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The main motivation for writing this book was to collect new results on nonlinear con
trol of marine craft that have appeared since I published my first book: "Guidance and 

Control of Ocean Vehicles" (John Wiley & Sons Ltd. 1994). Most of these results have 
.t� been developed in the Department of Engineering Cybernetics at Norwegian University of 

Science and Technology (NTNU) in close cooperation with my doctoral students; Ola-Erik 
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Berge. Mehrdad P Fard, Karl-Petter Lindegaard, Ole Morten Aamo, and Roger Skjetne in 
the period 1991-2002. We have all been a great team, producing more than one hundred 
international publications in this period. These have resulted in several patents and industrial 
implementations. 

In particular, I want to express my gratitude to Mr. Roger Skjetne and Dr. Jann Peter 
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The subject of this book is control ofmarine vessels. By marine vessels we mean ships, 
high-speed craft, semi-submersibles, floating rigs, submarines, remotely operated and 

autonomous underwater vehicles, torpedoes and other propelled/powered structures e.g. a 
floating air field. 

The words boat and ship are often used incorrectly about the same vessels. In Ency
clopedia Britannica a ship and a boat are distinguished by their size through the following 
definition: 

Ship: "any large floating vessel capable of crossing open waters, as opposed to a 
boat, which is generally a smaller craft. The term formerly was applied to sailing 
vessels having three or more masts; in modem times it usually denotes a vessel --' of more than 500 tons of displacement. Submersible ships are generally called 
boats regardless of their size". 

Similar definitions are given for submerged vehicles: 

Submarine: "any naval vessel that is capable of propelling itself beneath the wa
ter as well as on the water's surface. This is a unique capability among warships, 

' ,'1,.!.1I and submarines are quite different in design and appearance from surface ships." 
ii* 
,~	 Underwater Vehicle: "small vehicle that is capable of propelling itself beneath 
::\j	 the water surface as well as on the water's surface. This includes unmanned un

derwater vehicles (UUV), remotely operated vehicles (ROV), autonomous un
derwater vehicles (AUV) and underwater robotic vehicles (URV). Underwater 
vehicles are used both commercially and by the navy." 
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Figure 1.1: Oil tanker. 

Degrees of Freedom and Motions of a Marine Vessel 

In maneuvering, a marine vessel experiences motion in 6 degrees offreedom (DOF). The mo
tion in the horizontal plane is referred to as surge (longitudinal motion, usually superimposed 
on the steady propulsive motion) and sway (sideways motion). Heading, or yaw (rotation 
about the vertical axis) describes the course of the vessel. The remaining three DOFs are roll 
(rotation about the longitudinal axis), pitch (rotation about the transverse axis), and heave 
(vertical motion), see Figure 2.1 in Chapter 2 for a more detailed explanation. 

Roll is probably the most troublesome DOF, since it produces the highest accelerations 
and, hence, is the principal villain in seasickness. Similarly, pitching and heaving feel uncom
fortable to humans. When designing ship autopilots, yaw is the primary mode for feedback 
control. Station-keeping of a marine vessel implies stabilization of the surge, sway and yaw 
modes. 

Feedback Control Applied to Marine Vessels 

Feedback control systems and their application to marine vessels have become more and more 
popular thanks to the developments in computer science, propulsion systems and modem 
sensor technology. Examples of commercially available systems are: 

• ship and underwater vehicle autopilots for course-keeping and turning control 

• way-point tracking, trajectory and path control systems for marine vessels 

• depth autopilots for underwater vehicles 

• torpedo control systems 

• attitude control systems for underwater vehicles 

• dynamic positioning (DP) systems for marine vessels 

• positioning mooring (PM) systems for floating vessels 
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t 1.1 From the Invention of the Gyroscope to Model Based '. Ship Control more and more 

. Figure 1.2: Two navy ships moving in open seas. Courtesy US Navy. 

lIS and modem 01,IIThe history of model based ship control starts with the invention of the gyrocompass in 1908, 
and it extends further with the development of local positioning systems in the 1970s. Global 
coverage using satellite navigation systems was first made available in 1994. The gyrocomXIIltrol 
pass was the basic instrument in the first feedback control system for heading control and 
today these devices are known as autopilots. 

Introduction of local area ship positioning systems like hydro acoustic reference systems 
(SSBL, SBL, LBL), hyperbolic radio navigation systems (Decca, Loran-C. Omega), local elec
tromagnetic distance measuring (EDM) systems (Artemis, Autotape, Min iran, Mini-Ranger 
Ill, Syledis, Tel/urometer, Trident /fl, Trisponder), taut wire etc. in conjuncture with new re
sults within feedback control resulted in new applications like dynamic positioning systems 
for ships and rigs. 

In 1994 Navstar GPS was declared fully operational (global coverage) even though the ~jl
Iii 

first satellite was launched in 1974 (Parkinson and Spilker 1995). Today, GPS receivers are 
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Introduction 1.1 From tile .. 

Figure 1.3: Offshore supply vessel. 

standard components in way-point tracking control systems and ship positioning systems 
world wide. They are used commercially and by the Navy. 

1.1.1 The Gyroscope and its Contributions to Ship Control 

During the l850s the French scientist J. B. 1. Foucault conducted experiments with a wheel 
(rotor) mounted in gimbal rings-i.e., a set of rings that permit it to tum freely in any direction. 
The name gyroscope was adopted for this device. In the experiments Foucault noticed that the 
spinning wheel maintained its original orientation in space regardless of the Earth's rotation. 

In Encyclopedia Britannica the following definition is given for a gyroscope: 

Gyroscope: "any device consisting of a rapidly spinning wheel set in a frame
work that permits it to tilt freely in any direction-i.e., to rotate about any axis. 
The momentum of such a wheel causes it to retain its attitude when the frame
work is tilted; from this characteristic derive a number of valuable applications. 
Gyroscopes are used in such instruments as compasses and automatic pilots on
board ships and aircraft, in the steering mechanisms of torpedoes, in antiroll 
equipment on large ships, and in inertial guidance systems". 

The first recorded construction ofthe gyroscope is usually credited to C A. Bohnenberger 
in 1810 while the first electrically driven gyroscope was demonstrated in 1890 by G. M 
Hopkins (see Allensworth 1999, Bennet 1979). 

The development of the electrically driven gyroscope was motivated by the need for more 
reliable navigation systems in steel ships and underwater warfare. A magnetic compass, as 
opposed to a gyro compass, is highly sensitive to magnetic disturbances, which are com
monly found within steel ships and submarines equipped with electrical devices. In parallel 
works, Dr. H Anschutz of Germany and Elmer Sperry of the USA both worked on a practical 
application of the gyroscope. 
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In 1908 Anschutz patented the first North seeking gyrocompass, while Elmer Sperry was =nune
granted a patent for his ballistic compass including vertical damping three years later. uiODS. 

The invention of the gyroscope was one of the key breakthroughs in automatic ship con.t.s on�
ntiroll trol since it lead to the development of the automatic pilot; see Figure 1.4 (Fossen 2000a). 

d

'II� 
Another useful reference which discusses yacht control systems is Fossen (2000b). 

~I 

ohnenberger 1.1.2 Autopilots
H> by G. M 

The autopilot or automatic pilot is a device for controlling an aircraft, ship or other vehicles 
eed for more without constant human intervention. The earliest automatic pilots could do no more than 
compass, as maintain a fixed heading and they are still used to relieve the pilot on smaller boats during 
cb are com routine cruising. For ships, course-keeping capabilities were the first applications. Mod
i. In parallel ern autopilots can, however, execute complex maneuvers like turning, docking operations, 
In a practical or make possible the control of inherently unstable vessels (such as submarines and some 

large oil tankers). Autopilots are used to steer surface ships, submarines, torpedoes, missiles, 
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rockets, and spacecraft among others. 
As mentioned earlier, the work on the gyrocompass was extended to ship steering and 

closed-loop control by Elmer Sperry (1860-1930), who constructed the first automatic ship 
steering mechanism in 1911 (see Allensworth 1999, Bennet 1979). This device, referred to as 
the "Metal Mike", was a gyroscope-guided autopilot or a mechanical helmsman. Metal Mike 
emulated much of the behavior of a skilled pilot or a helmsman, including compensating for 
varying sea states using feedback control and automatic gain adjustments. 

Later, in 1922, Nicholas Minorsky (1885-1970) presented a detailed analysis of a posi
tion feedback control system where he formulated a three-term control law which today is 
referred to as Proportional-Integral-Derivative (Pill) control (see Minorsky 1922). Observ
ing the way in which a helmsman steered a ship motivated these three different behaviors. In 
Bennet (1979), there is an interesting analysis of the work of Sperry and Minorsky and their 
contributions to autopilot design. 

The autopilot systems ofSperry and Minorsky were both single-input single-output (SISO) 
control systems, where the heading (yaw angle) of the ship was measured by a gyrocompass. 
Today, this signal is fed back to a computer, in which a PID control system (autopilot) is 
implemented in software, see Section 8.4. The autopilot compares the pilot set-point (de
sired heading) with the measured heading and computes the rudder command, which is then 
transmitted to the rudder servo for corrective action. 

More recently Pill-type autopilots have been replaced by autopilots based on LQG and 
'Hoc-control design techniques. One of the nice features with these design techniques is that 
they allow for frequency dependent notch filtering of 1st-order wave-induced disturbances; 
see Chapter 6. Frequency components around the peak frequency of the wave spectrum in 
yaw must be prevented from entering the feedback loop in order to avoid wear and tear of the 
thruster and propeller systems. The drawback of the Pill-controller in cascade with a dead
band, notch and/or low-pass filter is that additional phase lag and nonlinearities are introduced 
in the closed-loop system; see Section 6.1.2. A model-based state estimator (Kalman filter) 
reduces these problems. Linear quadratic and 'Hoc autopilot designs have been reported in the 
literature by a large number ofauthors; see Koyama (1967), Norrbin (1972), Van Amerongen 
and Van Nauta Lemke (1978), Van Amerongen and Van Nauta Lemke (1980), Donha et al. 
(1998), Tzeng (1998), and Fossen (1994) and references therein to mention only some. 

In addition to LQG and 'Hco-control, other design techniques have been applied to ship 
autopilot designs, for instance nonlinear control theory. Autopilot designs for nonlinear sys
tems are treated in detail in Section 8.4. 

1.1.3 Dynamic Positioning and Position Mooring Systems 

The great successes with Pill-based autopilot systems, and the development of local area 
positioning systems suggest that three decoupled PID-controller could be used to control the 
horizontal motion of a ship in surge, sway and yaw exclusively by means of thrusters and 
propellers. The idea was tested in the I970s, and the invention was referred to as a dynamic 
positioning (DP) system; see Chapter II. 

As for the autopilot systems, a challenging problem was to prevent 1st-order wave
induced disturbances entering the feedback loop. Several techniques like notch and low-pass 
filtering, and the use of dead band techniques were tested for this purpose, but with varying 
levels of success. 

In 196(}..1961 the Kalman filter was published by Kalman (I960), and Kalman and Bucy 
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1 
(1961). Two years later in 1963, the theory for the linear quadratic (LQ) optimal controller 

ering and was available. This motivated the application ofLQG-controllers in MIMO ship control like 
iatic ship DP since a state observer (Kalman filter) could be used to estimate the wave frequency (WF) 
ned to as and the ship low-frequency (LF) motions, see Figure 11.5 in Section 11.2. Another advantage 
etal Mike of a MIMO control strategy was that the interactions between the surge, sway and yaw modes 
sating for could be properly compensated for. This is not possible with three decoupled PID controllers. 

The LQG design technique was first applied to DP by Ba1chen et al. (1976, 1980a, 
)f a posi 1980b), and Grimble et al. (1979, 1980a). Later Grimble and coauthors suggested to use 

today is H oo and /L-methods for filtering and control (Katebi et al. 1997a). These methods have been 
.Observ further refined by Katebi et al. (1997b) where nonlinear thruster dynamics is included using 
aviors. In describing functions. 

After 1995, nonlinear PID-control, passive observer design and observer backstepping ~their 

designs have been applied to DP by Fossen and coauthor with good results, see Fossen (1994), 
Jut (5IS0) Grevlen and Fossen (1996), Fossen and Grevlen (1998), Strand (1999) and references therein. 
'Compass. An overview of DP systems is found in Strand and Serensen (2000) while extensions to PM 
iopilot) is mooring systems are found in Strand (1999). DP and PM systems are described more closely 
ooint (de in Sections 11.2 and 11.3. I 
ch is then 

LQG and 1.1.4 Way-Point Tracking Control Systems 
ees is that 

The successful results with LQG controllers in ship autopilots and DP systems, and the availwbances; 
ability of global navigation systems like GPS and GLONASS resulted in a growing interest 

ectrum in 
for way-point tracking control systems, see Holzhuter and Schultze (1996), and Holzhuter 

tear of the 
(1997), and references therein. The transformation of the way-points to a feasible path or th a dead
trajectory is in general a nonlinear optimization problem, see Section 5.2. The controller ntroduced 
can be designed using linear theory or by treating the control problem as a nonlinear control nan filter) 
problem. Extensions to nonlinear trajectory tracking and maneuvering control are currently ned in the 
new fields of research. In Chapter 10 the most recent results on nonlinear control for ships are merongen 
discussed. Guidance systems for trajectory tracking and maneuvering control are discussed lIlha et al. 
in Chapter 5. 

xne. 
ed to ship 
IiDtar sys 1.1.5 The Sea Launch System 

In 1999 the disciplines of aeronautics, astronautics and hydrodynamics were truly unified 
when the first offshore rocket launch platform, known as the SeaLaunch system. was conr 
structed, see http://www.sea-launch.com for more details. In this project a semi-submersible 

local area was modified to a floating launch pad, so that rockets and their payloads could be launched 
:ontrolthe to all inclinations using the most direct route to orbit, see Figure 1.5. This gives maximum 
usters and lift capacity and increased payload/mass. 
a dynamic This was a joint project between the Boeing Commercial Space Company, which pro

vided the payload fairing, analytical and physical spacecraft integration and mission oper
der wave ations; RSC Energia, which provided the Block DM-SL upper stage, launch vehicle inte
d low-pass gration and mission operations; SDO Yuzhnoye/PO Yuzhmash, which provided the first two 
lth varying Zenit-3SL stages, launch vehicle integration support and mission operations; and Anglo

Norwegian Kvcerner Group, providing operational services of the launch platform Odyssey 
aodBucy and assembly and the command ship, Sea Launch Commander. 

":f,.~ ~I 
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Figure 1.5: The SeaLaunch system. Courtesy Sea Launch LLC. 
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Figure 1.6: Schematic drawing of the SeaLaunch platform. Courtesy Sea Launch LLC. 
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Introduction 1.2 Model Representations for Marine Vessels 9 

The SeaLaunch system clearly indicated the need for sophisticated feedback control sys
tems offshore. In this project the position of the vessel is maintained by a dynamic positioning 
system using feedback from a satellite navigation system and a gyro compass. The roll and 
pitch angles of the vessels are kept to a constant value, even when the launch vehicle and the 
rocket is moved from the storage facility to the launch pad. This is achieved by the trim and 
heel correction systems which are pumping water between the platform legs, see Figure 1.6. 

1.2 Model Representations for Marine Vessels 

When designing advanced control systems for marine vessels it is desirable to take advantage 
ofphysical model properties of the vessel and exploit them in the design of the controller. 

1.2.1 The Classical Model in Naval Architecture 

Consider the model: 

n 

Mv= LFi 
j; i=l 

where M is the system inertia matrix, if is the generalized acceleration vector: 

I v = [u, v, ui.p. q, r]T 

Here (u,v,w) are the linear velocities in surge, sway and heave, (p,q,r) are the angular 
velocities in roll, pitch and yaw, and: , 

F, = [Xi,Yi,Zi,Ki,Mi,Ni]T, (i=l, ... ,n) (1.3~ j"' 
r- , is a vector of linearly superpositioned forces and moments. 

'I ... 
~" This model is motivated by Newton's law: F = ma where F represent force, m is the 

it 
mass and a is the acceleration. The model representation (1.1) is used in most textbooks on 

... ~ 

r hydrodynamics where the forces F, usually are written in component form using the SNAME • ,,£ 
r .' (1950) notation. ~ 

1Iiiif'~ If it is assumed that n = 1 and that F I describes only linear damping and added mass, 
then this results in a total of72 elements denoted by: 

Xl = -Xuu - Xvv - Xww - XpP - Xqq - Xrri 
~ -Xuu - Xvi; - Xww - XpP - Xqq - Xrr 
f 
i 

N I = -Nuu - Nvv - Nww - Npp - Nqq - Nrr 

-Nuu - NiJv - Nww - Npp - Nqq - Nd 

• where Xu, Xv, "', N; are the linear damping coefficients and Xu, XiJ, ... , NT represent hy
drodynamic added mass. Nonlinear theory implies that hundreds of elements must be in...aunchLLC. 
cluded in addition to these 36 elements; see Abkowitz (1964), for instance. Hence, model
based control design using (1.1) becomes relatively complicated dueto the large number of'''1'''' 

-
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hydrodynamic coefficients on the right-hand-side of equation (1.1). These coefficients are 
difficult to determine with sufficient accuracy. Consequently, it would be beneficial to exploit 
physical system properties to reduce the number of coefficients needed for control. This was 
the main motivation for developing a vectorial representation of the model (Fossen 1991). 

1.2.2 The Vectorial Model Representation of Fossen (1991)� 

In Fossen (1991) the robot model (Craig 1989, Sciavicco and Siciliano 1996):� 

M(q)q + C(q,q)q = T (1.4) 

was used as motivation to derive a compact marine vessel model in 6 DOFs using a vectorial 
setting. In the robot model q is a vector ofjoint angles, T is the torque, while M and C denote 
the system inertia and Coriolis matrices, respectively. It turns out that similar quantities can 
be identified for marine vessels and aircraft. In Fossen (1991) a complete 6 DOF vectorial 
setting for marine vessels were derived based on these ideas. These results were further 
refined by Sagatun and Fossen (1991), Fossen (1994), Fossen and Fjellstad (1995), and Berge 
and Fossen (2000). The 6 DOF model considered in this book is written in a vectorial setting 
according to: 

Mil + C(v)v + D(v)v + g(77) = T (1.5) 

where 

v = [u,v,w,p,q,rlT (1.6) 

77 = [x,y,z,4>,O,1/!jT (1.7) 

1are vectors of velocities and positionJEuler angles, respectively. The model matrices M, 
C and D denote inertia, Coriolis and damping, respectively, while g is a vector of gravita
tionallbuoyancy forces and moments. 

Component Form versus Vectorial Setting 

It turns out that it is highly advantageous to use the model (1.5) instead of(l.l) when design
ing control systems, since system properties like symmetry, skew-symmetry and positiveness 
of matrices can be incorporated into the stability analysis. In addition, these properties are 
related to passivity of the hydrodynamic and rigid-body models (Berge and Fossen 2000). 
The system properties represent physical properties of the system, which should be exploited 
when designing controllers and observers for marine vessels. As a consequence, Equation 
(1.5) is chosen as foundation for this book and the book "Guidance and Control of Ocean 
Vehicles" by Fossen (1994). The model (1.5) has also been adopted by the international com
munity as a standard model for marine control systems design (control modelling) while the 
"classical model" is the most used in hydrodynamic modelling where isolated effects can be 
studied. 

It should be noted that the "classical" model (1.1) and the model (1.5) are equivalent when 
written in component form. Therefore it is possible to combine the best of both approaches, 
that is hydrodynamic and control modelling. However, it is much easier to construct MIMO 
controllers and observers when using the vectorial representation, since model properties and 
model reduction follow from basic matrix properties. 

1.3 The PI 
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1.3 The Principle of Guidance, Navigation and Control 11 '!II 

eather data Weather routing� 
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Generator .. ~1 Autopilot� Ship ~ Gyro-1--i----+l.. Allocation compass 
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Guidance System Control System velocitiel� Navigation System 

Figure 1.7: Guidance, Navigation and Control. 

1.3 The Principle of Guidance, Navigation and Control !! 
III 

tA marine vessel control system is usually constructed as three independent blocks denoted 
as the guidance, navigation and control (GNC) systems. These systems interacts with each 
other through data and signal transmission as illustrated in Figure 1.7 where a conventional 
ship autopilot is shown. 

GNC, in its most basic form, is a reference model (guidance system), a sensor system 
(navigation system) and a feedback control system. 

1.3.1 Definitions of Guidance, Navigation and Control 

In its most advanced form, the GNC blocks represent three interconnected subsystems: 

Guidance is the action or the system that continuously computes the reference (desired) po
sition, velocity and acceleration of a vessel to be used by the control system. These 
data are usually provided to the human operator and the navigation system. The basic 
components of a guidance system are motion sensors, external data like weather data 
(wind speed and direction, wave height and slope, current speed and direction, etc.) 
and a computer. The computer collects and processes the information, and then feeds ill 

~. 

the results to the vessel's control system. In many cases, advanced optimization tech�
niques are used to compute the optimal trajectory or path for the vessel to follow. This� 
might include sophisticated features like fuel optimization, minimum time navigation,� 
weather routing, collision avoidance, formation control and schedule meetings.� 

\avigation is the science of directing a craft by determining its position, course, and dis
tance traveled. In some cases velocity and acceleration are determined as well. This 
is usually done by using a satellite navigation system combined with motion sensors 
like accelerometers and gyros. The most advanced navigation system for marine ap
plications is the inertial navigation system (INS). Navigation is derived from the Latin 
navis, "ship," and agere, "to drive." It originally denoted the art of ship driving, includ
ing steering and setting the sails. The skill is even more ancient than the word itself, 

"~'-:.'" ~. 
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and it has evolved over the course of many centuries into a technological science that special appIicIIIiII 
encompasses the planning and execution of safe, timely, and economical operation of are sugg c .:00. II' 
ships, underwater vehicles, aircraft, and spacecraft. cations chapters I 

Control is the action of determining the necessary control forces and moments to be pro
dynamics, the G~ 

vided by the vessel in order to satisfy a certain control objective. The desired control 
objective is usually seen in conjunction with the guidance system. Examples ofcontrol 
objectives are minimum energy, set-point regulation, trajectory tracking, path follow • 
ing, maneuvering etc. Constructing the control algorithm involves the design of feed
back and feedforward control laws. The outputs from the navigation system, position, ... 1: 
velocity and acceleration, are used for feedback control while feedforward control is VJd !!iIe" 
implemented using signals available in the guidance system and other external sensors. "-iIr 

\"aIIk 

1.3.2 Set-Point Regulation versus Trajectory Tracking Control 

Set-Point Regulation: The most basic guidance system is a constant input (set-point) pro
vided by a human operator. The corresponding controller will then be a regulator. 

In GNC it is important to distinguish between the following two important control objectives: "'0:C or , 

s..i!"".c '.... 
f t •

\ Examples of set-point regulation are constant depth, trim, heel and speed control, etc. 

/ H could also be regulation to zero which is commonly required in roll and pitch for 
instance. 

Trajectory Tracking Control: The objective is for the position and velocity of the vessel 
to track given desired time-varying position and velocity reference signals. The corre
sponding feedback controller must then be a trajectory tracking controller. Tracking 
control can be used for course-changing maneuvers, speed changing, attitude control, 

........... 
'Ji' f 

etc. An advanced guidance system computes optimal time-varying trajectories from 
a dynamic model and a predefined control objective. If a constant set-point is used 
as input to a low-pass filter (reference model) the outputs of the filter will be smooth 
time-varying reference trajectories for position, velocity and acceleration (PVA). 

1.4 Organization of Book 
...,': 
'II F 

The book is organized in five parts: 

• I Modeling of Marine Vessels 

• II Guidance, Navigation and Control Fundamentals 

• III Ship and Rig Applications 

• IV Underwater Vehicle Applications 

l • V Appendices 

in addition to the introduction chapter, see Figure 1.8. In Part I we deal with kinematics and 
dynamics, and develop different physical models of marine vessels. Then, fundamental the

l 
ory for each of the GNC subsystems is given in Part II. Finally, Parts III and IV deal with 
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special applications for which tailored models apply and some control design methodologies 
are suggested It is recommended that Parts I and II are read before starting with the appli
cations chapters in Parts III and IV. For readers with a good background in kinematics and 
dynamics, the GNC and application parts can be read directly. 

1.Introduction 

2, Kinematics 

3. Dynamics of Marine Vessels 

4. Models forWind, WCNes andOcean Currents 
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8.Course Autopilots 
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Figure 1.8: Organization of the book. 
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Chapter 2 

Kinematics 

2.1 Reference Frames •...••..•••............••••••••••••••••••••••••••••••••••••• 19 II� 

2.2 Transformations between BODY and NED .•••••••••••••••••••••••••••••••••••. 21 
2.3 Transformations between ECEF and NED .....•••••••••••••••••••.•••••••••••• 38 
2.4 Transformations for Stability and Current Axes••••••••••••••••••••••••••••••••44 

r ...:;. 2.5 Exercises 46 

TThe study of dynamics can be divided into two parts: kinematics, which treats only 
geometrical aspects of motion, and dynamics. which is the analysis of the forces causing 

the motion. In this chapter kinematics with application in terrestrial navigation is discussed, 
while dynamics is dealt with in Chapter 3. 

's- , 

v (sway) q (pitch)� 

Yb ~ :) .,<!"t.!:;l� 

~I 

U (su1ge) 
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w(heave),1.. 
Xb:1

Zb 

f! 
Figure 2.1: Motion variables for a marine vessel (SNAME 1950)
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TThe study of dynamics can be divided into two parts: kinematics, which treats only 
geometrical aspects of motion, and dynamics, which is the analysis of the forces causing 

the motion. In this chapter kinematics with application in terrestrial navigation is discussed, 
while dynamics is dealt with in Chapter 3. 
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Figure 2.1: Motion variables for a marine vessel (SNAME 1950). 
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18 Kinematics 

Table 2.1: The notation of SNAME (1950) for marine vessels. 

forcesand linear and positionsand 

OOF moments angular velocities Euler angles 

1 motions in the x-direction (surge) X u x 
2 motions in the y-direction (sway) Y v y 
3 motions in the z-direction (heave) Z w z 
4 rotation about the x-axis (roll, heel) K p rP 
5 rotation about the y-axis (pitch,trim) M q (J 

6 rotation about the z-axis (yaw) N r 'I/J 

The interested reader is advised to consult Britting (1971), Maybeck (1979), Savage 
(1990), Forssell (1991), Lin (1992), Hofmann-Wellenhof et al. (1994), Parkinson and Spilker 
(1995), Titterton and Weston (1997), Farrell and Barth (1998), and Vik (2000) for a more 
detailed analyses of the navigation equations. The development of the kinematic equations 
of motion are found in Kane et al. (1983) and Hughes (1986). Both these references use 
spacecraft systems for illustration. An alternative derivation ofthe Euler angle representation 
in the context of ship steering is given by Abkowitz (1964). A more recent discussion of 
quaternions is found in Chou (1992). An analogy to robot manipulators is given by Craig 
(1989) or Sciavicco and Siciliano (1996). A detailed discussion of kinematics is found in 
Goldstein (1980), and Egeland and Gravdahl (2002). 

6 DOF Marine Vessel Equations of Motion 

The overall goal of Chapters 2 and 3 is to show that the marine vessel equations of motion 
can be written in a vectorial setting according to Fossen (1991): 

'"'' *¥L'''~ L¥ 4t t L. Sit, 2 LJ~ 

1] = J(TJ)v (2.1) 

Mil + C(v)v + D(v)v + g(77) 'T + go + w (2.2) 

where the different matrices and vectors and their properties will be defined in the forth
coming sections. This model representation is used as a foundation for model-based control 
design and stability analysis in Parts II, III and IV. 

Motion Variables 

For marine vessels moving in 6 degrees offreedom (DOF), 6 independent coordinates are 
necessary to determine the position and orientation. The first three coordinates, and their time 
derivatives, correspond to the position and translational motion along the x-, yo, and z-axes, 
while the last 3 coordinates and their time derivatives are used to describe orientation and 
rotational motions. For marine vessels, the 6 different motion components are conveniently 
defined as, surge, sway, heave, roll, pitch and yaw; see Table 2.1. 
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277 7.4 Integrator Backstepping 

and 

. T'
V1� = x Kpx 

= x TK p(-Ax+8) 
-TK A::.-x plUL+8TK-pX� (7.342) 

Step 2: 

In the second step we choose a CLF motivated by "pseudo" kinetic energy, that is: 

V2=2"18T
M8+Vi, M=MT >0� (7.343) 

. T . 
V2� = 8 MS+V1� 

= 8T (Bu - MV r - D(v)v - K(x)x - D(V)8) - xTKpAx + 8TKpX�r 

= 8T (Bu - MV r - D(v)v - K(x)x - D(V)8 + Kpx) - xTKpAx (7.344)r 

Hence, we are ready to propose a control law e.g.: 

Bu = Mv; + D(v)v + K(x)x - Kpx - Kd8, Kd>O (7.345)r 
~ 

v
which results in:� 

2 = -8T(D(v) + K d )8 - xTKpAX� 

Since V2 is positive definite and V2 is negative definite it follows from Theorem A.3 that 
the equilibrium point (X,8) = (0,0) is GES. Moreover, convergence of 8 - 0 and x- 0 
implies that v - O. When implementing the control law (7.345) it is assumed that B has an 
mverse: 

Bt=BT(BBT ) - 1 (7.346) 

or simply B-1 for the square case r = n. 

Nonlinear Mass-Damper-Spring System with Actuator Dynamics 

Consider the mass-damper-spring system of the previous section with actuator dynamics: 
•
L 
~. 

,'~ ..
x = v (7.347)� 

Mv + D(v)v + K(x)x = Bu (7.348)� 

Tu+u = u, (7.349)� 
~ 

where T ElRr x r is a diagonal matrix of actuator time constants and u., ElRr is a vector of 
actuator commands. Instead of choosing the controller u in Step 2, u., is treated as the control 
input to be specified in Step 3. Recall that: 

V2= 8T(Bu - MVr - D(v)v - K(x)x - D(V)8 + Kpx) - xTKpAX (7.350)r 
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Figure 2.2: The Earth-centered Earth-fixed (ECEF) frame XeYeZe is rotating with angular rate 
We with respect to an Earth-centered inertial (ECI) frame XiYiZi fixed in space. 

2.1 Reference Frames 

When analyzing the motion of marine vessels in 6 DOF, it is convenient to define two Earth
centered coordinate frames as indicated in Figure 2.2. In addition several geographic refer
ence frames are needed to describe the motion of a marine vessel. 

Earth-Centered Reference Frames 

ECI (i-frame) The Earth-centered inertial frame (ECI) is an inertial frame for terrestrial 
navigation-i.e., a nonaccelerating reference frame in which Newton's laws of motion 
apply. The origin of the ECI coordinate frame XiYiZi is located at the center of the 
Earth with axes as shown in Figure 2.2. 

KEF (e-frame) The Earth-centered Earth-fixed reference frame xeYeze has its origin fixed 
to the center of the Earth but the axes rotate relative to the inertial frame Eel which is 
fixed in space. The angular rate of rotation is We = 7.2921 .10-5 rad/s. For marine 
vessels moving at relatively low speed, the Earth rotation can be neglected and hence 
the e-frame can be considered to be inertial. The e-frame is needed for global guid
ance, navigation and control e.g. to describe the motion and location of ships in transit 
between different continents. 

Geographic Reference Frames 

XED (o-frame) The North-East-Down coordinate system XnYnZn is defined relative to the 
Earth's reference ellipsoid (World Geodetic System 1984). This is the coordinate sys
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tern we refer to in our everyday life. It is usually defined as the tangent plane on the 
surface of the Earth moving with the vessel, but with axes pointing in different direc
tions than the body-fixed axes of the vessel. For this system the x-axis points towards 
true North, the y-axis points towards East while the z-axis points downwards normal to 
the Earth's surface. The location of the n-frame relative to the e-frame is determined 
by using two angles l and J.l denoting the longitude and latitude, respectively. 

For marine vessels operating in a local area, approximately constant longitude and lati
tude, an Earth-fixed tangent plane on the surface is used for navigation. This is usually 
referred to as flat Earth navigation and it will for simplicity be denoted as the n-frame. 
For flat Earth navigation we will also assume that the n-frame is inertial such that New
ton's laws still apply. 

) 

BODY (b-frame) The body-fixed reference frame XbYbZb is a moving coordinate frame 
which is fixed to the vessel. The position and orientation of the vessel are described 
relative to the inertial reference frame (approximated by the e- or n-frames for marine 
vessels) while the linear and angular velocities of the vessel should be expressed in the 
body-fixed coordinate system. The origin 0 of the body-fixed frame is usually chosen 
to coincide with the center of gravity (CG) when CG is in the principal plane of sym
metry, or at any other convenient point if this is not the case. For marine vessels, the 
body axes Xb, Yb and Zb are chosen to coincide with the principal axes ofinertia, and 
they are usually defined as (see Figure 2.1): 

• Xb -longitudinal axis (directed from aft to fore) 
• Yb - transversal axis (directed to starboard) 
• Zb - normal axis (directed from top to bottom) 

In addition to the body-fixed coordinate system XbYbZb, it is convenient to define two other 
body-fixed coordinate systems when performing hydrodynamic computations. These systems 
are referred to as stability and current axes; see Section 2.4. 

Vectorial Definitions 

For marine vessels the following notation will be adopted for the linear and angular velocities 
when decomposed in a reference frame: 

linear velocity ofpoint 0 decomposed in frame n 

angular velocity of frame b with respect to frame e 

decomposed in frame n 

The different quantities in Table 2.1, as defined by SNAME (1950), can now be conveniently 
expressed in a vectorial setting according to: 
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Kinematics 212.2 Transformations between BODY and NED 

ECEF Longitude and pe ~ [n ER' w = [ ~ ] E S2position: latitude 

NED Attitude 
position: p" ~ [~ ] E a' (Euler angles) e ~[!]ES' 

Body-fixed Body-fixed 
linear Vb angularo ~ [: ] E a' w~ -[;]E~ 

velocity velocity 

Body-fixed Body-fixedfb 
o ~ [ ~ ] E a' ~ ~[;]E~force: moment 

where ~3 is the Euclidean space of dimension 3 and S2 denotes a toms of dimension 2 
(shape of a donut) implying that there are two angles defined on the interval [0,21r] . In the 
3-dimensional case the set is denoted as S3. Hence, the general motion of a marine vessel in 
6 DOF is described by the following vectors (Fossen 1991): 

1]=[~], v=[Vi ], T = [ ;~ ] (2.3) 
I, 

w n b 

where 1] E ~3 X S3 denotes the position and orientation vector where the position vector 
pe E ~3 is decomposed in ECEF, e E S3 is a vector of Euler angles, v E~6 denotes the 
linear and angular velocity vectors which are decomposed in the body-fixed reference frame 
and T E1R6 is used to describe the forces and moments acting on the vessel in the body-fixed 
frame. 

In many applications, like flat Earth navigation, the position vector pn E ~3 is decom
posed in NED coordinates instead of using pe E R3. Orientation will be represented by 
means of the Euler angles e or the quatemions q E ~4. In the next sections, the kinematic 
equations relating the body-fixed, NED and ECEF reference frames will be presented. 

2.2 Transformations between BODY and NED 

The rotation matrix R between two frames a and b is denoted as R b, and it is an element in 
50(3), that is the special orthogonal group oforder 3: 

80(3) = {RIR E R3 X3 
, R is orthogonal and detR =1} (2.4) ~ 

The group 80(3) is a subset ofall orthogonal matrices oforder 3-i.e., 80(3) C 0(3) where 
0(3) is defined as: 

T =0(3) ={RIR E R3 X3, RR RTR =I} (2.5) 

Rotation matrices are useful when deriving the kinematic equations of motion for a ma
rillevessel. As a consequence of (2.4) and (2.5), the following properties can be stated: 

\,\' be conveniently 
~J 

I; 

"~',' , .' ..� 
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Property 2.1 (Rotation Matrix)
 
A rotation matrix R E 80(3) satisfies:
 

RRT =RTR=I, detR == 1 

which implies that R is orthogonal. Hence. the inverse rotation matrix is given by: R-I == 
R T . 

In this book, the following notation is adopted when transforming a vector from one 
coordinate frame to another: 

(2.6) 

Here J}rom E ]R3 denotes a velocity vector which can be transformed to a new reference 
frame by applying the rotation matrix R}~om' The result is the vector v to E ]R3. 

A frequently used rotation matrix in guidance, navigation and control is the rotation ma
trix R bbetween the n- and b-frames. When deriving the expression for R bwe will make 
use of the following matrix properties: 

Definition 2.1 (Skew-Symmetry of a Matrix) 
A matrix S E S S (n), that is the set ofskew-symmetric matrices oforder n, is said to be 
skew-symmetrical if 

This implies that the off-diagonal elements of S satisfy Sij = -Sji for i =I- j while the 
diagonal elements are zero. 

Definition 2.2 (Cross Product Operator)
 
The vector cross product x is defined by:
 

A x a:= S(A)a (2.7) 

where S E 88(3) is defined as: 

S(A) = _ST (A) = [ ~3 (2.8) 
-,),2 

Matlab:
 
The cross product operator is included in the GNC toolbox as Smtrix.m. Hence, the
 
cross product b == S(A)a can be computed as:
 

S Smtrx(lambda) 
b S*a 

Definition 2.3 (Simple Rotation) 
The motion ofa rigid body or referenceframe B relative to a rigid body or referenceframe 
A is called a simple rotation of B in A if there exists a line L. called an axis of rotation, 
whose orientation relative to both A and B remains unaltered throughout the motion. 
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2.2 Transformations between BODY and NED 

Based on this definition Euler stated the following theorem for rotation of two rigid bodies
 
or reference frames (Euler 1776).
 

Theorem 2.1 (Euler's Theorem on Rotation) 
Every change in the relative orientation of two rigid bodies or reference frames A and B
 
can be produced by means ofa simple rotation ofB in A
 

Let v~ be a vector fixed in BODY and v~ be a vector fixed in NED. Hence, the vector
 
v~ can be expressed in terms of the vector v~, the unit vector A= [>'1, >'2, >'3]T, IAI = 1,
 
parallel to the axis of rotation and 13 the angle NED is rotated. This rotation is described by
 
(see Hughes 1986, Kane et al. 1983):
 

n Rn b : II
V o = b vo' Rb':= R A,,8 (2.9) 

Here, R>.,(:/ is the rotation matrix corresponding to a rotation 13 about the A-axis: 
i ~\ 

!""'"
 
I, R A,j3= 13x 3 + sin 13 S(A) + (1- cos (3) S2(A) (2.10)
 
.~ ··'i¥i!;f•••~_L 

where I 3 x 3 is the identity matrix and S~A) is the skew-symmetric matrix according to Defi

nition 2.2. Consequently, S2(A) = AA - I 3x 3 since A is a unit vector.
 

Expanding (2.10) yields the following expressions for the matrix elements ~j:
 

Ru = 
R22 = 
R33 = 
R12 = 
R21 = 
R23 = 
R32 = 
R31 = 
R13 = 

2.2.1 Euler Angle Transformation 

The Euler angles: roll (4)), pitch (e) and yaw ('lj;) can now be used to decompose the body
fixed velocity vector v~ in the NED reference frame. Let Rb'(e) : S3 -+ 80(3) denote the 

Euler angle rotation matrix with argument e = [4>, e, 'lj;)T. Hence: 

v" =Rn(e)vb (2.12)o b 0 

Principal Rotations 

The principal rotation matrices (one axis rotations) can be obtained by setting A = [1,0, O)T, 
A = [0,1, O]T and A = [0,0, I]T corresponding to the x, y and z axes, and 13 = 4>,13= eand 
iJ = v. respectively, in the formula for RA,p given by (2.10). 

(1 - cos (3) >.i + cos 13 
(1 - cos (3) >.~ + cos 13 
(1 - cos (3) >'5 + cos 13 
(1 - cos (3) >'1 >'2 - >'3 sin 13 
(1 - cos (3) >'2>'1 + A3 sin 13 (2.11 ) 

(1 - cos (3) A2A3 - Al sinf3 
(1- cos (3) A3A2 + Al sinf3 
(1 - cos (3) A3A1 - A2 sin 13 
(1- cos (3) A1A3 + A2 sin 13 

\ 

r:>'---~~- ' 
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Figure 2.3: Euler angle rotation sequence (zyx-convention). The submarine is rotated from 
the n-frame to the b-frame by using 3 principal rotations. 

This yields: 

-s'ljJ 

c~ -~], Ry,6 = [ ~ ~ s~], R z ,1jJ = [ ~~ c'ljJ ~ ]s<j> c<j> -sO o cO 0 o 
(2.13) 

where s· = sinf-) and c . = cos/-] . I 

•.. ~ 
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,	 Matlab: 
The rotation matrix is implemented in the GNC toolbox as: 

from R	 = Rzyx(phi,theta,psi)
(41 

,, For small angles b¢, b()and b'lj; the expression (2.16) simplifies to: 

-8'1j; 8()]
R/,'(b8) ~ 13 x 3 + 8(88) = [	 8~ 1 -8¢ (2.17) 

-b(J 8¢ 1 n which is quite useful when applying linear theory. 
The body-fixed velocity vector v~ are now decomposed in the NED reference frame as: ~2.l3) 

pn = R~(e)v~	 (2.18) 

2.2 Transformations between BODY and NED	 2S 

Linear Velocity Transformation 

It is customary to describe Rb'(8) by three principal rotations about the z, y and x axes 
(zyx-convention). Note that the order in which these rotations is carried out is not arbitrary. 
In guidance, navigation and control applications it is common to use the zyx-convention from 
the n-frame to the b-frame specified in terms of the Euler angles ¢, () and 'Ij; for the rotations. 
This matrix is denoted R~ (8) = R;; (8)T. The matrix transpose implies that the same result 
is obtained by transforming a vector from the b-frame !Q the n-frame-i.e., by reversing the 
order of the transformation. This rotation sequence is mathematically equivalent to: 

R;;(8) := R z ,,pRy,oRx ,4>	 (2.14) 

and the inverse transformation is then written (zyx-convention): 

R n(8)-1 R T T R T=	 n b (8 ) = R (2.15)b	 x,</>~"y,o.0."'"	 z,,p 

where we have used the result of Property 2.1. This can also be seen by studying Figure 2.3. 
Let X3Y3Z3 be the coordinate system obtained by translating the NED coordinate system 

XnYnZn parallel to itselfuntil its origin coincides with the origin of the body-fixed coordinate 
system. The coordinate system X3Y3Z3 is rotated ayaw angle 'Ij; about the z3-axis. This yields / 
the coordinate system X2Y2Z2. The coordinate system X2Y2Z2 is rotated a pitch angle ()about 

;'~	 the Y2-axis. This yields the coordinate system XIYIZI. Finally, the coordinate system XIYIZI 

is rotated a roll angle ¢ about the Xl -axis. This yields the body-fixed coordinate system 
:~,	 XbYbZb· 

Expanding (2.14), yields: 

c'lj;c() -s'lj;c¢ + c'lj;s()s¢ s'lj;s¢+ c'lj;c<j>s() ] 
, R/,'(8) = s'lj;c() c'lj;c¢ + s¢s()s'lj; -c'lj;s¢ + s()s'lj;c¢

[ -s() c()s¢ c()c¢ 

•
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where pn is the NED velocity vector. Expanding (2.18), yields: .-e_-=-I 
,n = u cos 'ljJ cos () + v (cos 'ljJ sin ()sin ¢ - sin 'ljJ cos ¢ ) -~Clll""'· 

+w(sin 'ljJ sin ¢ + cos'ljJ cos ¢ sin ()) (2.19) 

e = usin'ljJcos() + v(cos'ljJ cos ¢ + sin ¢sin ()sin 'ljJ) e 
+w(sin ()sin 'ljJ cos ¢ - cos'ljJsin ¢) (2.20) 

d -usin() + v cos ()sin ¢ + w cos() cos¢ (2.21) 
~.. 

The inverse velocity transformation is obtained by Definition 2.1 as: "'II'" ':!",".,..l:, ~ 

,.~ 

(2.22) 
,~~ 

.....-a I 1MF._-.Example 2.1 (Numercial Computation of Position Trajectory) 
The flight path or position trajectory of the vessel pn relative to the NED coordinate sys
tem is found by numerical integration of (2.18), for instance by using Euler integration (see 
Appendix B.2.1): 

Ii"

(2.23) 

,where h > 0 is the sampling time and k is the sample index. 
" I -, ,wU. 

Angular Velocity Transformation 

.".~The body-fixed angular velocity vector W~b = [P, q, r]T and the Euler rate vector e = 
[¢, 0, ~]T are related through a transformation matrix T e (8 ) according to: 

(2.24) 

It should be noted that the angular body velocity vector W~b = [P, q, r]T cannot be inte

grated directly to obtain actual angular coordinates. This is due to the fact that J; W~b (T )dr 
does not have any immediate physical interpretation; however, the vector 8 = [¢, (), 'ljJf 
does represent proper generalized coordinates. The transformation matrix Te(8) can be 
derived in several ways, e.g.: 

T' T T -1'[¢] [0] [0] .W 
b
nb - ~ + Rx,q, ~ + R x,q,Ry ,6 ~ := T e (8)8 (2.251 

This relationship is verified by inspection of Figure 2.3. Expanding (2.25) yields: 

"\lI!J)~i4I!$i"'Pi' . 

s¢t() ___-a m.::I 
1(8) = -~ ] c~ ]c¢ ==;.Te U

0 
c()s¢ [~ c¢ -s¢ (2.26Te(e) ~ 

-s¢ c()c¢ s¢/c() c¢/c() • 
\ 
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~ (2.19) 
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(2.20) , (2.21) 

;; (2.22) 

~"''''&-

coordinate sys
integration (see 

(2.23) 

t 
ate vector e = 

(2.24) 
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bat J~ W~b (T)dT 
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2.2 Transformations between BODY and NED 27 

where s . = sinf-), c . = cost-) and t . = tanf-}. Expanding (2.24) yields the Euler angle� 
attitude equations in component form:� 

iJ = P + q sin ¢ tan 0 + T cos ¢ tan 0 (2.27) 

;p = qcoe d. - r sin e (2.28) 
sin e cos¢1;; = q--+T-- 0-1 ±90° (2.29)
cosO cosO' 

Notice that T a (S) is undefined for a pitch angle of B = ± 900 and that T e (S) does 
not satisfy Property 2.1. Consequently, Tel(S) -I T~(S). For surface vessels this is not a 
problem whereas both underwater vehicles and aircraft may operate close to this singularity. 
In this case, the kinematic equations can be described by two Euler angle representations 
with different singularities and the singular point can be avoided by switching between these. 
Another possibility is to use a quaternion representation; see Section 2.2.2. 

For small angles 0</>, 00, and 07jJ the transformation matrix T a(8) simplifies to: 

1 0 00 ] 
~ 

Ta(oS) :::::: 0 1 -o</> (2.30)[o o¢ 1 

The differential equation for the rotation matrix is given by Theorem 2.2. 

Theorem 2.2 (Rotation Matrix Differential Equation) 
The differential equation for the rotation matrix between the BODY and NED reference 
frames is: 

it/,'= Rb'S(W~b)
L-
where 

-r q]
o -P (2.32) 

-q P 0 
S(W~b) = [ ~ 

Thiscan be written in componentform as 9 differential equations: 

[~ll ~12 ~13] [Rl2T - R 13q -RllT + R 13P Rllq - R12P ]� 
R2l R22 R23 = R22T - R23q - R 2l T + R 23P R 2l q - R22P (2.33)� 
R 31 R23 R33 R23T - R33q -R3lT + R33P R3lq - R23P� 

Proof. For a small time increment Llt the rotation matrix Rb' satisfies: 

Rb'(t + Llt) :::::: R/,'(t)Rb'(Llt) (2.34) 

since sin(Llt) :::::: Llt and cos(Llt) :::::: 1. Assume that after time t + Llt there has been an 
infinitesimal increment Ll{3 in the rotation angle. From (2.10) we have: 

Rb'(Llt) = 13 x 3 + sin(Ll{3) S('x) + (1- cos(Ll{3)) S2(,X) 

:::::: 13x 3 + Ll{3 S('x) (2.35) 

\� 
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since sin(~.B) ~ ~.B and cos(~.B) ~ 1. From (2.34), we get: 

Rb'(t + ~t) = Rb'(t) [I3 x 3 +~.B SeA)] (2.36) 

Defining the vector ~l3b : =~.BA, the time derivative of Ri: is found as: 

Rb'(t) = 
lim 

~t--+O 

= 
lim 

~t--+O 

= lim 
~t--+O 

Rb'(t + ~t) - Rb'(t) 
~t 

Rb'(t)~.B SeA) 
~t 

Rb'(t) S(~l3b) 
~t 

= Rb'(t) S(W~b) (2.37) 

6 DOF Kinematic Equations 

Summarizing the results from this section, the 6 DOF kinematic equations can be expressed 
in vector form as: 

(2.38)

[:L] 

where '7 E JR3 X S3 and v E JR6. 

Matlab:� 
The transformation matrix J and its elements Jl = Rb'(a) and J 2 = Te(S) can be� 
computed by using the GNC toolbox command:� 

[J,Jl,J2] : eulerang(phi,theta,psi) 

The differential equations are then found by: 

p_dot : Jl*v 0 

theta dot J2*w nb 
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29 1.2 Transformations between BODY and NED 

Alternatively, we can write the equations (2.38) in component form as: 

n = ucos'l/J cos () + v(cos'l/J sin ()sin ¢> - sin e cos ¢» 

+w(sin'l/J sin ¢> + cos'l/J cos ¢> sin (}) (2.39) 

e = u sin 'l/Jcos(} + v(cos 'l/J cos ¢> + sin ¢> sin ()sin 'l/J) 

+w (sin ()sin 1/J cos ¢> - cos 1/J sin ¢>) (2.40) 

d = -u sin ()+ v cos ()sin ¢> + w cos ()cos ¢> (2.41) 

iJ = p + qsin ¢> tan ()+ r cos ¢> tan () (2.42) 

¢> = qcos¢> - r sin e (2.43) 
sin e cos¢>;p = q--(} +r--(), () =I- ±90o (2.44) 
cos cos 

3 DOF Model for Surface Vessels 

An attractive simplification of (2.38) is the 3 OOF (surge, sway and yaw) representation for 
surface vessels. This is based on the assumption that ¢> and () are small which is a good 
approximation for most conventional ships and rigs. Hence, Rb'(8) = Rz,,pRy,eRx,cP ::::: 
Rz,,p and Te(8) ::::: I axa. Neglecting the elements corresponding to heave, roll, and pitch 
finally yields: 

= R('l/J)v (2.45) 
-*ii;idIiI.i01;",.&.!!~IIIl••IaiI.ff.Ii:i~1s; '-ijif: 

where R(1/J) = Rz,,p while v = [u,v,r]T and 1] = [x,Y,1/J]T. 

-" 

1.2.2 Unit Quaternions 

-\n alternative to the Euler angle representation is a four-parameter method based on unit 
.aternions or Euler parameters. The main motivation for using four parameters is to avoid 

:ne representation singularity of the Euler angles. 
A quaternion q is defined as a complex number (Chou 1992) with one real part 'TI and 

taree imaginary parts given by the vector: 

e = [E:I, E:2, es] T (2.46) 

A. unit quaternion satisfies q T q = 1. The set Q of unit quaternions is therefore defined as: 

Q = {qlqT q =1,q = ['TI,e T]T, e E R.3 andn E 1R} (2.47) 

The motion of the body-fixed reference frame relative to the inertial frame will now be defined 
ill terms of unit quatemions. 

l nit Quaternions 

From (2.10) it is seen that: 

RI3,~ = Iaxa + sin,B S(..\) + (1- cos,B) S2(..\) (2.48) 

The real and imaginary parts of the unit quaternions are defined as (Chou 1992): 

\, 
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2 

e = [el,£2,e3]T = ASin~ (2.50) 

where A= [>'I, >'2, >'3F is a unit vector satisfying: 

e
A=±--; JeTe#- O. (2.51)

JeTe 

Consequently, the unit quaternions can be expressed in the form: 

0$ f3 $ 27r. (2.52) 

This parameterization implies that the unit quaternions satisfy the constraint q T q = 1, i.e.: 

2 2+~~ 
TJ +cl +c2 +£3 = 1 .. 

From (2.48) with (2.49) and (2.50), the following coordinate transformation matrix for the 
unit quatemions is obtained: 

(2.54) 

Linear Velocity Transformation 

The transformation relating the linear velocity vector in an inertial reference frame to a ve
locity in the body-fixed reference frame can now beexpressed as: 

(2.55) 

where 

2(ClC2 - c3TJ)� 
1- 2(cI +d) (2.56)� 
2(C2C3 + cITJ)� 

Expanding (2.55), yields: 

n = u(l - 2c~ - 2c~) + 2V(CIC2 - c3TJ) + 2W(clc3 + c2TJ) (2.57) 

e = 2U(cIc2 + c3TJ) + v(l - 2ci - 2c5) + 2W(c2c3 - cITJ) (2.58) 

d = 2U(C!C3 - c2TJ) + 2V(c2c3 + C! TJ) +w(l - 2ci - 2c~) (2.59) 

As for the Euler angle representation, Property 2. I implies that the inverse transformation 
matrix satisfies Rb' (q) -1 = Rb' (q) T . 
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2.2 Transformations between BODY and NED 

Matlab:� 
The quaternion rotation matrix is easily computed by using the GNC toolbox commands:� 

q = [eta,epsl,eps2,eps3] 
R = Rquat (q) 

Notice that q Tq = 1 must be true for Rqua t . mto return a solution. One way to ensure 
this is to use the transformation: 

~c 

q = euler2q(phi,theta,psi) \ 

transforming the three Euler angles ¢J, ()and 1/J to the unit quaternion vector q, see Section 
2.2.3 for details. 

~
 I ~ 

Angular Velocity Transformation 
:1

1 

The angular velocity transformation can be derived by substituting the expressions for R;,jI _I'
j! 

from (2.56) into the differential equation Rb' = RbS(W~), see Theorem 2.2. Some calcula
tions yield: . 

e it = Tq(q)W~b (2.60) 

--here: 

r�,� 
-CI -c2 

-<3 ] 
TJ -C3 c2 T 1Tq(q)=~1 

-Cl 
T q (q)Tq(q) = 41 3 x 3 (2.61) 

C3 TJ ' 

-C2 Cl TJ 
_Woo'Y:;'?7,':':VW*j{"Y'W\@p"iWT ~""'h'y;"tyJe?"-----Tg;ij~ 

Consequently: 

1 
iJ = -2"(cIP + c2Q + c3r) (2.62) 

1 
E:] = "2(TJP - c3Q + c2r) (2.63) 

E:2� = "2
1 

(c3P+ TJq - clr) (2.64) 

1 
E:3 = 2"(-C2P + Clq + TJr) (2.65) 

7) 
~ alternative formulation is the vector representation (Kane et al. 1983): 

I) 

~) 

I~-
. [iJ] 1 [ -I::T ] b� (2.66)q = €: ="2 TJI3 x 3 + S(I::) wnb 

,� 

II 
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6 DOF Kinematic Equations
 

Consequently, the 6 DOF kinematic equations of motion can be expressed by 7 differential
 An.......

equations (recall that only 6 differential are needed when using the Euler angle representa

.-iDgdlll:
tion): 

TliiI ....... i
 
t (2.67)	 ~oftbc 

.lea) errors 
~n ] = [ Rb(q)

[ q 04x3
 

where n Elle and v EJR6 , and J(.,.,)EJR7 X6 is a non-quadratic transformation matrix. Equa ..
 
tion (2.67) in component form is given by (2.57)-(2.59) and (2.62)-(2.65).
 

