . respec-
tively, in R. Square brackets are used generally in R to access array compo-
nents [45].

In lines 4–6 of program 3.241, you set names for the dependent variables
that are then used in lines 7–9 to define the ODE. Lines 4–6 can be omitted if
you formulate the ODE using y[1], y[2] etc. as the dependent variables. Note,
however, that your code will be better readable if you are using the original names
of your dependent variables instead of y[1], y[2] etc. Line 9 defines the ODE
in obvious correspondence with Equation 3.231. Line 12 of program 3.241 is
the last statement within the function body of dfn (all statements enclosed in
brackets between lines 3 and 13), and it is, thus, the function value produced by
dfn. dfn is expected to produce a list of all right-hand sides of the ODE system,
which is a mere list(c(dTdt)) in this case and which would read, for example,
list(c(dTdt,dSdt)) if our ODE would involve a second state variable S (see the
examples below). Note that the concatenate operator c(. . . ) is used in R to build
vectors from its arguments [45].
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3.8.3.2 Defining Model and Program Control Parameters
Now you know how to define an ODE in R – let us go on looking throughODEEx1.r.
The next thing you can do is the definition of a closed form solution, if available, and
if you would like to compare the numerical result with a closed form solution. In
the body temperature example, we have Equation 3.230 as a closed form solution of
Equations 3.231 and 3.232. Program 3.243 shows the part of ODEEx1.r that defines
the closed form solution, Equation 3.230. As you see, the closed form solution func-
tion is denoted as AnSol in ODEEx1.r. AnSol corresponds to T(t) in Equation 3.230,
and in R it can be invoked in the form AnSol(t). The right-hand side of Equation
3.230 is in immediate correspondence with the expression you see in line 3 of 3.243.

1: ### User: closed form solution (if available)
2: #############################################
3: AnSol=function(t) Tb-(Tb-T0)*exp(-r*t)

(3.243)

After this, there is a section Parameters of the model in ODEEx1.r where you
do exactly what this section title suggests. In the body temperature model, there
are three parameters to be defined (r, T0, and Tb) and looking into ODEEx1.r you
will see that exactly the same values as in the Maxima program FeverODE.mac are
used here.

In the Program control parameters section of ODEEx1.r, you begin with a
selection of the plots you want to see by setting the appropriate logical variables.
After this, the start and end times aa and bb are defined, which limit the interval
in which you want to see the numerical solution. If applicable, you can set the
number of points of the analytical solution in the plot using nAnSol, and you
can define a data file in csv-format in the variable DataFile (e.g. if you want
to compare the numerical solution with data). Using nTime, you can prescribe
the number of intermediate points between aa and bb where you want lsoda to
compute numerical approximations (this corresponds to n in the Euler method,
see Section 3.8.1.1). Basically, nTime controls the smoothness of the numerical
solution curve that you see in the plots, since this curve is a polygon connecting
the points of the solution that have been computed by the numerical algorithm.
Note that nTime assumes an equidistant distribution of the intermediate points
between aa and bb. You can easily change this if you like by looking at the way in
which nTime is used later in ODEEx1.r. It is important that you do not confuse
the distance between numerical approximation points controlled by nTime with
the stepsize h discussed above. h is automatically controlled by lsoda so as to
satisfy given local error bounds (see below), while nTime just controls the amount
of output you need.

3.8.3.3 Local Error Control in lsoda
After this you set the absolute and relative local error tolerances, atolDef and
rtolDef. As it was mentioned above, the fact that these error tolerances can be
prescribed using lsoda is an important reason why you should better use lsoda
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instead of Maxima’s rk function in your everyday work, although the use of
Maxima is simpler as we have seen. Suppose we are in n dimensions, that is,
we have y(t) = (y1(t), y2(t), . . . , yn(t))T in Equation 3.242. Assume that the solver
has just performed one step of its numerical algorithm leading to a numerical
approximation ỹ(t) = (ỹ1(t), ỹ2(t), . . . , ỹn(t))T at some time t. You may imagine one
step of the Euler method here that advances the numerical solution from a previous
time t − h to the current approximation at time t. Above it was demonstrated how
the error in one step of the Euler method can be estimated, see Equation 3.224.
This kind of per-step-error is called the local error of the numerical algorithm. It
must be distinguished from the global error of the numerical method, which is the
difference between the numerical approximation of the solution of the ODE and
the exact solution of the ODE, both considered over the entire interval of interest
(the difference being measured in some appropriate norm that we do not need to
discuss here).

Using methods appropriate for the numerical algorithms used in lsoda, the
local error in one step of this algorithm can be estimated similar to Equation 3.224.
For each of the n components of ỹ(t), lsoda computes such an estimated local
error, which we denote ei. Then, the local errors ei are required to satisfy

ei ≤ rtoli · |ỹi(t)| + atoli, i = 1 . . . n (3.244)

Here, rtoli and atoli are the relative and absolute local error tolerances that you
specify in ODEEx1.r using atolDef and rtolDef. For example, assume n = 2,
and assume you want to have atol1 = 10−2 and atol2 = 10−4. Then, you can do this
by setting

1: # absolute tolerance
2: atolDef=c(1e-2,1e-4)

(3.245)

in the ‘‘program control parameters’’ section of ODEEx1.r. On the other hand,

1: # absolute tolerance
2: atolDef=1e-3

(3.246)

would give atol1 = 10−3 and atol2 = 10−3. rtoli can be controlled in the same way.
Basically, lsoda uses Equation 3.244 to optimize the stepsize, that is, the stepsize
is chosen as large as possible such that Equation 3.244 is still satisfied.

3.8.3.4 Effect of the Local Error Tolerances
Various strategies of local error control can be realized by an appropriate choice of
atolDef and rtolDef. Consider one particular solution component i ∈ {1 . . . n}.
Setting rtoli = 0 would transform Equation 3.244 into

ei ≤ atoli, i = 1 . . . n (3.247)
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Choosing atoli = 10−3 would then mean that a step of the numerical algorithm
inside lsoda is accepted only if the absolute value of the estimated local error of
solution component i is below 10−3. Setting atoli = 0, on the other hand, would
transform Equation 3.244 into

ei ≤ rtoli · |ỹi(t)|, i = 1 . . . n (3.248)

In this case, choosing rtoli = 10−3 would mean that a step of the numerical
algorithm inside lsoda is accepted only if the local error of solution component
i is smaller than 10−3 when expressed relative to the size of the numerical
approximation of solution component i, |ỹi|. Equations 3.247 and 3.248 correspond
to (purely) absolute error control and (purely) relative error control, respectively, while
Equation 3.244 with rtoli �= 0 and atoli �= 0 expresses a mixed absolute and relative
error control. Such a mixed error control basically corresponds to a relative error test
when the solution component |ỹi(t)| is much larger than atoli, while it approximates
an absolute error test when |ỹi(t)| is smaller than atoli.

3.8.3.5 A Rule of Thumb to Set the Tolerances
This is the theory – but how should atoli and rtoli be chosen in a practical situation?
Naively, one might conjecture that it is a good idea to choose these tolerances as
small as possible. But this is a bad idea since Equation 3.244 would then force
the numerical algorithms inside lsoda to use extremely small stepsizes, which
would increase the computational time beyond all bounds and, more seriously,
which might increase the global error in an uncontrollable way since much more
computational steps would be needed until the numerical approximation of the
solution of the ODE would be obtained.

If you want to know more about the various kinds of errors in numerical
algorithms, we recommend [111] for a nice discussion of ‘‘errors and uncertainties
in computations’’ or the comments on ‘‘error, accuracy and stability’’ in [92]. Two
important kinds of error discussed there are the roundoff error and the truncation
error or approximation error. Basically, the truncation or approximation error is
related to the fact that any numerical algorithm can only perform a finite number
of steps. Remember the discussion of the Euler method in Section 3.8.1.1, which
evaluates the right-hand side of the ODE only at a finite number of x values, and
which is based on formula (3.208), a truncated version of the originally infinite
Taylor series. The roundoff error, on the other hand, arises because computers
store floating-point numbers using only a finite number of digits, which means,
for example, that a number such as 1/3 is stored as 0.3333 if we assume a computer
storing four decimal digits. If you then use 0.3333 instead of the exact 1/3 in your
computations, it is obvious that this and any other arithmetical operation on such
a computer may introduce a roundoff error in the order of 10−4. These errors add
up with the number of steps performed in your numerical algorithm, and this is
the reason why atoli and rtoli should be chosen with care (not too small). As a
guideline, we recommend to use the following ‘‘rule of thumb’’ from [112]:
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Note 3.8.2 (Rule of thumb to set the tolerances) If m is the number of significant
digits required for solution component yi, set rtoli = 10−m+1. Set atoli to the value
at which |yi| is essentially insignificant.

Let us apply this to the body temperature example. In this example, there is only
one dependent variable (T in Equation 3.231), and hence we have n = 1, which
means we can omit the index at atoli and rtoli and simply write atol and rtol instead.
The body temperature example refers to a clinical thermometer that works in a range
roughly between 30 and 42 ◦C, and which displays one digit behind the decimal
point. Therefore, it is clear that we need at least three significant digits here. In
terms of the above ‘‘rule of thumb’’, this means m = 3 and rtol = 10−2. Regarding
atol, values below 10−1 can be considered as ‘‘essentially insignificant’’ since only
one digit behind the decimal point is displayed by the clinical thermometer. In
terms of the ‘‘rule of thumb’’ this means we should set atol = 10−2. These settings
of atol and rtol can be viewed as the largest values of these tolerances that may give
us the desired result with sufficient accuracy.

However, you should remember that atol and rtol limit the local error of the
algorithm. As explained above, what really counts is the global error, that is, the final
difference between the exact solution of the ODE and the numerical approximation.
In each step of the numerical algorithm, the local errors add up to the global error.
If we are lucky, the signs of the local errors produced in each step of the numerical
algorithms may be randomly distributed and thus cancel out, giving a global error
in a similar order of magnitude as the local errors. Fortunately, this is frequently the
case, that is, we may expect the global errors to be in a similar order of magnitude
as the local errors in many cases. But it may also happen that the local errors add
up to give a much larger global error. You get a fairly reliable idea about the size of
the global error by using the heuristic procedure explained above in our discussion
of Maxima’s rk command (Note 3.8.1). There it was recommended to compute
numerical solutions for two stepsizes h and h/2, and then to compare the results.
The same can be done here by reducing the tolerances, for example, by an order
of magnitude. If the differences between the numerical solutions obtained in this
way are negligible, you have a good reason to assume a negligible global error, and
hence that your choice of the tolerances was acceptable.

3.8.3.6 The Call of lsoda
Remember that we are still discussing the R code ODEEx1.r in the book software.
The error tolerances rtolDef and atolDef are the last settings in the ‘‘Program
control parameters’’ section of ODEEx1.r. If you go through the rest of the code, you
will find several other places where the user needs to do some smaller adjustments,
such as the specification of column names in the data file, setting initial values
for lsoda using appropriate variable names, and adjusting the plots. Those places
are indicated by commentaries beginning with ‘‘# User:. . . ’’, such as lines 1–2
in program 3.243. As a last point in our discussion of ODEEx1.r, let us have a look
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at the call of lsoda within that code, since this will be important, for example, in
our discussion of parameter estimation in ODEs in Section 3.9:

1: out = as.data.frame(
2: lsoda(
3: c(T=T0)
4: ,seq(aa,bb,length=nTime)
5: ,dfn
6: ,c()
7: , rtol= rtolDef
8: , atol= atolDef
9: ))

(3.249)

Note that we have left out the user comments here for brevity. In line 1 of 3.249,
the output of lsoda is stored as a ‘‘data frame’’ since this is the form needed
further below in ODEEx1.r to produce the plots (see [45] for more on the data frame
concept). Line 3 corresponds to Equation 3.232 of the body temperature model, that
is, here you supply the initial values of the state variables. Line 4 defines a vector of
times where lsoda is required to generate numerical approximations of the state
variable(s), that is, of the temperature T(t) in the case of the body temperature
model, Equations 3.231 and 3.232. The seq command in line 4 generates an
array of nTime equally spaced times between aa and bb. You can replace this
by any other vector of times that you might want to use. In Section 3.10.2, for
example, a code Fermentation.r is discussed where a sophisticated, nonequally
spaced time vector is used in the call of lsoda. Line 5 tells lsoda about the
function that generates the right-hand sides of the ODE, which is dfn in our case
(Section 3.8.3.1). In line 6 of 3.249 you can add parameters required by dfn, which
will be used in the parameter estimation problems treated in Section 3.9. In that
section, other optional parameters of lsoda such as hmax are also discussed, which
can be set by adding a line such as

,hmax=0.001

e.g. between lines 8 and 9 of 3.249.

3.8.3.7 Example Applications
If you now set PlotStateAna=TRUE and PlotStateData=TRUE in the ‘‘Pro-
gram control parameters’’ section of ODEEx1.r and then execute the code e.g. using
the source command as described in Appendix B, you get the result shown in
Figure 3.11. Figure 3.11a shows a comparison of the numerical solution of the body
temperature model (Equations 3.231 and 3.232) with the appropriate closed form
solution (Equation 3.230). The numerical and closed form solutions match perfectly
well, as it was achieved previously using Maxima’s rk command (Figure 3.8).
Looking at ODEEx1.r you will find that rtolDef=1e-4 and atolDef=1e-4 have
been used for this result. Remember that the ‘‘rule of thumb’’ discussed above
led us to rtolDef=1e-2 and atolDef=1e-2. The actual, smaller values of the
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Fig. 3.11 (a) Line: numerical solution of Equations 3.231
and 3.232 computed with ODEEx1.r. Circles: exact solution
(Equation 3.230). (b) Line: numerical solution of Equations
3.231 and 3.232 computed with ODEEx1.r. Circles: data
Fever.csv.

tolerances have been chosen based on an application of the heuristic procedure
discussed above, that is, by taking rtolDef=1e-2 and atolDef=1e-2 as a starting
point, and then comparing the result with the result obtained using tolerance
values one order of magnitude smaller, and so on, until a further reduction of
the tolerances did not affect the result. Figure 3.11b shows a comparison of the
numerical solution of Equations 3.231 and 3.232 with the data in Fever.csv
similar to Figure 3.1b above which was produced using the Maxima program
FeverExp.mac. Figure 3.11b reports an R2 value of 0.998, which coincides with
the value computed by FeverExp.mac.

As a second example of using R to solve ODEs, consider the alarm clock model
(Equations 3.234–3.237). To solve these equations based on R, we use the program
ODEEx2.r in the book software. The general structure of this program is identical
with ODEEx1.r as discussed above, the only difference being the fact that we are
concerned with a system of two ODEs here. In terms of the dfn function, this is
expressed as follows (compare with 3.241):

1: dfn <-
2: -function(t, y, p)
3: {
4: ### User: names of state variables
5: ##################################
6: Ts=y[1]
7: Ti=y[2]
8: ### User: differential equation
9: ##################################
10: dTsdt=rsi*(Ti-Ts)
11: dTidt=ria*(Ta-Ti)
12: ### User: list of derivatives

(3.250)
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13: ##################################
14: list(c(dTsdt,dTidt))
15: }

As in 3.241, the code begins with a definition of the state variables in lines 6–7.
In this case, there are two state variables, which are denoted as y[1] and y[2]
(y[3], y[4], . . . in cases with more than two variables). In lines 6–7, these state
variables are named as Ts and Ti corresponding to Ts and Ti in Equations 3.234
and 3.235. Lines 10–11 define the ODEs (Equations 3.234 and 3.235). In line 14,
finally, the list of derivatives computed in lines 10–11 is returned as the result of
the dfn function. Note that in line 12 of 3.241 this was a list of length 1 since only
one ODE was solved there. This list must always have as many elements as the
number of ODEs in the ODE system to be solved. As before, the definition of dfn
is followed by the definition of the closed form solution (Equations 3.238 and 3.239
in this case). Since the parameters used in ODEEx2.r satisfy rsi �= ria, Equations
3.238 and 3.239 lead us to

1: ### User: closed form solution (if available)
2: ##################################
3: AnSolTs=function(t) Ta+(Ts0-Ta)*exp(-rsi*t)

+(Ti0-Ta)*rsi*(exp(-rsi*t)
-exp(-ria*t))/(ria-rsi)

4: AnSolTi=function(t) Ta+(Ti0-Ta)*exp(-ria*t)

(3.251)

Compared with Equation 3.243 where there was only one closed form solution
AnSol, you see that two closed form solutions AnSolTs and AnSolTi are defined
here, corresponding to Equations 3.238 and 3.239. In the ‘‘Parameters of the
model’’ section of ODEEx2.r, the parameters are set to the same values as in the
Maxima code RoomODE.mac discussed above. In the ‘‘Solution of the ODE’’ section
of ODEEx2.r, you have to set the initial values as follows:

1: ### User: set initial values
2: ##################################
3: c(Ts=Ts0,Ti=Ti0)

(3.252)

In ODEEx1.r, the corresponding code is

1: ### User: set initial values
2: ##################################
3: c(T=T0)

(3.253)

So you see that you have to provide a list of initial values here with as many
elements as the number of ODEs in your ODE system. In the last part of ODEEx2.r
where the plots are defined, we need two plots here comparing a numerical solution
with a closed form solution, while only one such plot was needed in ODEEx1.r.
Comparing ODEEx1.r and ODEEx2.r, you will see that this was achieved just by
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Fig. 3.13 Line: Numerical approximation of Ts based on
Equations 3.234–3.237, obtained using ODEEx2.r. Circles:
data from room.csv.

using two copies of the relevant part of ODEEx1.r, one of these copies plotting Ts
compared with AnSolTs and the other one plotting Ti compared with AnSolTi.
Figures 3.12 and 3.13 show the result produced by ODEEx2.r. Compare Figure 3.12
with 3.10, which shows the same result as it was obtained using Maxima’s rk
function. As before, there is a perfect coincidence between the numerical solution
and the closed form solution. Figure 3.13 shows a comparison of the numerical
approximation with the data in room.csv similar to Figure 3.5 (see the discussion
of these data in Section 3.2.3).

We have seen now how ODEs can be solved using Maxima rk or R’s lsoda
commands. Although the procedure in Maxima is simpler, we have seen that
it is better to use R’s lsoda in your everyday work since this is a much more
professional software that provides, for example, a local error control and a number
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of other options which you do not have when using Maxima. If you want to
apply R’s lsoda to your own ODE systems, you can use the codes ODEEx1.r
and ODEEx2.r discussed in this section as a starting point, editing these codes
appropriately (for example, you will then have to insert your ODE into the dfn
function as discussed above). All examples in the following sections are treated
based on R’s lsoda command. Some of these examples use extended version of
ODEEx1.r and ODEEx2.r, using new options of R and lsoda. For example, in the
discussion of the wine fermentation model (Section 3.10.2), a maximum stepsize
hmax is prescribed in lsoda to make sure that external supplies of nitrogen are
correctly used in the computations.

3.9
Fitting ODE’s to Data

In Section 3.8, it was shown how ODEs can be solved using Maxima or R. One of
the most important advantages of using R lies in the fact that within R the solution
of ODEs can be coupled with R’s unsurpassed statistical capabilities. This is of
particular relevance when you are facing the important problem of fitting an ODE to
experimental data. Consider, for example, Figure 3.13, which shows a comparison
of the alarm clock model (Equations 3.234–3.237) with the data in room.csv. This
figure was obtained by hand tuning of the parameters in Equations 3.234–3.237,
that is, by hand tuning of rsi, ria, Ti0, and Ta (using the initial sensor temperature
in room.csv for Ts0) until a good coincidence between the measurement data in
room.csv and Ts as computed from Equations 3.234–3.237 was obtained. Besides
the fact that such a hand tuning of the parameters of on ODE can be tedious and
time consuming, it has the disadvantage that you do not get any information on the
statistical quality of the parameters estimated in this way. For example, it would be
nice to have confidence intervals around the parameter estimates that would tell
us about the precision of these estimates, similar to the confidence intervals in our
above discussion of nonlinear regression (Section 2.4).

3.9.1
Parameter Estimation in the Alarm Clock Model

Reconsidering the alarm clock model and data (Section 3.8.2.2), let us try to make
it better now. First of all, note that we have already discussed the parameter
estimation problem in Section 2.4. It was shown there how R’s nls function can be
used to statistically estimate the parameters p = (p1, . . . , ps) (s ∈ N) of a nonlinear
function y = f (x, p) in a way that minimizes the distance between this function
and a given data set (x1, y1), . . . , (xn, yn). All we have to do here is to observe that the
discussion in Section 2.4 applies to our situation. In the alarm clock model, Ts(t) is
the nonlinear function we want to fit to the data in room.csv using the parameter
vector p = (rsi, ria, Ti0, Ta). Using the notation of Section 2.4, we can write Ts(t) as
Ts(t, p). The only difference between our situation and the discussion in Section
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2.4 lies in the fact that the functions considered there were all given as explicit
formulas (i.e. in closed form), while Ts(t, p) is given implicitly as the solution
of an ODE system (Equations 3.234–3.237). But remembering our discussion in
Section 3.3, you will note that this is a marginal difference – even functions such
as the exponential functions are solutions of ODEs by definition, although it is
common to use symbols to write them down ‘‘explicitly’’.

This means that all we have to do here is a coupling of two methods already
discussed above: a coupling of lsoda as a means to solve ODEs (which will
give us the function Ts(t, p) in the alarm clock example) with nls as a means to
estimate the parameters of the ODE from data. This is realized in the R program
ODEFitEx1.r in the book software. The general structure of this code was derived
from ODEEx2.r, and beyond this it uses R’s nls function similar to NonRegEx1.r
(Section 2.4.2). ODEFitEx1.r estimates the parameter rsi using the alarm clock
ODE system (Equations 3.234–3.237) and the data in room.csv. We will just
discuss those parts of ODEFitEx1.r which go beyond the codes NonRegEx1.r and
ODEEx2.r that are discussed in detail in Sections 2.4.2 and 3.8.3.7.

3.9.1.1 Coupling lsoda with nls
Like ODEEx2.r, ODEFitEx1.r starts with a section where a function dfn is
defined that describes the ODE system. Since ODEFitEx1.r refers to the alarm
clock example, the definition of dfn is almost identical with program 3.250, the
corresponding part of ODEEx2.r, except for the fact that rsi, the parameter to be
estimated, must be supplied by the user as follows:

1: ### User: estimated parameters
2: ##################################
3: rsi=p[1]

(3.254)

In contrast to ODEEx1.r and ODEEx2.r, a setting like p = a defined in the
subsequent Parameters of the model section of ODEFitEx1.rmay have two meanings:

• If p is one of the parameters to be estimated, then a will be
used as the initial value supplied to the algorithm doing the
parameter estimation (nls).

• If p is not estimated, than a will be the fixed parameter value
used by the ODE solving algorithm (lsoda).

In ODEFitEx1.r, this means that rsi=1 sets an initial value for rsi which is then
estimated by nls, while the other parameter values defined in the ‘‘Parameters
of the model’’ section are constants used in lsoda.

In the Program control parameters section of ODEFitEx1.r, there are a few new
options:

• A logical variable NonlinRegress; if set to TRUE, nls will be
invoked to estimate parameters, otherwise the ODE system
will be solved treating all parameters in the ‘‘Program control
parameters’’ section of ODEFitEx1.r as constants.
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• A logical variable PrintConfidence; if set to TRUE, a
confidence interval will be computed as described in Section
2.4.2; note that if several parameters are estimated, this may
take some time.

• A logical variable TraceProc; if set to TRUE, you will see the
output produced by nls.

• A variable nlsTolDef which defines a numerical tolerance
used by nls. Try to increase nlsTolDef from its default
value 10−3 if nls does not converge.

The Nonlinear regression section of ODEFitEx1.r begins with a definition of the
nonlinear function dfn1 that is used by nls to estimate the parameters (again, we
leave out comments for brevity):

1: dfn1 <- function(tt,rsi)
2: {
3: out <- lsoda(
4: c(Ts=Ts0,Ti=Ti0)
5: ,tData
6: ,dfn
7: ,c(rsi[1])
8: ,rtol=rtolDef
9: ,atol=atolDef

10: )
11: c(out[,"Ts"])
12: }

(3.255)

As discussed above, ODEFitEx1.r estimates the parameter rsi of the function
Ts(t, rsi), where Ts is determined from the alarm clock ODE system (Equations
3.234–3.237). It is exactly this function Ts(t, rsi) that is described by the function
dfn1 defined in program 3.255. Line 1 defines the dependence of dfn1 on time (tt)
and on the parameters to be estimated, which is rsi in our example. This list must
be edited by the user if you wish to estimate other parameters, or more parameters.
Looking at the definition of dfn1 in lines 3–11, you see that dfn1 mainly involves
a call of lsoda which solves Equations 3.234–3.237. The solution produced by
lsoda is stored in a variable out. In line 11, the part of out corresponding to the
numerical solution of Ts is returned as the result of the function.

The call of lsoda in lines 3–10 is similar to the call of lsoda in ODEEx1.r
and ODEEx2.r (Section 3.8.3.6). First, you have to provide the initial values in line
4. In line 5, you provide a vector with the times for which lsoda is required to
produce numerical approximations of the state variables. This is set to tData since
this variable is used in ODEFitEx1.r to denote the times corresponding to your
experimental data, and nls expects dfn1 to return the values of the state variables
exactly at these times. The rest of program 3.255 is self-explanatory.
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After this, R’s nonlinear regression procedure nls is invoked in the same way as
it was discussed above in Section 2.4. Within nls, the nonlinear function is defined
as Ts∼dfn1(t,rsi), which means that the function Ts(t, rsi) is indeed treated as
if it was one of those explicitly given nonlinear function that were discussed in
Section 2.4. The nls function hence does not ‘‘see’’ that dfn1 involves a solution
of an ODE system using lsoda. The rest of the code is similar to NonRegEx1.r
(Section 2.4.2) and ODEEx2.r (Section 3.8.3.7). Using ODEFitEx1.r as a template
to solve your own problems, just edit it as required at all the places highlighted by
‘‘#{User:. . . }’’.

3.9.1.2 Estimating One Parameter
In a typical usage of the parameter estimation procedure in ODEFitEx1.r, we first
have to find an appropriate starting value for the parameter to be estimated (Note
2.4.1). We may know such a starting value a priori, for example, from the literature
or based on theoretical considerations. ODEFitEx1.r estimates the rsi parameter
of the alarm clock model, and we know from the discussion in Section 3.4.2 that
this is a percent value and hence a number that can be expected to be in a range
between 0 and 1. This means we could set, for example, rsi = 0.5 and hope that
ODEFitEx1.r will be able to estimate rsi based on this starting value, which is
indeed the case. If you do not get parameter estimates in this way, that is, if
nls does not converge based on starting values obtained in this way, you can set
NonlinRegress=FALSE and then try to optimize your starting values by hand.
Setting NonlinRegress=FALSE in ODEFitEx1.r gives the result in Figure 3.14a,
which shows the numerical solution obtained for rsi = 0.5. You see the deviation
between the numerical solution and the data in the figure, and you can then
gradually change rsi until you have reduced these deviations. After this, you can set
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Equations 3.234–3.237, obtained using ODEFitEx1.r with
rsi = 0.5 and NonlinRegress = FALSE. Circles: data from
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NonlinRegress=TRUE again, hoping that nls will converge using the improved
starting value of your parameter.

In this case, nls converges without problems using rsi = 0.5 as a starting
value, which gives an almost perfect coincidence between model and data, see
Figure 3.14b. In the R Console, the result is displayed as follows:

Estimated Coefficients:
Estimate Std. Error t value Pr(>|t|)

rsi 0.1800331 0.006866096 26.22059 2.206382e-16
. . .

Confidence Intervals:
2.5% 97.5%

0.1666662 0.1947174

This means that nls estimates rsi ≈ 0.1800331, and the 95% confidence interval
is [0.1666662, 0.1947174]. As it was explained in Section 2.4, this means that this
interval covers the unknown ‘‘true’’ value of rsi with a probability of 95%.

3.9.1.3 Estimating Two Parameters
ODEFitEx2.r estimates two parameters of the alarm clock model: rsi and ria.
It was derived by an appropriate editing of ODEFitEx1.r, which is done in a
minute – you just have to follow the ‘‘#User:. . . ’’ instructions in ODEFitEx1.r.
The necessary changes basically amount to an appropriate extension of parameter
lists such as the replacement of 3.254 by

1: ### User: estimated parameters
2: ##################################
3: rsi=p[1]
3: ria=p[2]

(3.256)

Using rsi = ria = 0.5 as starting values (based on the above considerations),
ODEFitEx2.r produces the following result in the R Console:

Estimated Coefficients:
Estimate Std. Error t value Pr(>|t|)

rsi 0.2151446 0.021490774 10.01102 8.780805e-09
ria 0.1358535 0.006333558 21.44980 2.868112e-14
. . .

Confidence Intervals:
2.5% 97.5%

rsi 0.1786028 0.2608507
ria 0.1248202 0.1494279
...
Correlations:

rsi ria
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rsi 1.0000000 -0.9255568
ria -0.9255568 1.0000000

The plot generated by ODEFitEx2.r is almost identical with Figure 3.14b, with a
(very) slightly improved R2 value of 0.995 (compared to 0.994 in the figure). Looking
at the confidence intervals, you see that ria is estimated more precisely compared
to rsi. rsi’s confidence interval is substantially larger compared to the one obtained
above using ODEFitEx1.r. Remember from our discussion in Section 2.4 that the
precision of the parameter estimates that can be achieved using nls depends on a
number of factors. As it was said there, high correlations between your estimated
parameters may indicate a bad experimental design, that is, your data may not
provide the information that would be necessary to get sharp estimates of all
parameters. In the above nls output, you see that there is indeed a high correlation
between rsi and ria. It makes sense to assume a bad experimental design here since
both parameters refer to the dynamics of Ti that has not been measured.

When you are solving your own parameter estimation problems over ODEs using
the above procedure, it may happen that the convergence regions of the parameters are
quite small, that is, it may happen that the numerical method converges only when
you provide initial estimates of the parameters that are very close to the solution
of the estimation problem. This is related to the fact that our above procedure is
an initial value approach in the sense that all evaluations of the nonlinear function
dfn1 by the numerical procedure in R’s nls function require the solution of an
initial value problem over the entire period under consideration. If you provide
initial parameter estimates far away from the solution of the problem, this initial
value problem may become unsolvable as discussed in [41]. From a practical point
of view, we would of course prefer large convergence regions where the parameter
estimates are obtained based on rough initial estimates of the parameters. So you
should note that there are numerical methods which provide larger convergence
regions, such as the boundary value approach developed by Bock [41, 113].

3.9.1.4 Estimating Initial Values
Our last example regarding the alarm clock model is ODEFitEx3.r, which estimates
the following parameters of the alarm clock model: ria, Ta, and Ti0. The new aspect
here is the fact that one of the parameters is an initial value of a state variable: Ti0.
Initial values are treated a little bit different. They are not a part of the definition of
dfn, which means they do not appear in the list of arguments of dfn. In particular,
they do not need to be listed within dfn as in 3.256. It is obvious that it would
not make sense to use initial values as arguments of dfn since dfn just gives the
right-hand side of the ODE system, which does not depend on initial values of the
state variables. However, estimated initial values must of course appear in the list
of arguments of dfn1, that is, of the nonlinear function used by nls. In contrast
to 3.255, the definition of dfn1 in this example, thus, looks as follows (again, all
comments have been skipped):

1: dfn1 <- function(tt,ria,Ta,Ti0)
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2: {
3: out <- lsoda(
4: c(Ts=Ts0,Ti=Ti0[1])
5: ,tData
6: ,dfn
7: ,c(ria[1],Ta[1])
8: ,rtol=rtolDef
9: ,atol=atolDef

10: )
11: c(out[,"Ts"])
12: }

(3.257)

ria and Ta are the parameters appearing as arguments of dfn, and they are
supplied to dfn in line 7. Note that within dfn1, parameters must be written in
the form ria[1], Tia[1], and Ti0[1] as before. Line 4 of program 3.257 defines
Ti0[1] to be the initial value of Ti. Executing ODEFitEx3.r and using rsi = 0.21
(which approximates the estimate obtained in ODEFitEx2.r above), you get the
following result in the R console:

Estimated Coefficients:
Estimate Std. Error t value Pr(>|t|)

ria 0.1376461 0.006992767 19.68406 3.881604e-13
Ta 21.0312734 0.044997657 467.38597 2.261465e-36
Ti0 16.9315415 0.113471697 149.21379 6.049605e-28
. . .

Confidence Intervals:
2.5% 97.5%

ria 0.1240176 0.1525932
Ta 20.9394784 21.1264181
Ti0 16.6911157 17.1592343
. . .

Correlations:
ria Ta Ti0

ria 1.0000000 -0.7211535 -0.8219467
Ta -0.7211535 1.0000000 0.3582791
Ti0 -0.8219467 0.3582791 1.0000000

Except for relatively high correlations between some of the parameters (which
can be interpreted similar as in Section 2.4.2 above), this is a good result in the
sense that the confidence intervals of the parameters are relatively small.

3.9.1.5 Sensitivity of the Parameter Estimates
The above result must be interpreted with care, since it depends on our assumed
value of rsi = 0.21. Of course, it would be natural to estimate rsi, too, but it turns
out that nls does not converge in this case (edit ODEFitEx2.r appropriately and
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Table 3.2 ODEFitEx3.r: Parameter estimates for ria, Ta,
and Ti0 and corresponding R2 values (Ts compared with
Room.csv) for different assumed values of rsi.

rsi ria Ta Ti0 R2

0.14 0.2025652 21.0363632 16.2035026 0.996
0.21 0.1376461 21.0312734 16.9315415 0.996
0.3 0.1080993 21.0672026 17.2185061 0.994

try this yourself). As it was discussed above, we just do not have enough data to
estimate so many parameters simultaneously.

This is also underlined by Table 3.2, which shows what happens with the
parameter estimates if the assumed value of rsi is varied between 0.14 and 0.3. For
all of these values, the resulting plots of Ts against the data Room.csv are almost
indistinguishable, that is, each of these plots shows an almost perfect coincidence
of the data with Ts, which is also reflected by the constantly high R2 values in the
table. Looking at the estimated parameters, one can say that only the estimate of Ta

seems largely independent of the choice of rsi. The fact that Ta can be estimated so
well is not surprising since in the alarm clock model, Ta is the temperature attained
asymptotically by Ts for t → ∞, and looking at the data, for example, in Figure 3.14
it is quite obvious that this asymptotic limit is very well characterized by the data.
The other two parameters estimated by ODEFitEx3.r, ria and Ti0, on the other
hand, depend on the dynamics of Ti that has not been measured, and so it is not
surprising that these two parameters can be estimated with much less precision
from the data. In Table 3.2, this is reflected by the fact that the estimates of ria and
Ti0 show a substantial dependence on the assumed value of rsi. If one particular
value of rsi could be fixed on the basis of some a priori knowledge, for example,
based on the literature data, this would be no problem. But, in the absence of such
information, we must conclude that more experimental data, particularly on the
dynamics of Ti, are required before we can hope to estimate all parameters of the
alarm clock model with sufficient precision.

3.9.2
The General Parameter Estimation Problem

So far we have discussed the estimation of parameters in the alarm clock model,
and we have seen how this can be done using software. The procedure described
above applies to all situations where there are measurement data for one of the state
variables of the ODE system only. In the general case, we may have simultaneous
data for several state variables. Remember the above discussion of the alarm clock
model where it was said that in order to estimate all parameters, we would need
data for the dynamics of Ti in addition to the data of Ts in room.csv. To generalize
the above procedure in this sense, it is useful to consider a general formulation
of the parameter estimation problem over ODEs. Let us assume an initial value
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problem for an ODE system in the sense of Definition 3.5.4:

y′(t) = F(t, y(t), p) (3.258)

y(a) = y0 (3.259)

where y(t) = (y1(t), . . . , yn(t))t. Beyond Definition 3.5.4, it is assumed here that the
right-hand side of the ODE depends on a vector of parameters p = (p1, . . . , ps)t

(same assumption as in Section 3.9.1). Now for i = 1, . . . , n, let tij denote times
where we have a measurement value ỹij of state variable yi (j = 1, . . . , mi). Similar to
the discussion in Section 2.4, the parameters are now determined by minimizing
an appropriate residual sum of squares. Denoting the solution of Equations 3.258
and 3.259 with yi(t, p) (i = 1, . . . , n), p is determined by minimizing

G(p) =
n∑

i=1

mi∑
j=1

wij(yi(tij, p)) − ỹij)2 (3.260)

where wij (i = 1, . . . , n, j = 1, . . . , mi) are appropriate weighting factors [41]. Weight-
ing factors different from 1 can be used, for example, in cases where your
measurement data cover several orders of magnitude (see Section 3.10.2.9 or an
example involving herbicide concentrations in soils discussed in [41]).

3.9.2.1 One State Variable Characterized by Data
It is exactly the problem of minimizing Equation 3.260 that has been solved by
R’s nls function in the alarm clock example. In that example, we have two state
variables y1 = Ts and y2 = Ti, which means we have n = 2. The fact that we have
measurement data only for y1 in this example means that the part of Equation
3.260 referring to i = 2 can be skipped, which leads to

G(p) =
m1∑
j=1

(y1(t1j, p) − ỹ1j)2 (3.261)

where we have set w1j = 1 (j = 1, . . . , m1) since no weighting has been used in the
alarm clock example. (Formally, the skipping of the i = 2 terms in Equation 3.260
could also have been achieved by setting w2j = 0 for j = 1, . . . , m2.) Of course, the
last equation is better written as

G(p) =
m∑

j=1

(y1(tj, p) − ỹj)2 (3.262)

with obvious interpretations of m, tj, and ỹj. Now when you are using the software
explained above, you should know where you find the ingredients of the last
equation in the program. Referring to ODEFitEx1.r, the vectors t = (t1, . . . , tm)t

and ỹ = (ỹ1, . . . , ỹm)t correspond to the vectors tData and TData in ODEFitEx1.r,
which are read there directly from room.csv before they are used in the call
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of nls. The numerical approximations of y1 at the times t, that is, the vector
(y1(t1, p), . . . , y1(tm, p))t is returned within ODEFitEx1.r as a result of the dfn1
function. See the code of this function in 3.255. Line 11 of that code corresponds
to (y1(t1, p), . . . , y1(tm, p))t. Note that this holds true since in line 5 of 3.255, the
data vector tData prescribes the times at which numerical approximations of
the ODE system are computed, and this corresponds exactly to the times in
(y1(t1, p), . . . , y1(tm, p))t.

3.9.2.2 Several State Variables Characterized by Data
Let us now generalize this to the case where we have data of several state variables
yi of the ODE system. In the wine fermentation model (Section 3.10.2), we have
measurement data for three state variables S, E, and X . Using the above notation
and proceeding analogously to the above discussion of ODEFitEx1.r, we will need
the following quantities:

t = (t11, . . . , t1m1 , t21, . . . , t2m2 , t31, . . . , t3m3 )t (3.263)

ỹ = (ỹ11, . . . , ỹ1m1 , ỹ21, . . . , ỹ2m2 , ỹ31, . . . , ỹ3m3 )t (3.264)

yp = (yp1, yp2, yp3)t (3.265)

where for i = 1, 2, 3

ypi = (yi(ti1, p), . . . , yi(timi , p)), (3.266)

The wine fermentation model is realized in the R program Fermentation.r,
which has been derived from ODEFitEx1.r and is discussed in Section 3.10.2.
Here we just take a short look at the parameter estimation part of that code, in
order to see how the three quantities in Equations 3.263–3.265 are used in that
code. Regarding t, it was said above in the discussion of ODEFitEx1.r that this
quantity is used at two places: in the definition of dfn1 to prescribe the times at
which dfn1 is required to produce numerical approximations of the state variables
and in the call of R’s nls function that is used to minimize the residual sum of
squares (Equation 3.260). Looking at the definition of dfn1 in Fermentation.r,
you will see that a time vector called tInt is used. If you check the definition of
tInt a few lines upward in Fermentation.r, you will note that tInt involves
more time points than those given by the vectors tS, tE, and tX, which correspond
immediately to t. This is done for technical reasons related with the addition of
nitrogen as discussed in Section 3.10.2. If you look at the last line in the function
body of dfn1 in Fermentation.r

c(out[tSind "S"],out[tEind,"E"],out[tXind,"X"]) (3.267)

you see that the index vectors tSind, tEind, and tXind are used to make sure
that dfn1 returns the approximations of the state variables corresponding to tS,
tE, and tX (and hence corresponding to t) as required. Program 3.267 is what is
returned by dfn1, and it corresponds directly to yp in Equation 3.265 above. In
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the call of nls in Fermentation.r, the data vectors t and ỹ are supplied in the
following line:

,data=data.frame(y=c(S,E,X),x=c(tS,tE,tX)) (3.268)

Here c(tS,tE,tX) corresponds directly to t in Equation 3.263 and c(S,E,X)
corresponds to ỹ in Equation 3.264. This ends our discussion of how nls is applied
in Fermentation.r to treat the case where several state variables are characterized
by data. Starting, for example, with ODEFitEx1.r as a template, you may proceed
along these lines to treat your own problems involving several state variables
characterized by data. All other aspects of Fermentation.r and its results are
discussed in Section 3.10.2.

3.9.3
Indirect Measurements Using Parameter Estimation

Note the elegance of the parameter estimation method discussed above. It can
be viewed as an indirect measurement procedure that can be used in situations
where the direct measurement of a quantity of interest is either impossible or too
expensive in terms of time and money. In the case of the wine fermentation model,
this applies to the parameters k (specific death constant of yeast) and N0 (initial
nitrogen concentration). As discussed in Section 3.10.2, N0 is hard to measure
because it refers to the yeast available nitrogen that cannot be easily characterized
experimentally. Regarding k, the situation is different in the sense that it can
be characterized experimentally but nobody did this so far, that is, there are no
literature values that could be used. This means that if you want to use k in a model,
you would normally have to perform an appropriate experiment that determines
this parameter.

In such a situation where two parameters of a model you want to use are
unavailable for different reasons, the parameter estimation provides an elegant way
to determine these parameters from your available data. In the case of the wine
fermentation model, this means that instead of performing specific experiments
for the determination of the unknown parameters, you just use data of the overall
fermentation process such as the sugar, ethanol and yeast biomass data discussed
in Section 3.10.2, and then you use the mathematical procedure of parameter
estimation to get approximate values of your unknown parameters from the data.
Parameter estimation problems are inverse problems in the sense explained in
Section 1.7.3. As it is explained there, the inverse character of parameter estimation
lies in the fact that the process of parameter estimation does not aim at the
determination of the output of your model (i.e. of its state variables) from the
given input data (time interval and parameters); rather, you are going the ‘‘inverse’’
direction, asking for parameters of your model based on the given output data.

Note 3.9.1 (Indirect measurements) Suppose you want to determine a pa-
rameter that cannot be measured directly, and suppose that you have some
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data characterizing your system. Then, the parameter estimation procedures
described in this section (and the underlying regression techniques described in
Chapter 2) can often be used to estimate the parameter from the available data.

3.10
More Examples

ODEs can be applied in many, if not in most situations where your data describe the
evolution of a quantity of interest over time. The following examples are intended
to give you an idea of the wide applicability of this method. They will also be used
to explain some useful concepts beyond the theory discussed above, such as the
discussion of ideas of the theory of dynamical systems in Section 3.10.1 or of the
concept of compartmental modeling in Section 3.10.3.

3.10.1
Predator–Prey Interaction

Population sizes of animals often have an oscillatory nature, that is, they increase
and decrease periodically over time. In some cases, this can be explained by
predator–prey interactions. Consider two animal species, a predator species and a
prey species serving as the food of the predator. Let x and y denote their respective
population sizes, measured, for example, as the number of species per square
kilometer. If the prey population x is sufficiently large, the predator population y
will increase since there is enough food available. The increase in the predator
population y, however, will decrease the prey population x until the predator
population finally runs short of food. Hence, the decrease in the prey population
x will be followed by a decrease in the predator population y, until y is reduced
so much that the prey population x increases again, which will be followed by a
subsequent increase in y, and so on. If you sketch x and y in this way, you will find
that one can expect periodical curves having the same period length, but a little bit
shifted in time, that is, the maximum of x being followed by the maximum of y
some time later.

3.10.1.1 Lotka–Volterra Model
In 1926, Volterra investigated fish population data exhibiting this kind of dynamics,
and he used the following model to explain the data [114–116]:

x′(t) = (r − ay(t)) · x(t) (3.269)

y′(t) = (bx(t) − m) · y(t) (3.270)

In these equations, a, r, b and m are parameters (real constants) that are discussed
below. Since the equations were independently found by Lotka and Volterra [115,
117], they are known as the Lotka–Volterra model.
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To understand this model, let us consider some special cases. In the absence of
the predator (y = 0), we have

x′(t) = r · x(t) (3.271)

Using the methods of Section 3.7, you can easily show that this is solved by

x(t) = x0 · ert (3.272)

where x0 = x(0). Hence, the above model assumes an exponential increase in the
prey population in the absence of the prey. Applying the same reasoning to the case
x = 0, you find that the model assumes an exponential decrease in the predator
population in the absence of preys:

y(t) = y0 · e−mt (3.273)

where y0 = y(0). Particularly, the exponential increase in the prey population is
certainly a wrong assumption if the prey population becomes large enough. But
this is irrelevant here since the model refers to the situation y �= 0 where the prey
population is limited by the presence of the predator. The growth rates r and m in
Equations 3.269 and 3.270 can be interpreted similar to the interpretation of the
parameter r of the body temperature model in Section 3.4.1.2:

• r, the growth rate of the prey, expresses the percent increase
of x per unit of time, expressed relative to the actual size of x;
a typical unit would be day−1

• m, the death rate of the predator, expresses the percent
decrease of y per unit of time, expressed relative to the actual
size of y; again, a typical unit would be day−1

Equations 3.269 and 3.270 show that the growth rate of the prey population
is assumed to be reduced proportionally to the size of the predator population,
while the death rate of the predator is reduced proportionally to the size of the
prey population. This is governed by the parameters a and b with the following
interpretations:

• a expresses the decrease in the growth rate of the prey per
unit of y; a typical unit would be day−1

• b expresses the increase in the growth rate of the predator
per unit of x; a typical unit would be day−1

A closed form solution of Equations 3.269 and 3.270 cannot be obtained (try
it . . . ), although one can at least derive an implicit equation characterizing the
solution, see [114, 116]. Figure 3.15a shows an example where Equations 3.269 and
3.270 have been solved numerically using the R program Volterra.r in the book
software. Volterra.r has been obtained by an appropriate editing of ODEEx2.r
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Fig. 3.15 (a) Prey (line) and predator (dashed line) popu-
lation sizes obtained using Volterra.r and r = 0.1, m =
0.15, a = 0.002, b = 0.001, x0 = 170, and y0 = 40. (b) Same
plot in nondimensional form obtained using VolterraND.r

and r̃ = 0.1, m̃ = 0.15, ã = 0.08, b̃ = 0.17, u0 = 1, and
v0 = 1.

(Section 3.8.3.7). Note that the curves in Figure 3.15a follow exactly that ‘‘shifted’’
periodical pattern that has been conjectured above.

3.10.1.2 General Dynamical Behavior
As it was said above, Volterra found the ODE system Equations 3.269 and 3.270
when he tried to understand certain oscillatory fish population data. He found a
good coincidence between these ODEs and his data, and one could say that in this
way these ODEs did what they where expected to do. But it is in fact a big advantage
of mathematical modeling using ODEs that this is not necessarily the endpoint of
the analysis. When a good coincidence between an ODE and data is found, we have
a good reason to believe that these ODEs capture essential aspects governing the
dynamics of the system. Then it makes sense to perform a theoretical investigation
of the general dynamical behavior of the ODE system, that is, of the behavior of
the system for all kinds of initial and parameter values, because in this way we
may hope to learn about the general dynamical behavior of the real system that
produced the data. For example, if we are investigating fish population data such
as Volterra, we may be interested to learn about conditions that would increase the
population size of a particular fish species beyond some acceptable level.

An analysis of the general dynamical behavior of an ODE system can be performed
based on the theory of dynamical systems, which provides methods to understand
and classify the patterns of dynamical behavior that solutions of ODE systems may
have. An extensive discussion of these methods is beyond the scope of this book.
You may find a detailed analysis of the dynamical behavior of the Lotka–Volterra
model in [114, 116]. We will confine ourselves here to a discussion of two aspects of
the analysis of the dynamical behavior of ODEs, which is something like a minimal
knowledge you should have of this kind of analysis: the formulation of an ODE (or
PDE) in dimensionless form and the phase plane plot.
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3.10.1.3 Nondimensionalization
As to the first of these points, note that exactly the same picture as in Figure 3.15a
would have been obtained using, for example, x0 = 1700 and y0 = 400 together
with an appropriate scaling of the other parameters of the model. This means that
if we want to classify the dynamical behavior of an ODE, we should first try to get
rid of these scaling issues that just change the numbers at the axes of our plots, but
that do not affect the qualitative dynamical behavior of the solution. This is done
by bringing the ODE in dimensionless form. Referring to Equations 3.269 and 3.270,
this can be done as follows. Let xr , yr , and tr be reference values of x, y, and t (the
appropriate choice of these values is discussed below). Now define u, v, and τ as
follows:

u = x

xr
(3.274)

v = y

yr
(3.275)

τ = t

tr
(3.276)

All quantities defined in these equations are dimensionless since they are all
expressed as fractions involving two quantities having the same dimensions. Since
dimensions enter Equations 3.269 and 3.270 only through x, y, and t, we get rid of
all dimensions in these equations if we substitute u, v, and τ into these equations
using Equations 3.274–3.276. The result is

du

dτ
= (rtr − atryrv)u (3.277)

dv

dτ
= (btrxru − mtr)v (3.278)

or

du

dτ
= (r̃ − ãv)u (3.279)

dv

dτ
= (b̃u − m̃)v (3.280)

using the identifications r̃ = rtr , ã = atryr, b̃ = btrxr , and m̃ = mtr . Note that the
structure of the last two equations is identical with the structure of Equations 3.269
and 3.270, and that all quantities appearing in Equations 3.279 and 3.280 are indeed
dimensionless (verify this for r̃, ã, b̃, m̃).

Now it is time to talk about the proper choice of the reference values xr , yr , and tr

in Equations 3.274–3.276. Principally, these quantities can be chosen arbitrarily.
In some cases, your application may suggest ‘‘natural’’ reference values that can
be used. tr is usually set to the appropriate unit of time corresponding to the time
scale on which the state variables of the ODE are observed, which means that
you would set tr = 1 day (or week, or year) in most models involving population
dynamics. In the absence of other ‘‘natural’’ reference values, the reference values
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Fig. 3.16 Phase plot of the result in Figure 3.15b, generated
using VolPhase.mac. The line is the curve (u(t), v(t)) and
the arrows show the vector field (du/dτ , dv/dτ ). Note the
slider below that can be used to change the value of r inter-
actively.

for the state variables of the ODE are often set to the initial values of the ODE,
which corresponds to xr = x0 and yr = y0 in our case.

Figure 3.15b shows the solution of Equations 3.279 and 3.280 using parameter
values exactly corresponding to those used in Figure 3.15a. This figure was
obtained using VolterraND.r in the book software. In contrast to Figure 3.15a,
the axes in Figure 3.15b are in dimensionless units, which means that Figure 3.15b
summarizes the dynamical behavior of the ODE for a great number of different
situations. For example, depending on your setting of tr , the values on the t axis
may refer to seconds, days, years, and so on. In the same way, the values on the
u, v axis may refer to the number of individuals, but they may also refer to any
other units which you choose by setting xr and yr . Analyzing ODEs in this way
it is much easier to get a picture of its overall dynamical behavior. See Murray
[114] for a more detailed analysis of the dynamical behavior of the Lotka–Volterra
equations. After introducing natural choices of the reference values xr , yr and tr ,
Murray reduces Equations 3.279 and 3.280 to a form which involves only one
parameter. An analysis of this system shows, for example, that the Lotka–Volterra
equations are structurally instable in the sense that for certain initial conditions,
small perturbations of these initial conditions or parameters can have large effects
on the solution, which limits the practical usefulness of this model as discussed
in [114].

3.10.1.4 Phase Plane Plots
For systems of two ODEs, the solution can also be plotted in a phase plane plot,
which is particularly useful for an understanding of the overall dynamical behavior
of the ODEs. Figure 3.16 shows a phase plane plot of the solution of Equations
3.279 and 3.280 using exactly the same parameters as in Figure 3.15b. In the phase
plane plot, the coordinate axes correspond to the state variables u and v, and there is
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no time axis. This means that what you see in the phase plot is the curve (u(t), v(t)),
drawn on some interval [t0, t1]. Comparing Figures 3.16 and 3.15b you will find
that both figures indeed refer to the same solution of Equations 3.279 and 3.280.
Figure 3.16 has been produced using the Maxima program VolPhase.mac. With
some effort, R could also have been used to produce similar plots, but Maxima
provides a really nice package called plotdf to produce phase plots that has been
used in VolPhase.mac. The command producing the phase plot in this program is

1: plotdf(
2: [(r-a*v)*u,(b*u-m)*v]
3: ,[u,v]
4: ,[parameters, "r=0.1,m=0.15,a=0.08,b=0.17"]
5: ,[sliders,"r=0.07:0.1"]
6: ,[trajectory_at,1,1]
7: ,[tstep,0.1]
8: ,[nsteps,1000]
9: ,[u,0.69,1.1]

10: ,[v,0.7,1.7]
11: )$

(3.281)

In this code, line 2 defines the ODEs (3.279) and (3.280) via their right-hand sides.
The rest of the code is self-explanatory. Note the definition of the slider element
in line 5, which can be used to change the parameter value of r interactively
(Figure 3.16). Several of such parameter sliders can be added to the plot in this way.
Lines 7–8 define the interval [0, T ] for which the curve (u(t), v(t)) is plotted. We have
T = tstep · nsteps here which gives T = 100 based on the settings in 3.281, and
this means that Figure 3.16 uses the same time interval as Figure 3.15b. tstep
is the stepsize of the numerical algorithm. plotdf uses the Adams–Moulton
method, but it can also be switched to a Runge–Kutta method (Section 3.8) with
an adaptive stepsize [110]. If you use plotdf as above, you should choose tstep
small enough, applying the heuristical procedures explained in Section 3.8 (Note
3.8.1).

The closed form of the trajectory in Figure 3.16 expresses the fact that the curve
(u(t), v(t)) always goes along the same way, which means that this is indeed a
periodical solution. It would not have been so easy to see this in the conventional
plot, Figure 3.15b. The real benefit of the phase plot, however, lies in the fact that
you can see the effects of changes of the initial conditions or of the parameters. If you
move the parameter slider in Figure 3.16, you can see that the trajectory changes its
size and position, and you can assess in this way the effects of parameter changes
much better than it would have been possible using conventional plots such as
Figure 3.15b. Try this yourself using VolPhase.mac. Effects of different initial
condition can be studied particularly simple just by clicking into the plot. Every click
produces a trajectory going through the initial condition at your mouse position.
An example is shown in Figure 3.17a. This figure shows an interesting fact: you
see that the amplitudes of the oscillations of the predator and prey populations go
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Fig. 3.17 (a) Phase plot as in Figure 3.16, including several
other phase trajectories for different initial conditions. (b)
Phase plot as in (a) but based on a different scaling, show-
ing the instability of the Lotka–Volterra equations.

to zero as you approach a point in the center of the smallest, inner curve. This
corresponds to a singular point of the ODEs, see the discussion in [114].

Figure 3.17b shows a similar plot using a different scaling of the axes, and a
number of trajectories with initial conditions approaching the coordinate axes.
This figure shows the structural instability of the Lotka–Volterra equations that was
mentioned above (for a detailed analysis we refer to [114]): imagine you have initial
conditions somewhere below the singular point infinitesimally close to the u axis
of the plot, and imagine an infinitesimal perturbation of these initial conditions,
which puts you on one of the neighboring trajectories. Then, comparing this
neighboring trajectory with your original trajectory, you will find that you have
large (i.e. noninfinitesimal) differences between these trajectories in regions of the
phase space far away from the coordinate axes, as it can be seen in Figure 3.17b.

3.10.2
Wine Fermentation

Grape juice is transformed into wine in the fermentation process. This is a
very complex process which is still not fully understood, and which involves the
metabolization of sugar into ethanol by yeast cells [118, 119]. Loosely speaking,
one can say the yeast in the fermenter ‘‘eats up’’ the sugar and excretes ethanol. If
everything works well, the yeast cells will utilize most of the sugar in the fermenter
during 7–10 days [120, 121]. It may happen, however, that the fermentation needs a
much longer time (sluggish fermentation) or the fermentation may even stop before
a sufficient amount of sugar is metabolized by the yeast cells (stuck fermentation). In
an industrial setting, this kind of abnormalities can be very expensive, for example,
in terms of extended processing times in the case of sluggish fermentations or in
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terms of microbial instabilities in the case of stuck fermentations that endanger
the quality of the final product. This leads to the following problem:

Problem 1:
How can the fermentation process be controlled in a way that avoids sluggish or
stuck fermentations?

3.10.2.1 Setting Up a Mathematical Model
To address this problem, the process engineer can try to tune a number of variables
that have an impact on the way in which the fermentation proceeds. One of these
control parameters is the nitrogen concentration in the fermenter which we denote
N(t) (g l−1), where t is time (h−1). Nitrogen is an important nutrient needed by the
yeast cells (too low nitrogen levels can be a limiting factor of yeast cell growth).
N(t) refers to the total yeast available nitrogen concentration and includes various
subtypes which we do not need to discuss here [121]. Another important control
variable that is discussed here is the temperature T(t) (K). Considering these two
control variables, the process engineer has to answer the following question:

Q: How should N(t) and T(t) be adjusted during fermentation in order to avoid
sluggish or stuck fermentations?

Referring to the definition of mathematical models as a triple (S, Q , M) consisting
of a system S, a question Q and a set of mathematical statements M (Definition
1.4.1), this is the question we are going to ask here, and obviously S can be
identified with the fermenter. What remains to be done is the formulation of the
set of mathematical statements, M, which will be a system of ODEs. The above
question Q tells us that N(t) and T(t) will be variables of our mathematical model,
and since the question focuses on sluggish or stuck fermentations, it is obvious that
we will also need to compute the sugar concentration S(t) [g l−1). You can see here
that the question Q we are asking is a really essential ingredient of a mathematical
model that guides the formulation of the mathematical equations. Since we have
said that the yeast cells ‘‘eat up’’ the sugar, it is obvious that we will not be able to
compute the dynamics of S(t) unless we have a variable expressing the (viable) yeast
cell concentration. Let us denote this as X (t) (gram biomass per liter). Now we have
to formulate equations for these variables. In the modeling and simulation scheme
(Note 1.2.3), this is at the heart of the systems analysis step, and this is the point
where we have to refer to appropriate specialized literature. In this case, any book
on fermentation technology can be used, which describes the processes that are
involved in the metabolization of sugar and nitrogen into ethanol by the yeast cells
[118, 119]. The result of such an analysis as well as a lot of background regarding
the equations we are going to write now can be found in a model formulated by
Blank [122]. Blank’s model is an improved version of the fermentation model of
Cramer et al. [121].
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Table 3.3 State variables of the wine fermentation model.

State variable Description Unit

X (Viable) yeast cell concentration gram biomass per liter
N (Yeast available) nitrogen concentration gram nitrogen per liter
E Ethanol concentration gram ethanol per liter
S Sugar concentration gram sugar per liter

3.10.2.2 Yeast
Regarding X (t), Cramer et al. use the following balance equation:

dX

dt
= μ · X − kd · X (3.282)

This means that the yeast cells grow proportionally to the actual yeast cell
concentration X , the proportionality constant being the specific growth rate μ.
At the same time, the yeast cells are inactivated or die proportionally to X ,
the proportionality constant being the death constant kd. Note that you find
all information regarding the state variables and parameters discussed here in
Tables 3.3 and 3.4. If μ and kd would be just constants, Equation 3.282 could be
written as

dX

dt
= μ̃ · X (3.283)

with μ̃ = μ − kd, which means that X (t) would follow a simple exponential growth
pattern. In reality, however, μ and kd depend on a number of factors, and these
dependencies must be described based on appropriate empirical data. In fact,
the final predictive power of a fermentation model depends very much on the
appropriate description of these empirical dependencies. Regarding μ, Cramer
[121] uses the following expression:

μ = μmax · N

KN + N
(3.284)

This means that the growth of the yeast cells is limited by nitrogen availability. The
algebraic form of the right-hand side of this equation is frequently used to describe
the rate of enzyme-mediated reactions, and it is known as the Michaelis–Menten ki-
netics term. Assuming a maximum rate Vmax for some particular enzyme-mediated
reaction and denoting the actual reaction rate and the substrate concentration with
V and C, respectively, the Michaelis–Menten kinetics is usually written as

V = Vmax · C

Km + C
(3.285)
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Table 3.4 Parameters of the wine fermentation model.

Parameter Description Unit Value Source

μ Specific growth rate h−1 (3.284) [121]
μmax Maximum specific

growth rate
h−1 (3.286) [122, 124, 125]

T Temperature K Data [122]
KN Monod constant for

nitrogen
g nitrogen/l 0.01 [121]

kd Death constant h−1 (3.287) [121]
k Specific death constant l/g ethanol//h Unknown
YXN Stoichiometric yield

coefficient of biomass on
nitrogen

g biomass/g
nitrogen

18 [127]

β Specific ethanol
production rate

g ethanol/g
biomass/h

(3.289) [121]

βmax Maximum specific
ethanol production rate

g ethanol/g
biomass/h

(3.290) [121,126]

βmax,24 ◦C Maximum specific
ethanol production rate
at 24 ◦C

g ethanol/g
biomass/h

0.3 [121]

KS Michaelis–Menten-type
constant for sugar

g sugar/l 10 [121]

YES Stoichiometric yield
coefficient of ethanol on
sugar

g ethanol/g
sugar

0.47 [121]

X0 Initial yeast
concentration at t = 0

g biomass/l 0.2 fermentation.csv

E0 Initial ethanol
concentration at t = 0

g ethanol/l 0 fermentation.csv

S0 Initial sugar
concentration at t = 0

g sugar/l 205 fermentation.csv

N0 Initial nitrogen
concentration at t = 0

g nitrogen/l Unknown

Ni
add ith nitrogen addition

(i = 1, . . . , n)
g nitrogen/l 0.03 (i = 1,2) [122]

ti
add Time of ith nitrogen

addition (i = 1, . . . , n)
h 130 (i = 1),

181 (i = 2)
[122]

where Km is the Michaelis–Menten constant which corresponds to the substrate
concentration that generates Vmax/2 [123]. It can be easily derived from Equation
3.285 that V → Vmax as C → ∞.

Applying this to Equation 3.284, you see that μmax is the maximum specific
growth rate, and that μ approaches this maximum growth rate asymptotically as
the available amount of nitrogen increases. The Michaelis–Menten constant KN

expresses the nitrogen concentration which corresponds to μ = μmax/2. Note that
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it is not really surprising that such a fundamental relation from enzyme kinetics
is used here since a number of enzyme-mediated reactions is involved in the
metabolization of nitrogen by the yeast cells [124].

Equation 3.284 is appropriate under largely isothermal conditions. Since we want
to consider the temperature as a (nonconstant) control variable here, the effects
of the temperature on μmax need to be taken into account, which can be done as
follows [122, 124, 125]:

μmax(T) = 0.18 · exp
(

14 200 · T − 300

300RT

)
− 0.0054 · exp

(
121 000 · T − 300

300RT

)
(3.286)

Here, R = 8.314472 J · K−1 · mol−1 is the universal gas constant. The death
constant kd depends on the ethanol concentration E(t). In [121], the following
expression is used

kd = k · E (3.287)

The last equations describe the dynamics of the viable yeast cell concentration,
X (t). In these equations, we needed the nitrogen concentration, N(t), and the
ethanol concentration, E(t). This means we need equations characterizing N(t) and
E(t). Let us begin with an ODE describing the dynamics of E(t).

3.10.2.3 Ethanol and Sugar
Cramer describes the ethanol production rate proportional to the available amount
of yeast cells, that is,

dE

dt
= βX (3.288)

where, similar to Equation 3.284, the specific ethanol production rate β depends
on the available sugar concentration, S(t):

β = βmax · S

KS + S
(3.289)

Again, the last two equations hold for essentially isothermal conditions, and a
temperature dependence of βmax needs to be taken into account here. Following
[122], we use an expression derived from data in [121, 126]:

βmax(T − 273.15) = βmax,24 ◦C · (0.00132 · T2 + 0.00987 · T − 0.00781)
(3.290)

It remains to describe N(t) and S(t) that are used in the last equations. As discussed
above, the dynamics of the sugar concentration S(t) is intimately related with the
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ethanol production by the yeast cells. This is reflected by the fact that an ODE very
similar to Equation 3.288 can be used to describe the sugar dynamics [121]:

dS

dt
= − β

YES
X (3.291)

In this equation, the coefficient YES describes the stoichiometric bioconversion
of sugar into ethanol.

3.10.2.4 Nitrogen
Remember that we wanted to use N(t) as one of our control variables. In practice,
any kind of fine tuning of N(t) is hard to achieve. Even the measurement of nitrogen
levels – which would be an essential prerequisite of controlling N(t) levels – is a
very difficult task [122, 124]. Nevertheless, nitrogen is an important variable in
this process and people try to make sure that there is sufficient nitrogen in the
fermenter. Since they usually do not know the actual nitrogen level N(t), this
is done largely in a ‘‘black box fashion’’, which means that nitrogen is added
to the fermenter at times which have proven to be reasonable based on the
experience made in previous fermentations. Let us denote with Ni

add the nitrogen
concentrations added at times ti

add (i = 1, . . . , n). From the process engineers point
of view, these are the nitrogen control variables, and they give rise to an essentially
unknown dynamics of N(t). One of the benefits of the model described here is that
based on the nitrogen levels computed by the model, the process engineer can at
least gain a qualitative idea of the effects that the nitrogen additions have on N(t).

Note 3.10.1 (Qualitative optimization) In a situation where an exact quan-
titative determination of a state variable cannot be achieved, mechanistic
mathematical models often provide information about its qualitative behav-
ior, which can be used for optimization. Such a ‘‘qualitative optimization’’ of
a process is a definite step beyond pure ‘‘black box optimization’’ based on
phenomenological models.

Since N(t) is required in the above equations, it must be computed based on the
nitrogen additions Ni

add at times ti
add. To do this, we start with Cramer’s nitrogen

balance equation as follows:

dN

dt
= − μ

YXN
· X (3.292)

This equation is based on the assumption that nitrogen is consumed proportional
to the growth rate of yeast. The yield coefficient YXN is used to convert from nitrogen
to yeast biomass. Now the nitrogen additions Ni

add at times ti
add must be incorporated

into the equations. Unfortunately, R’s lsoda does not provide us with an option that
would allow us to impose a discontinuous change of N(t) by an amount of Ni

add at
times ti

add. Principally, this could be done by splitting the overall integration interval
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[0, T ] into subintervals [0, t1
add], [t1

add, t2
add], and so on, applying lsoda separately to

each of the subintervals and using appropriate settings of the initial values that
account for the nitrogen additions Ni

add. In our case, a more elegant and sufficiently
accurate alternative is the assumption that the nitrogen additions are not given
instantaneously, but at a constant rate over 1 h. This turns Equation 3.292 into

dN

dt
= r(t) − μ

YXN
· X (3.293)

where

r(t) =
{

Ni
add if ti

add − 1
2 < t < ti

add + 1
2 , i = 1, . . . , n

0 else

}
(3.294)

The overall model is a system of four ODEs that can be summarized as follows:

Wine fermentation model

dX

dt
= μ(T , N) · X − k · E · X (3.295)

dN

dt
= r(t) − 1

YXN
· μ(T , N) · X (3.296)

dE

dt
= β(T , S) · X (3.297)

dS

dt
= − 1

YES
β(T , S) · X (3.298)

We have used the notations μ(T , N) and β(T , S) to emphasize the nonlinear
dependence of these parameters on their arguments as discussed above.

3.10.2.5 Using a Hand-fit to Estimate N0

Now let us see if the above model is capable to reproduce the concrete fermentation
data in Figure 3.18. In this fermentation, the temperature has been varied between
12 and 18 ◦C by the process engineers (Figure 3.18), and nitrogen has been added
at two times during the fermentation (see ti

add and Ni
add in Table 3.4). As a result of

these measures, the figure shows data of X (t), E(t) and S(t). As it was mentioned
above, the measurement of N(t) is difficult and this is why no nitrogen data are
available from this trial. Figure 3.18 was produced using the program Fermentation.r
in the book software (set PlotData=TRUE in the ‘‘Program Control Parameters’’
section).
Fermentation.r will now also be used to solve the ODE system, Equations

3.295–3.298, and to estimate parameters of these equations from the data. This
code has been derived by an appropriate editing of ODEFitEx1.r (Section 3.9.1).
Some data handling aspects of Fermentation.r closely related to the parameter
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Fig. 3.18 Wine fermentation data from [122]. See fermentation.csv in the book software.

estimation procedure have already been discussed in Section 3.9.2.2. Other aspects
of that code that are more closely related with the wine fermentation model
are addressed below. See also the discussion of ODEEx1.r and ODEEx2.r in
Section 3.8.3 for more information on the general way how you should work with
this kind of codes. Fermentation.r is based on Equations 3.295–3.298 and uses
the parameter values given in Table 3.4.

Looking at the table, you will note that there are two unknown parameters: k
and N0. N0 is hard to measure because it refers to the yeast available nitrogen
that cannot be easily characterized experimentally [122, 128]. Regarding k, [121]
suggests a value of k = 10−4 l/g ethanol/h for a temperature of 24 ◦C. This value
could have been used here as a fixed value in the simulations, but [122] says it
is better to estimate k from the data since this parameter is strongly temperature
dependent, and the temperatures in the trial investigated here are substantially
below 24 ◦C (Figure 3.18). Therefore, both N0 and k are estimated from the data in
Fermentation.r using the procedure explained in Section 3.9.

First of all, starting values of k and N0 are needed as initial values for the
parameter estimation procedure, that is, values in the right order of magnitude.
As explained above, one can try to get such approximate values from the literature
and/or by a hand-fitting of the parameters until the solutions of the ODE system
are at least in the neighborhood of the data. Regarding k, we can use the literature
value k = 10−4 mentioned above. Since we do not have any information on N0,
the hand-fitting procedure is used for this parameter. A hand-fit of N0 (setting
NonlinRegress=FALSE and PlotStateData=TRUE in the ‘‘program control pa-
rameters’’ Section of Fermentation.r) leads us, for example, to Figure 3.19,
which is obtained for k = 10−4 and N0 = 0.1.
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Fig. 3.19 Solution of Equations 3.295–3.298 using k = 10−4,
N0 = 0.1 and the parameters in Table 3.4.

3.10.2.6 Parameter Estimation
The fine tuning of the parameters to be estimated can then be performed based on
R’s nls function as discussed in Section 3.9, using k = 10−4 and the hand-fitted
N0 = 0.1 as starting values of k and N0. Setting NonlinRegress=TRUE in the
‘‘program control parameters’’ section of Fermentation.r, the result shown in
Figure 3.20 is obtained. As can be seen, a very good fit between the solution of
the ODE system and the data is obtained, with all R2 values above 0.97. This is
a very good result since this is a fit between three nonlinear curves and data that
was obtained by a tuning of only two parameters. If you have achieved a result
like this, the next step is to test the predictive power of your model, applying it
to data not used for the parameter estimation. This has been done by Blank in
[122]. Blank shows that this model performs very well on unknown data in several
cases, although there are also datasets where the results are unsatisfactory – which
is not really surprising considering the aforementioned complexity of the wine
fermentation process. From the point of view of mathematical modeling, the latter
datasets producing the unsatisfactory results are the interesting ones, because they
give us hints for further improvements of the model.

Note that the relative and absolute tolerances rtolDef and atolDef have both
been set to 10−5 in Fermentation.r. This is based on the ‘‘rule of thumb’’
explained in Section 3.8.3.5: Considering the fact that the computations involve
nitrogen additions of 0.03 gl−1 (see ti

add and Ni
add in Table 3.4), it is clear that

atolDef must be smaller than 10−2. For example, we can set it to 10−3. Regarding
rtolDef, Figure 3.18 shows that the sugar and ethanol data have at least three
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Fig. 3.20 Solution of Equations 3.295–3.298 using the
estimated coefficients k = 6.637202 × 10−5 and N0 =
1.678096 × 10−1, and the parameters in Table 3.4.

significant digits, which means we should set rtolDef also, for example, to 10−3.
In Fermentation.r, both tolerances were set to 10−5, that is, two orders of
magnitude smaller, which was based on the heuristical procedure for the choice
of rtolDef and atolDef explained in Section 3.8.3.5 (a further decrease in the
tolerances below 10−5 did not affect the result anymore).

3.10.2.7 Problems with Nonautonomous Models
Finally, let us look through Fermentation.r, focusing on new aspects in this

code. As it was said above, Fermentation.r was derived from ODEFitEx1.r
which was discussed in Section 3.9.1. Within Fermentation.r, the ODE system
Equations 3.295–3.298 is defined in a function dfn as follows:

1: dfn <-
2: function(t, y, p)
3: {
4: X=y[1]
5: N=y[2]
6: E=y[3]
7: S=y[4]
8: k=p[1]
9: dXdt=mu(T(t),N)*X-k*E*X

10: dNdt= r(t)-mu(T(t),N)*X/Yxn
11: dEdt=beta(T(t),S)*X

(3.299)
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12: dSdt=-beta(T(t),S)*X/Yes
13: list(c(dXdt,dNdt,dEdt,dSdt))
14: }

The general structure of the dfn function has been discussed in Section 3.8.3.
The correspondence between Equations 3.295–3.298 with lines 9–12 of program
3.299 is obvious. You may be irritated by the fact that the time dependence of
r(t) and T(t) is written explicitly in the code, while this is not done for the state
variables X, N, E and S. This is related with the fact that Equations 3.295–3.298 are
a nonautonomous system of ODEs. As it was discussed in Section 3.5.3, this means
that at least one of the right-hand sides of these equations depends on t not only
(implicitly) via the state variables, but also via some explicitly given functions of t.
Looking at the equations, you see that all right-hand sides of the system depend
explicitly on the temperature T(t) or on the nitrogen supply rate r(t). When writing
down the dfn function for nonautonomous ODEs, you must take care that only the
state variables are written without an explicit ‘‘(t)’’, while all other time-dependent
function must be written similar to T(t), r(t) and so on.

But even if you have done this correctly, you might run into another problem
characteristic of nonautonomous ODEs when you try to compute the numerical
solution. Remember our definition of the nitrogen supply rate in Equation 3.294.
In the above example, nitrogen is supplied at two times only, t1

add = 130 h and
t2
add = 181 h. Since the overall time interval in the example is from 0 to 400 h,

this means that the function r(t) defined in Equation 3.294 is almost everywhere
zero, except for two small 1-h intervals around t1

add = 130 h and t2
add = 181 h.

Remember also the discussion of lsoda in Section 3.8: lsoda determines its
stepsize h automatically, choosing the stepsize as small as it is required by the error
tolerances, but not smaller. Now if lsoda sets the stepsize relatively large around
t1
add = 130 h and t2

add = 181 h, it may happen that it ignores the nitrogen supply
rate r(t) in the sense that r(t) is never evaluated at one of its nonzero points. Then,
although you prescribe a substantial nitrogen supply in two small 1-h intervals
around t1

add = 130 h and t2
add = 181 h, you will not see this in the solution, that is,

the problem is solved by lsoda in a way as if there would be no nitrogen supply
at all (r(t) = 0). Implementing the fermentation model yourself by an appropriate
editing of ODEFitEx1.r, you will see that you get exactly this problem when you
do not apply appropriate measures to avoid this.

Note 3.10.2 (Problem with short external events) Numerical solutions of
nonautonomous ODE systems may ignore short external events (such as nitrogen
addition in the wine fermentation model).

The first and simplest thing that one can do is to prescribe a maximum stepsize
in lsoda, which can be done using an argument of lsoda called hmax (see [108,
109] and R’s hep pages). Choosing hmax sufficiently small, one can make sure that
r(t) is used in the computation as desired. For example,, based on hmax=1/10, r(t)
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will be evaluated 10 times during each of those 2 h of nitrogen supply. Similar to
the heuristics for an optimal choice of the stepsize described above (Note 3.8.1),
one can then optimize the size of hmax, making it small enough such that a further
decrease of hmax does not affect your results, but not smaller since this would
further increase your computation times, roundoff errors and so on as discussed
in Section 3.8.

A second option that can avoid this unwanted ‘‘blindness’’ of lsoda with respect
to r(t) lies in an appropriate choice of the time vector supplied in the call of lsoda.
As it was mentioned in the above discussion of ODEEx1.r, the time vector in
the call of lsoda (line 2 in program 3.249) defines the times at which lsoda is
expected to generate numerical approximations of the state variables. Now if we
want lsoda to ‘‘see’’ those 2 h where the nitrogen supply rate r(t) is different from
zero, we can define that time vector such that it involves several times within those
2 h. Exactly this has been done in Fermentation.r, using a time vector supplied
to lsoda called tInt. Check the definition of tInt in Fermentation.r to see
that it really does what has been described above.

3.10.2.8 Converting Data into a Function
The temperature T(t) in Equations 3.295–3.298 needs some special treatment since
it is not known as a mathematical function, but rather in the form of experimental
data (columns 1–2 in fermentation.csv in the book software). The conversion
of such experimental data into a form that can be treated by software such as lsoda
is a standard problem in the numerical treatment of ODEs, and it is usually solved
by a simple linear interpolation of the data. Denoting with (ti, Ti) (i = 1, . . . , n) the
experimental data, this means that T(t) is defined in each of the intervals [ti−1, ti]
(i = 2, . . . , n) as follows:

T(t) = Ti−1 + t − ti−1

ti − ti−1
· (Ti − Ti−1) (3.300)

3.10.2.9 Using Weighting Factors
The wine fermentation model is an example where it makes sense to use the
weighting factors wij in the residual sum of squares, Equation 3.260 (Section 3.9.2).
As it was discussed there, weighting factors should be used in situations where
the measurement data cover several orders of magnitude. As Figure 3.18 shows,
the sugar and cell biomass data differ by about two orders of magnitude, and the
sugar and ethanol data cover two orders of magnitude. In [41] it is suggested that
a weighting wij = 1/σ 2

i j = 1, . . . , mi should be used in this situation, where σi is
the standard deviation of the measurement data referring to state variable i. [122]
reports the following values for the state variables of the wine fermentation model:
σX = 0.1, σS = 0.7, σE = 0.7. This gives the weighting factors

wX = 1

σ 2
X

= 100 (3.301)
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wS = 1

σ 2
S

≈ 2 (3.302)

wE = 1

σ 2
E

≈ 2 (3.303)

Here, wX refers to all wij in the residual sum of squares, Equation 3.260, where
i refers to X (similar for wS and wE). In Fermentation.r, this weighting is
prescribed in the ‘‘program control parameters’’ section as follows:

WhichData=c(1,1,50) (3.304)

which means that X (third entry in WhichData) receives 50 times more weighting
compared to S and E (first and second entries in WhichData). Looking into the call
of nls further below in Fermentation.r, you can see how WhichData is used to
define an option of nls called weights.

3.10.3
Pharmacokinetics

Most therapeutic drugs are ingested orally and then enter the blood stream via
gastrointestinal (GI) absorption. For a therapeutic drug to be effective, it is of
course important to know how fast the drug enters the blood stream, and how the
drug concentration changes depending on time. In (probably) the simplest possible
approach, we would just consider two state variables: G(t), the concentration of the
drug in the GI tract, and B(t), the concentration of the drug in the blood (we assume
units of micrograms per milliliter). If the application rate D(t) (micrograms per
milliliter per hour) expresses the drug dosage regime as seen by the GI tract, the
dynamics of the system can be described by the following ODE system [116, 129]:

G′(t) = −aG(t) + D(t) (3.305)

B′(t) = aG(t) − bB(t) (3.306)

Equation 3.306 says that the blood concentration B(t) grows proportionally to the
concentration in the GI tract, G(t), and it decays proportionally to B(t), where a
and b (per hour) are the constants of proportionality. The term aG(t) that describes
the increase of the blood concentration of the drug by absorption appears with an
inverse sign in Equation 3.305, expressing the mass balance of the drug in the
sense that precisely the amount of drug that enters the blood by absorption is lost
in the GI tract. Of course, the dosage D(t) causes an increase of G(t) and thus
appears with a ‘‘+’’-sign in Equation 3.305.