Matlab:
 
.~~ ... ~-(IMThe transformation matrix J and its elements J 1 = R'b (q) and J 2 = T q (q) can be 
...r:=:aJjzMjee Dcomputed directly in the GNC toolbox by using the following commands:	 I 

•
d 

q = [eta,epsl,eps2,eps3]' .. -Iq qJ ~ 

[J,Jl,J2] = quatern(q) 

The corresponding differential equations are:	 til 
'~e"q-. 

p_dot Jl*v 0 
:~\' 7" 

q_dot J2*w nb 
; r = -~ (q 

Implementation Considerations: Unit Quaternion Normalization 

When integrating (2.60), a normalization procedure is necessary to ensure that the constraint: 

~ Q 7 
q T q = c~ + c~ + c5 + rp = 1 (2.68) 

is satisfied in the presence of measurement noise and numerical round-off errors. For this :JE~"" _. '0'- 8 = 
purpose, the following simple discrete-time algorithm can be applied: 

_.,~ .. ,~-
Algorithm 2.1 (Discrete-Time Normalization of the Unit Quatemions)	 1 

o " ~fQ
1. k = O. Compute initial values ofq(k = 0). 

2. For simplicity, Euler Integration implies that (see Appendix B.2): 

q(k + 1) = q(k) + hTq(q(k))W~b(k) (2.69)
 

where h is the sampling time.
 

3. Normalization: 

k+1 _ q(k+1) _ q(k+1)
 
q( )- IIq(k+1)11- JqT (k + l )q (k + l )
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4. Let k = k + 1 and return to Step 2. 

A continuous time algorithm for unit quatemion normalization can be implemented by 
mting that: 

~ (qT q) = 2qTTq(q)W~b = 0 (2.70) 

This shows that if q is initialized as a unit vector, then it will remain a unit vector. Since 
:ntegration of the quatemion vector q from the differential equation (2.60) will introduce 
:nmlerical errors that will cause the length of q to deviate from unity, a nonlinear feedback 

. normalization term is suggested. In Simulink™ this is done by replacing the kinematic 
.:...rlerential equation (2.60) with: 

q = Tq(q)W~b + ~(1 _ q T q)q (2.71) 

_•.,,-.-,. ··"".v. ' ·"C':>_.. .,"r' ·1l'BViWI 

.ere "I ?: 0 (typically 100) is a design parameter reflecting the convergence rate of the 
:.urmalization. This results in: 

dt 
d 

(qT q) = 2qTTq(q)W~b +"1(1- q Tq)qTq = "1(1- q Tq)qT q (2.72) 

osince----q (0) is a IIDit wctor 

Observe that q Tq will decrease if q Tq > 1 while it increases for q Tq < 1. When q Tq = 1 
die usual kinematic differential equations are recovered. A change of coordinates x = 1 
q - q, ± = -1t (qT q) , yields: 

± = -'Yx(l - x) (2.73) 

linearization about x = 0 gives ± = -"Ix. Consequently, the normalization algorithm 
converges with a time constant T = "1-1. 

2.2.3 Quaternions from Euler Angles 

lfthe Euler angles e =[</>,O,'ljJ]T are known and therefore the expression for the rotation 
matrix Rb' (8) = {Ri ] } , a singularity free extraction procedure can be used to compute the 
corresponding unit quaternions (Shepperd 1978). 

.\Jgorithm 2.2 (Quaternions From Euler Angles) 

J. Given the Euler angles </>, 0, and 'ljJ. Let the transformation matrix Ri: according to 
(2.J6) be written:
 

n.. 12

R R13]

Rb'(8) : = R 21 R22 R 23 
. [ R31 R 32 R 33 

2. The trace ofRb(8 ) is computed as: 

~4 = tr(Ri:) = R ll + R 22 + R 33 

.s;...•..•' 

.......
 .' 

,.' 
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3. Let 1 ~ i ~ 4 be the index corresponding to: 

4. Compute Pi corresponding to Index i ofStep 3 according to: 

where the sign ascribed to Pi can be chosen to be either positive or negative. 

5. Compute the other three Pi-values from: 

P4Pl = R32 - R23	 P2P3 = R32 + R23 

P4P2 = R 13 - R31	 P3Pl = R 13 + R31 

P4P3 = R 21 - R 12	 PIP2 = R21 + R 12 

by simply dividing the three equations containing the component Pi with the known 
value ofPi (from Step 4) on both sides. 

6.	 Compute the Euler parameters q = [77, cl, c2,c3]T according to: 

Cj = pj/2 (j=1,2,3) 

77 = P4/2 

Matlab: 
Algorithm 2.2 is implemented in the GNe toolbox as euler2q.m. 'this algorithm can 
also be used to compute the initial values of the Euler parameters corresponding to Step 
1 of Algorithm 2.1. 

Example 2.2 (Enler Angles to Unit Quatemions) 
Consider a marine vessel with orientation ¢ = 10.00 

, () = - 20.00, and tb = 30.0°. The 
unit quatemions are computed in Matlab™ by using the commands: 

phi=10* (pi/180), theta=-20* (pi/180), psi=30* (pi/180) 
q = euler2q(phi,theta,psi) 
q = 

0.9437
 
0.1277
 

-0.1449
 
0.2685 ('
 

% normalization test \
 
norm(q) =
 

1.0000 

'-- 

2.2 Transformations IN 

II 
2.2.4 Euler Angle 

"The relationship berwee 
monsqi (i = 1, ... ,4)c 
kinematic representation 

•:"'et the elements of R~' 

JOYo' and j-th COIWIDL 1 
~tions with 3 u.-.. 

C'ljJC() -s\'-'CO .L 

s.,pc(} ~'CO - I 
[ -sO cBs 

\J!oritbm 2.3 (E.;i 
" solution to C. -.' _:, 

(J = -ti 

"AJgor~ 23 ~ 
·~ofx_JI'.saiI 

""Sll1II'iaI-__be'" 
, •• n. -

, o C ,oonlln srJII
I' 
I' 

I '.
1 ....._A¥a..~I. Y.~ 2.3 (1.'..0

_ • ..!Wr.. 
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/ 
2.2.4 Euler Angles from Quaternions 

The relationship between the Euler angles ¢, 0, and 'l/J (zyx-convention), and the unit quater
nions qi (i = 1, ... ,4) can be established by requiring that the rotation matrices of the two 
kinematic representations are equal: 

Rb'(8) := Rb'(q) (2.74) 

Let the elements of Rb'(q) be denoted by R;) where the superscripts i and j denote the i-th 
row and j-th column. Writing expression (2.74) in component form yields a system of 9 
equations with 3 unknowns (¢, 0, and 'l/J), that is: 

c'l/JcO -s'l/Jc¢ + c'l/JsOs¢ s'l/Js¢ + c'l/Jc¢>sO ] R12Rn R13]
s'l/JcO c'l/Jc¢ + s¢sOs'l/J -c'l/Js¢ + sOs'l/Jc¢ = R21 R22 R23 (2.75)

[ [-sO cOs¢ cOc¢ R3 1 R32 R33 

Algorithm 2.3 (Euler Angles from Quaternions)
 
One solution to (2.75) is:
 

d> = atan2(R32, R33) (2.76) 

. -1) -1 ( R31 ). Of- ±90° (2.77)o = -sm (R31 = -tan J1- R§1 ' 

?/! = atan2(R2b Ru ) (2.78) 

........ pi! r m"
.0illk. 

In Algorithm 2.3 atan2(y, x) is the four quadrant arctangent of the real parts of the 
elements ofx and y, satisfying: 

7r 7r-"2 :S atan2(y, x) :S "2 (2.79) 

Precautions must be taken against computational errors in the vicinity of0 = ±90°. 

Matlab:
 
The GNC toolbox script:
 

[phi,theta,psil = q2euler(q) 

is based on Algorithm 2.3. A singularity test is included in order to avoid that() = ±90°. 

Example 2.3 (Unit Quaternions to Euler Angles)
 
Consider the marine vessel in Example 2.2 where the Euler angles where converted into
 
unit quatemions. The inverse transformation q2euler. m results in:
 

q =[0.9437,0.1277,-0.1449,0.2685J' 
[phi,theta,psiJ = q2euler(qlnorm(q)) 
phi = 0.1746 
theta =-0.3491 
psi = 0.5235 

corresponding to ¢ = 10.00,0 = - 20.00 
, and ip = 30.0 0 

• 

\ 

.~'.;•.
.• - :;" <''i..~~;(·t'"''-"' .... <;'-1"~J~j,,";·.-:·"-

-..r 



I 

--------------- _.~--

Kinematics UTi G36 

2.2.5 QUEST Algorithm for Position and Attitude Determination 

The position and three-axis attitude of a vessel can be determined from two or more vector ,
 observations by using the TRIAD or QUEST algorithms (Schuster and Oh 1981). The TRIAD
 
algorithm, provides a deterministic nonoptimal solution for the attitude based on two vector
 
observations. The QUEST algorithm on the other hand is an optimal algorithm which deter
mines the attitude that achieves the best weighted overlap of an arbitrary number reference 
and observation vectors. In Schuster and Oh (1981), analytical expressions are given for the 
covariance matrices for the two algorithms using a model for the measurement errors, and the 
mathematical relationship of the two algorithms and their relative merits are discussed. 

!,-
Matlab: 
The QUEST algorithm is included in the GNC Toolbox as: 

[R,g] = quest(W,V) 

where R is the quatemion rotation matrix between the vectors W and v, and q is the 
unit quatemion vector. A particular useful application of this algorithm is determination ilof the position and the attitude of a model ship using a camera. For this purpose the 
Matlab™ function:, -. 

[eta,g,R] guest6DOF(y,mb,rcamera) 

where y is a vector yn= [(y~)T, (y~) T, (y~) T] of real-time NED camera measure

ments yi = [ni' ei, di]T (i = 1,2,3) for the three markers onboard the vessel, mb is
 
a vector of marker positions m~ = [Xrni, Yrni, Zrni]T (i = 1,2,3) in body-fixed coor

dinates relative to the CG of the ship, and rcamera is a vector r~amera = [xc, Yc, zc]T
 
denoting the location of the camera in NED coordinates.
 

6 DOF Position and Attitude form Camera Measurements 

Application of the QUEST algorithm will now be demonstrated for CyberShip I (model ship 
scale 1:70 ofa supply vessel) in the GNC Laboratory at the Norwegian University of Science 
and Technology, see http://www.itk.ntnu.no/ansattelFossen_Thor/GNC. 

The GNC Laboratory uses a real-time camera image processing system developed by the 
Computer Vision and Robotics Group at the University of Girona, Spain (BatHe et a1. 2000). 
The camera system has the feature that several markers located onboard a model ship can be 
distinguished by their color. The marker positions yi (i = 1,2,3) are measured using one 
wall mounted camera with fixed coordinates r;,'amera as shown in Figure 2.4. 

Consider the problem of determining the position vector r~g = [x, Y, z]T-i.e., the NED 
position ofthe ship's CG, and the attitude parameterized by unit quatemions q when the ship 
is moving. The ship marker positions m~ (i = 1,2,3) are in body-fixed coordinates relative 
to the CG. This gives us three measurement equations: 

~
n n n Rn() b rcg = rcamera +Yi - b q D1i, (i = 1,2,3) (2.80) _IIII 

--...._- --~._---

L 
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Earth-fixed 
camera 

r 

n 

CyberShip l 

b 

Y 

Figure 2.4: GNC-Laboratory camera measurement system for 6 DOF position and attitude 
determination. 

This is the position vector that must be computed from the camera measurements. Notice 
that one camera produces 9 measurement equations or three yi-vectors-i.e., one for each 
marker, in which there are 7 unknowns. These are the position vector r~g = [x, y, z]T and 

the attitude vector q = [ry ,Cl , C2, C3]T. The measurement equations are, however, nonlinear 
in the unknowns r~g and q , so we cannot solve for these quantities directly. Therefore, the 
QUEST algorithm is used to solve this problem. 

The existence of a solution depends on the configuration of the markers located onboard 
the ship. These must be located such that the measurement equations are linearly indepen
dent. For instance, locating all markers close to each other will not work. It is advantageous 
from a numerical point of view to maximize the distance between the markers and also to 
use different heights . However, this is not a hard requirement, since we have 9 equations and 
only 7 unknowns. 

The marker configuration shown in Figure 2.4, were all markers are on the centerline but 
at different heights (z-positions) along the z-axis of the ship, gave a unique solution. The 

.... ..._...~ 
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numerical values for the CyberShip I markers were: 

m b 
1 = [0.69,0, -0.15]T� 

m~ = [0.42,0, -0.51f� 

m b [-0.38,0, -0.18]T�3 = 
while the camera was located on the wall at: 

r~amera = [2.11,-0.48, 1.89JT 

Assume that the following marker positions were measured with the camera: 

y~ = [-0.09, 0.947, -1.997JT� 

Y2 = [0.066,3.688, -2.327]T� 

Y; = [0.641,3.175, -1.934]T� 

The position and attitude vector '1, unit quatemion vector q, and rotation matrix Rb(q) 
corresponding to these measurements were computed to: 

'1 = [2.5,3.0,0.1,10°,5°, 134°JT 

q = [0.3924, -0.0060,0.0971, 0.9146J T ="~ 2.5: Ddifl;r~ (' 
.= oClkL·- 0.6920 -0.7189 0.0653]� 

Rb(q) = 0.7166 -0.6732 0.1824� 
[ -0.0872 0.1730 0.9811 

~ • = fl. PIT E , 
- : ') :3) is a rotaIioII

~atlab: _ 
--.....-.- ....~: (11"1The numerical results were generated in Matlab using quest600F. m, see the example 

script ExQuest. mfor details: 
o. 

y = [-0.097,3.947,-1.997,0.066,3.688,-2.327, ... , II;l./ = R=~:
0.641,3.175,-1.934]' 

rob = [0.69,0,-0.15,0.42,0,-0.51,-0.38,0,-0.18]' 
rcamera = [2.11,-0.48,1.89]' 
[eta,q,R] = quest6DOF(y,rob,rcamera) , = [~ 

~~ a;g.-- ..., 

2.3 Transformation between ECEF and NED 
~ 

U b,E'Wide area or terrestrial guidance and navigation implies that the position should be related to 
the Earth center instead of local frame on the Earth surface. This can be done by using the 
results from the previous sections. ~'. 

2.3.1 Longitude and Latitude Transformations 
... :lIZ. ~ ECEF .....The transformation between the ECEF and NED velocity vectors is: 
I .:an"be~ 

pe = R~ll}1)pn = R~(l}1)Rb(e)V~ (2.81) ~ I 

:~,1 
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) 

Yo 

".:0:'f"""
';I'

.:>,,'�
Figure 2.5: Definitions of longitude l and lattitude fl and the NED reference frame on the 
surface of the Earth. The D-axispoints in the normal direction to the Earth's surface. 

where '11 = [l, fl]T E S2 is a vector formed by longitude l and latitude p: and R~(q,): 

S2 --t 80(3) is a rotation matrix between ECEF and NED. This is found by performing two 
principal rotations: (1) a rotation l about the z-axis, and (2) a rotation (-fl - 7r/2) about the 
y-axis. This gives: 

R~(q,) =� Rz,IRy,-IJ-~ (2.82) 

[ eo,1 - sinl cas (-p-;l 0 sin(-p-;) ]0] [
= sin l� cosl 1 

0� ~ -sin(~fl-~) 0 COS(~fl-~)0 

Using the trigonometric formulas: cos(- fl - ~) = - sin fl, and sin( - fl - ~) = - cos fl, 
yields: 

- cos l sin fl - sinl -coslcOSfl ] 
R~ (q,) = - sin l sin fl cosl - sin l coe p. (2.83)

[ cosfl� o - sin u 

Hence, the ECEF positions pe = [x, y, z]T can be found by integration of (2.81). This 
equation can also be used when designing a global way-point tracking control system for 
ships. 

\ 

_.'. 
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Figure 2.6: Definitions of the ellipsoidal parameters. 

~ , 

Matlab: r The rotation matrix R~ is computed using the GNC toolbox command: 

I� 
R = Rll (l, mu)� 

Flat Earth Navigation 

For flat Earth navigation it can be assumed that the NED tangent plane is fixed on the surface 
of the Earth-i.e., l and and J.l are constants , by assuming that the operating radius of the vessel 
is limited. This suggests that the NED position vector: 

(2.84) 

is used for control design. When designing dynamic positioning (DP) systems for offshore 
vessels this is particular useful. The ECEF coordinates for flat Earth navigation is found by 
requiring that \lI = \lI 0 = constant , such that: 

R~ (Wo) = R o = constant (2.85) 
\ • e 
p = RoRb (e)V~ (2.86) ' .... ~ 

. ,� 
d� 

"."
j 

-_... _-,,,....- • 
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J 
When designing global way-point tracking control systems for ships, "flat Earth" is not a 
good approximation since (l, J1.) will vary largely for ships in transit between the different 
continents. Hence, the more general expression (2.81) should be used for global navigation. 

2.3.2 Longitude and Latitude from ECEF Coordinates 

The measurements of GPS are given in the Cartesian ECEF frame, but this is a measurement 
that does not make a lot of sense to the user. Presentation of terrestrial position data pe = 
[x, y, Z]T is therefore made in terms of the ellipsoidal parameters longitude l, latitude 1£, and 
height h, 

Figure 2,6 shows the definitions ofparameters needed for the transformations, The refer
ence ellipsoid used for GPS, WGS-84, is found by rotating an ellipse around the polar axis. 
Because of symmetry about the polar axis, it is only necessary to look at the meridian plane 
(latitude) equations. The ellipsoid's origin coincides with the mass center of the Earth. The 
most important parameters of the WGS-84 ellipsoid are listed in Table 2.2. 

r In Figure 2.6, J1. c and J.l. are the geocentric and geodetic latitudes, respectively. Further, 
more, T is the geocentric radius, TO is the geocentric radius of the user position projected onto 
the surface of the Earth, h is the ellipsoidal height. and N is the radius of curvature in the 
prime vertical. N is calculated by: 

2 
N = T e . (2.87)

JT~ COS
2 J1. + T~ sin 2 

J1. 

where the equatorial and polar earth radii, T e and Tp, are the semiaxes of the ellipsoid. 
Longitude l is easily computed as: 

l = atan (2.88) 

while latitude J1. and height h are implicitly computed by: 

.', Ze (1 _e2~)-1 (2.89)tan u 
p N+h 

p
h --N (2.90) 

COSJ.l. 

where e, the Earth's eccentricity is: 

(2.91)e=Jl- (~:)2 

Since these two equations are implicit, they can be solved iteratively by using Algorithm 2.4 
(Hofinann-Wellenhof et of. 1994): 

• \ . .~. 

,;;-,.•.. 
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Table 2.2: WGS-84 parameters.� 
Parameters Comments� 
r e = 6378137 m Equatorial radius of ellipsoid (semimajor axis)� 
r p = 6356752 m Polar axis radius of ellipsoid (semiminor axis)� 
We = 7.292115 . 10-5 rad/s Angular velocity of the Earth.� 

J.Lg = 3986005.108 m3/s2 Gravitational constant of Earth.� 
e = 0.0818 Eccentricity of ellipsoid.� 

Algorithm 2.4 (Transformation of (xe,Ye, ze) to (l, J.L, h» 

1.� Computep = Jx~ +y;. 

2.� Compute the approximate value J.L(O)jrom: 

Ze ( 2)-1tanJ.L(O) = - 1- e 
p 

3.� Compute an approximate value N from: 

2 
N� = r e 

2Jr~ cos2 J1.(O) + r p sin J1.(O) 

4.� Compute the ellipsoidalheight by: 

Ph = - N(o). 
cos J.L(O) . 

5.� Compute an improvedvaluefor the latitude by: 

tan zz = Ze (1 _e2 N(o) )-1 
P N(o) +h 

6.� Checkfor another iterationstep: iflJ.L - J1.(O) I < tol where tol is a small number, then� 
the iteration is complete. Otherwiseset J.L(O) = J1. and continue with Step 3.� 

Matlab:� 
Algorithm 2.4 is programmed in the GNC toolbox script:� 

[l,mu,h] = ecef211h{x,y,z) l.. 
Several other algorithms can be used for this purpose; see Farrell and Barth (1998) and ref
erences therein. An approximate solution can also be found in Hofmann-Wellenhof et al. 
(1994), and an exact explicit solution is given by Zhu (1993). 
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Earth's 
llIIIfaI:c 

M 

Ellipsoid 

Figure 2.7: Illustration of ellipsoidal and orthonometric heights h and H where Cd is the 
deflection of gravity and M is the geoidal height (undulation). 

Height transformation 

The WGS-84 ellipsoid is a global ellipsoid, which is only an approximation of the mean sea 
level of the Earth. It can deviate from the real mean sea level by as much as 100 meters at 
certain locations. The Earth's geoid, on the other hand, is defined physically and its center is 
coincident with the center of the Earth. It is an equipotential surface so that it has the same 
gravitational magnitude all over the surface, and the gravity vector is always perpendicular to 
the geoid. 

The geoid is the surface chosen as a zero level reference. The ellipsoidal height h in 
Figure 2.7 must therefore be transformed to orthometric height H in Figure 2.7 through the 
relation: 

't..: t ... 

h~H+M 

where M is called the geoidal height. The angle Cd is small enough for the above approx
imation to be sufficiently accurate for all practical purposes. The angle Cd is known as 
the deflection of the vertical, and does not exceed 30 arcseconds in most of the world. In 
fact the largest deflection encountered over the entire earth is in the order of I arcminutes 
(Britting 1971). The geoidal height M is found through a datum transformation (Hofmann
Wellenhof et al. 1994). 

2.3.3 ECEF Coordinates from Longitude and Latitude 

The transformation from 'It = [l,j.L]T for given heights h to pe = [x, y, z]T is given by e.g. 
Heiskanen and Moritz (1967): 

(N + h) cos p,cosl ] 
(N + h) cos p,sinl (2.92)[~: ] [ (~N + h) sinj.L 

For a ship h is the vertical distance from the sea level to the b-frame coordinate origin. The 
b-frame is usually chosen to coincide with the center of gravity. 

~lIi",,,;:,'" 

\ 



...,~~t.. !:II'1W1l1l11!1!!!!!!!!!!!!!It!l!!!!!!I!III!I!!!!!lhll!ur 

.11.1 -, 

544 Kinematics :... T. ti .... ! 

~ 

Matlab: 
The transformation from 'Ii = [l,IlF to pe = [x, y, z]T, Equation (2.92), is pro
grammed in the GNe toolbox script: 

[x,y,z]=11h2ecef(1,mu,h) 

Example 2.4 (ECEF Coordinates from land p,) 
Assume that l = 10.30 

, p, = 63.00 
, and h = 0 (m). Hence, the ECEF coordi

nates are computed to be: 

2856552 (m) ] 
519123 (m)

[[~]= 5659978 (m) 

using the Matlab command: 

[x,y, z] =llh2ecef (1 0.3* (pi/180) , 63.0* (pi/180) ,0) 

2.4 Transformations for Stability and Current Axes 

When deriving the hydrodynamic derivatives for a marine vessel it is common to rotate the 
body fixed axes (b-frame) such that the direction of the speed: 

(2.93) 

points in the opposite direction of the new z-axis, Hence, the drag force will be along the 
body-fixed x-axis, while the lift force will be along the z-axis. Lift and drag forces can then 
be computed as a function of forward speed and transformed back to the b-frame coordinates. 

The transformation of the vessel's b-frame to this system is defined by two principal 
rotations. First the b-frame coordinate system is rotated a positive angle Q about the y-axis. 
This angle is referred to as angle ofattack and the new coordinate system is called the stability 
axes. The stability axes are then rotated a negative sideslip angle - f3 about the z-axis. The 
resulting coordinate system represents the current axes. 

The names stability and wind axes are commonly used in aerodynamics to model lift 
and drag forces which both are nonlinear functions of Q, f3 and U. This convention has been 
adopted by the marine community and SNAME to describe lift and drag forces on submerged 
vessels (SNAME 1950). Hence, wind axes are modified to current axes. 

The transformation between the b-frame and the stability/current axes can be mathemati
cally expressed as: 

= n£"Y,O:vb (2.94) 
vcurrent st a b R %,-{3 V (2.95) 
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Figure 2.8: Definiton of stability and current axes in terms of the angle of attack a and the 
, I

sideslip angle /3. . 1 

where 

coso sin/3o Sina] [ cos /3
Ry,a = 0 1 0 , Rz,_p = R~p = -sin /3 cos/3 (2.96) l '�

[ -sma o cosa 0 o� n
The transformation matrix from the b-frame to current axes becomes: 

R );urrent = R z,- pRy ,a 

COS 13 cos a sin/3 cos d sin o ]
= - sin ~ cos a cos 13 - sin dsin a (2.97)

[ - sm a o cos a 

The velocity transformation: 

v current = R);urrentvb (2.98) 

can now be rewritten as: 

Vb = (Rburren t) T v current (2.99) 
Ilml!

~ 

(2.100)[ :] ~ R;,.R;'_p[ n I 
I 

Writing this expression in component form, yields: 
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u = V cos (}' cos f3 (2.10 I) 

v V sinf3 (2.102) 

w = V sin a cos f3 (2.103) 

For small angles of (}' and f3 (linear theory), this reduces to: 

u = V, v = f3V, 

such that a = ui]V and f3 = vIU. Notice that the state-space model of a marine vessel can 
be represented by using one of the following vectors: 

v =[u,v,w,p,q,r]T (2.105) 

vcurrent = [V, f3, a, p, q, r]T (2.106) 

The latter representation is often more intuitive to use from a hydrodynamic point of view, 
while control engineers prefer the former. Both representations are, however, equivalent since 
there exists a nonlinear transformation between (u, v, w) and (U, f3, a), given by (2.101}
(2.103). For small angles the approximation: 

vcurrent =V(U)II (2.107) 

with: 
V(V) =diag{l, l/U, uu, 1, 1, I} (2.108) 

can be used. Notice that "(V) # 0 since the forward speed V is time-varying. 

2.5 Exercises 

Exercise 2.1 Show that Rb' (e) = R~ (e)S(W~b) is equivalent with differentiating each 
component in the rotation matrix 1t{R~(e)};j (i,j = 1,2,3). It is sufficient to show this 
for the two elements R ll and R 12 . 

(00,00,0) andExercise 2.2 What are the ECEF positions corresponding to (I, u, h) = 
(I,jj,h) = (1800,00 

, D)? Compute the distance (Earth diameter) between the two points. 
-900,0).Repeat the computations for (I, u, h) = (00,900,0) and (I, jj, h) = (00 

, Are the 
two diameters equal? 

Exercise 2.3 Given the ECEF positions (xe,Ye, ze) = 106 . (2.7688,1.5986,5.5005). Com
pute land JL using Algorithm 2.4 andfind the city corresponding to these coordinates. 

Exercise 2.4 Consider a marine craft moving at forward velocity u = 2 m/s and transverse 
velocity v = 0 mls. The yawing rate during autopilot control is r = 1 deg/s.� 

a) Write down the differential equations for the North and East positions, and the yaw (head�
ing) angle. Assume that the heave, roll and pitch modes can be neglected.� 

b) Plot the positions and heading as a function oftime. Present the results in two plots: one� 
with North-East axes and one where the yaw angle is plotted against time.� 
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2.5 Exercises 

Exercise 2.5 Consider an underwater vehicle moving at velocity v" = [u,V, w]T = [4,1, 2]T� 
in the b-frame. The Euler angles are E> =[¢, 8, 'l/JjT = [10°,20°, _500 ]T. Solve the follow�
ing problems by using the Matlab™ GNC toolbox:� 

a) Compute the NED (n-frame) velocity vector v".� 

b) Compute the unit quaternion vector q corresponding to the Euler angles E>.� 
c) The longitude and latitude of the underwater vehicle is l = 70° and I.t = 10°. Compute� 
the ECEF (e-frame) velocity vector v". 

Exercise 2.6 Consider the kinematic equations: 

pn = Rb(E»yb 

• b" 
8 = T e(8)wn b 1 

Show that the NED (n-frame) accelerations can be written: -... -,,--./~ ... 

" [ ~~ ] = [ Rb(8) 0 ] [ vb ] + [;-:=;~(E»s(yb) ] [ yb ] ~ 

(E> 0 Te(E» W~b 0 Te(8) W~b 

..»>: 

Hint: S(a)b = a x b = -b x a = -S(b)a.� 

Exercise 2.7 Show that the quatemion rotation matrix can be written:� 

Rb(q) = 13 x 3 + 21]S(e) + 2S2(e) 

by substituting the definitions e = A sin ~ and 1] = cos ~ into the rotation matrix: 

~,e = 13 x 3 + sin,BS(A) + (1 - cos,B)S2(A) 

"� 
;',.,," 
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The marine vessel equations of motion involve the study ofstatics and dynamics. Statics 
is concerned with the equilibrium of bodies at rest or moving with constant velocity, 

whereas dynamics is concerned with bodies having accelerated motion. Statics is the oldest 
of the engineering sciences. In fact, important contributions were made over 2000 years ago 
by Archimedes (287-212 Be), who derived the basic law ofbydrostatic buoyancy. This result 
is the foundation for static stability analysis of marine vessels. 

The study ofdynamics started much later, since accurate measurements of time are nec
essary to perform dynamic experiments. The scientific basis of dynamics was provided by 
Newton's laws, published in 1687. 

In the following sections, it is shown that the 6 DOF nonlinear dynamic equations of 
motion can be conveniently expressed as (Fossen 1991, Fossen 1994): 

Mz> C(v)v + D(v)v + g(TJ) = T + go + W 

.. A2Jiiiiii__~~~iiNi.;;. ..........•_~~~.l~~~ 

where 

M - system inertia matrix (including added mass) 
C(v) - Coriolis-centripetal matrix (including added mass) 
D (v) - damping matrix 
g(TJ) - vector of gravitationalJbuoyancy forces and moments 
T - vector of control inputs 
go - vector used for pretrimming (ballast control) 
w - vector of environmental disturbances (wind, waves and currents) 

•
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The marine vessel equations of motion involve the study of statics and dynamics. Statics 
is concerned with the equilibrium of bodies at rest or moving with constant velocity, 

whereas dynamics is concerned with bodies having accelerated motion. Statics is the oldest 
of the engineering sciences. In fact, important contributions were made over 2000 years ago 
by Archimedes (287-212 BC), who derived the basic law of hydrostatic buoyancy. This result 
is the foundation for static stability analysis of marine vessels. 

The study of dynamics started much later, since accurate measurements of time are nec
essary to perform dynamic experiments. The scientific basis of dynamics was provided by 
Newton's laws, published in 1687. 

In the following sections, it is shown that the 6 DOF nonlinear dynamic equations of 
motion can be conveniently expressed as (Fossen 1991, Fossen 1994): 

Nhere 

Mit C(v)v + D(v)v+ g(1]) =,. + +w 

M - system inertia matrix (including added mass) 
C( v) - Coriolis-centripetal matrix (including added mass) 
D(v) - damping matrix 
g( 1]) - vector of gravitationallbuoyancy forces and moments 
,. - vector of control inputs 
go - vector used for pretrimming (ballast control) 
w - vector of environmental disturbances (wind, waves and currents) 
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50 Dynamics ofMarine Vessels 

The expressions for M, C(v), D(v), g(1J), and go are derived in Sections 3.1-3.2 while 
environmental disturbances w are treated separately in Chapter 4. Sections 3.3 and 3.5 dis
cuss nonlinear model properties and system transformations applicable to 6 DOF vessel mod
els. Matlab examples will demonstrate how the model matrices and vectors can be computed. 

The nonlinear model presented in this chapter is mainly intended for control systems 
design in combination with system identification and parameter estimation. Hence, the ex
tensive literature on hydrodynamics should be consulted to obtain numerical values for the 
hydrodynamic derivatives which are necessary for accurate prediction and computer simu
lations. Some standard references in hydrodynamics are Faltinsen (1990), Newman (1977), 
Sarpkaya (1981), and Triantafyllou and Hover (2002). 

Before the 6 OOF dynamic equations of motion are derived, some principles from New
tonian mechanics are reviewed, while Lagrangian mechanics will be used to derive the ex
pressions for hydrodynamic added mass in Section 3.2.1. Detailed discussions of Newtonian 
and Lagrangian mechanics is found in Goldstein (1980), Hughes (1986), Kane et al. (1983), 
Meirovitch (1990), and Egeland and Gravdahl (2002). 

3.1 Rigid-Body Dynamics 

In this section the Newton-Euler formulation for rigid bodies and the foundation of vectorial 
mechanics are presented. In this context it is convenient to define the vectors without refer
ence to a coordinate frame (coordinate free vector). A vector v is defined by its magnitude 
and the direction. The vector vdecomposed in the inertial reference frame is denoted as Vi, 

which is also referred to as a coordinate vector. 

Newton-Euler Formulation 

The Newton-Euler formulation is based on Newton s Second Law which relates mass m, 
acceleration &c and force /: according to: 

(3.2) 

where the subscript c denotes the center of gravity (CG). This law must be formulated in an 
inertial frame. 

If no force is acting U: = 0), then the rigid body is moving with constant speed (ve = 
constant), or the body is at rest (ve = 0); a result known as Newton's First Law. New
ton's laws were published in 1687 by Isaac Newton (1643-1727) in "Philosophia Naturalis 
Principia Mathematica." 

Euler's First and Second Axioms 

Leonhard Euler (1707-1783) suggested in his "Novi Commentarii Academiae Scientarium 
Imperialis Petropolitane" to express Newton's Second Law in terms of conservation of both 
linear momentum Pc and angular momentum he. These results are known as Euler's First 
and Second Axioms, respectively. 

Pc = mvc (3.3) 

he = IeWib (3.4) 
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3.1-3.2 while where J: and me are the forces and moments acting on the body's center of gravity (denoted 
3 and3.5 dis- by subscript c), Wib is the angular velocity offrame b relative to frame i, and Ie is the inertia 
F vesselmod- dyadic about the body's center of gravity (to be defined later). The application of these equa
be computed. tions is often referred to as vectorial mechanics since both conservation laws are expressed 
errol systems in terms of vectors. 
knee, the ex- When deriving the equations of motion it will be assumed: (I) that the vessel is rigid, 
values for the and (2) that the NED frame is inertial. The first assumption eliminates the consideration of 
mputer simu- forces acting between individual elements of mass while the second eliminates forces due 
wman (1977), to the Earth's motion relative to a star-fixed inertial reference system. For guidance and 

navigation applications in space it is usual to use a star-fixed reference frame or a reference 
es from New- frame rotating with the Earth. Marine vessels are, on the other hand, usually related to the 
ieri"e the ex- NED reference frame. This is a good assumption since forces on marine craft due to the 
of Newtonian Earth's rotation: 
et al. (1983), Wie = 7.2921 . 10-5 (rad/s) (3.5) 

are quite small compared to the hydrodynamic forces. 

f 51 3.1.1 Translational Motion� 

Themass ofa rigid body is defined by the volume integral:� • of vectorial� 
.-.out refer
lS magnitude m:= iPmdV . (3.6)� 

..-dasvi ,� 

where Pm is the density of the body. For simplicity it will be assumed constant density such 

~ that m= O. The vector from the inertial frame to the vessel's CG is defined as: 

_ 1 [' 
(3.7)re := m lv r'PmdV 

lIeS mass m, 

The position of the volume element dV is (see Figure 3.1): 

(3.2)~ e' =re+r (3.8) 

II1la1ed in an From the definition of the CG it is seen that: 

;pxd (ve = i rPmdV' = if'PmdV -[ fePm dV 
LT.... New

ia ~ aturalis = m~ - fc fv PmdV = 0 (3.9) 

r� since Te is constant over the entire volume.� 
For marine vessels it is desirable to derive the equations ofmotion for an arbitrary origin 0 

;oentarium in the b-frame to take advantage of the vessel's geometric properties. Since the hydrodynamic 

ion of both and kinematic forces and moments are given in the b-frame, Newton's laws will be formulated 

uler's First in the b-frame as well. The b-frame coordinate system is rotating with respect to the i-frame 

•� (inertial system). This implies that the velocities of CG and 0 must satisfy:� 

(3.3) Ve = e: + Wib X Tg (3.10) 

(3.4) It is common to assume that the NED frame is an approximate inertial frame by neglecting 

J 

- ......� 
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inertial frame 

Figure 3.1: Definition of the volume element dV and the coordinate origins a and CG. 

the Earth rotation Wie and the angular velocity Wen due to slow variations in longitude and 
latitude (flat Earth assumption). This implies that: 

(3.11) 

is a good approximation. Decomposing (3.10) into the b frame under the assumption that 
Wib = Wnb ' yields : 

(3.12) 

Hence: 

(3.13) 

Time differentiation ofthis expression, yields the acceleration of the CG in NED coordinates: 

(3.14) 

Here we have used the facts that R/,' = R/,'S(W~b) ' see Theorem 2.2 in Section 2.2.1, and 
r~ = 0 (the distance between a and CG is constant in a rigid body). 

I 
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Euler's first axiom (3.3) decomposed in the inertial frame is written; 

mvi
c -- fi

C (3.15) 

Since NED is assumed to be an inertial frame, (3.15) can be approximated by: 

mvn - fn c - c 

= Rnfb (3.16)b c 

.. _...............
 Substituting (5.57) into (3.16) yields the translational motion of the coordinate origin 0 in .... , body-fixed coordinates: 

m[v~ + S(w~b)r: + S(W~b)V~ + S2(W~b)r:] = f~ (3.17 

where f~ = fi is used-i.e., the translational motion is independent of the attack point of the 
external force. An alternative representation of (3.17) using vector cross products is: 

[•b . b b b b b (b b)] fbmVo+Wnbxrg+WnbXVo+WnbXWnbxr9 = (3.18) 
B,\l:~d~d. ,~. ,:wwrritfh'ntY'fiw ,;---w ~" -: 

If the origin of the body-fixed coordinate system (xo,Yo, zo) is chosen to coincide with the ~. 

0 

CG, then we have r~ = [0,0, of, fi = fg, and vt = v~. In this case the translational motion 
of the CG in body-fixed coordinates is: 

OlDdeG. 
~ 

m(v~ + S(W~b)V~) = f~ 

r 
mm 

3.1.2 Rotational Motion (Attitude Dynamics) 

The angular momenta about CG and 0 are defined as: (3.11) 

lIIIDplion that he = Iv (i X vp)PmdV (3.20) 

(3.12) ko = l (T' X vp)PmdV (3.21)
I.';: 

~ where Vp is the velocity of the volume element dV. Using vp = Vo +Wib X i" gives: 

(3.13) ho = Iv (i' x vo)PmdV + Iv i' X (Wib x i')PmdV 

•coordinates; 
= Iv (i + ig)PmdV x «. + Iv i' X (Wib x f')PmdV 

[ 
= mig x Vo+l i' X (Wib x i')PmdV (3.22) 

(3.14) since Iv iPmdV = (5 and ig is constant over the volume. If we define the inertia dyadic 
about 0 as: 

OIl 22.1, and 
10 = i -S2(T')PmdV (3.23) 

.. -
~ 
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we get the relationship: 

Iowib	 = i -S(T')S(T')WibPmdV 

= l:" x (i'	 x Wib)PmdV 

= (Wib x i')PmdV	 (3.24)Iv i' X
 

which shows that the angular momentum ho about 0 can bewritten:
 

(3.25) 

Next, from (3.20) and Figure 3.1, we also get: 

he = i ((i' - ig) x vp)PmdV 

= ho - ig x i vpPmdV	 (3.26) 

Since the velocity of the CG is defined as: 

v-e :=	 -11-VpPm dV (3.27) 
m v 

the angular momentum about the CG can be written: 

he = ho - mig x Ve (3.28) 

The attitude dynamics is derived by decomposing the angular momentums ho and he in 
the b-frame. From (3.25) it is seen that: 

I b b bho 
b = oWnb + mr9 x v 0 (3.29) 

Ob lob bobh0= oWnb + mrg x V o (3.30) 

since I, = 0 (constant inertia) and f~ = O. Similarly, (3.28) implies that: 

h b = hb _ mrb x vb 
e	 0 9 e 

= 10W~b + mr~ x v~ - mr~ x v~ (3.31) 

Ob = I ob b ob b obhe oWnb + mrg x V o - mrg x ve (3.32) 

The b-frame equations can be transformed to the NED frame by using: 

h~ = Ri,'h~ (3.33) 

such that: 

h~ Ri,'h~ + Ri,'h~ 
°b b b 

= Ri,'(he + S(wnb)hJ 

= Ri,'[Iow~b + mr~ x (v~ - v~) 

+W~b X (loW~b + mr~ x (v~ - v~))l (3.34) 

.. 
1.IWIliI,,,"" '!II~ 

•
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(3.24) 

(3.25) 

~ 

1 
(3.26) 

(3.27) 

[ 
(3.28) 

and he in 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

-, 
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Euler's second axiom (3.4) states that: 
• . i 
h~=me (3.35) 

which is approximated as: 
nitn =rn (3.36)e e 

under the assumption that the NED coordinate system is an inertial frame. The moment about 
eGis: 

m? = Rn(rnb _ r b x fb)e bog e 

R n [ b b (. b + b b)]= b rno - r g x m V e Wnb X V e (3.37) 

where (3.19) has been applied. Euler's second axiom with (3.34) and (3.37) yields: 

. b b· b b (I b b (b b))1oWnb+mrgXvo+WnbX oWnb + mrg X Vo-Ve
 

b b (b b)
= rna - r g x m Wnb X V e 

= rn~ - r: X m(W~b X (v~ + (w~bxr:))) (3.38) 

This can be rearranged to: 

. b bIb b ( • b b b) b1oWnb+Wnb X aWnb+mrgX Vo+WnbXVo =rno (3.39) 
"/'W&iI .a1'" IT' rtf THii' ... ~'p'HQfr "'"1 ::OW.".,,,:;,- % '. t' nw~ 't "~ .. :. :"',,i::~ 

by noticing the identities: 

W~b x (r~ x (v~ - v~)) = r~ x (W~b x (w~bxr:)) 

(3.40)t 
b (b (b b)) _ b (( b b) b )Wnb X r g x WnbXrg - -rg x wnbxrg X Wnb 

This follows directly from the Jacobi identity: 

a x (b x c) + b x (c x a) + c x (a x b) =0 (3.41) 

which for c = a x b reduces to: 

a x (b x (a x b)) + b x ((a x b) x a) = 0 (3.42) 

since (a x b) x (a x b) = O. Hence, setting a = w~b and b = r~ gives (3.40). The result 
(3.39) describes the attitude dynamics of the vessel. It can also be written in terms of the 
skew-symmetric matrix S as: 

+ mS(r:)S(w~b)V~ = rn~ (3.43) 

If r~ = [0,0,0] T this expression reduces to: 

leW~b + S(w~b)lew~b = rn~ (3.44) 
;"",;JJi~~ 

which is referred to as Euler's equations. 
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Definition 3.t (Inertia Matrix) 
The inertia matrix 1 0 E jR3X3 about 0 is defined as: 

Ji 

(3.45) 
1=~:~::jjlllll:iiI _ 

where Ix, ly, and lz are the moments of inertia about the Xb,Yb, and Zb-axes, and lxy = 
lyx, lxz = lzx and lyz = lzy are the products of inertia defined as: 

lxy = Iv xy PmdV = Iv yx PmdV = lyx = 
lxz = Iv xz PmdV = Iv zx PmdV = t.; : = 
lyz = Iv yz PmdV = Iv zy PmdV = i., 

~ 

= ,,~In practise it is convenient to compute the inertia matrix L, E jR3x3 about the CG and trans

form this matrix to the b-frame by using the parallel axes theorem: 

y, Q''''.Theorem 3.1 (parallel Axes Tbeorem)
 
The inertia matrix 10 = IJ E jR3X3 about an arbitrary origin 0 is given by: --: ""It - 0'"
 

!iE Mm·',{<-· 

(3.46) 

where Ie = IJ E jR3x3 is the inertia matrix about the body scenter ofgravity. 

Proof.
 
Substituting t: given by (3.25) into the expression for he in (3.28), yields:
 

Using the fact that 

yields 

(3.48) 

(3.47) 

_._7",.,_ 
..~ 

i e :k'll 

• 
hb 

e = I b b (boWib+ mrg x r g 
b)x Wib $1 t 

= [10 + mS2(r~)]W~b (3.49) 

Hence, it follows that: 

hb 
e 

~ 
= 

'v'W~b 

lew~b (3.50) ,- ' 

Ie = L, + mS2(r~) (3.51) 

The alternative representation in (3.46) is found by using: 

S2(r) = S(r)S(r) = rrT - r T r 13x3 (3.52) 

• 
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(3.45) 

and I z y = 

. = I 
y z 

. = Izz
 
= I zy
 

CG and trans

(3.4 

• .;.; 1'-7 .'~ l 

I (3.47) 

(3.48) 

.-
(3.49) 

(3.50) 

(3.51) 

(3.52) 
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3.1.3 Rigid-Body Equations of Motion 

In the previous sections it was shown how the rigid-body dynamics can be derived by ap
plying Newtonian mechanics. In this section, useful properties of the nonlinear equations 
of motion are discussed and it is also shown how these properties considerably simplify the 
representation of the nonlinear model. 

6 DOF Rigid-Body Equations of Motion 

Equations (3.18) and (3.39) are usually written in component form according to the SNAME 
(1950) notation by defining: 

fbo = [X, Y, ZjT - force decomposed in the b-frame 
bm = [K M N]T - moment decomposed in the b-frame 

vbo
o = [u ,

" 
V , W)T - linear velocity decomposed in the b-frame 

W~b = [p, q, rJT - angular velocity of the b-frame relative to the n-frame 
r~ = [Xg,Yg, ZgJT - vector from 0 to CG decomposed in the b-frame 

Applying thisnotation, (3.18) and (3.39) becomes: 

m [it - vr + wq - xg(q2 + r2) + Yg(pq - r) + Zg(pr + q)] = X
 

m [v - wp + ur - Yg(r2 + p2) + zg(qr - p) + xg(qp + r)] = Y
 
m [w - uq + vp - Zg(p2 + q2) + xg(rp - q) + Yg(rq + p)] = Z
 

Izp + (t, - Iy)qr - (i' + pq)Ixz + (r2 - q2)Iyz + (pr - q)Ixy
 
+m [Yg(w - uq+ vp) - Zg(v - wp + ur)] = K (3.53) 

2)IIyq + (Iz - Iz)rp - (p + qr)Ixy + (p2 - r zx + (qp - r)Iyz
 
+m [Zg(u - vr+ wq) - xg(w - uq + vp)] = M
 

Izr + (III - Iz)pq - (4 + rp)Iyz + (q2 - p2)Ixy + (rq - p)Izx
 
+m [xg(v - wp + ur) - Yg(u - vr + wq)] = N
 

The first three equations represent the translational motion, while the last three equations 
represent the rotational motion. 

Vectorial Representation 

The rigid-body dynamics can be expressed in a vectorial setting as (Fossen 1991): 

.",. 

MRBV + CRB(V)V = TRB (3.54) 
:.0%+'; ntc ~W' Nt ,. K::· .~·'~i,<_i:;...,_0'~~'i.ii"" 

where v = [u, v, w,p, q,r]T is the generalized velocity vector decomposed in the b-frame 
and T RB = [X, Y, Z, K, M, N)T is a generalized vector of external forces and moments. 

Property 3.1 (Rigid-Body System Inertia Matrix M RB )
 
The representation ofthe rigid-body system inertia matrix MRB is unique and it satisfies:
 

MRB =M~B >0, MRB = 06x6 

where 

~I'!'I"~li!iiiil!!~... 'J' •..".. 

" 
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..
 
[ ml3x3 -mS(r~) ]


MRB 
mS(r~) 10
 

m 0 0 0 mZg -ow, 
0 m 0 -mzg 0 mx9 

0 0 m mYg -mxg 0 
(3.55)

0 -mzg mYg Ix -Ixy -Ixz 
mZg 0 -mx9 -Iyx Iy -Iyz 

-mYg mx9 0 -Izx -Izy t, 

Here, 13x3 is the identity matrix, 10 = IJ > 0 is the inertia matrix according to Definition 
3.1, and S(r~) is a skew-symmetric matrix according to Definition 2.2. 

Matlab: Computation ofMR B
 
The rigid-body system inertia matrix can be computed in Matlab™ as:
 

r_g (10 0 11' % location of the CG with respect to 0
 
nu (10 0 1 0 0 1]' % velocity vector
 
I c 10000*eye(3) % inertia tensor
 
m 1000; % mass
 

% rigid-body system inertia matrix
 
MRB = ( m*eye(3) -m*Smtrx(r_g}
 

m*Smtrx(r_g} I c
 

which produces the numerical result: 
" ~l~[· 

1000 0 0 0 1000 0 
,~) 

0 1000 0 -1000 0 10000 
'I.II~'I' 

0 0 1000 0 -10000 0
M R B = 0 -1000 0 10000 0 0 

1000 0 -10000 0 10000 0 '.' 
:~0 10000 0 0 0 10000 

The matrix CRB in (3.54) represents the Coriolis vector term W~b x v~ and the centripetal 
vector term W~b x (W~b x r~). Contrary to the representation ofMR B , it is possible to find a 
large number ofrepresentations for the matrix CRB. We use Kirchhoff's equations to derive 
a skew-symmetric representation of C RB. 

Tbeorem 3.2 (Coriolis-Centripetal Matrix from System Inertia Matrix) 
Let M be a 6 x 6 system inertia matrix defined as: 

M = M T = [MIl M12] > 0 (3.56)
M 2 1 M 22 

where M 2 1 = MT2' Then the Coriolis-centripetal matrix can always be parameterized such 
that C(v) = -CT (v) by choosing: 
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03x3 -S(MllVI + M 12V2 ) (3.57)C(v) = [ -S(MllVI + M 12V2) -S(M2IVI + M 22 V 2 ) 

where Vi = [u,V, w]T, V2= [P, q, r]T, and S is the cross product operator according to 
Definition 2.2. 

Proof. The kinetic energy T is written in the quadratic form: 

1 
T=2v™v, M=MT>O (3.58) 

Expanding this expression yields: 

. T = ~(viMUVl + viM12V2 + VJM2lVI + VJM22V2) (3.59) 

where M l2 = MJI and M 21 = Mi2' This gives: 

&T = MllVl + M l2V2 (3.60) 
aVI 

aT 
M 2l V I + M 22V2 (3.61) 

aV2 

Using Kirchhoff's equations, see (3.89}-(3.90) in Section 3.2.1, it is seen that there are some 
terms dependant on vwith the remaining terms due to Coriolis-centripetal forces. Hence: 

S(v2)::; ] [ -8(::;)] [ VI ] 03x3 
C(v)v:= er or = er or[ S(V2) aV2 +S(v1)aVl -S(aVl) -S(aV2) V2 

which after substitution of (3.60) and (3.61) gives (3.57). see Sagatun and Fossen (1991) for 
the original proofof this theorem. • 

We next state some useful properties of the Coriolis and centripetal matrix CRB(V): 

Property 3.2 (Rigid-Body Coriolis and Centripetal Matrix C RB) 
According to Theorem 3.2 the rigid-body Corio/is and centripetal matrix CRB(V) can al
ways be represented such that C RB(v) is skew-symmetric-i. e.: 

CRB(V) = -C~B(V), Vv E]R6 

Application ofTheorem 3.2 with M = M RB yields the following expression for CRB(v): 

C V _ [ 03x3 -mS(vd - mS(S(v2)r~) ] (3.62)
RB( ) - -mS(vd - mS(S(v2)r~) m8(S(vdr~) - S(Iov2) 

for which it is noticed that S(VI)VI = O. 

Three other useful skew-symmetric representations were derived by Fossen and Fjellstad 
(1995): 

~
 

i 
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03x3 -mS(vl) - mS(v2)S(r~) ] 
(3.63)[ -mS(vd + mS(r~)S(v2) -S(loV2) 

= [ mS(v2) -mS(v2)S(r~) ] ..~(3.64)
mS(r~)S(v2) -S(loV2) 

mS(v2) -mS(S(v2)r~) J (3.65)[ -mS(S(v2)r~) mS(S(vl)r~) - S(loV2) 

A

The first ofthese three expressions is written in component form according to Fossen (1991) .. 
as: 

0 0 0 
0 0 0 
0 0 0 

CRB(V) = (3.66)-m(ygq + ZgT) m(ygP+w) m(zgP- v)
 
m(xgq - w) -m(zgT + xgp) m(zgq+ u)
 
m(xgT +v) m(YgT -u) -m(xgP + ygq)
 

m(ygq + ZgT) -m(xgq - w) -m(xgT + v)
 
-m(ygP+ w) m(zgT + xgp) -m(YgT - u) ••

-m(zgP - v) -m(zgq + u) m(xgP+ygq)
 

0 -Iyzq - Ixzp + IzT IyzT+lxyp- Iyq 
Iyzq + Ixzp - I zT 0 -IxzT - Ixyq + Ixp 

-IyzT - Ixyp + Iyq IxzT + Ixyq - Ixp 0 

Matlab: Computation of C RB(v) 
Theorem 3.2 is implemented in the Matlab GNe toolbox in the script m2c.m. The fol

lowing example demonstrates how CRB(V) can be computed numerically using this
 
script:
 

% rigid-body system inertia matrix
 
MRB = [1000*eye(3) zeros(3,3)
 

zeros (3, 3) 10000*eye(3))i
 

% rigid-body Coriolis and centripetal matrix
 
nu = [10 1 1 1 2 3)'
 
CRB = m2c(MRB,nu)
 

which produces the numerical result: 

0 0 0 0 1000 -1000 
0 0 0 -1000 0 10000 
0 0 0 1000 -10000 0

C RB = 
0 1000 -1000 0 30000 -20000 

-1000 0 10000 -30000 0 10000 
1000 -10000 0 20000 -10000 0 
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J 
~ SimpUfied 6 DOF Rigid-Body Equations of Motion 

The rigid-body equations ofmotion can be simplified by choosing the origin ofthe body-fixed .63) 
coordinate system according to the following criteria: 

~.:,; (1) Origin 0 coincides with the CG: This implies that r~ = [0,0, O]T, I, = 10 (see Theo., 
I 

rem 3.1), and: 

[m13 x 3 = 03X3] (3.67)M R B 
03x3 r, 

A further simplification is obtained when the body axes (Xb, Yb, Zb) coincide with the 
191) principal axes of inertia. This implies that Ie = 10 = diag{l«, I y, I z }. 

(2) Rotation of the body axes such that 10 becomes diagonal: The body-fixed coordinate 
system (Xb, Yb, Zb) can be rotated about its axes to obtain a diagonal inertia matrix by 
simply performing a principal axis transformation. The eigenvalues Ai (i = 1,2,3) of 
the inertia matrix 10 are found from the characteristic equation: 

det(Al3 X3 - 10 ) = A3 + a2A2 + alA + ao = 0 (3.68) 

where 13 x3 is the identity matrix. The modal matrix H = [hI, h 2 , h3] is obtained from 
the right eigenvectors hi such that: 

(Ai13 x 3 - lo)h i = 0; (i = 1,2,3) (3.69) 

Consequently, the coordinate system (Xb'Yb, Zb) should be rotated about its axes to 
form a new coordinate system (X~, Y~, z~) with unit vectors: 

e~ = Hex; e~ = Hey; e~ = He, (3.70) 

Here, ex, ey and ez are the unit vectors corresponding to (Xb, Yb, Zb). The result is that 
the new inertia matrix I~ will be diagonal, that is: 

I~ = diag{I~, I y , I~} = diag{>.l, A2 , A3 } (3.71) 

The disadvantage with this approach is that the new coordinate system will differ from the 
longitudinal, lateral, and normal symmetry axes ofthe vessel. This can be compensated 
for in the control design by transforming the desired state trajectory to the (x~, Y~, zD 

l 
system. Applying these results to (3.53) yields the following simple representation: 

i.i , ., . 
m( it, - vr + wq) = X; Ixp + (I, - Iy)qr = K 
m(1; - wp + ur) = Y; IyQ + (Ix - Iz)rp = M (3.72) 

I· m(W - uq + vp) = Z; IzT + (Iy - Ix)pq = N 

" 
(3) Translation of the origin 0 such that 10 becomes diagonal: It is often convenient to let 

the body axes coincide with the principal axes of inertia or the longitudinal, lateral, and 
normal symmetry axes of the vessel. The origin of the body-fixed coordinate system 

"10- can then be chosen such that the inertia matrix of the body-fixed coordinate system 
will be diagonal, that is Io =diag{Ix, I y, Iz}, by applying the parallel axes theorem; " 

1j,ilIitJII' 
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see Theorem 3.1. Expanding (3.46) with 10 = diag{Ix , I y , I z } and L, as a full matrix, 
yields the following set of equations: 

Ix = I~g + m(y~ + z~)
 

Iy = Icg + m(x2 + Z2) (3.73)�Y 9 9 

t, = I~g + m(x~ + Y~)
 

where xg, Yg and Zg must be chosen such that:� 

mlcgx2� -r:lcgyz 9 = xy xz 

mlcgy2 -rs Icg (3.74)xz 9 = xy yz 

mlcgz2 -JCglcgxy 9 = z z' yz 

are satisfied. Hence, the rigid-body equations ofmotion can be expressed as: 

m lU - vr + wq - X g(q2+ r2) + Yg(pq - i) + Zg(pr + q)j = X 
v-wp+ur-Yg(r2+p2)+zg(qr-p)+xm g(qp+i) = y 

m w-uq+vp-Zg(p2+ q2)+xg(rp-q)+Yg(rq+p) = Z 
(3.75)

lxp + (Iz - ly)qr + m [Yg(w - uq + vp) - Zg(v - wp + ur)] = K 
Iyq + (Ix - Iz)rp + m [Zg(u - vr + wq) - xg(w - uq + vp)] = M 
lzi + (Iy - Ix)pq + m [xg(v - wp + ur) - Yg(u - vr + wq)] = N 

3.2 Hydrodynamic Forces and Moments ", 

In hydrodynamics it is common to assume that the hydrodynamic forces and moments on a 
rigid body can be linearly superimposed (see Faltinsen 1990). 

Radiation-Induced Forces� 

An important contribution to the hydrodynamic forces and moments are (Faltinsen 1990):� 

"Forces on the body when the body is forced to oscillate with the wave excitation 
frequency and there are no incident waves" 

The radiation-induced forces and moments can be identified as the sum of three new 
components: 

(1) Added mass due to the inertia of the surrounding fluid 

(2) Radiation-induced potential damping due to the energy carried away by generated sur
face waves. 

(3) Restoringforces due to Archimedes (weight and buoyancy). 

The contribution from these three components can be expressed mathematically as: 

TR = -MAv - CA(v)v - Dp(v)v - g(l1) + go (3.76) 
, .. ''---v----''---'''''''''''' 

added mass potential damping restoring forces 

\l1li.:..,,," ... 

'~ 
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In addition to potential damping we have to include other damping effects like skin friction.� 
wave drift damping, and damping due to vortex shedding, that is:� 

'D = - Ds(v)v - Dw(v)v - DM(V)V (3.77) 
~ '-v-"' '-v-"' 

skin wave drift damping due to 

friction damping vortex sbeddiDg 

Defining the total hydrodynamic damping matrix D(v) as: 

D(v) := Dp(v) + Ds(v) + Dw(v) + DM(V) (3.78) 

implies that the hydrodynamic forces and moments.H can be written as the sum of.R and 
'D, that is: 

'H = -MAv - CA(v)v - D(v)v - g(71) + go 

Environmental Disturbances 

In addition to the hydrodynamic forces and moments.H I the vessel will beexposed to envi
ronmental forces. These are: 

• wind 

• waves 

• currents 

The resulting environmental force and moment vector is denoted as w. Simple models for 
wind, waves, and current disturbances applicable to control system design are presented in 
Chapter 4. A more general discussion on marine hydrodynamics is found in Faltinsen (1990), 
Newman (1977), and Sarpkaya (1981). 

Resulting Model 

The resulting rigid-body dynamics is then expressed as (see Section 3.1.3): 

MRBV + CRB(V)V ='RE (3.80) 

where: 
'RB='H+W+' (3.81) 

The vector. represents the propulsion forces and moments. The resulting model is then 
given by: 

Mz> + C(v)v + D(v)v + g(71) = go + W +. 

where: 

M MRB+MA 
C(v) = CRB(V) + CA(v) 

The terms in (3.82) will now be discussed in more detail. 
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3.2.1 Added Mass and Inertia 

In the previous section, it was shown that the rigid body dynamics of a marine vessel can 
be derived by applying the Newtonian formulation. As for the rigid-body dynamics, it is 
advantageous to separate the added mass forces and moments in terms which belong to the 
added mass system inertia matrix M A and a matrix ofhydrodynamic Coriolis and centripetal 
terms denoted C A (v). To derive the expressions for these two matrices, an energy approach 
based on Kirchhoff's equations is applied. 

Lagrangian Mechanics 

An alternative approach to the Newton-Eulerformulation is to apply Lagrangian mechanics. 
The Lagrangian approach involves three basic steps. First, suitable expressions for the ves
sel's kinetic and potential energies, denoted T and V respectively, must be fomulated. Then 
the Lagrangian L is given by: 

L=T-V (3.83) 

Finally, the Euler-Lagrange equation is: 

(3.84) 

which in component form corresponds to a set of 6 second-order differential equations. From 
the above formula it is seen that the Lagrangian mechanics describes the system dynamics in 
terms of energy. Formula (3.84) is valid in any reference frame, inertial and body-fixed, as 
long as generalized coordinates are used. 

For a vessel not subject to any motion constraints, the number of independent (general
ized) coordinates is equal to the number of DOE For a marine vessel moving in 6 DOF the 
generalized coordinates can be chosen as (NED reference frame): 

(3.85) 

It should be noted that the alternative representation: 

(3.86) 

using unit quaternions cannot be used in a Lagrangian approach since this representation is 
defined by 7 parameters. Hence, these parameters are not generalized coordinates. Often 
it is advantageous to formulate the equations of motion in a body-fixed reference frame. 
Unfortunately, the body-fixed velocity vector: 

v = [u,v,w,p,q,rjT (3.87) 

cannot be integrated to yield a set of generalized coordinates in terms of position and orien
tation since f~ VdT has no immediate physical interpretation. Consequently, the Lagrange 
equation cannot be directly used to formulate the equations of motion in the body-fixed 
coordinate system. However, this problem can be circumvented by applying Kirchhoff's 
equations of motion, or the so-called Quasi-Lagrangian approach; see Meirovitch and Kwak 
(1989) for details. 
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I · 

Figure 3.2: Rigid-body and fluid kinetic energy (ocean surrounding the vehicle). 
~I 

" , 
I' 

Kirchhoff's Equations in Vector Form (Kirchhoff 1869) 
1!f.I 
;: ~ Consider a vessel with body-fixed linear velocity VI = [u, V, w)T and angular velocity £12 = 
1:1 [p,q, r]T. Hence, the force Tl = [X, Y, Z]T and moment T2 = [K ,M, N)T are related to 
~ ,~ ... 

iii! the kinetic energy: 
I' 1

T= -vTMv (3.88)
2 

by the vector equations: 

d (OT) OT = Tl (3.89)dt aVl + S(v2 ) aVl 

d(aT) et OT�
-d -a + S(v2 )-a + S(v1 )-a = T2 (3.90) 

t £12 £12 VI 

where S is the skew-symmetric cross-product operator in Definition 2.2. Kirchhoff's equa
tions will prove to be very useful in the derivation of the expression for added inertia. Notice 
that Kirchhoff's equations do not include the gravitational forces. 

Added Mass 

The concept of added mass is usually misunderstood as a finite amount of water connected to 
the vessel, such that the vessel body and the fluid represent a new system with a mass larger 
than the original system. This is not true, since the vessel motion would force the whole fluid 
to oscillate with different fluid particle amplitudes, in phase with the forced harmonic motion 
of the vessel. However, the amplitudes will decay far away from the body and may therefore 
be negligible. 

Added (virtual) mass can also be understood as pressure-induced forces and moments due 
to a forced harmonic motion of the vessel body proportional to its acceleration. Consequently, 
the added mass forces and the acceleration will be 180 degrees out of phase with the forced 
harmonic motion. 

~
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Fluid Kinetic Energy 

For completely submerged vessels it will be assumed that the added mass coefficients are 
constant and thus independent of the wave circular frequency. Together with this assumption, 
the concept of fluid kinetic energy is used to derive the added mass terms. Moreover, any 
motion of the vessel will induce a motion in the otherwise stationary fluid. In order to allow 
the vessel to pass through the fluid, it must move aside and then close behind the vessel. As 
a consequence, the fluid motion possesses kinetic energy that it would lack otherwise. 

The expression for the fluid kinetic energy TA, see Lamb (1932), is written as a quadratic 
form in the body axis velocity vector: 

1 T
TA ="2v MAv	 (3.91) 

where MA is the 6 x 6 system inertia matrix of added mass terms: 

A 12 M A [	 All ] (A ij E JR3X3) (3.92)
A2l A22 

Xu Xv X'li; X·p X q X f 
Yu Yv Y'li; Yp Yq Yf 
ZiL 
K iL 

Zv 
K v 

Z'li; 
K'li; 

Zp 
K p 

Zq 
K q 

Zf 
K f 

(3.93) 

Afu Mil M'li; u; u, u, 
Nu N v N'li; Np N·q s, 

The notation of SNAME (1950) is used in this expression; for instance the hydrodynamic 
added mass force Y along the y-axis due to an acceleration u in the x-direction is written as: 

Y = -Yuu (3.94) 

where aY 
Yu := au	 (3.95) 

In some textbooks the notation Aij = -{MAhj is used instead. This implies that 
A 21 = - YiL in the example above. It should be noted that the hydrodynamic derivatives 
All = -Xu,A22 = -Yv,A33 = -Z'li;,A44 = -Kp,A55 = -Mq and A 66 = -Nf, 
corresponding to the diagonal, will all be positive for most applications. However at cer
tain frequencies, negative added mass values have been documented for catamarans, bulb 
sections, and submerged body sections close to the free surface. For completely submerged 
vessels M A will always be strictly positive, that is MA > O. 

Expanding (3.91) under the assumption that M A = M}, yields the component form 
expression: 

2 2-XuU - Yvv - Z'li;W2 - 2Y'li;vW - 2X'li;wU - 2Xvuv 
2_Kpp2 M qq2 Nfr 2Mfqr 2Kfrp - 2Kqpq
 

-2p(Xpu + Ypv + Zpw)
 

-2q(Xqu + Yqv + Zqw)
 

-2r(Xfu + Yfv + ZfW ) (3.96)
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where the kinetic energy TA is just the right-hand-side divided by 2. 

Property 3.3 (Hydrodynamic System Inertia Matrix MA)
 
For a rigid-body at rest (U ~ 0), and under the assumption ofan ideal fluid, no incident
 
waves, no sea currents, and zero frequency, the hydrodynamic system inertia matrix is posi

tive definite:
 

MA=M1 >0 

Proof. Newman (1977). • 

Remark 1: In a real fluid the 36 elements of M A may all be distinct but still M A > O. 
Experience has shown that the numerical values of the added mass derivatives in a real fluid 
are usually in good agreement with those obtained from ideal theory (see Wendel 1956). 
Hence, M A = M1 > 0 is a good approximation in marine control systems. 

Remark 2: It should be noted that for surface ships moving with a speed U ~ 0 in waves, 
Salvesen etal. (1970) have shown by applying strip theory that: 

MA(U) # M1 (U) (3.97) 

However, for underwater vehicles (ROYs) and foilbome catamarans operating outside the 
wave-affected zone, symmetry and frequency independence have shown to be reasonable 
assumptions. This is also a good approximation for positioned ships since U ::::::! O. 

Consider a symmetrical added inertia matrix having 21 distinct hydrodynamic deriva
tives. The added mass forces and moments can be derived by applying potential theory. This 
method is based on the assumptions of an inviscid fluid, no circulation and a completely 
submerged body in an unbounded fluid. The last assumption is violated at the seabed, near 
underwater installations, and at the surface. However, this is not a practical problem since 
double-body theory can be applied (Faltinsen 1990). 

Added Mass Forces and Moments 

Based on the kinetic energy TA of the fluid, it is straightforward to derive the added mass 
forces and moments. This is usually done by application ofKirchhoff's equations (Kirchhoff 
1869), which simply relates the fluid energy to the forces and moments acting on the vessel. 
Consider Kirchhoff's equations in component form (see Milne-Thomson 1968): 

s er, 
dt au 

= OTA OTA
r--q---XA 
avow 

s er, 
dt &v 

= OTA OTA
p--r---YA 

ow au 
s er, 
dt ow 

= oTA OTA
q--p--ZA

au ov 
aer; 
dt op 

OTA OTA OTA oTAw--v--+r--q-e - KA 
avow oq or 

s er, 
dt oq 

= oTA oTA OTA OTA
u--w-+p--r---MA

ow au or op 
aer; 
dt Or 

oTA oTA OTA OTA
v--u-+q--p---NA au B» &p oq 

(3.98) 

""" .-, ,
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Substituting (3.96) into (3.98) gives the following expressions for the added mass terms 
(Imlay 1961): 

X A =	 X;.u + Xw(w + uq) + Xqq + Zwwq + Zqq2
 

+Xvv + XpP + x'"r - Yvvr - Yprp - Y"r2
 

-Xvur - Ywwr
 

+Ywvq+ Zppq - (Yq - Z,,)qr 

YA =	 Xvu + Yww + Yqq 

+Yvv + Ypp + Y"r + Xvvr - Ywvp + X"r2 + (Xp - Z" )rp - Zpp2 

-Xw(up - wr) + X;.ur - Zwwp 

-Zqpq+ Xqqr 

ZA =	 Xw(u - wq) + Zww + Zqq - X;.uq - X qq2 

+Ywv + ZpP + Z"r + Yvvp + Y"rp + Ypp2
 

+Xvup+ Ywwp
 

-Xvvq -	 (Xp - Yq)pq - X"qr 

KA = Xpu + Zpw + Kqq - Xiun: + Xsuq - Yww
2 - (Yq - Z" )wq + M"q2 

2+1;,'11 + Kpp + Kd + Ywv - (Yq - Z,,)vr + Zpvp - M"r2 - Kqrp 

+Xwuv - (Yv - Zw)vw - (Y" + Zq)wr - Ypwp - Xqur 

+(Y" + Zq)vq + K"pq - (Mq - N,,)qr 
2 2)M A =	 Xq(u + wq) + Zq(w - uq) + Mqq - X w(u - w - (Zw - X;.)wu 

+Yqv + Kqp + M"r + Ypvr - Y"vp - K,,(p2 - r2) + (Kp - N,,)rp 

-Ywuv + Xvvw - (X" + Zp)(up - wr) + (Xp - Z,,)(wp + ur) 

-M"pq + Kqqr 

NA = X"u + Z"W + M"q + X vu
2 + Ywwu - (Xp - Yq)uq - Zpwq - K qq2 
2+Y"v + K"p + N"r - X vv - X"vr - (Xp - Yq)vp + M"rp + K qp2 

-(Xu - Yv)uv - Xwvw + (Xq + Yp)up + Y"ur + Zqwp 

-(Xq + Yp)vq - (Kp - Mq)pq - K"qr (3.99) 

Imlay (1961) arranged the equations in four lines with longitudinal components on the 
first line and lateral components on the second. The third line consists of mixed terms in
volving u or w as one factor. If one or both of these velocities are large enough to be treated 
as constants, the third line may be treated as an additional term to the lateral equations of 
motion. The fourth line contains mixed terms that usually can be neglected as second order 
terms. 

It should be noted that the off-diagonal elements of MA will be small compared to the 
diagonal elements for most practical applications. A more detailed discussion on the different 
added mass derivatives can be found in Humphreys and Watkinson (1978). 

Property 3.4 (Hydrodynamic Coriolis and centripetal matrix C A)
 
For a rigid-body moving through an ideal fluid the hydrodynamic Coriolis and centripetal
 
matrix C A(V) can always be parameterized such that it is skew-symmetric:
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e added mass terms 

Zr)rp- Zpp2 

Zr)wq+ Mrq2 

Mrr2 -Kqrp 

r 
[Z., - Xu)wu 

(Kp - Nr)rp 

[!LOP + ur) 

- Zpwq - K qq2 

. Mrrp+ K qp2 

r' 
(3.99) 
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693.2 Hydrodynamic Forces and Moments 

by defining: 

03X3 -S(AllVI + A 12V2 ) ] 
(3.100)

CA(v) = [ -S(AllVI + A 
12 V2 ) -S(A21VI + A 22V 2 

where A i j (i, j = 1,2) are defined in (3.92). 

Proof. Substituting: 

[ 
A ll A12] (3.101)M = M A = A A 

2 I 22 

into (3.57) in Theorem 3.2 directly proves (3.100).• 

Formula (3.100) can bewritten in component form according to: 

0 0 0 0 -a3 a2 

0 0 0 a3 0 -al 

0 0 0 -a2 al 0
CA(v) = I	 (3.102)

0 -a3 a2 0 -b3 bz 
a3 0 -al b3 0 -bl 

-a2 al 0 -~ bl 0 

where 
al = Xuu +Xvv+ Xww +Xpp+Xqq+Xrr
 
a2 = Yuu + Y,;v + Yww + Ypp + Yqq +Yrr
 
a3 = Zuu + Zvv + Zww + ZpP + Zqq + Zrr
 (3.103)
bl = Kuu+Kvv+Kww+Kpp+Kqq+Krr
 
b2 = Muu + Mvv + Mww + Mpp + Mqq + M;.r
 
b3 = Nuu + Ni» + Nww + Npp + Nqq + Nrr
 

Example 3.1 (Added Mass for Surface Vessels) 
For surface ships like tankers, cargo ships, cruise-liners, etc., it is common to decouple the 
surge mode from the steering dynamics due to xz-plane symmetry. Similarly. the heave, 
pitch, and roll modes are neglected under the assumption that these motion variables are 
small. Hence, we define v =[u, v, r]T. This implies that the contribution from the added 
mass derivatives on a surface ship moving with forward speed U » 0 is: 

X u 0 0]
MA '" M} = - 0 Yv Yr

[ o	 n; N r 

o - Y vv-~rY..+N.] 
CA(v) = -C}(v) = [ ~ o Xuu
 

Yvv+ Yt~N", r -Xuu o
 ' 
For ship positioning, U ~ 0 and therefore MA = M}. Hence, we can replace N v with Y"	 >I,\:~ 

. ,,,.,,:ftIIr,,, 
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.........t ....�in the above expression which yields: - S 
~:::~.. 

:-..~ 

-

0 0 
M A = Ml=- [Xf Y" Y" ]

Y" N" ...... 
0 -(Y"v + Y"r) ]CA(V) = -Cl(v) ~ [ ~ 0 Xuu 

~i_l""Y"v + Y"r -Xuu 0 

Example 3.2 (Added Mass for Underwater Vehicles) 
In general, the motion ofan underwater vehicle moving in 6 DOF at high speed will be highly 
nonlinear and coupled. However, in many ROV applications the vehicle will only be allowed 
to move at low speed. Ifthe vehicle also has three planes ofsymmetry, this suggests that the r~. · .~. .-.' -II _...contribution from the off-diagonal elements in the matrix M A can be neglected. Hence, the 
following simple expressions for the matrices M A and C A are obtained: ..... ~. 

MA = Ml = -diag{Xu,Y",Zw, tc; Mq,Nr} (3.104) ~ .....o o o o . -Zww Y"v 
"fJ'-dio o -Xuu _......o Zww o 

o o o -Y"v Xuu o 
~o -z;» Y"v o -N"r Mqq ... 
~Zww o -Xuu N"r o -Kpp .. 

-v,» x;« o -Mqq Kpp o • r.~.~ 
(3.105) 

........... -~,


The diagonal structure is highly attractive, since off-diagonal elements are difficult to deter
mine from experiments as well as theory. In practice, the diagonal approximation is found to 
be quite goodfor many applications. This is due to the fact that the off-diagonal elements of .... 
a positive inertia matrix will be much smaller than their diagonal counterparts. .,._..'. 
Strip Theory 

For slender bodies an estimate of the hydrodynamic derivatives can be obtained by applying 
strip theory (Newman 1977). The principle of strip theory involves dividing the submerged 
part of the vessel into a finite number of strips. Hence, two-dimensional hydrodynamic coef .......� 
ficients for added mass can be computed for each strip and then summated over the length of , 
the body to yield the three-dimensional coefficients. 

A more general discussion on added mass derivatives for bodies of various geometries is 
found in Imlay (1961). Other useful references discussing methods for computation of the 
added mass derivatives are Humphreys and Watkinson (1978), and Triantafyllou and Amzal
lag (1984). 

Hydrodynamic Computation Programs 

WAMIT has become the de facto industry standard among oil and engineering companies 
for numerical computation of the transfer function and phase between the vessel and the 
waves for given wave directions and frequencies. WAMlT is a computer program based on 
a three dimensional panel method for analyzing hydrodynamic interactions with floating or 
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713.2 Hydrodynamic Forces and Moments 

submerged bodies in the presence of ocean waves using potential theory. Besides the wave
induced transfer functions, the 6 DOF hydrodynamic added system inertia matrix MA, po
tential damping matrix D p, and hydrostatic matrix G are available from WAMIT. For more 
detailed information regarding the capabilities of WAMIT, please consult the user manual on 
http://www.wamit.com or the reference available at the same site. 

Marintek AS (http://www.marintek.sintefno) offers several software programs for numer
ical hydrodynamics. The most useful programs for station-keeping, maneuvering, sealoads, 
and control designs are: 

•� RESPONSE - a PC-based program for analysis of wave-induced motion of a vessel. 
Motion parameters or seafastening forces at specified locations are calculated based on 
6 DOF motion transfer functions. 

•� SIMAN - Maneuvering prediction program that computes the rigid-body and hydrody
namic forces on a marine craft in transit. 

•� MIMOSA - Analysis program for mooring systems and moored vessels. Efficient fre
quency domain techniques are used to calculate low and wave frequency vessel motions 
and mooring tensions. 

•� SIMO - (Simulation of complex marine operations) Time domain simulation program 
for multibody systems, allowing nonlinear effects to be included in the wave frequency 
range. Flexible modeling of stationkeeping forces and connecting force mechanisms 
(anchor lines, ropes, thrusters) are included. 

•� WAVERES - Nonlinear potential flow wave resistance calculation using built-in, fast 
and easy element generation. 

3.2.2 Hydrodynamic Damping 

As mentioned in Section 3.2.1 hydrodynamic damping for marine vessels is mainly caused 
by: 

Potential Damping: We recall from the beginning of Section 3.2 that added mass, damping 
and restoring forces and moments are encountered when a body is forced to oscillate 
with the wave excitation frequency in the absence of incident waves. The radiation
induced damping term is usually referred to as potential damping. However, the con
tribution from the potential damping terms compared to other dissipative terms like 
viscous damping are usually negligible. 

Skin Friction: Linear skin friction due to laminar boundary layer theory is important when 
considering the low-frequency motion of the vessel (Faltinsen and Sortland 1987). 
Hence, this effect should be considered when designing the control system. In addition 
to linear skin friction, there will be a high-frequency contribution due to a turbulent 
boundary layer. This is usually referred to as a quadratic or nonlinear skin friction. 

Wave Drift Damping: Wave drift damping can be interpreted as added resistance for surface 
vessels advancing in waves. This type of damping is derived from 2nd-order wave 
theory. Wave drift damping is the most important damping contribution to surge for 
higher sea states. This is due to the fact that the wave drift forces are proportional to 
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72 ._~... 7]Dynamics of Marine Vessels 

the square ofthe significant wave height. Wave drift damping in sway and yaw is small 
relative to eddy making damping (vortex shedding). A rule of thumb is that 2nd-order 
wave drift forces are less than 1% of the 1st-order wave forces when the significant 
wave height is equal to 1 m and 10% when the significant wave height is equal to 10 
m. 

Damping Due to Vortex Shedding: D 'A/ambert s paradox states that no hydrodynamic 
forces act on a solid moving completely submerged with constant velocity in a non
viscous fluid. In a viscous fluid, frictional forces are present such that the system is not 
conservative with respect to energy. The viscous damping force due to vortex shedding 
can be modeled as: 

(3.106) 

where U is the speed of the vessel, A is the projected cross-sectional area under water, 
CD(Rn) is the drag-coefficient based on the representative area, and p is the water 
density. This expression is recognized as one of the terms in Morison's equation (see 
Faltinsen 1990). The drag coefficient CD(Rn) is a function of the Reynolds number 
(see Figure 3.3): 

(3.107) 

where D is the characteristic length of the body and v is the kinematic viscosity coef
ficient (1/ = 1.56· 10-6 for salt water at 5° C with salinity 3.5%). Quadratic drag in 6 
DOF is conveniently expressed as: 

IvlTDn1v 
Ivl T D n 2 v 
IvlT D n 3 v 

(3.108)(� IvlT D n 4v 

jvl T D n 5v 

Ivl T D n6v 

where 11.11 = [lui, lvi, Iwl ,Ipl , Iql ,ITllT and D ni (i = 1, ... ,6) are 6 x 6 matrices 
depending on p, CD and A. 

The different damping terms contribute to both linear and quadratic damping. However, 
it is in general difficult to separate these effects. In many cases, it is convenient to write total 
hydrodynamic damping as: 

D(v) = D + Dn(v) 

where D is the linear damping matrix and Dn(v) is the nonlinear damping matrix. Hydro
dynamic damping satisfies the following property: 

Property 3.5 (Hydrodynamic Damping Matrix D(v)) 
For a rigid-body moving through an ideal fluid the hydrodynamic damping matrix will be 
real, non-symmetric and strictly positive: 
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Figure 3.3: The drag coefficient Cd as a function of the Reynold's number Re and surface 
roughness curves k / D for a rough cylinder in a steady incident flow. k is the average surface 
height and D is the cylinder diameter (Faltinsen 1990). 

Example 3.3 (Damping Model for Dynamic Positioning of Ships) 
For low speed ships with xz-symmetry the surge mode can be decoupled from the steer
ing modes (sway and yaw). Hence, the linearized damping forces and moments (neglecting 
heave, roll, and pitch) can be written: 

X u o 0]
y" Yr (3.110)D=- ~ 

[ N v N r 

For low speed applications it can also be assumed that N; = Y,. such that D =D T. 

In practice it is difficult to determine the nonlinear and off-diagonal terms. It is therefore 
a good idea to use different damping models depending on the regime of the control sys
tem. This is shown in Figure 3.4 where the significance of linear and quadratic damping is 
illustrated. 

Example 3.4 (Ad Hoc Damping Model for High Speed Maneuvers) 
For maneuvers at high speed nonlinear damping D n (v) must be included such that: 

D(v) = D+Dn(v) (3.111) 

where D is given by (3.110). Afirst attempt could be to use a damping model motivated by 
Morrison's equation, that is: 

Dn(v) = -diag{Xll'/l' lui, Y/v/v lvi, N/r/r Irl} (3.112) 

where the quadratic terms X ltill', Y/vlv, and Nlrlr are given by (3.106). 

It should be noted that it is important to include both linear and quadratic damping, since 
only quadratic damping in the model will cause an oscillatory behavior at low speed. The 
main reason is that linear damping is needed for exponential convergence to zero. For ma
rine vessels, linear damping will always be present due to linear skin friction (Faltinsen and 
SorUand 1987). ,
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Figure 3.4: Linear and quadratic damping and their regimes (low and high speed). 
• 'i 

. ..:: 

Example 3.5 (Nonlinear Damping Model for High Speed Maneuvers) 
In Blanke (1981) a more detailed model including nonlinear coupling terms is proposed. 
This is a simplification ofNorrbin's nonlinear model (Norrbin 1970). Motivated by this a 
more general expression (assuming that surge is decoupled) is: 

[ 

-Xlulu lui 0 0] 
Dn(v) = 0 -YllI/lI Ivj-Ylr/ll Irl -YllIlr Ivl-Y1rlr Irl 

o -N11I11I Ivl-N1rl1l [r] -N11I1r Ivl-Nlrlr Irl 
For large ships Irl rand \rl v are small. This suggests that (Blanke 1981): 

[ 

-Xlulu lui 0 0]
Dn(v) = 0 -Ylv!v Ivl -Y!vlr Ivl 

o -Nlvlv Ivl -Nlvlr Ivl 

(3.113) 

(3.114) 

<II 

"'11' 

,lilli,' 

D(v) = -diag{Xu,Yv,Zw, Kp,Mq,Nr} 

-diag{X1u1ulul, 1'\vvilvl, Zlwlwlwl, K1v[plpl, M[qlqlql, N1r1rlrl} (3.115) 

As for ships quadratic damping can be neglected during station-keeping but not in high speed 
maneuvering situations. 

Example 3.6 (Damping Model for Low-Speed Underwater Vehicles) 
In general, the damping ofan underwater vehicle moving in 6 DOF at high speed will be 
highly nonlinear and coupled. Nevertheless, one rough approximation could be to assume 
that the vehicle is performing a non-coupled motion. This suggests a diagonal structure of 
D (v) with only linear and quadratic damping terms on the diagonal: 
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Figure 3.5: Gravitational and buoyancy forces acting on the center ofgravity (CG) and center 
of buoyancy (CB) ofa submarine. 

3.2.3 Restoring Forces and Moments 

Besides the mass and damping forces, underwater vehicles and floating vessels will also be 
affected by gravity and buoyancy forces. In hydrodynamic terminology, the gravitational and 
buoyancy forces are called restoringforces, and they are equivalent to the spring forces in a 
mass-damper-spring system. In the derivation of the restoring forces and moments: 

• underwater vehicles 

• surface vessels (ships, semi-submersibles, and high-speed craft) 

will be treated separately. 

UNDERWATER VEHICLES (SUBMERGED BODIES) 

As shown in Figure 3.5 the gravitational force f; will act through the center of gravity (CG) 

defined by r~ = [Xg, Yg,ZgjT. Similarly, the buoyancy force fi will act through the center of 
buoyancy (CB) defined by rg = [Xb, Yb, Zb]T. 

Let m be the mass of the vessel including water in free floating space, \7 the volume of 
fluid displaced by the vehicle, g the acceleration of gravity (positive downwards), and p the 
water density. According to the SNAME (1950) notation, the submerged weight of the body 
and buoyancy force are defined as: 

B = pg\7W=mg, (3.116) 

Hence: 

r;~ [t] and f"~-[~] (3.117) 

Notice that the z-axis is taken to be positive downwards such that gravity is positive and 
buoyancy is negative. By applying the results from Section 2.2.1, the weight and buoyancy 
force can be transformed to the body-fixed coordinate system by: 

fb = R n(8)-lfn ft = R/,'(8)-lf: (3.118)9 b g' 
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-


where R b(e) is the Euler angle coordinate transformation matrix defined in Section 2.2.1. 

According to (3.82), the sign of the restoring forces and moments ff and m~ = r~ x r;. 
i E {g, b}, must be changed when moving these terms to the left-hand side of (3.82), tha: 
is, the vector g(71). Consequently, the restoring force and moment vector in the body-fixed 
coordinate system is: 

(3.119)if 
' , 

! 

"1·."." •.. 

I 

(W - B) sinO
 
(W - B) cosOsin¢
 
(W - B) cosOcos¢
 

(3.120)(ygW - YbB) cosOcos¢ + (ZgW - ZbB) cosOsin¢ 

(zgW - ZbB) sinO + (Xg"l - XbB) cosOcos¢ 
(xgW -XbB) cos e sin e (Yg W - YbB) sinO 

Matlab: Computation of g(71)
 
The restoring forces can be computed by using the GNC toolbox commands:
 

r_g [0, 0, 0] % location of CG with respect to 0 
r b [0, 0, -10] % location of CB with respect to 0 
m 1000 % mass 
g 9.81 % acceleration of gravity 
W m*g; % weight 
B = Wi % buoyancy 

% pitch and roll angles 
theta = 10*(l80/pi)i phi 30* (pi/180) 

% g-vector 
g = gvect(W,B,theta,phi,r_g,r_b) 

The numerical result is: 

g = 104 • [0,0,0,1.8324,9.0997, OjT 

Equation (3.120) is the Euler angle representation of the hydrostatic forces and moments. An 
alternative representation can be found by applying unit quatemions. Then R b(q) replaces 
R b(e) in (3.118); see Section 2.2.2. 

A neutrally buoyant underwater vehicle will satisfy: 

W=B (3.121) 

::11' ~ • 
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It is convenient to design underwater vehicles with B > W (positive buoyancy) such that 
the vehicle will surface automatically in the case of an emergency situation, for instance 
power failure. In this case, the magnitude of B should only be slightly larger than W If the 
vehicle is designed such that B » W, too much control energy is needed to keep the vehicle 
submerged. Hence, a trade-offbetween positive buoyancy and controllability must be made. 

Example 3.7 (NeutraUy Buoyant Underwater Vehicles)
 
Let the distance between the center ofgravity CG and the center ofbuoyancy CB be defined
 
by the vector:
 

BG = [BGx, BGy, BGz jT = [xg - Xb, Yg - Yb, Zg - zbjT (3.122) 

For neutrally buoyant vehicles W = B, and (3.120) therefore simplifies to: 

o 
o 
o 

g(1J) = (3.123)
-BGyW cosOcos¢+BGz W cos e sin e 

BGzW sinO+BGxW cosOcos¢ 
-BGxW cosOsin¢-BGyW sinO 

An even simpler representation is obtained for vehicles where the CG and CB are located 
vertically on the z-axis, that is Xb = xg and Yg = Yb. This yields: 

g(1J) = [0, 0, 0, BGzWcosOsin¢, BGzWsinO, O]T (3.124) 

SURFACE VESSELS (SHIPS AND SEMI-SUBMERSIBLES) 

Formula (3.120) should only be used for completely submerged vehicles. Static stability con
siderations due to restoring forces are usually referred to as metacentric stability in the hydro
static literature. A metacentric stable vessel will resist inclinations away from its steady-state 
or equilibrium points in heave, roll, and pitch. 

For surface vessels, the restoring forces will depend on the vessel's metacentric height, 
the location of the CG and the CB as well as the shape and size of the water plane. Let A w p 

denote the water plane area and: 

GMT = transverse metacentric height (m) 
(3.125)

GML = longitudinal metacentric height (m) 

The metacentric height G M i, where i E {T, L} ,is the distance between the metacenter M, 
and center of gravity G as shown in Figures 3.6 and 3.7. 

Definition 3.2 (Metacenter) 
The theoretical point at which an imaginary vertical line through the centre of buoyancy 
(eB) intersects another imaginary vertical line through a new centre of buoyancy created 
when the body is displaced, or tilted, in the water. 
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Gravity and Buoyancy 

For a floating vessel at rest, buoyancy and weight are in balance: 

mg = pg\7 (3.11~ 

Let z denote the displacement in heave and let z = 0 denote the equilibrium position c(V"
responding to the nominal displaced water volume \7. Hence, the hydrostatic force in h, 
will be the difference between the gravitational and the buoyancy forces: 

Z = 

= 

mg - pg (\7 + tS\7(z)) 

-pgtS\7(z) (3.1T 

where the change in displaced water tS\7 (z) is due to variations in heave position z. This caD 

be written: 

(3.128)tS\7(z) = 1z 

Awp()d( 

'.

(3.129)Z ~ - pgAwp(O) Z 
'-v-' 

Z. 

where Awp(() is the water plane area of the vessel as a function of the heave position. For 
conventional rigs and ships, however, it can be assumed that Awp() ~ Awp(O) is constant 
for small perturbations in z. Hence, the restoring force Z will be linear in z, that is: 

~I~··
,_",, 

Recall that if a floating vessel is forced downwards by an external force such that z > 0, 
the buoyancy force becomes larger than the constant gravitational force since the submerged 
volume \7 increases by tS'V to 'V +tS\l. This is physically equivalent to a spring with stiffness 
Zz = -pgAwp(O) and position z. The restoring force decomposed in the b-frame, tSf~, can 
therefore be written: 

1I1:~~ 

:111111_: 

(3.130) 

-'",,'..... 
"I:::"lIIm: "II'~ 

From Figure 3.6 it is seen that the moment arms in roll and pitch can be related to the 
moment arms GMT sin </J and GML sin e in roll and pitch, and a z-direction force pair with 
magnitude W = B = pg\7. Hence: 

(3.131) 

(3.132) 
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t 

Figure 3.6: Transverse metacentric stability. Notice that mg = pg'l. A similar figure can be 
(3.129) 

drawn to illustrate lateral metacentric stability by simply replacing MT and <jJ with M L and 
(). 

at z > 0,� 
ubmerged Neglecting the moment contribution due to t5f~ (only considering f~) implies that the restor�
b stiffness ing moment becomes:� 
• O~b can .. "T, 

rob = r b x fb r r r 

GMT sin <jJ cos Bcoe <jJ ] 

= -pg'l GM L sin ()cos ()cos <jJ (3.133) 

The assumption that r~ x 8f~ 

term is small compared to r~ 

(3.130) 

~-' 

ed to the 
or on component form: pair with 

..... 
(3.131) 

g(7]) = 

~:132) 

[ (-GM L cos ()+GM T) sin <jJsin () 

= 0 (no moments due to heave) is a good assumption since this 
x f~. The restoring forces and moments are finally written: 

'Iig( 7]) = - [ ~i ] (3.134) 

-pg J; Awp(()d( sin()� 
pg J~ A wp(()d( cos ()sin ¢� 
pg J Awp(()d( cos ()cos <jJ�a (3.135)
pg'lGMT sin <jJ cos () cos<jJ� 
pg'lGM L sin ()cos ()cos 1>� 

pg\7( -GML cos ()+GMT) sin o sin e'� 

~.
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Linear (SmaU Angle) Theory for Boxed Shaped Vessels� 

For surface vessels it is convenient to use a linear approximation:� 

g(ry) ~ Gry (3.1361� 

which can bederived by assuming that ¢, 0, and z are small. Assuming that:� 

lz 

Awp«()d( ~ Awp(O)z 

and� 
sin 0 ~ 0, cosO ~ 1� 
sin e ~ ¢, cos¢ ~ 1� 

implies that:� 

-pgAwp(O) zO o '.-
pgAwp(O) z¢ o 
pgAwp(O) z pgAwp(O)z 

(3.137)
pg"VGMT ¢ pg"VGMT¢ 
pg"VGML 0 pg"VGMLO 

pg"V(-GML+GMT) <PO o 
'... ,......".,1 

Hence� 
G = diag{O, 0, pgAwp(O) , pg"VGMT, pg"VGML, O} (3.138)� 

II • '.1 

which can be used in a linearized model: 

Mil + Nv + G'7 = T + ~ + w (3.139) rThis model is based on the assumption of yz-symmetry. In the asymmetrical case G takes 
the form: 

'~~~"'.""''''_''''<'''*'''h"''''''<'''M.:;""..HLQ, 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 -e, 0 -e, 0

G = G T = > 0 (3.140)
0 0 0 -Kq, 0 0 
0 0 -Mz 0 -u, 0 
0 0 0 0 0 0 

where 

-z, = pgAwp(O) (3.141) 

-e, (3.142)= pgJ1 xdA 
A w p 

-u, = -z; (3.143) 

2dA-tc; = pg'\l(Zg - Zg) + pgJ1 y = pg"VGMT (3.144) 
A w p 

2dA-Mo = pg"V(Zg - Zb) + pgJ1 x = pgVGML (3.145) 
A w p 
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(3.136) 

~ 

~' 

(3.137) 

(3.138) 

(3.139) 

case G takes 
~ 

(3.140).-. 

•._- ""---'--'-"""'-"::<-:-X;':";'~'~';"id;, 

(3.141) 

(3.142) 

(3.143) 

(3.144) 

(3.145) 
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Figure 3.7: Metacenter M, center of gravity G and center of buoyancy B for a submerged� 
and a floating vessel. K is the keel line.� 

Computation of Metacenter Height for Surface Vessels 

The metacenter height can be computed by using basic hydrostatics: 

GMT = BMT - BG. GML=BML-BG (3.146) 

This relationship is seen directly from Figure 3.7 where M T and M L denote the trans�
verse and longitudinal metacenters (intersections between the vertical lines through B and� 
B 1 when </J and ()approaches zero). The symbol K is used to denote the keel line. For small� 
inclinations (</J and () are small) the transverse and longitudinal radius of curvature can be� 
approximated by:� 

- I -- I
BMT =..I.. BML=....!:.. (3.147)

~, 

where the moments of area about the water planes are defined as: 

2I L =J r x dA , Ir = Jl.: y
2
dA (3.148)t.: 

For conventional ships an upper bound on these integrals can be found by considering a 
rectangular water plane area Awp = BL where B and L are the beam and length of the hull, 
respectively. This yields: . 

1 1 
h < 12L3B, Ir < -B3L (3.149)

12 

-',� 

, ..;:"".~ ~ 

ri.'~L~'~_-_"..,""·_·~H'-..-..-.. ....'" Iff I; IfttIIIIItIItIltI'""IttlI ....lIIltl"~n"'t~,T 
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These formulas can be used as a first estimate when programming a vessel simulator. 

Definition 3.3 (Metacenter Stability)� 
Afloating vessel is said to be transverse metacentrically stable if:� 

GMT>- GMT,min > 0 (3.1501 

and longitudinal metacentrically stable if: 

GAh 2: GML,min > 0 (3.151) 

The longitudinal stability requirement (3.151) is easy to satisfy for ships since the pitching 
motion is quite limited. The lateral requirement, however, is an important design criterion 
used to predescribe sufficient stability in roll to avoid that the vessel does not roll around. For 
instance, for large ferries carrying passengers and cars, the lateral stability requirement can 
be as high as GMT,min = 0.8 (m) to guarantee a proper stability margin in roll. 

A trade-off between stability and comfort should be made since a large stability margin 
will result in large restoring forces which can be quite uncomfortable for passengers. 

3.2.4 BallastSystems 

In addition to the restoring forces g( "1) described in Section 3.2.3 the vessel can be pre
trimmed by pumping water between the ballast tanks of the vessel. This implies that the 
vessel can be trimmed in heave, pitch and roll where restoring forces are present. 

Let the desired pretrimming values be: 

The equilibrium states corresponding to these values are found by considering the steady
state solution of: 

Mil +C(v)v +D(v)v + g("1) = T + go + w (3.152) 

which under assumption ofzero acceleration/speed v =v = 0, and T = 0 reduces to: 

(3.153) 

where "1d = [-, -, -, Zd, <Pd' ()d, -r. only three states are used for pretrimming. 
The ballast vector go is computed by using hydrostatic analyses. Consider a marine vessel 

with n ballast tanks of volumes Vi :$ Vi,max (i = 1, ... , n). For each ballast tank the water 
volume is defined as: 

(Ai (h) = constant) (3.154) 

where Ai(h) is the area of the ballast tank at height h. Hence, the volume of the water column 
in each ballast tank can be computed by measuring the water height hi' Next, assume that the 
ballast tanks are located at: 

(3.155) 

r: 

.....,'.... 

, !_, 

'ill .... '~ 

III........'� 

::::~ 

""'''S <

""lIlr' • 

'W"t'111'" III..... 

-�
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Figure 3.8: Semi-submersible ballast tanks.

t where rris the vector from the coordinate origin 0 to the geometric center of tank i. Alter:an be pre natively, the vector r~ from CG to the volume center can be used since :ies that the 

r~ = r b + r b
. (3.156)• 9 co 

The difference between the gravitational Wi and buoyancy B, forces in heave can now be
computed for each ballast tank as (see Figure 3.8):

l
,~

he steady- Zballast, = Wi - B, 
! 

(3.152) = pg L 
n 

Vi - pg L 
n 

(Vi,max - Vi )
r 

i= l i=l
; to: n 

I = pg ~)2 Vi - Vi,max) (3.157) 
(3.153) i=l 

The moments due to the ballast heave force are then found from: 

....c vessel ill = r x f 
Iii 

the water 

= X] [ 00 ] [YZballast]Y x = - XZballast (3.158)[ 
Z Zballast 0

(3.154) 
implying that the roll and pitch moments due to ballast are: 

column n� 

that the Kballast = pg LYi(2Vi - Vi ,max) (3.159)� 
i = l 

Mballast -pg L
n 

xi(2Vi - Vi,max) (3.160)(3.155) 
i = l 

11'-... 

Ir. 

:':"~1 j 
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Finally, this gives: 

o 
o o 

Zballast 

Kballast 
=pg 

E~l (2V i  V i ,m ax ) 

E~l Yi(2V i-Vi ,max) 
(3.1611 

.N[ballast - E~l xi(2Vi  V i ,max ) 

o o 

Conditions for Manual Pretrimming 

Distribution of water between the ballast tanks can be done manually by pumping water 
until the desired water levels hi in each tank is reached or automatically by using feedback 
control. For manual operation, the steady-state relationships between water levels hi and the 
desired pretrimming values Zd,rPd' and Od are needed. Trimming is usually done under the 
assumptions that rPd and Od are small such that according to (3.140): 

(3.162) 

Since, we are only concerned with the heave. roll. and pitch modes it is convenient to use the 
reduced order system: 

g~ = 

l1d = 
Tw = 

From (3.153) and (3.140) it is seen that: 

(3.163) 

For simplicity, assume that the disturbances in heave, roll, and pitch have means of zero. 
Consequently, (3.163) with w T = [W3, W4, W5]T = 0 can be written: 

Hv = y (3.164) 

~ 
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Figure 3.9: Semi-submersible with four ballast tanks. Vi (m 3 ) is the water volume in leg 
i = 1, 0 •• ,4 and Pj (m3 

/ s) is the volume flow for water pump j = 1, ... ,3. 

-ZzZd-Z9()d+pg L~=l Vi,max ] 

2pg [ :1 Yn~l Y~] [ ~ ] = - K <t><Pd+pg L~=l YiVi,max
[

-Xl -Xn-l -Xn V -MzZd-M9()d-P9L~1xiVi,max 
n 

(3.165) 
where v is a vector of tank volumes: 

v = [Vi, V2 , ... , Vn]T (3.166) 

The solution of(3.164) is found by using the pseudo-inverse: 

v = Ht y 

= H T(HHT)-ly (3.167) 

where it is assumed that n 2: 3 and that HHT has full rank. Finally, the desired water heights 
can be computed from: 

Ai(h)=Ai v;
:::::::;. hi=~ (i-l (3.168)\;i(h;) = t .4;(h)dh .4;' - ,oo.,n) 

Example 3.8 (Semi-Submersible BaUast Control)� 
Consider the semi-submersible shown in Figure 3.9 with 4 ballast tanks located at r~ =� 
[-x, -y], r~ = [x, -y], r~ = [x, y] and r~ = [-x, y]. In addition, yz-symmetry implies� 
that Z9 = M z = 0 while the diagonal elements in Gr are nonzero. It is also assumed that� 

........«.,.� 
··,......11',,···""',_..·'·....."'"'... , ~-
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Figure 3.10: The time constant Tj for pump j is found by commanding a step Pdj = Pj,maz 
as shown in the plot. 

the ballast tanks are ofsame size such that V1,max = V2,max = V3,max = V4,max = Vm ax • 

Hence: 

, 
The pseudo-inverse ofH is: 

..... --... 
• , 1-

whichfinally gives the water volumes Vi corresponding to the desired values Zd, <Pd' and Od: 

Automatic Pretrimming using Feedback from z,</>, and 9 
• c:::diII 

In the manual pretrimming case it was assumed that w r = O. This assumption can be re
:I~,""' ' ..J 

moved by using feedback from z, <P, and O. The closed-loop dynamics of a Pill-controlled 
water pump can be described by a 1st-order model with amplitude saturation: 

(3.169) 
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~ 

where Tj (8) is a positive time constant, Pj (m3/8) is the volumetric flow rate produced by l Pump j = 1, ... , m, and Pdj is the pump set-point. As shown in Figure 3.9, one separate 
water pump can be used to pump water in each direction. This implies that the water pump 
capacity is different for positive and negative flow directions. Moreover: 

+� +Pj,max Pj > Pj,max 
sat(PdJ ) = {� P'!! Pj,max ~ Pdj ::; PJ,max (3.170) 

Pj,max PdJ < Pj,max 

The pump time constant Tj is found from a step response as shown in Figure 3.10. 
The volume flow Vi to Tank i is given by linear combinations of flows corresponding to 

the pumps/pipelines supporting Tank i. For the semi-submersible shown in Figure 3.9, we 
obtain: 

1 =Pj,max 

~	 VI = -PI 

V2 = -P3 
k = Vm ax •� V3 = P2 +P3 

r~ i-4 = PI-P2 

More generally, the water flow model can be written: 

I� Tp + P = sat(Pd) (3.171) 

iJ = Lp (3.172) 
K! 

t - where sat(Pd) = [sat(Pd,), ... , sat(pdm)F, P = [PI, ···,Pm]T, and v = [VI, ..., Vn]T (m ~ 

n). The mapping from the water volume vector v to T{ is (see Figure 3.11): 

G T T 
.,( =� W (3. ..� ;iW?~~j:~~'iIi~_~~_J.iiiijijiiiml,iiII;.:~1iiiI 

Example 3.9 (Semi-Submersible Ballast Control, Continues) 
and ()d: Consider the semi-submersible in Example 3.8. The waterflow model corresponding to Fig

ure 3.9 becomes: 

-1� o 
o 

(3.174)
1v=[~], p=[E], L= ~ ~l ][ 

-1 

reflecting that there is three pumps andfour water volumes connected through the configura
tion matrix L. 

A feedback control system for automatic trimming is shown in Figure 3.11. The ballast be re�
controllers can be chosen to be of Pill-type, for instance:� trolled 

3.169) 

'II!Il1l1lli'!"rnr'mmmnllm,liiiiiliH",,,,iil!ih""'''liii q, """"",iiiiiiiiilllilllliii","ii 

Pd = H pid(8)G T(17d 

.. 
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r 
W 

I I 
I \ 

! . . I! Steady-state relationship for lClosed-loop pump dynamics WIthwater volume as output) lwater volume and trim 

Figure 3.11: Ballast control system using feedback from z, ¢ and O. 

where 1]d = [Zd, ¢d' Od]T and: 
.. 

Hpid(S) = diag{h1,pid(S), h2,pid(S), ... , hm,pid(S)} (3.176) 

is a diagonal transfer matrix containing m PID controllers. Integral action in the controllers 
is needed to compensate for non-zero environmental disturbances w". 

The SeaLauncb Trim and Heel Correction System 

An example of a highly sophisticated pretrimming system is the SeaLaunch trim and heel 
correction system; see Section 1.1.5. This system is designed such that the platform maintains 
constant roll and pitch angles during changes in weight. The most critical operation is when 
the rocket is transported from the garage on one side of the platform to the launch pad. During 
this operation the water pumps operate at their maximum capacity to counteract the shift in 
weight. An automatic feedback system controls the pumps to maintain the correct water level 
in each of the legs during transportation of the rocket; see Figure 3.12. This is necessary to 
keep the platform levelled. 

3.3 6 DOF Equations of Motion 

3.3.1 Nonlinear Equations of Motion 

In this section different representations and properties of the marine vessel equations ofmo
tion are discussed. It will also be shown how various body-symmetries can be used to simplify 
the equations of motion. 

6 DOF Body-Fixed Vector Representation 

In Section 3.1 it was shown that the nonlinear equations of motion in the body-fixed frame 
can be written as: 

Mv+C(v)v+D(v)v+ (3.177) 

r,=J(1])v (3.178) 
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r( 

(3.176)� Figure 3.12: Ballast tanks for the SeaLaunch trim and heel correction system. Courtesy to 
SeaLaunch. /ntrollers 

where 

M = MRB+MA� (3.179)
nd heel 

C(v) = CRB(V) + CA(V) (3.180)aintains 
is when D(v) = Dp(v) + Ds(v) + Dw(v) +DM(V) (3.181) 
During 
shift in 6 DOF NED Vector Representation 
er level 
.sary to The NED representation is obtained by applying the following kinematic transformations 

(assuming that J -1 (TI) exists-i.e., () =I- ±7r/2): , 
r, = J(TI) v ¢:::::} v = J-1(TI ) r, 

(, r,' = J(TI) v + j(TI) v� ¢:::::} v = J-1(TI) [ij - j(TI)J- 1(TI)r,] 

ofmo Next v and v in (3.177) can be replaced by r, and r, by using the transformations: 

mplify,� M*(TI) = J-T (TI)M J-1(TI)� 

C*(v, TI) = J-T (TI) [C(v) - MJ-1(TI)j(TI)] J-1(TI) 

D*(v,TI) = J-T(TI) D(v) J-1(TI) 

frame g*(TI) = J-T (TI) g(TI)� (3.182) 

This results in the NED vector representation: 
;.177) 

.178) D*(v, TI)r, + g*(TI) = J- T (TI)(r + go + w)
M'I .,,8'i:\;:;;:;I::III·::,; 

r 

~. 