To show the qualitative behavior of the solution, we use the parameter settings
suggested in [116]: G(0) = B(0) = 0 (i.e. no drug has been applied before t = 0),
a = ln(2)/2, b = ln(2)/5, and

D(t) = 2 ·
10∑

n=0

(
H(t − 6n) − H

(
t −

(
6n + 1

2

)))
(3.307)



224 3 Mechanistic Models I: ODEs

where H(x) is the Heaviside step function:

H(x) =
{

0 if x < 0
1 if x ≥ 0

(3.308)

Equation 3.307 yields the drug dosage regime shown in Figure 3.21, which can
be thought of as representing a situation where the drug is applied every 6 h, for
example, at 6 a.m., 12 a.m., and 6 p.m. As can be seen in the figure (and as
it follows from Equation 3.307), it is assumed here that the drug is supplied at
a continuous rate of 2 μg ml−1 h−1, and that this rate is held constant for 1/2 h
after drug ingestion. Figure 3.22 shows the resulting patterns of B(t) and G(t) that
are obtained by a solution of the model, Equations 3.305 and 3.306. To solve the
mathematical problem, the code ODEEx3.r has been used. This code is a part of
the book software (see Appendix A), and it has been obtained by an editing of
ODEEx2.r, a similar code that has been discussed in Section 3.8.3 above.

t (h)
0 5 10 15 20 25 30

D
 (

μg
 m

l−1
h

−1
)

0.0

0.5

1.0

1.5

2.0

Fig. 3.21 Assumed pattern of drug dosage D(t) corresponding to Equation 3.307.
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Figure 3.22a shows the drug concentration in the GI tract that is implied by the
drug dosage regime in Figure 3.21. As can be seen, the five peaks of G(t) correspond
with the five peaks of D(t). While D(t) goes abruptly to zero after 1/2 h according
to the dosage regime assumed above, G(t) decreases much slower, reflecting the
gradual absorption of the drug from the GI tract into the blood stream. The drug
concentration in the blood in Figure 3.22b exhibits a periodical pattern which is
also showing five peaks corresponding to the five peaks of the dosage regime in
Figure 3.21. The peaks of B(t), however, are somewhat delayed compared with
the D(t) peaks, which again reflects the gradual absorption of the drug from the
GI tract into the blood stream. If the dosage regime is continued in the same
way for t > 30, B(t) becomes a periodical function that oscillates between 0.8 and
1.4 μgml−1, that is, the simulation shows that the above dosage regime guarantees
a blood concentration between 0.8 and 1.4 μg ml−1. Simulations of this kind can
thus be used to optimize drug dosage regimes in a way that guarantees certain
limit blood concentrations of the drug that are required for medical reasons. Of
course, this model needs validation before it can be applied in this way (see [129,
130] for a comparison of this and similar models with data). Using phase plane
plots similar as in Section 3.10.1, it can be shown that the above model exhibits
an interesting dynamical behavior involving limit cycles which you will find further
discussed in [114] (see also the remarks on the theory of dynamical systems in
Section 3.10.1.2).

The above drug model and many other pharmacokinetic models are examples of
a concept called compartment models [130]. Compartment models are mathematical
models where each of the state variables expresses a specific property of some part of
a system, and these parts are referred to as the compartments of the model. Usually,
this reflects the assumption that the property of the compartment expressed by
the state variable is homogeneously distributed within the compartment. In this
sense, the above drug model is a two-compartment model. It involves two state
variables: G(t) expresses a property of the GI tract (which is compartment 1), and
B(t) expresses a property of the blood volume ( which is compartment 2). The
properties expressed by G(t) and B(t) – the drug concentration in the GI tract
and in the blood volume, respectively – are assumed to be independent of space,
that is, it is assumed that the drug is homogeneously distributed within the GI
tract and within the blood volume (like in a well-stirred container). Compartment
models thus are examples of what we have called lumped models in Section 1.6.3.
Typically, compartment models are visualized similar to Figure 3.23, that is, the
compartments are represented, for example, as rectangles, and arrows are used to

D(t )
G(t ) B(t )

a b

Fig. 3.23 Drug model as a two-compartment model.
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indicate the mutual exchange of mass, energy etc. between the compartments as
well as the mass and energy flows between the compartments and the outside
world.

3.10.4
Plant Growth

A great number of mathematical models of plant growth has been developed, both
from the scientific perspective (for example: ‘‘how do plants grow?’’) and from
the engineering perspective (for example: ‘‘how can crop yield be maximized?’’),
see e.g. the books of Richter/Söndgerath [41] and Overman/Scholtz [131], which
emphasize the scientific and engineering perspectives, respectively. In its simplest
form (which applies to plants and to other growing organisms in general), plant
growth models can be written in the form [41]

B′(t) = r · B(t) · (B(t)) (3.309)

where B(t) denotes the overall biomass of the plant at time t (e.g. in kg ha−1), r
(e.g. in day−1) is the growth rate of the plant and (x) is some (dimensionless)
nonlinear real function. As usual, an initial condition is needed before this equation
can be solved, that is, we need to specify the value of the biomass at some time,
for example, in the form B(0) = B0. Depending on the choice of the function (B),
several plant growth models can be derived from Equation 3.309. For example ,
setting (B) = 1 generates the exponential growth model:

B′(t) = r · B(t) (3.310)

while (B) = 1 − B/K (for K ∈ R) gives the logistic growth model:

B′(t) = r · B(t) ·
(

1 − B(t)

K

)
(3.311)

Here, K (kg ha−1) can be interpreted as the (genetically fixed) maximum possible
biomass of the plant. Figure 3.24 shows the typical patterns of the exponential and
logistic growth models. As can be seen, the exponential plant growth model yields
an exponential increase of the biomass, which holds true at the early stages of plant
growth. As the plant approaches its maximum possible biomass, the growth curve
will asymptotically slow down, which can be expressed using the logistic growth
model similar to Figure 3.24b.

Figure 3.24a,b has been produced using the codes Plant1.r and Plant2.r
in the book software (see Appendix A), which were obtained by an appropriate
editing of ODEEx1.r, and which are based on a numerical solution of the ODEs
Equations 3.310 and 3.311 (see Section 3.8.3). Of course, closed form solutions of
Equations 3.310 and 3.311 can also be easily obtained using the methods described
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Fig. 3.24 Solutions (a) of the exponential plant growth
model, Equation 3.310 and (b) of the logistic plant growth
model, Equation 3.311 using: B(0) = 1, r = 0.2, K = 500
(plots generated using Plant1.r and Plant2.r).

in Section 3.7. Assuming B(0) = B0 as the initial condition, the closed form solution
of Equation 3.310 is

B(t) = B0ert (3.312)

and the closed form solution of Equation 3.311 is

B(t) = K

1 + eβ−rt
where β = ln

(
K

B0
− 1

)
(3.313)

A great number of plant growth models are obtained by appropriate modifications
of this approach, depending on the data that are analyzed and depending on the
question that one is asking. For example, multiorgan plant growth models can be
formulated basically by adding a growth model of the above kind for each of the
plant organs such as roots, stems, leaves and fruits, and by balancing the mass
flows between these ‘‘compartments’’ following the idea of the compartmental
approach described in Section 3.10.3 above [41, 132, 133]. The above equations
can also be supplemented, for example, by equations describing the kinetics of
enzymes that are involved in photosynthesis if the focus of the investigation is on
air pollutants that affect these enzymes during plant growth [134, 135].

Different plant growth models may apply to one and the same plant depending on
the growth conditions. While the logistic growth model works well for the asparagus
biomass data in [136], it was inapplicable to the staircase-like asparagus biomass
data shown in Figure 3.25. As discussed in [137], the staircase-like structure of the
data in the figure reflects the fact that several groups of asparagus spears had been
growing successively, that is, first group 1 began to grow and stopped growing after
some time, then group 2 began to grow and stopped growing after some time and
so on. The data in Figure 3.25 look like several logistic growth functions stacked
on top of each other, and they can indeed be described by a system of ODEs that
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Fig. 3.25 Asparagus spear biomass data as-
paragus.csv compared with model Equations
3.314 and 3.315, where r1 = 0.23, r2 = 0.42,
r3 = 0.15, K1 = 230, K2 = 480, K3 = 870,
t1 = 50, t2 = 93, t3 = 110, B1(0) = B2(0) =

B3(0) = 1. Data from [137] (note: biomass in
‘‘centimeter’’ based on a constant assumed
spear diameter and density). Plot generated
using Plant3.r.

involves three logistic growth equations (one for three groups of spears in the above
sense) as follows:

B′
i(t) = ri · H(t − ti) ·

(
1 − Bi(t)

Ki

)
· Bi(t) for i = 1, 2, 3 (3.314)

B(t) =
3∑

i=1

Bi(t) (3.315)

where H(x) is the Heaviside step function that was introduced in Section 3.10.3.
Basically, the Heaviside function is used here to successively ‘‘switch on’’ the
growth functions for the three groups of asparagus spears. Figure 3.25 shows
an almost perfect coincidence of this model with the data. The figure has been
plotted using the code Plant3.r in the book software, which is based on the
numerical solution of Equation 3.314 using ODEEx1.r again (as before, the closed
form solution Equation 3.313 could also have been used to get the same result).
Note that the parameters shown in Figure 3.25 have been obtained from a (quick)
manual tuning of the parameters, although the (slightly more tedious) automated
procedure described in Section 3.9 could also have been used.
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4

Mechanistic Models II: PDEs

4.1
Introduction

4.1.1
Limitations of ODE Models

Ordinary differential equation (ODE) models are restricted in the sense that they
involve derivatives with respect to one variable only, which means that they describe
the dynamical behavior of the quantity of interest with respect to this one variable
only. In the wine fermentation model, for example, the quantities of interest have
been the sugar, ethanol, nitrogen, and yeast cell biomass concentrations, and
all these quantities were considered as a function of time only (Section 3.10.2).
Looking at the examples in Section 3, you will note that time was the independent
variable in most examples, although, of course, any kind of variable can be used
in principal (e.g. a space coordinate was used as the independent variable in the
metal rod example, see Section 3.5.5)

Now, obviously, we live in a world where everything depends on many variables
simultaneously. Using ODE models, therefore, usually means we are referring to
special situations where it can be assumed that the independent variable used in
the ODE model is the most important factor affecting our quantity of interest, while
the influence of other factors with a possible impact on our quantity of interest
can be assumed to be negligible. In the wine fermentation model, for example, it
is obvious that quantities such as the yeast biomass concentration will depend not
only on time but also on the space coordinates x, y, and z. Assuming the yeast
biomass concentration would not depend on the spatial coordinates would require
that quantity to be exactly the same at every particular spatial coordinate within the
fermenter. You do not need to be a wine fermentation specialist to understand that
this is an unrealistic assumption, and that it may of course happen that you have
variable yeast biomass concentrations in the fermenter; for example, gravitation
may increase the yeast biomass at the bottom of the fermenter as discussed in [124].

The fact that the wine fermentation model – as well as the other ODE models
discussed in Section 3 – can be applied successfully in some situations, thus,
does not ‘‘prove’’ the spatial homogeneity of the state variables, or the absence
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of any other variables affecting the state variables. It just means that spatial
dishomogeneities, if they exist, and any other variables have a negligible effect
on your state variables in those particular situations where you apply the model
successfully. And you must always keep in mind that you are making a strong
assumption when you are neglecting all those other possible influences on your state
variables. This is particularly important when you observe deviations between your
model and data. In the wine fermentation model, substantial deviations from data
might indicate that you are, for example, in a situation where the dishomogeneity
of the yeast biomass concentration is so high that it can no longer be neglected.
Then a possible solution would be to use partial differential equations (PDEs),
which describe the dynamics of the yeast biomass concentration in time and space.

Note 4.1.1 (Limitations of ODE models) Deviations between an ODE model
and data may indicate that its state variables depend on more than one variable
(e.g. on time and space variables). Then, it may be appropriate to use PDE models
instead.

4.1.2
Overview: Strange Animals, Sounds, and Smells

In contrast to ODEs, PDE models involve derivatives with respect to at least two
independent variables, and hence they can be used to describe the dynamics of
your quantities of interest with respect to several variables at the same time. A great
number of the classical laws of nature can be formulated as PDEs, such as the
laws of planetary motion, thermodynamics, electrodynamics, fluid flow, elasticity,
and so on. As a whole, PDEs are a really big topic. In particular, their structure
is much more variable compared to ODEs since they involve several variables and
derivatives. There are many different subtypes of PDEs, which need specifically
tailored numerical procedures for their solution. Many volumes could be filled with
a thorough discussion of all those subtypes and their appropriate treatment, and
it is hence obvious that we need to confine ourselves here to a first introduction
into the topic, with the aim of introducing the reader to some of the main ideas
and procedures that are applied when people formulate and solve PDE models. If
you imagine the PDE topic as a dense and big jungle, then the intention of this
chapter can be described as cutting a small machete path, which you can follow to
get first sensual impressions of those strange animals, sounds, and smells within
the jungle – so do not mistake yourself for a PDE expert after reading the following
pages. To know more about PDEs, readers are referred to an abundant literature
on the topic, for example, books such as [101, 138–142].

As a guide and compass for our machete path we will take the heat equation
that was already discussed in Section 3.5.5. This equation will serve as our main
example in the following introduction into PDEs and their numerical procedures.
The heat equation provides a way to compute temperature distributions, and since
so many processes in science and engineering are affected by temperature, it is
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important in all fields of science and engineering. This is why the two heat equation
problems posed in Section 4.1.3 really are ‘‘problems you should be able to solve’’.

Sections 4.2 and 4.3 provide some theoretical background on the heat equation
and on PDEs, in general. Sections 4.4–4.7 are devoted to the solution of PDEs
in closed form or based on numerical procedures, respectively. In Sections 4.8
and 4.9, software is discussed that solves PDEs based on the finite-element
method, which is one of the most important numerical procedures that can be
used to solve PDEs. Section 4.9 provides a sample session using the Salome-Meca
software, an open-source finite-element software with a general workflow similar
to commercial finite-element software (Appendix A). Then, Section 4.10 introduces
you to some of the most important PDE models ‘‘beyond the heat equation’’.
This includes, for example, computational fluid dynamics (CFD) and structural
mechanics models and appropriate open-source software to solve these models
in 3D. Finally, Section 4.11 ends the chapter with some examples of mechanistic
modeling approaches beyond differential equations.

4.1.3
Two Problems You Should Be Able to Solve

We begin with the formulation of two problems that are solved below using PDEs,
and that will be used to motivate and illustrate the material in subsequent sections.
These problems are concerned with the computation of temperature distributions
in the geometries shown in Figure 4.1:

Problem 1:
Consider the cylinder in Figure 4.1a. Assuming
• a perfect insulation of the cylinder surface in 0 < x < 1,
• constant temperatures in the y and z directions at time t = 0,

that is, no temperature variations across transverse sections,
• a known initial temperature distribution Ti(x) at time t = 0,
• and constant temperatures T0 and T1 at the left and right ends of

the cylinder for all times t > 0,

what is the temperature T(x, t) for x ∈ (0, 1) and t ∈ (0, T ]?

Problem 2:
Referring to the configuration in Figure 4.1b and assuming
• a constant temperature Tc at the top surface of the cube (z = 1),
• a constant temperature Ts at the sphere surface,
• and a perfect insulation of all other surfaces of the cube,

what is the stationary temperature distribution T(x, y, z) within the cube (i.e. in
the domain [0, 1]3 \ S if S is the sphere)?
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Note the practical relevance that problems of this kind have in both science and
engineering. As was mentioned above, PDEs are a very broad topic and involve a great
deal of really sophisticated mathematics. Taking one of the more mathematical
oriented books on PDEs, and then gazing at endless formulas, many of us will be
tempted to ask: ‘‘How can this be useful for me?’’ The above two problems give
the answer: PDEs are useful for everybody in science and engineering since they
provide the only way to solve absolutely fundamental and elementary problems
such as the computation of temperature distributions. No one can seriously doubt
the fundamental importance of temperature in science and engineering – just
remember, for example, the role of temperature in the wine fermentation model
discussed in Section 3.10.2. If you do not know how to solve this kind of problems,
then you lack to know one of the really fundamental methods in science and
engineering. Without too much exaggeration, one can say, it is a bit like not being
able to compute the surface area of a circle. Fortunately, you will be able to learn
about some PDE basics in this chapter from a very practical and software-oriented
point of view.

To make Problem 1 a little bit more concrete, you may imagine a situation
like this: the cylinder in Figure 4.1a is a metallic cylinder with a constant initial
temperature of 100 ◦C. At time t = 0, you keep the ends of the cylinder in ice water
(0 ◦C) and maintain this situation unchanged for all times t > 0. Then, you know
that the temperature of the cylinder will be approximately 0 ◦C after ‘‘some time’’.
The problem is to make this precise, and to be able to predict temperatures at any
particular time t > 0 and at any particular location x ∈ (0, 1) within the cylinder.
Exactly this problem is solved in Section 4.6.

Regarding Problem 2, remember from the discussion of the metallic rod problem
in Section 3.5.5 the meaning of stationarity: the stationary temperature distribution
is what you obtain for t → ∞ if you do not change the environment. Referring
to Figure 4.1b, ‘‘unchanged environment’’ means that the temperatures imposed
at the top of the cube and at the sphere surface remain unchanged for all times
t > 0, the other sides of the cube remain perfectly insulated, and so on. Stationarity

0 1

x

x

y

z

(b)(a)

Fig. 4.1 (a) Cylinder used in Problem 1. (b) Cube
[0, 1]3, containing a cylinder with radius 0.1 centered at
(0.5, 0.5, 0.5), as used in Problem 2.
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can also be explained referring to the above discussion of Problem 1, where it was
said that the temperature of the cylinder will be 0 ◦C after ‘‘some time’’, which can
be phrased as follows: given the conditions in the above discussion of Problem 1,
T(x) = 0 ◦C is the stationary solution, which is approached for t → ∞ (this will be
formally shown in Section 4.4).

Again, let us spend a few thoughts on what the situation in Problem 2 could
mean in a practical situation. As was said above, temperatures are of great
importance in all kinds of applications in science and engineering. Many of the
devices used in science and engineering contain certain parts specially designed
to control the temperature. The question then is whether the design of these
temperature-controlling parts is good enough in the sense that the resulting
temperature distribution in the device satisfies your needs. In Problem 2 above,
the small sphere inside the cube can be viewed as a temperature-controlling part.
Once we are able to solve Problem 2, we can, for example, compare the resulting
temperature distribution with the distributions obtained if we use a small cube,
tetrahedron, and so on, instead of the sphere, and then try to optimize the design
of the temperature-controlling part in this way.

This procedure has been used, for example, in [143, 144] to optimize cultivation
measures affecting the temperature distribution in asparagus dams. In the wine
fermentation example discussed above, temperature is one of the variables that is
used to control the process (Section 3.10.2). To be able to adjust temperatures
during fermentation, various cooling devices are used inside fermenters, and the
question then is where these cooling devices should be placed and how they should
be controlled such that the temperature distribution inside the fermenter meets
the requirements. In this example, the computation of temperature distributions
is further complicated by the presence of convectional flows, which transport heat
through the fermenter. To compute temperature distributions in a situation like
this, we would have to solve a coupled problem, which would also involve the
computation of the fluid flow pattern in the fermenter. This underlines again that
Problem 2 can be seen as a first approximation to a class of problems of great
practical importance.

4.2
The Heat Equation

To solve the problems posed in Section 4.1.3, we need an equation that describes
the dynamics of temperature as a function of space and time: the heat equation.
The heat equation is used here in the following form:

∂T

∂t
= K

Cρ

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
(4.1)

where K (WK−1m−1) is the thermal conductivity, C (J kg−1 K−1) is the specific heat
capacity, and ρ (kg m−3) is the density.
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Using the so-called Laplace operator


 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(4.2)

the heat equation is also frequently written as

∂T

∂t
= K

Cρ

T (4.3)

We could end our discussion of the heat equation here (before it actually begins)
and work with this equation as it is. That is, we could immediately turn to the
mathematical question of how this equation can be solved, and how it can be
applied to the problems in Section 4.1.3. Indeed, the reader could skip the rest of
this section and continue with Section 4.3 if he or she is interested in the technical
aspects of solving this kind of problems. It is, nevertheless, recommended to read
the rest of this section, not only because it is always good to have an idea about the
background of the equations that one is using. The following discussion introduces
you into an important way how this and many other PDEs can be derived from
balance considerations, and beyond this you will understand why most PDEs in
the applications are of second order.

4.2.1
Fourier’s Law

The specific heat capacity C in the above equations is a measure of the amount
of heat energy required to increase the temperature of 1 kg of the material under
consideration by 1 ◦C. Values of C can be found in the literature, as well as values
for the thermal conductivity K, which is the proportionality constant in an empirical
relation called Fouriers’s law:

⎛
⎜⎝ qx

qy

qz

⎞
⎟⎠ = −K ·

⎛
⎜⎜⎜⎜⎜⎜⎝

∂T

∂x
∂T

∂y
∂T

∂z

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.4)

Using q = (qx , qy, qz)t and the nabla operator

∇ =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂

∂x
∂

∂y
∂

∂z

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.5)
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Fourier’s law can also be written as

q = −K · ∇T (4.6)

In these equations, q is the heat flow rate (W m−2). In a situation where you do
not have temperature gradients in the y and z directions (such as Problem 1 in
Section 4.1.3), Fourier’s law attains the one-dimensional form

qx = −K · dT

dx
(4.7)

So, you see that Fourier’s law expresses a very simple proportionality: the heat
flow in the positive x direction is negatively proportional to the temperature
gradient. This means that a temperature which is going down in the positive x
direction (corresponding to a negative value of dT/dx) generates a heat flow in
the positive x direction. This expresses our everyday experience that heat flows are
always directed from higher to lower temperatures (e.g. from your hot coffee cup
toward its surroundings).

4.2.2
Conservation of Energy

Let us now try to understand the heat equation. Remember that in the ODE models
discussed in Chapter 3, the left-hand sides of the ODEs usually expressed rates
of changes of the state variables, which were then expressed in the right-hand
sides of the equations. Take the body temperature model as an example: as
was explained in Section 3.4.1, Equation 3.28 is in an immediate and obvious
correspondence with a statement describing the temperature adaption such as the
sensor temperature changes proportionally to the difference between body temperature and
actual sensor temperature. Regarding PDEs, the correspondence with the process
under consideration is usually not so obvious. If you are concerned with PDEs
for some time, you will of course learn to ‘‘read’’ and understand PDEs and
their correspondence with the processes under consideration to some extent,
but understanding a PDE still needs one or two thoughts more as compared to
ODEs. Equation 4.1, for example, involves a combination of first- and second-order
derivatives with respect to different variables which expresses more than just a rate
of change of a quantity as was the case with ODEs. The problem is that PDEs
simultaneously express rates of changes of several quantities.

Fourier’s law provides us with a good starting point for the derivation of Equation
4.1. It is in fact one of the two main ingredients in the heat equation. What could
the other essential ingredient possibly be? From the ODE point of view, we could
say that Fourier’s law expresses the consequences of rates of changes of the
temperature with respect to the spatial variables x, y, and z. So, it seems obvious
that we have to look for equations expressing the rate of change of temperature
with respect to the remaining variable, which is time t. Such an equation can be
derived from the conservation of energy principle [145].
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0 1x x + Δx

x

Fig. 4.2 Interval [x, x + 
x] corresponding to a small part of a one-dimensional body.

Note 4.2.1 (Deriving PDEs using conservation principles) Many of the impor-
tant PDEs of mathematical physics can be derived from conservation principles
such as conservation of energy, conservation of mass, or conservation of momentum
(see the examples in Section 4.10).

The most intuitive and least technical way to apply energy conservation is the
consideration of a small interval [x, x + 
x] corresponding to a small part of a
one-dimensional body (Figure 4.2).

Remember from your physics courses that the energy conservation principle
states that energy cannot be created or destroyed, which means that the total
amount of energy in any closed system remains constant. Applied to [x, x + 
x]
(you should always think of the part of the physical body corresponding to
[x, x + 
x] when we write down this interval in the following) this means that
any change in the energy content of [x, x + 
x] must equal the amount of heat
that flows into [x, x + 
x] through its ends at x and x + 
x. Note that there can
be no flow in the y and z directions since we assume a one-dimensional body
here. For example, imagine the outer surface of the cylinder in Figure 4.2 to be
perfectly insulated against heat flow (see Section 4.3.3 for more on dimensionality
considerations). The heat balance of [x, x + 
x] can be written as

⎧⎪⎨
⎪⎩

Rate of change
of energy content

in [x, x + 
x]

⎫⎪⎬
⎪⎭ =

{
Net heat inflow

through x and x + 
x

}
(4.8)

4.2.3
Heat Equation = Fourier’s Law + Energy Conservation

Basically, the heat equation can now be derived by putting together the results of the
last two sections. To this end, consider some small time interval [t, t + 
t]. Within
this time interval, the temperature at x will change from T(x, t) to T(x, t + 
t). This
corresponds to a change in the energy content of [x, x + 
x] that we are going to
estimate now. First of all, note that for sufficiently small 
x, we have

T(x̃, t) ≈ T(x, t) ∀x̃ ∈ [x, x + 
x] (4.9)
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and

T(x̃, t + 
t) ≈ T(x, t + 
t) ∀x̃ ∈ [x, x + 
x] (4.10)

The last two equations say that we may take T(x, t) to T(x, t + 
t) as the ‘‘rep-
resentative temperatures’’ in [x, x + 
x] at times t and t + 
t, respectively. This
means that we are now approximately in the following situation: we have a physical
body corresponding to [x, x + 
x], which changes its temperature from T(x, t) to
T(x, t + 
t). Using the above explanation of C and denoting the mass of [x, x + 
x]
with m, we, thus, have⎧⎪⎨

⎪⎩
Rate of change

of energy content
in [x, x + 
x]

⎫⎪⎬
⎪⎭ = C · m · (T(x, t + 
t) − T(x, t)) (4.11)

Denoting the cross-sectional area of the body in Figure 4.2 with A, we have
m = A
xρ, which turns Equation (4.11) into

⎧⎪⎨
⎪⎩

Rate of change
of energy content

in [x, x + 
x]

⎫⎪⎬
⎪⎭ = C · A
xρ · (T(x, t + 
t) − T(x, t)) (4.12)

This gives us the left-hand side of Equation 4.8. The right-hand side of this
equation can be expressed as

{
Net heat inflow

through x and x + 
x

}
= A
t(qx(x) − qx(x + 
x)) (4.13)

using the heat flow rate qx introduced above. Note that the multiplication with A
t
is necessary in the last formula since qx expresses heat flow per units of time and
surface area: its unit is (W m−2) = (J s−1m−2). Note also that the signs used in the
difference qx(x) − qx(x + 
x) are chosen such that we get the net heat inflow as
required. Using Equations 4.8, 4.12, and 4.13, we obtain the following:

T(x, t + 
t) − T(x, t)


t
= 1

Cρ

qx(x) − qx(x + 
x)


x
(4.14)

Using Fourier’s law, Equation 4.7 gives

T(x, t + 
t) − T(x, t)


t
= K

Cρ

∂T(x + 
x, t, t)

∂x
− ∂T(x, t)

∂x

x

(4.15)

From this, the heat equation (4.1) is obtained by taking the limit for 
t → 0 and

x → 0.
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4.2.4
Heat Equation in Multidimensions

The above derivation of the heat equation can be easily generalized to multidimen-
sions by expressing energy conservation in volumes such as [x, x + 
x] × [y, y +

y]. Another option is to use an integral formulation of energy conservation over
generally shaped volumes, which leads to the heat equation by an application of
standard integral theorems [101]. In any case, the ‘‘small volumes’’ that are used to
consider balances of conserved quantities such as energy, mass, momentum, and
so on, similar to above are usually called control volumes. Beyond this, you should
note that the parameters C, ρ, and K may depend on the space variables. Just
check that the above derivation works without problems in the case where C and ρ

depend on x. If K depends on x, the above derivation gives

∂T(x, t)
∂t

= 1
Cρ

∂

∂x

(
K(x) · ∂T(x, t)

∂x

)
(4.16)

instead of Equation 4.1 and

∂T(x, t)

∂t
= 1

Cρ

(
∂

∂x1

(
K(x) · ∂T(x, t)

∂x1

)
+ ∂

∂x2

(
K(x) · ∂T(x, t)

∂x2

)

+ ∂

∂x3

(
K(x) · ∂T(x, t)

∂x3

))
(4.17)

in the case where K depends on the space coordinates x = (x1, x2, x3)t. Using the
nabla operator ∇ (Equation 4.5), the last equation can be written more compactly as

∂T(x, t)

∂t
= 1

Cρ
∇ (K(x) · ∇T(x, t)

)
(4.18)

4.2.5
Anisotropic Case

Until now, the thermal conductivity was assumed to be independent of the direction
of measurement. Consider a situation with identical temperature gradients in the
three main space directions, that is,

∂T

x1
= ∂T

x2
= ∂T

x3
(4.19)

Then, Fourier’s law (Equation 4.6) says that

q1 = K · ∂T

x1
= q2 = K · ∂T

x2
= q3 = K · ∂T

x3
(4.20)

that is, the heat flux generated by the above temperature gradients is independent
of the direction in space (note that this argument can be generalized to arbitrary
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directions). A material with a thermal conductivity that is direction independent
in this sense is called isotropic. The term ‘‘isotropy’’ is used for other material
properties such as fluid flow permeability or electrical conductivity in a similar way.
Materials that do not satisfy the isotropy condition of directional independence are
called anisotropic. For example, an anisotropic material may have a high thermal
conductivity in the x1 direction and smaller conductivities in the other space
directions. A single number K obviously does not suffice to describe the thermal
conductivity in such a situation, which means you need a multi- or matrix-valued
thermal conductivity K such as

K =

⎛
⎜⎝ K11 K12 K13

K21 K22 K23

K31 K32 K33

⎞
⎟⎠ (4.21)

Many other anisotropic material properties are described using matrices or
tensors in a similar way, while isotropic material properties are described using
a single scalar quantity such as the scalar thermal conductivity in Fourier’s law
(Equation 4.6) above. Thanks to matrix algebra, Equation 4.6 and the heat equation
(4.18) remain almost unchanged when we use K from Equation 4.21:

q(x, t) = −K · ∇T(x, t) (4.22)

∂T(x, t)

∂t
= 1

Cρ
∇ (K(x) · ∇T(x, t)

)
(4.23)

The diagonal entries of K describe the thermal conductivities in the main space
directions, that is, K11 is the thermal conductivity in x1 direction, K22 in x2 direction,
and so on.

4.2.6
Understanding Off-diagonal Conductivities

To understand the off-diagonal entries, consider the following special case:

K =

⎛
⎜⎝ K11 K12 0

0 K22 0
0 0 K33

⎞
⎟⎠ (4.24)

Applying this in Equation 4.22, the heat flow in the x1 direction is obtained as
follows:

q1(x, t) = K11 · ∂T(x, t)

∂x1
+ K12 · ∂T(x, t)

∂x2
(4.25)

So, you see that K12 �= 0 means that the heat flow in the x1 direction depends
not only on the temperature gradient in that direction, ∂T/∂x1, but also on the
temperature gradient in the x2 direction, ∂T/∂x2. You may wonder how this is



240 4 Mechanistic Models II: PDEs

x2

x1

Fig. 4.3 Periodicity cells of a medium with an anisotropic effective thermal conductivity.

possible, so let us consider an example. Figure 4.3 shows a ‘‘microscopic picture’’
of a periodic medium in the x1/x2 plane. Here, ‘‘periodic medium’’ means that the
medium is assumed to consist of a great number of periodicity cells such as those
shown in the figure. ‘‘Microscopic picture’’ is to say that the figure just shows a
few of the periodicity cells, which we assume to be very small parts of the overall
geometry of the medium in the x1/x2 plane (we do not need the overall geometry
for our argument). Now assume that the black bars in the medium consist of
a material having zero thermal conductivity, while the matrix surrounding the
bars has some finite (scalar) thermal conductivity. If we now apply a temperature
gradient in the x2 direction, this will initiate a heat flow in the same direction:

q2(x, t) = KM · ∂T(x, t)
∂x2

(4.26)

Here, KM denotes the (isotropic) thermal conductivity of the matrix surrounding
the black bars in Figure 4.3. But due to the heat-impermeable bars in the medium,
this heat flow cannot go straight through the medium in the x2 direction. Rather,
it will be partially deflected into the x1 direction by the action of the bars. In this
way, a temperature gradient in the x2 direction can indeed initiate a heat flow in
the x1 direction. If one then assumes the periodicity cells in Figure 4.3 to be very
small in relation to the overall size of the medium and derives ‘‘effective’’, averaged
thermal conductivities for the medium, one arrives at thermal conductivity matrices
with off-diagonal entries similar to Equation 4.24. Such effective (‘‘homogenized’’)
thermal conductivities of periodic media can be derived, for example, using
the methods of homogenization theory [146,147]. Note that the effective thermal
conductivity matrix of a medium such as the one shown in Figure 4.3 will be
symmetric. Denoting this matrix as

K̃ =
(

K̃11 K̃12

K̃21 K̃22

)
(4.27)

means that we would have K̃12 = K̃21 for the medium in Figure 4.3.
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Note that the heat equation can be further generalized beyond Equation 4.23 to
include effects of heat sources, convective heat transfer, and so on, [97, 101].

4.3
Some Theory You Should Know

This section explains some theoretical background of PDEs. You can skip this in a
first reading if you just want to gain a quick understanding of how the problems
posed in Section 4.1.3 can be solved. In that case, go on with Section 4.4.

4.3.1
Partial Differential Equations

The last section showed that the problems posed in Section 4.1.3 lead us to the heat
equation (4.23). In this equation, the temperature T(x, t) (or T(x, y, t), or T(x, t),
depending on the dimensionality of the problem) serves as the unknown, and the
equation involves partial derivatives with respect to at least two variables. Hence,
the heat equation is a PDE, which can be generally defined as follows

Definition 4.3.1 (Partial differential equation) A PDE is an equation that
satisfies the following conditions:
• A function u : R

n ⊃ 	 → R serves as the unknown of the
equation.

• The equation involves partial derivatives of u with respect to at
least two independent variables.

This definition can be generalized to several unknowns, vector-valued unknowns,
and systems of PDEs, [101,142]. The fundamental importance of PDEs, which can
hardly be overestimated, arises from the fact that there is an abundant number
of problems in science and engineering which lead to PDEs, just as Problem 1
and Problem 2 led us to the heat equation in Section 4.2. One may find this
surprising, but remember the qualitative argument for the distinguished role of
differential equations (ODEs or PDEs) that has been given in Section 3.1 (Note
3.1.1): scientists or engineers usually are interested in rates of changes of their
quantities of interest, and since rates of changes are derivatives in mathematical
terms, writing down equations involving rates of changes thus means writing down
differential equations in many cases. The order of a PDE is the degree of the highest
derivative appearing in the PDE, which means that the heat equation discussed in
Section 4.2 is a second-order PDE.

Note 4.3.1 (Distinguished role of up to second-order PDEs) Most PDEs used
in science and engineering applications are first- or second-order equations.
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The derivation of the heat equation in Section 4.2 gives us an idea why this is
so. We have seen there that the heat equation arises from a combined application
of Fourier’s law and the energy conservation principle. Analyzing the formulas in
Section 4.2, you will see that the application of the conservation principle basically
amounted to balancing the conserved quantity (energy in this case) over some ‘‘test
volume’’, which was [x, x + 
x] in Section 4.2. This balance resulted in one of the
two orders of the derivatives in the PDE, the other order was a result of Fourier’s
law, a simple empirical rate of change law similar to the ‘‘rate of change-based’’
ODEs considered in Section 3. Roughly speaking, one can, thus, say that you can
expect conservation arguments to imply one order of your derivatives, and ‘‘rate of
change arguments’’ to imply another derivative order. A great number of the PDEs
used in the applications is based on similar arguments. This is also reflected in the
PDE literature, which has its main focus on first- and second-order equations. It is,
therefore, not a big restriction if we confine ourselves to up to second-order PDEs
in the following. Note also that many of the formulas below will refer to the 2D
case (two independent variables x and y) just to keep the notation simple, although
everything can be generalized to multidimensions (unless otherwise stated).

4.3.1.1 First-order PDEs
The general form of a first-order PDE in two dimensions is [142]

F(x, y, u, ux , uy) = 0 (4.28)

Here, u = u(x, y) is the unknown function, x and y are the independent variables,
ux = ux(x, y) and uy = uy(x, y) are the partial derivatives of u with respect to x, and
y, respectively, and F is some real function. Since we are not going to develop
any kind of PDE theory here, there is no need to go into a potentially confusing
discussion of domains of definitions, differentiability properties, and so on, of
the various functions involved in this and the following equations. The reader
should note that our discussion of equations such as Equation 4.28 in this section
is purely formal, the aim just being a little sightseeing tour through the ‘‘zoo
of PDEs’’, showing the reader some of its strange animals and giving an idea
about their classification. Readers with a more theoretical interest in PDEs are
referred to specialized literature such as [101, 142]. Note that Equation 4.28 can
also beinterpreted as a vector-valued equation, that is, as a compact vector notation
of a first-order PDE system such as

F1(x, y, u, ux , uy) = 0
F2(x, y, u, ux , uy) = 0

..

.

Fn(x, y, u, ux , uy) = 0

(4.29)

In a PDE system like this, u will also typically be a vector-valued function such as
u = (u1, . . . , un). The shock wave equation

ux + u · uy = 0 (4.30)
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is an example of a PDE having the form of Equation 4.28. Comparing Equations
4.28 and 4.30, you see that the particular form of F in this example is

F(x, y, u, ux , uy) = ux + u · uy (4.31)

Equations like 4.30 are used to describe abrupt, nearly discontinuous changes
of quantities such as the pressure or density of air, which appear, for example, in
supersonic flows.

4.3.1.2 Second-order PDEs
Writing down the general form of a second-order PDE just amounts to adding
second-order derivatives to the expression in Equation 4.28:

F(x, y, u, ux , uy, uxx , uxy, uyy) = 0 (4.32)

An example is the one-dimensional heat equation, that is, the heat equation in
a situation where T depends only on x and t. Then, the partial derivatives with
respect to y and z in Equation 4.1 vanish, which leads to

∂T

∂t
= K

Cρ

∂2T

∂x2
(4.33)

Using the index notation for partial derivatives similar to Equation 4.32, this
gives

F(t, x, T , Tt, Tx, Ttt, Ttx, Txx) = Tt − K

Cρ
Txx = 0 (4.34)

Note that this is exactly analogous to Equation 4.32, except for the fact that
different names are used for the independent variables and for the unknown
function.

4.3.1.3 Linear versus Nonlinear
As it holds true for other types of mathematical equations, linearity is a property of
PDEs which is of particular importance for an appropriate choice of the solution
method. As usual, it is easier to solve linear PDE’s. Nonlinear PDEs, on the other
hand, are harder to solve, but they are also often more interesting in the sense
that they express a richer and more multifaceted dynamical behavior of their state
variables. Equation 4.34 is a linear PDE since it involves a sum of the unknown
function and its derivatives where the unknown function and its derivatives are
multiplied by coefficients independent of the unknown function or its derivatives.
Equation 4.30, on the other hand, is an example of a nonlinear PDE, since this
equation involves a product of the unknown function u with its derivative uy.

The general strategy to solve nonlinear equations in all fields of mathematics is
linearization, that is, the consideration of linear equations that approximate a given
nonlinear equation. The Newton method for the solution of nonlinear equations
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f (x) = 0 is an example, which is based on the local approximation of the function
f (x) by linear equations ax + b describing tangents of f (x) [148]. Linearization
methods such as the Newton method usually imply the use of iteration procedures,
which means that a sequence of linearized solutions x1, x2, . . . is generated, which
converges to the solution of the nonlinear equation. Such iteration procedures
(frequently based on appropriate generalizations of the Newton method) are also
used to solve nonlinear PDEs [141]. Of course, the theoretical understanding of
linear PDEs is of great importance as a basis of such methods, and there is in fact
a well-developed theory of linear PDEs, which is described in detail in specialized
literature such as [101, 142]. We will now just sketch some of the main ideas of the
linear theory that are relevant within the scope of this book.