L 
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Properties of tbe Body-Fixed Vector Representation 

The following properties are observed for the body-fixed vector representation: 

Property 3.6 (System Inertia Matrix M)� 
For a rigid body the system inertia matrix is strictly positive ifand only ifMA > 0, that� 
is:� 

'1111" 'II 

M=MRB+MA >0 

If the body is at rest (or at most is moving at low speed) under the assumption ofan ideal 
""'1111111:fluid (see Property 3.3), the system inertia matrix is always positive definite. that is: 

'11II11U: 

IlIlIUI!III\'M 

>0 

where M is defined as: 

m-Xu -Xv -Xw� 
-Xv m-Yv -v,� 
-Xw -Yw m-Zw�M= 
-Xi> -mzg-Yp myg-Zp 

.'~,
mzg-Xq -v, -mxg-Zq 

-myg-X.. mxg-Y.. -z, 

IIII 

-Xp mzg-Xq -mYg-Xr 
-mzg-Yp -Yq mXg-Yr lI\I 

mYg-Zp -mxg-Zq -Z.. 
Ix-Kp -Ixy-Kq -Izx-Kr 

-Ixy-Kq Iy-Mq -Iyz-M.. 
-Izx-Kr -Iyz-Mr Iz-Nr 

Property 3.7 (Coriolis and Centripetal Matrix C) For a rigidbody moving through an ideal 
fluid the Coriolis and centripetal matrix C(v) can always be parameterized such that it is 
skew-symmetric. that is: 

C(v) = -C (v), Vv E lR 

Proof. C(v) is skew-symmetric under the assumptions that the matrices CRB(V) and 
CA(V) are skew-symmetric.• 

The Assumption of Zero Wave Frequency 

For a marine vessel, M, C (v) and D (v) will also depend on the wave frequency wand thus 
the speed of the vessel through the frequency of encounter. This relationship has not been 
established for a general vessel in 6 DOF. However, in control design asymptotic values can 
be used, since only the low-frequency components are of interest. Hence, it will be assumed 
that: 
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3.3 6 DOF Equations of Motion 

Assumption 3.1 (Zero Wave Frequency) 
The low-frequency control model ofa marine vessel can be approximated by: 

M = lim M(w); C(v) = lim C(v,w); D(v) = lim D(v,w) 
w~o w.....o w.....o 

This assumption implies that M = 0 (zero frequency assumption) such that the foUowing 
holds: 

sT[M - 2C(v)]s ~o -2sTC(v)s C=~CT 0, "Is E R6 (3.185) 

This relationship has its analogy in the dynamic description of robot manipulators, where 
the C matrix can be calculated from the so-called Christoffel symbols. Christoffel symbols, 
however, are not defined for vessels in terms of body-fixed velocities. 

Properties of tbe NED Vector Representation 

As in the body-fixed vector representation it is straightforward to show that: 

(1) M·(1]) = M·(1]) T > 0 V 1] E JR6 

(2)sT [M·(1])-2C·(v,1])]s=O V SER6, VER6, 1]ER6 

(3) D·(v,1]) > 0 V v E R6 , 1] E R6 

jli1~ 

if M = M T > 0 and M = O. The proofs are left as an exercise. It should be noted that 
C·(v, 1]) will not be skew-symmetrical although C(v) is skew-symmetrical. 

3.3.2 Linearized Equations of Motion� 

The following assumption will be applied when deriving the linearized vessel model:� 

Assumption 3.2 (Small Roll and Pitcb Angles) 
The roll and pitch angles: 

<j>, () are small (3.186) 

These are good assumptions for vessels where the pitch and roll motions are limited-i.e., 
highly metacentric stable vessels. 

Vessel Parallel Coordinate System 

When deriving the linearized equations of motion it is convenient to introduce a vessel par
allel coordinate system. This is a coordinate system fixed to the vessel with axes parallel to 
an Earth-fixed reference frame usually the NED reference frame. 

Assumption 3.2 implies that: 

q,=()=o
il = J(1])v ~ P(1jJ)v (3.187) 

where 
R(1jJ) 03X3] (3.188)P(1jJ) = [ 03x3 13x3 

f 
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and R('ljJ) = Rz,,p is the rotation matrix in yaw. 

Definition 3.4 (Vessel ParaDel Coordinate System) 
The vessel parallel coordinate system is defined as: 

ii. ' 
where 1Jp is the NED position/attitude decomposed in body coordinates and P ('ljJ) is given' 

(3.188). Notice that pT ('ljJ)P('ljJ) = It;X6' 

Low Speed Applications (Station-Keeping) 
~IIII" 

It is convenient to express the kinematic equations of motion in vessel parallel (VP) coordi
nates when using linear theory. From Definition 3.4 it is seen that: 

iJp = pT('ljJ)1J+pT('ljJ)iJ 

= PT ('ljJ)P('ljJ)1Jp+P T ('ljJ)P('ljJ)v 

= rS1Jp+v	 (3.190 1 

where r = ;p and: 
0 1 0 0 0 0 

-1 0 0 0 0 0 
S=	 0 0 0 0 0 0 (3.190 

000000 
000000

[	 

IFor low speed applications r ~ O.Hence, (3.190) reduces to 6 pure integrators: 

Dynamics of Marine Vesse+< 

(3.1 ' 

.1I!!t.': 

(3.192) 

i. 
This model is attractive since it is linear in t/. In fact, this is the main idea for using VP ...coordinates in ship and rig control design. 

The gravitational and buoyancy forces can also be expressed in terms ofVP coordinates. 
For small angles ¢ and () it is seen that (see Section 3.2.3): 

(3.193) 

Notice that this formula confirms that the restoring forces of a leveled floating vessel (¢ = 
() = 0) is independent of the yaw angle 'ljJ. This can be illustrated by considering the following 
two examples: -
Neutrally Buoyant Submersible: For a neutrally buoyant submersible (W = B) with xg = 

Xb and Yg = Yb, Assumption 3.2 implies that, see (3.124): 

G =diag{O, 0, 0, 0, (Zg - Zb)W, (Zg - Zb)W; O} (3.194) 

which is independent of the yaw angle 'ljJ. Hence, (3.194) satisfies (3.193). 

-
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.) is given by 

f 
(VP) coordi

1 
(3.190) 

(3.191) 

I 
(3.192) 

r using VP 

oordinates. 
,.; 

(3.193) 

ssel (</J = 
fullowing 

.-ithxg = 

(3.194) 

.~. 

-
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Surface Vessel: For a surface vessel G is defined by (3.140). Thanks to the special structure 
ofG, that is: 

02x3[~" G r [ -z 
03X2 

= OZ -;' ]G= -K",
G r ~ ], -u, 

0

0 -Me 
o 0 0 0 0 

(3.195)
 
It is again seen that p T (?/J)GP(?/J) == G.
 

Assumption 3.2 for low-speed applications v ~ 0 implies that the nonlinear Coriolis, 
centripetal, damping, restoring, and buoyancy forces and moments can be linearized about 
v = 0 and </J = 0 = O. Since C(O) = 0 and Dn(O) = 0 it makes sense to approximate: 

Mil + C(v)v + [D + Dn(v)]v + g(71) = T + go+w (3.196) 

~~ o Dv o», 

which can be written: 

fJp = v (3.197) 

MiI+Dv+G71p = T+W (3.198) 

This is a linear time invariant (LTI) state-space model: 

x = Ax+Bu+Ew (3.199) 

where x = ['I) T V T]T U = T and'-'p' , ,. 

o 
A= [-M~lG -M~lD]' B = M-1 E = [ ~-l ] 

tWf'i\ftr'WW'Y" '~%;;_; 

This model is the foundation for DP and PM control systems design; see Chapter 11. Notice 
that the NED positions are computed from 71p by using: 

11 = P(?/J)71p (3.201) 

Hence, the control system can be based on feedback from the states (71p , v) while 71 is pre
sented to the human operator using (3.201). 

Vessels in Transit (Cruise Condition) 

For vessels in transit the cruise speed is assumed to satisfy: 

u = Uo (3.202) 

This suggests that 
a 

N(uo )= QV {C(v)v + D(v)v}lv=vo 
(3.203) 

_._.~-~_. "41... 14M iiiDUiii"!, 
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where V o = [uo , 0, 0, 0, 0, O]T.Defining 6.v = v - v o , yields: 

iJp = 6.v + u ; (3.2041 

M6.b + N(uo )6.v + G77p = T + W (3.205) 

This corresponds to a linear parameter varying (LPV) model: 

\~#f"',L-+kky)¥-A@/,t'L(:J .'Ww.~ --; 

+Bu+Ew+Fvo	 (3.206) 

where x = [....T 6.v T]T U = T ,.and'.'p' , 

(3.207) 

E	 (3.208) 

Notice that A(uo ) depends on the forward speed u.; This suggests that the control law for 
transit (maneuvering) should be gain scheduled with respect to forward speed u.; 

Notice that station-keeping resulted in a LTI model, while maneuvering implies that a 
LPY model must be used. 

3.4 Model Transformations using Matlab 

When deriving the nonlinear equations of motion it is convenient to specify inertia, damp
ing, gravitational, and buoyancy forces in different reference frames exploiting the structural 
properties of these expressions. For instance, the translational and rotational parts of the sys
tem inertia matrix is decoupled if the coordinate system is located in the eG. These properties 
are derived by defining a transformation matrix that transforms the generalized velocities, ac
celerations, and forces between two points both located in the b-frame. The transformation 
matrix used for this purpose is called the system transformation matrix. 

3.4.1 System Transformation Matrix 

In order to exploit the b-frame model properties and to derive expressions for the different 
matrices in different b-frame origins, the system transformation matrix is derived from (3.12) 
according to: 

b b b b vp	 = Vo+wnbxrp 

= b - S( r b) bV o Wnbp 

b	 T b b =	 Vo+S (rp)wnb (3.209) 

where r~ = [xp, YP' zplT is a vector from the body-fixed coordinate origin 0 to an arbitrarily 
point P in the b-frame, and W~b denotes the angular velocity vector of the two b-frames with 
respect to the n-frame; see Figure 3.13. 

...
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t 
CG 

(3.204) 
~"o 

(3.205) 
;~ 

.;\"'..';.... 
,, ."! 

(3.206) Figure 3.13: Definitions of vectors and coordinate systems.
diE 

r 
Definition 3.5 (System Transformation Matrix) 
The transformation matrix: 

(3.207) 
13x3 S(r:) ] (3.210)H(r~) = ...[ ..X. 3 ST (r:) ] H-

1
(r~) = [ 03x313

03X3 13x 3 ' 13 x 3
0.208) .w@w····t········r·'Z":iit&r@¥v .,. 

transforms the linear and angular velocity vectors between the two points 0 and P in the 
b-frame:law for 

s that a [V; ] = H(r:) [ v; ] (3.211),� ""nb ""nb� 

~ 
v p = H(r:)v (3.212)t 

Similarly. the generalizedforce vector T can be transformedfrom 0 to an arbitrarily point P 
damp by:
uctural 
be sys

fb ] [hX3 03x3 ] [ f%b ] (3.213)perties = [[2~ ] r; x f!+~ = S(r:) Iax3 mp 
res, ac
nation ~ 

T = H T (r~)Tp (3.214) 

~ 

Matlab:� 
The system transformation is implemented in the GNC toolbox as:�ferent 

(3.12) 
function H = Hmtrx(r)� 
% H = HMTRX(r) % 6x6 system transformation matrix� 

S = Smtrx(r); 
H = [eye(3) S' 

zeros(3,3) eye(3) ]; 
~.209) 

rarily 
;with Definition 3.5 implies that the nonlinear equations ofmotion can be represented at an arbitrary 

defined point P by using the transformation matrix H(r:). Consider the nonlinear equations 

........- ..............._ ......... ..II_Jliiiml1!lflllnD"'~",
 

~,~ 



96 Dynamics of Marine Vessels 

of motion with respect to the b-frame coordinate origin 0: 

Mv + C(v)v + D(v)v + g(71) = T (3.215) 

This expression can be transformed to a point P in the b-frame by: 

H- T (r~)MH-l(r:) vp + H-T (r:)C(v)H-1(r:) v p, ~, ~ 

v v� 
M p C p (lI )� 

+ H- T (r:)D(v)H-1(r:) V» + H- T (r:)g(71) = H-T (r:)T 
, ... ' '--v--'' ~ 

n p(lI) gp(11) T p 

From this expression the following useful formulas can be derived: 

M= H T (r:)MpH(r:) 

C(v) = H T (r:)Cp(v)H(r:) 

D(v) = H T (r:)Dp(v)H(r:) 

g(71)= H T (r:)g(71) 

(3.216) 

'.

(3.217) 

(3.218) 

(3.219) 

(3.220) 

These expressions can be used to specify the inertia, damping, and restoring forces in different 
reference frames in order to exploit different physical properties. 

3.4.2 Computation of the System Inertia Matrix 

It is convenient to specify the rigid-body system inertia matrix (3.55) with respect to the CO 
such that: 

[ mI3 x 3 °3x3 ]� 

°3x3 I c� 

m 0 0 0 0 0 
,;~:::;,\I,I,m 

0 m 0 0 0 0 
0 0 m 0 0 0 

= lcg (3.221) UI~ 

0 0 0 -rzxy -l~~x 
lcg0 0 0 -rs -r«xy y yz

lcg

'.
0 0 0 -l~~ -l~~ z 

The expression for M~B is uniquely defined by 7 parameters: {m, l~g , l~g , l,;g, - l~~, - l';~, 

-l~n. It can be transformed to the b-frame coordinate origin 0 by specifying the vector 
rt = r~ = [xg,Yg,zglT such that the points P and CG coincides. Accordingly, (3.217) 
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t 
(3.215) 

(3.217) 

(3.218):1 

(3.219)1 

(3.220) 

n different 

! 
10 the CG 
..,.; 

t 
(3.221) 

r 

~, -I~i, 

re vector 
~ (3.217) 

3.4 Model Transformations using Matlab 

implies that: 

MRB = H T (r:)M~H(r:) 

mI3x3 -ms(r~)]
 

= mS(r~) !c - ~~2(r~),
 

[ 
I .. 

: .- ~ 

mOO 0 mZg -mYg 

o m 0 -mzg 0 mX g 

o 0 m mYg -mxg 0 
= I (3.222)o -mzg mYg Ix -Ixy -Izx 

mZg 0 -mxg -Ixy Iy -Iyz 
-mYg TnXg 0 -Izx -Iyz Iz 

which is recognized as (3.55). 

Matlab:� 
The 6 x 6 rigid body system inertia matrix M R B about an arbitrarily point 0 can be� 
computed by using the following Matlab" commands:� 

r_g = [x_g y_g z_g]' % location of the CG with respect to 0 
I c = [ Ix -Ixy -Ixz % 3x3 inertia matrix about CG� 

-Ixy Iy -Iyz� 
-Ixz -Iyz Iz]� 

MRB CG [ m*eye(3) zeros(3,3)� 
zeros(3,3) I c� 

MRB = Hmtrx(r_g)'*MRB_CG*Hmtrx(r_g) 

Added Mass System Inertia Matrix 

For hydrodynamic added mass this is somewhat more complicated. Let us define the center 
ofadded mass (CA) as the point in the body where the total added mass forces act (resultant 
of the added mass forces in the X-, y-, and z-directions). The CA can be approximated by 
using potential theory from which the center ofpressure will be a good approximation of the !: 

CA. The center of pressure is usually computed by using Wamit, which is a hydrodynamic 
computation program. 

If the CA is used as foundation for the added mass system inertia matrix, the upper left 
submatrix becomes diagonal (zero off-diagonal elements), that is: 

Mca := [All 03X3] (3.223) 
A 03x3 A 22 

where 

All = -diag{X", Y iI , Zw}� 

A 22 = full matrix depending on the added mass principal axes� 

! 

~ 

·------ """"'"1'""''"1111-.11' 



98 Dynamics of Marine Vessels '" "" 

such that M~ is defined in terms of 9 parameters. This structure is motivated by the rigid
body matrix M~B' 

In many cases M A is known in the CG or CB. In these cases it is straightforward to 
transform M A to the b-frame origin 0 by using the system transformation matrix and the 
vector r~. This principle can be illustrated by assuming that MA is known in the CG. For 
instance, assume that M~ can be described by 6 parameters according to: 

Meg ~ _ [diag{Xu, y,."ZuJ . 03x3 ] (3.224)
A 03x3 dlag{Kp,Mq,N".} 

where for simplicity a diagonal structure ofM1 is used. This is often the best estimate you 
have unless you are using a hydrodynamic software program that computes a full M~ or 
MA' matrix. For slender bodies, the diagonal elements can be found by using strip theory or 
semi-empirical methods (Faltinsen 1990). 

The system inertia matrix (3.224) is transformed to the b-frame origin 0 by choosing 
r~ = r~ in (3.217). Consequently: 

HT (r:)M~H(r:) .. '''".' 

-Xu 0 o� 
o -Y,., o� 
o 0 -Z,;, 

(3.225)o zgY,; -ygZw 
-zgXu 0 xgZ,;,� 
ygXu -xgY,; o� 

o -ZgXu ygXu 
zgY,., o -xgY,; 

-Y Zw xgZw o 
2 g2

-zgY;,-ygZ,;,-Kp xgygZ,;, XgZgY,., 
xgygZw -z2 X · u -x2 Z · w -M·q YgZgXu9 9 

XgZgY,; _y2 X· -x2Y.·- N ·YgZgXu 9 u 9 v r 

Finally, the system inertia matrix with respect to 0 is computed as the sum: 

(3.226) 

Matlab: 
The 6 x 6 system inertia matrix about 0 is computed in GNC toolbox according to: 

% added mass with respect to CG=CA 
MA_CG = diag([-Xudot,-Yvdot,-Zwdot,-Kpdot,-Mqdot,-Nrdot]) 

% added mass with respect to 0 
MA = Hmtrx(r_g)'*MA_CG*Hmtrx(r_g) 

% system inertia matrix� 
M=MRB+MA� 

1 

,111~1,II.wL 

'1111111111.',1"";:'" 

ilIII":""'" 
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natrix and the 
D the CG. For 

(3.224) 
t 
estimate you 
full M1 or 

trip theory or 

by choosing 

~ 

~ 

(3.225) 

i, 

. (3.226) 
.~ 
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r 
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3.4 Model Transformations using Matlab 

Symmetry Considerations of the System Inertia Matrix 

We have seen that the 6 DOF nonlinear equations of motion, in their most general represen
tation, require that a large number of hydrodynamic derivatives is known. From a practical 
point ofview this is an unsatisfactory situation. However, the number ofunknown parameters 
can be drastically reduced by using body symmetry conditions. 

The expression (3.224) was based on the assumption that M A was diagonal in the CG 
while M RB as defined by (3.222) is a full matrix. If the general expression for M A is used 
(full matrix in CG), body symmetries will still simplify the system inertia matrix 

M=MRB+MA 

considerably. For instance, it is straightforward to verify the following cases (notice that 
mij = mji): 

(i) xy-plane of symmetry (bottom/top symmetry). 

-
mIl m12 0 0 0 m16 

m21 m22 0 0 0 m26 

M= I 
0 
0 

0 
0 

m33 

m43 

m34 

m44 

m35 

m45 

0 
0 

0 0 m53 m54 m55 0 
~1 m62 0 0 0 m66 

(ii) zz-plane of symmetry (port/starboard symmetry). 

mIl 0 m13 0 m15 0 
0 m22 0 m24 0 m26 

0 m33 0 m35 0M- I m31 
- 0 m42 0 m44 0 m46 

m51 0 m53 0 m55 0 
0 ~2 0 m64 0 ~6-�

(iii) yz-plane of symmetry (fore/aft symmetry) 

mIl 0 0 0 m15 m16 

0 m22 m23 m24 0 0 
0 m32 m33 m34 0 0

M= I 
0 m42 m43 m44 0 0 

m51 0 0 0 m55 m56 

m61 0 0 0 m65 ~6 

(iv)� xz- and yz-planes of symmetry (port/starboard and fore/aft symmetries). 

-
mll 0 0 0 m15 0 

0 m22 0 m24 0 0 
0 0 m33 0 0 0

M= I 
0 m42 0 m44 0 0 

m51 0 0 0 m55 0 
0 0 0 0 0 ·~6 
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More generally, the resulting inertia matrix for a body with ij- and j k-planes of sym
metry is formed by the intersection Mijnjk = M i j n MJk. 

(v)� xz-, yz- and xy-planes of symmetry (port/starboard, fore/aft and bottom/top symme
tries). 

3.4.3 Computation of the Coriolis-Centrifugal Matrix� 

The Corio lis-centrifugal matrix can be computed directly by applying Theorem 3.2.� 

Matlab: 
The GNC toolbox commands: 

CA = m2c(MA,nu)� 
CRE = m2c(MRB,nu)� 

imply that the resulting M- and C-matrices can be computed as: 

M=MRB+MA 
C = CRE + CA 

Alternatively, the C-matrix can be computed as: 

C = m2c(M,nu) 

3.4.4 Computation oftbe Damping Matrix 

The resulting hydrodynamic damping force will act at a point which can be defined as the 
"center ofdissipative forces" (CD). Since force is equal to the product of pressure and area, 
this point will depend on the cross-sectional areas in the x-,y-, and z-directions, and the 
magnitude of the damping forces along the respective axes. 

In the CD the damping matrix D( v) will have a diagonal structure similar to that ofadded 
mass with respect to the CA. Unfortunately, it is time consuming to compute the location of 
the CD and how it changes with speed, load condition, draft and trim. This can, however, be 
done by using computational fluid dynamics (CFD) for instance. A rough approximation is 
to use the formulas for quadratic drag in the x-,y- and z-directions to compute the CD since 
the viscous terms are the dominating dissipative forces. 

If the CD is unknown, a first approximation could be to assume that the damping matrix 
is diagonal in the CG. Moreover, the damping matrix is written as the sum of the linear and 
nonlinear parts: 

(3.227) 

where: 
(3.228) 

and 

(3.229) 
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DeS ofsym- Transforming these expressions to 0, yields: 

:op s}'lI1Ille-� D = H T (r:)DCgH(r:) 

-Xu 0 o ,!
I 

o -v, o 
~ o 0 -z;=� .'.:,o zgYv -ygZw� 
~ -zgXu 0 xgZw�,tL ygXU -xgYv o� 

o -ZgXu ygXu. ,lql
zgYv o -xgYv 

-ygZw xgZw o,� '~.i

!i-z~Yv-y~Zw-Kp xgygZw XgZgYv 
xgygZw -z~Xu-x~Zw-Mq YgZgXu 
XgZgYv YgZgXu -y~Xu.-x~Yv-Nr,� 'It! 

and 

Dn(v) = H T (r:)D~(v)H(r:) 

-Xujujlul 0 o 
o -Yv1v1lvl o 
o 0 -Zwlwllwl = o Zg Yvlvl Ivl -ygZwlw/ !wl 

-zgXulullul 0 xgZwlwllwl 
ygXu/ul lui -xVvlvllvl o 

o -ZgXu1u/lul 
ned as the zgYvlvllvl o 
and area, -ygZwlwllwl xgZwlwllwl 

i,� and the -z~Yvlvllvl-y~Zwlwllwl-Kplpllpl xgygZwlwllwl 
xgygZwlwl Iwl -Z~Xulullul-x~Zwlwllwl-Mqlq, lql

tofadded XgZgYvlvllvl� YgZgXulul lui 
N!ation of 

ygXulullulwever, be 
-XgYvlvllv!

mation is o
CD since 

XgZgYvlvllvJ 
YgZgXulullul

Ig matrix 
-y~Xulullul-x;Yvlvllvl-Nrlrj Irl 

nearand 

(3.227) Matlab: 
The expression for the damping matrix is generated in GNC toolbox by typing: 

(3.228) 
%D_CG = damping matrix with respect to CG 
D = Hmtrx(r_g)'*D_CG*Hmtrx(r_g) 

(3.229) 

='=='='=='-'-,,,,,, """',--.~....	 iiilUiml8lrm-- iii ..J� ..~""
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SlmpUclty Considerations of the Damping Matrix 

The expression for the linear part of the damping matrix follows the same symmetry consid
erations as the system inertia matrix; see Section 3.4.2. 

3.4.5 Computation of the Restoring Forces and Moments 

In this section it is necessary to distinguish submersibles from floating vessels. 

Underwater Vehicles (Submerged Bodies)� 

If the gravitational and buoyancy forces are coniputed in the CG. Formula (3.120) for sub�
mersibles reduces to: 

(W - B) sin 0� 
-(W - B) cosOsin ¢>� 
-(W - B) cos()cos<jJ� 

YbB cos £} cos <jJ - ZbB cos()sin <jJ� 
-ZbB sin£} - XbB cos()cos<jJ� 
XbB cos £} sin <p + YbB sin ()� 

(3.230) 

where Xb, Yb, and Zb are the coordinates of CB with respect to CG. This expressions can be 
transformed from the CG to the b-frame coordinate origin 0 by: 

(3.231) 

Matlab: 
The restoring forces and moments are generated in the GNC toolbox according to: 

g_CG = gvect(W,B,theta,phi,[O,O,O]',[xb,yb,zb]') 
g = Hmtrx(r_g)'*g_CG 

Surface Vessels (Ships and Semi-Submersibles) 

For floating vessels the expression (3.135) can be transformed to CG by using (3.231). In 
practice it is common to assume that small angle (linear) theory holds. Hence: 

0 0 0 0 0 0 
0 0 0 0 0 0 

Gcg = 0 
0 

0 
0 

-e, 
0 

0 
-tc; 

0 
0 

0 
0 

(3.232) 

0 0 0 0 -Mo 0 
0 0 0 0 0 0 

\� 

..� ,.� 
\\\I\i .11 

"I'!! 

\'I!
,!!, , il 
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.~
 

~ ~ yields:� ~ 

.. ~ 

>rnmetry consid-� ,1,� G = H T (r~)GCgH(r~) 

0 0 0 0 0 0 
0 0 0 0 0 0 l 
0 0 -e, ygZz -xgZz� 

.; 

(3.233)= I� 0 0 ygZz -y~Zz-K<p xgygZz ~ I 
J 

0 0 -xgZz xgygZz -x2Z -M6 0 !
9 z 

~	 ~ 

0 0 0 0� 0 0 ~ 

Matlab: 
(3.120) for sub-� The 6 x 6 system spring stiffuess matrix G about an arbitrarily point 0 is computed by 

using the GNC toolbox function Gmtrx. m: 'i
I'

'\ 
! Ji 

A_wp = 1000 % water plane area ,~: 

nabla = 10000 % displasement 
GMT = 1 % transverse metacentric heights 

(3.230)� GML = 2 % lateral metacentric heights 
r_g = [1 0 10]' % location of CG w.r.t. 0 i 

~, 

% Spring stiffness matrix 
G = Gmtrx(nabla,A_wp,GMT,GML,r_g) 

ressions can be 
This produces the numerical result: 

o 0 o o o 0
(3.231)f o 0 o o o 0 

o 0 10055250 o -10055250 0
G= o 0 o 100552500 o 0 

o 0� -10055250 o 211160250 0ing to: o 0 o o o 0 

.', 

3.5 Standard Models for Marine Vessels 
l: , 

In this section the main results ofChapter 3 are applied to derive a set of standard models for 
ships, semi-submersibles, and underwater vehicles. The following subsystems are discussed: 

~ (3.231). In 
• Surge model: velocity u 

•� rManeuvering model (sway and yaw): velocities v and r 
,;, 

• Horizontal motion (surge, sway, and yaw): velocities u, v, and r 
(3.232) I

• Longitudinal motion (surge, beave, and pitcb): velocities u, w, and q 

• Lateral monoo: (sway, roll, aod yaw): velocities v,p, and r t 
. ~ 

--_._._,.._-------_.

1� ~;,., 

i 
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,.� 

Figure 3.14: Offshore supply vessel. 
'i" -

j 

Several models for ships, semi-submersibles, and underwater vehicles are included in the 
Matlab" GNC Toolbox as m-files. The toolbox can be downloaded from: 

': " 1 

, http://www.marinecybemetics.com 

W A list of these models are found by typing: help vesselmodels. A Simulink library for simu
lation of marine control systems applied to different vessels is also available. 

3.5.1 3 DOF Horizontal Model 
. ...," 

The horizontal motion ofa ship or semi-submersible is usually described by the motion com
ponents in surge, sway, and yaw. Therefore, we choose v = [u,v ,rjT and 11 = [n,e, 7P] T. 
This implies that the dynamics associated with the motion in heave, roll, and pitch are ne
glected, that is w = p = q = O. 

In addition, low-speed applications-i.e., dynamically positioned ships where U ~ 0, and 
. maneuvering at high speed are treated separately. 

'"r 

" ' ~ 

Low-Speed Model for Dynamically Positioned Ship f ~ 
,I 

For the horizontal motion of a vessel the kinematic equations of motion reduce from the 
general 6 DOF expression (2.16) to one principal rotation about the z-axis: l 

- sin 7PCOS7P 
o 

O~] 
(3.234) 

.. ... 

, .�' _ . 
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, ~ . 

r ,� 

i 
I� 

"� 

Figure 3.15: Dynamically positioned ship. 

Assuming that the ship has homogeneous mass distribution and xz -plane symmetry so that: 

I� I x y = I y z = 0 (3.235) 

&be� Let the b-frame coordinate origin be set in the center line of the ship, such that Yg = O.� 
Under the previously stated assumptions, the matrices (3.55) and (3.66) associated with the� 
rigid-body dynamics reduce to:� 

o� -m(XgT + v) ] ~	 

M RB = [ r; m mXo g ] , CRB(V) = [00 00 munu-� o . . 0 mXg I,� m(xgT + v) -mu 
(3.236)l ' 

Notice that surge is decoupled from sway and yaw in MRB due to symmetry considerations 

J of the system inertia matrix (see Section 3.4.2). For simplicity, it is assumed that the center 
1

of added mass is equal to the center of gravity. This allows for the following reduction of 
m (3.92) and (3.102): 

I ~! 

le - X U. 0 0]
t M A = 

[ 
0 -Y,., -Yr , CA(v) = 

lId . 0 -Yr -Nr 

t� Hence, M = M T and C(v) = _CT (v), that is: 

m-Xu 

[0 0� Y,.,v + YrT ] r:0 0 -Xuu� 
-Y,.,v - Y rT X uu o� 

, (3.237) 

o 0]
M= 0 m-Y,., mXg-Yr (3.238)� 

.' ~, .[� ' : 

~ . "o mXg-Yr Iz-Nr . , 

0 o -(m - Y ,.,)v - (mxg-Yr)T ] 
C(v)= 0 o (m-XJu 

[ (m - Y ,.,)v + (mxg-Yr)T -(m-X,Ju .. . 0 
(3.239) 

tI 

r� 
I) 

~. , . 

.- ._..,. _ ••__..,"''"""",,'"",,IM''''' ,.."" "..__ " "" _ ._ ,,,,,iIf'"'' 

!p." ., .orJ ~ 
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Figure 3.16: Ship maneuvering. 

(3.240)
[ 

- X 
D= ~ u 

As for the system inertia matrix, linear damping in surge is decoupled from sway and yaw. 
This implies that: 

'::lIlilll~I.:: 

Linear damping is a good assumption for low-speed applications (see Section 3.2.2). Simi
larly the quadratic velocity terms given by C(v)v are negligible in DP. Hence, a model that 
is well suited for ship positioning is: 

11 
Mv+Dv 

= 

= 

R(lji)v 

T 

(3.241 ) 

(3.242) 

where 

T=Bu (3.243) 

Here B is the control matrix describing the thruster configuration and u is the control input. 

Nonlinear Maneuvering Model 

At higher speeds the assumptions that D(v) = [D + Dn(v)]~ DandC(v)~ oare violated. 
Hence, the nonlinear velocity terms must be included; see Section 3.2.2. This suggests the 
following 3 DOF nonlinear maneuvering model: 

• 

,:~llill 
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(3.242) 
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iJ = R(1jJ)v (3.244) 

Mil + C(v)v + D(v)v = T (3.245) 

3.5.2 Decoupled Models for Forward Speed/Maneuvering 

For vessels moving at constant (or at least slowly-varying) forward speed 

u = Vu2 + v2 ~ u (3.246) 

the 3 DOF maneuvering model of Section 3.5.1 can be decoupled in a forward speed (surge) 
model and a sway-yaw subsystem for maneuvering. . 

Forward Speed Model 

Starboard-port symmetry implies that surge is decoupled from sway and yaw. Hence, the 
surge equation in Section 3.5. I can be written in component form as: 

(m - Xit)u - Xuu - X 1u1u lui u = 71 (3.247) 

where 71 is the sum ofcontrol forces in surge. Notice that both linear and quadratic damping 
have been included in order to cover low- and high-speed applications. For this decoup1ed 
model a forward speed controller can be designed by only using the forward speed u for 
feedback. 

2 DOF Linear Maneuvering Model (Sway-Yaw Subsystem)� 

A linear maneuvering model is based on the assumption that the cruise speed:� 

u = U o ~ constant (3.248) 

while v and r are assumed to be small. 

Representation 1: The 2nd and 3rd rows in (3.239) with u = uo , yields: 

(m - Xit)uor ]C(v)v = [ (m - Y,Juov + (mxg-Y i: )uor - (m - Xit)uov 

0 (m - Xit)uo ] [ v ] (3.249)= [ (Xit-Y,:,)u (mxg-Y..)uo ro 

Assuming that the ship is controlled by a single rudder: 

T = 
= 

b6 

[-Y,5]-N,5 s (3.250) 

and that: 
D(v) = D + Dn(v) ~ D (3.251) 

then: 

-_._~~.---------....-.---~. -~---- .. ---- _m.. 
.......111 
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.'. 
(3.252) 

where", = [v, T]T and: 

M (3.253) 

(3.254) 

b = (3.255) 

Representation Z: An alternative representation is (Davidson and Schiff 1946): 

MRBiI + CRB("')'" = TRB (3.256) 

where • 
v 

[ Yo ] r [Y" Yr]. [Y Yr] (3.257)T RB = - No U + N" N; ", + N; N; ", 

The rudder angle 5 is defined such that a positive rudder angle yields a positive yaw� 
rate T. Furthermore it is assumed that the hydrodynamic forces T RB in (3.256) is linear� 
in J, iI and ", as defined by (3.257). Substituting (3.257) into (3.256), yields:� 

'%0._!rt~' 

Mil + N(uo )'" = M (3.258) 

where 

[ m- Y" mXg-Yr ]M (3.259)= mXg-Yr t.:», • 
[ -v, mUo-Yr ] •N(uo) = (3.260)-»; mxguo-Nr 

b = [ -Yo] (3.261)
-No 

In this model the Munk moment (Xu - Y,,)UoT is missing in the yaw equation (see the� 
last row in (3.254». This is a destabilizing moment known from aerodynamics which� 
tries to tum the vessel; see Faltinsen (1990, pp. 188-189). This term is, however, often� 
included in a nonlinear viscous term NuruT instead. Also notice that the less important� 
terms XiLUoT and YrUoT are removed from N(uo) when compared to (3.254). All� 
missing terms terms are due to the C A (", ) matrix which is omitted in (3.257).� 

I 
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(3.255) 

f 1946): 

(3.256) 

J 
., (3.257) 

elds a positive yaw 
in (3.256) is linear 

i). yields: 

(3.258) 
bwW TtMWtitt 

.~ (3.259) 

(3.260) 

(3.261) 

"equation (see the 
rodynamics which 
is. however, often 
the less important 
d to (3.254). All 
:ll3.257). 
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1 DOF Autopilot Model (Yaw Subsystem) 

A linear autopilot model for course control can be derived from the maneuvering model 

Mil + N(uo)v = bc5 (3.262) 

by defining the yaw rate r as output: 

r = cTv, CT = [0,1] (3.263) 

Hence, application of the Laplace transformation yields: 

r8(s) = . K~1 + T3 s ) (3.264) 

This is referred to as Nomoto s2nd-order model (Nomoto et al. 1957). The l st-order Nomoto 
model is obtained by defining the equivalent time constant T = T1 + T2 - T3 such that: 

r8(s)=~ (3.265)' 

Finally, ;p = r yields: 
'I/J K
j(s) = -,-~ . (3.266) 

which is the transfer function that is used in most commercial autopilot systems. 

3.5.3 Longitudinal and Lateral Models 

The 6 DOF equations of motion can in many cases be divided into two non-interacting (or 
lightly interacting) subsystems: 

• Longitudinal subsystem: states u, w, q, and () 

• Lateral subsystem: states u.p, r, <p, and 'I/J 

This decomposition is good for slender bodies (large length/width ratio) as shown in 
Figure 3.17; typical applications are aircraft, missiles, and submarines (Gertler and Hagen 
1967, Feldman 1979, Tinker 1982). This can also be seen from the expression of the system 
inertia matrix in the case of starboard-port symmetry (see Section 3.4.2): 

mu 0 m13 0 m15 0 
0 m22 0 m24 0 m26 

m31 0 m33 0 m35 0
M= I (3.267)

0 m42 0 m44 0 m46 

m51 0 m53 0 m55 0 
0 m62 0 7'TI.64 0 7'TI.66 

~·i...,,-' 
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Figure 3.17: Slender body submarine (large length/width ratio). 

, r 
which clearly confirms that the two subsystems: ..,. , 

i 

(3.268)M lat = [:~~ :: ::] 
n162 n164 n166 

are decoupled. 

Longitudinal Subsystem 

Under the assumption that the lateral states v, p, r, IjJ are small, the longitudinal kinematics 
for surge, heave, and pitch are, see (2.16) and (2.26): 

(3.269) 
I'll" 

For simplicity, it is assumed that higher order damping can be neglected, that is D n (v) = o. 
Coriolis is, however, modelled by assuming that u » 0 and that 2nd-order terms in v, w, p, q, 
and r are small. Hence, from (3.66) it is seen that: 

Ili/jlllll", 

~I 
~i 

such that: 

(3.270) 

""'1"""'"_ !I" 
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Notice that CRB(V) =I-C~B(v) for the decoupled model. Assuming a diagonal MA as in 

~ Example 3.2, the corresponding added mass terms are: f 
-Zwwq + Y"VT ]l CA(v)v = -Y"vp + Xuuq

[ (Zw-Xu)uw + (N.;.-Kp)pr 

0 0 0 ][U]
~ 

[
0 0 Xuu w (3.271) '~ 

o (Zw-Xu)u 0 q 

According to 3.6) and (3.120) with W = Band xg = Xb, the dynamics becomes: 

-Xw[ m-X. mz -X ][ U ]
-X· m-Zw -m~g - Zq ~ ~ 

g _wX q -mxg -Zq Iy - Mq ql 
mZ

(3.268) -x;[ -X.
+' -Zu -z;

~ -st; -u; =~][ ~] 

o 
o ] [ U] [ 00 ] [ Tl ]o -(m-Xu)u w + = T3+ [~ (Zw - X,Ju mxgu q W BGz sinO T5 

.•; (3.272)t\Wt'. 
kinematics This model is the basis for forward speed control (state u) and depth/diving autopilot design 

(states w, q,0). If the forward speed is stabilized by a forward speed controller such that: 

u =U o = constant (3.273) 
(3.269)� 

forward speed can beeliminated from the longitudinal equations of motion such that:� 

.[V) = O. 
V,w,p,q, m - Z . -mx -Z· ] [ til] [-Z -Z] [ w ]

[ -mxg-Zq Iy-gMq q q + -M: -M: _ qr 0 -(m-x,.)uo][w] [ 0 ] [T3]
+ [ (Zw-Xu)uo mxguo q + BGzWsinO = T5 

Moreover, if til = w = 0 (constant depth) and 0 is small such that sinO ~ 0, the linear pitch 
dynamics becomes: 

(Iy - Mq)fJ - Mqil + BGz WO = T5 (3.274) 
!~,.;;H'Jr] 

wLre ~L ., Lquency :~~ 

BGz W 
w()= (3.275)

(3.270) (Iy - Mq) 

,~ 

.~ 

-",,"" 
_ll'ffIIfIiflf4i,iii,¥iI"h'" - • 



112 Dynamics of Marine Vessels 

Lateral Subsystem "",..
~1I 

Under the assumption that the longitudinal states u, w,p, r, ¢ and e are small, the lateral� 
kinematics, see (2.16) and (2.26), reduce to:� 

~ = p (3.276) 

;p = r (3.277) 

Again it is assumed that higher order velocity terms can be neglected so that Dn(v) = 0,� 
and that the Coriolis terms in u = U o are the most important, see (3.66):� 

-m(ygP + w)p + m(zgr + xgp)q - m(ygr - u)r 
CRB(V)V = -m(ygq + zgr)u + m(ygP + w)v + m(zgP - v)w 

m(xgr + v)u + m(ygr - u)v - m(xgP + ygq)w '.' 

+(-IYZq-IxzP+lzr)q+(IYZT+IXYP-Iyq)r] 
+(-Iyzr - Ixyp+ Iyq)p+ (Ixz r + Ixyq - Ixp)q 

~' 

Hence:� 
0 0� 

mu., ] [ v ]CRB(V)V ~ 0 0 (3.278)
[ o 0 mx~Uo ~ 

Under the assumption ofa diagonal MA structure as in Example 3.2, the corresponding added 
mass terms are: 

Next, assume that W = 

m- Y.
-mz _vYp 

[ 
g 

mxg - Yr 

-Y. 
+ 

[ 
-Mv 
-Nv 

[ (Yv-Z~):~ ~ t':;;:Nr)qr ] 
(Xu-Yv)uv + (Kp-Mq)pq� 

0 0 -XUU] [ v ]� 
(3.279)

[ (Xu~Yv)u ~ ~ ~ 
E, xg = Xb, and Yg = Yb. Then (3.6) and (3.120) reduces to: 

""'~. 

(3.280) .
~ 

~'C:_ 

lim;. : 
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Ie lateral 

m-Yv mXg-Yr 
[ mXg-Yr t.:«, ] [ ~ ] + [ =~: =~:] [~ ](3.276) 

(3.277)� + [ 0 (m - X,Juo ] [ v ] = [ 72 ]
(Xu-Yv)u mxguo r 76o 

If) = 0, 
which is the sway-yaw maneuvering model (Representation 1). The decoupled linear roll 
equation under the assumption of a small ¢ is: 

(3.28u, -~p}~"~"Ifl'~tW,~g,,¢~,, 74 
c,,'eti"wt§ilt@'jI'Jillitir'i'u'Uifi ""I tvn~~!\.~_ 

for which the natural frequency is: 
/)1' ] 
)}q 

BGzWi ==� (3.282)~)r!> 

(Ix - Kp)f 
(3.278) 

3.6 Exercises19 added 

! 
Exercise 3.1 Consider a neutrally buoyant spherical shaped underwater vehicle. The radius 
ofthe sphere is R = 1.0 (m) and the density ofwater is p = 1000 (kg/m3 ). For simplicity it 
is assumed that MA = MRS. The linear part ofthe damping matrix is: 

1)= diag{lOO, 150,200,1,2,5} 

(3.279) 

I 
The vertical distance between the CG and CB are 0.2 m and both points are located on the 
vertical axes through the center ofsphere. Let the body-fixed coordinate system 0 be located 
at the CB. 

a) Compute the Coriolis and centripetal matrix C(v) as a function v and explain why this� 
'.1 

term can be neglected during station-keeping.� 

b) Compute the mass m. The inertia matrix with respect to CG is 

leg =diag{1000,1000,500} 

Compute the inertia matrix 10 with respect to the body-fixed coordinate origin O. 

3.280)� c) Compute the time constants for the 1st-order systems in surge, sway, and yaw under the 
assumption ofstation-keeping. 

d) Compute the heave, roll, and pitch periods under the assumption ofstation-keeping. 

Hint: The volume ofthe sphere is V = ~ 7f R 3
• 

Exercise 3.2 Open the container ship model container.m (remember to type gnc in Matlab to 
add the GNC toolbox path to the Matlab path) in the Matlab editor. 

I~",,~t!.•

L~ 

.""..."".... 
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For vehicles where p and p are small (small roll motions) and the speed is u = uo , this 
reduces to: 
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....� 
,� 

a) Write the m-file model in the standardform: ~ 
Mil + [C(v) + D(v)] v + g(17) = T + go + w� 

""'-"� 
N(v) 

.~by putting all m-file terms into the proper matrices and vectors. It is convenient to use the 
matrix N(v) instead ofthe matrices C(v) andD(v). Cbap
b) Is itpossible to split the matrix N(v) into two unique matrices C(v) andD(v)? Hint: 
for each M there exists at least one C(v). 

c) Write a Matlab or Simulink program and simulate the container ship for different maneu
vers. 'rJf 
Exercise 3.3 Consider a marine vessel in 6 DOF where: 

Oce~ 
iJ = J(17)V 

Mv + C(v)v + D(v)v + g(17) =,. .~ 
where v =[u, V,w,p, q, r]T and 17 = tn, e, d, ¢, B, 1jJ]T. Let V(17, v) be a positive definite u..." 
energyfunction: C~ 

1 TIT .c._':~ 
V(17,v) = 2v Mv + 217 Kp17 

•. i...IIIIniI---- potential energy kinetic energy ~ 

whereMT = M> OandKJ = K, > O. ~I 
a) Show that: 

l~ 

b) Assuming that vTD(v)v >O,find afeedback control law T such that: .... 
.... 

and explain why this makes the vessel come to rest, v(t) -+ 0 as t -+ 00. 

c) The assumption that KJ = K, > 0 is relaxed to K, > 0, that is x TKpx >0, x # o. Is • (lI:I:I 

it possible tofind a control T for this case satisfying 

~,...... 
Hint: x TAx = ~xT(A + A T)X + ~xT(A - A T)x = ~xT(A + A T)x since x T(A  i:. t 
AT)x=O. 

7 a s 

,~,.'. 
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Models for Wind, Waves and 
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I n Chapters 2 and 3 a nonlinear model structure for marine vessels in 6 DOF was derived. 
In this chapter simulation models for environmental disturbances are presented. These 

include models for: 

• Wind 

• Waves 

• Ocean currents 

The purpose of the chapter is to present models for simulation, testing, and verification 
of feedback control systems-i.e., of systems in closed loop. Hydrodynamic models for more 
accurate computations of sealoads and open loop prediction of vessel motion are found in 
Faltinsen (1990), Newman (1977), and Sarpkaya (1981). 

Superposition of Wind and Wave Disturbances 

For control system design it is common to assume the principle ofsuperposition when con
sidering wind and wave disturbances. For most marine control applications this is a good 
approximation. In general, the environmental disturbances will be highly nonlinear, and both 
additive and multiplicative to the dynamic equations of motion. These effects are included 
in vessel simulators that are produced for human operators. When simulating a system under 
feedback control, many of these effects are suppressed in closed loop. 
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of feedback control systems-i.e., of systems in closed loop. Hydrodynamic models for more 
accurate computations of sealoads and open loop prediction of vessel motion are found in 
Faltinsen (1990), Newman (1977), and Sarpkaya (1981). 

Superposition of Wind and Wave Disturbances 

For control system design it is common to assume the principle of superposition when con~ 
sidering wind and wave disturbances. For most marine control applications this is a good 
approximation. In general, the environmental disturbances will be highly nonlinear, and both 
additive and multiplicative to the dynamic equations of motion. These effects are included 
in vessel simulators that are produced for human operators. When simulating a system under 
feedback control, many of these effects are suppressed in closed loop. 
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In Cbapter 3 it was shown that the nonlinear dynamic equations of motion can bewritten: 

116 

Mv + C(v)v + D(v)v + g(7J) =T + go + w (4.1) 

The principle of superposition suggests that the wind and wave-induced disturbances are 
added to the right-hand side of (4.1) by defining: 

W = Wwind +Wwavo (4.2) 

where Wwind E ]R6 and W wave E ]R6 represent the generalized forces due to wind and waves. 
Simple models for simulation of generalized wind and wave forces are presented in Sections 
4.1 and 4.2. 

',
Equations of Relative Motion for Simulation of Ocean Currents 

The effect due to ocean currents is usually simulated in closed-loop by introducing the relative 
velocity vector: 

(4.3) 

where veE ]R6 is the body-fixed current velocity vector. 
For a slowly-varying current profile, vc ~ 0, the equations of motion become: 

MRBV + CRB(V)V + g(7J) +MAv + CA(Vr)Vr + D(vr)vr = T + go + W (4.4) 
'" V' ? .... 'V " 

rigid-body terms hydrodynamic terms 

In the linear case this reduces to: 

Mv + NVr + G'1 =T + go + w (4.5) 

Models for simulation of ocean currents in tenus of u c are presented in Section 4.3. ,. 
4.1 Wind Models 

Wind is defined as the movement of air relative to the surface of the Earth. Mathematical 
models of wind forces and moments are used in vessel control systems to improve the per
formance and robustness of the system in extreme conditions. Some of these models are 
presented in the forthcoming sections. 

4.1.1 Wind Forces and Moments 

Let Vw and 1/Jw denote the wind speed and direction, respectively. In order to determine 
the local velocity h (m) above the sea surface a boundary-layer profile can be used, see 
Bretschneider (1969): 

Vw(h) = Vw(lO) . (h/1O?/7 (4.6) 

where Vw(lO) is the relative wind velocity 10 (m) above the sea surface. 
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Figure 4, 1: Definition of wind speed Vw and direction Ir' 

The wind forces and moments acting on a vessel can then be defined in terms of relative 
wind speed Vr and the angle I r according to: 

Vr = Ju~ +v;, Ir =tan- 1(vr/ur) = 1/Jw -1/J (4.7) 

where the components of v,. in the x- and y-directions are: 

u, = Vw cos(rr) - U, V r = Vw sin(rr) - v (4.8) 

Here, I R = 1/Jw -1/J can be interpreted asthe angle of the wind relative to the ship bow; see 
Figure 4.1. 

The wind speed Vw and its direction can be measured by a wind sensor. These mea
surements should be proper filtered since only the mean wind forces and moments can be 
compensated for by the autopilot. In fact, since the inertia of the vessel is so large, it is un
necessary for the control system to compensate for wind gust. In order to implement wind 
feedforward compensation for a surface vessel, a 3 DOF wind model as a function of relative 
wind speed and direction, Vr and Ir' is needed. For this purpose, the generalized force vector 
is: 

Wwind - [Xwind, Ywind, Nwind]T (4.9) 

Two models for numerical computation of Xwind, Ywind , and Nwind will now be discussed. 

4.1.2 Wind Resistance of Merchant Ships (Isherwood 1972) 

Isherwood (1972) suggested that one can write the wind forces (surge and sway) and moment 
(yaw) according to: 

.-.__ )~lnf.r..",,,;ii 

~~
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Xwind (N) (4.10) 

Ywind (N) (4.11) 

Nwind = (Nm) (4.12) 

where Cx and Cy are the empirical force coefficients, CN is a moment coefficient, Pa 
3(kg/ m ) is the density of air, AT (m2 ) and AL (m2

) are the transverse and lateral projected 
areas, and L ( ill) is the overall length of the ship. Notice that Vr is given in knots. 

In the work of Isherwood (1972) the measured data were analyzed by multiple regression 
techniques using the following 8 parameters: 

L - length overall 
B beam 

AL - lateral projected area 
AT - transverse projected area 
Ass lateral projected area of superstructure 
S - length ofperimeter of lateral projection of model 

excluding waterline and slender bodies such as masts and ventilators 
C - distance from bow of centroid of lateral projected area 
M - number ofdistinct groups of masts or king posts seen in lateral 

projection; king posts close against the bridge front are not included 

Table 4.1: Wind force parameters in surge, sway, and yaw (Isherwood 1972). 
'Y (deg) Ao Al A 2 A3 A 4 As A6 S.E.r 

0 2.152 -5.00 0.243 -0.164 0.086 
10 1.714 -3.33 0.145 -0.121 0.104 
20 1.818 -3.97 0.211 -0.143 0.033 0.096 
30 1.965 -4.81 0.243 -0.154 0.041 0.117 
40 2.333 -5.99 0.247 -0.190 0.042 0.115 
50 1.726 -6.54 0.189 -0.173 0.348 0.048 0.109 
60 0.913 -4.68 -0.104 0.482 0.052 0.082 
70 0.457 -2.88 -0.068 0.346 0.043 0.077 
80 0.341 -0.91 -0.031 0.032 0.090 
90 0.355 -0.247 0.018 0.094 
100 0.601 -0.372 -0.020 0.096 
110 0.651 1.29 -0.582 -0.031 0.090 
120 0.564 2.54 -0.748 -0.024 0.100 
130 -0.142 3.58 0.047 -0.700 -0.028 0.105 
140 -0.677 3.64 0.069 -0.529 -0.032 0.123 
150 -0.723 3.14 0.064 -0.475 -0.032 0.128 
160 -2.148 2.56 0.081 1.27 -0.027 0.123 
170 -2.707 3.97 -0.175 0.126 1.81 0.115 
180 -2.529 3.76 -0.174 0.128 1.55 0.112 

Mean S.E. 0.103 

-~ 
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"� 

(4.10) 

(4.11) I 'Yr (deg) ~ ------sl -132 -----s; -- 84 
10 0.096 0.22 - - -

Bs 
-

B6 
-

S.E. 
0.015 

(4.12) 

r¥ ")jn~~ 

cient, Pa 
irojected 

:gression 

• 
I.1 

20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 

0.176 
0.225 
0.329 
1.164 
1.163 
0.916 
0.844 
0.889 
0.799 
0.797 
0.996 

0.71 
1.38 
1.82 
1.26 
0.96 
0.53 
0.55 
-
-
-
-

-
-
-

0.121 
0.101 
0.069 
0.082 
0.138 
0.155 
0.151 
0.184 

-
0.023 
0.043 

-
-
-
-
-
-
-
-

-
-
-

-0.242 
-0.177 

-
-
-
-
-

-0.212 

-
-0.29 
-0.59 
-0.95 
-0.88 
-0.65 
-0.54 
-0.66 
-0.55 
-0.55 
-0.66 

-
-
-
-
-
-
-
-
-
-

0.34 

0.023 
0.030 
0.054 
0.055 
0.049 
0.047 
0.046 
0.051 
0.050 
0.049 
0.047 

130 1.014 - 0.191 - -0.280 -0.69 0.44 0.051 

''. . - 140 
150 

0.784 
0.536 

-
-

0.166 
0.176 

-
-0.029 

-0.209 
-0.163 

-0.53 
-

0.38 
0.27 

0.060 
0.055 

160 0.251 - 0.106 -0.022 - - - 0.036 
170 0.125 - 0.046 -0.012 - - - 0.022 

Mean S.E. 0.044 

II -, 'Y r (deg) 
10 
20 

Co 
0.0596 
0.1106 

C 1 

0.061 
0.204 

C2 
-
-

C3 
-
-

C4 
-
-

Cs 
-0.074 
-0.170 

S.E. 
0.0048 
0.0074 

30 0.2258 0.245 - - - -0.380 0.Q105 
40 0.2017 0.457 - 0.0067 - -0.472 0.0137 

v • 
50 
60 
70 

0.1759 
0.1925 
0.2133 

0.573 
0.480 
0.315 

-
-
-

0.0118 
0.0115 
0.0081 

-
-
-

-0.523 
-0.546 
-0.526 

0.0149 
0.0133 
0.0125 

80 0.1827 0.254 - 0.0053 - -0.443 0.0123 
I 

~ 

~ J 90 
100 
110 
120 
130 

0.2627 
0.2102 
0.1567 
0.0801 

-0.0189 

-
-
-
-
-

-
-0.0195 
-0.0258 
-0.0311 
-0.0488 

-
-
-

0.0101 

-
0.0335 
0.0497 
0.0740 
0.1128 

-0.508 
-0.492 
-0.457 
-0.396 
-0.420 

0.0141 
0.0146 
0.0163 
0.Q179 
0.0166 

140 0.0256 - -0.0422 0.0100 0.0889 -0.463 0.0162 

4i • 
150 
160 
170 

0.0552 
0.0881 
0.0851 

-
-
-

-0.0381 
-0.0306 
-0.0122 

0.0109 
0.0091 
0.0025 

0.0689 
0.0366 

-

-0.476 
-0.415 
-0.220 

0.0141 
om05 
0.0057 

MeanS.E. 0.0127 "

From regression analyses it was concluded that the measured data were best fitted to the .... 

following three equations: 

Cx = 
2AL 2Ar L S C 

Ao + A 11;2 + A2 B2 + A3 B + A4L + As L + A6M 

Cy = - ( 2AL 2Ar L S C Ass)Bo + B1 - - + B2-- + B3 - + B4- + Bs + B6  -£2 B2 B L L AL 

CN = ( 2AL 2Ar L S C)
- Co+C11;2 +C2 B2 +C3 B +C4L +Cs L 

j~ ~"" 
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Figure 4.2: Wind forces and moment for L = 100, B = 20, AL = 400, AT = 1000, 
Ass = 100, S = 50, C = 20 and M = 1 using the formulas oflsherwood (1972). Wind 
speed Vr = 20 mls (cross) and Vr = 40 mls (circels). 

where A and B, (i = 0, ... , 6) and Cj (j = 0, ... , 5) are tabulated in Table 4.1, together 
with the residual standard errors (S.E.). The signs of Cv and CN have been corrected to 
match the definition of'-v, in Figure 4.1. I 

Matlab: 
The wind forces and moment (4. IO}-(4.12) are plotted in Figure 4.2 using the GNC tool ." 

box example file ExWindForce.m. The data sets of Isherwood (1972) are programmed 
in the Matlab function windcoeff .m: 

where the wind coefficients ex, ey, and en are optional outputs. 

4.1.3 Wind Resistance of Very Large Crude Carriers (OCIMF 1977) 

Wind loads on very large crude carriers (VLCCs) can be computed by applying the following 
formulas (OCIMF 1977): 

,~ 
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Figure 4.3: Longitudinal wind force coefficient ex as a function of "Yr (OCIMF 1977). 

IT = 1000, 
.972). Wind 

~ . 1 ( 2
Xwind = 7.6Cx "Yr)PaVr AT (N) (4.13) 

U, together 1 2 
corrected to Ywind = 7.6 CY(')'r)Pa v,. A L (N) (4.14)

,: . 1 2Nwind = 7.6CNbr)PaVr ALL (Nm) (4.15) 

,.", as"'f"'"··'di.f:C:,:y'--· "'f 1" SX"hi"" ,. 
i-

JNC tool Note that (4.13)-{4.15) only differs from (4.10)-{4.12) in the 1/2 ..... 1/7.6. This coefficient 
grammed could easily be taken into Cx, Cy , and CN so that the only these coefficients differ for the 

'\...• 
different vessels. 

S,C,M) Equations (4. 13)-{4. 15) are valid for vessels in the 150.000 to 500.000 (dwt) class. The 
non-dimensional force and moment coefficients Cx , Cy , and CN are given as a function of 
"Yr as shown in Figures 4.3~.5 while Pa (kg/rrr') is the density of air. The constant 7.6 is a 
conversion factor. For ships that are symmetrical with respect to the xz- and yz-planes, the 
functions (4. 13)-{4. 15) can be approximated by: 

Cxbr) ~ Cx cos-r;; Cybr) ~ cy sin "Yr, CNbr) ~ Cn sin(2"Yr) (4.16)
1977) I 

which are convenient formulas for computer simulations. Figures 4.3~.5 indicate that Cx E 
~ following {-1.0, -0.8}, Cy E {-1.0, -0.7}, and en E {-0.2, -0.05}. However, the figures also 

indicate that these approximations should be used with care. 

rY.
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Ii the S"I 

"Il11O"...... 
wtGca.c .. 

0.15~········,··········,··········,··········,······· ... , .... / ...:.... "j'-=-:~ u.t Nl 

~0.1	 . ...~ ....";.:' .~ ...
 

:~
 

/~ 

.. .,"'
., : 

0.05 ..... •••••.•.• ;r•••••••••. : .••.,: . 
/
 

/
 !f 
/

: / 

"' 
o 

Balla$ted tank.~r 

-D.05 

o	 20 40 60 80 100 120 140 160 180
 

'Yr (deg)
 

Figure 4.5: Wind moment coefficient eN in yaw as a function of"Yr (OCIMF 1977).	 wtlRo. 
• ... i::II 

~
 



180 

-~ 

Ocean Currents 

"f (deg) 

MF 1977). 

<, 

o 
. (deg) 

~IF 1977). 

~~I'
 

4.2 Models for Wind Generated Waves 123 

4.1.4 Wind Resistance of Large Tankers and Medium Sized Ships 

For wind resistance on large tankers in the 100.000 to 500.00 (dwt) class the reader is advised 
to consult Van Berlekom et al. (1974). Medium sized ships of the order 600 to 50.000 (dwt) 
is discussed by Wagner (1967). 

A detailed analysis of wind resistance using semi-empirical loading functions is given by 
Blendermann (1986). The data sets for seven ships are included in the report. 

4.1.5 Wind Resistance of Moored Ships and Floating Structures 

Wind loads on moored ships are discussed by De Kat and Wichers (1991) while an excellent 
reference for huge pontoon type floating structures is Kitamura et al. (1997). 

4.2 Models for Wind Generated Waves 

The process ofwave generation due to wind starts with small wavelets appearing on the water 
surface. This increases the drag force, which in turn allows short waves to grow. These short 
waves continue to grow until they finally break and their energy is dissipated. It is observed 
that a developing sea, or storm, starts with high frequencies creating a spectrum with a peak 
at a relative high frequency. A storm which has lasted for a long time is said to create e fully 
developed sea. After the wind has stopped, a low frequency decaying sea or swell is formed. 
These long waves form a wave spectrum with a low peak frequency. 

If the swell from one storm interacts with the waves from another storm, a wave spectrum 
with two peak frequencies may be observed. In addition, tidal waves will generate a peak 
at a low frequency. Hence, the resulting wave spectrum might be quite complicated in cases 
where the weather changes rapidly; see Figure 4.6. 

4.2.1 Nonlinear Models of Wave Spectra 

The state-of-the-art wave spectra will now be presented. These models are used to derive lin
ear approximations and transfer functions for computer simulations, autopilot wave filtering, 
and state reconstruction; see Sections 6.1-6.2. 

Neumann Spectrum 

The earliest spectral formulation is due to Neumann (1952) who proposed the one-parameter 
spectrum: 

S(w) = Cw-6 exp (_2g2w- 2V - 2 ) , (m2 s) (4.17) 

where S (w) is the wave elevation power spectral density function, C is an empirical constant, 
V is the wind speed. and 9 is the acceleration of gravity. Six years later Phillips (1958) 
showed that the high frequency part of the wave spectrum reached the asymptotic limit: 

a 92 5lim S(w) = w- (4.18)
w»l 

where a is a positive constant. This limiting function ofPhillips is still used as basis for most 
spectral formulations. 

-.:.~ 
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Figure 4.6: 1\\'0 peaked wave spectrum. 

Bretschneider Spectrum J
The spectrum of Neumann was further extended to a two-parameter spectrum by Bretschnei 111 
der (1959): , n 

5S(w) = 1.25w~:; w- exp ( -1.25 (wO/w)4) , (m2 s) (4.19) , 
where wo is the modal or peak frequency of the spectrum and H; is the significant wave 
height (mean of the one-third highest waves). This spectrum was developed for the North 
Atlantic, for unidirectional seas, infinite depth, no swell, and unlimited fetch. The significant 
wave height H, is used to classify the type of sea in terms of sea state codes 0,1, ... ,9 as 
shown in Table 4.2. 

Pierson-Moskowitz Spectrum 

Pierson and Moskowitz (1963) have developed a two parameter wave spectral formulation 
for fully developed wind-generated seas from analyses of wave spectra in the North Atlantic I 
Ocean: 

and it is commonly known as the PM-spectrum (Pierson-Moskowitz spectrum). The PM
spectrum is used as basis for several spectral formulations but with different A and B values. 
In its original formulation, the PM-spectrum is only a one-parameter spectrum since only B 
changes with the sea state. The parameters are: 

A = 8.1· 10-3 92 = constant (4.21)
 

B = 0.74 (V;9)4 3.11 (4.22)
 
19.4 H; 

where V19.4 is the wind speed at a height of 19.4 (m) over the sea surface. 

'IIII~ 
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The PM

B values.
 
:eonly B 

(4.21) 

(4.22) 
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Table 4.2: Definition of Sea State (SS) codes (Price and Bishop, 1974). Notice that the 
percentage probability for SS codes 0, 1, and 2 is summarized. 

Percentage probability
 
Sea state Description Wave height World North Northern
 
code of sea observed (m) wide Atlantic North Atlantic
 

0 Calm (glassy) 
1 Calm (rippled) 
2 Smooth (wavelets) 
3 Slight 
4 Moderate 
5 Rough 
6 Very rough 
7 High 
8 Very high 
9 Phenomenal 

Matlab: 

0
 
0-0.1 11.2486 8.3103 6.0616
 

.~.0.1-0.5 
0.5-1.25 31.6851 28.19% 21.5683 
1.25-2.5 40.1944 42.0273 40.9915 ,L 
2.5-4.0 12.8005 15.4435 21.2383 Yi 
4.0-6.0 3.0253 42938 7.0101 ·.jii
6.0-9.0 0.9263 1.4968 2.6931 ~::1:}1 

9.0-14.0 0.1190 0.2263 0.4346 ';1iOver 14.0 0.0009 0.0016 0.0035 .': ~ 

The Pierson-Moskowitz spectrum is implemented in the GNC toolbox as: 

[W,S,WO,V] = pierson(Hs,wmax,N) 

The relationship between Vi9.4 and H8 in (4.22) is based on the assumption that the waves 
can be represented by Gaussian random processes and that Sew) is narrow-banded. From 
(4.22) it is seen that: 

2.06 2 n, = -2- V19.4 (4.23) 
9 

implying that the significant wave height is proportional to the square of the wind speed. This 
is shown in Figure 4.7 where the sea state codes and Beaufort numbers are plotted against 
each other, see Tables 4.2--4.3. 

I'The modal frequency (peak frequency) Wo for the PM-spectrum is found by requiring 
that: Ie 

(dS(W») = 0 (4.24) ". 

di» w=wo 

Solving for Wo in (4.20), yields: 

JiB J-S 
Wo = Y5" :=} To = 27r Y4ii (4.25) 

where To is the modal period. Consequently, the maximum value of S (w) is: ~ 

5A 
Smax = S(wo) = 4Bwo exp (-5/4) (4.26) I 

I 
,I ~ 

c:."::;~':'-:"','.>:'""-'-' ----------,_.............. ",....

~l 
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Table 4.3: Definition of Beaufort numbers (Price and Bishop, 1974). 

Beaufort number Description ofwind Wind speed (knots) 
o Calm 0-1
 
1 Light air 2-3
 
2 Light breeze 4-7
 
3 Gentle breeze 8-11
 
4 Moderate breeze 12-16
 
5 Fresh breeze 17-21
 
6 Strong breeze 22-27
 
7 Moderate gale 28-33
 
8 Fresh gale 34-40
 
9 Strong gale 41-48
 
10 Whole gale 49-56
 
II Storm 57-65
 
12 Hurricane More than 65
 

Wave Spectrum Moments 

The different wave spectra can be classified by means of wave spectrum moments: 

(k =O, ... ,N) (4.27) 

For k = 0, this yields: 

1 A00 

mo = S(w)dw = - (4.28) 
o 4B 

which simply states that the instantaneous wave elevation is Gaussian-distributed with zero 
mean and variance a 2 = A/4B. Consequently, 

a=vmo (4.29) 

can be interpreted as the RMS-value of the spectrum. 
Under the assumption that the wave height is Rayleigh distributed it can be shown that 

(Price and Bishop 1974): 
H; = 4a = 4y'm() (4.30) 

The corresponding wave moments for k = 1 and k = 2, become: 

ml = 0.306 B3/4 ' 
A ,JrrA

m2=--- (4.31)
4 VB 

and for the PM-spectrum, the average wave period is defined as: 

(4.32) 

while the average zero-crossings period is defined as: 

(4.33) 
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Figure 4.7: Plot showing the relationship between significant wave height, wind speed, Beau
fort numbers, and sea state codes. 

Modified Pierson-Moskowitz (MPM) Spectrum 

For prediction of responses of marine vehicles and offshore structures in open sea, the In
ternational Ship and Offshore Structures Congress (2nd ISSC 1964), and the International 
Towing Tank Conference, 12th IITC (1969) and 15th ITTC (1978) have recommended the 
use ofa modified version of the PM-spectrum where: 1

3 3
A = 41T H; B = 161T (4.34)T4z ' T4z 

L 
This representation of the PM-spectrum has two parameters H; and Tz , or alternatively To 
and T1 given by: 

T; = O. nOTo = O.921T1 (4.35) 

can be used 

Matlab:� 
The modified PM-spectrum is implemented in the GNC toolbox as:� 

[w,S,Tz] = mpierson(Hs,wo,wmax,N) 

,', . 
..I··· : 
;f 

..� 

'..I� 



•• 

128 Models for Wind, Waves and Ocean Currents 

S(.. ) (radIa) 

'00 

80 

80 

40 

20 

0 
0.1 0.2� 0.7 0.8 0.9 1 

w(rlIdIO)� 
S(.. )(rlIdIO) Mod__ (PM) .........� 

'00 

10 

80 

40� .~
20 

0 
0.1� 0.2 0.8 0.9 1� 

w (radIa)� 

'1 
~ 

F~~.9 
Figure 4.8: Plot showing the JONSWAP and Modified Pierson-Moskowitz spectra for Wo = .-paiI
0.4 rad/s and He = 3,4, ... , 14 m. 

~ 

The modified PM-spectrum should only be used for a fully developed sea with large (infi
nite) depth, no swell, and unlimited fetch. For non-fully developed seas the JONSWAP or 
Torsethaugen spectra are recommended. 

.AIMs .-. 

JONSWAP Spectrum 

In 1968 and 1969 an extensive measurement program was carried out in the North Sea, be
tween the island Sylt in Germany and Iceland. The measurement program is known as the 
Joint North Sea Wave Project (JONSWAP) and the results from these investigations have 
been adopted as an IITC standard by the 17th ITTC (1984). Since the JONSWAP spec
trum is used to describe non-fully developed seas, the spectral density function will be more 
peaked than those representing fully developed spectra. The proposed spectral formulation 
is representative for wind-generated waves under the assumption of finite water depth and 
limited fetch. The spectral density function is written: 

(4.36) 

rk J71i 
where Hasselmann et al. (1973) suggest that-r = 3.3 and: :"_-: «SolI 

~ 

(4.37) 

I 
':'. 
11'······· . 



129 Currents 4.2 Models for Wind Generated Waves i.• •·· 
~" 

S(6)Y{H~To) 

0.16, i' Ii! i I 
• - Modified Pierson-Mo86u:Mitz 

- - JONSWAPfor 'F3.3 
- JONSWAPfcr y=7.0 

0.14� -+To,-

0.12 

~ 0.1 
'i: 
..'\ 

0.08 

0.0& 

0.04 

0.02 

Jl'~i	 I. 
o 0.5 1.5 2.5 

'" (radIa) 

Figure 4.9: Comparison of different spectra for significant wave height H; = 10 m and wave 
forwo = 

peak period To = 5 s. 

wherelarge (infi�
WSWAPor 0.07 far w S 5.24/T1� (4.38)a = { 0.09 far w > 5.24/T1 

Alternative formulations can be derived in terms of the characteristic periods like To and Tz 
by using: 

th Sea, be T1 =0.834 To = 1.073 Tz (4.39) 

own as the 
lions have 

Matlab:VAP spec
The JONSWAP spectrum is included in the ONe toolbox as: 11 be more t 

lrmulation [w,S,Tz] = jonswap(Hs,wo,wmax,garnma,N) 
depth and 

(4.36):� 
Torsethaugen Spectrum� 

The Torsethaugen spectrum is an empirical, two peaked spectrum, which includes the ef
fect of swell (low frequency peak) and newly developed waves (high frequency peak). The 
spectrum was developed for Norsk Hydro (Torsethaugen 1996), and standardized under the 

(4.37)� Norsok Standard (1999). The spectrum is developed using curve fitting of experimental data� 
from the North Sea.� 

.~:... 

...._.... ",...," .._,,,......� • b ,j 
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Matlab: 
In Figure 4.10 the Torsethaugen spectrum is plotted for different peak frequencies and 
significant wave heights using the GNC toolbox function: 

[w,S] ; torset(Hs,wo,wmax,N) 

If the peak frequency Wo is chosen to be less than approximately 0.6 (rad/s) the Torsethaugen 
spectrum reduces to a one peak spectrum where swell dominates. For peak frequencies Wo > 
0.6 (rad/s) the two characteristic peaks shown in Figure 4.10 clearly appear. This is due to 
the fact that developing waves are high frequent compared to swell. This combined effect is 
very common in the North Sea, and it makes DP and autopilot design a challenging task in 
terms of wave filtering. 

Matlab: 
The different wave spectra in this section when plotted for same wave height and peak 
frequency are shown in Figure 4.9 using the wave demo option in the GNC toolbox 
script: 

gncdemo 

4.2.2 Linear Wave Response Models 

The wave-induced forces and moments on a marine vessel in closed loop can be simulated by 
assuming a linear wave response model. If accuracy of the vessel motion is critical, a more 
detailed model for the wave loads should be applied. 

A linear approximation of the spectral density function S(w) can be found by writing the 
output y(s) from the wave model as a linear filter: 

y(s) = h(s) w(s) (4.40) 

where w(s) is a zero-mean Gaussian white noise process with unity power across the spec
trum: 

Pww(w) = 1.0 (4.41) 

and h(s) is a transfer function to be determined. Hence, the power spectral density (PSD) 
function for y(s) can be computed as: 

(4.42) 

The ultimate goal is to design an approximating Pyy(w) to S(w), for instance by means of 
nonlinear regression, such that Pyy(w) reflects the energy distribution of S (w) in the relevant 
frequency range. Linear approximations well suited for this purpose are discussed below. 

--'~_
.. ~ 



i

~ 

4.2 Models for Wind Generated Waves ... 131 

II 

0.1 

0.08 

S(..)I(H:To ) 

0.14, 

0.12 

, ii' 

H = 3-10 m . 
T =lOa o 

, 

0.06 .. 
0> 
leW 

Clis 
tiD 

0.04 

0.2 

0.02 

01 
o 

0.15 

"0 = 0.63 radls 

0.5 

, 

1It#" 

I 

21.5 

'i 

2.5 

.. (radial 

H 

T•
=3-10m 

=4a o 

I 

3 

, 

I 

0.1 

~ 

• 
o 
o 

0.05 

0.5 1.5 

"0 = 1.57 radls 

2 2.5 
.. (rad/s) 

3 

I by 
lift 

t Figure 4.10: Torsethaugen spectrum: upper plot shows only one peak at Wo = 0.63 rad/s 
representing swell and developing sea while the lower plot shows low-frequency swell and 
newly developing sea with peak frequency Wo = 1.57 rad/s. Courtesy to Norsk Hydro. 

the 2nd-Order Wave Response Transfer Function Approximation 

I,' 
40) 

t 
CIt-

Linear wave response approximations are usually preferred by ship control systems engi
neers, owing to their simplicity and applicability. The first applications were reported by 
Balchen et al. (1976) who proposed modeling the wave-frequency motion of a dynamically 
positioned ship in surge, sway, and yaw by three harmonic oscillators without damping. Later 
Seelidet al. (1983) introduced a damping term A in the wave model to better fit the shape of 
the PM-spectrum. This model is written: 

'i..• j" 

11) 

D) h(s) 
«;» 

= s2 + 2Awos+ w5 (4.43) 

12) 
and it is convenient to define the gain constant according to: 

of 
K w = 2AwoO" (4.44) 

~ 

~ 

where 0" is a constant describing the wave intensity, A is a damping coefficient, and WQ is 
the dominating wave frequency. Consequently, substituting s = jw yields the frequency 

~. 

f" 
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response: 
Matlab: 

funct-".c:1 
h(jw) = j 2(AWoO")W 

% Pyy = 
(w5 - W2 ) + j 2AWow % w = va· 

% Lambda 
From (4.42) we recall that: globa':' s� 

Pyy = 4*� 
4*� 

(4.46) 

Mattab:Determination of 0" and A 

% see F-x
Since the maximum value of Pyy(w) and S (w) are obtained for W = wo,we have: 

global s 

Pyy(Wo) = S(wo)� (4.47) wo = 1.2 

n 
, Modifl 

0"2 = max S(w)� (4.48)
o<w<oo� subplco;( 

[v,5j = 
For the PM-spectrum (4.20) this implies:� lambda = 

hold ::::.: 
lege:-.d (' 

0"= ~exp (-~)	 (4.49) 
w5 

o w0 
4� , JONS1Q 

s ubpLc t; 

[v,5j = 
lambda =while the term ,Y(wo) must be included for the JONSWAP spectrum. The damping ratio A 
hold en;

can be computed by requiring that the energy, that is the areas under Pyy(w) and S(w) of the 
lege::.d ('

spectra, be equal. 
An alternative approach is to use nonlinear least-squares (NLS) to compute A such that , Torset 

Pyy(w) fits S(w) in a least-squares sense; see Figure 4.12. This is demonstrated in Example s:1bp:ot~ 

4.1 using the Matlab"� optimization toolbox. [v,S; = 

lambda' 

Example 4.1 (Nonlinear Least-Squares Optimization of Linear Spectra) 
lege::.d('

Consider the Matlab script ExLinspec.m for computation of A. The output of the nonlin
ear optimization process gives the following A-values for the modified PM and JONSWAP 
spectra: 

~I 
wo= 0.5 Wo= 0.8 wo= 1.1 wo= 1.4 Recommended values� 

,\ (MPM) 0.2575 0.2577 0.2590 0.2608 0.26� 
x(JONSWAP) 0.1066 0.1034 0.1025 0.1021 0.10� 

The A-value for both these spectra are independent ofthe wave height H s • For the Torsethau
gen spectrum the A-values vary with both H s and Wo as shown in Figure 4.11. The results of 
the curve fitting procedure for the three different spectra are shown in Figure 4.12. Since the 
Torsethaugen spectrum is a two peaked spectrum a second linear spectrum should be added 
to fit the swell peak at low frequencies. 
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Matlab:� 
function Pyy = Slin(lambda,w)� 
% Pyy = Slin(lambda,w) 2nd-order linear PSD function� 
% w = wave spectrum frequency (rad/s)� 
% lambda = relative damping factor� 
global sigma wo� 
Pyy = 4* (lambda*wo*sigma)"2*w."2./«wo"2-w."2) ."2+ •••� 

4* (lambda*wo.*w) ."2)� 

Matlab:� 
% Matlab script for plotting of nonlinear least-squares fit,� 
% see ExLinspec.m� 
global sigma wo� 

wo = 1.2; To 2*pi/wo; Hs 10; wmax 3; 

% Modified PM� 
subplot (311)� 
[w,Sl = mpierson(Hs,wo,wmax); sigma = sqrt(max(S));� 
lambda = lsqcurvefit('Slin',O.l,w,S)� 
hold on; plot(w,Slin(lambda,w)/(Hs A2*To)); hold off;� 
legend('Modified PM spectrum','linear approximation')� 

% JONSWAP� 
subplot (312)� 
[w,Sl = jonswap(Hs,wo,wmax); sigma = sqrt(max(S»;� 
lambda = lsqcurvefit('Slin',O.l,w,S)� 
hold on; plot(w,Slin(lambda,w)/(Hs A2*To)); hold off;� 
legend('Modified PM spectrum','linear approximation')� 

% Torsethaugen ..
subplot (313)� 
[w,Sl = torset(Hs,wo,wmax); sigma = sqrt(max(S));� 
lambda = Isqcurvefit('Slin' ,0.1,w,S)� 
hold on; plot(w,Slin(lambda,w)/(Hs A2*To»; hold off;� 
legend('Modified PM spectrum','linear approximation') t� 

State-Space Representations of Linear Wave Spectra 

A linear state-space model can be obtained from (4.43) by transforming this expression to the 
time-domain by defining Xwl = X w2 and X w2 = Yw as state variables. This implies that the 
state-space model can be written: 

Xw Awxw +ewww (4.50) 

Yw c~Xw (4.5 

.. ::1�,,,,,',&.1� 
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Figure 4.11: Least-squares optimal A-values for the Torsethaugen spectrum for varying H; 
and WQ when a linear spectrum is fitted to the high frequency peak of the spectrum. 
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XwI ] [ 0 1 
] [ ~:~ ] + [ :w ] Ww 

(4.52)
XW2 -w6 -2AwQ 

Yw = [ 0 1 ] [ Xwl ] (4.53) 
X w2 

where Ww is a zero-mean white noise process. Writing this expression in component form. 
yields: 

(4.54) 

Higher-Order Wave Response Transfer Function Approximations 

An alternative wave transfer function based on five parameters has been proposed by Grimble 
et al. (1980a) and Fung and Grimble (1983). This model takes the form: 

h(s) = K ws 
2 

s4 + als3 + a2s2 + a3s + a4 

where ai (i = 1, .. ",4) are four parameters. Consequently, four differential equations are 
required to describe the wave model: 

[ x 
w 
' ] [ 

0 1 0 0 

][ x 
w
' 

]+[L]ww
X w2 0 0 1 0 Xw2 (4.55)
XW 3 0 0 0 1 X w3 

XW 4 -a4 -a3 -a2 -al X w4 

....oU 
Ir£ :"""'~ 

;~ 

Triantaf 
dierspec 
IIiocdb 

._---~-
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Figure 4.12: Nonlinear least-squares fit of a linear spectrum to the PM, JONSWAP, and 
Torsethaugen spectra. Only one peak is approximated for the Torsethaugen spectrum. 

Xwl ] 

Yw = [0 0 1 0] X 
w2 (4.56)

X w3
[ 

X w4 

The number ofparameters can be reduced by assuming that the denominator can be factorized 
according to: 

K w S 2 s : 
h(s) = (2 2,\ 2)2� (4.57)

S + wos+wo 

Triantafyllou et 01. (1983) have shown by applying a rational approximation to the Bretschnei
der spectrum that a satisfactory approximation of the high-frequency ship motion can be ob
tained by using the transfer function: 

x;«
)� (4.58) h(s = (s2 + 2AWoS +- W2)3

o 

which only has three unknown parameters A, wo, and K tu- The advantage of the higher or
der models to the simple 2nd-order system (4.43) is that they will represent a more precise 
approximation to the wave spectrum response through a nonlinear least-squares curve fit
ting procedure. The disadvantage, of course, is higher model complexity and perhaps more 
parameters to determine. 
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Figure 4.13: Definition of encounter angle (3. 

4.2.3 Frequency ofEncounter •For a ship moving with forward speed U, the peak frequency of the spectrum Wo will be 
modified according to: 

(4.59) 

where: 

We • encounter frequency (rad/s)� 
Wo - wave frequency (rad/s)� 
9 - acceleration of gravity (mls2 

)� 

U - total speed of ship (mls)� 
(3 - the angle between the heading and the direction of the wave (rad) ~
 

The definition of the encounter angle j3 is shown in Figure 4.13. ..•
This suggests that the peak frequency of the wave spectrum for a heading controlled ship 

moving at speed U > 0 should be modified to incorporate the frequency of encounter. In the 
linear case, the transfer function (4.43) must be redefined to: 

h( ) K w 8 (4.60) ..·········"····8 = 82 + 2'xWe8 + W~ ••IHowever, it should be noted that the wave frequency of a dynamically positioned ship can be 
perfectly described by We = wo, since U is close to or equal to zero. 
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Matlab:� 
The GNC toolbox function:� 

w e = encounter(w_o,U,beta) 

computes the frequency of encounter. , 

4.2.4 Wave Forces and Moments 

A marine control system can be simulated under influence of wave-induced disturbances by 
separating the lst-order and 2nd-order effects: 

• 1st-order effects: wave frequency (WF) motion 

" • 2nd-order effects: wave drift forces 
" 

For a surface vessel in 3 DOF the wave forces and moments, see (4.2), are easiest simu
lated by defining: 

f 
.. ', , Wwaves = [Xwaves, Ywaves, 1VwavesJT (4.61) 

."~_i@fn.tt 'f't'!iiWi#trtt', 

l: where Xwaves, Ywaves, and Nwaves are generated by using linear theory. The wave model 
(4.60) suggests that: 

K w I 8 
Xwaves =� (4.62)

82 + 2,\ W 8 + 2 WI + dl 
1 el WeI 

K w 28 
Ywaves =� (4.63)

82 + 2,\ W 8 + 2 W2 + d2 
2 e2 W e2 

K w3 8 
N wa ves = 82 + 2,\ W 8 + 2 W3 + d3 (4.64) -

~--
, 

3 e3 W e3 

..; 

Here Wi (i = 1, ... ,3) are Gaussian white noise processes. The amplitudes of Xwaves,� 

Ywaves, and Nwaves are adjusted by choosing the constants K Wi (i = 1, ... ,3) while the the� 
'!.rill.. ~	 spectra are parametrized in terms of the pairs '\i and Wei (i = 1, ... ,3). These values should 

be chosen to represent the true physical behavior. ~. The wave drift forces d l (i = 1, .. , ,3) are usually modelled as slowly-varying bias terms 
(Wiener processes): 

'... 

~. dl = w4� (4.65) 
~~ 

d2 = Ws� (4.66) 

d3 = W6� (4.67) 

-'" -"I.: 
"~~ ".• I 
~ 
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where Wi (i = 4, ... ,6) are Gaussian white noise processes. These equations should be 
modified by using saturating elements to prevent di from exceeding a predescribed maximum 
physical limit, that is Idil :S di,max. 

4.3 Models for Ocean Currents 

Ocean currents are horizontal and vertical circulation systems of ocean waters produced by 
gravity, wind friction, and water density variation in different parts of the ocean. Besides 
wind-generated currents, the heat exchange at the sea surface together with salinity changes, 
develop an additional sea current component, usually referred to as thermohaline currents. 
A world map showing the most major ocean surface currents is found in Defant (1961). 

The oceans are conveniently divided into two water spheres, the cold and warm water 
sphere. Since the Earth is rotating, the Coriolis force will try to tum the major currents to 
the East in the northern hemisphere and West in the southern hemisphere. Finally, the major 
ocean circulations will also have a tidal component arising from planetary interactions like 
gravity. In coastal regions and fjords, tidal components can reach very high speeds, in fact 
speeds of2 to 3 (mls) or more have been measured. 

In order to simulate ocean currents and their effect on vessel motion, the following model 
will be applied: 

MRBV + CRB(V)V + g(1J)+MAv + CA(vr)vr + D(vr)vr = T + go + w (4.68) 
, ' ... .Iv v 

rigid-bodyterms hydrodynamic terms 

v
where V r = v - V«, and the current velocity vector is assumed to be slowly-varying, that is 

e :::::: O. Hence, the equations of motion becomes: 

We will now turn our attention to models for v c-

Current Speed and Direction 

The current speed is denoted by v" while its direction relative to the moving vessel is conve
niently expressed in terms of two angles: angle of attack Dc, and sideslip angle f3e as shown 
in Figure 2.8 in Section 2.4. For computer simulations the current velocity can be generated 
by using a lst-order Gauss-Markov Process 

(4.70) 

where w is Gaussian white noise and f..l ;::: 0 is a constant. If f..l = 0, this model reduces 
to a random walk, corresponding to time integration of white noise. A saturating element is 
usually used in the integration process to limit the current speed to: 

(4.71) 

The direction of the current can be fixed by specifying constant values for ere and f3 •e 
Time-varying directions can easily be simulated by associating dynamics to Dc and f3e. 

-


""'- -. 

.. [.
• 



II 

.
4.3 Models for Ocean Currents 

R 4.3.1 3D Irrotational Current Model
• 

A 3D current model is obtained by transforming the current speed ~ 

b-frame by: 

u~ ] R;'ac R;'-l3c [ ~ ]:1 ~= [ 

II.J

139 

from current axes to the 

(4.72) 

where the rotation matrices Ry,ac and R z ,- l3c are defined in Section 2.4. Assuming that the • fluid is irrotational implies that: .... 
V c = [u~, v~, w~, 0, 0, O]T (4.73)

• !!IIIiiHr iij,""_A-,. ,> IV eli....... L~
 

aD 
where u~, v~, and w~ are the b-frame current velocities. Expanding this expression yields: 

&I 
••

u b = Vc cos Q c cos /3 (4.74)c c 

vb.. c Vcsin/3c (4.75) 

.. We 
b 

~ sin Q c cos /3c (4.76) 

iii{"ff "4#i# #n'i1~,~=~"""""""""~ 

4.3.2 2D Irrotational Current Model (Horizontal-Plane Model) 
~ 
I. For the 2D case, the 3D equations (4.74}-{4.76) with Q c = 0 reduces to: 

u~ = Vccos/3c (4.77) 

v~ = Vcsin/3c (4.78) 

since the component w~ is not used in the horizontal plane. Notice that: 

~ = V(ugp + (v~)2 (4.79) 
," .. " 

~ Example 4.2 (Maneuvering Model) 
I. Consider the maneuvering model in Section 3.5.2 which can be written in state-space form 

I according to: ~.-

"" 
mll m12 n 12 d 0] [ v - V~] [b1]
m21 m22 0] [v] [ d d220 r =b28t· [ o o ~ ~ + ': -1 0 'l/J 0 

YWind] [Ywave]
+ [ Nand + N~ave (4.80) 

where v is the sway velocity, r is the yaw rate, 'I/J is the yaw angle, 8 is the rudder angle. and 
v~ is the transverse current velocity given by: 

v~ = Vc sin/3c (4.81) 

~;-

~,
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Augmenting the current model (4.70) to this model under assumption that fic = constant, 
yields: 

ma 
m21 

o[ 
o 

4.4 Exercises 

Exercise 4.1 Consider Example 4.2 andshow how the wave models (4.63) and (4.64) corre
sponding to: 

Y_ve ] 
Wwave = [ "t: 

can be augmented to the state-space model in the example by introducing four new state 
variables for the WF motion and two new state variable for wave drift. The matrices in the 
model should be expanded to include the WF modelparameters. 

Exercise 4.2 Given the spectral density function S(w) = Aw-5 exp (-Bw- 4 ) , compute 
the maximum value Smax(w o ) ofS(w) by requiring that: 

dS (W) ) = 0 
( du: W=WQ 

Is 

positive or negative? (Explain why) 

Exercise 4.3 Plot the frequency ofencounter: 

we(U,wo,f3) = Iwo - :~U COSf31 

as a function ofWo for different f3-values when U = 10 (m/s). What the is most critical 
direction f3 for an autopilot controlled ship in transit? (Explain wiry) 

Exercise 4.4 Use the Matlab GNC toolbox command: 

to plot the windforces and moments as functions ofI r for Vr = 10 (m/s). The windparame
ters can be chosen rather arbitrarily or by defining your own ship. What the is most critical 
direction IT for an autopilot controlled ship in transit? (Explain why). Will the conclusion 
be the same ifyou consider different values ofVr as well] 

--~--------
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Exercise 4.5 Write a Matlab m-jile (or Simulink block) that generates a slowly-varying ocean 
current with speed limited by 0.5 :s Vc(t) :s 1.0 (m1s). Plot the b-frame components: -I,,~, 

u~ = Vccost3c 
v~ = Vc sin t3c 

as a function oftime t for different values oft3c E [0, 360°]. 

t 
Exercise 4.6 Implement the linear wave model (4.52)-(4.53) in Simulink and plot the wave 
amplitude y(t) as a function of time t for different values of Wo and K w when A = 0.1. · 

,,.',' Explain how the parameters affect the time response ofthe wave amplitude. 
" 

:','"
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This chapter describes methods for the design of vessel guidance systems. Guidance sys
tems for marine vessels are usually used to generate a reference trajectory for time

varying trajectory tracking or time-invariant maneuvering or path control. Set-point regu
lation is a special case where the desired velocity, position, and attitude are chosen to be 
constant. 

'1, -0sensordata 

weather data 
,0 • 

I
"liM'.luzj ~I Vd' lld 000 ,,' 

~".. . 

'TII,_:~V.m~W~~j
i V,ll 

Figure 5.1: Guidance system. 

As shown in Figure 5.1, the guidance system can use operator, joy-stick or keyboard 
inputs, external inputs (weather data e.g. measured wind, wave and current speeds and di
rections), Earth topological information (digital chart, radar, and sonar data), obstacle and 
collision a,;oidance data, and finally the state vector which is available as output from the 
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This chapter describes methods for the design of vessel guidance systems. Guidance sys
tems for marine vessels are usually used to generate a reference trajectory for time

varying trajectory tracking or time-invariant maneuvering or path control. Set-point regu
lation is a special case where the desired velocity, position, and attitude are chosen to be 
constant. 

sensor data 

weather data 

1 
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Figure 5.1: Guidance system. 

As shown in Figure 5.1, the guidance system can use operator, joy-stick or keyboard 
inputs, external inputs (weather data e.g. measured wind, wave and current speeds and di
rections), Earth topological information (digital chart, radar, and sonar data), obstacle and 
collision a,;oidance data, and finally the state vector which is available as output from the 
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navigation/sensor system. The required data are further processed to generate a feasible tra
jectory for a moving marine vessel using ad-hoc techniques or sophisticated methods like 
interpolation techniques, dynamic optimization, or filtering techniques. By feasible we mean 
a trajectory limited by the bandwidth of the vessel dynamics. 

For a ship or an underwater vehicle, the guidance and control system usually consists of: 

• an attitude control system 

• a path control system 

In its simplest form the attitude control system is a course autopilot. The main function 
ofthe attitude feedback control system is to maintain the vessel in the desired attitude on the 
ordered path by controlling the vessel in roll, pitch, and yaw. The task of the path controller 
is to keep the vessel on the predescribed path with some predefined dynamics (e.g. forward 
speed) by generating orders to the attitude control system. The principles and definitions of 
guidance, navigation, and control are further explained in Section 1.3. 

5.1 Reference Models 

The simplest form of a reference model is to use a low-pass (LP) filter structure: 

Xd (s) = 
r 

where r denotes the command and Xd is the desired state. The choice of filter should reflect 
the dynamics of the vessel such that a feasible trajectory is constructed. For instance, it is 
important to take into account physical speed and acceleration limitations of the vessel. The 
bandwidth of the reference model must also be chosen lower than the bandwidth of the vessel 
control system in order to obtain satisfactory tracking performance and stability. 

One attractive method to generate a smooth reference trajectory Xd E lRn for tracking 
control is to use a physically motivated model. For marine vessels it is convenient to use 
reference models motivated by the dynamics of mass-damper-spring systems to generate the 
desired state trajectories, for instance: 

(5.2) 

where C (i = 1, ... , n) is the relative damping ratio and W n i (i = 1, ... , n) is the natural 
frequency. This model can be written as a MIMO mass-damper-spring system: 

(5.3) 

where M d , Dd' and G d are positive design matrices specifying the desired dynamics of the 
system. The model (5.3) can also be represented as a linear time invariant (LTI) system: 

(5.4a) 
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1475.1 Reference Models 

where xs = [7JJ l ilJ]T E JR2n is the desired state, r E JRT (r :S n) is a bounded input 
(command) usually generated by a joy-stick or a keyboard. The state and input matrices are 
recognized as: 

Ad = [-M~lGd -M~lDd] Bd = [ Md~Gd ], c, = [1,0] (5.5)l 

5.1.1 Velocity Reference Model 

The velocity reference model should at least be of order two to obtain smooth reference 
signals for velocity Vd and acceleration Vd- Let rb denote the operator input in the b-frame. 
The 2nd-order low-pass filter (5.2) can be used for this purpose. Let: 

D d = M d 2an, Gd = Md n 2 (5.6) 
in (5.3) where a >0 and n >0 are diagonal design matrices ofre/ative damping ratios and 
naturalfrequencies: 

~ = diag{(1'(2"",(n} 

n = diag{wn"Wn 2 , ... ,w n n } 

Next (5.3) can be premultiplied with Md'l which results in: 

n 2 bVd + 2~nVd + n2Vd = r (5.7) 
0-&.~'~i 

where v« is the desired velocity, Vd is the desired acceleration, and Vd is interpreted as the 
desired "jerk." The state space representation is: 

(5.8)Ad = [_~2 -2~n]' Bd = [ ~2 ] 
Note that a step in the command r b will give a step in Vd while Vd and Vd will be low-pass 
filtered and therefore smooth signals in a tracking control system. We also notice that the 
steady-state velocity is equal to the operator input: 

lim Vd(t) = r b (5.9) 
t-+oo 

5.1.2 Position and Attitude Reference Models 

The position and attitude reference model n, is typically chosen of 3rd order for filtering of 
steps in the n-frame input r". This suggests that a 1st-order low-pass filter should be cascaded 
with the mass-damper-spring system. Moreover, consider the transfer function: 

1)di ( ) W~i (. 1 ) (5.10)
Tn S = (1+T's)(s2+21'.w .s+w2)' t= , ... ,n

1- 1: ~I n t ni 

where a l st-order low-pass filter with time constant Ti = l/Wn i > 0 has been added. This 
can also be written: 

3 
1)d; ( ) W ni ( . ) (5.11) 
Tn S = s3+(21'.+1)ws2+(21'.+1)w2s+w3 ' t=l, ... ,n 

, . ':., nl. ~t. nl. nl. 
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or in a vectorial setting as: 

(5.12) 

The state space representation is: 

I 
o oI ] , (5.13) 

-(2.6. + I)02 -(2.6. + I)O 

In the case of n critically damped systems, (i = 1 (i = 1, ... , n), we have that .6. = I. 
Consequently: 

TJ~3) + 30ijd + 302T7d + 03TJd = 03r R� (5.14) 

{t 

(8 + wn J 3 TId; (i=l, ... ,n) (5.15) 

These reference models models also satisfies: 
~.. 

(5.16)� i C 

( ,, 
5.1.3 Saturating Elements 

One drawback with a linear reference model is that the time constants in the model often 
yields a satisfactory response for one operating point of the system while the response for 
other amplitudes of the operator input r, results in a completely different behavior. This is due 
to the exponential convergence of the signals in a linear system. One way to circumvent this 
problem is to use amplitude gain scheduling so that the the reference model design parameters 
«i' Wi) are scheduled with respect to the magnitude of the input signal ri. 

The performance of the linear reference model can also be improved by including satul'Jr 
tion elements for velocity and acceleration. The saturating element is defined as: 

I 
sat(x) = {Sgn(X)Xm ax if [z] 2: Xm ax (5.17) 5-2 '1x else 

:,,,;;,__ 1where the saturation limits: 
(5.18)� '-=mIf C 

_': ,;cf'::! should reflect the physical limitations of the vessel; see Example 5.1. 1"11 

'DiI'l" 'Dlf ;1IlThese techniques have been used in model reference adaptive control (MRAC) by Amero. 
gen (1982, 1984) and adaptive control of underwater vehicles by Fjellstad et ai. (1992). The It IkbtJl'l 

... 1 4position and attitude reference model should therefore be modified as shown in Figure 5.2. ..11 ~

5.1.4 Nonlinear Damping , ,l~ 
Nonlinear damping can also be included in the reference model to reduce the velocity for ':� 

large amplitudes or step inputs rio This suggests the modified model:� 
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n
 ~ 

(5.12)•. 
" 

--i 

(5.13) 

~ =1.	 Figure 5.2: Reference model including saturating elements. 

(5.14)	 where the nonlinear function d( iJd) = {di (iJdo)} could be chosen as: 

di(iJdo) = L oii liJdo IPJ iJdo' (i = 1, ... , n) (5.20)
(5.15) 

i 
t 

where Oij > aare design parameters and Pi > 0 are some integers. The effect of nonlinear 
damping is demonstrated in Example 5.1.(5.16) 

.."	 Example 5.1 (Reference Model) IIII:! 
Consider the mass-damper-spring reference model: 

:1 often 
Xd = Vd	 (5.21)

nse for
 
s is due Vd + 2(WnVd + 0 IVdl Vd +W~Xd = wn 

2 r (5.22)
 

:ntthis 
where ( = W n = 1. Figure 5.3 shows a comparison ofresponses using 0 = 0,0 = 1, andmeters 
a saturating element. Vmax = 1 for an operator step input r = 10. The Matlab example file . 
ExRefMod.m in the GNC Toolbox was used to generate the plots. r	 , 

1° ;' 

(5.17) 5.2 Way-Point Guidance Systems 
fl1; 

, Systems for way-point guidance are used both for ships and underwater vehicles. These ",. ~ 

'".e'(5.18)	 systems consists of a way-point generator with human interface. The selected way-points 
are stored in a way-point database and used for generation of a trajectory or a path for the 
moving vessel to follow. Both trajectory and maneuvering control systems can be designed meron
for this purpose. Sophisticated features like weather routing, obstacle avoidance and mission !). The 
planning can be incorporated in the design of way-point guidance systems. Some of these . 5.2. 
features will bediscussed in the forthcoming section. 

5.2.1 Trajectory Tracking and Maneuvering Control 
it)' for 

The concepts of trajectory tracking and maneuvering control should be distinguished when It 
designing way-point guidance systems. The following definitions will be employed (Skjetne 

(.5.19) et al. 2002d): 
~. 

--------~--------------------~'", .......
 

-.,. ""'l"'t 
~ .. 
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position 

- linear damping 
. - -

. ... . -
nonlinear damping 
velocity saturation 
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velocity 
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2 4 6 8 10 12 14 16 18 20 

Figure 5.3: Desired position and velocity for a step input r = 10. 

Definition 5.1 (Tracking Problem) 
IR ffiWhen the objective is to force the system output yet) E to track a desired output 

Yd(t) E IR ffi 
, it will be referred to as a tracking problem (or in some cases a trajectory 

tracking problem). 

This definition is consistent with Athans and Falb (1966) and later with Hauser and Hind
mann (1995), Ortega et af. (1998), and Encarnacao and Pascoal (200lb). 

Definition 5.2 (Parametrized Path)
 
A parametrizedpath is defined as a geometric curve TJ d(9) E Rq with q ~ 1parametrized by
 
a continuous path variable 9.
 

For surface vessel in 3 DOF it is common to define: 

(5.23) 

while an extension to 6 DOF path control is: 

TJ~DOF (9) = [xd(9), Yd(9), Zd(O), <Pd(9) ,0d(O), tPd(O)]T (5.24) 

Let the derivatives ofTJ(O) with respect to 0 be denoted as TJ1
, TJ II , TJ(3'), . . . ,TJ(i/). Hence, 

the path characterization vector can be defined as: 

Definition 5.3 (Path Characterization Vector) 
The path characterization vector is defined as: 

n-. (0) = [TJ1 (0)T ,TJII (0)T , ... , TJ(n') (0)T] T 

For" = 2 
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For n = 2 the path characterization vector will define the desired velocities and accel


I erations of the vessel as a function of the path variable 8. This is used to define a feasible
 
png....	 path-i.e., a path which is possible to follow for a ship or an underwater vehicle. It is impor


tant that the path characterization vector reflects physical limitations like maximum velocity
 
or acceleration constraints of the vessel.
 

Definition 5.4 (Maneuvering Problem) 
The maneuvering problem involves solving two tasks:
 
1) Geometric Task: force the state y(t) to converge to a desired path Yd(O(t)):
 , 20	 

lim [y(t) - Yd (8(t))] = 0 (5.25)
t--+oo 

for any continuous function ()(t).
 
2) Dynamic Task: force the speed iJ to converge to a desired speed Va:
 

lim [iJ (t) - Va (8(t))] = 0	 (5.26)
t--+oo 

Definition 5.4 implies that the dynamics 0 = 8(t) along the path can be specified inde
pendently of the error dynamics. A special case of the maneuvering problem is: 

O(t) = 1, 0(0) =0	 (5.27) 
20 

which is recognized as the tracking problem since the solution of (5.27) is 0 = t. 

10.	 Trajectory Tracking and Maneuvering Control 
! 

Methods for trajectory tracking and maneuvering control are described in Chapter 10. These 
methods are classified according to the number of available actuators. This can be illustrated 

a desired output by considering a marine vessel in surge, sway and yaw-i.e., 3 DOF horizontal motion. 
ases a trajectory 

•	 Trajectory Tracking Control: Tracking ofa time-varying reference trajectory fJd( t) = 
[Xd( t), Yd(t), '¢d(t)]T is achieved by minimizing the tracking error, fJ(t) -fJd(t), where 

-lauser and Hind- fJ( t)= [x(t), y(t), '¢(t)]T. The tracking error can be decomposed in a vessel parallel 
(VP) reference frame according to: 

~trizedby (5.28)e~ [:] ~RT(")(~-~d) 

.,,~ 

I"" 
'I,ti 

(5.23)	 where R('¢) E 80(3) is the rotation matrix in yaw. Expanding (5.28), yields 

e1] [COS '¢(x - Xd) + sin '¢(y - Yd) ]
 
e2 = - sin '¢(x - Xd) + cos '¢(y - Yd) (5.29)
(5.24)	 [ 
e3	 '¢ - '¢d 

(i')
•• J fJ . Hence, 

The physical interpretations of ei (i = 1, ... ,3) are: 

el = path tangential tracking error 

e2 = cross-track error (normal to path) 

e3 = heading error 

Based on this definition the following considerations can be made: 

•
 . :-....,'"'-~·,~:r-~~)-- .. 
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- Three or more controls: This is referred to as a fully actuated dynamic posi
tioning (DP) system and typical application are crab-wise motions (low speed 
maneuvering) and station-keeping. DP control algorithms are discussed in Chap
ter I I. 

- Two controls: DP in 3 DOF with only two controls is an active area of research. 
This is an underactuated control problem which is impossible to solve using lin
ear theory; see Pettersen and Egeland (1999), Pettersen and Fossen (2000), Pet
tersen and Nijmeijer (2001), Jiang (2002), Do et al. (2002a, 2002b, 2oo2c), for 
instance. The benefit is additional safety in case of actuator failure. Moreover, 
a underactuated control philosophy can serve as a back-up solution in an emer
gency situation. 

- One control: 3 DOF position control with only one actuator is not considered to 
be of practical importance and hardly possible. 

• Maneuvering Control: Tracking a path (Xd((}), Yd((})) with speed requirements: 

- Three or more controls: Regulation of the positions (z, y) to (Xd((}) , Yd((})). 
Since this only requires two controls it gives additional flexibility in that the head
ing angle '!/J can be controlled to an arbitrary value '!/Ji(}) during path following. 

- Two controls: The conventional actuator configuration in this case is I) rudder 
servo (or a transverse thruster) used to regulate the cross-track error to zero and 2) 
forward thrust (or a transverse thruster) intended for forward speed/acceleration 
assignments. 

- One control: The cross-track error given by (5.29) can be minimized to zero by 
using only one control, typically a rudder, while the ship moves at constant speed. 

Control systems for trajectory tracking and maneuvering control are discussed in Chapter 
10. 

5.2.2 Way-Point Representation 

The route of a ship or an underwater vehicle is usually specified in terms of way-points. Each 
way-point is defined using Cartesian coordinates (xk, Yk, Zk) for i = 1, ... ,n. The way-point 
database therefore consists of: 

wpt.pos = {(xo, Yo, zo), (Xl, Yll zd,· .. , (Xn,Yn, zn)} 

For surface vessel, only two coordinates (Xk, Yk) are used. Additionally, other way-point 
properties like speed, heading etc., can be defined, i.e.: 

wpt.speed {Un, Us, . . . , Un} 
wpt.heading = No, '!/JI" •• ,'!/In } 

For surface vessels this means that the vessel should pass through way-point (Xi, Yi) at for
ward speed U, with heading angle '!/Ji' The heading is usually unspecified during cross
tracking, whereas it is more important during a crab-wise maneuver close to offshore instal
lations (dynamic positioning). 

The way-point database can be generated using many criteria. These are usually based 
on: 

,i: 
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Figure 5.4: Straight-lines and inscribed circles used for way-point guidance. 

•	 Mission: the vessel should move from some starting point (Xo, Yo, zo) to the terminal
 
point (Xn,Yn, zn) via the way-points (Xi, Yi, zd.
 

•	 Environmental data: information about wind, waves, and currents can be used for
 
energy optimal routing (or avoidance ofbad weather for safety reasons).
 

•	 Geographical data: information about shallow waters, islands etc. should be included. 

•	 Obstacles: floating constructions and other obstacles must beavoided. 

•	 Collision avoidance: avoiding moving vessels close to your own route by introducing
 
safety margins.
 

•	 Feasibility: each way-point must be feasible, in that it must be possible to maneuver
 
to the next way-point without exceeding maximum speed, turning rate etc.
 

On-line replanning can be used to update the way-point database in case of time-varying 
conditions like changing weather, moving vessels (collision avoidance) etc, Optimality with 

,.1:1..·. 
--~regard to weather is discussed in Section 5.2.5. This is referred to as weather routing. 

Path Generation using Straight-Lines and Circular Arcs 

In practise it is common to represent the desired path using straight-lines and circle arcs to 
connect the way-points. This is shown in Figure 5.4 where the inscribed circle between two 
straight lines describes the desired turn. The radius of the inscribed circle is denoted n; 
(i=l, ... ,n) . 

u	 ._ •• ~ ·'_no • __•• •.... '·.H~· ...... , ,I ... r 
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North 

LEost 

5.2 WaY-PI 

(2; 

Figure 5.5: Path consisting ofstraight-lines and circular arcs. The white circle intersects with 
the inscribed circle at the turning point. 

Figure 5.6: 

The drawback of this strategy, in comparison to a cubic interpolation strategy, for in
stance, is that a jump in the desired yaw rate rd is experienced. This is due to the fact that the 
desired yaw rate along the straight line is r d = 0 while it is r d = constant on the circle arc 
during steady turning. Hence, there will be a jump in the desired yaw rate during transition 
from the straight-line to the circle arc. This produces a small off-set during cross-tracking. If 
a smooth reference trajectory, e.g. generated by interpolation, is used, these drawbacks are 
overcome. However, it is convenient to use straight-lines and circle arcs due to their sim
plicity. Another consideration is that the human operator can specify a circle with radius R; wberetbed 
around each way-point (white circle in Figure 5.5). These values are stored in the database eters: 
as: 

wpt.radius = {!l{),Rl, ... ,Rn} 
The~"5ICII

The point where the circle arc intersects the straight-line represent the turning point of the 
coatrol iDp

ship. Hence, the radius of the inscribed circle can be computed from R; as: 6emodd 
Scctima7.1

it = H; tan (li, (i = 1, ... , n) (5.30) 

where (li is defined in Figure 5.6. . 
wbcre tIIr 

,~ 

5.2.3 Trajectory Generation using a Vessel Simulator 
The OOIIIR 

A time-varying reference trajectory for a moving vessel can be generated using a closed loop modd. ~l 

model of the vessel where the time constants, relative damping ratios, and natural frequencies _ :::K>l.e 
are chosen to reflect physical limitations of the vessel. For instance, the vessel model can be A sail 
chosen as: -..pe WI3II! 
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Figure 5.6: Circle with radius Rl inscribed between the points (xo,Yo), (Yl.7I2), and (X3. Y3). 

ategy, for in�
e fact that the� 
the circle arc� 
ing transition T,d = J(1Jd)Vd (5.31)� 
s-tracking. If (5.32)�MVd + NVd + g(1Jd) = T 
rawbacks are 
to their sim
i th radius R; where the damping matrix for simplicity is modelled as a diagonal matrix with design param
the database eters: 

N = diag{nl •... , n6} > 0 (5.33)s. 
The system inertia matrix M is included in the model to guarantee proper scaling of the

point of the 
control inputs T. Smooth reference trajectories (1Jd(t), Vd(t)) are then obtained by simulating 
the model under closed-loop control, for instance by using a nonlinear PD-controller (see 
Section 7.1.4): 

(5.30) 
...............,>..".,� 

T = g(1Jd) - JT (1Jd) [K p (1Jd -1Jref) + K d1)d] 

where the set-point vector 1Jref is chosen equal to the way-points coordinates (Xk,Yk, Zk). 
The control law (5.34) is in fact a guidance controller since it is applied to the reference 

closed loop model. In addition to this, it is smart to include saturation elements for velocity and acceler
frequencies ation to keep these quantities within their physical limits. 

iodel can be A switching strategy between the set-points (way-points) must also be adopted. One 
simple way to do this is to use a circle of acceptance; see Section 5.3• 

. ~,. ..~._ _-_ _.. ttl." 