4.3.1.4 Elliptic, Parabolic, and Hyperbolic Equations
The general form of a linear second-order PDE in two dimensions is

Auxx + Buxy + Cuyy + Dux + Euy + F = 0 (4.35)

Here, the coefficients A, . . . , F are real numbers, which may depend on the
independent variables x and y. Depending on the sign of the discriminant
d = AC − B2, linear second-order PDEs are called

• elliptic if d > 0,
• parabolic if d = 0, and
• hyperbolic if d < 0

Since we have allowed the coefficients of Equation 4.35 to be x and y dependent,
the type of an equation in the sense of this classification may also depend on x and
y. An example is the Euler–Tricomi equation:

uxx − x · uyy = 0 (4.36)

This equation is used in models of transonic flow, that is, in models referring to ve-
locities close to the speed of sound [149]. The change of type in this equation occurs
due to the nonconstant coefficient of uyy. The discriminant of Equation 4.36 is

d = AC − B2 = x

{
>0 if x > 0
< 0 if x < 0

(4.37)

which means that the Euler–Tricomi equation is an elliptic equation in the positive
half plane x > 0 and a hyperbolic equation in the negative half plane x < 0.

The above classification is justified by the fact that Equation 4.35 can be brought
into one of three standard forms by a linear transformation of the independent
variables, where the standard form corresponding to any particular equation
depends on the discriminant d [142]. Using ‘‘· · ·’’ to denote terms that do not
involve second-order derivatives, the standard forms of elliptic, parabolic, and
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hyperbolic PDEs are (in this order):

uxx + uyy + · · · = 0 (4.38)

uxx + . . . = 0 (4.39)

uxx − uyy + · · · = 0 (4.40)

Referring to the standard form, one can, thus, say that elliptic PDEs are
characterized by the fact that they contain second-order derivatives with respect
to all independent variables, which all have the same sign when they are written
on one side of the equation. Parabolic PDEs involve one second-order derivative
and at least one first-order derivative. Note that Definition 4.1 requires that there
must be at least one first-order derivative in the ‘‘· · ·’’ of Equation 4.39 (otherwise,
that equation would be an ODE). Finally, hyperbolic equations can be described
similar to elliptic equations except for the fact that the second-order derivatives
have opposite signs when brought on one side of the equation.

Comparing Equations 4.34 and 4.39, you see that the heat equation is an example
of a parabolic PDE. The stationary case of the two-dimensional heat equation (4.1)
is an example of an elliptic PDE. As was mentioned before, a stationary solution of
a PDE is a solution referring to the case where the time derivatives in the PDE
vanish. Solutions of this kind can usually be interpreted as expressing the state of
the system which is attained in a constant environment after a ‘‘very long’’ time
(mathematically, the state that is approached for t → ∞). In this sense, stationary
solutions of the heat equation express the temperature distribution attained by a
system in a constant environment after a ‘‘very long’’ time. Using the index notation
for partial derivatives in Equation 4.1 and assuming Tt = 0 in that equation, it turns
out that the two-dimensional stationary heat equation is

Txx + Tyy = 0 (4.41)

which corresponds to Equation 4.38, so we see that the stationary heat equation is
elliptic. Hyperbolic equations (Equation 4.40) are used to describe all kinds of wave
phenomena such as sound waves, light waves, or water waves [142].

Using appropriate methods of matrix algebra, the above classification of PDEs
into elliptic, parabolic, and hyperbolic PDEs can be generalized to multidimensions
(i.e. PDEs depending on x1, . . . , xn) [142]. This classification is of particular impor-
tance in the numerical treatment of PDEs and will be discussed in Sections 4.6
and 4.8.

4.3.2
Initial and Boundary Conditions

Above we have seen that ODEs are usually solved by an entire family of solutions
unless initial or boundary conditions are imposed, which select one particular
solution among those many solutions (Section 3.7.1.1). For the same reason, initial
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or boundary conditions are used together with PDEs. From the mathematical
point of view, initial or boundary conditions are needed to make the mathematical
problem uniquely solvable. From the applications point of view, they are a necessary
part of the description of the system that is investigated. Considering Problem 1
in Section 4.1.3, for example, it is obvious from the applications point of view,
i.e. without any mathematical considerations, that this problem cannot be solved
unless we know the temperatures at the left and right ends of the cylinder (T0

and T1) and the initial temperature distribution, Ti(x). To solve Problem 1, we will
use the one-dimensional form of the heat equation (4.33) (Section 4.6). Above we
have seen that this is a parabolic equation, and so we see here that this parabolic
equation requires a boundary condition referring to the spatial variable and an
initial condition referring to the time variable.

4.3.2.1 Well Posedness
Generally, the appropriate choice of initial and boundary conditions for PDEs can
be a subtle matter as discussed in [142]. It is related to the mathematical concept
of a well-posed problem, which was originally introduced by the French mathemati-
cian Hadamard. A well-posed differential equation problem satisfies the following
conditions [142]:

• existence: a solution exists;
• uniqueness: the solution is unique;
• stability: the solution depends continuously on the data of the

problem.

Let us explain the last point referring to Problem 1 again. Assume a small change
in the temperature imposed at the left or right end of the cylinder, or small changes
in the initial temperature distribution. Then stability in the above sense means
that the change in the temperature distribution T(x, t) implied by your change
in the problem data should go to zero if you let the size of this change in the
data go to zero. This expresses our physical intuition, but you should know that
the discussion of stability matters and well-posedness matters in general can be
subtle (e.g. the appropriate definition of what is meant by ‘‘continuity’’). From a
mathematical point of view, we can thus say that initial or boundary conditions
have to be chosen in a way that makes the overall problem well posed in the above
sense.

4.3.2.2 A Rule of Thumb
The following ‘‘rule of thumb’’ for the proper selection of initial or boundary
conditions applies to many equations [138]:

Note 4.3.2 (Rule of thumb)
• Elliptic equation: add a boundary condition
• Parabolic equation: add a boundary condition for the space

variables and an initial condition at t = 0
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• Hyperbolic equation: add a boundary condition and two initial
conditions at t = 0

Note that this is consistent with our above discussion of the initial and boundary
conditions of Problem 1, which was motivated by physical intuition. Generally, one
can say that physical intuition applied as above to Problem 1 frequently is a good
guideline for the proper choice of initial or boundary conditions.

Problem 2 from Section 4.1.3 gives us an example of boundary conditions for
an elliptic equation. In Section 4.9, this problem is solved using the stationary heat
equation. We have seen above that this is an elliptic equation in the two-dimensional
case (Section 4.3.1.3). Using appropriate methods of matrix algebra, the same can
be shown for the three-dimensional version of the stationary heat equation that is
used in the solution of Problem 2. Now looking at the formulation of Problem 2 in
Section 4.1.3, you see that this problem involves conditions for the space variables
at the boundary of the computational domain only, which is consistent with the
above ‘‘rule of thumb’’. Again, this is also consistent with physical intuition since
any change in the initial temperature distribution within the cube will certainly
affect the temperatures inside the cube for some time, but in the long run physical
intuition tells us that everything is determined by the constant conditions applied
at the boundaries of the cube and at its internal boundaries on the sphere surface
of Figure 4.1. For the hyperbolic case in the above ‘‘rule of thumb’’, appropriate
wave equation examples may be found in [138].

4.3.2.3 Dirichlet and Neumann Conditions
Note that two different kinds of boundary conditions are used in Problem 2. On the
top boundary of the cube and on the sphere surface, the value of the temperature is
prescribed. Boundary conditions that prescribe the values of the unknown function
of a PDE in this way are called Dirichlet boundary conditions. The remaining
boundaries of the cube are assumed to be ‘‘perfectly insulated’’ in Problem 2.
Perfect insulation means that there is no heat flow across these boundaries. Using
vector notation, this can be expressed as follows: Let S denote one of the cube
boundaries, and let q(x) (W m−2) be the heat flow rate introduced in Section 4.2.
Then, if n(x) denotes the outward facing normal vector on S, q(x) · n(x) (W m−2) is
the (outward going) heat flow through S, which is zero since S is insulated:

q(x) · n(x) = 0 x ∈ S (4.42)

Using Fourier’s law (Equation 4.6), this turns into

∂T

∂n
= ∇T · n(x) = 0 x ∈ S (4.43)

where ∂T/∂n denotes the normal derivative of T with respect to n, which expresses
T ’s rate of change in the direction of n. Boundary conditions that prescribe the
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normal derivative of the unknown function such as Equation 4.43 are called
Neumann boundary conditions. If u is the unknown function in a PDE defined on
a domain 	 × I ⊂ R

n × R and if S ⊂ ∂	 is a subset of 	’s boundary, the general
form of Dirichlet and Neumann boundary conditions in S can be written as [142]

Dirichlet: u(x, t) = f1(x, t) (x, t) ∈ S × I (4.44)

Neumann:
∂u(x, t)

∂n
= f2(x, t) (x, t) ∈ S × I (4.45)

where f1 and f2 are given real functions. Another frequently used boundary
condition is the Robin boundary condition, which specifies a linear combination of
u and ∂u/∂n as follows:

Robin: a(x, t)u(x, t) + b(x, t)
∂u(x, t)

∂n
= f3(x, t) (x, t) ∈ S × I (4.46)

Any of the above three boundary conditions is called homogeneous if its right-hand
side vanishes (e.g. f1(x, t) = 0), otherwise inhomogeneous. A homogeneous Neu-
mann condition (f2(x, t) = 0 in Equation 4.45) is also known as a no-flow condition.
Equation 4.43 is an example of such a homogeneous Neumann condition, which
forbids any heat flow through S as discussed above. Similar interpretations apply
in many other situations, and this is why the term ‘‘no-flow condition’’ is used.
Note that no-flow conditions can sometimes also be interpreted as expressing the
symmetry of a problem, and hence the term symmetry boundary condition is also
used. An example of this along with further explanations is given in Section 4.3.3.

Regarding Problem 1 and Problem 2 in Section 4.1.3, the above discussion can be
summarized as follows:

• Problem 1 imposes an initial condition in the domain
0 < x < 1 and two Dirichlet conditions at x = 0 and x = 1.
The Dirichlet condition at x = 0 (or x = 1) is
inhomogeneous if a nonzero temperature is imposed there,
homogeneous otherwise.

• Problem 2 imposes Dirichlet conditions at the top surface of
the cube and at the sphere surface (homogeneous or
inhomogeneous Dirichlet conditions depending on the
actual values of Tc and Ts), and a homogeneous Neumann
condition (no-flow condition) at the remaining sides of the
cube.

4.3.3
Symmetry and Dimensionality

In practice, most PDEs cannot be solved in closed form, which means that they
are solved using numerical algorithms in most cases. The application of such
numerical algorithms can be extremely expensive in terms of computation time
and machine requirements such as memory or processor speed requirements [150].
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As has been already mentioned in Section 3.6.1, it may take several hours, days, or
even longer to solve complex coupled multidimensional PDE problems, even if you
are using supercomputers or large computer clusters (i.e. a great number of coupled
computers that work together to solve your problem). The continuous increase of
processor speeds and available memory does not change this situation since the
increase in computer power is accompanied by a similarly increasing complexity of
the problems that are solved. As faster computers become available, people begin
to solve problems that were beyond the scope of the old computer generation.
Therefore, the reduction of computation time and machine requirements is an
important issue in the solution of PDEs. As is explained below, a lot can be
achieved by the use of fast and efficient numerical algorithms, by the intelligent
use of these algorithms, and by using appropriate fast and efficient software.
But there is one thing you can do at an early stage before the application of
numerical algorithms: you can analyze the symmetry and dimensionality of your
problem.

Note 4.3.3 (Symmetry/dimensionality should be exploited) Based on a wise
consideration of symmetry and dimensionality, the complexity of a problem
and its computation time and machine requirements can often be substantially
reduced.

4.3.3.1 1D Example
To understand the point, consider the following Problem 3 (a modification of
Problem 2 discussed in Section 4.1.3):

Problem 3:
Referring to the configuration in Figure 4.4a and assuming
• a constant temperature Tt at the top surface of the cube (z = 1),
• a constant temperature Tb at the bottom surface of the cube

(z = 0),
• and a perfect thermal insulation of all other surfaces of the cube,

what is the stationary temperature distribution T(x, y, z) within the cube?

It is simple to see that the solution of this problem will depend on z only, that
is, the resulting stationary temperature distribution will be of the form T(z) (see
the discussion of Problem 2 in Section 4.1.3 to understand what is meant by the
term ‘‘stationary temperature distribution’’). If there would be any temperature
differences in some given plane z = a inside the cube (0 ≤ a ≤ 1), then there
would be a point (x, y, a) in that plane where we would have either ∂T(x,y,a)

∂x �= 0 or
∂T(x,y,a)

∂y �= 0. This would initiate a heat flow according to Fourier’s law (Equation
4.6), which would then tend to flatten out the temperature gradient at that point
until ∂T(x,y,a)

∂x = ∂T(x,y,a)
∂y = 0 would be achieved in the stationary limit. Similar to the
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Fig. 4.4 (a) Cube [0, 1]3 with highlighted boundaries z = 0
(bottom surface) and z = 1 (top surface) used in Problem 3.
(b) Cube [0, 1]3 with highlighted boundaries y = 1 (back sur-
face) and y = 0, 0.4 ≤ x ≤ 0.6 (strip on the front surface)
used in Problem 4. (c) Cylinder used in Problem 5.

derivation of Equation 3.70 in Section 3.5.5, the stationary temperature distribution
that solves Problem 3 can be derived from the heat equation as follows:

T(x, y, z) = Tb + (Tt − Tb) · z (4.47)

Since T(x, y, z) depends on z only, this can also be written as

T(z) = Tb + (Tt − Tb) · z (4.48)

Such a temperature distribution that depends on one space coordinate only is
called a one-dimensional temperature distribution, and the corresponding physical
problem from which it is derived (Problem 4 in this case) is called a one-dimensional
problem. Correspondingly, the solution of a two-dimensional (three-dimensional)
problem depends on two (three) space coordinates. Intuitively, it is clear that
it is much less effort to compute a one-dimensional temperature distribution
T(x) compared to higher dimensional distributions such as T(x, y) or T(x, y, z).
The discussion of the PDE solving numerical algorithms in Section 4.5 indeed
shows that the number of unknowns in the resulting systems of equations –
and hence the overall computational effort – depends dramatically on the
dimension.

Note 4.3.4 (Dimension of a PDE problem) The solution of one-dimensional
(two-dimensional, three-dimensional) PDE problems depends on one (two, three)
independent variables. To reduce the computational effort, PDEs should always
be solved using the lowest possible dimension.
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4.3.3.2 2D Example
Consider the following problem:

Problem 4:
Referring to the configuration in Figure 4.4b and assuming
• a constant temperature Tb at the back surface of the cube (y = 1),
• a constant temperature Tf at the strip y = 0, 0.4 ≤ x ≤ 0.6 at the

front surface of the cube,
• and a perfect thermal insulation of all other surfaces of the cube,

what is the stationary temperature distribution T(x, y, z) within the cube?

In this case, it is obvious that the stationary temperature distribution will depend
on x and y. Assuming Tf > Tb, for example, it is clear that the stationary temperature
will go down toward Tb as we move in the y direction toward the (colder) back
surface, and it is likewise clear that the stationary temperature will increase as we
move in the x direction toward x = 0.5, the point on the x axis closest to the (warm)
strip on the front surface (see also the discussion of Figure 4.5b further below).
On the other hand, there will be no gradients of the stationary temperature in the
z direction. To see this, a similar ‘‘flattening out’’ argument could be used as in
our above discussion of Problem 3. Alternatively, you could observe that the same
stationary temperature distribution would be obtained if the cube would extend
infinitely in the positive and negative z direction, which expresses the symmetry

y y

x x

1 1

0 0

00 0.4 0.5 0.6 0.4 0.5 0.61 1
(b)(a)

Fig. 4.5 Example of a reduction of the computational do-
main due to symmetry: (a) Geometry. (b) Solution of
Problem 4 for Tb = 20 ◦C and Tf = 0 ◦C (computed using
Salome-Meca). Colors range from white (20 ◦C) to black
(0 ◦C), lines in the domain are temperature isolines.
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of this problem in the z direction. More precisely, this expresses the translational
symmetry of this problem in the z direction, as you could translate the cube of
Problem 4 along the ‘‘infinitely extended cube’’ arbitrarily in the z direction without
changing the stationary temperature distribution. This and other kinds of spatial
symmetries can often be used to reduce the spatial dimensionality of a problem,
and hence to reduce the computation time and machine requirements of a PDE
problem [151].

4.3.3.3 3D Example
Problem 2 in Section 4.1.3 is an example of a three-dimensional problem. In this
case, there are no symmetries that could be used to reduce the spatial dimensionality
of the problem. The stationary temperature in any particular point (x, y, z) depends
in a complex three-dimensional manner on the point’s relative position toward
the sphere and the top side of the cube in Figure 4.1b. There is, however, a kind
of symmetry in Problem 2 that can at least be used to reduce the computational
effort (although the problem remains three dimensional). Indeed, it is sufficient
to compute the temperature distribution in a quarter of the cube of Figure 4.1b,
which corresponds to (x, y) ∈ (0, 0.5) × (0, 0.5). The temperature distribution in
this quarter of the cube can then be extended to the other three quarters using the
mirror symmetry of the temperature distribution inside the cube with respect to the
planes y = 0.5 and x = 0.5. See the discussion of Figure 4.5 for another example
of a mirror symmetry.

In the discussion of the finite-element method (Section 4.7), it will become clear
that the number of unknowns is reduced by about 75% if the computational domain
is reduced to a quarter of the original domain, so you see that the computational
effort is substantially reduced if Problem 2 is solved using the mirror symmetry.
However, note that we will not use the mirror symmetry when Problem 2 is solved
using Salome-Meca in Section 4.9, simply because the computational effort for this
problem is negligible even without the mirror symmetry (and we save the effort
that would be necessary to extend the solution from the quarter of the cube into
the whole cube in the postprocessing step, see Section 4.9.4).

4.3.3.4 Rotational Symmetry
As another example of how the spatial dimension of a problem can be reduced due
to symmetry, consider

Problem 5:
Referring to the configuration in Figure 4.4c and assuming
• a constant temperature Tt at the top surface of the cylinder,
• a constant temperature Ts at the dark strip around the cylinder,
• and a perfect thermal insulation of all other surfaces of the

cylinder,

what is the stationary temperature distribution T(x, y, z) within the cylinder?
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In this case, it is obvious that the problem exhibits rotational symmetry in
the sense that the stationary temperature distribution is identical in any vertical
section through the cylinder that includes the z axis (a reasoning similar to
the ‘‘flattening out’’ argument used in Section 4.3.3.1 would apply to temperature
distributions deviating from this pattern). Using cylindrical coordinates (r,φ, z), this
means that we will get identical stationary temperature distributions on any plane
φ = const. Hence, the stationary temperature distribution depends on the two
spatial coordinates r and z only, and Problem 5, thus, is a two-dimensional problem.
Note that in order to solve this problem in two dimensions, the heat equation
must be expressed in cylindrical coordinates (in particular, it is important to
choose the appropriate model involving cylindrical coordinates if you are using
software).

4.3.3.5 Mirror Symmetry
Consider Figure 4.5a, which shows the geometrical configuration of the two-
dimensional problem corresponding to Problem 4. As in Problem 4, we assume
a constant temperature Tb for y = 1 (the top end of the square in Figure 4.5a),
a constant temperature Tf in the strip y = 0, 0.4 ≤ x ≤ 0.6 (the thick line at the
bottom end of the square in Figure 4.5a), and a perfect thermal insulation at all
other boundary lines of the square. Again, we ask for the stationary temperature
within the square. As discussed above, the solution of this problem will then
also solve Problem 4 due to the translational symmetry of Problem 4 in the z
direction.

Note that the situation in Figure 4.5a is mirror symmetric with respect to
the dashed line in the figure (similar to the mirror symmetry discussed in
Section 4.3.3.3). The boundary conditions imposed on each of the two sides of the
dashed line are mirror symmetric with respect to that line, and hence the resulting
stationary temperature distribution is also mirror symmetric with respect to that
dashed line. This can be seen in Figure 4.5b, which shows the solution of Problem 4
computed using Salome-Meca (Section 4.9). So we see here that it is sufficient to
compute the solution of Problem 4 in one half of the square only, for example, for
x < 0.5, and then to extend the solution into the other half of the square using
mirror symmetry. In this way, the size of the computational domain is reduced
by one half. This reduces the number of unknowns by about 50% and leads to
a substantial reduction of the computational effort necessary to solve the PDE
problem (see Section 4.5 for details).

4.3.3.6 Symmetry and Periodic Boundary Conditions
In all problems considered above, we have used ‘‘thermal insulation’’ as a boundary
condition. As discussed in Section 4.3.2.3 above, this boundary condition is
classified as a Neumann boundary condition, and it is also called a no-flow
condition since it forbids any heat flow across the boundary. Referring to Problem 4
and Figure 4.4b, the thermal insulation condition serves as a ‘‘no-flow’’ condition
in this sense, for example, at the cube’s side surfaces x = 0 and x = 1 and at the
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cube’s front surface besides the strip. At the top and bottom surfaces of the cube,
the thermal insulation condition can be interpreted in the same way, but it can also
be interpreted there as expressing the symmetry of the problem in the z direction.
As was explained in Section 4.3.3.2, Problem 4 can be interpreted as describing
a situation where the cube extends infinitely into the positive and negative z
directions. In this case, the ‘‘no-flow’’ condition at the top and bottom surfaces of
the cube in Figure 4.4b would not be a consequence of a thermal insulation at
these surface – rather, it would be a consequence of the symmetry of the problem
which implies that there can be no temperature gradients in the z direction. This is
why no-flow conditions are often also referred to as symmetry boundary conditions.
Finally, we remark that substantial reductions of the complexity of a PDE problem
can also be achieved in the case of periodic media. For periodic media such as the
medium shown in Figure 4.3, it will usually be sufficient to compute the solution
of a PDE on a single periodicity cell along with appropriate periodic boundary
conditions at the boundaries of the periodicity cell. An example of this and some
further explanations is given in Section 4.10.2.1.

4.4
Closed Form Solutions

In Section 3.6, we have seen that ODEs can be solved either in closed form or
numerically. As was discussed there, closed form solutions can be expressed in
terms of well-known functions such as the exponential function and the sine
function, while the numerical approach is based on the approximate solution of
the equations on the computer. All these hold for PDEs as well, including the fact
that closed form solutions cannot be obtained in most cases – they are like ‘‘dust
particles in the ODE/PDE universe’’ as discussed in Section 3.7.4. Since PDEs
involve derivatives with respect to several variables and, thus, can express a much
more complex dynamical behavior compared to ODEs, it is not surprising that
one can generally say that it is even harder to find closed form solutions of PDEs
compared to ODEs.

Nevertheless, as was explained in Section 3.6, it is always a good idea to look
for closed form solutions of differential equations since they may provide valuable
information about the dependence of the solution on the parameters of the system
under investigation. A great number of techniques to derive closed form solutions
of differential equations – PDEs as well as ODEs – has been developed, but an
exhaustive treatment of this topic is beyond the scope of a first introduction
into mathematical modeling. Since closed form solutions are unavailable in most
cases, we will confine ourselves here to an example derivation of a closed form
solution for the one-dimensional heat equation. Readers who want to know more
on closed form solution techniques are referred to appropriate literature such
as [152].
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4.4.1
Problem 1

So let us reconsider the one-dimensional heat equation now (Equation 4.1 in
Section 4.2):

∂T

∂t
= K

Cρ
· ∂2T

∂x2
(4.49)

As discussed in Section 4.3.2, this equation needs boundary conditions for the
space variables and an initial condition at t = 0. Assuming (0, L) as the spatial
domain in which Equation 4.49 is solved (that is, x ∈ (0, L)), let us consider the
following initial and boundary conditions:

T(0, t) = 0 ∀t ≥ 0 (4.50)

T(L, t) = 0 ∀t ≥ 0 (4.51)

T(x, 0) = T0 ∀x ∈ (0, L) (4.52)

where T0 ∈ R is a constant initial temperature. Note that this corresponds to Problem
1 in Section 4.1.3 with Ti(x) = T0 and T0 = T1 = 0. As was explained there, you can
imagine, for example, a cylindrical body as in Figure 4.1a with an initial, constant
temperature T0, the ends of this body being in contact with ice water after t = 0.

4.4.2
Separation of Variables

The above problem can now be solved using a separation of variables tech-
nique [111]. Note that a similar technique has been described for ODEs in Section
3.7.2. This method assumes a solution of the form

T(x, t) = a(x) · b(t) (4.53)

where the variables x and t involve separate functions a and b. Substituting Equation
4.53 in Equation 4.49 you get

db(t)/dt
K

Cρ
· b(t)

= d2a(x)/dx2

a(x)
(4.54)

Both sides of the last equation must equal some constant −k2 with k �= 0 (it can
be shown that T would be identically zero otherwise). This leads to a system of two
uncoupled ODEs:

db(t)

dt
+ k2 K

Cρ
b(t) = 0 (4.55)
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d2a(x)

dx2
+ k2a(x) = 0 (4.56)

Equation 4.55 can be solved using the methods in Section 3.7, which leads to

b(t) = Ae−k2K/Cρt (4.57)

where A is some real constant. The general solution of Equation 4.56 is

a(x) = B1 · sin(kx) + B2 · cos(kx) (4.58)

where B1 and B2 are real constants. Equation 4.50 implies

B2 = 0 (4.59)

and Equation 4.51 gives

kL = nπ (4.60)

or

k = kn = nπ

L
(4.61)

for some n ∈ N. Thus for any n ∈ N, we get a solution of Equation 4.56:

a(t) = B1 · sin(knx) (4.62)

Using Equations 4.53, 4.57, and 4.62 gives a particular solution of Equations
4.49–4.51 for any n ∈ N as follows:

Tn(x, t) = An · sin(knx) · e−k2
n

K
Cρ

t (4.63)

Here, An is a real constant. The general solution of Equations 4.49–4.51 is then
obtained as a superposition of the particular solutions in Equation 4.63:

T(x, t) =
∞∑

n=1

Tn(x, t) =
∞∑

n=1

An · sin(knx) · e−k2
n

K
Cρ

t (4.64)

The coefficients An in the last equation must then be determined in a way such
that the initial condition in Equation 4.52 is satisfied:

T0 = T(x, 0) =
∞∑

n=1

An · sin(knx) (4.65)

This can be solved for the An using Fourier analysis as described in [111], which
finally gives the solution of Equations 4.49–4.52 as follows:

T(x, t) =
∞∑

n=1,3,5,...

4T0

nπ
· sin(knx) · e−k2

n
K

Cρ
t (4.66)
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The practical use of this expression is, of course, limited since it involves an
infinite sum, which can only be evaluated approximately. An expression such as
Equation 4.66 is at what might be called the borderline between closed from solutions
and numerical solutions, which will be discussed in the subsequent sections. The
fact that we are getting an infinite series solution for a problem such as Equations
4.49–4.52 – which certainly is among the most elementary problems imaginable
for the heat equation – confirms our statement that numerical solutions are even
more important in the case of PDEs compared to ODEs.

4.4.3
A Particular Solution for Validation

Still, closed form solutions are of great use, for example, as a test of the correctness
of the numerical procedures. Remember that a comparison with closed form
solutions of ODEs was used in Section 3.8 to demonstrate the correctness of the
numerical procedures that were discussed there (e.g. Figure 3.9 in Section 3.8.2).
In the same way, we will use the particular solution T1(x, t) from Equation 4.63 as
a means to validate the finite difference method that is described in Section 4.6.
Assuming A1 = 1 in Equation 4.63, T1 turns into

T∗(x, t) = sin
(π

L
x
)

· e
− π2

L2
K

Cρ
t

(4.67)

which is the closed form solution of the following problem:

∂T

∂t
= K

Cρ
· ∂2T

∂x2
(4.68)

T(0, t) = 0 ∀t ≥ 0 (4.69)

T(L, t) = 0 ∀t ≥ 0 (4.70)

T(x, 0) = T∗(x, 0) = sin
(π

L
x
)

∀x ∈ (0, L) (4.71)

4.5
Numerical Solution of PDE’s

Remember the discussion of the Euler method in Section 3.8.1.1. There, we wanted
to solve an initial-value problem for a general ODE of the form

y′(x) = F(x, y(x)) (4.72)

y(0) = a (4.73)

Analyzing the formulas discussed in Section 3.8.1, you will find that the main idea
used in the Euler method is the approximation of the derivative in Equation 4.72
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by the difference expression

y′(x) ≈ y(x + h) − y(x)

h
(4.74)

Using similar difference expressions to approximate the derivatives, the same
idea can be used to solve PDEs, and this leads to a class of numerical methods
called finite difference methods (often abbreviated as FD methods) [140]. An example
application of the FD method to the one-dimensional heat equation is given in
Section 4.6. The application of the FD method is often the easiest and most natural
thing to do in situations where the computational domain is geometrically simple,
for example, where you solve an equation on a rectangle (such as the domain
[0, L] × [0, T ] used in Section 4.6).

If the computational domain is geometrically complex, however, the formulation
of FD methods can be difficult or even impossible since FD methods always need
regular computational grids to be mapped onto the computational domain. In such
situations, it is better to apply e.g. the finite-element method (often abbreviated as the
FE method) described in Section 4.7. In the FE method, the computational domain
is covered by a grid of approximation points that do not need to be arranged in a
regular way as it is required by the FD method. These grids are often made up of
triangles or tetrahedra, and it is seen later that they can be used to describe even
very complex geometries.

Similar to the numerical methods solving ODEs discussed in Section 3.8.1,
numerical methods for PDEs are discretization methods in the sense that they
provide a discrete reformulation of the original, continuous PDE problem. While
the discussion in this book will be confined to FD and FE methods, you should
note that there is a number of other discretization approaches, most of them
specifically designed for certain classes of PDEs. For example, PDEs that are
formulated as an initial-value problem in one of its variables can be treated by the
method of lines, which basically amounts to a reformulation of the PDE in terms of
a system of ODEs or differential-algebraic equations [153]. Spectral methods are a
variant of the FE method involving nonlocal basis functions such as sinusoids or
Chebyshev polynomials, and they work best for PDEs having very smooth solutions
as described in [154]. Finite volume methods are often applied to PDEs based on
conservation laws, particularly in the field of CFD [155, 156].

4.6
The Finite Difference Method

4.6.1
Replacing Derivatives with Finite Differences

The FD method will be introduced now referring to the one-dimensional heat
equation 4.49 (see Section 4.2):

∂T

∂t
= K

Cρ
· ∂2T

∂x2
(4.75)
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As was already mentioned above, the idea of the FD method is similar to
the idea of the Euler method described in Section 3.8.1.1: a replacement of the
derivatives in the PDE by appropriate difference expression. In Equation 4.75, you
see that we need numerical approximations of a first-order time derivative and of a
second-order space derivative. Similar to the above derivation of the Euler method,
the time derivative can be approximated as

∂T(x, t)

∂t
≈ T(x, t + 
t) − T(x, t)


t
(4.76)

if 
t is a sufficiently small time step (which corresponds to the stepsize h of the
Euler method). To derive an approximation of the second-order space derivative,
let 
x be a sufficiently small space step. Then, second-order Taylor expansions of
T(x, t) give

T(x + 
x, t) = T(x, t) + ∂T(x, t)

∂x

x + 1

2

∂2T(x, t)

∂x2
(
x)2 + · · · (4.77)

T(x − 
x, t) = T(x, t) − ∂T(x, t)

∂x

x + 1

2

∂2T(x, t)

∂x2
(
x)2 − · · · (4.78)

Adding these two equations, a so-called central difference approximation of the
second-order space derivative is obtained:

T(x, t + 
t) − T(x, t)


t
≈ T(x + 
x, t) + T(x − 
x, t) − 2T(x, t)

(
x)2 (4.79)

The right-hand sides of Equations 4.76 and 4.79 are called finite difference approxi-
mations of the derivatives. As discussed in [157], a great number of finite difference
approximations can be used for any particular equation. An important criterion
for the selection of finite difference approximations is their order of accuracy. For
example, it can be shown that the approximation in Equation 4.79 is fourth order
accurate in 
x, which means that the difference between the left- and right-hand
side in Equation 4.79 can be expressed as c1 · (
x)4 + c2 · (
x)6 · · · where c1, c2, . . .
are constants [157]. Hence, the approximation error made in Equation 4.79 de-
creases quickly as 
x → 0. Note that the high accuracy of this approximation
is related to the fact that all odd terms cancel out when we add the two Taylor
expansions (4.77) and (4.78). Substituting Equations 4.76 and 4.79 in Equation 4.75
gives

T(x, t + 
t) − T(x, t)


t
≈ K

Cρ
· T(x + 
x, t) + T(x − 
x, t) − 2T(x, t)

(
x)2 (4.80)

4.6.2
Formulating an Algorithm

Assume now we want to solve Equation 4.75 for t ∈ (0, T ] and x ∈ (0, L) where

T = Nt · 
t (4.81)

L = Nx · 
x (4.82)
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for Nt, Nx ∈ N. Let us define

xi = i · 
x, i = 0, . . . , Nx (4.83)

tj = j · 
t, j = 0, . . . , Nt (4.84)

Ti,j = T(xi, tj), i = 0, . . . , Nx , j = 0, . . . , Nt (4.85)

Then, Equation 4.80 suggests the following approximation for i = 1, . . . , Nx − 1
and j = 0, . . . , Nt − 1:

Ti,j+1 = Ti,j + η
(
Ti+1,j + Ti−1,j − 2Ti,j

)
(4.86)

where

η = K
t

Cρ
x2
(4.87)

We will now use Equation 4.86 to solve Equations 4.68–4.71, since the closed
form solution of these equations is the known expression T∗(x, t) in Equation 4.67,
which can then be used to assess the accuracy of the numerical procedure. Using
the notation of this section, Equations 4.69–4.71 can be written as follows:

T0,j = 0, j = 0, . . . , Nt (4.88)

TNx ,j = 0, j = 0, . . . , Nt (4.89)

Ti,0 = sin
(π

L
i
x

)
, i = 0, . . . , Nx (4.90)

Let us now write down Equation 4.86 for j = 0:

Ti,1 = Ti,0 + η
(
Ti+1,0 + Ti−1,0 − 2Ti,0

)
(4.91)

On the right-hand side of the last equation, everything is known from the initial
condition, Equation 4.90. Hence, Equation 4.91 can be used to compute Ti,1 for
i = 1, . . . , Nx − 1 (note that T0,1 and TNx ,1 are known from Equations 4.88 and
4.89). Then, all Ti,j with j = 0 or j = 1 are known and we can proceed with Equation
4.86 for j = 1:

Ti,2 = Ti,1 + η
(
Ti+1,1 + Ti−1,1 − 2Ti,1

)
(4.92)

Again, everything on the right-hand side is known, so we get Ti,2 for i =
1, . . . , Nx − 1 from the last equation. Proceeding in this way for j = 2, 3, . . . , all Ti,j

for i = 0, . . . , Nx and j = 0, . . . , Nt are obtained successively.

4.6.3
Implementation in R

Obviously, the procedure just described consists of the application of two nested
iterations, or, in the language of programming languages: it consists of two nested
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loops. The first (outer) loop advances j from 0 to Nt − 1, and within this loop there is
a second loop, which advances i from 1 to Nx − 1. The entire algorithm is realized
in the R-program HeatClos.r which is a part of the book software. The essential
part of this code consists of the two loops just mentioned:

1: for (j in 0:Nt){
2: for (i in 2:Nx)
3: T[i,2]=T[i,1]+eta*(T[i+1,1]+T[i-1,1]-2*T[i,1])
4: for (i in 2:Nx)
5: T[i,1]=T[i,2]
6: . . .

7: }

(4.93)

The outer loop over j is defined in line 1 using Rs for command, which works
similar to Maximas for command that was discussed in Section 3.8.1.2. This
commands iterates anything enclosed in brackets ‘‘{...}’’ in lines 1–7, using
successive values j = 0,j = 1, . . . ,j = Nt. The inner loop over i is in lines
2–3. The range of both the loops is slightly different from the ranges discussed
above for purely technical reasons (R does not allow arrays having index ‘‘0’’, and
hence all indices in HeatClos.r begin with ‘‘1’’ instead of ‘‘0’’). The temperatures
are computed in line 3, which is in exact correspondence with Equation 4.86, except
for the fact that the index ‘‘2’’ is used here instead of ‘‘j + 1’’ and index ‘‘1’’ instead
of j. This means that HeatClos.r stores the temperatures at two times only, the
‘‘new’’ temperatures in T[i,2] and the ‘‘old’’ temperatures in T[i,1]. This is
done to save memory since one usually wants to have the temperature at a few
times only as a result of the computation. In HeatClos.r, a vector to defines these
few points in time and the 6 of the code (which we have left out here for brevity).
After each time step, the next time step is prepared in lines 4–5 where the new
‘‘old’’ temperature is defined as the old ‘‘new’’ temperature.

Figure 4.6 shows the result of the computation. Obviously, there is a perfect
coincidence between the numerical solution (lines) and the closed form solution,
Equation 4.67. As was mentioned above, you can imagine Figure 4.6 to express
the temperature distributions within a one-dimensional physical body such as the
cylinder shown in Figure 4.1a. At time 0, the top curve in the figure shows a
sinusoidal temperature distribution within that body, with temperatures close to
100 ◦C in the middle of that body and temperatures around 0 ◦C at its ends. The
ends of the body are kept at a constant temperature of 0 ◦C according to Equations
4.69 and 4.70. Physically, you can imagine the ends of that body to be in contact
with ice water. In such a situation, physical intuition tells us that a continuous heat
flow will leave that body through its ends, accompanied by a continuous decrease
of the temperature within the body until T(x) = 0 (x ∈ [0, 1]) is achieved. Exactly
this can be seen in the figure, and so you see that this solution of the heat equation
corresponds with our physical intuition. Note that the material parameters used
in this example (Figure 4.6 and HeatClos.r) correspond to a body made up of
aluminum.
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Fig. 4.6 Solution of Equations 4.68–4.71 for
K = 210 (cal/◦C/g), C = 900 (cal ◦C g s), ρ =
2700 (g/cm3), and L = 1. Lines: numerical
solution computed using HeatClos.r based
on the finite difference scheme, Equation

4.86, at times t = 0, 625, 1250, 1875, 2500
s, which correspond to the lines from top
to bottom. Circles: closed form solution,
Equation 4.67.

4.6.4
Error and Stability Issues

In the general case, you will not have a closed form solution, which could be used as
in Figure 4.6 to assess the accuracy of the numerical solution. To control the error
within FD algorithms, you may look for error controlling algorithms that apply to
your specific FD scheme in the literature [3, 138, 150, 157]. Alternatively, you may
use the heuristic procedure described in Note 3.8.1, which means in this case that
you compute the solution first using 
x and 
t, and then the second time using

x/2 and 
t/2. As explained in Section 3.8.2.1, you may assume a sufficiently
precise result if the differences between these two solutions are negligibly small.
Any newly written FD program, however, should first be checked using a closed
form solution similar to above.

Looking into HeatClos.r, you will note that the time step 
t – which is denoted
as Dt within HeatClos.r – is chosen depending on the space step 
x as follows:


t = Cρ
x2

8K
(4.94)

If you increase 
t above this value, you will note that beyond a certain limit
the solution produced by HeatClos.r becomes numerically unstable, that is, it
exhibits wild unphysical oscillations similar to those that we have seen in the
discussion of stiff ODEs in Section 3.8.1.4. The stability of the solution, hence, is
an issue for all kinds of differential equation including PDEs. If you apply finite
difference schemes such as Equation 4.86, you should always consult appropriate
literature such as [140] to make sure that your computations are performed within
the stability limits of the particular method you are using. In the case of the FD
scheme Equation 4.86, a von Neumann stability analysis shows that stability requires
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η = K
t

Cρ
x2
<

1

4
(4.95)

to be satisfied [111]. This criterion is satisfied by choosing 
t according to
Equation 4.94 in HeatClos.r.