,,,i1J1 .... 
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Example 5.2 (Generation of Reference Trajectory using a Vessel Model) 
The desired reference trajectories ofa ship can be modelled as: 

Xd = Ud cos'l/Jd' (5.35) 

Yd = U« sin 'l/Jd (5.36) 

with forward speed dynamics: 

(5.37) 

where Us > 0 is the reference speed, p is the density ofwater, C« is the drag coefficient, A 
is the projected cross-sectional area ofthe submerged hull in the x-direction, and m - Xu is 
the mass included hydrodynamic added mass. The course dynamics is chosen as: 

'l/Jd = rs (5.38) 

Tid +rd = K~ (5.39) 

where K and T are design parameters. The guidance system has two inputs, thrust T and 
rudder angle S, The guidance controllers can be chosen ofPI and PID types: 

T = -Kp1(Ud - Uref) - K il it(Ud - Uref)dT (5.40) 

and 

b = -Kp2('l/Jd - 'l/Jred - Ki21t ('l/Jd - 'l/Jref)dT - Kd2Td (5.41) 

where 'l/Jref is generated using a LOS algorithm (see Section 5.3): 

'l/Jref = atan2 (Yk - Yd(t), Xk - Xd(t)) (5.42) 

Nume;ical integration ofthe ODEs (5.35~(5.39) with feedback (5.40~(5.41)yields a smooth 
reference trajectory (Xd(t), Yd(t), 'l/Jd(t)) with speed assignment Ud(t). 

5.2.4 Path and Trajectory Generation using Interpolation 

It is attractive to use spline or polynomial interpolation methods to generate a path (Xd(B), Yd(8)) 
through the predefined way-points. Notice that a trajectory (Xd(t),Yd(t)) is obtained by 
choosing iJ = k such that 8 = kt (k = 1, ... ,N). 

Cubic Spline and Hermite Interpolation 

In Matlab" several methods for interpolation are available. 

Matlab: 
The different methods for interpolation are found by typing: 

help polyfun 

Two useful methods path generation are the cubic spline interpolant (spl ine . m) and the 
piecewise cubic Hermite interpolating polynomial (pchip . m]. 

-~--- ~_._~-~- '--~---~- -----~ 
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t� Figure 5.7: Results using cubic Hermite and spline interpolation, see ExSpline.m.� , (5.41) 

! The main difference between cubic spline and Hermite Interpolation are how the slopes at the 
end points are handled. For simplicity let us consider the problem of trajectory generation. 

(5.42)� The cubic Hermite interpolant ensures that the first derivatives (Xd(t), Yd(t)) are continuous. 
In addition, the slopes at each endpoint are chosen in such a way that (Xd(t), Yd(t)) are shaperiekJs Q smooth preserving and respects monotonicity. 

Cubic spline interpolation is usually done by requiring that the 2nd derivative (Xd( t), Yd(t)) 
at the endpoints of the polynomials are equal. This gives a smooth spline. Consequently, the 
cubic spline will be more accurate than Hermite interpolating polynomial if the data values 
are ofa smooth function. The cubic Hermite interpolant, on the contrary, has less oscillations 

ath(Xd(O), Yd(O)) 
if the data are non-smooth. 

is obtained by 
The results of interpolating a set of predefined way-points to a trajectory (Xd(t), Yd(t)) 

using the cubic Hermite interpolant and cubic spline interpolation methods are shown in 
Figure 5.7. It is seen that a different behavior is obtained due to the conditions on the lst and 
2nd derivatives on the endpoints. 

Polynomial Interpolation 

Instead of using the Matlab functions pchip. mand spl ine . m a cubic spline can be interpo
lated through a set of way-points by considering the cubic polynomials: 

=.m) and the Xd((J) = a303 + a2(J2 + al(J + ao (5.43) 

+ bz{P + bi(J+ bo (5.44) 
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Matlab:� 
The script ExSpline.m generates the plots in Figure 5.7.� 

% ExSpline - Cubic Hermite and spline interpolation of way-points 

wpt.pos.x [0 100 500 700 1000J;� 
wpt.pos.y [0 100 100 200 160J;� 
wpt.time [0 40 60 80 100J;� 

t = O:l:max(wpt.time)i % time 
x_p pchip(wpt.time,wpt.poS.X,t)i % cubic Hermite interpolation 
y_p pchip(wpt.time,wpt.pos.y,t); 
x s spline(wpt.time,wpt.pos.x,t); % spline interpolation 
y_s spline(wpt.time,wpt.pos.y,t); 

subplot(311), plot(wpt.time,wpt.pos.x,'o',t, [x_Pi x_s]}� 
subplot(3l2), plot (wpt.time,wpt.pos.y, '0' ,t, [y_p; y_sJ)� 
subplot(313), plot(wpt.pos.y,wpt.pos.x, '0' ,y_p,x_p,y_s,x_s)� 

where (Xd(O), Yd(O)) are the position of the vessel and where 0 is a path variable given by: 

0= !(O, t) (5.45) 

The partial derivatives of Xd(0) and Yd(0) with respect to 0 are: 

dXd(O) 2 
= ~ = 3a3(} + 2a2(} + al (5.46) 

y~(O) = dYd(O) = 3b30
2 + 2~0 + b1 (5.47)

dO 

Hence, the speed Ud(t) of the vessel can be computed as: 

Xd(t) = dx:;O)O(t) (5.48) 

iJd(t) = dy:;O) O(t) (5.49) 

resulting in: 

Ud(t) Jx~(t)+iJ~(t) 

= Jx~(O)2 + y~(0)2 O(t) (5.50) 

Similarly an expression for the acceleration Ud(t) can be found. The unknown parameters 
aO,al, a2, a3, bo, bl , bz, bs can be computed using the following algorithm. 

"_.._._.L-- _~ ~~ 
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Cubic Spline Algorithm for Path Generation 

The path through the way-points (Xk-l, Yk-l) and (Xb Yk) must satisfy: 

s Xa(Ok-l) = Xk-l, Xa(Ok) = Xk (5.51) 

Ya(Ok-l) = Yk-l, Ya(Ok) = Yk (5.52) 

where k = 1, ... ,n. In addition, smoothness is obtained by requiring that: 

lim X~(Ok) = lim X~(Ok) (5.53) 
O-+8i: 8-+8; 

lim X~(Ok) = lim X~(Ok) (5.54) 
(J-+(Ji: (J.....o; 

For this problem, it is possible to add only two boundary conditions (velocity or acceleration)� 
I'"
'I for the x- andy-equations, respectively. Moreover:� 

!i
" 

I'; X~(Oo) = x~, X~(On) = x~ (5.55) 
~ ~ 

y~(Oo) = vb, y~(On) = y~ (5.56) 

.*i:"
'w, or 

"(0) = (5.57)x~(Oo) = x" Xa n " 0' Xn 

Yd(OO) = y"0' y~(On) = Y~ (5.58) 

~~; 

The polynomial xd((h) is given by the parameters ak = [a3k, a2k, alk, aOk]T, resulting in 
4(n - 1) unknown parameters. The number of constraints are also 4(n - 1) if only velocity 
or acceleration constraints are chosen at the end points. The unknown parameters for n way

1i· points are collected into a vector: 

I~J ' ~ T T]T ...
X= [8 k, ... ,an - 1 (5.59) ," 

:ji 
"off·· Hence, the cubic interpolation problem can be written as a linear equation: 
it 

",; 

y = A(Ok-b ... .... ,n (5.60)
;(,id~9j1f~~ii;;.~~~~~&&i~~~~ 

where: 

y = [Xstart, Xo, Xl, Xl, 0, 0, X2, X2, 0, 0, ... ,Xn, xfinad T (5.61) 

~-
f· The start and end points can be specified in tenus of velocity or acceleration constraints 
r: 

... ;;;;--.n -- ..---.;______m_ AI 

.. -
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Xstart E {xo,' Xo and Xfinal E {' "} I Thi s grves: ."} Xn, Xn , respective. y. 

Cstart Olx4 Olx4 ., . Olx4 

p(Oo) Olx4 OlX4 OlX4 

p(Od Olx4 OlX4 OlX4 

0 p(Od OlX4 Olx4 

-V(OI) V(OI) Olx4 OlX4 

-a(Od a(Od Olx4 OlX4 

OlX4 P(02) OlX4 OlX4 (5.62) 
Olx4 Olx4 p(02) OlX4 

Olx4 -V(02) V(02) OlX4 

Olx4 -a(02) a(02) °lx4 

Olx4 OlX4 Olx4 p(On) 
OlX4 OlX4 OlX4 ... Cfinal 

where Cstart E {xd(OO),x~(Oo)}, Cfinal E {xd(On),x~(l;ln)} and: 

p(Ok) = [0%, O~, Ok, 1] (5.63) 

V(Ok) = p'(Ok) = [38~, 20k, 1, 0] (5.64) 

a(Ok) = p" (8k) = [68k, 2, 0, 0] (5.65) 

Equation (5.60) can besolved for Ok = 0,1, ... , n according to: 

(5.66) 

The formulas for bk = [b3k,b2k,bi», bokF are obtained in a similar manner. 

Matlab:
 
Formula (5.66) has been implemented in the script ExPathGen . m, and pva ,m. The re

sults for the following set of way-points:
 

wpt.pos.x = [0 200 400 700 1000]; 
wpt.pos.y = [0 200 500 400 1200]; 

where 8 = 0, ... ,4 are shown in Figures 5.8 and 5.9. 

Transformation of Path to Reference Trajectories using Desired Speed Profiles 

In Figure 5.9 it is seen that the solution between two successive way-points: 

Xd(O) = a303 + a282 + a l 8 + ao (5.67) 

Yd(O) = b383 + b202 + bl8 + bo (5.68) 

indeed is a time-independent path when Xd(O) is plotted against Yd(O) for increasing 8
values. The path can be transformed to a time-varying trajectory by defining a speedprofile. 

1$=_ ii. 

! 

i:"' 
Ii 



..


idance Systems 

(5.62) 

(5.63) 

(5.64) 

(5.65) 
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(5.66) 
kr····"'_.-.... 

i 

'a.m. The re-

r 
rofiJes 

r 
(5.67)

l (5.68) 

r increasing B
• speed profile. 
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Figure 5.8: The plots shows the cubic polynominals Xd(B) and Yd(B) and their first and second 
derivatives. 
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Figure 5.9: xy-plot based on cubic spline optimization. 
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The speed profile assigns dynamics to O(t) such that the desired path transforms to a time
dependent reference trajectory at the same time as the desired speed and acceleration profiles 
are preserved. From (5.50) it is seen that: 

(k = 0,1,2, ... ,n) (5.69) 

where O(tk) = k is the initial condition of the differential equation, and Ud(t) is the desired 
speed profile. Let Uref be the input to a 1st-order system: 

(5.70) 

A smooth transition from the desired speed Ud(tk) at way-point k to the next way-point k+ 1 
where the specification: 

Uref = Ud(tk+l) (5.71) 

can be made. This is illustrated in the following example. 

Example 5.3 (Transformation of Patb to Reference Trajectories) 
Consider the first two way-points in the example file ExPa thGen • m: 

(Xo, Yo) = (0,0) 

(Xl,Yl) = (200,200) 

The cubic polynomials satisfying (5.66) are: 

Xd(O) = -29.8903 + 135.6302 + 94.25 0 

Yd(0) = 108.0503 
- 2.3002 + 94.25 0 

for 0 E [0,1]. Let the speed dynamics time constant be T = 10 (s). Assume that the vessel 
is initially at rest (Ud(tO) = 0) and that the desired speed of way-point no. 1 is Uref = 
Ud(tl ) = 5.0 (m/s). The numerical solutions of 

iJ(t) = (5.72) 

(5.73) 

for way-points 0 and 1 corresponding to 00 (to) = 0 and 01(tl) 1 with to = 0 and t l 
unknown, is shown in Figure 5.10. see ExPathGen .m. It is seen that the desired speed of 
5.0 (m/s) is reached in approximately 67 (s). Hence, the terminal time must be chosen as 
tl :2: 67 (s) (corresponding to O(tl) = 1) in order to satisfy the desired speed dynamics. If 
tl < 67 (s) there is not enough time to reach the desired speed ofway-point no. 1 unless 
the time constant T is reduced. The time constant should reflect what is physically possible 
for the vessel. Notice that the path (Xd(O), Yd(O)) has been transformed to a time-varying 
reference trajectory (Xd (t), Yd (t)) by assigning a speedprofile (5.72) to be solved numerically 
with the path planner (5.66). This gives design flexibility since the path can be generated 
off-line using a way-point database while speed is assigned to the path when the dynamics of 
the actual vessel is considered. 

fmR 5.10: l 
_ ~ roximately 

10 1 during the 

AIMJIbcr soIuIi 
Iiou Iccbniquc 
time. energv c 
vessel can be 
~'xh h2r~~' 

'.-,:;at' 

Ingenera.\....� 
" ""I 

I...... 
wbere f(x) sb 
as oonlinear iI 
10 use quadnIIi 
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sforms to a time� Speed U d(l) as a function of time I 

celeration profiles 61 I i� I. I I 

I 

71) (5.69) 

,(t) is the desired 

30 40 50 60 70 

I 
Path variable 6(1)as a function of time 1 

I� 
1.4 

.... '.~ 

1.2 

d way-point k+ 1 

I(,� 
0,8 

(5.71)� 0.8 

0.4 

0.2 
1 • 

n io ?II ~n 40 50 60 70 
67 -

Figure 5.10: Upper plot shows that the speed Ud(t) reaches the desired value of 5.0 (mls) in 
approximately 67 (s). The lower plot shows that the path variable O(t) is incremented from 0 
to 1 during the speed transition. . 

I,Iii 

Nonlinear Constrained Optimization 

PIe that the vessel Another solution to trajectory and path generation is to use nonlinear constrained optimiza
no. 1 is Uref = tion techniques. These methods allows an object function to be specified where minimum 

time, energy etc. are design goals. In addition, speed and acceleration constraints of the 
~,I vessel can be added. The drawback is that nonlinear constraint optimization problems are .,~ 

(5.72)
~..:	 much harder to solve numerically than the methods described in the previous sections. The 

,,"1 

MatIab™ optimization toolbox will be used to demonstrate how this can be done. 
(5.73)� In general trajectory tracking and path planning problems can be formulated as: :~ 

'h to = 0 and h 
"'l1li. desired speed of� 

'US! be chosen as J = min {f(x)} (5.74)� 
x 

teed dynamics. If 
subjectto gk(X) :::; 0 (k =� 1, , n g )

'Jim no. 1 unless 
hj(x) = 0 (j = 1, ,nh)

iysically possible 
Xi,min :::; Xi :::; Xi,max (i = 1, , nx )o a time-varying 

dved numerically 
tan be generated 

where f(x) should be minimized with respect to the parameter vector x withgi(x) and hj(x)
1 the dynamics of 

as nonlinear inequality and equality constraints, respectively. An attractive simplification is 
to use quadratic programming, that is: 

.-"......... ", .....,,,,,,,..,,..,,,....,,,,,,,,,.,..,,,,,,,,,,,,,,,..•,,,...,."..'H.•"..."'""",,,,.,,,,.·.........� 
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J = (5.75)m,:n {~x THx+fTx} 
subject to Ax ::; b 

Xi,min ::; Xi ::; Xi,max (i = 1, ... , nx ) 

For simplicity, consider two way-points (Xk,Yk) and (Xk+l,Yk+l) satisfying: 

X(tk) = Xk, y(tk) = Yk (5.76) 

x(tk+d = xk+l, y(tk+l) = Yk+l (5.77) 

Choosing the speed constraints as: 

Xd(t) = Ud(t) COS'l/Jd(t) (5.78) 

Yd( t) = Ud(t) sin 'l/Jd(t) (5.79) 

where the angle 'l/Jd(t) is computed as 'l/Jd(tk) =atan2(Yk+l - Yk,Xk+l - Xk), that is with 
direction towards the next way-point. Hence: 

Xd(tk) = Ukcos'l/Jk (5.80) 

Yd(tk) = U» sin'l/Jk (5.81) 

For two way-points this results in: 

(5.82) 

where: 

and: 

t3 e tk 1 0 0 0 0k k 
~+l t~+l tk+l 1 0 0 0 0 

0 0 0 0 t3 
k tk

2 tk 1 
0 0 0 0 t~+l t~+l tk+l 1

A(tk, tk+l) = (5.84)
3t~ 2tk 1 0 0 0 0 0 
0 0 0 0 3t2 2tk 1 0k 

3t~+1 2tk+l 1 0 0 0 0 0 
0 0 0 0 3t~+1 2tk+l 0 0 

The criterion to minimize is: 

J = min {[A(tk' tk+dx - y T][A(tk' tk+l)X - Y]} (5.85) 
x 

for given pairs (tk, tk+l) of time. Expanding this expression, yields: 

(5.86) 

5.2Way-....,~ 

implying that 

In this expressios 
cubic polynorrua 
optimize: 

~ 
'1 

giving a totaJ of~ 

The reference ~ 

Matlab: 
Trajectory ga. 
example: 

Exam'-S... ' 
Consider n.o i 

,,:1.,..,' 

with speeda. 

in the G.\iC 10( 

The de:riretl • 
to = 0 (s). 

optimization p 
1.0 (5) each riJ 
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for t E !f<>~ 
Mat/alP' opti 

~ 
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A weather routiI 
meteorological ; 
system and s~ 



I

I 

-. "..., 

lance Systems 

t (5.76) 

(5.77) 

l (5.78) 

(5.79) 

:). that is with 

F 
(5.80) 

(5.81)f 
t 
I 

(5.82)
J 
, 

IlT (5.83)lt

i
f: 

..J 

(5.84) 

(5.85) 

dX} (5.86) 

5.2 Way-Point Guidance Systems 165 

implying that, 

H = AT (tk, tk+dA(tk, tk+d (5.87) 

f = -yT A(tk, tk+l) (5.88) 

In this expression the starting time tk is given while the arrival time tk+l is unknown. The 
cubic polynomials (5.43}-{5.44) imply that there are 8 additional unknown parameters to 
optimize: 

X= [a3,a2,aI,ao,b3,b2,bI,bo]T (5.89) 

giving a total of9 unknown parameters. In addition linear constraints Ax :5 b can be added. 
The reference trajectory can be found using quadratic programming. 

Matlab: 
Trajectory generation using the optimization toolbox is demonstrated in the following 
example: 

Example 5.4 (Trajectory Generation using Quadratic Programming) 
Consider two way-points: 

(Xo, Yo) = (10,10) 

(XI, yd = (200,100) 

with speed constraint: 
Ud(t) :5 10 (m/s) 

in the GNC toolbox script: 
ExQuadProg 

The desired speed in the way-points are Uo(to) = 0 (m/s) and U1(tl) = 5 (m/s) with 
to = 0 (s). The arrival time h is computed in a for-loop by solving the quadratic 
optimization problem (5.75) for each time t1 = to + dt where dt is incremented by 
1.0 (s) each time. This process is terminated when the first solution Ud(t) :5 Um ax is 
reached (this can be easily changed if other requirements are more important). The 
optimal solution: 

Xd(t) = -0.0102 t3 + 0.5219 t 2 
- 4.28.10- 12 t + 10.0 

Yd(t) = -0.0048 t3 + 0.2472 t 2 
- 1.04.10-12 t + 10.0 

for t E [to, tl] is obtained after 29 loops (tl = 29 (s)) using quadprog.m in the 
Mat/ab™ optimization toolbox. The results are shown in Figure 5.11. 

5.2.5 Weather Routing 

A weather routing or voyage planning system (VPS) computes the most efficient route using 
meteorological and oceanographic data, information about the ship's hull and propulsion 
system and shipping economics to ensure that the vessel reaches port on time. The data from 

'" 

...._-- - .~-~~.!!!IImJII -rill 
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Figure 5.11: The two upper plots shows the cubic polynominals Xd(t) and Yd(t). In the third 
plot Yd(t) is plotted against Xd(t) while the lower plot is speed Ud(t). 

this analysis can be way-points with optimal speed and heading information. The routing 
software of a modem weather routing system includes features like: 

• Surface analysis and forecast models 

• Sea state and wind wave models 

• Upper air models 

.' . • Formation description of low pressure systems 

• Hurricanes and tropical weather models 

• Ocean current models 

• Vessel performance models 

• Cargo condition, trim, draft, deck load etc. 

• Link to Internet sources for weather data 

• Interface to satellite system transmitting weather data 

• Optimization of routes based on a fixed estimated time of arrival (ETA) 

• Routing of vessels around hazardous weather conditions 

5.3 Line-of-siPl 

The optimal r 
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Figure 5.12: Definition of LOS vector. 
. In the third 

The optimal route is computed using numerical optimization off-line. This can be done 
The routing� by computer onboard the ship or by a company onshore transmitting the results to the vessel 

electronically on a 24-hours basis. Several companies offers continuous voyage monitoring 
with status reports and performance evaluations. This allows for replanning during changing 
weather conditions. Global weather information is available from several forecast centers like 
the European Center for Medium Range Weather Forecasting, the U.S. National Weather Ser
vice, the U.S. Navy Fleet Numerical Oceanographic Command, the Japanese Meteorological 
Agency and others. 

Some useful references on weather routing of ships are Calvert (1989), Hagiwara (1989), ," Padadakis and Perakis (1990), Lo (1991), Barbier et aJ. (1994), Lo and McCord (1995), 
McCord and Smith (1995), and Lo and McCord (1998). 

5.3 Line-of-Sight Guidance 

An attractive method for path control is line-of-sight guidance. A line-of-sight vector from the 
vessel to the next way-point or a point on the path between two way-points can be computed 
for heading control. If the vessel is equipped with a course autopilot the angle between the 
line-of sight vector and the predescribed path can be used as set-point for the course autopilot. 
This will force the vessel to track the path. Solutions in 2-D and 3-D for surface vessels and 
underwater vehicles are presented below. 

",,\~, 
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5.3.1 2-Dimensional LOS Guidance System for Surface Vessel 

In many applications the line-of-sight (LOS) vector is taken as a the vector from the body�
fixed origin (x, y) to the next way-point (Xk, Yk). This suggests that the set-point to the course� 
autopilot should be chosen as: the next W3;� 

k+l.AguJ
1/Jd(t) = atan2 (Yk - y(t), Xk - x(t)) (5.90) 

where (x, y) is the vessel position measurement usually measured with a satellite navigation 5.3.2 3-1 
system. The four quadrant inverse tangent function atan2(y, x) is used to ensure that: 

It is straighrt 
-1r ~ atan2(y, x) ~ 1r (5.91) and Lienard 

circle of ace, 

Matlab: 
This LOS guidance system can be implemented in Matlab™ as: . 

psi_d = atan2«yk-y), (xk-x» 
taking into a 
D navigatior 
(x(t), y(t I.::

The drawback with a LOS vector pointing to the next way-point is that a way-point located far 
away from the vessel will result in large cross-track errors if there are transverse wind, current ~ 
and wave disturbances. Therefore, the LOS vector can be modified as shown in Figure 5.12 5.4 EXI 
where it is defined as the vector from the vessel coordinate origin (x, y) to the intersecting 
point on the path (Xlos, Ylos) a distance n ship lengths L pp ahead of the vessel. In this case Exe~ise 5.1 
the desired yaw angle can be computed as: 

""'''''''''4.",,¥¥¥.¥' ""I.,;;;;; SkXUlun IIJit4XL,J"liJ" 
'l/Jd(t) = atan2 (Ylos - y(t),Xlos - x(t)) (5.92) 

where the LOS coordinates (Xlos, Ylos) are given by: 
a) Write aI and wpt.pos

'''1
I (Ylos - y(t))2 + (Xlos - x(t))2 (5.93) b) Write a .~ 

... ,,1 
..·4 varying rdYlos - Yk-l ) (5.94)( trajectoriesXlos - Xk-l 

Exercise s 
dimensionalThe first equation is recognized as the theorem of Pythagoras while the second equation� 

"I 
i 

states that the slope of the path between the way-points (Xk-l, Yk-l) and (Xk' Yk) is constant.� ,,. 

Hence, the pair (Xlos, Ylos) can be solved from (5.93}-(5.94). 
LOS guidance have been applied to surface ships by McGookin et al. (2000b) and Fossen 

et al. (2003). 

Circle of Acceptance 

When moving along the path a switching mechanism for selecting the next way-point is� 
needed. Way-point (xk+1,Yk+ 1) can be selected on a basis of whether the vessel lies within� 
a circle of acceptance with radius ~ around way point (Xk,Yk). Moreover if the vehicle� 
positions (x( t), y(t)) at time t satisfy:� 
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< R 2� (5.95)- 0 
:i;~ 

the next way point (Xk+h Yk+l) should be selected-i.e., k should be incremented to k = 
k + 1. A guideline could be to choose Ro equal to two ship lengths, that is Ro = 2Lpp • 

5.3.2 3-Dimensional LOS Guidance System for Underwater Vehicles 

It is straightforward to generalize the concepts of LOS guidance to 3-D maneuvering (Healey 
and Lienard 1993). In this case, the desired yaw angle is chosen as (5.90) or (5.92) while the 
circle of acceptance is replaced by a sphere ofacceptance: 

[Xk - x(tW + [Yk - y(tW + [Zk - z(t}f s.RJ� (5.96): 
;;

taking into account the effect of depth changes, that is variations in the z-coordinate. In 3
D navigation the way-points are defined as (Xk' Yk, Zk) for i = 1, ... , n while the position 
(x(t), yet), z(t)) is asswned to be measured. Dr 

lI'CDt 
5.12� 5.4 Exercises 
:ling 
case� Exercise 5.1 Given the following way-points: 

~ 

wpt.pos.x = [0,500, 800, 700, 1000] 
wpt.pos.y = [0,400,650,900, 1000] 
wpt.speed = [0,4, 6, 6, 4) 

-"e,~,e~ 

a) Write a Matlab m-file or a Simulink blockfor path generation based on the data wpt.pos:x ~ 

,:1'"and wpt.pos.y using yourfavorite method Plot the data andpath in an xy-plot. 

.93)� b) Write a Matlab m-file or a Simulink block transforming the path ofproblem a) to a time
varying reference trajectory using the speed data wpt.speed as input. Plot the reference 

•� 
", 

.~)	 trajectories as functions oftime. ", 
;,1 

Exercise 5.2 Write a Matlab m-file or a Simulink block for LOS guidance using the 2 iii-
dimensional method. Simulate the program andplot the results. lion ....� 
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Wave filtering is one of the most important issues to take into account when designing 
ship control systems (Fossen 1994). It is important that only the slowly-varying distur

bances are counteracted by the steering and propulsion systems; the oscillatory motion due 
to the waves (1st-order wave-induced disturbances) should be prevented from entering the 
feedback loop. This is done by using wave filtering techniques (Balchen et al. 1976). A wave 
filter is usually a model-based observer which separates the position and heading measure
ments into a low-frequency (LF) and a wave-frequency (WF) position and heading part; see 
Figure 6.1. 

-s 
Definition 6.1 (Wave Filtering) 
Wavefiltering can be defined as the reconstruction ofthe LF motion components from noisy 
measurements ofposition. heading and in some cases velocity and acceleration by means of 
a state observer or a filter. 

Remark: If a state observer is applied, estimates ofthe WF motion components (l st-order 
wave-induced disturbances) can also be computed. 

·1 
, .' 

I'I 

ji, 
~ 

Wave filtering is crucial in ship motion control systems since the WF part of the motion 
should not be compensated for by the control system unless wave-induced vibration damping 
is an issue. This is the case for high-speed craft. If the WF part of the motion enters the 
feedback loop, this will cause unnecessary usage of the actuators (thrust modulation), and 
reduce the tracking performance which, again, results in increased fuel consumption. 

In this section, model-based wave filtering and observer design using linear wave response 
models are discussed. This is one of the most important features of a high precision ship 
control system. The best commercial autopilot and DP systems all have some kind of wave 
filtering in order to reduce wear and tear on the steering machine, as well as thrust modulation. 
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Wave filtering is one of the most important issues to take into account when designing 
ship control systems (Fossen 1994). It is important that only the slowly-varying distur

bances are counteracted by the steering and propulsion systems; the oscillatory motion due 
to the waves (1st-order wave-induced disturbances) should be prevented from entering the 
feedback loop. This is done by using wave filtering techniques (Balchen et al. 1976). A wave 
filter is usually a model-based observer which separates the position and heading measure
ments into a low-frequency (LF) and a wave-frequency (WF) position and heading part; see 
Figure 6.1. 

Definition 6.1 (Wave Filtering) 
Wave filtering can be defined as the reconstruction of the LF motion components from noisy 
measurements of position. heading and in some cases velocity and acceleration by means of 
a state observer or a filter. . 

Remark: If a state observer is applied, estimates of the WF motion components (lst-order 
wave-induced disturbances) can also be computed. 

Wave filtering is crucial in ship motion control systems since the WF part of the motion 
should not be compensated for by the control system unless wave-induced vibration damping 
is an issue. This is the case for high-speed craft. If the WF part of the motion enters the 
feedback loop, this will cause unnecessary usage of the actuators (thrust modulation), and 
reduce the tracking performance which, again, results in increased fuel consumption. 

In this section, model-based wave filtering and observer design using linear wave response 
models are discussed. This is one of the most important features of a high precision ship 
control system. The best commercial autopilot and DP systems all have some kind of wave 
filtering in order to reduce wear and tear on the steering machine, as well as thrust modulation. 
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Figure 6.1: The plot shows how the total motion of a marine vessel can be separated into LF 
and WF motion components. 
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6.1 Observers for Heading Autopilots l:JIII 

-"This section shows how observers and wave filters for heading autopilots can be designed. ...The main sensors in the navigation system are: 

• Magnetic and/or gyroscopic compasses measuring 1/J 
-.y

• Yaw rate gyro measuring r 1'91.: 
~ 

In many commercial systems only the compass is used for feedback control since the .r
yaw rate can be estimated in a state estimator. Techniques for model-based wave filtering us .. 
ing stand-alone compass solutions and integrated compass/yaw gyro solutions are discussed 
linear wave response models; see Section 4.2. 

LL 

6.1.1 Magnetic and Gyroscopic Compasses 'r F.'... 
A compass is the primary device for direction-finding on the surface of the Earth. Compasses 
may operate on magnetic or gyroscopic principles or by determining the direction of the SUIi 
or a star. We will restrict our discussion to the magnetic and gyroscopic compasses, since 
these are the primary devices onboard commercial ships and rigs. 

Magnetic Compass ..The magnetic compass is an old Chinese invention, which probably dates back to 100 AD. 
Knowledge of the compass as a directional device came to Western Europe sometime in the 
12th century and it is today a standard unit in all commercial and navy ships. 

A magnetic compass is in fact an extremely simple device (as opposed to a gyroscopic 
compass). It consists of a small, lightweight magnet balanced on a nearly frictionless pivot 
point. The magnet is generally called a needle. The magnetic field inside the Earth has 
its south end at the North Pole and opposite. Hence, the North end of the compass needle 
points towards the North Pole (opposite magnets attract). The magnetic field of the Earth 

~------
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is, however, not perfectly aligned along the Earth's rotational axis. It is skewed slightly off 
center. This skew or bias is called the declination and it must be compensated for. It is 
therefore common to indicate what the declination is on navigational maps. Sensitivity to 
magnetic variations and declination cause problems in ship navigation. These problems were 
overcome after the introduction of the gyroscopic compass. 

Gyroscopic Compass 

The first recorded construction of the gyroscope is usually credited to C. A. Bohnenberger in 
18 I0 while the first electrically driven gyroscope was demonstrated in 1890 by G. M Hopkins 
(see Allensworth 1999, Bennet 1979). A gyroscope is a disk mounted on a base in such a 
way that the disk can spin freely on its z- and y-axes; that is, the disk will remain in a fixed 
position in whatever directions the base is moved. A properly mounted gyroscope will always 
tum to match its plane of rotation with that of the Earth, just as a magnetic compass turns to 
match the Earth's magnetic field. 

The large variations in the magnetic character of ships caused by electrical machinery, 
weapon systems etc. made the construction of accurate declination or deviation tables for 
the magnetic compass very difficult. In parallel works, Dr. H. Anschutz of Germany and 
Elmer Sperry of the USA worked on a practical application ofHopkins' gyroscope. In 1908 
Anschutz patented the first North seeking gyrocompass, while Elmer Sperry was granted a 
patent for his ballistic compass which includes vertical damping three years later. 

In 1910, when the Anschutz gyro compass appeared, the problem with magnetic varia
tions in ship navigation was eliminated. However, this compass proved to be quite unsatisfac
tory during rolling of the ship, since it produced an "intercardinal rolling error". Therefore in 
1912 Anschutz redesigned the compass to overcome this defect. One year later, the Sperry 
compass entered the marked and it became a serious competitor with the Anschutz. Today 
gyroscopic compasses are produced by a large number of companies for both commercial 
and navy ships. 

6.1.2 Low-Pass and Notch Filtering of Wave Frequency Motions ,., 

,IFor wave periods in the interval 5 (s)< To < 20 (s), the dominating wave frequency (modal ,I' 

frequency) fa ofa wave spectrum will be in the range (see Section 4.2): 

0.05 < fa < 0.2 (Hz) (6. I) 
:I 

The circular frequency Wo = 21rfo. corresponding to periods To > 5 (s) is: 

Wo < 1.3 (radls) (6.2) 

Waves within the frequency band (6. I) can be accurately described by Ist- and 2nd-order 
wave theory. The Ist-order wave disturbances (WF motions) produce large oscillations about 
a mean wave force which can be computed from 2nd-order wave theory; see Figure 6.1. 
The mean wave (drift) force is slowly varying and it is usually compensated for by using 
integral action in the control law, while wavefiltering must be performed to remove Ist-order 
components from the feedback loop. 

For instance, Ist-order wave disturbances around fa = 0.1 (Hz) can be close to or outside 
the control bandwidth of the vessel depending of the vessel considered. For a large oil tanker, 
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Figure 6.2: Bode plots showing l (s) for three different vessels and the JONSWAP spectrum 
for WQ = 0.5 (rad/s) and H, = 5 (m). 

the crossover frequency can be as low as a 0.01 (rad/s) as shown in Figure 6.2, while smaller 
vessels like cargo ships and the Mariner class vessel, are close to 0.05 (rad/s). 

A feedback control system will typically move the bandwidth of these vessels up to 0.1 
(rad/s) which still is below the wave spectrum shown in Figure 6.2. However, the wave dis
turbances will be inside the bandwidth of the servos and actuators of the vessels. Hence, the 
wave disturbances must be filtered out before feedback is applied in order to avoid unneces
sary control action. In other words, we do not want the rudder and thruster actuators of the 
ship to compensate for the 1st-order wave frequency motion. This is usually referred to as 
wave filtering. 

Low-Pass Filtering 

For sea states where the WF motion is much higher than the bandwidth Wb of the controller, 
that is: 

(6.3) 

where We is the frequency of encounter, see (4.59), a low-pass filter can be used to filter out 
the lst-order wave disturbances. This is typically the case for large vessels such as oil tankers. 
In the autopilot case, the design objective can be understood by considering the measurement 
equation: 
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y(s) = hs hiP(s)8(s ) + hwave(s)w(s) 

~ 1P",(s)'ljJ(s) ------
where y(s) is the compass measurement, w(s) is a zero-mean Gaussian white noise process,� 
and o(s) is the rudder input. The signal 'IjJ(s) represent the LF motion, while 'ljJw(s) is the� 
WF motion. Linear theory suggests that, see (4.43) and (3.264):� 

tc;»
h ( (6.5)wave s) = 2 + 2~ +:2S WOS W o 

K(I + T3 s) 
hship(S) = s(1 + T + T (6.6)

1s)(1 2s) 

Feedback directly from y will therefore include the WF motion. For a large tanker, proper 
wavefiltering can be obtained by using a low-pass filter to produce an estimate of 'IjJ (s) such 
that: 

(6.7) 

Consequently, the feedback control law 0 should be a function of ;p and not y in order to 
avoid Ist-order wave-induced rudder motions. 

For instance, a first order low-pass filter with time constant Tf can bedesigned according 
to: 

1 1 
hlp(S) = T Wb < -T < We (rad/s) (6.8)

1 + fS f 

This filter will suppress disturbances over the frequency IITf. This criterion is obviously 
hard to satisfy for smaller vessels since Wb can be close to or even larger than We' 

Higher order low-pass filters can be designed by using a Butterworth filter, for instance. 
The n-th order Butterworth filter: 

1 ".., .(6.9)hlp(S) = p(s) 

is found by solving the Butterworth polynomial: 

p(s)p(-s) = 1 + (s/iwf)2n (6.10) 

for p(s). Here n denotes the order of the filter while W f is thecut-off frequency. For n = 
1, ... ,4 the solutions are: 

1
(n = 1) hlp(s) = 1 /

+s ui] 

wJ . ° (n = 2) hlp(s) = 2 2( 2; ( = sm(45 ) 
S + wfS+Wf 

2 

(n ~ 3) hi (s) = w
f .

1 
; ( =sin(30 D ) 

p ·s2+2(WfS+W~ l+s/Wf 

(n = 4) htp(S) = II
2 

2 2(Wf 

2 

2; (1 = sin(22.5D
) , (2 = sin(67.5°)� 

i=l S + iWfS+wf� 

A higher-order low-pass filter implies better disturbance suppression of the price ofadditional 
phase lag; see Figure 6.3. 
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Figure 6.3: Bode plot showing the Butterworth filter for n = 1, ... , 4 with cut-off frequency Figu 
wf = 1.0 (rad/s). mea 

three 

Low-pass and Notch Filtering 
CUll 

For smaller vessels the bandwidth of the controller Wb can be close to or within the range 
Wmin < We < W m ax of the wave spectrum. This problem can be handled by using a low-pass Sine 
filter in cascade with a notch filter: the 3 

three 
ofG 

where: 

hn(s) = 8 2
+ 2(Wn8 + w~ (6.12)
(S+wn)2 Tbe 

(00
Here 0 < ( < 1 is a design parameter used to control the magnitude of the notch while the 

inllt
notch frequency W n should be chosen equal to the peak frequency Wo of the spectrum for� 
a vessel at zero speed (dynamic positioning). The low-pass and notch filters are shown in� 
Figure 6.4 for different values of(.� 

For a vessel moving at forward speed U the optimal notch frequency will be: 6.1. 

W n =We (6.13) An 
(ob! 

This frequency can be computed on-line by using a frequency tracker or adaptive filtering froI; 

techniques. fact 
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Figure 6.4: Bode plot showing the notch filter for ( E {0.1, 0.5, o.s} and Wo = 0.63 (radls) 
in cascade with a low-pass filter with time constant Tf = 0.1 (s). The thick line represents 
three cascaded notch filters at WI = 0.4 (radls), W2 = 0.63 (radls), and W3 = 1.0 (radls). 

Cascaded Notch Filter 

Since the estimate of W n can be poor and one single-notch filter only covers a small part of 
the actual frequency range of the wave spectrum, an alternative filter structure consisting of 
three cascaded notch filters with fixed center frequencies has been suggested; see page 921 
of Grimble and Johnson (1989): 

3 2 
hcn(S) = IIS + 2(WiS + w; (6.14) 

i=I (S+Wi)2 

The center frequencies ofthe notch filters are typically chosen as WI = 0.4 (radls), W2 = 0.63 
(radls), and W3 = 1.0 (radls). This is shown in Figure 6.4. Notice that additional phase lag is 
introduced when using a cascaded notch filter. 

6.1.3 Fixed Gain Observers using only Compass Measurements 

An alternative to conventional filtering of wave disturbances is to apply a state estimator 
(observer). A state estimator can be designed to separate the LF components of the motion 
from the noisy measurements by using a model of the ship and the wave disturbances. In 
fact, a model-based wave filter is well suited to separate the LF and WF motions from each 
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X 

Figure 6.5: Block diagramt showing the system model and the observer. 

other, even for vessels where the control bandwidth is close to or higher than the encounter 
frequency. 

Let the system state-space model be written as: 

x = Ax+ bu+Ew (6.15) 

y = h T x+v (6.16) 

An observer copying this dynamics is (neglecting the zero mean white noise terms w and v): 

x = .AX+ bu+'Y (6.17) 

iJ hTx (6.18) 

where 'Y = 'Y(y, iJ) is an injection term to be constructed such that x --+ x as t --+ 00. 

The ultimate goal of the observer is therefore that the unmeasured state vector x should be 
reconstructed from the measurements u and y; see Figure 6.5. 

Luenberger Observer 

Assume that w = v = O.Defining the estimation error as:i = x - ximplies that (6.15) and 
(6.17) can be written: 

:i=AX-'Y (6.19) 

A fixed-gain (Luenberger) observer is found by choosing the injection term 'Y as: 

h T 
A 'Y = ks, e = y -y= X� (6.20) 

where 

k T = [K1, ... , K n ] = constant� (6.21) 
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is the observer gain vector. Hence, the error dynamics become: 

~ = (A - khT)X� (6.22) 

Asymptotical convergence ofx to zero can be obtained for a constant k if the system (A, h T) 
is observable. The following definition is needed to check if the system is observable or not: 

Definition 6.2 (Observability) 
Consider the linear time-invariant system: 

x=Ax+Bu (6.23) 

y=Hx (6.24) 

Thestate andoutput matrix (A, H) must satisfy the observability condition to ensure that the 
state x can be reconstructedfrom the output y and the input u. The observability condition 

counter requires that the matrix (Gelb et al, 1988): 

t, 0= [HT 
I ATH' I ... 1 (ATt-1HTj� (6.25) 

fu';w; ;g.rwx~ §ilimfr ~, .., t(6.15) 

(6.16) must be offull column rank such that (at least) a left inverse exists. 

and v): 

Matlab: 
';;fic 

.-'';H� If the observability matrix 0 is non-singular, the poles of the error dynamics can be 
placed in the left half-plane by using the Matlab™ function:l6.17) 

t6.18)� k = place(AI,h,p)' 

where p= [p_ 1, ... I P_ n ] is a vector describing the desired locations of the observer 

..... 00. error poles (must be distinct). Notice that both k and A are transposed, since the dual 
problem of the regulator problem is solved. uldbe 

t' Examples 6.1--6.2 show how the Luenberger observer can be used in ship control when only 
compass measurements are available. Emphasis is placed on wave filtering and estimation of 
the yaw rate.5) and 

Example 6.1 (Nomoto Sbip Model Exposed to Wind, Waves and Currents)
(6.19) Let a 1st-order Nomoto model (without loss ofgenerality) be used to describe the LF mo

tion ofthe ship: 

-if; = r� (6.26) 
~6.20) 1 K r = --r+-(8-b)+w� (6.27)r-� T T r 

~	 1
b = --b+Wb� (6.28)n 

r 
6.21) where the rudder off-set b is modelled as a l st-order Markov process with n » T. In the 

limiting case, that is Tb --+ 00, this reduces to a Wienerprocess (b = Wb)' The rudder bias 

t . .....

---.'� .,,_. 
"'!lllnl~~imf,!li1!!t!~'1 
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model is needed to counteract slowly-varying moments on the ship due to wave drift forces, 
LF wind, and ocean currents. Consequently, the bias term b ensures that J = b gives r = 0 
and W= constant in steady-state. The linear wave model (4.52)-(4.53) can be used to model 
the wave response: 

~w = 1/Jw (6.29) 

.;pw = -w~~w - 2>..woWw+ Kwww (6.30) 

The process noise terms, Wr, Wb, and W w are modelled as zero-mean Gaussian white noise 
processes. By combining the ship and wave models, the compass measurement equation can 
be expressed by the sum: 

(6.31) 

where v represents zero-mean Gaussian measurement noise. Notice that the yaw rate T 

nor the wave states ~w and 1/Jw are measured The resulting state-space model for u=J, 
x = [~w, 1/Jw, 1/J, T, b]T andw = [ww, Wr, Wb]T becomes: 

..� 

It °

1

°° 

0° ° -2>'wo 0 0 0� 

A = 0 1 0 (6.32)�° 1 K b~ lI-T' -T 
0 0 -Tb 

° 0 0 
2>'woO" 0 
~ ° 

E K w hT =[0,1,1,0,0] (6.33)
0 ° 0 
0 1 0� 
0 0 1� 

Matlab:� 
The following example shows how the the Luenberger observer gains ofa ship autopilot ..�
system can be computed in Matlab™.� • 
Example 6.2 (Luenberger Observer Gains) 
It is straightforward to see that the autopilot model with wave frequency, wind, r 
and current model (6.32)-(6.33) is observable from the input J to the compass 
measurement y. Let K = 1, T = 50, >. = O.I,wo = 1, and Ti, = 1000, then: 

K = 1; T=50; lambda = 0.1; wo =1; Tb = 1000; lA = [ o 1 0 o 0� 
-wo*wo -2*lambda*wo 000� 

0 0 0 1 0 
I0 0 0 -liT -KIT ..0 0 0 o -irt» 1 

h [0,1,1,0,01' •C 
n = rank(obsv(A,h')) • 

J 
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~: results in n=5 corresponding to rank(0) = 5. Hence, the system is observable according 
to Definition 6.2, implying that all states T, b,'ljJw, ~w can be reconstructedfrom a single 
measurement y = 'ljJ + 'ljJ + v. The Luenberger filter gains can now be computed by 
using: 

k = place(A',h,[pl,p2,p3,p4,p5])' 

where pl , p2 , p3,p4 , p5 are the desired closed loop poles ofthe error dynamics. 

Passivity Based Pole Placement 

The observer error dynamics can be reformulated as two subsystems for yaw angle/rudder 
bias, and yaw rate. Fossen and Strand (1999b) have shown that these systems forms a passive 
interconnection (Lozano et al. 2(00) if the observer gains are chosen according to (see also 
Section 6.2.4): 

k= 

[ 

-2wo(1- >.)Iwe 

2wo(1- >') 
We 

K4 

K5 

] 

(6.34) 

where We > Wo is the filter cut-off frequency and the remaining gains must satisfy: 

o< lin < KslK 4 < Wo < We (6.35) 

The design problem is now reduced to choosing K 4 and K 5 such that the ratio K 51K 4 satis
fies the passive gain constraint (6.35). 

~~ 

f , . 
t .- Matlab: 

The passive wave filter can be simulated using the Simulink model: 

wavefilterl.mdl 

in the GNC toolbox; see Figure 6.6 and Example 6.3. 

A more detailed analysis of the passive observer is done in Section 6.2.4 which discusses 
applications to ship positioning in 3 OOF. In fact, the I OOF heading autopilot can viewed 
as a specialcaseof the 3 DOFDP observer. 

Example 6.3 (Passive Wave Filtering) 
Consider the Mariner class cargo ship with K = 0.185 S-l andT = T1 + Tz  T3 = 107.3 
s (Chislett and Strem-Tejsen 1965a). The bias time constant is chosen to be rather large, 
for instance Tb = 100 s. The wove response model is. modelled by a linear approximation 
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Figure 6.6: Simulink block diagram showing wavefilterl.mdl for generation of'l/J, 'l/Jw' and r 
from the compass measurements y. 

to the JONSWAP spectrum with A = 0.1 and Wo = 1.2 rad/s; see Section 4.2.2. Hence,� 
(6.32)-(6.33) become: ..� 

It6 

° 

•1 0 0 
-0.26 0 o 0 

A = 0 ° 1 o b - 0 (6.36) 

..
• o dI [0 I
40 °° -0.0093 -0.0017 ' - 0.0017 

0 0 0 -0.001 

0 0 0 
0.26 a 0 0� 

E = 0 h T =[0,1,1,0,0] (6.37)�° 0 
0 1� 
0 0 °1� 

where a > 0 reflects the sea state. Using passivity as a tool for filter design with cut-off� 
frequency We = 1.1wo, yields: ..�

2wo(1 64e 
- 2wo(1-- A) 1 [-1. 1A)/W 1.80 Wo 

We = 1.10 Wo (6.38) 
K 4 K 4 •
Ks Ks 

This clearly shows that the gains should be adjusted with varying Woo Choosing K4 = 0.1 
and Ks = 0.01 such that K s/K 4 = 0.1, yields the transfer functions shown in Figure 6.7. 
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Bode Diagram 
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Figure6,7: Bodeplot showingthe wavefiltertransferfunctions and theJONSWAP spectrum. 

Notice that the notch effect at WQ is more than -20 (dB) for h3(s) and h4(S) representing 

the state estimates {;; and f. We also see that high-frequency motion components above We 

is low-pass filtered. Finally, the transfer function h2 (s) representing reconstruction of the 

WF motion {;;wfilters out signals on the outside ofthe wave response spectrum, while signals 
close to WQ pass through the filter with unity gain, that is 0 (dB). The poles of the error 
dynamics are: 

PI = -1.3125 + 0.9793i 

-1.3125 - 0.9793i1>2 = 
-1.2620 

P4 = -0.0825 

P5 = -0,0098 

P3 = 

The time-series for (T = 6.25 are shown in Figure 6.8 where the function wavefilterl.mdl in 
the GNC toolbox has been used; see Exercise 6.1 and Section 6.2.4 for a detailed discussion 
on passivity based wavefiltering in surge, sway, andyaw. 

Wave Filter Frequency Analysis 

Consider the state estimator: 

i = AX + btl.+ k(y - hT x) (6.39) 

, ........ ,� 

.

::
jt,"_, 

....,..,"..~ .. 



I

l

i 

,I� 
Estimator Based Navigation Systems 184 

1lO.-----~--~--__, 

o 

-5L..---...........--~--
o 50 100 150 50 100 150 

y=v+vwand astimatsd ., r and estimated r 
1.2.-------------, 

-10 '----~--~------' 
o 50 100 150 50 100 150 

Figure 6.8: Time-series showing the performance of the passive wave filter. 

It is then straightforward to show that: 

x(s) = (sl - A + khT)-l(ky(s) + bu(s)) (6.40) 

Assume that u(s) = 0 (no feedback) such that: 

.., 
, h(s) = [hl l ha, h3 , h4 l h5 ]T = (sl - A + khT)-Ik (6.41) 

The states of interest are: 

{;;w(s) = h2 (s)y(s) (6.42) 

ip(s) = h3 (s)y(s) (6.43) 

f(s) = h4 (s)y(s) (6.44) 

where h3 (s) represents a notch filter with a low-pass filter in cascade: 

(6.45) 

The filter h4 (s) also possesses notch filtering in cascade with a second filter representing a 
limited differentiator for generation of f(s) from y(s). Notice that ha(s) is close to 1 (0 dB) 
in a band around the wave spectrum while lower and higher frequencies are suppressed in 
order to reconstruct 1/Jw(s) from y(s). This can be seen from the Bode plot in Figure 6.7. 
These results has also been theoretically verified by Grimble (1978). In this work Grimble 
showed that the stationary Kalman filter for the ship positioning problem will be approxi
mately equivalent to a notch filter in cascade with a second filter, typically a low-pass filter. 
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The stationary Kalman filter will have the same structure as the fixed gain observer discussed 
in this section. 

When including the feedback term u( s) in the analysis, it is well known that application of 
an observer is superior to notch and low-pass filtering in cascade, since the observer uses the 
input u( s) for prediction in addition to filtering the measured output y(s). In fact, this input 
signal reduces the problems associated with additional phase lag in the filtered signal which 
is the main problem with most standard filters (low-pass, high-pass, notch etc.), Simulation 
results verifying these observations have been documented by Grimble (1978). 

6.1.4� Kalman Filter Based WaveFilter Design using only Compass Mea
surements 

An alternative solution to the pole-placement technique is to apply a Kalman filter (KF) to 
compute the gain vector k. Kalman filtering (or optimal state estimation in sense of min
imum variance) allows the user to estimate the state x of a dynamic system from a noise
contaminated input-output pair (u, y). The interested reader is advised to consult Brown and 
Hwang (1998) or Gelb et al. (1988) for details on Kalman filter design. Applications specific 
to the field of guidance and control can be found in Lin (1992). ~ " 

KF-based wave filtering has been discussed by numerous authors. The interested reader 
is advised to consult the following references for details; Balchen et al. (1976), Balchen et 
al. (1980a, 1980b), Grimble et al. (1980a, 1980b), Fung and Grimble (1981), Fung and 
Grimble (1983), Fotakis et al. (1982), Sa:lid and Jenssen (1983), Sa:lid et al. (1983), Reid et 
al. (1984), Holzhiiter and Strauch (1987), Holzhuter (1992), Sorensen et al. (1995), Serensen 
et al. (1996), Fossen et al. (2000) and Sorensenet al. (2000). 

~	 Consider the linear continuous-time system: 

(6.40) 
x=Ax+Bu+Ew� (6.46)

• 
where the process noise w is assumed to be a zero mean Gaussian white noise process with 

(6.41)� covariance matrix Q = QT > O. In the one-dimensional case Q corresponds to the squared 
!,.~ 

"" standard deviation a 2 • Furthermore, let the measurement equation (sensor system) be repret sented by: 

(6.42)� y=Hx+v (6.47) 

(6.43)� where the measurement noise v is assumed to be a zero mean Gaussian white noise process 

(6.44)� with covariance matrix R = R T > O. ;;, 
If the system (6.46)--{6.47) is observable (see Definition 6.2), the state vector x EJRn can 

J� be reconstructed recursively through the measurement vector y EJRm and the control input� 
vector u EJRP; see Figure 6.5. The continuous time KF algorithms are given in Table 6.1.� 

[6.45) In the linear case it is computationally advantageous to use the steady-state solution of 
the KF. This filter will in fact have the same structure as the fixed-gain observers of Section 
6.1.3. The only difference is the method for computation of the filter gain matrix. ~ 

iedin 
e6.7. Continuous-Time Steady-State Kalman Filter� 
imble� 
IrOXl- An attractive simplification of the continuous-time Kalman filter is the steady-state solution� 

r·� obtained for the linear time-invariant (LTI) system:� 

t� 
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Table 6.1: Continuous-Time Kalman Filter. 

Design matrices Q(t)= Q T(t) > 0, R(t)= R T(t) > 0 (usually constant) 

x(O) = Xo� 

Initial conditions P(O) = E[(x(O) - x(O))(x(O) - X(O))T] = Po� 

Kalman gain matrix K(t) = P(t)HT(t)R-1(t) ,1 

State estimate i:(t) = A(t)x(t) + B(t)u(t) + K(t)[y(t) - H(t)x(t)]� 
propagation� 
Error covariance P(t) = A(t)P(t) + P(t)AT(t) + E(t)Q(t)ET(t)� 
propagation -P(t)HT(t)R-1(t)H(t)P(t), P(t) = p T(t) > 0� 

X Ax+Bu+Ew (6.48) 

y = Hx+v (6.49) 

gr..ir.where w and v are zero mean Gaussian white noise processes. The steady-state Kalman filter 
ql.lis given by: .,..