4.6.5
Explicit and Implicit Schemes

The FD scheme Equation 4.86 is also known as the leap frog scheme since it
advances the solution successively from time level j = 1 to j = 2, 3, . . . , similar to
the children’s game leapfrog [111]. Since the solution at a new time level j + 1 can
be computed explicitly based on the given right-hand side of Equation 4.86, this
FD scheme is called an explicit FD method.

An implicit variant of the FD scheme Equation 4.86 is obtained if Equation 4.80
is replaced by

T(x, t + 
t) − T(x, t)


t

≈ K

Cρ
· T(x + 
x, t + 
t) + T(x − 
x, t + 
t) − 2T(x, t + 
t)

(
x)2 (4.96)

which leads to the approximation

Ti,j+1 − Ti,j


t
= K

Cρ
· Ti+1,j+1 + Ti−1,j+1 − 2Ti,j+1


x2
(4.97)

for i = 1, . . . , Nx − 1 and j = 0, . . . , Nt − 1. The last equation cannot be solved for
Ti,j+1 as before. Ti,j+1 is expressed implicitly here since the equation depends on
other unknown temperatures at the time level j + 1: Ti+1,j+1 and Ti−1,j+1. Given
some time level j, this means that the equations (4.97) for i = 1, . . . , Nx − 1 are
coupled and must be solved as a system of linear equations. Methods of this
kind are called implicit FD methods. Implicit FD methods are usually more stable
compared to explicit methods at the expense of higher computation time and
memory requirements (since a system of linear equations must be solved in
any time step for the implicit scheme Equation 4.97, while the temperatures in
the new time step could be obtained directly from the explicit scheme Equation
4.86). The implicit method Equation 4.97, for example, can be shown to be
unconditionally stable, which means that no condition such as Equation 4.95 must
be observed to ensure stable results without those unphysical oscillations discussed
above [140].

The FD method Equation 4.86 is also known as the FTCS method [158]. To
understand this, consider Equation 4.80 on which Equation 4.86 is based: as
was mentioned above, the right-hand side of Equation 4.80 is a central difference
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approximation of the second space derivative, which gives the letters ‘‘CS’’ (Central
difference approximation in Space) of ‘‘FTCS’’. The left-hand side of Equation 4.80,
on the other hand, refers to the time level t used for the approximation of the
space derivative and to the time level t + 
t, that is, to a time level in the forward
direction. This gives the letters ‘‘FT’’ (Forward difference approximation in Time)
of ‘‘FTCS’’. The implicit scheme (Equation 4.97) can be described in a similar way,
except for the fact that in this case the approximation of the time derivative goes
into the backward direction, and this is why Equation 4.97 is also known as the
BTCS method.

Note that there is a great number of other FD methods beyond the methods
discussed so far, most of them specifically tailored for special types of PDEs [138,
150, 157, 158].

4.6.6
Computing Electrostatic Potentials

After solving the heat equation, let us consider a problem from classical electrody-
namics: the computation of a two-dimensional electrostatic potential U(x, y) based
on a given distribution of electrical charges, ρ(x, y). The electrostatic potential is
known to satisfy the following PDE [111]:

∂2U(x, y)

∂x2
+ ∂2U(x, y)

∂y2
= −4πρ(x, y) (4.98)

According to the classification in Section 4.3.1.3, this is an elliptic PDE which is
known as Poisson’s equation. Assume we want to solve Equation 4.98 on a square
(0, L) × (0, L). To formulate an FD equation, let us assume the same small space
step 
 = L/N in the x and y directions (N ∈ N). Then, denoting Ui,j = U(i
, j
),
ρi,j = ρ(i
, j
) and using the central difference approximation for the derivatives
similar as above, the following FD equation is obtained for i = 1, . . . , N − 1 and
j = 1, . . . , N − 1:

Ui,j = 1

4

(
Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1

)+ πρi,j

2 (4.99)

Note that all U terms in this equation are unknown, and hence this is again a
coupled system of linear equations, similar to the implicit BTCS scheme discussed
above. Equations of this kind are best solved using the iterative methods that are
explained in the next section.

4.6.7
Iterative Methods for the Linear Equations

Systems of coupled linear equations such as Equation 4.99 arise quite generally
in the numerical treatment of PDEs, regardless of whether you are using FD
methods, FE methods (Section 4.7), or any of the other methods mentioned in
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Section 4.5. Principally, problems of this kind can be solved as matrix equations
using the standard methods of linear algebra such as Gaussian elimination and
LU decomposition techniques [159]. This kind of solution methods are called direct
solution methods since they solve the general matrix problem Ax = b in a single
step, basically by inverting the matrix A. Direct methods, however, are usually
expensive in terms of computer memory since you need to keep the matrix (at least
the nonzero elements) in the memory, and also in terms of their computational
requirements, that is, in terms of the number of arithmetical operations needed
until the solution is obtained [160]. This is a problem even though the matrices
arising in the numerical treatment of PDEs are usually sparse matrices in the sense
that most matrix entries are zero, which reduces the memory requirements.

Thus, linear equations derived from PDEs are usually solved based on another
class of methods called iterative methods. These methods start with an initial guess
for the unknowns, which is then successively improved until a sufficiently precise
approximation of the solution of the PDE is achieved. In the above example, we
could start with an initial guess U

(0)
i,j (i, j = 0, . . . , N) and then use Equation 4.99 to

compute U
(1)
i,j , U

(2)
i,j , . . . from

U
(k+1)
i,j = 1

4

(
U

(k)
i+1,j + U

(k)
i−1,j + U

(k)
i,j+1 + U

(k)
i,j−1

)
+ πρi,j


2 (4.100)

This particular iterative method is called the Jacobi method, but there are more
effective methods such as the Gauss–Seidel method and relaxation methods, which
are discussed in [111, 160]. In [111] you may find an example application of Equation
4.99, along with a program solving this equation using a relaxation method.

Note 4.6.1 (Nested iterations) The numerical solution of nonlinear PDEs may
involve several nested iterations (which often can be observed in the output of
PDE solving software): for example, outer iterations resolving the time scale (for
instationary equations) and/or the nonlinearity (Section 4.3.1.3), and an inner
iteration solving the resulting system of linear equations.

4.6.8
Billions of Unknowns

As was just mentioned, iterative methods are used mainly due to the large size of
the linear equation systems derived from PDEs, which may increase the memory
and computation time requirements of direct methods beyond all limits. Referring
to the FD approach just discussed, it can be demonstrated why the linear equation
systems derived from PDEs can be so large. Assume we want to use the FD method
to compute some unknown quantity U in the cube [0, 1]3. Let us assume that we
use the same spatial step 
 = 1/N (N ∈ N) in all three space directions. Then, an
application of the FD method similar to above would generate a linear equation
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system with about N3 unknowns Ui,j,k (the real number of unknowns may be
slightly different due to the application of the appropriate boundary conditions.)
The value of N will depend on your application. N = 10 may be sufficient in some
cases, which would give about N3 = 1000 unknowns. If, however, your application
requires a very fine resolution, you might need N = 100 and then come up with an
overall number of unknowns in the order of millions.

Now you should note that this example refers to the computation of only one state
variable U. Many applications require the solution of systems of PDEs involving
the computation of several state variables on your computational grid, for example,
the pressure and several velocity components in CFD applications. In the N = 1000
case, you would get a billion unknowns for each of your state variables. Then, you
may want to observe the development of your state variables in time, that is,
you may want to solve your problem as an instationary problem, which means
you have to solve problems involving billions of unknowns in every single time
step of your numerical algorithm. In applications of the FE method (Section 4.7),
your geometry may involve tiny structures that need to be resolved by a very fine
computational grid, and again every point of that fine grid will increase the number
of the unknowns. In this way, your PDE application may easily generate far more
than a billion unknowns, and hence it is not surprising that the solution of PDEs
can be very expensive in terms of memory requirements and computation time.

Note 4.6.2 (Need for computational efficiency) Computational efficiency is an
important issue in the numerical treatment of PDEs. It involves a proper analysis
of the dimensionality and symmetry of the problem (Section 4.3.3) as well as the
use of fast and efficient iterative methods to solve the equations.

Note that N = 100 would generate only about 10 000 unknowns (instead of a
million) if you can solve the problem in 2D (instead of 3D), or about 500 000
unknowns would suffice if you can do your computation in half of the original
domain due to symmetry considerations.

4.7
The Finite-Element Method

As was discussed in Section 4.5, a main disadvantage of the FD method is its
lack of geometrical flexibility. It always needs regular computational grids to be
mapped onto the computational domain, which restricts the complexity of the
geometries that can be treated. The finite-element method (FE method), on the
other hand, is particularly well suited for complex geometries. It uses grids made
up of simple geometrical forms such as triangles in 2D or tetrahedra in 3D. These
simple geometrical forms are called finite elements, and by putting together a great
number of these finite elements virtually any imaginable geometrical object can be



4.7 The Finite-Element Method 267

(a) (b)

Fig. 4.7 (a) Example triangulation of a circle. (b) Example of a locally refined mesh.

constructed. As an example, Figure 4.7a shows the construction of a circular domain
using triangles as finite elements. A construction as in Figure 4.7a is called a mesh
or grid, and the generation of a mesh covering the geometry is an important step of
the finite-element method (see the discussion of mesh generation using software
in Section 4.8). If a 2D grid is constructed using triangles similar to Figure 4.7a,
the resulting mesh is also called a triangulation of the original geometry.

Note that the geometry shown in Figure 4.7a cannot be covered by the structured
grids that are used in the FD method (Section 4.6). The grid shown in Figure 4.7a
is called an unstructured grid, since the crossing points of the grid – which are also
called the knots of the grid – do not have any kind of regular structure (e.g. in
contrast to the FD grids, they do not imply any natural ordering of these crossing
points). Similar to the FD method, the crossing points of an FE mesh are the points
where the numerical algorithm produces an approximation of the state variables
(more precisely, weights of basis functions are determined at the crossing points,
see below). Depending on your application, you might need a higher or lower
resolution of the numerical solution – and hence a higher or lower density of those
crossing points – in different regions of the computational domain. This can be
realized fairly easily using unstructured FE meshes. Figure 4.7b shows an example
where a much finer grid is used in a circular strip. Such meshes are called locally
refined meshes. Locally refined meshes can not only be used to achieve a desired
resolution of the numerical solution but may also help to circumvent inherent
problems with the numerical algorithms [161–163].

4.7.1
Weak Formulation of PDEs

The difference between the computational approaches of the FD and FE methods
can be phrased as follows:

Note 4.7.1 The FD method approximates the equation and the FE method
approximates the solution.
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To make this precise, consider the Poisson equation in 2D (Section 4.6.6):

∂2U(x, y)

∂x2
+ ∂2U(x, y)

∂y2
= f (x, y) (4.101)

where (x, y) ∈ 	 ⊂ R
2 and f is some real function on 	. Now following the idea

of the FD approach and using the central difference approximation described in
Section 4.6.1, this equation turns into the following difference equation:

U(x + 
x, y) + U(x − 
x, y) − 2U(x, y)


x2

+ U(x, y + 
y) + U(x, y − 
y) − 2U(x, y)


y2
= f (x, y)

(4.102)

Equation 4.102 approximates Equation 4.101, and in this sense it is valid to
say that ‘‘the FD method approximates the equation’’. Now to understand what
it means that the ‘‘FE method approximates the solution’’, let us consider a 1D
version of Equation 4.101:

u′′(x) = f (x) x ∈ (0, 1) (4.103)

u(0) = u(1) = 0 (4.104)

Of course, this is now an ODE, but this problem is, nevertheless, very well suited
to explain the idea of the FE method in simple terms. Let v be a smooth function
which satisfies v(0) = v(1) = 0. Here, ‘‘smoothness’’ means that v is assumed to be
infinitely often differentiable with compact support, which is usually denoted as
v ∈ C∞

0 (0, 1), see [138] (we do not need to go into more details here since we are
not going to develop a theory of PDEs). Equation 4.103 implies

∫ 1

0
u′′(x)v(x) dx =

∫ 1

0
f (x)v(x) dx (4.105)

Using v(0) = v(1) = 0, an integration by parts of the left-hand side gives

−
∫ 1

0
u′(x)v′(x) dx =

∫ 1

0
f (x)v(x) dx (4.106)

Let H1
0(0, 1) be a suitable set of real functions defined on (0, 1). H1

0(0, 1) is a
so-called Sobolev space, which is an important concept in the theory of PDEs (see
the precise definitions in [138]). Defining

φ(u, v) =
∫ 1

0
u′(x)v′(x) dx (4.107)

for u, v ∈ H1
0(0, 1), it can be shown that the following problem is uniquely solv-

able [80]:

Find u ∈ H1
0(0, 1) such that

∀v ∈ H1
0(0, 1) : −φ(u, v) = ∫ 1

0 f (x)v(x) dx
(4.108)
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Problem (4.108) is called the variational formulation or weak formulation of
Equations 4.103 and 4.104. Here, the term weak is motivated by the fact that some
of the solutions of problem (4.108) may not solve Equations 4.103 and 4.104 since
they do not have a second derivative in the usual sense, which is needed in Equation
4.103. Instead, solutions of problem (4.108) are said to be weakly differentiable, and
these solutions themselves are called weak solutions of the PDE in its original
formulation, that is, of Equations 4.103 and 4.104. Although we confine ourselves
to a discussion of Equations 4.103 and 4.104 here, you should note that similar
weak formulations can be derived for linear second-order PDEs in general, and
these weak formulations can then also be approximated in a similar way using
finite elements as will be explained below [138].

4.7.2
Approximation of the Weak Formulation

The idea of the finite-element method is to replace the infinite-dimensional space
H1

0(0, 1) by a finite-dimensional subspace V ⊂ H1
0(0, 1), which turns Equation 4.108

into the following problem:

Find u ∈ V such that
∀v ∈ V : −φ(u, v) = ∫ 1

0 f (x)v(x) dx
(4.109)

Remember from your linear algebra courses that the dimension of a vector
space V is n ∈ N if there are linear independent basis vectors v1, . . . , vn ∈ V that
can be used to express any w ∈ V as a linear combination w = a1v1 + · · · + anvn

(a1, . . . , an ∈ R). For the space H1
0(0, 1) used in problem (4.108), no such basis can

be found which means that this is an infinite-dimensional space [138]. Such a space
is unsuitable for a numerical algorithm that can perform only a finite number of
steps, and this is why problem (4.108) is replaced by problem (4.109) based on the
finite-dimensional subspace V . If v1, . . . , vn is a set of basis functions of V , any
function u ∈ V can be written as

u =
n∑

j=1

ujvj (4.110)

where u1, . . . , un ∈ R. Problem (4.109) can now be written as

Find u1, . . . , un ∈ R such that for i = 1, . . . , n

−
n∑

j=1

φ(vi, vj) · uj =
∫ 1

0
vi(x)f (x) dx (4.111)

Using the definitions

A = (φ(vi, vj))i=1...n,j=1...n (4.112)

u = (uj)j=1...n (4.113)

f =
(∫ 1

0
vi(x)f (x) dx

)
i=1...n

(4.114)
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problem (4.111) can be written in matrix form as follows:

Find u ∈ R
n such that

A · u = f
(4.115)

The FE method thus transforms the original PDE Equations 4.103 and 4.104 into
a system of linear equations, as was the case with the FD method discussed above.

Remember that it was said above that the FD method approximates the equation
expressing the PDE, while the FE method approximates the solution of the PDE
(Note 4.7.1). This can now be made precise in terms of the last equations. Note
that the derivation of Equation 4.115 did not use any discrete approximations of
derivatives, which would lead to an approximation of the equation expressing the
PDE similar to the FD method. Instead, Equation 4.110 was used to approximate the
solution of the PDE – which lies in the infinite-dimensional Sobolev space H1

0(0, 1)
as explained above – in terms of the finite-dimensional subspace V ⊂ H1

0(0, 1).

4.7.3
Appropriate Choice of the Basis Functions

To simplify the solution of Equation 4.115, the basis v1, . . . , vn of V is chosen in
a way that turns the matrix A into a sparse matrix, that is, into a matrix with most
of its entries being zero. Based on a decomposition of [0, 1] into 0 = x0 < x1 <

x2 · · · < xn+1 = 1, one can, for example, use the piecewise linear functions

vk(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x − xk−1

xk − xk−1
if x ∈ [xk−1, xk] ,

xk+1 − x

xk+1 − xk
if x ∈ [xk, xk+1] ,

0 otherwise

(4.116)

Then, the functions vk for k = 1, . . . , n span up an n-dimensional vector space
V that can be used as an approximation of H1

0(0, 1) as discussed above. More
precisely, these functions span up the vector space of all functions being piecewise
linear on the subintervals [xk−1, xk] (k = 1, . . . , n + 1). In terms of our above
discussion, 0 = x0 < x1 < x2 · · · < xn+1 = 1 defines a decomposition of [0, 1] into
finite elements where the subintervals [xk−1, xk] are the finite elements, and the
mesh (or grid) consists of the points x0, . . . , xn+1.

Figure 4.8 shows an example for n = 4. The figure shows four ‘‘hat functions’’
centered at x1, x2, x3, x4 corresponding to the basis functions v1, v2, v3, v4, and a
function being piecewise linear on the subintervals [xk−1, xk] (k = 1, . . . , 5), which
is some linear combination of the vk such as

u(x) =
4∑

k=1

akvk(x) (4.117)
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1

x0 = 0 x1 x2 x3 x4 x5 = 1

Fig. 4.8 Example one-dimensional ‘‘hat’’ basis functions, and
a piecewise linear function generated by a linear combina-
tion of these basis functions.

where a1, a2, a3, a4 ∈ R. Since vk is nonzero only on the interval [xk−1, xk+1], the
entries of the matrix A in Equation 4.115

φ(vi, vj) =
∫ 1

0
v′

i(x)v′
j(x) dx (4.118)

are zero whenever |i − j| > 1, which means that these basis functions, indeed,
generate a sparse matrix A as discussed above. Obviously, the sparsity of A is a
consequence of the fact that the basis functions vk are zero almost everywhere.
Since the set of points where a function gives nonzero values is called the support
of that function, we can say that a basic trick of the FE method is to use basis
functions having a small support.

4.7.4
Generalization to Multidimensions

The same procedure can be used for higher-dimensional PDE problems. For
example, to solve the Poisson equation (4.101), the first step would be to find an
appropriate weak formulation of Equation 4.101 similar to Equation 4.108. This weak
formulation would involve an appropriate Sobolev Space of functions, which would
then again be approximated by some finite-dimensional vector space V . As a basis
of V , piecewise linear functions could be used as before (although there are many
alternatives [138]). A decomposition of [0, 1] into 0 = x0 < x1 < x2 · · · < xn+1 = 1
was used above to define appropriate piecewise linear functions. In 2D, the
corresponding step is a decomposition of the two-dimensional domain into finite
elements, similar to the decomposition of a circular domain into triangles in
Figure 4.7a. In analogy with the above discussion, one would then use piecewise
linear basis functions vk, which yield 1 on one particular crossing point of the
finite-element grid and 0 on all other crossing points. Using linear combinations of
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these basis functions, arbitrary piecewise linear functions can then be generated.
In 3D, the same procedure can be used, for example, based on a decomposition of
the computational domain in tetrahedra (Section 4.9.2 and Figure 4.17).

The FE method as described above is an example of a more general approach
called the Galerkin method [161, 162], which applies also, for example, to the
boundary element method for solving integral equations [164, 165] or to Krylov
subspace methods for the iterative solution of linear equation systems [160].

4.7.5
Summary of the Main Steps

The general procedure of the FE method can be summarized as follows:

Main steps of the FE method

1. Geometry definition: definition of the geometry of the domain in
which the PDE is to be solved.

2. Mesh generation: decomposition of the geometry into geometric
primitives called finite elements (e.g. intervals in 1D, triangles in
2D, and tetrahedra in 3D).

3. Weak problem formulation: formulation of the PDE in weak form.
Finite-dimensional approximation of the weak problem using
the mesh.

4. Solution: solution of a linear equation system derived from the
weak problem or of an iterated sequence of linear equation
systems in the case of nonlinear and/or instationary PDEs (Note
4.6.1).

5. Postprocessing: generation of plots, output files, and so on.

The geometry definition step corresponds to the definition of the interval [0, 1] in
the above discussion of Equations 4.103 and 4.104. If we want to solve, for example,
the two-dimensional Poisson equation (4.101) in a circular domain, this step would
involve the definition of that circular domain. Although these examples are simple,
geometry definition can be quite a complex task in general. For example, if we want
to use the PDEs of CFD to study the air flow within the engine of a tractor, the
complex geometry of that engine’s surface area needs to be defined. In practice, this
is done using appropriate CAD software tools. FE software (such as Salome-Meca,
Section 4.8) usually offers at least some simple CAD tools for geometry construction
as well as options for the import of files generated by external CAD software.

The mesh generation step involves the decomposition of the geometry into finite
elements as discussed above. Although triangles (in 2D) and tetrahedra (in 3D) are
used in most practical applications, all kinds of geometrical primitives can be used
here in principle. For example, some applications use rectangles or curvilinear
shapes in 2D or hexahedra, prisms, or pyramids in 3D. Of course, mesh generation
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is an integral part of any FE software. Efficient algorithms for this task have been
developed. An important issue is the mesh quality generated by these algorithms,
that is, the compatibility of the meshes with the numerical solution procedures.
For example, too small angles in the triangles of a FE mesh can obstruct the
numerical solution procedures, and this can be avoided, for example, by the use
of Delaunay triangulations [166]. Another important aspect of mesh generation is
mesh refinement. As was discussed above, one might want to use locally refined
meshes such as the one shown in Figure 4.7b to achieve the desired resolution
of the numerical solution or to avoid problems with the numerical algorithms.
FE software such as Salome-Meca offers a number of options to define locally
refined meshes as required (Section 4.9.2). The mesh generation step may also be
coupled with the solution of the FE problem in various ways. For example, some
applications require ‘‘moving meshes’’, such as coupled fluid–structure problems
where a flowing fluid interacts with a deforming solid structure [167]. Some
algorithms use adaptive mesh refinement strategies where the mesh is automatically
refined or coarsened depending on a posteriori error estimates computed from the
numerical solution [139].

The weak problem formulation step is the most technical issue in the above
scheme. This step involves, for example, the selection of basis functions of the
finite-dimensional subspace V in which the FE method is looking for the solution.
In the above discussion, we used piecewise linear basis functions, but all kinds of
other basis functions such as piecewise quadratic or general piecewise polynomial
basis functions can also be used [166]. Note that some authors use the term finite
element as a name for the basis functions, rather than for the geometrical primitives
of the mesh. This means that if you read about ‘‘quadratic elements’’, the FE method
is used with second-order polynomials as basis functions. If the PDE is nonlinear,
the weak problem formulation must be coupled with appropriate linearization
strategies [139]. Modern FE software such as Salome-Meca (Section 4.8) can be used
without knowing too much about the details of the weak problem formulation step.
Typically, the software will use reasonable standard settings depending on the PDE
type specified by the user, and as a beginner in the FE method it is usually a good
idea to leave these standard settings unchanged.

The solution step of the FE method basically involves the solution of linear
equation systems involving sparse matrices as discussed above. As was mentioned
in Section 4.6.7, large sparse linear equation systems are most efficiently solved
using appropriate iterative methods. In the case of instationary PDEs, the FE
method can be combined with a treatment of the time derivative similar as was
done above for the heat equation (Section 4.6). Basically, this means that a sequence
of linear equation systems must be solved as we move along the time axis [166]. In
the case of nonlinear PDEs, the FE method must be combined with linearization
methods such as Newton’s method [139], which again leads to the solution of an
iterated sequence of linear equation systems. Again, all this as well as the final
postprocessing step of the FE method is supported by modern FE software such as
Salome-Meca (Section 4.8).
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Note 4.7.2 (Comparison of the FD and FE methods) The FD method is relatively
easy to implement (Section 4.6), but is restricted to simple geometries. The FE
method can treat complex geometries, but its implementation is a tedious task
and so it is usually efficient to use existing software tools such as Salome-Meca.

4.8
Finite-element Software

As was mentioned above, the software implementation of the FE method is a
demanding task, and this is why most people do not write their own FE programs.
A great number of both open-source and commercial FE software packages are
available, see Table 4.1 for a list of examples which is by no means exhaustive.
Generally speaking, there is a relatively broad gap between open-source and
commercial FE software. It is relatively easy to do your everyday office work, for
example, using the open-source OpenOffice software suite instead of the commercial
Microsoft Office package, or to perform a statistical analysis using the open-source
R package instead of commercial products such as SPSS, but it is much less easy
to work with open-source FE software if you are used to commercial products
such as Fluent or Comsol Multiphysics. Given a particular FE problem, it is highly
likely that you will find open-source software that can solve your problem, but
you will need time to understand that software before you can use it. Having
solved that particular problem, your next problem may be beyond the scope of that
software, so you may have to find and understand another suitable open-source
FE package. The advantages of commercial FE software can be summarized as
follows:

• Range of application: commercial FE software usually
provides a great number of models that can be used.

• User-friendliness: commercial FE software usually provides
sophisticated graphical user interfaces, a full integration of
all steps of the FE analysis from the geometry definition to
the postprocessing step (Section 4.7.5), a user friendly
workflow involving, for example, the extraction of
parameters from material libraries, and so on.

• Quality: commercial FE software usually has been
thoroughly tested.

• Maintenance and support: commercial FE software usually
provides a continuous maintenance and support.

Of course, these points describe the general advantages of commercial software
not only in the field of finite-element analysis. All these have particular relevance
here due to the complexity of this kind of analysis: an enormous amount of
resources is needed to set up general FE software packages such as Fluent or
Comsol Multiphysics.
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Table 4.1 Examples of finite-element and finite-volume software packages.

Program Open source? Comment

Salome-Meca Yes Professional design. Workflow for a
limited number of FE models similar to
the commercial products. Part of
CAELinux, see Appendix A, Section 4.9
and www.caelinux.com.

Code_Aster Yes Part of the Salome-Meca package. ISO 9001
certified FE solver. Focus on structural
mechanics problems. Part of CAELinux,
see Appendix A, and www.code-aster.org.

Code_Saturne Yes Computational fluid dynamics (CFD)
software based on finite volumes. Part of
CAELinux, see Appendix A, Section 4.10.3,
and www.code-saturne.org

OpenFoam Yes Finite-element software. Limited
user-friendliness, but large range of
applications ranging from complex fluid
flows involving chemical reactions,
turbulence, and heat transfer to solid
dynamics, electromagnetics, and the
pricing of financial options. Part of
CAELinux, see www.openfoam.org.

Many other
open-source
programs

Yes Search for ‘‘finite element’’ or ‘‘finite
volume’’ at www.sourceforge.net.

ABAQUS No General FE software, particularly good in
structural mechanics applications. See
www.simulia.com.

Comsol Multiphysics No General FE software, particularly suitable
for coupled phenomena such as
fluid–structure interactions. See
www.comsol.com.

Fluent No General FE software, particularly good in
computational fluid dynamics (CFD)
applications. See www.fluent.com.

LS-DYNA No General FE software, particularly good in
structural mechanics applications. See
www2.lstc.com.

Does this mean that one should use commercial software in the field of FE
analysis? Yes – and no. Yes: for example, if your daily work involves a large range
of applications that is not covered by any particular open-source FE software, if you
need fast results, if your time for software training is limited, if you do not have
time or enough competences to assess the numerical quality of the results, and
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if you need software support. No: for example, if you find commercial software
too expensive. Looking at the prices of commercial FE software, you will find that
the complexity of FE software corresponds to the fact that you have to pay a really
substantial amount of money for these packages.

Note 4.8.1 (Open-source versus commercial FE software) Every user of FE
software has to trade off the advantages of commercial software mentioned above
against the disadvantage of paying a lot of money for this, and a general answer
to the question whether one should use open-source or commercial FE software,
thus, cannot be given.

For a beginner in FE analysis, however, who just wants to get a first impression
of FE software and its general procedures, an answer can be given as follows: try the
open-source Salome-Meca. It is based on the ISO 9001 certified FE solver Code_Aster,
and it is currently one of the best available approximations of commercial FE
software, for example, in terms of its general workflow that features a full integration
of all steps of the analysis beginning with the geometry definition and ending with
the postprocessing step as described in Section 4.7.5. If you understand and
reproduce the Salome-Meca sample session described in the next section, you will
have a fairly good idea of the way in which an FE analysis is performed using
software.

4.9
A Sample Session Using Salome-Meca

The general steps of an FE analysis have been described in Section 4.7.5: geometry
definition, mesh generation, weak problem formulation, solution, and postprocess-
ing. These steps define the general structure of a typical software-based FE analysis,
and we will go through each of these steps now in the corresponding subsections.
We will use Salome-Meca – which is available in CAELinux, see Appendix A – to
solve Problem 2 from Section 4.1.3 with Tc = 20 ◦C and Ts = 0 ◦C:

Problem 6:
Referring to the configuration in Figure 4.1b and assuming
• a constant temperature 20 ◦C at the top surface of the cube

(z = 1),
• a constant temperature 0 ◦C at the sphere surface,
• and a perfect insulation of all other surfaces of the cube,

what is the stationary temperature distribution T(x, y, z) within the cube (i.e. in
the domain [0, 1]3 \ S if S is the sphere)?
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4.9.1
Geometry Definition Step

4.9.1.1 Organization of the GUI
To start Salome-Meca in CAELinux, select CAE-Software/Salome_Meca under
the PC button of the desktop (see Appendix A for more details on CAELinux).
Choose the geometry module using the drop-down list as shown in Figure 4.9a.
The remaining steps of the FE analysis discussed in the next sections (except for the
problem definition step) will also begin with the selection of an appropriate module
from that same drop-down list. Figure 4.9a shows the general structure of the
Salome-Meca window: the left subwindow shows an object browser, which is used to
select and explore various items that are generated during the analysis procedure,
such as geometrical forms, meshes, solutions, and plots. The right subwindow is
used to visualize these items. In the geometry module, an OCC viewer is used for
visualization. Here, ‘‘OCC’’ refers to the fact that this viewer was developed using
Open CasCade, a development platform for a variety of 3D graphical applications
(www.opencascade.org).

Standard Salome-Meca will also display a third subwindow called Python Console,
which we do not need here. If you want to get the same picture as shown in
Figure 4.9a, deactivate the Python Console using the menu entry View/Windows.
Python is a general programming language, which can be used in connection with
Salome-Meca to perform the analysis in batch mode, that is, independent of the
GUI [168]. This can be effective, for example, in situations where you perform
a complex analysis several times, changing just a few parameters of the analysis
between subsequent runs. Using the GUI, you would have to do almost the same
work (except for those few parameters) again and again. Using the batch mode,
on the other hand, you do your work just one time using the GUI, and then save
your work in a Python script. Editing that script, you can then impose any desired
parameter changes and rerun the analysis without using the GUI again. Similar
batch mode facilities are provided by most FE software packages.

(a) (b)

Fig. 4.9 (a) Salome-Meca window and its module selection box. (b) Box construction
window.
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4.9.1.2 Constructing the Geometrical Primitives
In Problem 2, the geometry involves two main ingredients: the cube [0, 1]3 and a
sphere with radius 0.1 in the center of the box. The usual procedure now is to con-
struct each of these geometrical primitives one after the other, and then to put them
together as required. So let us begin with the construction of the cube, which can be
done using the menu option New Entity/Primitives/Box. (Alternatively, you
could use the appropriate symbol on Salome-Meca’s toolbars, but this is omitted here
and in the following for the sake of simplicity.) Figure 4.9b shows the box construc-
tion window that opens up when you click on New Entity/Primitives/Box. In
this window, the cube data are entered in a self-explanatory way. After confirming
the box construction window, the cube receives a name (Box_1 in this case), which
is then used to display and access that geometrical primitive in the object browser
window as it is shown in Figure 4.10a. In the right OCC viewer subwindow of
Figure 4.10a, you can see a 3D picture of Box_1. Note that if you use Salome-Meca
with its standard settings, this 3D picture will look different, that is, you will have
another background color, wireframe graphics, and so on. All this can be changed
via the menu File/Preferences or by using the context menu in the OCC viewer
(right-click of your mouse).

To construct the sphere, we can start similar to above using the menu option
New Entity/Primitives/Sphere. This activates the sphere construction window
shown in Figure 4.11a. In this window, you cannot enter the sphere center in terms
of coordinates. Rather, you have to enter the center of the sphere by reference to an
existing point object in the object browser window, which is a general principle used
in Salome-Meca. So, the right procedure is to begin with the definition of the sphere
center using New Entity/Basic/Point, which opens up the point construction
window shown in Figure 4.10b. There you can enter the point coordinates and supply
a name for that point. Calling that point SphereCenter, it will appear under that
name in the object browser window as shown in Figure 4.11b. Now you can open
the sphere construction window using New Entity/Primitives/Sphere and
define the sphere center by a mouse click on SphereCenter in the object browser

(a) (b)

Fig. 4.10 (a) Salome-Meca showing Box_1. (b) Point construction window.
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(a) (b)

Fig. 4.11 (a) Sphere construction window. (b) Salome-Meca
showing Box_1 in ‘‘wireframe’’ mode and the sphere
Sphere_1 inside the box in ‘‘shading’’ mode.

and a subsequent click on the arrow button in the sphere construction window
(Figure 4.11a). The same principle is used generally in Salome-Meca to import
geometrical information into subwindows.

After confirming the sphere construction window, the sphere appears as the new
entity Sphere_1 in the object browser. To see the box and the sphere inside the box
at the same time, you can use the context menu in the OCC viewer to display the box
in wireframe mode and the sphere in shading mode, as it is shown in Figure 4.11b.
Other options would have been to display the box in a transparent shading mode,
using the transparency option in the context menu of the OCC viewer, or to use the
clipping plane option of the OCC viewer, which allows you to look into the geometry
along an arbitrarily oriented plane. See Figure 4.13b for an example application of
a clipping plane.

4.9.1.3 Excising the Sphere
So far the box and the sphere have been constructed as separate geometrical items.
They are displayed together in Figure 4.11b, but they virtually do not ‘‘know’’
of their mutual existence. For the physical problem expressed in Problem 2, it
is, of course, important that the cube ‘‘knows’’ that there is a cold sphere in its
center. In terms of the discussion in Section 4.3.2, we can say that what we need
here is a boundary condition inside the cube that imposes 0 ◦C at the sphere
surface. To be able to impose such a boundary condition, the sphere surface
must appear as a boundary of the computational domain, and this means that the
computational domain must be what could be phrased in rough terms as ‘‘cube
minus sphere’’.

To get this kind of domain, the sphere needs to be excised from the cube, and
this is again a standard operation that is used quite generally when a finite-element
analysis is performed using software. In Salome-Meca, this is done in two steps.
First, you choose the menu option Operations/Partition, which gives the
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(a) (b)

Fig. 4.12 (a) Object partition window. (b) Subshapes selection window.

(a) (b)

Fig. 4.13 (a) Salome-Meca after the definition of Solid_1
and Solid_2. (b) Solid_1 displayed using the clipping
plane x = 0.5.

object partition window shown in Figure 4.12a. Within this window, there is an
object named Partition_1, which involves Box_1 and Sphere_1 as subobjects
(verify this using the object browser). These two objects need now to be separated
from each other as explained above, which can be done using the menu option New
Entity/Explode (a really meaningful name, is it not. . . ). This gives the subshapes
selection window in Figure 4.12b, along with two new geometrical entities Solid_1
and Solid_2 (see the object browser in Figure 4.13a). Using Salome_Meca’s OCC
viewer, you can verify that Solid_1 is what we have called cube minus sphere, while
Solid_2 is the sphere. To achieve this, you can, for example, use the OCC viewer’s
clipping plane tool mentioned above. After defining a clipping plane at x = 0.5, it
can be seen that Solid_2 indeed consists of the cube with the sphere being excised
from its center (Figure 4.13b).
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4.9.1.4 Defining the Boundaries
After this, names need to be assigned to those boundaries of the geometry
where boundary conditions are applied, which can then be used later to access
these boundaries in a simple way when the boundary conditions are defined
(Section 4.9.3). This is done using the menu option New Entity/Group/Create,
which brings up the ‘‘Create Group’’ window displayed in Figure 4.14. Using
Solid_1 as the main shape and the ‘‘select subshapes’’ button, select the top side
of the cube in the OCC viewer where a temperature of 20 ◦C is required (Problem
6). This side of the cube can then be given a name in the name field of the ‘‘Create
Group’’ window. Let us denote it as CubeTop in the following text. In the same way
(referring to Solid_2 as the main shape), a name can be assigned to the sphere
surface where a temperature of 0 ◦C is required in Problem 2. This boundary will
be denoted as SphereSurf in the following text.

4.9.2
Mesh Generation Step

The next step is mesh generation. Choose the mesh module using the drop-down
list shown in Figure 4.9a as before. As the mesh module is started, a second
subwindow opens up at the right-hand side of the Salome-Meca window on top of
the OCC viewer: the Visualization Toolkit VTK 3D viewer, which is Salome-Meca’s
default viewer for mesh visualization (Figure 4.16a). The VTK 3D viewer is based
on an open-source graphics application called Visualization Toolkit (VTK), see
http://www.vtk.org/. To construct the mesh, choose Mesh/Create Mesh, which
opens up the create mesh window shown in Figure 4.15a. Within this window,
the geometry object needs to be specified for which a mesh is to be created,
which is Partition_1 in our case. A number of algorithms can then be used to
generate the mesh using the drop-down list supplied in the create mesh window.
Within the scope of this book, we are unable to go into a detailed discussion of
the various meshing algorithms – the interested reader is referred to specialized
literature such as [163]. As a default choice we recommend the NETGEN algorithm
developed by Schöberl [169], which is a reliable 3D tetrahedral mesh generator.

Fig. 4.14 Group creation window.
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(a) (b)

Fig. 4.15 (a) Create mesh window. (b) Hypothesis construction window.

After choosing the algorithm, various parameters can be set in the hypothesis field
of the ‘‘create mesh’’ window.

A click on the hypothesis button of the ‘‘create mesh’’ window opens up the
hypothesis construction window shown in Figure 4.15b. In this window, you can limit
the maximal size of the tetrahedra within the mesh, adjust the general fineness
of the mesh, and so on. Since the computation time increases substantially with
the fineness of the mesh particularly in 3D applications (see the discussion of
computational efficiency in Section 4.6.8), these parameters should be chosen with
care. Generally, it is a good idea to start with a relatively coarse mesh and then
to increase the mesh fineness in small steps as required. For example, a finer
mesh may be necessary since a finer resolution of the result is required in your
application, or to control the computational error as described in Section 4.6.4).

Choosing ‘‘ok’’ in the create mesh window generates an entity called Mesh_1 in
Salome-Meca’s object browser (Figure 4.16a). A right mouse click on Mesh_1 brings
up the context menu shown in the figure. Choose ‘‘Compute’’ in this menu to
start the mesh computation. After mesh computation is finished, a mesh statistic is

(a) (b)

Fig. 4.16 (a) Drop-down list for mesh computation. (b) Mesh statistics.
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(a) (b)

Fig. 4.17 (a) VTK viewer showing the mesh. (b) Internal
structure of the mesh visualized using the clipping planes
z = 0.5 and x = 0.5.

displayed, as shown in Figure 4.16b, if all parameters are chosen as in Figure 4.15.
In the mesh statistics, you see, for example, that the mesh consists of a total of
8536 nodes, 41 951 tetrahedrons, and so on. This information can, for example, be
used to assess the size of the mesh and to get an idea about the computation time
and memory requirements. The mesh is displayed in Salome-Meca’s VTK viewer
(Figure 4.17a). The VTK viewer can be used for a detailed investigation of the mesh.
For example, clipping planes can be used as described above to see the internal
structure of the mesh. Figure 4.17b shows an example that has been generated
using the clipping planes z = 0.5 and x = 0.5 in the VTK viewer. The figure shows
that the NETGEN algorithm generated a uniform tetrahedral layout of the mesh as
required.

4.9.3
Problem Definition and Solution Step

After geometry definition and mesh generation, the next steps in the FE procedure
explained in Section 4.7.5 are the weak problem formulation step and the solution step.
In Salome-Meca, these two steps are performed within the Aster module, which is
selected as before using the drop-down list shown in Figure 4.9a. This module is
based on the ISO 9001 certified FE solver Code_Aster (Section 4.8). To solve Prob-
lem 2, choose the menu option Code_Aster Wizards/Linear Thermal. This
fixes the PDE that is to be solved (the stationary heat equation). The weak problem
formulation of this PDE is then done by the software, invisible for a standard
user. Experienced users may apply a number of options provided by Salome-Meca
which affect the weak problem formulation. For example, standard Salome-Meca
uses piecewise linear shape functions (Section 4.7.3), which can be replaced, for
example, by quadratic shape functions using the appropriate options in the ‘‘Create
Mesh’’ window (Section 4.9.2). The menu option Code_Aster Wizards/Linear
Thermal starts a wizard that prompts the user for all information required to set up
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(a) (b)

Fig. 4.18 (a) Imposing temperature boundary conditions in
the linear thermal analysis wizard. (b) Context menu to start
the solution engine.

the weak problem. To get the result shown in the next section, enter the following
information:

• Model: 3D
• Salome Object: Geometry
• Main Shape: Partition_1
• Thermal Conductivity: any value (see below)
• Imposed Temperatures: T = 20 for Object = CubeTop and

T = 0 for Object = SphereSurf (use the ‘‘+’’-key of the
wizard, see Figure 4.18a )

• Imposed Flux: remove everything using the ‘‘-’’-key of the
wizard

• Applied Sources: remove everything using the ‘‘-’’-key of the
wizard

Note that any value can be used here for the thermal conductivity since these
settings are based on the isotropic stationary heat equation, which can be written as


T = 0 (4.119)

since we have ∂T/∂t = 0 in the stationary case (see Equation 4.3 in Section 4.2).
The settings in the ‘‘imposed temperatures’’ option of the wizard are based on the
definition of the boundary surfaces CubeTop and SphereSurf in Section 4.9.1.4.
The ‘‘imposed flux’’ option of the wizard can be used to impose boundary condi-
tions involving a heat flow across the boundary, while the ‘‘applied sources’’ option
refers to situations where sinks or sources of heat are present, that is, where heat
is generated or removed somewhere inside the domain [97].

After the wizard is finished, an entity called Aster appears in Salome-Meca’s
object browser (Figure 4.18b). Opening this entity as shown in the figure, the
context menu on the item ‘‘LinearThermics_3DMesh_1’’ allows the user to solve
the problem via Solve Code_Aster case.
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4.9.4
Postprocessing Step

The solution procedure described in the last section generates an entity called
Post-Pro in Salome-Meca’s object browser (Figure 4.19a). To use this entity for
postprocessing, activate Salome-Meca’s Post-Pro module using the drop-down list
shown in Figure 4.9a as before. Then, opening the ‘‘Post-Pro’’ entity in the object
browser as shown in Figure 4.19a, the context menu on ‘‘0, INCONNUE’’ allows
you to display the solution in various ways. (The french word ‘‘INCONNUE’’
reminds us of the fact that Code_Aster, the software behind Salome-Meca’s Aster
module, is a French development, see Section 4.8.) Figure 4.19b shows how the
plots (an isosurface plot in this case) are displayed in Salome-Meca’s VTK 3D viewer.
A number of options can be used to affect the way in which the plots are displayed,
such as arbitrary 3D rotations using the mouse.

Figure 4.20a and b shows the solution displayed using cut plane plots, that is,
plots made up of planes inside the domain, which are colored corresponding to
the values of the unknown. Although Figures 4.20a and b show screenshots in
black and white, you can see that the darkest colors – which correspond to the
lowest temperatures – are concentrated around the cold sphere inside the cube,
compare Figure 4.1b and the description of Problem 6 above. The various kinds of
plots offered in the postprocessing context menu (Figure 4.19a) can be combined
arbitrarily as required. For example, Figure 4.20c shows a combination of the
isosurface plot from Figure 4.19b with a cut plane plot. Depending on the PDE that
is solved, Salome-Meca’s postprocessing module also provides a number of other
classical plots that can be used to visualize PDE solutions, such as arrow plots and
streamline plots.

Since we are restricted to black and white plots here, the solution of Problem 6 is
best discussed using isosurface plots. Note that an isosurface plot shows a surface
made up of points where some quantity of interest (temperature in this case) attains
some given, fixed value. Figure 4.21 shows a number of isosurface plots where the

(a) (b)

Fig. 4.19 (a) Postprocessing context menu. (b) VTK viewer showing isosurfaces.
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(a) (b) (c)

Fig. 4.20 (a) and (b) Solution of Problem 6 displayed using
cut planes. (c) Combination of a cut plane with isosurfaces.

temperature of the isosurfaces has been varied in the various subplots, such that
we can virtually ‘‘move through the solution’’ along these subplots. Figure 4.21a
shows three isosurfaces corresponding to 20, 15, and 10 ◦C (from top to bottom).
Since 20 ◦C was prescribed on the top surface of the cube in Problem 6, the 20 ◦C
isosurface corresponds exactly to this top surface of the cube, and hence this is a flat
surface as it can be seen in the figure. The 10 ◦C isosurface, on the other hand, is an
approximately spherical surface, which surrounds the 0 ◦C sphere in Figure 4.1b
like a wrapping. This suggests that the isosurfaces referring to temperatures below
10 ◦C constitute a sequence of nested (approximate) spheres, that is, the radius
of these isosurfaces approaches the radius of the 0 ◦C sphere in Figure 4.1b as
the temperature approaches 0 ◦C. You can easily verify this using Salome-Meca’s
Post-Pro module as described above. Finally, the isosurface corresponding to 15 ◦C
in Figure 4.21a is located inside the cube somewhere between the 10 and 20 ◦C
isosurfaces, and its shape can also be described as lying somewhere between the
other two isosurfaces. Observing the shape of this intermediate isosurface through
the plots in Figure 4.21a–e, you can see how its shape gradually deforms toward
a spherical form. Similar to the cut planes discussed above, plots of this kind are
very well suited to understand the results of 3D FE computations.

4.10
A Look Beyond the Heat Equation

As was explained above, differential equations arise naturally in science and
engineering in many cases where the processes under consideration involve rates
of changes of the quantities of interest (Note 3.1.1). Not surprisingly, hence, PDEs
are applied in a great number of ways in science and engineering. To give you an
idea of PDEs ‘‘beyond the heat equation’’, a few classical applications of PDEs are
treated in this section: diffusion and convection processes (Section 4.10.1), porous
media flow (Section 4.10.2), computational fluid dynamics (CFD) (Section 4.10.3),
and structural mechanics (Section 4.10.4). Among these applications, CFD is
perhaps the ‘‘most classical’’ application of PDEs in the sense that it involves
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(a) (b)

(c) (d)

(e) (f)
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Fig. 4.21 Solution of Problem 6: (a) Iso-
planes corresponding to 20, 15, and 10 ◦C
(from top to bottom). (b)–(e) Gradual
decrease of the isoplane temperatures (top
isoplane temperatures in (b)–(e) are 16, 15,

14, and 13 ◦C, respectively). (f) A look into
(d) from the bottom, showing the spherical
isosurface that can be seen in (a) and (b)
inside the pear-shaped isosurface.

many applications that have gained attention in the public, such as meteorological
flow simulations on the earth’s surface, or the simulation of air flow around cars,
airplanes and space shuttles. You should note, however, that there is also a great
number of PDE applications in fields where you probably would not expect it, which
includes applications in economics such as the famous Black–Scholes equation that
is used as an option pricing model, and which can be transformed into the form
of the heat equation [170, 171]. Another aspect that cannot be treated here in
sufficient detail is the coupling of differential equations, that is, the coupling of
PDEs with PDEs, PDEs with ODEs, or differential equations with other types of
mathematical equations. This is an important issue for the simple reason that
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real systems usually involve a coupling of several phenomena. An example is
fluid–structure interaction [167], that is, the coupling of the PDEs of CFD with the
PDEs of structural mechanics (see sections 4.10.3 and 4.10.4, and the example in
[5]) or the coupling of the PDEs describing porous media flow with the ‘‘free flow’’
described by the Navier–Stokes equation (see Sections 4.10.2 and 4.10.3 and the
examples in [172, 173]).

4.10.1
Diffusion and Convection

In a sense, a look beyond the heat equation is a look at the heat equation: A number
of different phenomena can be treated by this equation, which includes general
diffusion phenomena as well as porous media flow models (Section 4.10.2). To
derive the general diffusion equation, let us write Fourier’s law (Equation 4.22), in
a different notation as follows:

q(x, t) = −D(x) · ∇N(x, t) (4.120)

This equation is known as Fick’s first law [170], where q ∈ R
3 is the diffusion flux,

for example, in (g m−2 s−1) or (mol m−2 s−1), D ∈ R
3x3 is the diffusion coefficient

matrix, e.g. in (m2 s−1), and N is the concentration of a substance, e.g. in (g m−3)
or (mol m−3).

Fick’s first law pertains e.g. to a situation where there is a tank filled with a
fluid in which some substance is dissolved. Equation 4.120 says that the diffusion
flux of the substance is proportional to the gradients of its concentration, and
that this flux will always be directed toward regions of low concentration. Note
that Fourier’s law describes the diffusion of heat in a similar way. In Section 4.2,
the heat equation was derived from Fourier’s law by an application of the energy
conservation principle. Since Fick’s first law refers to the diffusion of the mass
of a substance rather than to the diffusion of energy, mass conservation must be
applied instead of energy conservation here. This can be done in a similar way as
was done in Section 4.2.2, that is, by balancing the mass flows in a small control
volume, which leads to the diffusion equation [174]

∂N(x, t)

∂t
= ∇ (D(x) · ∇N(x, t)

)
(4.121)

Except for different notation and interpretation, this equation is identical with
the heat equation 4.23. It can be solved, for example, using Salome-Meca and the
procedure described in Section 4.9.

Equation 4.121 holds in situations where the fluid is at rest. In many practical
cases, however, the fluid will move during the diffusion process, which means
that the concentration of the fluid changes due to the combined effect of diffusion
and convection. Examples include fermentation processes, such as the wine
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fermentation process discussed in Section 3.10.2. As it was discussed there,
temperature control is an important issue in fermentation processes. Usually, this
is achieved by cooling down certain parts inside the tank, and a standard question
is which particular configuration of these cooling parts should be used in order
to achieve a desired temperature distribution at minimal costs. To answer this
question, we need to compute the temperature distribution that results from a
given configuration of those cooling parts. To do this, it would not be sufficient if
we would just apply the heat equation 4.23, since there are substantial movements
of the fluid inside the fermenter, which are caused by density gradients as well
as by the natural evolution of carbon dioxide bubbles during the fermentation
process [175].

A convection flow field v(x) = (vx(x), vy(x), vz(x)) (m s−1) generates a convective
flux J(x) (e.g. in (g m−2 s−1)) of the substance, which can be written as [139]

J(x, t) = v(x)N(x, t) (4.122)

Combining Equations 4.120 and 4.122, the overall flux of the substance becomes

q(x, t) + J(x, t) = −D(x) · ∇N(x, t) + v(x)N(x, t) (4.123)

Applying mass balance to this flux as before, the convection–diffusion equation is
obtained:

∂N(x, t)

∂t
= ∇ (D(x) · ∇N(x, t) − v(x)N(x, t)

)
(4.124)

This equation can be further generalized to include source terms that can be
used to describe situations where the substance is supplied or destroyed in certain
parts of the tank [139]. To compute the temperature distribution in a fermenter for
a given convective flow field v(x), we would use this equation in the form

∂T(x, t)

∂t
= 1

Cρ
∇ (K(x) · ∇T(x, t) − v(x)T(x, t)

)
(4.125)

that is, we would just reinterpret Equation 4.124 in terms of the heat equation 4.23.
To get acquainted with the convection–diffusion equation, you can try R’s

SoPhy package, a package contributed by Schlather [176]. SoPhy solves the
one-dimensional convection–diffusion equation:

∂N(z, t)

∂t
= D

∂2N(z, t)

∂z2
− v

∂N(z, t)

∂z
(4.126)

Here, z corresponds to the vertical direction, v is the convective flow velocity in the
z direction, and N is, for example, the concentration of a pollutant that is dissolved
in water. See [177, 178] for the application of SoPhy to pollutant transport in soils.
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4.10.2
Flow in Porous Media

A great number of systems in nature and technology involve porous media. For
example, the soil below our feet is a good example of a porous medium: it consists
of solid material such as sand and stones as well as of ‘‘empty space’’ (pores)
between the solid material. Other examples of porous media are: biological tissues
such as bones, fleece materials such as diapers or other hygienic products, all kinds
of textile materials, cements, foams, ceramics, and so on. Panta rhei (everything
flows) is an insight that is usually attributed to the Greek philosopher Heraclitus
and applied to porous media it means that the pore space within these materials is
not just a useless ‘‘empty space’’. Rather, it serves as the flow domain of one or even
several fluids in many cases, and indeed many porous media related questions and
problems that are investigated in science and engineering refer to flows through
porous media. The first systematic investigation of fluid flow through porous media
has been performed by the French scientist and engineer Henry Darcy when he
was involved in the construction and optimization of the fountains of the city of
Dijon in France [179]. His experiments led him to what is called Darcy’s law today,
which can be written in modern notation as [69, 180, 181]

q(x, t) = − 1

μ
K(x, t) · ∇p(x, t) (4.127)

where q ∈ R
3 is the Darcy velocity (m s−1), μ is the (dynamic) viscosity (Pa·s),

K ∈ R
3x3 is the permeability matrix (m2), and p is the (fluid) pressure (Pa).

Here, the viscosity μ basically expresses the internal friction of a fluid or its resis-
tance to deformations as a result of stresses such as shear or extensional stresses
[180, 182]. Low-viscosity values mean that a liquid is ‘‘thin’’ and flows easily (such
as water for which μ = 10−3 Pa·s), while high viscosity values refer to ‘‘thick’’
fluids such as corn syrup (μ > 1 Pa·s)that exhibit a much larger resistance to flow.
Obviously, this is a really important quantity in the entire field of computational
fluid dynamics (e.g. it will appear in Section 4.10.3 as a part of the Navier–Stokes
equations).

The Darcy velocity q is also known as seepage velocity, filtration velocity, superficial
velocity, or volumetric flux density in the literature. To understand it, imagine a
one-dimensional flow experiment comprising of a water column on top of a porous
material. As the water flows through the porous medium e.g. driven by gravity,
the top surface of the water column will gradually come down toward the porous
medium, and it is exactly this superficial velocity of the water column that is described
by the Darcy velocity. This macroscopic velocity must be distinguished from the
microscopic, intrinsic average velocity of the fluid within the pores of the porous
medium. If we use v to denote the latter velocity, the relation between v and q can
be expressed as

q(x) = φ(x)v(x) (4.128)
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where φ is the porosity of the porous medium, which expresses the fraction of the
pore space within the porous medium in percent. All these quantities are usually
defined throughout the porous medium. For example, the Darcy velocity is defined
even outside the pore spaces of the medium, which is achieved using an averaging
over so-called representative elementary volumes [69, 180]. Darcy formulated Equation
4.127 just as a phenomenological model that fits the data, but it has been shown
that this equation can be interpreted as expressing conservation of momentum
[183]. As in the case of the diffusion equation (Section 4.10.1), a second equation
expressing mass conservation is needed. Again, this can be done in a similar way
as in Section 4.2.2, that is, by balancing the mass flows in a small control volume,
which leads to

φ
∂ρ

∂t
+ ∇ · (ρq

) = 0 (4.129)

where ρ (e.g. in (g m−3)) is the fluid density. Assuming an incompressible fluid,
we have ∂ρ/∂t = 0, and hence Equations 4.127 and 4.129 imply

∇ (K(x) · ∇p(x)
) = 0 (4.130)

if we assume stationary conditions and a constant viscosity. Again, we have a perfect
analogy with the stationary heat equation: Darcy’s law, Equation 4.127, corresponds
to Fourier’s law, Equations 4.22, and 4.130 corresponds to the stationary heat
equation (Equation 4.23 with ∂T/∂t = 0).

The permeability matrix K in Equation 4.130 expresses the ease of flow through
the porous medium. Basically, relatively small pressure gradients will suffice to
initiate a flow with some given velocity in the case of high permeability values, while
larger pressure gradients will be needed in the case of low permeability values. As
a matrix, K can be interpreted similar to the thermal conductivity matrix that was
discussed in Section 4.2.5. Again, Equation 4.130 can be solved, for example, using
Salome-Meca and the procedure described in Section 4.9.

4.10.2.1 Impregnation Processes
In [184–186], Equation 4.130 has been used to optimize the impregnation of
mica tape-based insulations. These insulations are used to insulate steel bars inside
large turbines that are used for high-voltage electrical power generation. They are
manufactured in two steps. In a first step, a mica tape is wound in several layers
around the steel bar. Figure 4.22a shows a schematic cross section through such
a mica tape winding. As a result of the winding process, the mica tapes – which
correspond to the black lines in the figure – form staircase-like structures. In the
second step of the manufacturing procedure, the mica tape winding is impregnated
with an epoxy resin. During impregnation, the main resin flow is through the pore
spaces between the mica tapes (see the arrows in Figure 4.22a). Now the problem
is that the permeability of the mica tapes as well as the permeability of the winding
as a whole is extremely small, which means that the impregnation is proceeding
extremely slow. In the worst case, some regions of the winding may remain
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Fig. 4.22 (a) Cross section through mica tape insulation
with periodicity cell (gray rectangle). (b) Boundary conditions
in the periodicity cell.

unimpregnated, which can cause expensive electrical failures during the operation
of the turbines. In [184–186], simulations of the impregnation process based on
Equation 4.130 have been used to optimize the impregnation process in a way that
helps to avoid this kind of impregnation failures.

To simulate the fluid flow in the winding using Equation 4.130, boundary
conditions must be applied at the boundaries of the winding. At the top surface
of the winding (where the epoxy resin enters the winding) and at its bottom
surface (where the winding is in contact with the steel bar) the pressures can be
prescribed that are driving the fluid flow, for example, a constant p1 at the top
of the winding and p2 < p1 at its bottom (Figure 4.22b). Since the winding has
a periodic structure, it suffices to do the flow computation in a periodicity cell
(Figure 4.22a). This periodicity cell represents the winding in the sense that the
whole winding can be generated by successively attaching copies of the periodicity
cell. When the flow computation is done in the periodicity cell, so-called periodic
boundary conditions are applied at its left and right ends, that is, in the direction of
the periodicity of the structure. Mathematically, these periodic boundary conditions
basically identify the corresponding periodic boundaries, in this case by equating
the pressure values at the left end of the periodicity cell with the corresponding
values at its right end. As the example shows, the size of the flow domain and,
hence, the resulting computational effort can be reduced substantially by the
application of periodic boundary conditions. Before setting up a flow computation,
one should thus always analyze the periodicity of the system under investigation,
and apply periodic boundary conditions if possible. A great number of systems in
science and engineering are periodic similar to the example.

Many other industrial processes involve the impregnation of a porous material
with a fluid. An example is the resin transfer molding (RTM) process, which is
used to produce fiber-reinforced plastic materials that are used for all kinds of
high-technology applications such as aerospace structures. In this process, a textile
preform is placed into a closed mold which is then impregnated with low-viscosity
(easily flowing) thermosetting polymers. Similar to above, computer simulations
have been used to optimize this process in order to avoid problems such as
incomplete impregnation. Again, Equation 4.130 can be used in many cases [91,
187–189].
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4.10.2.2 Two-phase Flow
The above porous media flow model can be used only for one-phase flow, that
is, in situations where there is just a single fluid in the pores of the porous
medium. Of course, there are many situations which involve the flow of several
fluids through a porous medium at the same time. An important application that
has substantially driven the development of multiphase porous media flow models
in the past is oil exploration [190], which involves the simultaneous flow of oil,
water, and gases through porous soil and rock structures. As an example, let us
consider the two-phase flow of water and air in a porous medium (e.g. in a soil).
One of the simplest assumptions that one can make here is that the air pressure is
approximately constant, which leads to the Richard’s equation

∂�(ψ(x, t))

∂t
− ∇ · (K(ψ(x, t))∇(ψ(x, t) + z)

) = 0 (4.131)

where � is the volumetric water content (1), ψ = p/(ρg) is the pressure head (m),
p is the pressure in the water phase (Pa), ρ is the water phase density (kg m−3),
g ≈ 9.81 is the gravitational acceleration (m s−2), and K ∈ R

3x3 is the hydraulic
conductivity (m s−1).

Basically, this equation is derived similar to Equation 4.130, using the above
assumptions and a separate application of momentum and mass conservation to
each of the fluid phases [191, 192]. Note that ψ is just the usual pressure p rescaled
in a way that is frequently applied by people who are using Richard’s equation
(such as soil scientists). This rescaling allows ψ to be interpreted in terms of water
columns [191].

4.10.2.3 Water Retention and Relative Permeability
�(ψ) and K(ψ) are empirical relations that express material properties of the flow
domain. �(ψ) is what soil scientists call the water retention curve. It expresses the
external pressure that needs to be applied to a soil in order to obtain some given
value of volumetric moisture content, which is an important soil characteristic
particularly with respect to the water supply to plants or with respect to soil
aggregate stability.

Figure 4.23 shows example water retention curves for a sand and a sintered
clayey material. As the figure shows, increasingly high pressures need to be applied
in order to achieve small moisture values. Also, it can be seen that higher pressures
are required to achieve small moisture values in the clayey material. Basically, this
expresses the simple fact that sand soils are more coarse grained compared to
clayey materials, which means that the capillary forces that are retaining the water
in a porous material are smaller in a sand soil [194]. Figure 4.23 has been drawn
using the code Mualem.r in the book software (Appendix A), which is based on the
Mualem/van Genuchten model [194]

�(ψ) = �r + �s − �r(
1 + (α|ψ |n)

)1−1/n (4.132)
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Fig. 4.23 Water retention curves for a sand (solid line,
�r = 0.022, �s = 0.399, α = 0.93, n = 8.567) and a sin-
tered clayey material (dashed line, �r = 0, �s = 0.295,
α = 0.605, n = 2.27). Parameters from [193], figure drawn
using Mualem.r.

where �r is the residual water content (1), �s is the saturated water content (1),
α is an empirical parameter (m−1), and n > 1 is an empirical parameter related to
the pore-size distribution (1). The residual water content �r is the volumetric water
content that cannot be removed from the soil even if very high external pressure is
applied, whereas the saturated water content �s is the volumetric water content in
the case where the soil is fully saturated (i.e. no air is present in the pore space).
α is related to the inverse of the air entry suction, which is the smallest external
pressure that must be applied to remove water from a fully saturated soil.

The empirical relation K(ψ) in Equation 4.131 is related with the notion of relative
permeability. In multiphase flow situations, two things must be distinguished:

• K1: the permeability of a porous medium with respect to a
fluid that entirely fills the pores of the porous medium (fully
saturated case);

• K2: the permeability of a porous medium with respect to a
fluid in the presence of one or several other fluids
(unsaturated case).

Usually, K2 will be smaller than K1 since less pore space is available for the fluid
under consideration in the unsaturated case. The corresponding reduction of the
saturated permeability is expressed as the relative permeability, K2/K1. Applied
to Equation 4.131, this means that the permeability K will depend on the water
saturation, or, via Equation 4.132, on the pressure head, ψ . This dependence can
again be described using appropriate empirical relations such as the Corey equation
[183, 190].
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Note that Richard’s equation 4.131 is a nonlinear PDE since the unknown ψ

appears in the general nonlinear functions �(ψ) and K(ψ), see the discussion of
nonlinearity in Section 4.3.1.3. Appropriate numerical methods thus need to be
applied to linearize Equation 4.131 [139].

4.10.2.4 Asparagus Drip Irrigation
Figure 4.24 shows an example application of Richards equation, which was com-
puted using the ‘‘earth science module’’ of the commercial FE software Comsol
Multiphysics (since this model is currently unavailable in CAELinux). Asparagus is
cultivated in ridges having the shape that is indicated in Figure 4.24a. To control
the moisture levels within these ridges, drip irrigation through water pipes is used
in some cases. Figure 4.24a shows some possible locations of these water pipes
below the surface level. The pipes release water into the soil through special drip
generating devices that generate a sequence of water drops at the desired rate (e.g.
there may be one of these drip generators per 20 cm pipe length). Now the question
is where the exact location of the pipes should be and how much water should be
released through the drip generators so as to achieve an optimum distribution of
soil moisture within the soil at minimal costs. To solve this optimization problem, a
mathematical model based on Richard’s equation and the Mualem/van Genuchten
model, Equations 4.131 and 4.132, has been developed in [195]. Figure 4.24b
shows isosurfaces of the volumetric soil moisture content around one of the drip
generators in a water pipe. The same figure is also shown on the title page of
this book. Referring to the colors on the title page, it can be seen that the soil
moisture is highest (red colors) close to the water pipe, while it decreases gradually

Air

Soil

(a) (b)

Fig. 4.24 (a) Example location of water pipes under an
asparagus ridge. (b) Isosurfaces of the volumetric moisture
content in an asparagus ridge (arrow indicates the water
pipe).
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with increasing distance toward the pipe (the dark blue color indicates the lowest
moisture value).

4.10.2.5 Multiphase Flow and Poroelasticity
Richard’s equation can be generalized in a number of ways. First, we can drop
the assumption that the pressure in one of the fluid phases is constant. If we still
consider two-phase flow, this leads to two equations similar to Equation 4.131 for
each of the fluid phases or – in the case of more than two fluid phases – to as many
equations of this type as there are fluid phases [183, 196]. Using the mechanics of
mixtures approach described in [183, 197], this can be further extended to cases
where one of the phases is a solid. An approach of this kind has been used, for
example, in [5] to describe the wet pressing of paper machine felts, which involves
two fluid phases (water and air) and the felt itself as a solid phase. See [198] for
a number of other approaches to describe poroelasticity, that is, the deformation
of a porous material, and in particular the coupling of such a deformation with
the fluid flow inside the porous medium, which is required in a great number
of applications. Finally, we remark that Richard’s equation can also be applied to
situations where the flow domain consists of layered materials that are saturated
in some parts and unsaturated in other parts of the flow domain, such as technical
textiles, diapers, and other hygienic materials [199].

4.10.3
Computational Fluid Dynamics (CFD)

CFD involves all kinds of problems where mathematical models are used to describe
fluid flow. As was already mentioned above, CFD is perhaps the ‘‘most classical’’
application of PDEs in science and technology in the sense that it involves many
applications that have gained attention in the public, such as meteorological flow
simulations on the earth’s surface, the simulation of air flow around cars, airplanes
or space shuttles. Its special importance is underlined by the fact that an abundant
number of systems in science and technology involve fluid flow (we could quote
Heraclitus panta rhei here again, similar to Section 4.10.2). Of course, the problems
involving flow in porous media that were treated in Section 4.10.2 are already a
part of CFD in its general sense.

4.10.3.1 Navier–Stokes Equations
In a narrower sense, people often use ‘‘CFD’’ as a synonym for applications
of the Navier–Stokes equations and its generalizations. In the simplest case (in-
compressible, Newtonian fluid) these equations can be written as [182, 200]

ρ
Dv
Dt

= −∇p + μ∇2v + f (4.133)

∇ · v = 0 (4.134)
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where ρ is the density (kg m−3), v = (vx, vy, vz) is the velocity (m s−1), p is the
pressure (Pa), μ is the (dynamic) viscosity (Pa·s), and f = (fx , fy, fz) is a body force
(N m−3).

As before, ∂ρ/∂t = 0 is due to the incompressibility assumption, and this is
why ρ does not appear in the time derivative of Equation 4.133. If compressible
fluids such as gases are considered, time derivatives of ρ will appear in Equations
4.133 and 4.134 similar to Equation 4.129. Gas flow is often described based
on the Euler equations, which assume inviscid flow, that is, μ = 0 [182]. The
‘‘Newtonian fluid’’ assumption pertains to the fluids stress–strain behavior. In
short, Newtonian fluids flow ‘‘like water’’ in the sense that, like water, they
exhibit a linear stress–strain relationship with the dynamic viscosity as constant
of proportionality [182]. Non-Newtonian fluids, on the other hand, do not have
a well-defined viscosity, that is, the viscosity changes depending on the shear
stress that is applied. Examples include blood, toothpaste, mustard, mud, paints,
polymers, and so on.

D/Dt in Equation 4.133 is the material derivative (which is also called the convective
or substantive derivative). It expresses the time derivative taken with respect to a
coordinate system that is moving along the velocity field v [139]. The body force
vector f typically expresses gravitation, but it may also express other forces that are
acting on the fluid such as electromagnetic forces. As before, these equations can
be interpreted in terms of conservation principles: Equation 4.133 as conservation
of momentum and Equation 4.134 as conservation of mass, which can be easily
shown based on the control volume approach used in Section 4.2.2.

A major advantage of the material derivative notation is that it can be seen
very easily here that Equation 4.133, indeed, expresses conservation of momentum
(note that this is much less obvious in the case of Darcy’s law, Equation 4.127): The
left-hand side of this equation basically is the time derivative of momentum, that
is, of ρv since everything is expressed on a per-volume basis in the Navier–Stokes
equations. You may imagine that all quantities refer to a small fluid volume,
that is, to a control volume as was discussed in Section 4.2.2. Now we know from
Newton’s second law that the rate of change of momentum of a body is proportional
to the resultant force acting on that body. Exactly this is expressed by Equation
4.133, since its right-hand side summarizes all the forces that are acting on the
control volume, which are forces exerted by pressure gradients and viscous and
body forces based on the assumptions made above. Equation 4.133, thus, can be
thought of as expressing Newton’s second law for a small control volume in a
fluid.

In a standard coordinate system, the material derivative can be written as

Dv
Dt

= ∂v
∂t

+ (v · ∇) v (4.135)

which shows that Equation 4.133 again is a nonlinear PDE in the sense discussed in
Section 4.3.1.3, since derivatives of the unknown v are multiplied by v itself. Thus,
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again, specific numerical methods need to be applied to solve the Navier–Stokes
equations based on an appropriate linearization [201–203].

The incompressible Navier–Stokes equations 4.133 and 4.134 can be generalized
in a number of ways. As was mentioned above, the incompressibility assumption
can be dropped, for example, when one is concerned with gas flow. Other important
generalizations include non-Newtonian flow, the consideration of temperature fluc-
tuations and its interactions with the flow (e.g. via density variations in fermentation
processes, see the above discussion of fermentation), the modeling of turbulence
phenomena, and so on. Turbulence models are of particular importance since tur-
bulent flows are rather the rule than the exception in the applications. Equations
4.133 and 4.134 assume laminar flow conditions, which correspond to what may be
described as a ‘‘smooth’’ flow pattern, in contrast to turbulent flow regimes that are
characterized by chaotic, stochastic changes of state variables such as fluid velocity
and pressure. The open-source CFD software Code-Saturne (Section 4.10.3.3 and
Appendix A) includes a number of turbulence models such as the Reynolds-averaged
Navier–Stokes equations which are also known as the RANS equations [204].

4.10.3.2 Backward Facing Step Problem
We will use Code-Saturne now to solve a standard problem of fluid mechanics: the
backward facing step problem [201]. Referring to the geometry shown in Figure 4.25a,
the backward facing step problem is characterized by the following boundary
conditions:

• 1: inflow boundary, constant inflow velocity v = (1, 0, 0);
• 2,3,4,6: walls, no-slip condition;
• 5: outflow boundary, pressure condition p = 0;
• top and bottom surface: symmetry condition.

(a) (b)

5
4

6

3

2

1

z

x
x

y

Fig. 4.25 (a) Backward facing step geometry with enumer-
ated boundaries. (b) Solution of the backward facing step
problem obtained with Code-Saturne: combination of cut
planes (absolute value of the velocity) with streamlines.
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The no-slip boundary conditions at the boundaries 2,3,4,6 forbid any flow through
these boundaries similar to the ‘‘no-flow condition’’ discussed in Section 4.3.2.
Additionally, they impose zero flow velocity relative to the boundary immediately
adjacent to the boundary, which expresses the fact that the flow velocity of
viscous fluids such as water will always be almost zero close to a wall [182].
The symmetry boundary conditions at the top and bottom surfaces basically mean
that a geometry is assumed here that extends infinitely into the positive and
negative z directions (similar conditions have been considered in Section 4.3.3).
The symmetry conditions forbid any flow through these boundaries similar to the
no-slip condition, but they do not impose a zero flow velocity close to the boundaries.
The fluid can slip freely along symmetry boundaries, and this is why the symmetry
boundary condition is also known as the slip boundary condition. Owing to the
symmetry conditions, everything will be constant along the z direction, that is,
there will be no changes, for example, in the fluid flow velocity as we move into the
positive or negative z directions. This means that this problem is a 2D problem in
the sense explained in Section 4.3.3. To demonstrate Code-Saturne’s 3D facilities,
it will, nevertheless, be solved in 3D.

4.10.3.3 Solution Using Code-Saturne
Let us now see how the backward facing step problem can be solved using
Code-Saturne. Code-Saturne is open-source software that is a part of the CAELinux
distribution (Appendix A). Like Code_Aster, it has been developed by EDF, a French
electricity generation and distribution company. On the basis of the finite volume
method, it is able to treat 3D compressible and incompressible flow problems with
and without heat transfer and turbulence [204]. It can be run on parallel computer
architectures, which is an important benefit since CFD problems can be very
demanding in terms of computation time and memory requirements. See [204]
and www.code-saturne.org for more details.

To solve the backward facing step problem described above, the same steps
will be applied that have already been used in Section 4.9: geometry definition,
mesh generation, problem definition, solution, and postprocessing. Only those
steps of the solution procedure are addressed here that differ substantially from
the procedure in Section 4.9. The geometry definition step and mesh generation
step are skipped here since this can be done very similar to the corresponding
steps in Sections 4.9.1 and 4.9.2. After mesh generation is finished, we have to
leave Salome-Meca since the problem definition and solution steps will be done
in the separate Code-Saturne GUI. As a last step in Salome-Meca, the mesh must
be exported in a .med file. You will find an appropriate mesh corresponding to
Figure 4.25a in the file flowstep.med in the book software (Appendix A).

The problem definition step and the solution step will now be performed within the
Code-Saturne GUI. This GUI should be started using the CFD-Wizard, which can
be accessed if you select ‘‘CAE-software/Code-Saturne/CFD-Wizard’’ under the PC
button in CAELinux. Figure 4.26a shows appropriate settings within this wizard.
After confirming the wizard, the Code-Saturne GUI will appear (Figure 4.26b).
Within this GUI, select the ‘‘open a new case’’ symbol (directly below the ‘‘file’’
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(a) (b)

Fig. 4.26 (a) CFD-wizard in CAELinux. (b) Code-Saturne GUI.

menu), which automatically selects the appropriate data that have been generated
by the CFD-wizard based on the mesh in flowstep.med. After this, you just have
to follow the steps listed in the left, vertical subwindow of the Code-Saturne GUI.
The following must be done:

• Calculation environment/solution domains: under ‘‘stand alone
running’’, choose Code-Saturne preprocessor batch running.

• Thermophysical models/calculation features: choose ‘‘steady
flow’’.

• Physical properties/fluid properties: set the density to 1000
(kg m−3), the viscosity to 10−3 (Pa s), and the specific heat to
4800 (J kg−1 K−1) (which means that we will simulate water
flow).

• Boundary conditions/definition of boundary regions: select
‘‘Import groups and references from preprocessor listing’’,
then choose file listenv.pre.

You will then see a list with boundary regions wall_1, wall_2, wall_3, and
wall_4 which correspond to the boundaries in Figure 4.25a as follows:

• wall_1: inflow boundary, boundary 1 in Figure 4.25a;
• wall_2: outflow boundary, boundary 5 in Figure 4.25a;
• wall_3: symmetry boundaries, top and bottom surfaces of

the geometry in Figure 4.26a;
• wall_4: no-slip boundaries, boundaries 2,3,4,6 in

Figure 4.25a.
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After selecting the appropriate ‘‘Nature’’ for boundaries wall_1–wall_3, go on
as follows:

• Boundary conditions/dynamic variables b.c.: select wall_1 and
then set U = 1(m s−1) and the hydraulic diameter for the
turbulence model to 0.1 m (see [204] for details).

• Calculation control/steady management: set the iterations
number to 20.

• Calculation control/output control: set format to MED_file.
• Calculation management/prepare batch calculation: select

batch script file lance; then choose /tmp as the prefix of the
temporary directory in the advanced options; choose
‘‘file/save’’ in the Code-Saturne’s main menu, and save the
Salome GUI case file under the name flow1.

• Press the ‘‘Run Batch Script’’ button to start the computation.

You will find the results in the CAELinux directory /tmp/FLOW1/CASE1/RESU.
Among the results you will, for example, find a text file beginning with listing...
which contains details about the solution process. The result will be stored in a
.med file.

4.10.3.4 Postprocessing Using Salome-Meca
After this, the postprocessing step is performed within Salome-Meca again. First,
choose the Post-Pro module described in Section 4.9.4. Then you can import the
.med file that was generated by Code-Saturne. If you do not want to do the above
computation yourself, you can also use the file result.med in the book software
at this point, which contains the result of a Code-Saturne computation as described
above. The generation of graphical plots from the data then goes along the same
lines as described in Section 4.9.4.

Figure 4.25b shows the solution displayed using a combination of a cut plane plot
with a streamline plot. One can see here, for example, that the darkest color of the
cut planes – which corresponds to the smallest velocity – is located immediately
behind the step, that is, exactly where physical intuition would tell us that it should
be. The cut planes also show that the velocity distribution is indeed two-dimensional
(see the above discussion), since it can be seen that the colors remain unchanged as
we move into the positive or negative z directions. Using the procedure described
above, you may look at this picture in full colors on your computer screen if you
want to see the velocity distribution in more detail. The streamline plot within
Figure 4.25 (b) shows the recirculation region just downstream of the step, which
is caused by the sudden widening of the flow domain at the step.

The vector plot in Figure 4.27a shows this recirculation region in some more
detail. It shows the exact flow directions at each particular point. Note that the
length of the velocity vectors in Figure 4.27a is proportional to the absolute value of
the velocity. Finally, Figure 4.27b shows an isosurface plot of the absolute value of the
velocity, similar to the isosurface plots discussed in Section 4.9.4. The ‘‘tape-like’’



302 4 Mechanistic Models II: PDEs

(a) (b)

Fig. 4.27 Solution of the backward facing step problem dis-
played using (a) a vector plot of the velocity and (b) an
isosurface plot of the absolute value of the velocity.

character of these isosurface (i.e. no bending in the z direction) confirms again that
we have solved a two-dimensional problem. In this case, the isosurface plot helps
us, for example, to distinguish between regions of high velocity (labeled ‘‘1’’ in the
plot) and regions of low velocity (labeled ‘‘2’’ in the plot). One can also see the effect
of the no-slip boundary conditions in this plot: for example, the isosurfaces ending
on boundary 6 (Figure 4.25a) are bent against the flow direction, which means
that the flow velocity decreases close to the boundary, as is required by the no-slip
boundary condition.

4.10.3.5 Coupled Problems
Many CFD models are coupled with mathematical models from other fields.
A problem of this kind has already been mentioned in Section 4.10.2.5: the wet
pressing of paper machine felts, where the porous media flow equations are coupled
with equations describing the mechanical deformation of the felt. Problems of this
kind are usually classified as fluid–structure interaction problems.

There is also a great number of problems where the Navier–Stokes equations are
coupled with the porous media flow equations. An example are filtration processes,
where the flow domain can usually be divided into two parts:

• a porous flow domain, where the fluid flows inside the
so-called (porous) filter cake that is made up of the solid
particles that are deposited at the filtering device and

• a free flow domain, where the fluid flows ‘‘freely’’ outside the
filter cake.

In [173, 205], such a coupled problem is solved in order the optimize candle
filters that are used, for example, for beer filtration.

Another example is the industrial cleaning of bottles. In this process, a fluid is
injected into a bottle at high velocity (Figure 4.28). The fluid contains cleaning
agents that are intended to remove any bacteria from the inside surface of the
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Fig. 4.28 Industrial cleaning of bottles (© 2008 KHS AG, Bad Kreuznach, Germany).

bottle. Owing to the high speed of this process, it is a difficult task for the engineers
to ensure an effective cleaning of the entire internal surface of the bottles. Again,
computer simulations based on appropriate mathematical models are used to
optimize this process [206]. In this case, an appropriate generalization of the
Navier–Stokes equations that includes a turbulence model (Section 4.10.3.1) is
coupled with a model of the microbial dynamics inside the bottle in the form of
ODEs.