:i = AX + Bu + KoolY - Hx) (6.50) .. 
K oo = PooHTR-1 (6.51) 

where P 00 = P ~ > 0 is the positive definite solution of the algebraic matrix Riccati equa
tion: 

SiDce 
oftbc... ,... 
TCMatlab: 
...;o(L,

The following example shows how the Kalman filter gains can be computed in Matlab™� 
for a ship exposed to waves.� 

Example 6.4 (Continuous Time Steady-State KF for Ship Autopilots)� 
For the ship-wave system (6.32)-(6.33), the 8180 continuous-time state estimator� 
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takes the form: 
:i = Ax + bu + koo(y - hT x) (6.53) 

where the Kalmanfilter gain is: 

1
k oo = -Pooh (6.54) 

r 

The covariance matrix P 00 = P;;:' > 0 is given by the ARE: 

TTl TAP oo + PooA + EQE - -Poohh P oo = 0 (6.55) 
r 

The KF gain koo is computed in Matlab™ as: 

R = t:� 

Q = diag{qll,q22,q33}� 

[k,PJ = lqe(A,E,h,Q,R) 

where the tuning ofthe filter is done by choosing the four design parameters r, qll, 
q22, and q33. The first of these, r, represents the compass covariance which can 
be computed by l0flting a time-series psi= 'I/J(t) ofthe compass at constant heading. 
Hence, the Matlab command: ) 

r=cov(psi) J 
gives a good estimate ofthe measurement noise. The disadvantage with the KF approach 
is that information about the process noise WI, w2 and W3 represented by the weights 
qll, q22 and q33 are necessary. These three quantities are usually found by trial and 
error. The variance ofthe process and measurement noise will vary with each sea state 
implying that several sets ofKF gains must be computed 

Scaling Procedure for Continuous-Time Steady-State Wave Filter Design 

Since the gain and time constants are speed- and thus time-dependent the steady-state solution 
of the Kalman filter (P00 and k oo) varies with the sea state. This suggests that the system 
matrices should be scaled with respect to forward speed U and ship length L. The model 
parameters can be made non-dimensional by defining the time and gain constants as T' = 
T(UjL) and K' = K(LjU), respectively; the wave frequency is scaled according to w~ = 
wo(LjU). Furthermore, we introduce the time scaling t' = t(UjL) and: 

, 
r = r(LjU)2 r = r(LjU) Wr 

J

= Wr(LjU? 
• J J / 

1/J = ;P(LjU) 1/J = 1/J Wo = wo(LjU) 
I 

c5
.J 

0 = 80 (Lj U) c5~ = c50 Ww = Ww(LjU) 
/ 

;Pw = ;Pw(LjU) 1/J~ = 1/Jw l = c5 
.r / J 

{w = ~w {w = {w(UjL) v = v 

'--- •. ----- ....,-,--,--, 
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Hence, the scaled ship-wave model can be written in vector form as: 

x = A'x' + b'u' +E'w' (6.56) 

with speed-invariant quantities: 

188 

0 1 0 0 0 
' 2-CWO) -2AW~ 0 0 0 

A' = 0 0 0 1 0 b'= (6.57) 
1 K'0 0 0 -T' -~)' [iI 0 0 0 0 -T~ 

0 
E' 0 h'=[O, 1, 1, 0, O]T (6.58)= [2i~a' 

0

1 
0 n 

Discrete-TIme Kalman Filter Design 

The discrete-time Kalman filter is defined in terms of the discretized system model: 

x(k + 1) c1Jx(k) + ~u(k) + rw(k) (6.59) 

y(k) Hx(k) + v(k) (6.60) 

where 

1 1 
cIJ = exp(Ah):::::: I + Ah + -(Ah)2 + ... + N' (Ah)N (6.61)

2 . 
~ = A-1 (cIJ - I)B, r = A -l(cIJ - I)E (6.62).." 

and h is the sampling time. 

Matlab: 
The discretized system matrices can be computed as: 

[PHI,DELTA]=c2d(A,B,h) 
[PHI,GAMMA]=c2d(A,E,h) 

where PHI=cIJ, DELTA=4 and GAMMA=r. Notice that Euler integration implies choosing 
N = 1, that is c1J(k) = 1+ Ah; see Appendix B.1. 

The linear discrete-time Kalmanfilter algorithm is given in Table 6.2. This algorithm, how
ever, requires that the state estimation error covariance matrix P(k) = P(k? > 0 is com
puted on-line. Since the matrix is symmetrical, the number of differential equations will be 
n(n + 1)/2 for P(k) E ~nxn. In addition there are n state estimates corresponding to x(k). 
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Table 6.2: Discrete-Time Kalman Filter. 

Design matrices Q(k)= Q T (k) > 0, R(k)= R T (k) > 0 (usually constant) 

x(O) = Xo� 

Initial conditions P(O) = E[(x(O) - x(O)(x(O) - x(O))T] = Po� 

Kalman gain matrix K(k) = P(k)HT(k) [H(k)P(k)HT(k) +R(k)]-l 
State estimate update x(k) = x(k) +K(k) [y(k) - H(k)x(k)] 
Error covariance P(k) = [I - K(k)H(k)] P(k) [I - K(k)H(k)]T 
update� +K(k)R(k)KT(k), P(k) = p(k)T > 0 

State estimate x(k + 1) = 41(k)x(k) + ~(k)u(k) 

propagation 
Error covariance P(k + 1) = ~(k)P(k)~ T(k) + r(k)Q(k)rT (k) 
propagation 

The main problem in the realization ofthe state estimator is that the parameters K, T, Wo, 
and A are unknown. Satisfactory values for the non-dimensional ship parameters K' and T' 
can usually be found from maneuvering trials or by parameter estimation. Holzhuter (1992) 
claims that the damping coefficient in the wave model can be chosen rather arbitrarily as long 
as it is low (typically oX = O.01--D.1), whereas the wave frequency Wo can be treated as a 
tunable or gain scheduled parameter. In some cases it can be advantageous to estimate Wo 
on-line by applying a frequency tracker or adaptive control theory (Strand and Fossen 1999). 

I .. •• 

6.1.5� Observer and Wave Filter Design using both Compass and Rate 
Measurements 

In this section the designs of the previous sections are modified to include a rate gyro in 
addition to the compass. This is advantageous since the gyro can be integrated with the 
compass in an optimal manner resulting in less variance and better accuracy of the state 
estimates. One simple way to do this is to treat the gyro measurements as an input to the 
system model. 

The system model becomes: 
I;

if; = Ugyro + b (6.63) 

b = Wb (6.64) 

where b denotes the gyro bias, Wb is Gaussian white noise and U gy ro is the rate gyro measure
ment. The WF model is similar to (6.29}-(6.30). This model will give proper wave filtering 
of the state 'l/J. However, the estimate of r is not wave filtered, since this signal is taken di
rectly from the gyro measurement ugyro ' This can be solved by filtering ugyro with a notch 

.......................� 
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s2+~zeta_n'"w_OS+W 0"_0 
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Figure 6.9: Simulink block diagram showing wavefilter2.mdl for filtering of compass 'l/J and 
gyro rate r measurements. 

filter hnotch (s) and a low-pass filter hJp (s) to the cost of some phase lag (see Figure 6.9): 

(6.65) 

The resulting model becomes: 

~w {Pw + K 1 C (6.66) 
2 - A 

~' ;Pw -Wo ~w - 2,\wo 'l/Jw + K 2 C (6.67) 

I· ;p = »t +h+K3 C (6.68) 
1 A

h = --b+K4 c (6.69)n 

where e = y -;p -;Pw and n » O. Notice that the gyro bias must be estimated on-line since 
it will vary with temperature and possible scale factor/misalignment errors when mounted 
onboard the ship. This is a slowly-varying process so the gain K 4 can be chosen quite small 
reflecting a large bias time constant. If passivity-based pole placement (6.34) is used, K 1, K 2, 

and K3 become: 

(6.70) 

Alternatively, the KF algorithm can be used to compute the gains. 

6.2 Observers for D 

Matlab:� 
The observer with� 
model:� 
~ 

in the GNC toolbc 

The performance of 
autopilot is discussec 

Example 6.5 (Wave 
The wave filter has 
pean Car Carriers' (l 
Matlab/Simulink 1leIlJ 
(http.Z/www.opal-rt.c 
loaded to the target F 
QNX real-time opera 

The maneuvering 
April 2001. The \1'£1\1 

and performance of 
6.10. It is seen that til 
resulting in good cou 
good, while r could L 
the Significant wave I 
was We = 1.07 (roo j 

Other techniques for 
degaard (2003). 

6.2 Observe 

In this section both 
applications. Both 
the LF motion co 
ing feedback syste 
discussed, a general 

6.2.1 

For conventional s . 
tion measurement 
ing reference (HPR) 

The two co 
Wellenhof et al. I 
igation Satellite 5\5 

instance. 



-, ,

-------

r'lmenU - ''''f'' 

I 
I 

galion Systems� 6.2 Observers for Dynamic Positioning Systems 191 

I� ! 

Matlab:� 
The observer with compass and rate measurements can be simulated using the Simulink� 
model:� 

wavefilter2.mdl 

in the GNC toolbox as shown in Figure 6.9. 

The performance of the wave filter is demonstrated in Example 6.5 while the design of the 
autopilot is discussed in Example 8.10 in Section 8.4.2. 

i~,:" 

Example 6.5 (Wave Filter Design for a Car Carrier: Experimental Results) 
The wave filter has been tested on a scale model ofMV Autoprestige of the United Euro
pean Car Carriers (UECC); see Figure 8.16 in Example 8.10. This was done by using the .+} , 
MatlablSimulink Real-TIme Workshop (http://www.mathworks.com) and RT-Lab from Opal� 
(http://www.opal-rt.com). The C-code was automatically generated under Matlab and down�

""' loaded to the target PC onboard the model ship using a wireless Ethernet connection and the� 
~ 

~ QNXreal-time operating system (http://www.qnx.com). 
~' The maneuvering test were performed in the Ocean Basin at MARlNTEK in Trondheim 

April 2001. The wave filter block diagram is shown in Figure 6.9. The experimental results 
compass 'l/J and and performance of the wave filter during a course-keeping maneuver are shown in Figure 

6.10. It is seen that the WF motion components are quite well removedfrom the estimate of'l/J
J� resulting in good course-keeping capabilities. Wealso notice that the estimate of'l/Jw is quite 

good, while r could be slightly improved by changing the observer gains. In the experiment 
figure 6.9): 

the significant wave height was H; = 1.3 (m) infull scale, while the frequency ofencounter 
was We = 1.07 (rad/s). The cruise speed ofthe model was U = 2.3 (mls).~ . (6.65) 

Other techniques for the integration of compass and rate measurements are described in Lin
degaard (2003). 

,,r' 

. (6.66) 
6.2 Observers for Dynamic Positioning Systems 

(6.67) 

In this section both the Kalman filter and a nonlinear passive observer are presented for DP (6.68)� 
applications. Both observers include wave filtering, bias state estimation, reconstruction of� 

(6.69� the LF motion components, and estimates of the non-measured body velocities. Position -
ing feedback systems are described more closely in Chapter 11. Before observer design is 

~ 

discussed, a general introduction to navigation systems is given. 

-d on-line since 
when mounted 6.2.1 Navigation Systems 
sen quite small 
sused, KI, K 2 , For conventional ships, only position and heading measurements are available. Several posi
<:> tion measurement systems are commercially available, such as local hydroaccustic position

ing reference (HPR) systems and global navigation satellite systems (GNSS). 
The two commercial available GNSS are the U.S. system Navstar GPS (see Hofmann(6.70) 

Wellenhof et al. 1994, Parkinson and Spilker 1995), and the Russian Global Orbiting Nav
igation Satellite System (GLONASS); see Kayton and Fried (1997) and Leick (1995), for 
instance. 

.......� 
'.~_.ii-r --- .. 
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Figure 6.10: The upper plot shows reconstruction of'l/J (thick line) from the compass mea ."GIS.
surement y = 'l/J + v; (thin line) and gyro measurement r using a wave filter. The lower 
plot show the xy-coordinates during course-keeping ('l/Jd = 135 deg) in the Ocean Basin at 1IIi::"'l"""---
Marintek. Courtesy UECC and MARINTEK. C1 

Sl;

In addition to this, a European satellite navigation system, Galileo, is currently under con .:::: 
struction. Galileo is an initiative of the European Union, in collaboration with the European 
Space Agency (ESA) and European Industry, to launch a European financed global satellite 
navigation system under civilian control. ESA will begin launching Galileo satellites in 2004 
with a full constellation ready to begin operational service in 2007. 

a 
•• lidNavstarGPS 
~~ 

Navstar GPS is a dual-use satellite based system that provides positioning and timing data to r·

users worldwide. The foundation for GPS was laid in the late sixties with studies made by ~ 

the U.S. Air Force and Navy, and the Joint Program Office that managed the development of 
, 

Navstar GPS was formed in 1973. The first operational satellite was launched in 1978, with 
the last one in 1994. The number of satellites remained relatively low until 198911990, when 
a number of Block II satellites were launched. Initial operational capability was declared at 
the end of 1993, and full operational capability was declared by the end of 1994. 

•
7 

GPS was showcased in the 1991 Gulf War, and that brought attention to the capability that 
this system could provide. Since then GPS has become an invaluable resource in numerous 
applications in the air, on land, and at sea. Although developed for military purposes, GPS 
has been great success in the civilian community. The removal ofSelective Availability (SA) 
on the 1st of May 2000, has made high accuracy navigation available at low cost. SA was a 

I�!~' 
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combination of methods used by the U.S. Department of Defense for deliberately degrading 
GPS accuracy for non-U.S. military users. 

Differential and Augmented GPS 

Since the accuracy of the GPS satellite navigation system was degraded for civilian users un
til the year 2000, differential global positioning system (DGPS) was developed for accurate 
navigation. The main idea of a differential GPS system is that a fixed receiver located, for 

12� example on shore with a known position, is used to calculate the GPS position errors. The 
position errors are then transmitted to the GPS-receiver on board the ship and used as cor
rections to the actual ship position. In a DGPS-system the horizontal positioning errors are 
squeezed down to less than I (m), which is the typical accuracy of a ship positioning system 
today (Hofmann-Wellenhof et al. 1994). 

) 
Another form for DGPS is local-area differential GPS (LADGPS) where the user's GPS 

receiver also receives real-time pseudorange and carrier phase corrections from a local refer
ence receiver located within line of sight. This results in a highly accurate position estimate 
in a local region. 

Similarly in a wide-area DGPS (WADGPS) the user's GPS receiver receives corrections 

10 determined from a network of reference stations distributed over a wide geographical area. 

Carrier Differential GPS 

npass mea A GPS receiver in lock is able to track the phase shift of the carrier, and output the fractional 
The lower phase measurement at each epoch.� However, the overall phase measurement contains an 

an Basin at unknown number of carrier cycles. This is called the integer ambiguity (N). This ambiguity 
t exists because the receiver merely begins counting carrier cycles from the time a satellite 

signal is placed in active track. The precision of the phase measurement is about 0.01 cycles 
'undercon (;=::; 0.01 *19 em = 1.9 rom), and if N is determined, it allows for highly accurate position 
e European measurements. ,..
bal satellite Ambiguity resolution is a very active research area, and there exist several receivers 
ites in 2004 (known as real time kinematic (RTK) receivers) on the market today that utilize carrier mea.. surements to achieve position accuracy in the order of a few centimeters. These position 

measurements are, however, not as robust as GPS and DGPS. The baseline length (distance 
l to the reference receiver) is also restricted to about 50 km, due to atmospheric errors causing ,,-

problems for the ambiguity search algorithms. New wide area augmentation systems that 
iing data to implements WADGPS have the potential to increase this range significantly, due to improved 
es made by atmospheric modeling. In fact, 10 em level accuracies have been reported for up to 750 kID 
lopment of baselines. 
1978, with 

1990, when Satellite Overlay and Inmarsat Civil Navigation 
~edat 

Inmarsat is an 80-nation consortium also known as the International Mobile Satellite Or
lability that ganization. Inmarsat was founded in 1979 to provide maritime mobile services using four 
I numerous geostationary satellites providing global coverage. These satellites broadcasts data to many 

:~,.,.ooses, GPS� ground station networks worldwide. This includes the service of the Inmarsat civil navigation :."': 

rbility (SA) geostationary satellite overlay which complements the GPS and GLONASS satellite systems 
. SA was a resulting in improved accuracy, reliability and coverage. 

~.-

,~ 
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Figure 6.11: The Litton LN-IOO Inertial Sensor Assembly. Courtesy to Litton Guidance and 
Control Systems. 

6.2.2 Inertial Measurement Systems 

Today inertial measurement technology is available for commercial users thanks to a signifi
cant reduction in price the last decade. As a consequence of this, low cost inertial sensors can 
be integrated with satellite navigation system using a conventional Kalman filter or a nonlin
ear state observer. Methods for this with focus on marine applications are presented in Vik 
and Fossen (2002) while GPSIINS integration techniques in more general are discussed by 
Farrell and Barth (1998), Titterton and Weston (1997), and Grewal et al. (2001) to mention 
some . 

• 1, Figure 6.11 shows an ISA (Inertial Sensor Assembly), which is a cluster of three gyros I 

and three accelerometers that measure angular velocity and linear acceleration, respectively. 

An IMU (Inertial Measurement Unit) consists of an ISA, hardware to interface the ISA, 
and low level software that performs down-sampling, temperature calibration, and vibration 
(sculling and coning) compensation. Figure 6.12 shows the Litton LN-200 IMU. 

An inertial navigation system (INS) consists of a measurement part (IMU), and software 
(state observer) that computes position, velocity and attitude from the measurements. When 
integrating the angular velocity (gyro) and linear acceleration (accelerometers) drift must be 
prevented. This is obtained by using a GNSS as reference for position and the resulting 
system is known a strapdown inertial navigation system. 

The key components of the IMU are described below: 

Gyroscopes 

The classic gyro is a spinning wheel that utilizes conservation of momentum to detect rota
tion, and belongs naturally in a gimballed system. For strapdown applications, optical gyros 
like ring laser gyros (RLG) and fiber optic gyros (FOG) have been used for some time, and are 
also expected to be the standard for high accuracy strapdown inertial systems for foreseeable 
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Figure 6.12: The Litton LN-200 Inertial Measurement Unit. The ISA can be seen at the 
bottom of the figure to the left. The picture to the right shows the IMU with enclosure. The 
Litton LN-200 IMU. Courtesy to Litton Guidance and Control Systems. 

Table 6.3: Performance characteristics for different types of gyros. 

[ Parameter 
I� 

Input range (deg/sec) > 1000 > 1000 > 1000� 
Bias (deglhr) 0.001-10 0.01-50 10-3600� 
Scale-factor error (%) 0.0001-0.01 0.0002-0.5 0.5-2� 
Bandwidth (Hz) 500 >200 >100� 

I II RLG I FOG ] MEMS I 

,,r' 

future. For low and medium cost applications, gyros based on micro-electric-mechanical
systems (MEMS) are expected to be dominant (Barbour and Schmidt 1998). ;. 

Table 6.3 shows the range of performance available for optical and MEMS based gyros . 

Accelerometers ... -.-.There are several different types ofaccelerometer. Two of these are mechanical and vibratory 
accelerometers. 

The mechanical accelerometer can be a pendulum. which in its simplest form is based on 
Newton's second law of motion: 

F=ma 

A force. F acting on a body of mass m causes the body to accelerate with respect to inertial 
space. When the case of the instrument is subjected to an acceleration along its sensitive axis, 
the proof mass tends to resist the change in movement due to its own inertia. As a result, the 
mass is displaced with respect to the case. Under steady state conditions the force acting 
on the mass will be balanced by the tension of the spring. The extension of the spring then 

• ....� 
j 



'nil 

196 Estimator Based Navigation Systems 

Table 6.4: Performance characteristics for different types of accelerometers. 

[ Parameter SiliconVibrating quartz IClosed loop pendulum 

Input range (g) ±100 ±200 ±100 
Bias (mg) 0.1-10 0.1-1 <25 

0.1Scale-factor error (%) 0,01 0.5-2 
Bandwidth (Hz) 400 100 400 
Threshold (Jl9) 10 <10 1-10 

provides a measure of the force, which is proportional to the acceleration. 
The vibratory accelerometers are usually based on measurement of frequency shifts due 

to increased or decreased tension in a string. The operation is similar to that of a violin. 
When a violin string is tightened, the frequency goes up. Similarly, when the accelerometer 
proof mass attached to a quartz beam is loaded, the frequency of the quartz beam increases. 
The difference in frequency is measured, and is proportional to the applied acceleration. In 
addition to quartz technology, vibrating beam accelerometers using silicon are also being 
developed. 

Table 6.4 summarizes key performance parameters for different types ofaccelerometers. 
It should be noted that closed loop precision accelerometers can have substantially higher 
performance, with biases of a few micro-g and scale-factor errors of 0.00001 %. These 
accelerometers are, however, not normally designed to measure accelerations of ± 100 g. 

6.2.3 Kalman Filter for Velocity and Wave Frequency Motion 

Dynamic positioning (DP) systems have been commercially available for marine vessels since 
the 1960's. The first DP systems were designed using conventional Pill controllers in cascade 
with low pass and/or notch filters to suppress the wave-induced motion components. From 
the middle of the 1970's more advanced filtering techniques were available thanks to the 
Kalman filter (Kalman 1960). This motivated Balchen and coauthors to define wave filtering 
in terms of linear optimal estimation theory; see Ba1chen et al. (1976, I980a, 1980b). A 
similar design technique has been proposed by Grimble et al. (1979, 1980a). 

Introduction 

Filtering and state estimation are important features ofa DP system. In many cases, measure
ments of the vessel velocities are not available. Hence, estimates of the velocities must be 
computed from noisy position and heading measurements through a state observer. Unfortu
nately, the position and heading measurements are corrupted with colored noise due to wind, 
waves, and ocean currents as well as sensor noise. Only the slowly-varying disturbances 
should be counteracted by the propulsion system, whereas the oscillatory motion due to the 
waves (I st-order wave disturbances) should not enter the feedback loop. This is done by using 
so-called wave filtering techniques, which separates the position and heading measurements 
into a LF and WF position and heading estimate; see Definition 6.1. 

In many DP systems the wave filtering and state estimation problems are solved by using 
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I the linear or extended Kalman filter. The major drawback of this approach is that the kine�
matic equations of motions must be linearized about a set of predefined constant yaw angles,� 
typically 36 operating points in steps of 10 degrees, to cover the whole heading envelope.� 
For each of these linearized models, optimal Kalman filter gains are computed such that the� 
gains can be modified on-line by using gain-scheduling techniques. An alternative approach� 
to the linearization procedure is to use vesselparallel coordinates to avoid look-up tables (see� 
Section 3.3.2).� 

This chapter presents a nonlinear passive observer covering the whole state space using� 
one set of gains (see Section 6.2.4).� 

Vessel Kinematics and Dynamics 

The following DP model is considered (Fossen and Strand 1999b): 

lifts due r, = R(1/J)v (6.71) 
l violin. Mil + Dv = T + R T (1/J)b + wa (6.72) 
.rorneter 

lCreases. where TJ = [n,e, 1/JF, v = [u, v, r]T, b E IR3 is a vector of bias terms and Wa E IRa is a 

Ilion. In vector of zero-mean Gaussian white noise processes. The different quantities in this model 

iO are described more closely in Section 3.5.1 being 

ometers, 1st-Order Wave Response Model 
y higher 

As shown in Section 4.2.2 three linear wave response models in surge, sway, and yaw can be 
These 

written as: 

i� 
10 g.� 

e= Awe + EwWI (6.73)� 

~ TJw = Cwe (6.74)� 

:15 since where eEIR6 is the state vector, WI ElRa is a vector of zero-mean Gaussian white noise, and� 

cascade A w E jR6X6, E w E jR6x3 and C w E lRax6 are constant matrices of appropriate dimensions.� 
t'O" 

s, From 
s to the Bias Modeling (Slowly-Varying Environmental Disturbances) 
filtering 

It is assumed that the bias forces in surge and sway, and the yaw moment vary slowly. This 
lOb). A. can be modelled as a Wiener process (random walk): 

b=W2 (6.75).. 
where W2 E IRa is a vector of zero-mean Gaussian white noise. An alternative model is the 
1st-order Markov model:ieasure

b = -T-1b + W2 (6.76)must be 
.nfortu where T =diag{T1 , T2 , T3 } E IRaxa is a user specified diagonal matrix ofpositive bias time 
o wind, constants. These models can be used to describe slowly-varying environmental forces and 
rbance$ moments due to: ~!
eWfue 't• 2nd-order mean and slowly-varying wave loads ryusing 
rements • ocean currents 

Iyusing • wind 

,......... ":� 
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Measurement Model 

The position and yaw angle measurements are generated by using the principle of linear 
superposition, that is the lst-order wave-induced motion component 11w == [nw,ew , 'lj;w]T is 
added to the LF motion components of the vessel given by 11 == [n, e, 'Ij;] T; see Figure 6.1. 
Hence, the position and heading measurement equation can be written: 

y == 11 + 11w+v (6.77) 

This equation reflects that the velocity vector v and bias b are treated as unknown states to 
be estimated on-line from u and y. 

Resulting DP Observer Model 

The resulting DP observer model is: 

~ == Aw~+EwWl (6.78) 

.;, == R('Ij;)v (6.79) 

b == W2 (alternatively b == -T-1b + W2) (6.80) 

-Dv+RT('Ij;)b+T+WMv == 3 (6.81) 

Y == 11+ Cwe+v (6.82) 

Discrete-TIme Extended Kalman Filter (EKF) Design 

When designing the EKF it is convenient to write the DP observer model (6.78}-(6.82) in the 
following form: 

x == f(x) + Bu + Ew (6.83) 

y==Hx+v (6.84) 

where x == [eT, 11T, bT, V T]T E ]R15 is the state vector, U == T E]R3 is the control vector,� 

w == [wJ,wI, wnT E ]R9 represents the process white noise vector, and:� 

(6.85) 
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(6.77) 

Initial conditions 
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t Kalman gain matrix 
State estimate update 
Error covariance 

'''@ update 

(6.78) 
State estimate (6.79) 
propagation

(6.80) Error covariance 
(6.81) propagation 

(6.82) 
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<;\':'r: 

~~Table 6.5: Discrete-Time Extended Kalman Filter (EKF) . 
f linear 

~ 

.t~ 

:i.Q(k)= QT(k) > 0, R(k)= RT(k) > o(usually constant) ,t1 
,~.: 

x(O) = Xo 

P(O) = E[(x(O) - x(O))(x(O) - x(O)) T] = Po 

K(k) = P(k)HT (k) [H(k)P(k)HT(k) + R(k)]-I 
x(k) = x(k) + K(k) [y(k) - H(k)x(k)] 
P(k) = [I - K(k)H(k)] P(k) [I - K(k)H(k)]T 

+K(k)R(k)KT(k), P(k) = P(k) T > 0 

x(k + 1) = F(x(k), u(k)) 

P(k + 1) = ~(k)P(k)~T(k) + r(k)Q(k)rT(k) 

The state vector of this system can be estimated using the discrete-time EKF algorithm of 
Table 6.5.~ 

The discrete-time quantities F(x(k), u(k)), ~(k)and r(k) in Table 6.5 can be found by 
usingforwardEuler integration for instance. Moreover: 

) in the 

F(x(k), u(k)) = x(k) + h[f(x(k)) + Bu(k)] (6.86) 

~(k) = I+h &(x(k), u(k)) I (6.87) ,,' 
&x(k) x(k)=x(k) 

r(k) = hE (6.88) 



r 
_J where h > 0 is the sampling time. The EKF has been used in most industrial ship control ,

systems. It should, however, be noted that the there are no proofofglobal asymptotic stability 
when the system is linearized. In particular, it is difficult to obtain asymptotic convergence 
of the bias estimates when using the EKF algorithm in DP and PM. In Section 6.2.4, it is 
demonstrated how a nonlinear observer can be designed to meet the requirement of global 
asymptotical/exponential stability through a passivation design. 

Linear Vessel ParaUel Kalman Filter Design 

Since the only nonlinear term in (6.71)--(6.72) is the rotation matrix R('ljJ) it is attractive (6.85) 
to use vessel parallel coordinates 11p instead of 11 when designing the observer (see Section 

~ 

-e 3.3.2): 
~ 

~~ 

~ ! T}p = R T ('ljJ)11 (6.89) 

IL.·,c 
> ~ . 
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such that 

RT('ifJ)iJ+ RT('ifJ)7]iJp 

RT('ifJ)R('ifJ)v+RT('ifJ)R('ifJ)7]p
= 

• T = v+R ('ifJ)7] (6.90) 

The following assumption is needed to linearize f(x). 

Assumption Kl: Constant heading-i.e., r = 0 such that R('ifJ) = O. This is a good approx
imation for low-speed applications. 

Hence, the use of vessel parallel coordinates implies that the kinematics (6.90) becomes lin
ear: 

(6.91) 

Application of Assumption Kl to the bias model (6.75) suggests the following vessel 
parallel bias formulation (Wiener process): 

bp = W 2 (6.92) 

b = R('ifJ)bp (6.93) 

The linear model with x = [eT, 7];, b;, v TjT finally takes the form: 

f(x) ~ Ax 

°6x3 °6x3 
0", ]03x6 03x3 03x3 I 3x3 = [~ x (6.94) 

°3x6 03x3 03x3 03x3 
M-1 -M-1D03X6 03x3 

which is quite attractive for Kalman filter design since the A-matrix it is independent of the 
yaw angle ib. 

The continuous time filter equations for this system is given by (see Table 6.1 in Section 
6.1.3): 

¥'-,-.. 4!2J¥% __ ,@A;.L· & , ..#.A.J• .u1li 

x Ax+Bu+PHTR-1(y-HX) (6.95)
'--v--'" 

K 

P = AP + PAT + EQET - PHTR-1HP (6.96) 

Notice that the covariance matrices Q = QT E jR9x9 and R = R T EjR3x3 must be specified 
by the user. The measurement covariance matrix can be chosen as R =diag{Tl' T2, T3} where 
the elements Tl and T2 are the covariance of the GPS position measurements and T3 is the 
compass covariance. The matrix Q can also be chosen to be diagonal with positive tunable 
parameters. These are usually found by trial and error. 
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Since the GPS measurement frequency can be as low as 1-10 Hz it is advantageous to 
implement the discrete-time version of the KF using the predictor-corrector representation; 
see Table 6.2. 

Notice that Assumption Kl implies that only local exponential stability can be proven 
for the vessel-paralell representation. If global exponential stability is important, the passive 
observer of the next section should be applied. 

6.2.4 Passive Nonlinear Observer for Velocityand Wave Frequency Mo
tion 

The drawback of the Kalman filter is that it is difficult and time-consuming to tune the state 
estimator (stochastic system with 15 states and 120 covariance equations). The main reason 
for this, is that the numerous covariance tuning parameters may be difficult to relate to phys
ical quantities. This results in an ad hoc tuning procedure for the process covariance matrix 
Q while the measurement covariance matrix R usually is well defined in terms of sensor 
specifications. 

Introduction 

In the 1990s, vectorial observer backstepping was presented as an alternative design method
ology for DP state estimation (Fossen and Grevlen 1998). The motivation for this was to 
avoid linearization of the yaw kinematics in order to obtain a global stability result. Another 
motivating factor was to reduce the relatively time-consuming process of tuning the Kalman 
filter covariance matrices on-line. In fact, vectorial observer backstepping resulted in a uni
formly globally exponentially stable (UGES) output feedback control system, which could 
be directly applied to station-keeping of ships and rigs. The work of Fossen and Grevlen 
(1998) is, however, based on a simplified model of the environmental disturbances, since it 
is assumed that the WF motion and bias states can be neglected in the design. Aarset et al. 
(1998) have shown that these results can be extended to the general case by including a dy ..' 

namic model for wave filtering and bias state estimation. It is also possible to extend this 
result to ships that are course-unstable (open-loop unstable in sway and yaw) thanks to the . 
results by Robertson and Johansson (1998), and Lindegaard and Fossen (2001 b). 

A drawback with observer backstepping and also Kalman filter based design techniques, 
is that a relatively large number ofparameters must be determined through experimental test
ing of the vessel. This motivated the research of a nonlinear passivity-based observer, since 
passivity arguments simplify the tuning procedure significantly (Fossen and Strand 1999b). 
Hence, the time needed for sea-trials and tuning can be drastically reduced. The nonlinear 
passive observer, as opposed to a linearized or extended Kalman-filter, guarantees global con
vergence of all estimation errors (including the bias terms) to zero. Hence, only one set of 
observer gains are needed to cover the whole state space. In addition, the number ofobserver 
tuning parameters are significantly reduced and the wave filter parameters are directly cou
pled to the dominating wave frequency. Passivity implies that the phase ofthe error dynamics 
is limited by 90 degrees, which gives excellent stability properties. In fact the closed-loop 
system is UGES if (6.75) is used and UGAS for (6.76). Passivity theory also showed to be 
a new tool with respect to accurate tuning of the observer. The proposed nonlinear observer 
opens for new controller designs more in line with the actual structure of the physical system 
e.g. by using a nonlinear separation principle (Loria et al. 2000). 

...... 
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For extensions to adaptive wave filtering, see Strand and Fossen (1999), while extensions 
to position mooring systems are found in Strand (1999). 

Assumptions 

When designing the passive observer, the Kalman filter low-speed assumption, Assumption 
,

• Kl , is removed. The following assumptions are, however, necessary: 

Assumption PI: w = 0 and v = O.The zero-mean Gaussian white noise terms are omitted 
in the analysis of the observer. If they are included in the Lyapunov function analysis 
the error dynamics will be uniformly ultimated bounded (UUB) instead of uniform 
global asymptotical/exponential stable (UGASfUGES). 

Assumption P2: R(Y3) = R('/fl) implying that 113 = '/fl + '/flw ~ '/fl. This is a good assump
tion since the magnitude of the wave-induced yaw disturbance '/flw will normally be 
less than 5 degrees in extreme weather situations (sea state codes 5-9), and less than 1 
degree during normal operation of the ship (sea state codes 0-4). 

T •
M = M > 0, M = 0, D > 0 

The following model properties of the inertia and damping matrices will be exploited in 
the passivation design: 

m.. 
0IIl 

System Model for Nonlinear Passive Observer "~.,',.,""!"..• 

\\ 

i i 

The application of Assumptions PI-P2 to (6.71}--(6.77), gives the following DP observer 
, 

': :' 

model: 

~=Aw~ (6.97) 

.;, = R(Y3)V (6.98) 

b = T-1b (alternatively b = 0) 

Mil = -Dv + R T (Y3)b+T 

(6.99) 

(6.100) " ..-,i~! 

Y = 71 + Cw~ (6.101) ... 
where the alternative bias model formulation (6.75) is given in the brackets. For notational 

'~,, liB-simplicity (6.97), (6.98) and (6.10 1) are written in state-space form: ~. .. 
';'0 = A o710+B oR (Y3)V (6.102) -

where 710 = [~T, 71T]T and: 

A o = [0~:6 ~:::], 

Y = C o710 

B o = [ ~::: ], Co = [Cw I 3x3] 

(6.103) 

(6.104) 

(~ 
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Figure 6.13: Block diagram showing the nonlinear passive DP observer. 

Observer Equations rio� 
The observer equations can be chosen to copy the dynamics (6.97}-{6.lOl) resulting in 15 
ODEs with no covariance updates as shown in Figure 6.13. Moreover: 

l'� 
r� 
6.97) 

6.98) 

6.99) 

.100) 

.101) 

r-w� 
,102) 

~ 

~.:.
 

.104) 

If; 

e= Awe + KI(wO)Y (6.105) 

fI = R(Y3)V + K 2y (6.106) 

b= - T- I b + K 3y (alternatively b= K 3y) (6.107) 

MiJ = -Dv + R T (Y3)b+ T + R T (Y3)K4y (6.108) 
,E' 

Y= 1]+ C w { (6.109) 

where Y= y - Yis the estimation error and K I (wo ) E 1R6 x 3 and K 2,3 ,4 E 1R3 x 3 are ob
server gain matrices to be interpreted later. Notice that KI(wo) is a function of the wave 
peak frequencies W o = [Wol, W o2,Wo3]T in surge, sway, and yaw. 

The main difference in performance of the two bias state estimators (6.107) is that the 
first model includes low-pass filtering (T >0) instead of pure integration of t~e white noise 

term K 3 Y. This results in exponential stability while application of the model b = K 3 y only 
results in asymptotic stability (Vik and Fossen 2002). 

Observer Estimation Errors 

Similarly as (6.102) and (6.103), the system (6.105), (6.106) and (6.109) is written in state
space fonn: 

fIo = A01]o+BoR (Y3)v + Ko(wo)Y (6.110) 

y = C 01]o (6.111) 

.. ..... .... .. .-..... 
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where TJo = [eT, TJ T]T and: 

(6.112) 

The estimation errors are defined as v = v - ii, i) = b - b and Tio = TJo-TJo' Hence, the 
error dynamics can be written: 

i'Jo = [Ao - K o(wo)Co]Tio+B oR (Y3)V (6.113) 

b= -T-1i) - K 3y (alternatively b= -K3y) (6.114) 
. T - T

Mii = -Dv + R (YJ)b- R (Y3)K4Y. (6.115) 

In the Lyapunov analysis of the error dynamics (6.1 13}-(6. 115), it is possible to prove 
UGES for T >0 (Fossen and Strand 1999b) since V(x,t) < 0 (negative definite). If the bias 
model b = 0 is applied, that is T -. 00, the Lyapunov analysis results in V(x,t) S; 0 
(negative semi-definite). Since the error dynamics is nonautonomous (recall that YJ = Y3(t) 

F~is time-varying), Krasovskii-LaSalle's theorem cannot be applied to prove global asymptotic Ii,,! _.�
stability; see Appendix A. However, it is possible to prove UGAS by using Matrosov's� 
theorem. Technicalities with respect to this are omitted in this section, but the interested� 
reader is advised to consult (Vik and Fossen 2002) for details regarding the limiting case ~
 
T -. 00. The analysis for T >0, however, is given below.� 

9a::IaThe dynamics of the velocity estimation error (6.115) is rewritten as: 

Mii = -Dii - R T (Y3)Z (6.116) ...� 
:-WIwhere 

(6.117) 

By defining a new state vector: ..... 
• 0 _ [ Tio ] (6.118)x- b _.JI Equations (6.113), (6.114) and (6.117) can be written in compact form as: .....� 

~ = Ax + BR(Y3)V (6.119) 

z=Cx (6.120) 

where IiiIiII 
A = [ A o - Ko(wo)Co 09X9] B = [ B o ] C = [K4CO -I3 x 3 ]-K3CO -T-l' 03x3' 

(6.121) 
In Figure 6.14 the error signals e, and e; are defined according to: 

ez = -RT (Y3)Z, e; = R(Y3)V. (6.122) 

Thus, the observer error system can be viewed as two linear blocks 'HI and 'H2, intercon
nected through the bounded transformation matrix R(Y3), that is: 

{Mt = -Dv + ez (6.123) 

i: = Ax +Bey (6.124) ...{ z=Cx .t1 

~----
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Figure 6.14: Block diagram showing the dynamics of the positionlbias and velocity estima
tion errors. 

Stability Analysis for the Passive Observer 

Based on the physical properties of the ship dynamics, the following statement can be made: 

Proposition 1 (Strictly Passive Velocity Error Dynamics) 
The mapping HI is state strictly passive. 

Proof. Let: 
l_TMS1 = -v v (6.125)
2 

be a positive definite storage function. Time differentiation of S1 along the trajectories of iI 
yields: 

S· 1 = LT (n + D T ) v - - Z-TR (Y3)v (6.126)-2v 

Using the fact that e ~ = - R T (1/3 )z, yields: 

T - S· 1 - T (D D T ) - (6.127)e; u = 1 + 2v + v 

Hence: 

it e; (r)v(r) dr 2: avT v+/3 (6.128) 
to 

where a = ~ Amin (M) is a positive constant and: 

/3 = ~ it VT(D + D T) iedr 2: 0 (6.129)
2 to 

/ 

..' 
I~ .' 

is the dissipated energy due to hydrodynamic damping. Thus. (6.128) proves that e~ 1-+ ieor 
the block HI is state strictly passive. 
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For definitions on passivity see Sepulchre et aJ. (1997), Ortega et al. (1998) or Lozano et 
al. (2000), for instance. 

In order to show that the interconnected system in Figure 6.14 is passive, one of the blocks 
must be passive while the other block must be strictly passive (Lozano et al. 2000). Since 
the mapping e z ~ v is strictly passive (block 'ltd, post-multiplication with the bounded 
transformation matrix R(Y3) and pre-multiplication by it's transpose will not affect the pas
sivity properties. Hence, it only remains to show that the the mapping e; ~ Z (block 'lt 2 ) is 
passive. This can be done by applying the Kalman-Yakubovich-Popov (KYP) Lemma. 

Lemma 6.1 (Kalman-Yakubovich-Popov)� 
Let Z(s) = C(sI - A) -1 B be an m x m transfer function matrix, where A is Hurwitz,� 
(A, B) is controllable, and (A, C) is observable. Then Z(s) is strictly positive real (SPR) if� 
and only ifthere exist positive definite matrices P = P T and Q == Q T such that:� ...�

PA+ATp = -Q (6.130) 

BTp = C (6.131) 

Proof. See Yakubovich (1973) or Khalil (2002). 

Theorem 6.1 (Passive Observer Error Dynamics)� 
The interconnected system (6.123) and (6.124) is passive if the observer gain matrices K,� 
(i = 1, ..,4) are chosen such that (6.124) satisfies the KYP-Lemma.� 

Proof. Since it is establishedthat HI is strictlypassive and H 2• which is given by the matrices� 
(A, B, C) can be made SPR by choosing the gain matrices K; (i = 1, ... ,4) according� 
to the KYP lemma, the interconnected system (6.123) and (6.124) is passive (Fossen and� 
Strand 1999b).� 

Determination of the Observer Gains 

In practice it is easy to find a set of gain matrices K, (i == 1, ... ,4) satisfying the KYP 
lemma. Notice that the mapping e; ~ Z (block 'lt2) describes three decoupled systems in 
surge, sway, and yaw. This suggests that the observer gain matrices should have a diagonal 
structure: 

K1(wo ) = [ 
diag{Kll(wol),KI2(Wo2),KI3(W03)} ] 
diag{KI 4 (Wod,K I5(Wo3),K I6(W03 )} 

(6.132) 

K 2 diag{K2I,K22,K23} (6.133) 

K 3 == diag{K31,K32,K33} (6.134) 

K 4 = diag{K41>K42,K43} (6.135) 

Consequently, three decoupled transfer functions can be defined: 

H(s) = diag{ hI (s), h2 (s ), h3 (s)} (6.136) 

given by: 
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! 

:anoet where: 

Ho(s) = Co[sI+Ao-Ko(wo)CotlBo
blocks 

K 4 + (sI + T-1)-lKHB(s) = 3Since 
unded The diagonal structure ofH(s) is shown in Figure 6.15. The transfer functions hoi(s) (i = 
Iepas 1, ... ,3) ofHo(s) and hBi(S) (i = 1, ... ,3) ofHB(s) of becomes: 
'H2 ) is 

S2 + 2Aiwois + W~i 

hoi( s) 
S3 + (K1(i+3) + K 2i + 2Aiwoi)s2 + (W~i + 2AiwoiK2i - KliW~i)s + w~iK2i 

(6.137)
trwitz, 

s + (.1. + !S..a.i) !S..a.i
lPR) if h .( ) - K . T, K 4 , T,~l K .s + K .. (6.138)B, S - 4, + 1 ,....., 4, + 1 

8 - S T, Ti 

where Woi is the wave frequency, T; is defined in (6.76), and Ai is the wave spectrum damping 6.130) 
ratio. In order to obtain the desired notch effect (wave filtering) of the observer, the desired 

6.131) shape of hoi(s) is specified as: 

h( ) _ 8
2 + 2Aiwois + w~ (6.139) 

di 8 - (82 + 2(ni Woi S + W~i)(8 + We;) 

ies K, where (ni > Ai determines the notch and Wei > Woi is the filter cut-off frequency. Typically 
(ni = 1.0 and Ai = 0.1. Equating (6.137) and (6.139) yields the following formulas for the 
filter gains in K 1 (wo ) and K 2 : 

urices 
ording 
m and 

K1i(Woi) -2((ni - Ai)Wei (6.140) 

I Woi� 

K 1(i+3)(w o;) 2woi((ni - Ai) (6.141)� 

K 2i Wei (6.142) 

~ KYP i~: ~~ ,r 
ems in Notice that the filter gains can be gain-scheduled with respect to the dominating wave fre
agonal quencies Woi if desired. In Figure 6.15 the transfer function hi (8) = hHi (8)hOi (8) is illust 

trated when all filter gains are properly selected. It is important that the 3 decoupled transfer 
functions hi (8) all have phase greater than -900 in order to meet the SPR requirement. It 

'!;;turns out that the KYP lemma and therefore the SPR requirement can easily be satisfied ifthe .. ' 
6.132) following tuning rules for T;, K 3i and K 4i are applied: 

6.133) 
liT; « K 3;/K 4i < Woi < Wei, (i = 1, ... ,3) (6.143) 

6.134) 

6.135) Here Woi (i = 1, ... ,3) are the dominating wave frequencies and T; » 1 (i = 1, ... ,3) are 
the bias time constants used to specify the limited integral effect in the bias estimator. 

I 
Uniform Global Exponential Stability 

6.136) 
The passivity analysis mainly serves as a tool to determine the observer gains. In order 
to ensure that all estimation errors converge exponentially to zero the following theorem is 
~~ . 

J, 
, 

L.� 
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hils) =ho;lSlhB/(B) 

3O,----~~~....-~~~.....__~~~TTTT"-~~~~~~~..__ ............� 
201- -:� 

1st-<l<der wave108ds:� 
w", =0.8976 (rad/s)� 

i I
-; -10 

integral
~ 
.~ -20 action 

::<-30 

45 

i 0 

145 

1IT, : F"left 6.1 
10'" 10'" t.3.91 - 111 

c E aFigure 6.15: Bode plot showing the transfer function hieS) in surge (i = 1) when liT;. « 
K 3dK 4i < Woi < Wei, see ExPassiveObs.m 

." UJIlJbU:II 
11M: perfon 

Theorem 6.2 (Uniformly Globally Exponentially Stable Observer Error Dynamics) £U8fk.
Under Assumptions P1-P2 the nonlinear observer given by (6.105)-(6.109) is uniformly 

:-",~. case J 
globally exponentially stable. 

..,;. .....:~ 

Proof. Consider the following Lyapunov function candidate: 

V = vTMv+xTpx. (6.144) 

Differentiation of V along the trajectories of v and x and application ofAssumptions P 1
P2, yields: ~ 

v = -vT(D+DT)v+xT(PA+ATp)x 

+2vTR T(Y3)BTPx-2vTR T(Y3)z (6.145) 

Application ofthe KYP Lemma, that is BTpx = ex = Z, to (6.145), yields: 

v = _vT (D + DT) v -xTQx <0, Vi i= O,V i= 0 (6.146) 
lIr.Q\~j

Hence, v ana x = [€T, iiT, i)TJT converge exponentially to zero, q.e.d ."'aIIr:wJr..tI!I 
The requirement that D + D T > 0 (open-loop stable ship) might be relaxed by using the JleGSC" 

kinematic transformation of Lindegaard and Fossen (2001a, 200Ib). These papers also show 
how pole-placement and LMI techniques can be used instead ofpassivity analysis to compute 
the observer gains. In addition velocity and partial acceleration feedback are included in the 
observer. 
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Figure 6.16: The supply vessel Northern Clipper. Length L = 76.2 (m) and mass m = 
4.591 . 106 (kg). 

Computer Simulations and Experimental Results j« 

A combination ofcomputer simulations and full-scale experiments have been used to evaluate 
~. , the performance and robustness of the nonlinear passive observer. 

Example 6.6 (Passive Nonlinear DP Observer) 
The case studies are based on the following models of the ship-bios-wave system (Fossen 
and Strand 1999b):~ 31To' o 

[ S.44) M = 8.2831.106 

o'>1

[5.024f to' 
o 

D = 2.7229.105 

-4.3933 . 106 

(6.147) 
3.745t 10' ] 

;r.
-4.39~3 . 106 ] (6.148) ;-:1 

.'
or,;4.1894.108 
,J

;Jwith the coordinate system located in the center ofgravity. A picture of the actual ship is 
shown in Figure 6.16. In the experiments the bias time constants were chosen as: 

T =diag{1000, 1000, lOOO} (6.149) 

The wave model parameters were chosen as Ai = 0.1 and Woi = 0.8976 (rad/s) correspond
ing to a wave period of 7.0 (s) in surge, sway and yaw. The notch filter parameters were 
chosen as (ni = 1.0 and Wei = 1.2255woi = 1.1.(radls). From (6.140}-(6.142) we get, see 
the GNC toolbox script ExPassi veObs .m: 

K = [-diag{2.2059, 2.2059, 2.2059} ] (6.150)
1 diag{1.6157, 1.6157, 1.6157} 

K 2 = diag{1.1, 1.1, 1.1} (6.151) 
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The loop transferfunction hOi (s) = hBi (S )hoi (s) for: 

K 4 =diag{O.1, 0.1, 0.01}, (6.152) 

is shown in Figure 6.15. 

Both the simulation study and the full-scale experiment were performed with a measure
ment frequency of 1 (Hz). The simulation study was performed with non-zero noise terms v 
and w even though these terms were assumed to be zero in the Lyapunov analysis. This was 
done to demonstrate the excellent performance of the observer in the presence of stochastic 
noise. 

The results of the computer simulations are shown in Figures 6.17--6.18. The plots show 
that all state estimates converge to their true values. In Figure 6.19--6.20 full scale experi
mental results with the same observer are reported. Again, excellent convergence and perfor
mance in surge, sway, and yaw are observed. In the full scale experiment it was not possible 
to verify that the velocity estimates converged to their true values, see the lower plots in Fig
ure 6.20. The main reason for this was that only GPS position measurements were available. 
However, simulation studies indicate that the velocity estimates converge to their true values 
as well. 

actual and estimated x (m) actual and estimated u (mls) 
1000 .----~--~-~-........,
 

Or-__ 

.1000 

-2000 

-3000 '-----'---~'---~---' 

o 1000 2000 3000 4000 1000 2000 3000 4000 
(sec) (sec) 

actual and estimated xw (m) actual and estimated b1 [kN] 
2 .-------,---~--.--........, 

.2 I....-_~__'___~_.---J 

o 1000 2000 3000 4000 1000 2000 3000 4000 
(sec) (sec) 

Figure 6.17: Simulation study: LF and WF position, velocity, bias and their estimates in 
surge. 



I

-~ .,,

6.2 Observers for Dynamic Positioning Systems 211,terns 
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Figure 6.18: Simulation study: LF and WF position, velocity,bias and their estimates in sway 
and yaw. 
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Figure 6.19: Experimental data: Three upper plots - actual position (LF+WF) with estimates 
of the LF- and WF- positions in surge, sway and yaw. Lower plots - Estimates of the LF 
velocities. •
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tau 1 and lBU2 (kN) 
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Figure 6.20: Experimental data: Control inputs in surge, sway and yaw. 

r 6.3� 6 DOF Integration Filter for IMU and Satellite Naviga
tion Systems 

An IMU, see Section 6.2.2, can be integrated with a satellite navigation system in a state 
observer to obtain estimates ofposition and velocity in 6 DOF. A stand-alone IMU solution, 
where acceleration measurements are integrated twice and gyro outputs are integrated once 

--" 
to obtain positions and attitude, respectively, will drift due to sensors biases, misalignments,� 
temperature variations etc. The kinematic equations (strapdown equations) which are in ,� 

::'tegrated numerically in conjuncture with an IMU is defined as an inertial navigation system ../ 
(INS). The INS drift can be removed by GPS/INS integration in a state observer. The position % 
and velocity accuracy will mainly depend on the GPS quality while acceleration and attitude ~J 

(, 
~	 depend on quality of the accelerometers, gyros, and the compass. If a low-cost IMU is used, ,J 

the position/attitude estimates will drift rapidly during GPS shortages while a more expensive ... 
~ 

unit will have better stand-alone capabilities. Construction of integrated GPSIINS navigation 
systems, their performance, and stand-alone capabilities are described more closely in Farrell 
and Barth (1998), Titterton and Weston (1997), and Grewal et al. (2001) to mention some. 

The goal of this section is to present a low-cost IMU/GPS integration technique for ship 
navigation by neglecting the Earth rotation and assuming that the GPS signals are available 
all the time. Consequently, the North-East-Down reference frame is assumed to be the inertial 
reference frame even though the Earth is moving relatively to a star fixed reference frame . .-es 
This is, indeed, a good approximation for ship navigation. The solutions presented here 

~ are not intended for INS stand-alone applications or cases with GPS failure. For strapdown 
inertial navigation applied to marine systems, the interested reader isrecommended to consult ~. 

Vik and Fossen (2002). , 
1111" 
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IMU Measurements 

Let the IMU measurements be denoted by Wimu and fimu representing angular velocity and 
specificforce (force divided by mass). The linear acceleration aimu is related to specific force 
as: 

(6.153) 

where gb is the acceleration of gravity decomposed in the b-frame. Let ab and Wfb denote the 
b-frame linear acceleration and angular velocity of the moving body. These quantities relate 
to the IMU measurements as (Vik and Fossen 2001): 

ba = (I + .:lacc)fimu + bacc + gb + WI (6.154) 

(I + .:lgyro)Wimu + b gy ro + W2 (6.155) 

where .:lace and .:lgyro are matrices due to scale factor and misalignments angles (the IMU 
is not perfectly mounted), bacc and b gyro are the accelerometer and gyro biases, and WI and 
W2 are zero mean white noise. Since we are not considering stand-alone INS applications (no 
GPS updates) and only low-speed applications, it can be assumed that .:lgyro = .:lacc= O. 
This is due to the fact that a continuous GPS update at 1-10 Hzwill remove these errors terms. 
In fact this is a feedback system where disturbances are suppressed. For local navigation w~n 
will be small-i.e., the NED reference frame is not moving with respect to EeEF. For marine 
vessels it is a good assumption to assume that effects due to the Earth rotation w¥e can be 
neglected. Hence: 

(6.156) 

and: 

fimu + bacc + gb + WI (6.157) 

:::::: Wimu + b gyro + W2 (6.158) 

In the case of GPS failure .:lgyro and .:lace should be estimated on-line to avoid drift. The 
stand-alone INS solution for this case is found in Vik and Fossen (2001) . 