4.10.4
Structural Mechanics

The wet pressing of paper machine felts that was mentioned in Section 4.10.2.5 is
an example of a problem in the field of structural mechanics, since it involves the
computation of the mechanical deformation of the felt material. Beyond this, there
is again an abundant number of other systems in science and technology which
involve mechanical deformations. We have cited Heraclitus panta rhei (‘‘everything
flows’’) several times above – in this case, it would be valid to say something
like ‘‘everything deforms’’ or (ta) panta paramorfonontai (translation by my Greek
colleague, A. Kapaklis – thank you). Before looking at more examples, however, let
us write down the governing equations in a simple case.

4.10.4.1 Linear Static Elasticity
Deformations of elastic solids are caused by forces that are acting on the solid.
These forces may act on any point within the body (e.g. body forces such as
gravitation) or across its external boundaries. If the solid is in equilibrium, the
resultant forces will vanish at any point within the solid. This is expressed by the
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following equilibrium equations [207]

−∇ · σ = F (4.136)

where σ is the stress tensor (N m−2), and F is the body force (N m−3).
The stress tensor σ expresses the forces that are acting inside the body. σ is a

so-called rank-two tensor quantity, which can be expressed as a 3 × 3 matrix:

σ =

⎛
⎜⎝ σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎞
⎟⎠ (4.137)

To understand the meaning of σ , let n = (n1, n2, n3)t be the normal vector of a
plane through a particular point x = (x1, x2, x3) within the solid, and let σ (x) be the
stress at that particular point. Then,

T = nt · σ (x) (4.138)

is the force that is acting on the plane. Hence, we see that σ basically describes the
forces that are acting inside the solid across arbitrarily oriented planes.

Now in order to compute the deformed state of a solid, it is of course not sufficient
if we just know the forces expressed by σ . We also need to know how the body
reacts on these forces. As we know from our everyday experience, this depends on
the material: the same force that substantially deforms a rubber material may not
cause the least visible deformation of a solid made of concrete. Thus, we need here
what is called a material law, that is, an equation that expresses the specific way in
which the solid material under investigation ‘‘answers’’ to forces that are applied
to the solid. Consider the simple case of a cylinder that is made of a homogeneous
material, and that is deformed along its axis of symmetry by a force F (Figure 4.29).
Assuming that the force reduces the initial length of the cylinder from L to L − 
L
as shown in the figure, the strain

ε = 
L

L
(4.139)

characterizes the deformation of the cylinder. As Equation 4.139 shows, ε is a
dimensionless quantity. The stress σ (Pa) caused by the force F (N) can be written
as

σ = F

A
(4.140)

where A (m2) is the cross-sectional area of the cylinder. Now writing down a mate-
rial law for the cylinder in this situation amounts to writing down an equation that
relates the force that causes the deformation (described by σ ) with the ‘‘answer’’ of
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xLL − ΔL0

Fig. 4.29 One-dimensional deformation of a cylinder.

the cylinder in terms of its strain ε. In the simplest case, this can be written as a
linear equation in the form of the well-known Hooke’s law:

σ = E · ε (4.141)

where E (Pa) is the so-called Young’s modulus of elasticity. Young’s moduli of
elasticity are listed for most relevant materials in books such as [208]. Equation
4.141 can be generalized in a number of ways [207]. In particular, you should
note that the material law typically will be nonlinear, and that ε will be a tensorial
quantity in general, which describes the deformed state in a direction-dependent
way similar to σ . In the case of a homogeneous, isotropic material (i.e. a material
with direction-independent properties), Hooke’s law can be written as [207]

σ = 2με + λtr(ε) · I (4.142)

where σ is the stress tensor (Equation 4.137) and ε is the strain tensor

ε =

⎛
⎜⎝ ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

⎞
⎟⎠ (4.143)

tr(ε), the trace of ε, is defined as

tr(ε) = ε11 + ε22 + ε33 (4.144)

In Equation 4.142, μ is the shear modulus or modulus of rigidity and λ is Lame’s
constant. μ and λ describe the material properties in Equation 4.142. In many books
(such as [208]), these parameters are given in terms of Young’s modulus E and
Poisson’s ratio ν as follows [207]:

μ = E

2 + 2ν
(4.145)

λ = Eν

(1 + ν)(1 − 2ν)
(4.146)

Now let us assume that some material point is at the coordinate position
x = (x, y, z) in the undeformed state of the material (i.e. with no forces applied),
and that this material point then moves to the coordinate position (ξ , η, ζ ) in the
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deformed state of the material. Then, the displacement vector u = (u, v, w) describes
the overall displacement of the material point as follows:

u = ξ − x (4.147)

v = η − y (4.148)

w = ζ − z (4.149)

Expressing the strain tensor using the displacements and then inserting the
material law, Equation 4.142, into the equilibrium condition, Equation 4.136, the
following PDEs are obtained [207]:

μ∇2u + (λ + μ)
∂

∂x

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
+ Fx = 0 (4.150)

μ∇2v + (λ + μ)
∂

∂y

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
+ Fy = 0 (4.151)

μ∇2w + (λ + μ)
∂

∂z

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
+ Fz = 0 (4.152)

These equations are usually called the Navier’s equations or Lame’s equations. Along
with the appropriate boundary conditions describing the forces and displacements
at the external boundaries of the elastic solid, these equations can be used to
compute the deformed state of a linearly elastic isotropic solid. Alternatively, these
PDEs can also be formulated, for example, using the stresses as unknowns [207].
It depends on the boundary conditions which of these formulations is preferable.
Note that Equations 4.150–4.152 describe what is called linear static elasticity since
a linear material law was used (Equation 4.142), and since stationary or static
conditions are assumed in the sense that the elastic body is in equilibrium as
expressed by Equation 4.136, that is, all forces on the elastic body sum to zero, and
the displacements are not a function of time.

In CAELinux, structural mechanical problems such as the linear isotropic
Equations 4.150–4.152 can be solved using Code_Aster similar to the procedure
described in Section 4.9.3. Code_Aster can be accessed e.g. as a submodule of
Salome_Meca (within this submodule, choose the ‘‘linear elasticity’’ wizard to solve
a linear isotropic problem).

4.10.4.2 Example: Eye Tonometry
Glaucoma is one of the main reasons of blindness in the western world [209]. To
avoid blindness, it is of great importance that the disease is detected at an early
stage. Some of its forms are associated with a raised intraocular pressure (IOP),
that is, with a too high pressure inside the eye, and, thus, IOP monitoring is
an important instrument in glaucoma diagnosis [210]. A traditional measurement
method that is still widely used is Goldmann applanation tonometry, which measures
the IOP based on the force that is required to flatten a circular area of the human
cornea with radius r = 1.53 mm [211]. Figure 4.30a shows the measurement device,
a cylindrical tonometer head, as it is moved against the cornea of the human eye.
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Fig. 4.30 (a) Applanation tonometry measurement proce-
dure. (b) Boundaries of the three-dimensional eye model.

Applanation tonometry is based on Goldmann’s assumption that the rigidity of the
human cornea does not vary much between individuals. Recently, however, it has
been shown that this assumption is wrong. Indeed, the rigidity of the human cornea
varies substantially between individuals due to natural variations of the thickness
of the cornea [212], and due to variations of the biomechanical properties (such as
Young’s modulus) of the corneal tissue [213, 214]. As a consequence of the variable
rigidity of the human cornea, the measurement values obtained by Goldmann
applanation tonometry can deviate substantially from the real IOP [214, 215].

To be able to correct applanation tonometry measurements for the effects of
corneal rigidity variations, a mathematical model is needed that is able to pre-
dict tonometry measurements depending on a given corneal geometry and given
biomechanical properties of the corneal tissue. With this objective, a finite-element
model has been developed based on the equations discussed in the last section
and on a three-dimensional model of the human eye [215, 216]. An ‘‘average’’
three-dimensional eye geometry based on the data in [213] was used in the simu-
lations (Figures 4.30b and 4.31). Note that as Figure 4.30a shows, the cornea sits
on top of the sclera, and both structures together form a thin, shell-like structure,
which is known as the corneo-scleral shell. Figure 4.30b shows the boundaries of the
eye model where the following boundary conditions are applied:

• Boundary 1: Corneal area that is flattened by the tonometer
head. A ‘‘flatness condition’’ is imposed here, which can be
realized iteratively as described in [217]

• Boundaries 2,3: Outer surface of the eye. Atmospheric
pressure is prescribed here.

• Boundary 4: Here, the outer eye hemisphere is in contact
with the inner hemisphere. Since this is ‘‘far away’’ from the
cornea, a no displacement condition or u = 0 is assumed here.
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(a) (b) (c)

Fig. 4.31 Three-dimensional eye model: undeformed (a) and
deformed by the tonometer head (b and c).

• Boundaries 5,6: Internal surface of the corneo-scleral shell.
The IOP acts on these surfaces, so the IOP is prescribed
there.

To simulate the deformation of the corneo-scleral shell based on these boundary
conditions and the equations described in the last section, an appropriate material
model for the stress–strain relation is needed. Typically, stress–strain relations of
biological tissues are nonlinear [218]. Unfortunately, the nonlinear stress–strain
behavior of the corneo-scleral shell has not yet been sufficiently characterized by
experimental data [214]. Hence, the simulation shown in Figure 4.31 is based
on a linear material model that uses Young’s moduli within the range that is
reported in the literature: a constant Young’s modulus of 0.1 MPa in the cornea
[213, 214], and 5.5 MPa in the sclera [213, 219]. Following [214], Poisson’s ratio
was set to a constant value of ν = 0.49 in the entire corneo-scleral shell. Note
that this simulation has been performed using the ‘‘structural mechanics module’’
of the commercial Comsol Multiphysics. You can do the same simulation using
Code_Aster based on CAELinux as described above (Comsol Multiphysics was used
here to test some nonlinear material models that are currently unavailable in
Code_Aster).

The simulations can be used to estimate the measurement error of Goldmann
applanation tonometry. Figure 4.32 shows the effect of scleral rigidity variations
on the simulated IOP reading. In this figure, a scleral rigidity corresponding to a
Young’s modulus of 5.5 MPa is assumed as a ‘‘reference rigidity’’. Then, the scleral
Young’s modulus is varied between 1 and 10 MPa, which is the (approximate)
range of scleral Young’s moduli reported in the literature [213, 219]. What the
figure shows is the percent deviation of the simulated IOP reading from the
IOP reading that is obtained in the reference situation. As the figure shows,
the IOP reading can deviate by as much as 7% based on the variations of the
scleral rigidity only. As expected, the effect of the corneal rigidity is even higher
and can amount to 25–30% within the range of rigidities that is reported in the
literature.
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Fig. 4.32 Effect of scleral rigidity variations on the simulated IOP reading.

4.11
Other Mechanistic Modeling Approaches

At this point, similar remarks apply as in the case of phenomenological modeling
(Section 2.7): Again, you should be aware of the fact that there is a great number of
mechanistic modeling approaches beyond those that are discussed in this chapter
and in chapter 3. We will confine ourselves here to a few examples, which are by
no means exhaustive, but which may demonstrate how mathematical structures
different from the ones discussed above may arise.

4.11.1
Difference Equations

Consider a host–parasite system, where parasites use host plants to deposit their
eggs. Let

• Nt: number of host species in the tth breeding season
(t = 1, 2, 3, . . .);

• Pt: number of parasite species in the tth breeding season.

Then it can be argued that [220]

Nt+1 = λe−γ Pt Nt (4.153)

Pt+1 = cNt
(
1 − e−γ Pt

)
(4.154)

where e−γ Pt is the fraction of hosts not parasitized (the particular form of this term
is a result of probabilistic considerations as explained in [220]), c is the average
number of eggs laid by surviving parasites, and λ is the host growth rate, given that
all adults die before their offspring can breed.
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This model is known as the Nicholson–Bailey model. Although we will not go
into a detailed discussion of these equations here, it is easy to understand the
message in qualitative terms: Equation 4.153 says that the hosts grow proportional
to the existing number of hosts, that is, in an exponential fashion similar to the
description of yeast growth in Section 3.10.2. If there are many parasites, e−γ Pt will
be close to zero, and hence the host growth rate will also go to zero. In a similar
way, Equation 4.154 expresses the fact that the number of parasites will increase
with the number of surviving eggs, the number of host species, and the number of
parasite species in the previous breeding season.

Mathematically, Equations 4.153 and 4.154 are classified as difference equations,
recurrence relations, or discrete models [114, 220]. Models of this kind are characterized
by the fact that the model equations can be used to set up an iteration that yields
a sequence of states such as (N1, P1), (N2, P2), . . . . In the above example and many
other applications of this kind, the iteration number t = 1, 2, 3, . . . corresponds
to time, that is, time is treated as a discrete variable. Note the difference to
the differential equation models above, in which time and other independent
variables were treated as continuous quantities. As the above example shows,
finite difference models provide a natural setting for problems in the field of
population dynamics, but they can also be used to model other inherently discrete
phenomena, e.g. in the field of economics, traffic, or transportation flows [220,
221]. Difference equations such as Equations 4.153 and 4.154 can be easily
implemented using Maxima or R as described above. The iterations can be
formulated similar to the book software program HeatClos.r that was discussed
in Section 4.6.3.

4.11.2
Cellular Automata

The concept of cellular automata was developed by John von Neumann and
Stanislaw Ulam in the early 1950s, inspired by the analogies between the operation
of computers and the human brain [222, 223]. We begin with a definition of cellular
automata and then consider an illustrative example [224]:

Definition 4.11.1 (Cellular automaton) A cellular automaton consists of
• a regular, discrete lattice of cells (which are also called nodes or

sites) with boundary conditions;
• a finite – typically small – set of states that characterizes the

cells;
• a finite set of cells that defines the interaction neighborhood of

each cell; and
• rules that determine the evolution of the states of the cells in

discrete time steps t = 1, 2, 3, . . . .
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(a) (b)

Fig. 4.33 Conway’s game of life computed using Conway.r:
(a) random initial state and (b) state after 100 iterations.

A simple example is the famous Conway’s Game of Life [225]. In this case, the
discrete lattice of cells is a square lattice comprising n × n cells, which we can think
of as representing individuals. These cells are characterized by two states called live
or dead. Figure 4.33 visualizes the states of each cell in such a square lattice using the
colors black (for life cells) and gray (for dead cells). The interaction neighborhood
of each cell comprises its eight immediate neighbors, and the interaction rules are
as follows:

• Live cells with fewer than two live neighbors die (as if by
loneliness).

• Live cells with more than three live neighbors die (as if by
overcrowding).

• Live cells with two or three live neighbors survive.
• Dead cells with exactly three live neighbors come to live

(almost as if by. . . ).

Starting with some initial distribution of life and dead cells, these rules determine
iteratively the state of the ‘‘cell colony’’ at times t = 1, 2, 3, . . . . This algorithm has
been implemented by Petzoldt in [141] using R’s simcol package. You may find
this example in the file Conway.r in the book software. Figure 4.33a shows the
initial state of the cellular automaton generated by Conway.r, and Figure 4.33b
shows the state that is attained after 100 iterations. Using Conway.r on your own
computer, you will also be able to see the various intermediate states of the cellular
automaton on your computer screen. The example shows that a quite complex
behavior of a system may arise by the application of very simple rules.

Generally, cellular automata can be used to explain spatiotemporal patterns that
are caused by the interaction of cell-like units. Again, there is an abundant number
of applications in many fields. Cellular automata, for example, have been used
to explain surface patterns on seashells [227]. Seashells are covered with pigment
cells that excrete a pigment depending on the activity of the neighboring pigment
cells, which corresponds exactly to the way in which an abstract cellular automaton
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works. In [228], cellular automata have been used to explain the spreading of genes
conferring herbicide resistance in plant populations. Recently, it has been shown
that the gas exchange of plants can be explained based on cellular automata [229].
See [224] for many more biological applications and [230] for applications in other
fields such as the modeling of chemical reactions or of fluids.

4.11.3
Optimal Control Problems

In many practical applications of ODEs, one wants to control the process that is
expressed by the ODE in a way such that it behaves optimal in the sense that
it maximizes or minimizes some performance criterion. As an example, we may
think of the wine fermentation model that was discussed in Section 3.10.2. In
that case, it is important to control the temperature T(t) inside the fermenter in
an optimal way, for example, in a way such that the amount of residual sugar is
minimized.

Beyond a really abundant number of examples of this kind in the field of
technology (but also, e.g. in the field of economics, see [231]), there is also a
great number of applications pertaining to natural systems. Indeed, optimality is
important in nature as well as in technology – just think of Darwin’s theories of
evolution and the underlying idea of the ‘‘survival of the fittest’’. As an example, let
us consider the maintenance investment problem in plants stressed by air pollutants.
Generally, plants use the carbohydrates that are constantly produced in the process
of photosynthesis for two main purposes:

• for maintenance processes: that is, to supply energy that is used
to repair damaged cell components and to resynthesize
degraded enzymes.

• for growth: to build up new cells and plant structures.

In the presence of air pollutants, a decrease in the rate of photosynthesis
(measured e.g. as g CO2/g dry matter/day) is often observed. In many cases, this
is caused by the fact that the air pollutants destroy important enzymes such as the
RuBisCo enzyme [232]. This means that plants stressed by air pollutants need to
do more maintenance work, and hence they need more carbohydrates to supply
the necessary energy for maintenance. These carbohydrates are no longer available
for growth. Hence, the plant has to solve the following problem:

How much carbohydrates should be invested into maintenance and growth,
respectively?

In view of Darwin’s theory of evolution, this can be formulated as an optimization
problem as follows:

How much carbohydrates should be invested into maintenance and growth such
that the plant maximizes its reproductive success?
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Based on a very simple optimal control problem, it can be shown that real plants
indeed determine their carbohydrate investment into maintenance by solving a
problem of this kind [134, 135]. Let

• N (g dry matter): ‘‘nonactive’’ overall biomass of the plant;
basically, a measure of the size of the plant

• d (g dry matter/g dry matter): concentration of ‘‘degradable
biomass’’ within the plant; basically the concentration of
enzymes and other ‘‘degradable biomass’’ that is constantly
repaired and resynthesized in the plants maintenance
operations

The dynamical behavior of these two quantities can be described by the following
ODE system:

Ṅ(t) = r(1 − u(t))φ(d(t))N(t) (4.155)

ḋ(t) = u(t)ρφ(d(t)) − σd(t) − r(1 − u(t))φ(d(t))d(t) (4.156)

where t is time and the dot on the left-hand side of the equations denotes the time
derivative [134, 135]. In this ODE system, u(t) describes the amount of carbohydrates
that is invested into maintenance processes in percent, that is, u(t) ∈ [0, 1] (see [135]
for interpretations of the other parameters appearing in the equations). When the
plant solves the above optimization problem, it must ‘‘select’’ an optimal function
u(t), and since the plant, thus, virtually controls the performance of the system via
the selection of the optimal function u(t), the overall problem is called a control
problem or optimal control problem. Of course, a criterion must be specified as a part
of an optimal control problem that characterizes optimality. Above, it was said that
the plant decides about its maintenance investment in a way that maximizes its
reproductive success. In the framework of the above simple plant model, Equations
4.155 and 4.156, this can be expressed as

N(T) → max (4.157)

if the problem is solved in the time interval [0, T ] ⊂ R. According to Equation
4.157, the plant is required to choose the maintenance investment u(t) in a way
that maximizes its nonactive biomass, that is, in a way that maximizes its size
(which is the best approximation of reproductive success maximization within this
model). In [135], this problem is solved in closed form using a technique called
Pontryagin’s principle. See [33, 233] for this and other closed form and numerical
solution techniques. These techniques apply to general systems of ODEs of the
form

y′(t) = F(t, y(t), u(t)) (4.158)

y(0) = y0 (4.159)
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where t ∈ [0, T ], y(t) = (y1(t), y2(t), . . . , yn(t)) is the vector of state variables and u(t) =
(u1(t), u2(t), . . . , um(t)) is a vector of (time-dependent) control variables. Usually,
optimality is expressed in terms of a cost functional that is to be minimized:

φ(y(T)) +
∫ T

0
L(y(t), u(t), t) dt → min (4.161)

which would give φ(N(T), d(T)) = −N(T) in the maintenance investment problem
discussed above.

4.11.4
Differential-algebraic Problems

In Section 3.5.7, a system of first-order ODEs was defined to be an equation of the
form:

y′(t) = F(t, y(t)) (4.162)

In the applications, this equation may also appear in the more general form

F(t, y(t), y′(t)) = 0 (4.163)

If Equation 4.163 cannot be brought into the form of Equation 4.162, it is
called an implicit ODE, while Equation 4.162 is an explicit ODE. As can be
expected, more sophisticated solution procedures are needed to solve implicit
ODEs. Many equations of the form (4.163) can be described as a combination
of an ODE with algebraic conditions. Equations of this type are also known as
differential-algebraic equations (DAEs) [107, 112, 234, 235]. They may appear in
a number of different fields, such as mechanical multibody systems (includes
robotics applications), electrical circuit simulation, chemical engineering, control
theory, and fluid dynamics.

4.11.5
Inverse Problems

Remember Problem 2 from Section 4.1.3, which asked for the three-dimensional
temperature distribution within a cube. This problem was solved in Section 4.9
based on the stationary heat equation:

∇ (K(x) · ∇T(x, t)
) = 0 (4.164)

As a result, the three-dimensional temperature distribution T(x) within the cube
was obtained. As was already explained in Section 1.7.3, a problem of this kind is
called a direct problem, since a mathematical model (the heat equation) is used here
to obtain the output of the system ‘‘cube’’ (temperature in this case) based on a
given input (the boundary conditions imposed in Problem 2) and based on given



4.11 Other Mechanistic Modeling Approaches 315

system parameters (the thermal conductivity K). Now suppose that the cube is a
black box to us in the sense that nothing is known about its internal structure except
for the fact that it is made up of two materials A and B. Suppose that all we can do
to explore its internal structure is to perform experiments of the following kind:

• Fixed temperatures are imposed at some of the cube surfaces.
• The ‘‘answer’’ (output) of the system is determined in terms of

the temperatures that are observed at the remaining cube
surfaces. In addition to this, we may also have data from a few
temperature sensors inside the cube. Let us denote the resulting
dataset as D.

In this situation, we may use the heat equation in a different way. Since we know
that the inside of the cube is made up of the two materials A and B, the thermal
conductivity will be of the form

K(x) =
{

KA if A is the material at position x
KB otherwise

(4.165)

Thus, the material structure inside the cube will be known if we find a way to
compute K(x) (and, of course, if KA �= KB). In principle, this can be done by solving
the following

Problem 7:
Determine K(x) according to Equation (4.165) such that an ‘‘optimal’’ approx-
imation of the data D is obtained if the heat equation (4.164) is solved using
K(x).

This type of problem is called an inverse problem since we are now looking for
parameters of the mathematical model (the thermal conductivity) based on a given
output of the system (the temperature measurements in the dataset D). Inverse
problems of this kind are abundant in all fields of science and technology. They
are used, for example, in geophysics, medical imaging, remote sensing, ocean
acoustic tomography, nondestructive testing, and astronomy [32]. Particularly, the
medical imaging applications have gained great public attention. These techniques
use e.g. X rays to produce a dataset (corresponding to D above), which is then
used to determine parameters of appropriate mathematical models (corresponding
to the heat equation and its parameter K(x)), and from this three-dimensional
reconstructions of internal structures of human bodies are obtained. The Radon
integral transform is one of the mathematical techniques that is used to solve this
reconstruction problem [236].

Inverse problems include parameter estimation problems such as the regression
problems that were treated in Chapter 2. Of course, it must be made precise in
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the above problem formulation what is meant by an ‘‘optimal’’ approximation
before the problem can be solved. In the regression problems treated in Chapter 2,
the minimization of the residual sum of squares was used to express an optimal
approximation of the data.

Note that it is often much more difficult to solve an inverse problem compared to
the direct solution of a mathematical model. Inverse problems often are ill posed,
that is, they may violate Hadamard’s well-posedness criteria that were discussed in
Section 4.3.2.1. Based on the above example, it is easy to understand why inverse
problems may suffer from ambiguities, since it obviously may be possible to explain
a particular dataset D based on two or more different distributions of the thermal
conductivity within the cube. Using a priori knowledge – such as Equation (4.165)
in the above example, which expresses the fact that the inside of the cube consists
of the materials A and B with thermal conductivities KA and KB, respectively – can
help to turn ill-posed inverse problems into well-posed problems [32, 236].
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A

CAELinux and the Book Software

If you want to work with the examples and programs described in this book on your
own computer, you need OpenOffice/Calc, Maxima, R, Salome-Meca, Code-Saturne
and a zip file MMS.zip which contains the programs and data files used in the
book. All this is open-source software that can be used by anybody free of charge.
Note, however, that the author makes no warranty, implied or expressed, that the
programs and procedures described in this book will work safely on your system,
and also no warranty is made for the recency, correctness, completeness or quality
of the software-related information provided in this book.

It is recommended to use Calc, Maxima, R, Salome-Meca and Code-Saturne based
on CAELinux, a Linux operating system which can be obtained as a Live-DVD
under www.caelinux.com. Based on the Live-DVD, CAELinux can be used without
the necessity to install anything on the hard drives of your computer, and without
affecting the original operating system installed on your computer. Once you have
obtained the CAELinux Live-DVD from www.caelinux.com, reboot your computer
using the Live-DVD. This will turn most machines (including most computers
running under Microsoft Windows) into CAELinux workstations.

Note In CAELinux, the main software instruments used in this book (Calc, R,
Maxima, Salome-Meca, Code-Saturne) can be used without further installations.
All contributed R packages used in the book – which are not a part of R’s
standard distribution – are also included.

If CAELinux should not work on your computer, you can of course install
Calc, R, Maxima, Salome-Meca and Code-Saturne separately on your computer,
using the installation procedures described at the appropriate internet sites (Calc:
http://www.openoffice.org, R: www.r-project.org, Maxima: maxima.sourceforge.net,
Salome-Meca: www.caelinux.com, Code-Saturne: www.code-saturne.org).
MMS.zip is available at the author’s homepage under www.fbg.fh-wiesbaden.de/

velten. It contains the programs and data files listed in Table A.1. The programs are
either R programs (extension ‘‘.r’’) or Maxima programs (extension ‘‘.mac’’). See
the Appendices B and C for details on how you run the programs in R or Maxima.
In these Appendices it will be assumed that you have unzipped MMS.zip on some
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Table A.1 Files in MMS.zip.

File Location Description

Euler.mac MechODE/MAC Euler method example (page 177).
Farm.mac Solution of the

wheat/barley problem
(page 31).

FeverDat.mac MechODE/MAC Body temperature example (page 120).
FeverExp.mac MechODE/MAC Body temperature example (page 121).
FeverODE.mac MechODE/MAC Body temperature example (page 180).
FeverSolve.mac MechODE/MAC Body temperature example (page 121).
Label.mac Principles Solution of tank labeling problem (page

29).
Mix.mac Principles Solution of a mixture problem (page 24).
Mix1.mac Principles Solution of a mixture problem (page 26).
ODEEx1.mac- MechODE/MAC ODE closed form solution examples
ODEEx16.mac (pages 159-173).
RoomDat.mac MechODE/MAC Alarm clock example (page 122).
RoomExp.mac MechODE/MAC Alarm clock example (page 126).
RoomODE.mac MechODE/MAC Alarm clock example (page 183).
RoomODED.mac MechODE/MAC Alarm clock example (page 141).
Stiff.mac MechODE/MAC Stiff ODE example (page 179).
Tin.mac Principles Solution of the tin problem (page 18).
VolPhase.mac MechODE/MAC Phase plot example (page 210).
Anova.r PhenMod/Stat Analysis of variance. (page 64).
Conway.r PhenMod Example cellular automaton. (page 311).
CRD.r PhenMod/DOE Completely randomized experimental

design (page 102).
FacBlock.r PhenMod/DOE Randomized factorial block design (page

107).
Fermentation.r MechODE/R Wine fermentation model (pages 203, 217).
HeatClos.r MechPDE Solution of heat equation using FD

(page 261).
LinRegEx1.r PhenMod/LinReg Linear regression using spring.csv

(page 67).
LinRegEx2.r PhenMod/LinReg Multiple regression using volz.csv

(page 76).
LinRegEx3.r PhenMod/LinReg Cross validation using volz.csv (page 79).
LinRegEx4.r PhenMod/LinReg Linear regression using gag.csv (page 73).
LinRegEx5.r PhenMod/LinReg Polynomial regression using gag.csv

(page 74).
LSD.r PhenMod/DOE Latin square design (page 105).
Mualem.r MechPDE Water retention curves (page 293).
NonRegEx1.r PhenMod/NonReg Nonlinear regression using klein.csv

(page 82).
NonRegEx2.r PhenMod/NonReg Nonlinear regression using stormer.csv

(page 84).
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Table A.1 (continued)

NNEx1.r PhenMod/NN Neural network using klein.csv (page 91).
NNEx2.r PhenMod/NN Neural network using rock.csv (page 98).
ODEEx1.r MechODE/R Body temperature ODE model (page 184).
ODEEx2.r MechODE/R Alarm clock ODE model (page 191).
ODEEx3.r MechODE/R Pharmacokinetic model (page 224).
ODEFitEx1.r MechODE/R Parameter estimation in the alarm clock

ODE model (page 195).
ODEFitEx2.r MechODE/R Parameter estimation in the alarm clock

ODE model (page 198).
ODEFitEx3.r MechODE/R Parameter estimation in the alarm clock

ODE model (page 199).
Plant1.r MechODE/R Exponential growth model (page 226).
Plant2.r MechODE/R Logistic growth model (page 226).
Plant3.r MechODE/R Asparagus growth model (page 228).
RCBD.r PhenMod/DOE Randomized complete block design

(page 103).
RNumbers.r PhenMod/Stat Probability density plots (page 55).
TTest.r PhenMod/Stat t-Test (page 62).
Volterra.r MechODE/R Predator-prey model (page 206).
VolterraND.r MechODE/R Predator-prey model (page 209).
asparagus.csv MechODE/R Asparagus growth data (page 228).
crop.csv Phenmod/Stat Crop yield data (page 61).
fermentation.csv MechODE/R wine fermentation data (page 218).
fever.csv MechODE/R Body temperature data (page 120).
fungicide.csv PhenMod/Stat Fungicide data (page 64).
gag.csv PhenMod/LinReg GAG urine concentration data (page 72).
klein.csv PhenMod/LinReg US investment data (pages 81,91).
rock.csv PhenMod/LinReg Rock permeability data (page 97).
room.csv MechODE/R Room temperature data (page 122).
spring.csv PhenMod/LinReg Spring elongation data (pages 32, 67).
stormer.csv PhenMod/LinReg Stormer viscometer data (page 84).
volz.csv PhenMod/LinReg Rose wilting data (page 75).
flowstep.med MechPDE/Backward Backward step problem (page 299).
result.med MechPDE/Backward Backward step problem (page 301).
CRD.ods PhenMod/DOE Completely randomized design example

(page 101).

external universal serial bus (USB) device, and that you are using the programs
and data files on that external USB device together with CAELinux as described
above (note that everything has been tested by the author using the CAELinux
2008 Live-DVD). Slight modifications of the procedures described there may be
necessary if you have installed Calc, R, Maxima, Salome-Meca and Code-Saturne
on the hard disk of your computer (based on CAELinux or a different operating
system).

Many of the programs can be used as software templates for the solution of
problems that you may have in one of the various problem classes treated in this
book. For example, to estimate parameters in an ordinary differential equation
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(ODE) system from data, you can take one of the R programs discussed in
Section 3.9 (e.g. ODEFitEx1.r) as a template. To solve your problem, you will then
just have to replace the ODE and the parameters in the template with your own
ODE and parameters.
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B

R (Programming Language and Software Environment)

This section gives you some information on R, focusing on the procedures used in
the book. Readers who need more information on R are referred to R’s help pages,
to the documentation available under www.r-project.org, and to a vast literature on
R (books such as [45, 237–241]).

Note It is assumed here that you have prepared your computer as described in
Appendix A.

B.1
Using R in a Konsole Window

B.1.1
Batch Mode

There are several R programs (which are also called R scripts) in the book software
which can be identified by their file extension ‘‘.r’’ (see Appendix A). Suppose you
want to run e.g. the neural network program NNEx2.r. In Table A.1 you see that
this program is in the PhenMod/NN directory of MMS.zip. After you have unzipped
MMS.zip to the home directory of some external universal serial bus (USB) device
which appears under a name such as USBDEVICE on your computer, NNEx2.rwill
appear in the CAELinux directory /media/USBDEVICE/MMS/PhenMod/NN (replace
‘‘USBDEVICE’’ by the appropriate name of your USB device). Open a Linux
Konsole window e.g. by clicking on the Konsole symbol on the desktop. Within
the Konsole window, navigate to /media/USBDEVICE/MMS/PhenMod/NN using the
cd (‘‘change directory’’) command. Note that you can use the ls (‘‘list files’’)
command in the Konsole window if you want to see the files within a particular
directory. After arriving in /media/USBDEVICE/MMS/PhenMod/NN, enter R to start
the R software. Wait a moment until you see the ‘‘>’’ command prompt of the R
software. To execute NNEx2.r, enter the command: source("NNex2.r"). If you
prefer a GUI-based procedure to start your programs, you may use the RKWard
program which you find in CAELinux if you select CAE Software/Math under the
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PC button of the desktop.

B.1.2
Command Mode

As an alternative to running R programs in batch mode as described above, you
can also enter R commands directly into the Konsole window. For example, the
program NNEx2.r begins with the command:

require(rgl)

After you have started the R software in the Konsole window, you may enter this
command directly after the R prompt in the Konsole window. If you go on and enter
the remaining commands of NNEx2.r line by line, you will obtain the same result
that is obtained using the batch mode procedure described above. The advantage of
this ‘‘command mode’’ operation of R is that you can immediately see the results
of each of your commands and that you can then use this information to decide
how you go on. Beyond this, the command mode operation of R is useful if you
just want to perform a quick analysis that involves a few commands only. In such
cases, the command mode operation can be faster than the batch mode operation
where you have to invoke an editor to write the .r program, save that program
somewhere, navigate to that directory within the Konsole window and so on.

B.2
R Commander

The R Commander is a GUI (graphical user interface) that facilitates the use
of R for basic statistical applications as described in Section 2.1. To start the R
Commander, open a Konsole window within CAELinux (in an arbitrary directory),
start the R software as described in Section B.1 and then enter the command
library(Rcmdr).

Several other GUIs for R are available, see www.r-project.org.
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C

Maxima

This section gives you some information on Maxima, focusing on the proce-
dures used in the book. Readers who need more information on Maxima may
refer to books such as [18] which focus on Macsyma, a very similar commer-
cial version of Maxima, to the very comprehensive Maxima manual by W.
Schelter [106], toMaxima’s help pages and to the documentation available under
http://maxima.sourceforge.net/.

Note It is assumed here that you have prepared your computer as described in
Appendix A.

C.1
Using Maxima in a Konsole Window

C.1.1
Batch Mode

There are several Maxima programs in the book software which can be identified by
their file extension ‘‘.mac’’ (see Appendix A). Suppose we want to run the program
Tin.mac which you find in the Principles directory of MMS.zip. The procedure
to run this program is very similar to the procedure to run R programs that is
described in Appendix B.1. As it is described there, open a Konsole window within
CAELinux and navigate into the appropriate directory on your universal serial bus
(USB) device. Enter maxima in the Konsole window to start the Maxima software.
Then, enter the command batch("Tin.mac") to run the program Tin.mac. If
you prefer a graphical user interface (GUI)-based procedure to start your programs,
you may use the wxMaxima program described below.

C.1.2
Command Mode

As an alternative to running Maxima programs in batch mode, you can also enter
Maxima commands directly into the Konsole window. For example, the program



324 C Maxima

Tin.mac begins with the command:

kill(all)$

After you have started the Maxima software in the Konsole window, you may
enter this command directly after the Maxima prompt in the Konsole window. If
you go on and enter the remaining commands of Tin.mac line by line, you will
obtain the same result that is obtained using the batch mode procedure described
above. Again, the advantage of this ‘‘command mode’’ operation of Maxima is that
you can immediately see the results of each of your commands and that you can
then use this information to decide how you go on. Beyond this, the command
mode operation of Maxima is useful if you just want to perform a quick analysis
that involves a few commands only. In such cases, the command mode operation
can be faster than the batch mode operation where you have to invoke an editor to
write the .mac program, save that program somewhere, navigate to that directory
within the Konsole window and so on.

C.2
wxMaxima

wxMaxima is a GUI that facilitates the use of Maxima in its batch mode as
well as in its command mode. It provides access to Maxima’s most important
commands through menus, a 2D formatted display of mathematical formulas,
the possibility to create documents made up of text and calculations and so on.
For example, to run the program Tin.mac using wxMaxima, you would use its
menu option File/Batch File. If you do this, wxMaxima will also display the
command batch("Tin.mac") that can be used in a Konsole window as described
in Section C.1 above, that is, using wxMaxima is also a way for beginners to
get acquainted with Maxima terminal commands. wxMaxima can be accessed in
CAELinux if you select CAE Software/Math under the PC button of the desktop.
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batch mode 277
BDF method 180
best model 4
Beuys, J., XIII
bias 88
binomial distribution 60
Biot number 137
black box model 10, 35

– example exploration of 142
Black–Scholes equation 287
body force 297, 304
book software 317
boundary condition 133, 140, 148, 149, 160

– flatness 307
– no displacement 307
– no flow 248, 254
– no slip 298
– periodic 254, 292
– slip 299
– symmetry 248, 254, 298

boundary element method 272
boundary value problem 147, 148

– solvability 149
BTCS method 263

c
CAD software 272
CAELinux 306, 317

– cd 321
– how to use 317
– Konsole 321
– Live-DVD 317
– ls 321
– R 321
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Calc 33, 47–49, 58, 75, 317
– AVEDEV() 51
– AVERAGE() 49
– Chart menu 51
– compared to R 48, 51
– CORREL() 51
– formula 49
– Function Wizard 49
– GEOMEAN() 50
– graphical capabilities 51
– introduction 49
– MAX() 51
– MEDIAN() 50
– MIN() 51
– NORMDIST 58
– ods 49
– RAND() 101
– sorting data 101
– STDEV() 50

case study approach 111
cellular automata 310
central difference approximation 259
central limit theorem 57
CFD 258, 266, 272, 275, 296
classification of mathematical models 39
classification of PDE’s 244
clipping plane 279
closed form model 44
closed form solution 154, 173

– ‘‘well-known functions’’ 154
– of PDE 254
– compared with numerical solution 169
– vs. numerical solution 169, 172

Code-Saturne 298, 299, 317
Code Aster 274, 276, 299, 306, 308
coefficient of determination

– see R2 68
coefficient of variation 51
collocation method 150
compartment model 225, 227
completely randomized design 100
complexity challenge 2
compressible flow 297, 298
computation time 154, 266
computational fluid dynamics 258, 266, 296
Computed Tomography 119
computer science 110
Comsol Multiphysics 274, 295, 308
conceptual model 8
conceptual system 41
confidence interval 83, 198
conservation law 242
conservation of energy 235
conservation principles 236

continuous model 44
continuous random variables 54
continuous system 42
control 41
control problem 43, 312, 313
control volume 238
convection 288
convection–diffusion equation 289
convective derivative 297
convergence order 178
Conway’s Game of Life 311
Conway.r 311
cornea 307
corneo-scleral shell 307
correlation 51
cover graphic 295
CRD 100
CRD.ods 101
CRD.r 102
critical ethnography 111
crop.csv 61
cross-validation 79, 99
csv data 52
CT 119
CubeTop 281, 284
cut plane plot 285, 301
cylindrical coordinates 253

d
DAE 314
Darcy 97, 290
Darcy, H. 290
Darcy velocity 290
Darcy’s law 290
Darwin, C. 312
data

– conversion to function 222
– importance of 142

data compression 114
data-driven model 35
Delaunay triangulation 273
density 55
dependent variable 66
descriptive statistics 48
design 41, 43
design of experiments 99

– mn−k design 108
– mn design 106
– blocked design 103
– completely randomized design 100
– CRD 100
– experimental units 101
– factor 101
– Factorial designs 106, 107
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– fractional factorial designs 108
– full factorial design 107
– Graeco-Latin square design 105
– hybrid factorial designs 106
– Latin square design 104
– level 101
– nuisance factors 100
– optimal sample size 108
– randomized balanced incomplete block

design 106
– randomized complete block design 103
– RCBD 103
– treatments 101
– two-level factorial designs 106

design.graeco 106
deterministic model 42
deterministic system 42
dfn 185

– nonautonomous case 220
dfn1 196
difference equation 44, 309, 310
differential equation 40, 44, 117

– boundary condition 133
– discretization 176, 258
– distinguished role of 118, 119
– initial condition 131, 133
– natural approach 117, 131
– ordinary 118
– partial 118
– uniqueness of solution 133

differential-algebraic equation 258, 314
diffusion 288
diffusion equation 288
dimension 42
dimensionality 248, 250
dimensionless ODE/PDE 208
direct problem 43
direct solution method 265
Dirichlet boundary condition 247
discrete distributions 60
discrete event simulation 7, 44, 111

– software 112
discrete model 44, 310
discrete random variables 54
discrete system 42
discretization method 176, 258
discriminant 244
dispersion 50
displacement vector 306
DISPO filter 114
distributed 38
distribution 55

– discrete 60
– Gamma 60

– Gaussian 57
– normal 57
– Student’s 60
– uniform 57

DOE
– see design of experiments 99

Don’ts of mathematical modeling 45
dynamic viscosity 290, 297
dynamical systems theory 207, 225

e
EDF 299
effective quantity 128
Einstein, A. 46
elasticity

– linear static 306
Elmer 274
empirical model 35
equations

– system of linear 26
– transcendental 29

error
– approximation 188
– global 187
– in numerical computations 188
– local 187
– roundoff 188
– truncation 188

error function 155
Euler equations 297
Euler method 175
Euler–Tricomi equation 244
Euler.mac 177
event 54

– simple 54
everything deforms 303
everything flows 303
evolution theory 312
evolutionary algorithms 109
evolutionary computation 110
examples

– air pollutant 63
– alarm clock 122, 194
– asparagus cultivation 228, 233, 295
– beer filtration 302
– body temperature 120
– car 2, 5
– chemical reactor 106
– cleaning of bottles 302, 303
– composite material 37
– crop yield 61
– diapers 296
– drip irrigation 295
– electrical insulations 291
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examples (contd.)

– electrostatic potential 264
– eye tonometry 306
– fermentation 289, 298
– filtration processes 302
– fluid mixtures 24
– fungicides 64
– GAG urine concentration 72
– game of life 311
– hardness testing 103
– herbicide resistance 312
– host-parasite interaction 309
– house paint 99
– hygienic materials 296
– investment data 81
– Martian 15
– mean age 13
– mechanical spring 31
– medical imaging 315
– metal rod 147
– oil exploration 97
– oil recovery 293
– option pricing 287
– paper machine 296
– pharmacokinetics 223
– planetary motion 40
– plant gas exchange 312
– plant growth 226
– plant maintenance 312
– portfolio optimization 110
– potatoes 107
– predator–prey interaction 41, 205
– queuing analysis 60
– relativistic mechanics 13
– reservoir simulation 293
– rose wilting 37, 75
– seashells 311
– soil moisture 295
– soil pollutant transport 289
– soil water dynamics 293
– stormer viscometer 83
– survival of the fittest 312
– ‘‘system 1’’ 32, 35
– ‘‘system 2’’ 36
– tank 14, 16
– tank labeling 27
– technical textiles 296
– therapeutic drugs 223
– tin 14, 16, 18
– washing machine 111
– wear resistance 37
– wine fermentation 211, 312

Excel 48
– comparison with Calc 48

expected value 59
experimental design 83

– see design of experiments 99
experimental units 101
experiments

– vs. mathematical model
– see mathematical model 18

– importance of 17, 143
explanatory variable 65
explicit FD method 263
explicit ODE 314
exponential function 130
exponential growth model 226
eye tonometry 306

f
FacBlock.r 107
factor 64, 101
factor level 64
factorial designs 106
FD method 258

– comparison with FE method 267
– computation time 154, 266
– stability 262
– von Neumann stability analysis 263

FE method 231, 258, 266
– a posteriori error estimates 273
– adaptive mesh refinement 273
– CAD software 272
– comparison with FD method 267
– computation time 154, 266
– Delaunay triangulation 273
– finite element 266
– geometry definition step 272
– grid 267
– idea 267, 269
– instationary case 273
– knot 267
– locally refined mesh 267
– main steps 272
– mesh 267
– mesh generation step 272
– mesh quality 273
– mesh refinement 273
– nonlinear case 273
– nonlinear PDE 273
– postprocessing step 273
– software 274
– solution step 273
– triangulation 267
– unstructured grid 267
– weak formulation 267
– weak problem formulation step 273

feed-forward neural network 89
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fermentation 211
fermentation.csv 218
Fermentation.r 217

– data handling 203
FeverDat.mac 120
FeverExp.mac 121
FeverODE.mac 180
FeverSolve.mac 121
Fick’s first law 288
filter 114
filtration velocity 290
finite difference approximation 259
finite difference method 150, 258

– see FD method 258
finite element 266, 273
finite-element method

– see FE method 266
finite volume method 258, 299
finite volumes 275
fitting an ODE to data 194
floor() 60
Fluent 274
fluid-structure interaction 273, 288, 302
formal definition 3
Fourier analysis 256
fourier analysis 114
Fourier’s law 234
fractional factorial designs 108
free flow 302
FTCS method 263
full factorial design 107
fungicide.csv 64
fuzzy model 109

– fuzzy subset 111

g
GAG 72
gag.csv 72
Galerkin method 272
Gamma distribution 60
gas flow 297, 298
gastro-intestinal tract 223
Gates argument 133, 140
Gauss, C.F. 57
Gauss–Seidel-method 265
Gaussian distribution 57
Gaussian elimination 265
Gear method 180
generalization property 96
genetic algorithm 110

– software 110
geometric mean 50
GI tract 223
glaucoma 306

global error 187
– control of 189

glycosaminoglycans 72
Goldmann applanation tonometry 306
Graeco-Latin square design 105
gray box model 10, 35
grid 267
growth model

– see plant growth model 226
GUI 52, 322

h
hammer-and-nail allegory 46
hat function 270
heat equation 137, 147

– general form 238
– problem 1 231
– problem 2 231
– problem 3 249
– problem 4 251
– problem 5 252
– problem 6 276
– with sinks/sources 284

heat flow rate 235
HeatClos.r 261
Heaviside step function 224, 228
Heraclitus 290
Hessian matrix 92, 94
heuristic error control 182, 189, 262
histogram 56, 58
holdout validation 79
homogeneous boundary condition

248
homoscedasticity 70, 76
Hooke’s law 305
host–parasite interaction model 44
hybrid factorial designs 106
hydraulic conductivity 293
hypothesis test 61

– power 62
– type I error 61
– type II error 61

i
ill posed 316
image processing 114
implicit FD method 263
implicit ODE 314
implicit solution 165
impregnation processes 291
incompressible flow 291, 297, 298
independent variable 65
indirect measurement technique 204
inertia in modeling 46
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inferential statistics 60
inhomogeneous boundary condition 248
initial condition 131, 133–135, 140, 143, 148,

149, 160
– why? 149

initial value problem 133, 136, 143
– definition 146
– definition for ODE system 151

input–output system 9
instationary 38

– model 42, 44
– PDE 273

integral equation 44, 272
inverse problem 43, 204, 314, 315
inviscid flow 297
IOP 306
isosurface plot 285, 301
isotropy 239, 305
iteration 244

– nested 265
iterative methods 264, 265

j
Jacobi method 265
jemula 112

k
klein.csv 81, 91
Krylov subspace methods 272

l
Label.mac 29
Lame’s constant 305
Lame’s equations 306
laminar flow 298
Laplace operator 234
Latin square design 104
law of inertia 46
leap frog scheme 263
least squares filter 114
level 101
levels of measurement 63
limit cycle 225
linear equations

– arising from PDE’s 265
– direct solution 264, 265
– Gauss–Seidel-method 265
– Gaussian elimination 265
– iterative methods 265
– iterative solution 264
– Jacobi method 265
– LU decomposition 265
– relaxation methods 265

linear model 43

linear programming 30
– example 30
– solution using Maxima 31

linear regression 65
– as hypothesis test 63

linear static elasticity 306
LinRegEx1.r 67, 70, 78
LinRegEx2.r 76, 78
LinRegEx3.r 79
LinRegEx4.r 73
LinRegEx5.r 74
Lipschitz continuity 147, 151
local error 187
locally refined mesh 267
logical variable 92
logistic function 90
logistic growth model 226
loop 261
Lotka-Volterra model 173, 205, 207
low pass filters 114
LS-DYNA 274
LSD.r 105
LU decomposition 265
lumped 38
lumped model 42, 137, 225

m
M-Plant 112
Macsyma 323
Magnetic Resonance Imaging 119
management model 43
mass balance 223
material derivative 297
material law 304
Mathematica 165
mathematical model 12

– algebraic equation 40
– and experiments, XIII 18, 28, 142
– as door opener 20
– as hypothesis generator 142, 143
– careful interpretation 142
– check units 22
– classification 39
– differential equation 40
– generalization property 96
– heuristic procedure 23, 25
– in three steps 20
– law of inertia 46
– limitations 142
– main benefit 16
– mechanistic vs. phenomenological 36
– naturalness 11
– practical recommendations 20
– pragmatic approach 34
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– to visualize data 99
mathematics

– role of 9, 20
Maxima 18, 317

– . operator 121
– : operator 177
– = operator 177
– [. . .] 18, 24
– %e 162
– %i 18
– %pi 18
– assignment operator 177
– batch 323
– batch mode 323
– command mode 323
– complex number 18
– conditional execution 126
– constants 159
– decimal results 27
– define 18
– desolve 166
– diff 18, 158
– do 177
– equation operator 177
– expand 161
– find_root 29
– foolproof commas 24
– for. . .thru. . .do 29, 177
– function definition 18
– ic1 160
– ic2 160
– if. . .then 126
– imaginary number 18
– initial condition 160
– integrate 161, 168, 171
– iterations 177
– limit 172
– linear programming 31
– list 18, 24
– load 31
– loops 29, 177
– maximize_lp 31
– numer 18, 27
– numerical integration 161
– ode2 158
– plot2d 120
– plotdf 210
– pred 18
– print 30
– QUADPACK 161
– read_nested_list 120
– rhs 18, 181
– rk 179, 181

– limitations 179

– scalar product 121
– simplex 31
– solution of ODE’s 158, 160
– solve 18, 24, 29, 121, 132
– vs. Mathematica 165
– wxMaxima 324

maximum likelihood estimate 66
measurement errors 53, 70
measures of position 49
measures of variation 50
mechanics

– Newtonian 13
– quantum 46
– relativistic 13

mechanistic model 35, 38, 117, 229
– analogy with archeology 118
– comparison with phenomenological

approach 36
– example ‘‘a priori’’ information 35
– interpretable parameters 137
– to explain ‘‘strange effects’’ 123

median 50
mesh 267

– generation 272
– quality 273
– refinement 273

method of lines 258
Michaelis-Menten kinetics 213
Microsoft Office 48, 274
Minsky’s model definition 3
mirror symmetry 252
Mix.mac 24
Mix1.mac 26
MMS.zip 317
model

– analytical 44
– autonomous 44
– best 4
– black box 10, 35
– conceptual 8, 124
– continuous 44
– data-driven 35
– definition 3
– deterministic 42
– discrete 44
– distributed 38, 39
– empirical 35
– gray-box 35, 127
– instationary 38, 42, 44
– linear 43
– lumped 38, 39, 42
– management 43
– mechanistic 35, 38, 117, 229
– nonautonomous 44
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model (contd.)

– nonlinear 43
– numerical 44
– phenomenological 35, 38, 42, 47
– physical 8
– regression 47
– research 43
– semiempirical 35, 127
– stationary 38, 42
– statistical 35
– white box 35

modeling 4
– idea 1
– using effective quantities 128

modeling and simulation project 5
modeling and simulation scheme 4

– car example 2, 5
– engine example 8
– fermentation example 212
– room temperature example

123
modulus of elasticity 305
modulus of rigidity 305
moving average approach 114
MRI 119
Mualem.r 293
Mualem/van Genuchten model

293
mucopolysaccharidosis 72
multiphase flow 293, 296
Multiple R Squared 69
multiple regression 75
multiple shooting method 150

n
nabla operator 234
narrative analysis 111
natural system 41
naturalness of mathematical models 11
Navier’s equations 306
Navier–Stokes equations 296
NETGEN meshing algorithm 281
Neumann boundary condition 248
neural network 43, 47, 87, 88, 109

– activation function 90
– applications 88
– approximation property 90, 92, 93
– bias 88, 89, 92
– biological interpretation 88
– feed-forward 47, 89
– fitting criterion 94
– Hessian matrix 94
– hidden layer 89
– input layer 89

– layer 88
– nnet 90, 92
– node 88
– output layer 89
– overfitting 92, 96
– regularization 96
– roughness 96
– scaling of inputs 92
– skip-layer connections 90
– software 110
– starting values 92
– to visualize data 99
– topology 89
– vs. nonlinear regression 94
– weight decay 96
– weights 89, 92

Newton method 243
Newton’s law of cooling 137, 139
Newton’s second law 297
Newtonian fluid 297
Newtonian mechanics 13
Nicholson–Bailey model 44, 310
NNEx1.r 91, 98
NNEx2.r 98
no flow boundary condition 248, 254
no-slip condition 298
nominal level of measurement 63
non-newtonian fluid 297, 298
nonautonomous model 44
nondimensionalization 208
nonlinear model 43
nonlinear regression 80
NonlinRegress 195
NonRegEx1.r 82, 91
NonRegEx2.r 84
normal distribution 57, 60
notation convention 14
null hypothesis 61
numerical differentiation 113
numerical mathematics

– significance of 174
numerical model 44
numerical solution 154

– vs. closed form solution 169

o
observed significance level 62
OCC viewer 277
ODE 40, 118

– abbreviated notation 143
– absolute error control 188
– as a challenge 131, 153
– autonomous 146
– boundary value problem 147, 148
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– solution methods 150
– coupling 170, 174, 287
– dimensionless 208
– explicit 314
– family of solutions 157
– first order 143

– definition 145
– first order system

– definition 150
– definition i.v.p. 151

– fitting to data 194
– general solution 157, 158
– hand calculation methods 173
– higher order

– reformulation as first order 145
– implicit 314
– implicit solution 165
– initial condition 143
– initial value problem

– definition 146
– naturalness 150

– limitations 229
– linear 152, 171
– nonautonomous 220, 221

– numerical solution 221
– nonlinear 152, 154
– notation 144
– notation convention 157
– numerical solution

– Adams method 180, 210
– adaptive stepsize 176
– BDF method 180
– choice of stepsize 182
– convergence order 178
– Euler method 175
– Gear method 180
– global error 187, 189
– heuristic error control 182, 189
– local error 178, 187
– nonautonomous case 221
– order of a method 179
– Runge-Kutta method 179
– step size 176
– validation 177
– vs. closed form sol. 169

– order 134
– parameter estimation 194, 201

– as indirect measurement procedure
204

– boundary value approach 199
– convergence region 199
– initial value approach 199

– particular solution 157
– phase plane plot 209

– relative error control 188
– second simplest 148
– separation of variables 161, 163, 173
– setup 138, 139

– phenomenological approach 138, 139
– rate of change approach 138, 139
– theoretical approach 138, 139

– simplest 148
– stiff 179
– structural stability 209, 211
– unique solvability 147
– used everywhere 153
– variation of constants 166, 167, 173
– variation of parameters 167
– well-posed 246

ODEEx1.mac 159
ODEEx1.r 184, 226, 228
ODEEx10.mac 166
ODEEx11.mac 167
ODEEx12.mac 169
ODEEx13.mac 170
ODEEx14.mac 171
ODEEx15.mac 172
ODEEx16.mac 173
ODEEx2.r 191
ODEEx3.mac 160
ODEEx3.r 224
ODEEx4.mac 160
ODEEx5.mac 161
ODEEx7.mac 162
ODEEx8.mac 162
ODEEx9.mac 165
ODEFitEx1.r 195
ODEFitEx2.r 198
ODEFitEx3.r 199
ods file format 49
oil recovery 293
one-dimensional model 147
one-dimensional problem 250
Open CasCade 277
open source software

– vs. commercial software 274
OpenFoam 274
OpenModelica 112
Openoffice 274
optimal control problem 312, 313
optimal sample size 108
optimization 41, 312

– qualitative 216, 221
– using simulations 233

option pricing model 287
order

– of ODE 134
– of PDE 241
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ordinary differential equation
– see ODE 118

overfitting 92, 96

p
P() 54
p-value 61
panta paramorfonontai 303
panta rhei 290, 296, 303
parallel computation 299
parameter estimation

– as inverse problem 204
– hand tuning 126, 141
– heuristic 121
– in ODE’s 194

– general problem formulation 201
– initial values 197
– sensitivity analysis 200

parameter estimation problems 315
parameter identification 43
partial differential equation

– see PDE 39
PDE 39, 40, 118, 229, 241

– as a challenge 154
– boundary condition

– Dirichlet 247
– Neumann 248
– no flow 248, 254
– periodic 254
– Robin 248
– role of physical intuition 247
– symmetry 248, 254

– classification 244
– closed form solution 254
– computation time 154
– conservation law 242
– coupled problems 233
– coupling 287
– definition 241
– dimensionality 248
– discriminant 244
– elliptic 244
– example derivation 235
– first order 242
– from conservation principles 236
– homogeneous boundary condition

248
– hyperbolic 244
– importance of 231, 232, 241
– importance of 1st and 2nd order 241
– inhomogeneous boundary condition

248
– initial/boundary conditions 245

– ‘‘rule of thumb’’ 246

– instationary 273
– linear 243

– vs. nonlinear 243
– general form 244

– linearization 243
– nonlinear 243, 273

– general form 242, 243
– solution 243

– numerical solution 257
– error control 262
– stability 262

– one-dimensional problem 250
– order 241
– parabolic 244
– second order 243
– separation of variables 255
– shock wave 242
– solution

– BTCS method 263
– computational efficiency 264
– existence 246
– explicit FD method 263
– finite difference method 258
– finite-element method 258, 266
– finite volume method 258
– FTCS method 263
– implicit FD method 263
– leap frog scheme 263
– method of lines 258
– spectral method 258
– stability 246
– uniqueness 246

– standard form 245
– stationary solution 147, 245
– symmetry 248, 252
– three-dimensional problem 250
– two-dimensional problem 250
– variational formulation 269
– weak formulation 269, 271
– well-posed 246

periodic boundary condition 254, 292
periodicity cell 292
permeability 43, 290, 291
pharmacokinetics 223
phase plane plot 209, 225
phenomenological model 35, 38, 42, 47

– vs. mechanistic model 127
physical model 8
physical system 41
plant growth model 226

– exponential 226
– logistic 226

Plant1.r 226
Plant2.r 226
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Plant3.r 228
Plato 45
Poisson equation 264, 268
Poisson’s ratio 305
polynomial regression 73
Pontryagin’s principle 313
population 50
population dynamics 205, 310
poroelasticity 296
porosity 291
porous medium 43, 290
power of a test 62
pragmatic approach 34
predator–prey model 41, 205
predicted measured plot 76, 77

– vs. conventional plot 85
prediction 41
predictor variable 65
pressure head 293
PrintConfidence 196
probabilistic networks 109
probability 52–54

– axiomatic definition 54
– classical approach 54
– relative frequence approximation 55

probability density 55
probability density function 56
probability distribution 56
probability function 54
Problem 1 231
Problem 2 231
Problem 3 249
Problem 4 251
Problem 5 252
Problem 6 276
pseudo-R2 69
pseudo-random numbers 79
Python 277

q
qualitative models 111
qualitative optimization 216, 221
quantum mechanics 46

r
R 47, 48, 274, 317, 321

– > 321
– advantage of scripting 67
– agricolae 101
– anova 64
– array indexing 185
– as.data.frame 190
– atol 186
– atolDef 219

– batch mode 321, 322
– BHH2 108
– c() 185
– command mode 322
– command prompt 321
– compared to Calc 51
– confint 83
– curve 58
– data frames 190
– decompose 114
– design.ab 107
– design.bib 106
– design.crd 101, 102
– design.lsd 106
– design.rcbd 103
– Ecdat library 81
– executing programs 321
– expand.gridexpand.grid 107
– ffDesMatrix 108
– fft 115
– for 261
– formula notation 71, 78, 84
– function 186

– conversion from data 222
– definition of 185

– GAGurine data 72
– genalg 110
– hist 58
– I() 74, 84
– list 185
– lm 71, 82
– log 98
– logical variable 92
– loops 261
– lsoda 180, 184, 221

– hmax 221
– lwd 52
– MASS library 72, 84
– nls 82

– weights 223
– nls.control 82
– nlsTolDef 196
– nnet 90, 92, 110

– starting values 6, 93, 94
– par 52
– plot 52, 72
– power.anova.test 108
– power.prop.test 108
– power.t.test 108
– predict 72, 79
– print 102
– programs 321
– R Commander 63, 66, 76, 322

– limitations 67
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R (contd.)

– read.table 62
– rnorm 58
– rtol 186, 188

– rule of thumb 188
– rtolDef 219
– sample() 79
– scatterplot 52
– scripts 321
– seq 72, 190
– simcol 112, 311
– SoPhy 289
– source 321
– t.test 62
– wavelets 115
– waveslim 115
– wavetresh 115

R Commander 63, 322
– compared to Calc 51
– graphs menu 52
– import of csv data 52
– introduction 51
– regression 67
– script window 52
– statistics menu 52
– t-test 63

R2 68
– adjusted 78
– negative values 69
– pseudo- R2 69

Radon transform 315
random processes 52
random sampling 50
random variable 53

– continuous 54
– discrete 54

randomized balanced incomplete block design
106

randomized complete block design 103
range 51
RANS equations 298
rapid prototyping 41
ratio level of measurement 63
RCBD.r 103
RCBD 103
recurrence relation 310
reduced system 16
refined mesh 267
regression 43, 47

– function 65
– assumptions 70
– closeness condition 68
– coefficients 65
– dependent variable 65

– explanatory variable 65
– formula notation 71
– independent variable 65
– linear 32, 65

– general form 73
– multiple (linear) 74, 75

– graphical interpretation 87
– nonlinear 80

– general form 86
– polynomial 73
– predicted measured plot 76
– prediction 68
– predictor variable 65
– residuals 67
– response variable 65
– spline 74

regression line 67
regularization 96
relative error control 188
relative permeability 294
relativistic mechanics 13
relaxation methods 265
research model 43
reservoir simulation 293
residual sum of squares 66, 76, 202
residual water content 294
residuals 67
resin transfer molding 114, 292
response surface designs 106
response variable 65
Reynolds-averaged N.-S. equations 298
Richard’s equation 293
RNumbers.r 55, 58, 112
Robin boundary condition 248
rock.csv 97
RoomDat.mac 122
RoomExp.mac 126
RoomODE.mac 183
RoomODED.mac 141
rotational symmetry 253
rough sets 109
roundoff error 188
RSQ 66
RTM 114, 292
Runge-Kutta method 179

s
Salome-Meca 276, 301, 302, 317

– arrow plots 285
– batch mode 277
– box construction 278
– cut plane plot 285, 301
– geometry definition 277
– isosurface plot 285, 301
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– mesh generation 281
– object browser 277
– OCC viewer 277

– clipping plane 279
– excision 279
– shading mode 279
– transparency 279
– wireframe mode 279

– point construction 278
– postprocessing step 285
– Python 277
– Python Console 277
– sample session 276
– solution step 283
– sphere construction 278
– streamline plot 285, 301
– vector plot 301
– VTK 3D viewer 281

sample 50
– random sampling 50
– stratified sampling 50

sample correlation coefficient 51
sample size 108
sample space 54
sample standard deviation 50
saturated water content 294
Savitzky-Golay filter 114
scale 43
sclera 307
seepage velocity 290
semiempirical models 35
sensitivity 155
sensitivity analysis 155
separation of variables

– ODE’s 161, 163
– PDE’s 255

shear modulus 305
shock wave 242
shooting method 150
signal processing 113

– software 114
significance level 61
significance, statistical 61
SIMPROCESS 113
simul8 113
simulation 4, 5

– and experiments
– see mathematical model, XIII

– definition 7
– discrete event 7

singular point 211
skip-layer connections 90
slip condition 299
sluggish fermentation 211

Sobolev space 157, 268, 271
soft computing 109

– software 110
software

– role of 19
software templates 319
soil moisture simulation 295
source term 289
space step 259
sparse matrix 265, 270
specific heat capacity 233, 234
spectral method 258
speculation 41, 43
SphereSurf 281, 284
spline regression 74
spreadsheet data 48
spring.csv 32, 67
spring.ods 49
SPSS 274
SQM space 40
stability 246, 262
standard deviation

– of random variable 59
– sample 50

state variable 16
– instantaneous changes 216

stationary 38, 147
stationary model 42
stationary solution 232, 245
statistical dispersion 50
statistical model 35
statistical significance 61
statistical tests 61
statistics 33

– descriptive 48
– inferential 60

stepsize 176
stiff ODE 179
Stiff.mac 179
stochastic system 42
stormer viscometer 83
stormer.csv 84
strain 304
stratified sampling 50
streamline plot 285, 301
stress tensor 304
structural mechanics 303

– software solution 306
structural stability 209, 211
stuck fermentation 211
Student’s t-distribution 60, 70
substantive derivative 297
superficial velocity 290
supersonic flow 243
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support of a function 271
survival of the fittest 110, 312
symmetry 248, 252

– mirror 252
– rotational 253
– translational 252

symmetry boundary condition 248, 254
symmetry condition 298
system 1

– conceptual 41
– continuous 42
– definition 8
– deterministic 42
– discrete 42
– input-output 1, 31
– natural 41
– parameters 16
– physical 41
– reduced 16
– stochastic 42
– technical 41

system 1, 2, 32, 35, 36
systems analysis 4, 5
systems archeology 119

t
t distribution 70
t-test 62

– independent 63
– one-sample 63
– one-sided 63, 108
– paired 63
– two-sample 62
– two-sided 63

technical system 41
templates 319
tensor 304
test data 79
thermal conductivity 233, 234
three-dimensional problem 250
three-step modeling procedure 20
time step 259
Tin.mac 18
tInt 222
title page 295
trace of a matrix 305
TraceProc 196
training data 79
transcendental equation 29
translational symmetry 252
transonic flow 244
treatments 101
triangulation 267
truncation error 188
TTest.r 62

turbulence 298
turbulent flow 298
two-dimensional problem 250
two-level factorial designs 106
two-phase flow 293
type I error 62
type II error 62

u
unconditionally stable 263
uniform distribution 57
unstructured grid 267

v
validation 4, 5

– holdout 79
– importance of 33
– qualitative 6, 127
– quantitative 6

variation of constants 166, 167
variation of parameters 167
variational formulation of PDE 269
vector plot 301
virtual engineering 41
virtual prototyping 41
viscosity 290, 297
visualization of datasets 99
VolPhase.mac 210
Volterra.r 206
VolterraND.r 209
volumetric flux density 290
volumetric water content 293
volz.csv 75
von Neumann stability analysis 263

w
water retention curve 293
wave equation 245
wavelet transform 114
weak derivative 269
weak formulation of PDE 269, 271
weak solution 269
weight decay 96
weighting factors 202

– in ODE system 222
weights 92
well-posed problem 246
what-if studies 41
WhichData 223
white box model 10, 35
wine fermentation 211
wxMaxima 18, 158, 159, 324

y
Young’s modulus of elasticity 305


	Mathematical Modeling and Simulation
	Contents
	Preface
	1 Principles of Mathematical Modeling
	1.1 A Complex World Needs Models
	1.2 Systems, Models, Simulations
	1.2.1 Teleological Nature of Modeling and Simulation
	1.2.2 Modeling and Simulation Scheme
	1.2.3 Simulation
	1.2.4 System
	1.2.5 Conceptual and Physical Models

	1.3 Mathematics as a Natural Modeling Language
	1.3.1 Input–Output Systems
	1.3.2 General Form of Experimental Data
	1.3.3 Distinguished Role of Numerical Data

	1.4 Definition of Mathematical Models
	1.5 Examples and Some More Definitions
	1.5.1 State Variables and System Parameters
	1.5.2 Using Computer Algebra Software
	1.5.3 The Problem Solving Scheme
	1.5.4 Strategies to Set up Simple Models
	1.5.4.1 Mixture Problem
	1.5.4.2 Tank Labeling Problem

	1.5.5 Linear Programming
	1.5.6 Modeling a Black Box System

	1.6 Even More Definitions
	1.6.1 Phenomenological and Mechanistic Models
	1.6.2 Stationary and Instationary models
	1.6.3 Distributed and Lumped models

	1.7 Classification of Mathematical Models
	1.7.1 From Black to White Box Models
	1.7.2 SQM Space Classification: S Axis
	1.7.3 SQM Space Classification: Q Axis
	1.7.4 SQM Space Classification: M Axis

	1.8 Everything Looks Like a Nail?

	2 Phenomenological Models
	2.1 Elementary Statistics
	2.1.1 Descriptive Statistics
	2.1.1.1 Using Calc
	2.1.1.2 Using the R Commander

	2.1.2 Random Processes and Probability
	2.1.2.1 Random Variables
	2.1.2.2 Probability
	2.1.2.3 Densities and Distributions
	2.1.2.4 The Uniform Distribution
	2.1.2.5 The Normal Distribution
	2.1.2.6 Expected Value and Standard Deviation
	2.1.2.7 More on Distributions

	2.1.3 Inferential Statistics
	2.1.3.1 Is Crop A’s Yield Really Higher?
	2.1.3.2 Structure of a Hypothesis Test
	2.1.3.3 The t test
	2.1.3.4 Testing Regression Parameters
	2.1.3.5 Analysis of Variance


	2.2 Linear Regression
	2.2.1 The Linear Regression Problem
	2.2.2 Solution Using Software
	2.2.3 The Coefficient of Determination
	2.2.4 Interpretation of the Regression Coefficients
	2.2.5 Understanding LinRegEx1.r
	2.2.6 Nonlinear Linear Regression

	2.3 Multiple Linear Regression
	2.3.1 The Multiple Linear Regression Problem
	2.3.2 Solution Using Software
	2.3.3 Cross-Validation

	2.4 Nonlinear Regression
	2.4.1 The Nonlinear Regression Problem
	2.4.2 Solution Using Software
	2.4.3 Multiple Nonlinear Regression
	2.4.4 Implicit and Vector-Valued Problems

	2.5 Neural Networks
	2.5.1 General Idea
	2.5.2 Feed-Forward Neural Networks
	2.5.3 Solution Using Software
	2.5.4 Interpretation of the Results
	2.5.5 Generalization and Overfitting
	2.5.6 Several Inputs Example

	2.6 Design of Experiments
	2.6.1 Completely Randomized Design
	2.6.2 Randomized Complete Block Design
	2.6.3 Latin Square and More Advanced Designs
	2.6.4 Factorial Designs
	2.6.5 Optimal Sample Size

	2.7 Other Phenomenological Modeling Approaches
	2.7.1 Soft Computing
	2.7.1.1 Fuzzy Model of a Washing Machine
	2.7.2 Discrete Event Simulation
	2.7.3 Signal Processing


	3 Mechanistic Models I: ODEs
	3.1 Distinguished Role of Differential Equations
	3.2 Introductory Examples
	3.2.1 Archaeology Analogy
	3.2.2 Body Temperature
	3.2.2.1 Phenomenological Model
	3.2.2.2 Application

	3.2.3 Alarm Clock
	3.2.3.1 Need for a Mechanistic Model
	3.2.3.2 Applying the Modeling and Simulation Scheme
	3.2.3.3 Setting Up the Equations
	3.2.3.4 Comparing Model and Data
	3.2.3.5 Validation Fails – What Now?
	3.2.3.6 A Different Way to Explain the Temperature Memory
	3.2.3.7 Limitations of the Model


	3.3 General Idea of ODE’s
	3.3.1 Intrinsic Meaning of π
	3.3.2 e(x) Solves an ODE
	3.3.3 Infinitely Many Degrees of Freedom
	3.3.4 Intrinsic Meaning of the Exponential Function
	3.3.5 ODEs as a Function Generator

	3.4 Setting Up ODE Models
	3.4.1 Body Temperature Example
	3.4.1.1 Formulation of an ODE Model
	3.4.1.2 ODE Reveals the Mechanism
	3.4.1.3 ODE’s Connect Data and Theory
	3.4.1.4 Three Ways to Set up ODEs

	3.4.2 Alarm Clock Example
	3.4.2.1 A System of Two ODEs
	3.4.2.2 Parameter Values Based on A priori Information
	3.4.2.3 Result of a Hand-fit
	3.4.2.4 A Look into the Black Box


	3.5 Some Theory You Should Know
	3.5.1 Basic Concepts
	3.5.2 First-order ODEs
	3.5.3 Autonomous, Implicit, and Explicit ODEs
	3.5.4 The Initial Value Problem
	3.5.5 Boundary Value Problems
	3.5.6 Example of Nonuniqueness
	3.5.7 ODE Systems
	3.5.8 Linear versus Nonlinear

	3.6 Solution of ODE’s: Overview
	3.6.1 Toward the Limits of Your Patience
	3.6.2 Closed Form versus Numerical Solutions

	3.7 Closed Form Solutions
	3.7.1 Right-hand Side Independent of the Independent Variable
	3.7.1.1 General and Particular Solutions
	3.7.1.2 Solution by Integration
	3.7.1.3 Using Computer Algebra Software
	3.7.1.4 Imposing Initial Conditions

	3.7.2 Separation of Variables
	3.7.2.1 Application to the Body Temperature Model
	3.7.2.2 Solution Using Maxima and Mathematica

	3.7.3 Variation of Constants
	3.7.3.1 Application to the Body Temperature Model
	3.7.3.2 Using Computer Algebra Software
	3.7.3.3 Application to the Alarm Clock Model
	3.7.3.4 Interpretation of the Result

	3.7.4 Dust Particles in the ODE Universe

	3.8 Numerical Solutions
	3.8.1 Algorithms
	3.8.1.1 The Euler Method
	3.8.1.2 Example Application
	3.8.1.3 Order of Convergence
	3.8.1.4 Stiffness

	3.8.2 Solving ODE’s Using Maxima
	3.8.2.1 Heuristic Error Control
	3.8.2.2 ODE Systems

	3.8.3 Solving ODEs Using R
	3.8.3.1 Defining the ODE
	3.8.3.2 Defining Model and Program Control Parameters
	3.8.3.3 Local Error Control in lsoda
	3.8.3.4 Effect of the Local Error Tolerances
	3.8.3.5 A Rule of Thumb to Set the Tolerances
	3.8.3.6 The Call of lsoda
	3.8.3.7 Example Applications


	3.9 Fitting ODE’s to Data
	3.9.1 Parameter Estimation in the Alarm Clock Model
	3.9.1.1 Coupling lsoda with nls
	3.9.1.2 Estimating One Parameter
	3.9.1.3 Estimating Two Parameters
	3.9.1.4 Estimating Initial Values
	3.9.1.5 Sensitivity of the Parameter Estimates

	3.9.2 The General Parameter Estimation Problem
	3.9.2.1 One State Variable Characterized by Data
	3.9.2.2 Several State Variables Characterized by Data

	3.9.3 Indirect Measurements Using Parameter Estimation

	3.10 More Examples
	3.10.1 Predator–Prey Interaction
	3.10.1.1 Lotka–Volterra Model
	3.10.1.2 General Dynamical Behavior
	3.10.1.3 Nondimensionalization
	3.10.1.4 Phase Plane Plots

	3.10.2 Wine Fermentation
	3.10.2.1 Setting Up a Mathematical Model
	3.10.2.2 Yeast
	3.10.2.3 Ethanol and Sugar
	3.10.2.4 Nitrogen
	3.10.2.5 Using a Hand-fit to Estimate N(0)
	3.10.2.6 Parameter Estimation
	3.10.2.7 Problems with Nonautonomous Models
	3.10.2.8 Converting Data into a Function
	3.10.2.9 Using Weighting Factors

	3.10.3 Pharmacokinetics
	3.10.4 Plant Growth


	4 Mechanistic Models II: PDEs
	4.1 Introduction
	4.1.1 Limitations of ODE Models
	4.1.2 Overview: Strange Animals, Sounds, and Smells
	4.1.3 Two Problems You Should Be Able to Solve

	4.2 The Heat Equation
	4.2.1 Fourier’s Law
	4.2.2 Conservation of Energy
	4.2.3 Heat Equation = Fourier’s Law + Energy Conservation
	4.2.4 Heat Equation in Multidimensions
	4.2.5 Anisotropic Case
	4.2.6 Understanding Off-diagonal Conductivities

	4.3 Some Theory You Should Know
	4.3.1 Partial Differential Equations
	4.3.1.1 First-order PDEs
	4.3.1.2 Second-order PDEs
	4.3.1.3 Linear versus Nonlinear
	4.3.1.4 Elliptic, Parabolic, and Hyperbolic Equations

	4.3.2 Initial and Boundary Conditions
	4.3.2.1 Well Posedness
	4.3.2.2 A Rule of Thumb
	4.3.2.3 Dirichlet and Neumann Conditions

	4.3.3 Symmetry and Dimensionality
	4.3.3.1 1D Example
	4.3.3.2 2D Example
	4.3.3.3 3D Example
	4.3.3.4 Rotational Symmetry
	4.3.3.5 Mirror Symmetry
	4.3.3.6 Symmetry and Periodic Boundary Conditions


	4.4 Closed Form Solutions
	4.4.1 Problem 1
	4.4.2 Separation of Variables
	4.4.3 A Particular Solution for Validation

	4.5 Numerical Solution of PDE’s
	4.6 The Finite Difference Method
	4.6.1 Replacing Derivatives with Finite Differences
	4.6.2 Formulating an Algorithm
	4.6.3 Implementation in R
	4.6.4 Error and Stability Issues
	4.6.5 Explicit and Implicit Schemes
	4.6.6 Computing Electrostatic Potentials
	4.6.7 Iterative Methods for the Linear Equations
	4.6.8 Billions of Unknowns

	4.7 The Finite-Element Method
	4.7.1 Weak Formulation of PDEs
	4.7.2 Approximation of the Weak Formulation
	4.7.3 Appropriate Choice of the Basis Functions
	4.7.4 Generalization to Multidimensions
	4.7.5 Summary of the Main Steps

	4.8 Finite-element Software
	4.9 A Sample Session Using Salome-Meca
	4.9.1 Geometry Definition Step
	4.9.1.1 Organization of the GUI
	4.9.1.2 Constructing the Geometrical Primitives
	4.9.1.3 Excising the Sphere
	4.9.1.4 Defining the Boundaries

	4.9.2 Mesh Generation Step
	4.9.3 Problem Definition and Solution Step
	4.9.4 Postprocessing Step

	4.10 A Look Beyond the Heat Equation
	4.10.1 Diffusion and Convection
	4.10.2 Flow in Porous Media
	4.10.2.1 Impregnation Processes
	4.10.2.2 Two-phase Flow
	4.10.2.3 Water Retention and Relative Permeability
	4.10.2.4 Asparagus Drip Irrigation
	4.10.2.5 Multiphase Flow and Poroelasticity

	4.10.3 Computational Fluid Dynamics (CFD)
	4.10.3.1 Navier–Stokes Equations
	4.10.3.2 Backward Facing Step Problem
	4.10.3.3 Solution Using Code-Saturne
	4.10.3.4 Postprocessing Using Salome-Meca
	4.10.3.5 Coupled Problems

	4.10.4 Structural Mechanics
	4.10.4.1 Linear Static Elasticity
	4.10.4.2 Example: Eye Tonometry


	4.11 Other Mechanistic Modeling Approaches
	4.11.1 Difference Equations
	4.11.2 Cellular Automata
	4.11.3 Optimal Control Problems
	4.11.4 Differential-algebraic Problems
	4.11.5 Inverse Problems


	A CAELinux and the Book Software
	B R (Programming Language and Software Environment)
	B.1 Using R in a Konsole Window
	B.1.1 Batch Mode
	B.1.2 Command Mode

	B.2 R Commander

	C Maxima
	C.1 Using Maxima in a Konsole Window
	C.1.1 Batch Mode
	C.1.2 Command Mode

	C.2 wxMaxima

	References
	Index