6.3.1 Integration Filter for Position and Linear Velocity 

Assuming that the NED reference frame is the inertial system implies that: 

vn = an = ~(e)ab (6.159) 

where E> = [¢, e, tI']T is a vector of Euler angles and R~ (8) is the rotation matrix be
tween the NED and body-fixed reference frames, see Section 2.2. Substitution of (6.157) 
into (6.159), yields: 

(6.160) 

where s" = [0,0, gF is the acceleration of gravity in the NED reference frame and g" = 
Rb'(B)gb. The general strapdown equations are found in Vik and Fossen (2001). 
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l 
Integration of IMU and GPS Position Measurements 

'ocity and Consider the following kinematic model: 
:ific force 

pn = v n (6.161) 
(6.153)� yn = R~(8) (fimu + haec + wi) + g" (6.162) 

Ienote the haec = W3 (6.163) 
lies relate 

YI = pn� (6.164) 

J 
where W:; is Gaussian white noise and YI = [ngpS' egps , dgps]T is the GPS position measure
ment vector. Since E(Wl) = E(W3) = 0, the following observer structure is proposed: 

(6.154) 

(6.� 
pn = yn+KIYI (6.165)� 
~n = R~(S) (fim u + haec) +gn+K2YI (6.166)

(the IMU 
d WI and haec = K3R~(S) T YI (6.167) 
ltions(no pnYt = (6.168) 
~acc= o. 
ors terms. 
ltionw~n where Yl = YI-YI = p" - p". An algorithm for the computation ofS from the lMU 
er marine accelerometers and a compass is presented in Section 6.3.2. The b-frame velocity estimate is 
t can be therefore computed as: 

yb=R~(8)yn (6.169) 
.<6.156) 

The observer error dynamics becomes: 

(6.157) (in] [ -KI 

vn� I 0 ] [ pn] [ 0= -K2 o R~(8) 5,n + Rb'(8)(6.158)� ,,"n[::]� 
, 

[ haec -K3R i: (S )T o 0 haec 0 .... 
Irift. The (6.170)
t·� ...... 

~ ,:L~ 

x=A(S)x+Ew (6.171)� :~~ 

1':";r 
I.~""~.	 The gains K I, K 2 , and K 3 must be chosen such that x converge exponential to zero for 
..J 

::J w = O. The main problem in doing this is that the matrix A(8) depends on the attitude 8. 
(6.159)� It turns out that this problem can be solved by applying the result of Lindegaard and Fossen 

(200Ia).
latrix be
t (6.157) Property 6.1� 

A matrix K E ]R3 x 3 is said to commute with the rotation R(8) if:� 

KR(8) = R(8)K� (6.172) 

Examples ofK-matrices satisfying Property 6.1 are linear combinations: 
nd g" = 

K = a1R(S) + a2I + a3k Tk� (6.173) 

!1'" 
III: 



.

'216 Estimator Based Navigation Systems 6,)6. 

where 

k=[O,O,I)T (6.174) 

is the axis of rotation and ai (i = 1, ... ,3) are scalars. 
Defining a transformation matrix: 

T(8) = diag{Rb'(8) , R~(8), I} (6.175) 

and a constant system matrix corresponding to (6.170), i.e.: 

I 
"(I 0] --3

,
o I (6.176) 
o 0 ..:1. 

implies that: 

A(8) = T(8)ATT (8) (6.177) 1if the observer gain matrices K, (i = 1, ... ,3) and Tb commute with the rotation matrix 
R;;(8). Note that since R;;(8) is orthogonal, that is R;;(E» T = R b(8 )- 1, Property 6.1 
implies that: 

(6.178) 

Consequently, if the matrices K, are chosen diagonal, they satisfy (6.173) and stability can 
be checked by computing the eigenvalues ofA. A necessary condition for global exponential 
stability is that the eigenvalues ofA lie in the left half-plane-i.e., A must be Hurwitz. Notice a 
that the eigenvalues ofA and A(8) are equal. 

Matlab: 
The following example shows how the observer gains can be computed in MatlabT R . 

Example 6.7 (Observer Pole Placement) 
The observer gains can be found by poleplacement using the following commands: 

Ao = [0, 1, 0 
i0, 0, 1 

0,0,0]; 
C = [1, 0, 0]; ..... 
K = place(Ao',C',[-I,-2,-3])' 

resulting in three poles at -1, -2 and -3 and K = [6, 1l,6]T. Notice that this system 
represents two integrators and a constant bias. 

Integration of IMU and GPS Position and Velocity Measurements 

It is straightforward to modify the observer (6.165)-(6.168) to included GPS velocity mea
surements, Y2 = v". Moreover: 
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(6.174)� pn 
yn 

ha cc 

(6.175) Yl 
~. Y2 = 

where Yi = Yi - Yi (i = 

f
(6.176) 

r pn] [ 
~n = 

(6.177)� [ haec 

uion matrix 
lroperty 6.1 

yn+K11Yl + K 21Y2 
Rb'(E» (fimu + haec) +gn+K12Yl + K nY2 

K13R/,' (E» T Y1 + K 23Rb'(E» T Y2 
pn 
yn 

1,2) results in the error dynamics: 

K 11 I - K21 _
-K12 -K22 R/,'~e) ] [ _~: ] 
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(6.179) 

(6.180) 

(6.181) 

(6.182) 

(6.183) 

~J 

-KI3Ri,'(8)T -K23Ri,' (8)T o hacc 

(6.184)+ [R~!e) ~] [:: ] 
(6.178) ~ 

x= A(E»x+Ew
uability can 
exponentialrz. Notice Choosing K i j (i = 1, 2,3,j = 1,2) diagonal so they commute with Ri,'(e), yields: 

x= T(8)ATT (e)x + Ew 
t : 
labT R where all K i j must bechosen such that:t . 

Jnds: -Kl I -K21 
A= -K2 -K22 

[
,� !] -K3 -K23 

l~ 

is Hurwitz. 

is system 
6.3.2 Attitude Observer 

Iocity mea-

f 

pwc-

Before designing the attitude observer, it will be shown how the three-axes linear IMU accel
erations can be transformed to roll and pitch angles. This mapping, together with a compass, 
is used to construct an Euler angle measurement vector E> which again is used to remove the 
drift when the gyro measurements (angular velocities) are integrated; see Figure 6.21. 

The attitude observer in this section can be viewed as a special case of Vik and Fossen 
(2001) . 

(6.185) 

(6.186) 

.'" 
-', 
" 
,,'/ 
,,~

(6.187) ;1: 
.' 
:.; 
"J 

:J 

",i.;. 

I 
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Figure 6.2 I: Block diagram showing the nonlinear attitude observer with the IMU accelera
tion mapping. 

Mapping from Linear Accelerations to RoD and Pitch Angles 

The IMU specific force measurements can be transformed to roll and pitch angles by noticing 
that the three orthogonal accelerometers mounted in an IMU onboard a vessel at rest produce: 

1.,/,,1. qtP =atan2(:: ) f----+f Converting 
- f. Euler angles 

() =atan2( - cos tP 1" ) to Quatemions 

Taking the ratios: 

implies that: 

fim u 

= 

= 

t 

R~(e) [ ~ 
g 

R~(e)gn 

] = [ g:o~~i~:¢ ]
gcosOcos¢ 

(6.188) 

(6.189) 

fy
fz 

= tan e 
'1', cos¢ '" 0 (6.190) 

shc:req 
i=?a...... 

atan2 (~:) (6. 191) 

o atan2 ( - cos¢~:) (6.192) 

Notice that the solution for 0 is singular for ¢ = ±90 deg. When combined with a compass 
measuring the heading 'ljJ the attitude vector e = [¢,O, 'ljJ]T is completely determined. The 

...,..� 
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L;' 

Euler angles e can easily be transformed to unit quaternion measurements q = [1], E:1, E:2, E:3]T ~.~ 

by using Algorithm 2.2 from Section 2.2.3. This representation is advantageous when design i: 

ing the attitude observer. 

Quaternion-Based Attitude Observer 

In Section 2.2.2 the unit quaternion differential equation was written: 

<i = Tq(q)W~b (6.193) 

with 

1 [ eT ] (6.194)Tq(q) = 2 771+ S(e) 

Substituting the gyro measurement equation: 

W~b :::::: Wimu + b gy ro + W2 (6.195) 

into this expression, yields: 

<i = Tq(q) (Wimu +bgyro + W2] (6.196) 

bgyro = W4 (6.197) 

where b gy ro is the gyro bias. A nonlinear attitude observer for this system is, see Vik and 
Fossen (200 I) and Vik (2000): 

::.,..~ 

q = Tq(q)Rb'(q) [Wimu +bgy ro + K 1€ sgn (i7)] (6.198) 

bgy ro = ~K2€Sgn(ij) (6.199) ,... 

,~The observer structure is shown in Figure 6.21. The quaternion estimation error is defined as: 
/ 

~: 

., 
q= q* 0q (6.200) 

:4 
;Jwhere q = [1], E:l, E:2, E:3]T and q*= [il, -€I, -€2, -€3]T is the conjugate of'q - i.e. the vector 

e = [E1, €2, E3] T is multiplied with -1. The symbol 0 denotes the quaternion product which 
is defined as (Chou 1992): 

q10q2 

= 

This yields: 

lIS 

,r 
_ 
q = 

, 

~.' 

771772 - e1T]e:2[ 772el + 771 e:2 + e1 x e2 

Til -e:! ]
[ e:1 771 1 + S(e1) Q2 

[ il77+ eTe ]
77e- rye - eT e 

(6.201) 

(6.202) 

(... 
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Table 6.6: Alternative choices of attitude update laws. The first alternative is GAS while the 
other two are (local) asymptotically stable due to unstable equilibria. 

I H(r,) IUpdate law [}§§ee<i[ Unstable eq. I 
1 -1771 -K1esgn(r,) 77 = ±1 
1-7) -K1€ TJ=l 7) = -1 
1+7) K1€ 7) =-1 ii=l 

Notice that q i=- q - q. After some tedious calculations, it can be shown that the observer 
error dynamics becomes (Vik 2000): 

q = T(q) [bgyro - K1€sgn(ii)] (6.203) 

bgyro = -~K2€Sgn(ii) (6.204) 

where K, = Kl > 0 (i = 1,2). The expression for itcan also be written as: 

(6.205) 

Stability of the error dynamics follows from (assuming that W2 = W4 = 0 since these signals 
are zero mean): 

I- T -1- 
V = 2bgyroK2 bgyro + H(TJ) (6.206) 

where different candidates for H(r,) are found in found in Table 6.6 (Fjellstad and Fossen 
I 994b). 

Time differentiation of V along the trajectories ofbgyro and r" yields: 

(6.207) 

Hence, choosing H(r,) = 1 - liil , see the first row in Table 6.6, yields: 

V = -b~ro€sgn(ij)+sgn(r,)€T [bgyro - K 1€ sgn(1'j)] 

= -eTK1€ sO (6.208) 

It can then be concluded that the equilibrium points r, = ±1 of the attitude observer error 
dynamics is asymptotically stable using Krasovskii-LaSalle's theorem; see Appendix A.2. 

Vertical Reference Unit (VRU) 

The special solution of the observer when only 4> and (J are estimated (no compass measure
ment) is referred to as a vertical reference unit (VRU). The performance of state-of-the-art 
VRUs has been evaluated by Ingram et at. (1996). 

---'-'--
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!(3) Figure 6.22: The Seatex Motion Reference Unit (MRU). In its simplest form the MRU 
is a VRU, while the most sophisticated unit is an IMU. Courtesy to Kongsberg Seatex, 

!04) http://www.seatex.no/. 

',"
A VRU is particularly useful if you want to transform the GPS position and velocity 

measurements P~ps = [ngpS' dgps, egps]T (North-East-Down) and v~ = [ngpS' dgps' egps]T 

r for a GPS receiver located at the position pe2g = [X v2g, Yv2g, ZV2g]T (vector from the vessel 
origin to the GPS receiver) to the vessel coordinate origin. Moreover, the NED position and 
linear velocity of the vessel are: 

~ P~essel = P;ps - R b(8)pe2g (6.209) 

v~essel = v;ps - Rb(8)S(W~b)P~2g (6.210)~ 

where 8 =[1>, (), 'If!]T and W~b = [P, q, r]T. Here 1> and () are the VRU measurements and 'l/J 

• 
lIeD 

is the compass measurement. The NED velocity equation makes use of i>e2g = 0, that is the ",,"" 

position of the GPS receiver onboard the vessel is constant (rigid body). Consequently, -' 

n 'n 'n Rn(8) b :' 
" 

V vessel = Pvessel = Pgps - b Pv2g (6.211) .....07) x 
where P~s = v~ps and Rb(8 ) = Rb(e)S(W~b); see Theorem 2.2 in Section 2.2.1. .,~..1 

",.' 

.J 
~J6.4 Exercises .

Exercise 6.1 Simulate the ship and wave models in Example 6.3 for different values ofK2 

and K3 with a = 6.25. Comment on the results. What happens if there is an uncertainty in 
wo? Moreover, is K2 and K 3 sensitive for variations in wo? 

Exercise 6.2 Consider the ship model in Example 6.3 and compute the continuous-time 
steady-state Kalman filter for a = 6.25. Simulate the system and compare the results with 
those obtained in Example 6.3. 

Exercise 6.3 Show how a continuous-time Kalman filter can be designed for the autopilot 
model in Example 6.3 when both heading 'If! andyaw rate r are measured. 
(Hint: Kalmanfilter with two measurement equations). , ert 

f 
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Exercise 6.4 Explain briefly how wave filtering could be implementedfor a small ship and a 
large tanker in terms ofwave frequency. control bandwidth andfilter frequency. 
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Control design for marine vessels have been an active field of research since the first 

~. 

autopilot was constructed by Elmer Sperry in 1911. Modem control systems are based 
on a variety of design techniques like PID-control, linear quadratic optimal and stochastic 
control, 'H<Xl-control methods, fuzzy systems, neural networks and nonlinear control theory 
to mention some. The presentation in this chapter is, however, limited to methods which have 

.r 

been successfully implemented on-board ships, underwater vehicles, and floating vessels by , 
the author. This includes PID control systems design, linear quadratic optimal control, state .,'.,

-' 
eJ·;, ~ feedback linearization, and integrator backstepping. .:� 

The system or control models considered are based on (2.1}-(2.2); see Chapters 2 and 3. '1� 

Only full state feedback is discussed in this chapter. For nonlinear output feedback and state '"� 
:J 

estimation see Nijmeijer and Fossen (1999) and references therein. Kalman filtering as a tool :J 
for state estimation is described more closely in Gelb et al. (1988), and Brown and Hwang 
(1998), for instance. Chapter 6 also discusses state estimation for marine systems. 

The methods described in this chapter are the foundation for the industrial ROV and 
ship control systems to be presented in Parts III and IV. These methods have mainly been 
chosen since the performance have been documented through implementations and full scale 
experiments. 

Linear Versus Nonlinear Control Design 

In Section 7.2 conventional linear quadratic optimal control theory with focus on tracking 
control and disturbance feedforward is reviewed. For this purpose the linearized vessel dy
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Control design for marine vessels have been an active field of research since the first 
autopilot was constructed by Elmer Sperry in 1911. Modem control systems are based 

on a variety of design techniques like Pill-control, linear quadratic optimal and stochastic 
control, 'Hoc-control methods, fuzzy systems, neural networks and nonlinear control theory 
to mention some. The presentation in this chapter is, however, limited to methods which have 
been successfully implemented on-board ships, underwater vehicles, and floating vessels by 
the author. This includes PID control systems design, linear quadratic optimal control, state 
feedback linearization, and integrator backstepping. 

The system or control models considered are based on (2.1 }-(2.2); see Chapters 2 and 3. 
Only full state feedback is discussed in this chapter. For nonlinear output feedback and state 
estimation see Nijmeijer and Fossen (1999) and references therein. Kalman filtering as a tool 
for state estimation is described more closely in Gelb et af. (1988), and Brown and Hwang 
(1998), for instance. Chapter 6 also discusses state estimation for marine systems. 

The methods described in this chapter are the foundation for the industrial ROV and 
ship control systems to be presented in Parts III and IV. These methods have mainly been 
chosen since the performance have been documented through implementations and full scale 
experiments. 

Linear Versus Nonlinear Control Design 

In Section 7.2 conventional linear quadratic optimal control theory with focus on tracking 
control and disturbance feedforward is reviewed. For this purpose the linearized vessel dy-
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namics presented in Section 3.3.2 is applied-,i.e.: 

X=Ax+Bu+Ew (7.1) 

This equation is based on several assumptions like zero or constant cruise speed u, together 
with the assumptions that the velocities v I W I P, q, and r are small. In addition, the kinematic 
equation iJ = J (.,,)v must be linearized under a set of assumptions on the Euler angles ¢>, B, 
and e. 

When linearizing the equations of motion, several model properties like symmetry of 
the inertia matrix, skew-symmetry of the Coriolis and centripetal matrix, and positiveness 
of the damping matrix are destroyed and this often complicates the control design. Also 
physical properties which are important tools for good engineering judgement are lost. This 
is illustrated by comparing the LQ design procedure with the nonlinear techniques in Sections 
7.3 and 7.4. 

The nonlinear methods are attractive due to their simplicity and design flexibility. The 
assumptions on u, v, w,p, q, r, and ¢>, e, 'ljJ which are needed when linearizing the models are 
also avoided. 

Consequently, nonlinear vessel models in the standard form (Fossen 1991): 

iJ = J(.,,)v (7.2) 

Mz> + C(v)v + D(v)v + g(.,,) = T + w (7.3) 

are used extensively. 
It is important to understand the physical properties of the model in order to know which 

terms in the model that can be omitted when deriving a model-based nonlinear controller. 
This is an important question since model inaccuracies can destabilize a feedback control 
system. Often better results are obtained when uncertain terms are chosen to be zero in 
the controller. Both feedback linearization and backstepping designs will be used to derive 
nonlinear control systems. In addition, parallels to linear quadratic optimal control are drawn. 

7.1 PID-Control and Acceleration Feedback 

In this section it is shown how Pill-controllers can bedesigned to exploit acceleration feed
back in marine systems. This topic is also covered by Lindegaard (2003) where experimental 
results with a model ship is used to document performance improvements due to accelera
tion feedback. Acceleration feedback can be implemented in conjuncture with PID-control 
without increasing the demand for control energy. A mass-damper-spring system is used to 
demonstrate the main concept. 

7.1.1 Linear Mass-Damper-Spring Systems 

Consider the two equivalent systems: 

mX+dx+kx = 0 (7.4) 

x+ 2(wn x+w;,x = 0 (7.5) 
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implying that: 
d 

2(wn = -, 
m 

For 2nd-order systems it is convenient to define: 

k2 __ 
W n - m 

225 

(7.6) 

= IF.W n 

( = d-2
mw.. 

Matlab: 

natural frequency (undamped oscillator when d = 0) 

relative damping ratio 

The step responses in Figure 7.1 is computed using, see ExMDS •m: 

wn = 1; % natural frequency 

subplot (211) 
t = 0:0.01:20; 
z = 0.5; sys 
hold on 
z = 1.0; sys 
z = 2.0; sys 
hold off 

subplot (212) 
t = 0:0.01:50; 

tf([wn*wn], [1 

tf([wn*wn], [1 
tf([wn*wn],[1 

z = 0.1; sys = tf([wn*wn], [1 
hold on 

2*z*wn wn*wn]); 

2*z*wn wn*wnJ); 
2*z*wn wn*wn]); 

2*z*wn wn*wn]); 

step(sys,t) 

step(sys,t) 
step(sys,t) 

s t ep tsys t ) s 

sys = tf([wn*wn], [1 0 wn*wn]); step(sys,t) 
hold off 

Damped Oscillator 

For the damped system d > 0, the frequency of the oscillation will be smaller than the 
undamped system. This can be explained by considering the eigenvalues ofthe mass-damper
spring system (7.5): 

>'1 2 = - (wn ±jw (7.7), ~ 

a 

From Figure 7.2 it is seen that: 

a2 2 2 a +w =Wn, (=-=coscP (7.8)
Wn 

and 
a = absolute damping factor 
W = frequency ofoscillation (damped system) 

The undamped oscillator is obtained by choosing a = O. It is convenient to set: 

w=rwn (7.9) 
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. -.-.. -.-. .~ 
~ 

OJ =1.0 
n 

6 8 10 12 14 16 18 20 

50 
llme (sec) 

Figure 7.1: The upper plot shows a mass-damper-spring system for different relative damping 
ratios. The lower plot shows the undamped oscillator together with a damped oscillator. The 
plots are generated by ExMDS.m. 

where r is a reduction factor denoting the ratio between the natural frequency W n and the 
frequency W of the linearly damped system. For marine vessels a reduction of 0.5% percent 
in the natural frequency is common (Faltinsen 1990). Hence: 

r = 1 _� 0.5 = 0.995 (7.10)
100 

From (7.8) and (7.9) it is seen that: 

a 2 + (rwn ? = w;� (7.11) 

fJ 
a = ~Wn	 (7.12) 
~ 

( 

and further: 

d = 2(wn m 

= 2~wn 

= 2V1- rzv--£� (7.13) 
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1m 

jw 

.... , •.,', 

Re 

-jw 

Figure 7.2: Grapical illustration of natural frequency W n , frequency of the damped system w, 
and absolute damping factor a. 

which yields the following formula for linear damping: 

i 

d=2~~ (7.14) 

This formula is quite useful to determine the linear damping in heave, roll. and pitch of an 
uncontrolled marine vessel (open loop) since the mass m and spring (metacentric) coefficient 
k are easily obtained by other methods; see Sections 3.4.2 and 3.4.5. The frequency of 
oscillation is: 

Ikw=y-- (d)2
p_ftli¥!l!biliHi!ii!fi&i?¥W*dififW!f!f!!&!i!ttT7t&tNMmi'i. ;~t1KiW,(;:" ;;1 r , ,..' (7. ] 5) r Ff1~*ft&t*#'fiiai;@;AWt'+y#~ 

which for d = 0 reduces to the natural frequency of the undamped oscillator: 

wd~P If;=Wn (7.16) 

Damping in surge. SWlry, and yaw can, however, not be determined by Formula (7.14) since 
k = 0 in a pure mass-damper system. Linear damping for such a system: 

mX+dX=T (7.17) 

can be found by specifying the time constant T > O. Let T = mid such that (7.17) becomes: 

T 
oo • 1 
x+x = dT (7.18) 

which yields the following design formula for the mass-damper: 

d= m (7.19)
T 
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Equations (7.14) and (7.19) will be referred to as the linear damping formulas for a mass
damper-spring and mass-damper system, respectively. 

Example 7.1 (Linear Damping in Roll and Pitch for Submarines) 
Consider the linearpitch equation (3.274): 

Hence, linear damping can be computed by using (7.14): 

where M q, Wand BGz are assumed to be known, and r > 0 is a design parameter. For roll 
a similar expression is obtained, see (3.281): 

7.1.2 Acceleration Feedback 

Consider a mass damper spring system: 

mx + d± + kx = T + W (7.20) 

Let the contro11aw be: 

T = TpID - Kmx (7.21) 

where K m > 0 is the acceleration feedback gain and reto represents a conventional PID
controller. This yields: 

(m+ Km)x+dX+ kx = TplD +W (7.22) 

or equivalently: 

·· + d. k 1 1x ----,:-:--x + X = TpID + W (7.23)
m+Km m+Km m+Km m+Km 

From this expression it is noticed that besides increasing the mass from m to m + Km , 

acceleration feedback also reduces the gain in front of the disturbance W from 11m to 1/{m+ 
K m ) . Hence, the system is expected to be less sensitive to an external disturbances W if 
acceleration feedback is applied. 

This design can be further improved by introducing a frequency dependent virtual mass 
(Sagatun et al. 200 I), that is: 

(7.24) 

If b-«(s) is chosen as a low-pass filter: 

~'------

f
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Figure 7.3: Frequency dependent mass m,otal (s) for m K m = 1000 = 60 (dB) and
 
Tm = 1 (s).
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with gain K m > 0 and time constant Tm > 0, it is seen that: 
" 

'::K m ) .. d± k ~ 

( m+ T X+ + X=TPID+W (7.26) ,)
1 + mS .

, v ", :~ 

mlDla!(s) ,
where the totalmass of the system in closed loop is: II'I,... 

:~ 

7'1ltotal(s)=m+ K m _mTms+(m+K) (7.27) 
1 + Tms - Tm8 + 1 m 

Hence, it can be concluded that the total mass is m + K m at low frequencies (s ~ 0) while 
at high frequencies (s ~ 00) the total mass m + Km reduces to m. This is shown in Figure 
7.3. 

The filter hm(s) can be chosen rather arbitrarily depending on the application. For in
stance, a low-pass filter will remove high frequency acceleration feedback components while 
a notch structure can be used to remove 1st-order wave-induced disturbances. This is seen by 
letting: 

g(8) = _ 1 (7.28) 

1Ii1111i 
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Figure 7.4: Acceleration feedback (inner loop) and Pill feedback (outer loop). 

such that (7.26) takes the form: 

x+ g(s)d± + g(s)kx = g(S)TPlD + g(s)w (7.29) T'M is. 
_ )!O A-, 

where g(s) is chosen such that the disturbance w is suppressed in a limited frequency band . -:~ &:).: 

(low-pass, high-pass, notch etc.). 
It will next be shown how a Pill-controller can be designed independently of the acceler

ation feedback loop. 

7.1.3 Acceleration Feedback + PID Control 

Consider a PID-controller: 

with gains Kp > 0, K d > 0, and K, > 0. 
For simplicity, assume that hm (s) = K m and K, = 0 in (7.24). This gives a conventional 

PD-controller with fixed gain acceleration feedback: 

T = - (Kpx + KdX) 
'--v--' 

PD-controller 

-Kmx 
~ 

acceleration 

(7.31) 

.S" 
feedback 1W~ 

.~ 
The closed-loop system becomes: 

(7.32) 
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such that: 

I� {k+7(;;..� (7.33)
W n = V~ 

( = d+Kd� (7.34)
2(m+Km )wn 

Pole placement of the mass-damper-spring system suggests that Kp and K d can be computed 
by specifying W n and ( in (7.33) and (7.34). Solving for K p and Kd' yields: 

i 
K p = (m + Km)w~ - k (7.35) 

Kd = 2(wn (m + K m) - d (7.36) 

such that (7.32) becomes: 

2 1t'� x+ 2(wn x + w;x = WnXd+ K W (7.37)
m+ m 

IUterloop). .ij. {m+Km » I} 
Wn 

2 

~(8) ~	 (7.38) 
Xd 8 2 + 2(wn s +W;~ 

(7.29)� This is a good approximation for m + K m » 1. An even better approach is to add integral 
action K, > 0 to compensate for a large constant disturbance w. Let the Pill-controller be 

d frequency band written as:r� T = - tc; (1 + Td8 + ~8) X -tc;» (7.39)-........--....�of the acceler " ..,. , 
acceleration� 

feedback ,f~
 

PID 

,.,
where Td = Kd/K p and T; = K p/K, are the derivative and integral time constants, respec

:~
tively. A rule-of-thumb is to choose: .� 1 1Wn - ~ -� (7.40) ,-"

~--	 t: 10 , 
,.(7.30) which states that the integrator is 10 times slower than the natural frequency W n . This yields: :c 

"• rTf' "0,i,,,,,,,>t4~ f 

W n W n [( 2] 
Ie'"K, = 10K p = 10 m + Km)wn - k� (7.41) 

IeS a conventional� ~, )*-M". .liiiiii 

The natural frequency W n can be related to the system bandwidth Wb by using the following 
~. 

(7.31) definition: 

... Definition 7.1 (Control Bandwidtb) 
The control bandwidth ofa system y = h(s)u with negative unity feedback is defined as r 
thefrequency Wb (rad/s) at which the loop transfer function l(8) = h(8) . 1 is: 

l (7.32)� Il(jw)lw=Wb = J2
2 

.,,oJL'.h'~""_'" iil!::iii •. C::1 1 
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l u -I h(s) ~ 

Figure 7.5: Closed-loop feedback system. 

or equivalently, _A-_ = 20 log Il(jw)lw=Wb = -3 dB 

~. 
From this definition it can be shown that the control bandwidth of a 2nd-order system 

with natural frequency W n and relative damping ratio (: 

(7.42) 

with negative unity feedback is (see Figure 7.5): 

For a critically damped system, ( = 1.0, this expression reduces to: 

(7.44) ..... 
Pole Placement Algorithm (PID and Acceleration Feedback) 
1. Specify the bandwidth Wb > 0 and the relative damping ratio ( > O. 
2. Compute the natural frequency: W n = J 1 Wb 

1-2(2+)4(4-4(2+2 

3. Specify the gain: K m ;::: 0 (optionally acceleration feedback) 
4. Compute the P-gain: K p = (m + Km)w~ - k 
5. Compute the D-gain: K d = 2(w n (m + Km ) - d 
6. Compute the I-gain: K, = ¥trKp 

Example 7.2 (Ship Autopilot Design)
 
Consider the Nomoto model (Nomoto et al, 1957):
 

r~- ...T;j; + ;p = K 8 (7.45) 

where 7j; is the yaw angle and 8 is the rudder angle (control input). From (7.20) it is seen 
that: 

T 
k=O (7.46)m= K' 

The PID and acceleration feedback controller gains are found by using pole placement in 

1 
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! 
Ii 

[ 
~ 

t 

terms ofthe design parameters K m, W n , and <:, resulting in: 

K m ?: 0 

T+KKmw2 > 0 
nK p = 

K 1 
T+KKm 2<:wn_ K >0Kd = K 

T+KKmw~ >0tc, = 10K 

For K m = 0 (no yaw rate feedback) this reduces to a conventional autopilot ofPID-type with 
gains: 

i.1II,1 

r~ 

(7.42) 

i: 

«; 

K d 

u, 

= 

= 

= 

w~T 

K>O 
2(wnT -1 

K 
w~T 

10K >0 

>0 

("'.43) 

r
7.1.4 MIMO Acceleration Feedback and Nonlinear PID Control 

The Pill control concept can be generalized to nonlinear mechanical system by exploiting 
the kinematic eq~tions of motion in the design. Consider the nonlinear model: 

-'I 

(7.44) 

iJ 
Mil +C(v)v + D(v)v + g(1]) 

= 

= 

J(71)V 

T + W 

(7.47) 

(7.48) 

~ 

, 
~ 

where 1]and v are assumed to be measured. Consider the control law: 

T = g(1]) - Hm(s)v  J T (1])TpID 

.. ' 

:' 

.I. with acceleration feedback Hm(s)v, gravity compensation g(1]), and PID-controller: 

TpID = x,ij + K d T7 + K; it ij( r )dr (7.50) 

"~.;'" 

7.45) 

For simplicity, assume that K; = 0 and Hm(s) = K m (PD-control with fixed gain acceler
ation feedback). This yields the closed-loop system: 

'seen Hil + [C(v) + D(v) +K d(1])]v + JT (1])Kp ij = W (7.51) 

7.46) 

tnt in 

where ij = 

and: 

1]- 1]d' 
K d(1]) = JT (1])KdJ(1]) (7.52) 
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m 

In the analysis it is assumed that fJd = 0, that is, regulation of T/ to T/d = constant. A 
Lyapunov function candidate for this system is: 

v = ~vTHv + 2"ijTK pij	 (7.53) 
'-...-'" '--v---" 

kinetic potential 
energy energy 

For marine vessels at low speed it can beassumed that: 

M=MT >0 

However, this is not true at higher speeds e.g. in a maneuvering situation; see Property 3.3 
in Section 3.2.1. Lyapunov control design for systems with a nonsymmetric inertia matrix is 
discussed in Section 7.1.5. 

Time differentiation of (7.53) along the trajectories ofv and ij under the assumptions that 
M = M T , K, = KJ and K m = K~, yields: 

V	 = vTHi!+fJTK pij 

= v T (Hi! + JT (T/)Kpi;) (7.54) 

since ~ = fJ - fJd= fJand fJT = V T JT (T/). Substituting (7.51) into (7.54) yields: 

V = v T (w - [C(v) + D(v) + K~(T/)]v) 

= v T W - V T [D(v) + K~(T/)] v (7.55) 

since v T C(v)v =0 for all v; see Property 3.7 in Section 3.3. 
Ifw = 0, Krasovskii-LaSalle sTheorem A.2 in Appendix A.I can be used to prove that 

the system (7.47}-(7.48) with nonlinear PD-control (K, = 0) is globally asymptotically 
stable (GAS). Moreover, the trajectories will converge to the set n found from: 

V(x) = -vT [D(v) + K~(T/)] v == 0	 (7.56) 

which is true for V= O. Therefore: 

n = {(ij,v): v = On	 (7.57) 

Now, v == 0 implies that Hi! = _JT (T/)Kp1) which is non-zero as long as ij #0. Hence, 
the system cannot get "stuck" at an equilibrium point value other than ij = O. Since the 
equilibrium point (ij, v) = (0,0) is the largest invariant set Min n, the equilibrium point is 
GAS according to Theorem A.2. 

In the case w # 0 but w = 0, the system trajectories will converge to a ball about the 
origin (1), v) = (0,0). The radius of the ball depends on the magnitude of the disturbance 
w. This is referred to as uniform ultimate boundedness (DUB). 

If integral action is included with K, > 0 (pID-control), it is possible to prove local 
asymptotic stability (LAS) also for the case w # O. This result is well known from robotics 
(Arimoto and Miyazaki 1984). The bias term w can also be removed by using parameter 
adaptation (Fossen et al. 200 I). 

7.1 ..... 

Figure" 
uaDdl1A. 
7.1.5 •• 
11Ic_ 
1I'Plica!i 
siacc at. 
speed wi 

1k1......
 
iBertia D 

....... c:
 

8l1:l1I& • 

~ J~ 
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v 
M~MT 

constant. 
I: 

A 

, L 

high
speed 

I ~ u 

(7.53) 

I 
Figure 7.6: Low and high speed regimes for a ship. The total speed is U = 0L2+ v2 where 
u and v are the velocity in surge and sway. 

...... 
!II 

Property 3.3 
rtia matrix is 

imptions that 

l 
(7.54) 

f' 

7.1.5 Inertia Shaping Techniques using Acceleration Feedback 

The assumptions that M = M T > 0 can be relaxed in order to describe both low-speed 
applications and maneuvering situations (Fossen et al. 2002). This is a non-trivial problem 
since the system inertia matrix will be nonsymmetrical for marine vessels moving at high 
speed while it is symmetric at zero speed (station-keeping); see Figure 7.6. 

The main idea is to modify the system inertia matrix of a marine vessel through acceler
ation feedback. The problem of applying the kinetic energy of a system with nonsymmetric 
inertia matrix as a Lyapunov function candidate is easiest explained by considering the fol
lowing case study: 

(7.55) 

to prove that 
vmptotically 

Case Study: Nonsymmetric Inertia Matrix Consider the problem of energy-based con
trol when the system inertia M is non symmetrical due to hydrodynamic added mass. More
over, for marine vessels in transit (non-zero speed) it can be shown that: 

M=MRB+MA (7.58) 

(7.56) 
where the rigid-body system inertia matrix MRB = M~B > 0 and the hydrodynamic added 
inertia matrix MA is nonsymmetrica1 (Property 3.3 in Section 3.2.1), that is: 

(7.57) 

==0. Hence, 
J. Since the 
iumpoint is 

II about the 
disturbance 

prove local 
lID robotics 
~ parameter 

MA IM~ >0 (7.59) 

(7.60) 

Notice that M A is nonsymmetrical due to forward speed effects and wave-induced distur
bances (Salvesen et al. 1970). Thisimplies that the kinetic energy can be written: 

1 
V = "2vTMv 

1T (1 TIT)= -v -(M+M )+-(M-M ) v
222 
1 = '4 v T(M + MT)v 

where ~ (M + M T) is the symmetrical and ~ (M - M T) is the skew-symmetrical parts of 

M, respectively. Consequently, ~v T(M - MT)v =0 for all u, 

~~~ 

~ 

.-.... 
•.Jo
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Next, time differentiation along the trajectories of v yields: 

(7.61) 

This approach fails for vessel models in the form: 

Mv +n(v) = T (7.62) 

where n(v) is a vector of nonlinear Coriolis, damping, and restoring terms and T is the 
control input. The main reason is that only Mv in the expression for V can bebe substituted 
from the system model (7.62) while the expression M T V is not available from (7.62). 

This problem can be solved by using acceleration feedback to shape the system inertia 
matrix. The most important shaping technique will be symmetrization of 

4
H=MRB+MA+Km (7.63)----...-.- 7.2 

M 

through K m. Two design techniques for inertia symmetrization will be discussed:
 

Positive acceleration feedback (decreasing the system inertia)
 
A symmetric system inertia matrix is obtained by positive acceleration feedback: I' ..
 

(7.64) 

which yields 
(7.65) 

Positive feedback in the inner acceleration loop will not destabilize the system since M RB > 
O. However, ifMA is uncertain, positive feedback K m = - M A might destabilize the system 
if the uncertainty is in the same magnitude as the norm of M RB since this may lead to 
H <0. Therefore, negative acceleration feedback should rather beapplied to avoid robustness 
problems. 

Negative acceleration feedback (increasing the system inertia)
 
The system inertia can be increased by applying negative acceleration feedback:
 

":~ 
~ ... 
trr-~' 

resulting in: e-
T . 1 ( T)H=H =MRB+ 2 Mm+Mm +~K>O 

The gain matrix ~K can be used to increase the system inertia further since the feedback 
term ~(Mm - M~)v ensures symmetrization. Clearly, if the inertia is increased by accel
eration feedback, the closed loop system will be less sensitive to external disturbances, see 
Lindegaard (2003), for instance. 
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The symmetrization technique of this section suggest that the control law: 

T= g(17) - Kmv-J T (17)Tp ID	 (7.66)(7.61) 

TpID = -Kpij - KdiI - x, it ij(r)dT	 (7.67) 

t (7.62) can be analyzed by using standard Lyapunov analysis based using (7.53) since H = H T > O. 
A special solution exists for the horizontal motion of a vessel (surge, sway, and yaw) 

and T is the since only two linear accelerometers (surge and sway) are required to symmetrize the inertia 
:Ie substituted matrix. This solution is attractive both in dynamic positioning and in particular in maneuver
(7.62). ing situations where M A I- M A T. The design philosophy is demonstrated in Section 7.4.8 .ystem inertia where a ship maneuvering system is designed using backstepping and acceleration feedback 

in surge and sway. 
' 

(7.63) 
7.2 Linear Quadratic Optimal Control 

In this chapter, we will briefly review some results from Athans and Falb (1966) on linear 
quadratic (LQ) optimal control theory. ~ 

f	 Linearized Vessel Model 

As shown in Section 3.3.2 the 6 DOF nonlinear dynamics (2.2) can be approximated by a 
(7.64)	 linear system: 

x = Ax+Bu+Ew (7.68) 

y = Cx (7.69)
(7.65) 

where x = [17;, v T] T and u = T under the assumptions of small roll and pitch angles, and 
nceMR B > 

small speed (alternatively constant cruise speed). 
~e the system 

The system performance output y is defined by specifying the matrix C. For instance, 
may lead to 

position control is obtained by choosing: d robustness 

~ C = [I6 x 6 06X6]	 (7.70) 

i The NED positions are computed from the vessel parallel coordinates (see Section 3.3.2): 
I' 

R(¢) 03X3] 17 (7.71)17 = P(¢)17p = [ 03x3 I3x3 p 

In order to design a linear control law the system (A, B, C) must be controllable while ob
servability (see Definition 6.2 in Section 6.1.3) is necessary if some of the states must be 
estimated. Controllability for linear time-invariant systems is given by the following defini
tion: 

Definition 7.2 (Controllability) be feedback 
ed by accel	 The state and input matrix (A, B) must satisfy the controllability condition to ensure that 

:bances, see	 there exists a control u( t) which can drive any arbitrary state x( to) to another arbitrary state 
X(tl)jor tl > to. The controllability condition requires that the matrix (Gelb et al. 1988): 

~·.r' '--.~''':~ ,-..;< ~ ...	 .. 
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-"."a'_
"'~';t~_"~""'Z" . 

Figure 7.7: Supply vessel of length L = 76.2 (m). 

C = [B IAB I ... \ (A)n-1B] 

must be offull row rank such that a least a right inverse exists: 

,.".. ,,-

(7.74) 

-0.~124 ] 
0.0308 

(7.73) 

o 
0.1183 

-0.0041 

D = Jg/L TD"T-1 

0] [ 0.0358
-0.0744 ,D" = 0 
0.1278 0 

M = TM"T-1 , 

o 
1.8902 

-0.0744[ 

1.1274 
M"= 0 

o 

Matlab: 
The following example demonstrates how observability and controllability can be 
checked for a ship in surge, sway and yaw. 

These values are defined in accordance to the Bis-system such that: 

Example 7.3 (Observability and Controllability of Ships) 
Consider the supply vessel in Figure 7.7. The non-dimensional system matrices 
are (Fossen et a1. 1996): 

where T = diag{l, 1, L}; see Section 8.1.3. The linear state-space model in surge, 
sway andyaw is obtained as (see Section 3J2): 

wllaex E 
pcrformu 

(7.75) 

where x = [1J~, v T]T and u = T. The number ofstates are n = 
the positions (n, e) and yaw angle 't/J are defined as the outputs. 

6. Notice that only 
Observabi/ity and 

.. '---

----~ ........__.,,1 1i:1 
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(7.72) 

ility can be 

l 

'm matrices 

-1).~124 ] 
0.0308 

(7.73) 

r· 
(7.74) 

f!1 in surge, 

(7.75) 

e that only 
ability and 

, 
~ 

7.2 Linear Quadratic Optimal Control 

controllability can be checked in Matlab™ using the commands; see ExObs Ctr . m: 

n_obs = rank(obsv(A,C)) 
n ctr = rank(ctrb(A,B)) 

Since n_obs = n_cir = n = 6 the supply vessel is both observable and controllable. 

239 

7.2.1 Linear Quadratic Regulator 

A fundamental design problem is the regulator problem, where it is necessary to regulate the 
outputs y E jRm of the system to zero or a constant value while ensuring that they satisfy 
time-response specifications. A linear quadratic regulator (LQR) can be designed for this 
purpose by considering the state-space model: 

x 

Y 

= 

= 

Ax-l-Bu 

Cx 

(7.76) 

(7.77) 

where x E jRn, U E R", and y E Rm 
• The feedback control law is found by minimizing the 

performance index: 

J = min {~ r T 

(yTQy +uTRu) dt 
u 210 

= ~ iT (xTCTQCx+uTRu) dt} 

where R = R T > 0 and Q = Q T ~ 0 are the weighting matrices. The steady-state solution 
to this problem is (Athans and Falb 1966): 

PooA+ 

u = -R-1BTpoo x 
'-v-" 

G 

= 0 

where P 00 = lim, ...... oo P(t). 

'---".---. "..-, . ......• ~~ 

~.... - .--~ ftltl:tl:tlw 
.. 
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u 

full state feedback 

Figure 7.8: Block diagram showing the linear quadratic regulator (LQR). .......
 
Matlab:
 
The steady-state LQR feedback control law is computed as; see the script EXLQR.m:
 

Q diag ( [1] ) ; % user editable tracking error weights (dim m x m
 
R diag ( [1] ) ; % user editable input weights (dim r x r)
 

% System matrices
 
A [0 1; -1 -2] ; % user editable state matrix (dim n x n)
 
B [0; 1] ; % user editable input matrix (dim n x r)
 
C [1 0] ; % user editable output matrix (dim m x n)
 

% Compute the optimal feedback gain matrix G
 
[K,P,E] lqr(A,B,C'*Q*C,R);
 
G = -K
 

The Matlab™ function lqr . m also returns the eigenvalues of the closed-loop system: 

I , ..X= (A+BG)x (7.81) 

denoted by the symbol E. 

7.2.2 Extensions to Trajectory Tracking and Integral Action 

The LQR can be redesigned to track a time-varying reference trajectory XdE an for a large
 
class of mechanical systems possessing certain structural properties. This section presents a
 
simple solution to this problem while a more general solution is presented in Section 7.2.3.
 

Transformation oftbe LQ Tracker to a Set-Point Regulation Problem 

In order to transform a trajectory tracking problem, reference feedforward can be used. Un

measured slowly-varying or constant disturbances are compensated by including integral ac

tion. This is usually done by augmenting an integral state z= e to the system model. A
 
mass-damper-spring system will be used to demonstrate the design methodology.
 

1
 
o~ 

I 
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~R). 

~R.m: 

I~ 

(dim m x m 
r) 

n X n) 
r.� x r ) 

1:". x n ) 

I 
lOp system: 

, (7.81) 

.: 

•
r,

Rn for a large 
.tion presents a 
Section 7.2.3. 

ID be used. Un
ang integral ac
item model. A 

l 
~. 
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7.2 Linear Quadratic Optimal Control 

Example 7.4 (Mass-Damper-Spring Trajectory Tracking Problem) 
Consider the mass-damper-spring system: 

x = v 

mv+dv+kx - T 

Define: 
T = TFF + TLQ� (7.82) 

where the feedforward terms is chosen as: 

TFF = mVd + dVd + kXd� (7.83) 

such that: 
me + de + ke = TLQ (7.84) 

where e = x - Xd and e= v - Vd. The desired states are computed using a reference model: 

Xd = Vd (7.85) 

Vd = </J(vd,r) (7.86) 

where r is the input. The trajectory tracking control problem has now been transformed to a 
LQ set-point regulation problem given by (7.83) which can be written in state-spaceform as: 

x = 

----..... 
A 

e = [1 O]x 
~ 

C 

with x =[e, e]T and-a = TLQ. 

Integral Action 

In example 7.4 it was shown that a feedforward term TFF could transfer the LQ trajectory 
tracking problem to a LQR problem. For the system model: 

x=Ax+Bu (7.87) 

integral action is obtained by augmenting the integral state z E JRffi to the state vector. Let: 

z=y=Cx (7.88) 

where the C-matrix is used to extract potential integral states from the x-vector; see Example 
7.4. This system is a standard LQR problem: 

xa = Aaxa+Bau (7.89) 

where Xa = [zT, X T]T and: 

A a = [~ ~], n, = [ ~ ]� (7.90) 

-""'''111m.l 
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The control objective is regulation of X a to zero using u. This is obtained by defining the IfIme.1 
performance index as: sented by: 

t .~ 
J = mJn {~ l (x~ QaXa + U TRu) dr} (7.91) 

This is a line 
to chooseAc 

where R = R T > 0 and Qa= Q~ ~ 0 are the weighting matrices. Hence, the solution of 
the LQR set-point regulation problem is (see Section 7.2.1): 

Twocases oi 

(7.92) 
1. The di 

CxaIIJIl 
This i:!

where P 12 and P 22 are found by solving the ARE (type help lqr in Matlab™): likd). 

PooAa + A~Poo - PooBaR-IB~Poo + Qa = 0 (7.93) 
2. nc. 

Notice that the feedback term, u, includes feedback from the tracking errors e and e, and the the cal 

integral state: wis. 
t baI .. 

z = e(r) dr (7.94)l ~ 

7.2.3 General Solution ofthe LQ Trajectory Tracking Problem 

Consider the state-space model: nca...-. 
'~ing jC(Jx = Ax+Bu+Ew (7.95) &sued., 

y = ex (7.96) 6e CIItX" !iii 

The LQ trajectory tracking control problem is addressed under the assumption that both the 
state vector x and disturbance vector w are measured or at least obtained by state estimation. n 

ii 
If the estimated values are used for x and w, stability can be proven by applying a separation� 
principle. This is known as LQG control in the literature and it involves the design of a '."�'TIIr~' "c 
Kalmanfilter for reconstruction of the unmeasured states which again requires that the system -.:::; - 

is observable. For simplicity, full state feedback is assumed in this chapter. The interested 
reader is recommended to consult the extensive literature on LQG control for output feedback 
control; see Athans and Falb (1966), Brian et al. (1989), for instance. 

Reference Feedforward Assumptions 

Consider a time-varying reference system: 

:X.t = c/J(Xd, r) (7.97) 

Yd = CXd (7.98) ~R= 

where Xd E Rn is the desired state, Yd E R" (p ::; n) is the desired output, r E RT (T ::; n) 
is a bounded commanded input, and c/J : R" x RT-JR.". 

IIIIII~~ 
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If linear theory is assumed the dynamics of the desired state can be conveniently repre
sented by: 

¢(Xd' r) = Adxd + Bdr (7.99) 

This is a linear reference model for feedforward (tracking) control; see Section 5.1 for how 
to choose Ad and Bd. A special case is regulation: 

Yd = CXd=constant� (7.100) 

Disturbance Feedforward Assumptions 

Two cases of disturbance feedforward are considered: 

I.� The disturbance vector w = constant for all t > Tp where Tp is the present time. An 
example of this is a ship exposed to constant (or at least slowly-varying) wind forces. 
This is a resonable assumption since the average wind speed and direction are not 
likely to change in minutes. 

2. The disturbance w = wet) varies as a function oftime t for future time t > Tp . This is 
the case for most physical disturbances. However, a feedforward solution requires that 
w is known (or at least estimated) for t 2: O. In many cases this is unrealistic so the 
best we can do is to assume that wet) = w(Tp ) = constant e.g. in a finite future time 
horizon so that it conforms to Case I above. 

Control Objective 

The control objective is to design a linear quadratic optimal tracking controller using a time
varying smooth reference trajectory Yd given by the system (7.97}-(7.98). Assume that the 
desired output Yd = CXd is known for all time t E [0,T] where T is the final time. Define 
the error signal: 

e = Y -Yd 

= C[x-xd] (7.101) 

The goal is to design an optimal tracking controller that tracks the desired output, i.e. regu
lates the error e to zero while minimizing: 

J = rnJn { ~eT(T)Qfe(T) + ~ loT (e TQe + uTRu)dt } 

subject to x= Ax + Bu + Ew, x(O) = XQ (7.102) 

h~%'··%·· . 

where R = R T > 0 and Q = QT 2: 0 are the tracking error and control weighting matrices, 
respectively. The weight matrix Qf= QJ 2: 0 can be included to add penalty on the final 
state. Notice that this is afinite time-horizon optimal control problem and it has to be solved 
by using the Differential Riccati Equation (DRE); see Athans and Falb (1966) pp. 793-80I . 

........................: : ,......•_c .....� 
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It is assumed that the desired output signal comes from a linear reference generator given 
by: 

Xd = Adxd + Bdr (7.103) 

y = CXd (7.104) 

where r is a given reference input which is filtered through the generator. C is the same 
output matrix as in the plant. A special case of (7.102) is the one with no weight on the final 
state, that is Q! = 0, resulting in the quadratic performance index: 

J = mJn { ~ I T 

(eTQe + uTRu) dt} (7.105) 

Substituting (7.69) into (7.105) yields the equivalent formulation: 

J ~ ~n{ ~ [<xTQx+uTRu) dt} (7.106) 

where x = x - Xd and: 
(7.107) 

Linear Time-Varying Systems 

It can be shown that the optimal control law is (Brian et al. 1989): 

(7.108) 

where P, hI and h 2 originates from the system Hamiltonian. P accounts for the feedback 
part, hI accounts for the feedforward part due to the time-varying nature of the reference 
signal Yd» and h 2 accounts for the feedforward part due to the measurable time-varying dis.< 
turbance w. The equations that need to be solved are: 

'I: P 
hI 
h2 

= 
= 

-PA  A Tp + PBR-IBTp-Q 
ITT --[A  BR- B P] hI +QXd 

-[A  BR-IBTpl Th 
2-PEw 

(7.109) 

(7.110) 

(7.111) 

with: 

(7.112) 

(7.113) 

(7.114) 
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generator given where Qf= C T QfG Equations (7.109}--{7.111) represent three differential equations; a 
matrix DRE and two vector differential equations (adjoint operators), respectively. Notice 

I: that the initial conditions for these equations are not known, but rather the final conditions 
(7.103) are known. Consequently, they have to be integrated backward in time a priori to find the 
(7.104) initial conditions, and then be executed forward in time again with the closed-loop plant from 

[O,T].
C is the same There are different ways of doing this. One attractive method is to discretize the system 
PI on the final and run the resulting difference equation backward. A simple Euler integration routine for 

(7.109) is given below where 0 is set as a small negative sampling time. Moreover, using a : 
1st-order Taylor expansion, yields: I~ 

i (7.105) P(t + 0)::::: P(t) + o{-PA - A Tp + PBR-IBTp - Q} (7.115) 

with P(T) = Qf produces P(O). Another procedure, is to simulate backwards in time. The 
system: 

x= f(x, t) + G(x, t)u t E [T,O] (7.116)
(7.106) 

can be simulated backwards in time by the following change of integration variable t = T - r 
with dt = <dr, and: 

~. 

~ 

(7.107) dx(T - r ) 
-_- = f(x(T - r ), T - r) + G(x(T - r'), T - r)u(T - r ) (7.117) 

t Letz(r) = x(T - r), then: 

dz(r)--a;;:- = -f(z(r), T - r) - G(z(r), T - r)u(T - r) (7.118) 

(7.108), 
This system can now be simulated forward in time with initial condition z(O) = x(T). 

The method is demonstrated in Example 7.5 where it is assumed that both Xd and ware 
. the feedback 

time-varying but known for all future t. Later a special case dealing with constant values for 
the reference 

Xd and w will be studied.
e-varying dis

~ Example 7.5 (Optimal Time-Varying LQ Trajectory Tracking Problem) 
Consider a mass-damper-spring system: 

(7.109) mii: + dX + kx = u + w (7.119) 

(7.110) 
where m is the mass, d is the damping coefficient, k is the spring stiffness coefficient. u is the 

(7.111) input, and w is the disturbance. Choosing the states as Xl = X and X2 = X, the following 
state-space realization is obtained: 

[ Xl] [0 (7.120)X2 = -~ _1~ ] [ ~~ ] + [ ~ ] u + [ ~ ] w 

I
 
For simplicity, assume that m = k = 1 and d = 2 such that:
 (7.112) 

(7.113) 
x = [ ~1 !2 ] x + [ ~ ] u + [ ~ ] w (7.121)

(7.114) 

y = [ 1 O]x (7.122) 



;
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where x = [Xl, x2F. The disturbance signal is assumed to be known for all future time and 
it is simply chosen as: 

w = cos(t) (7.123) 

Similarly the reference signal is assumed to be known for all future time and it is given by 
the generator: 

Xd (7.124)= [ ~1 !1 ]Xd + [ ~ ] r 
Yd = [ 1 o ] Xd (7.125) 

where 
r = sin(t) (7.126) 

The MatlabTR GNC toolbox script ExLQFinHor. m demonstrates how forward and back
ward integration can be implemented for the mass-damper-spring system. The simulation .. " i\ 

results are shown in Figures 7.9-7.10. 

Approximate SOlution for Linear Time-Invariant Systems 

Unfortunately, the theory dealing with the limiting case: 

(7.127) 

is not available. This solution is attractive since it represents a steady-state solution of the LQ 
trajectory tracking problem. Fortunately, this problem can becircumvented by assuming that 
T is large but still limited, that is: 

I ,., 

(7.128) 

where Tl is a large constant. For T - 00 the solution of (7.109) will tend to the constant 
matrix P 00 satisfying the Algebraic Riccati Equation (ARE): 

'~ 

:~ T -1 T 
.' PooA+A Poo-PooBR B Poo+Q=O (7.129) .,
.I " 

....' ;,1 

This solution is interpreted as the steady-state solution of (7.109) where P(t) ~ P oo for all 
,~ 

t E [0,TIl. This is verified in the upper plot of Figure 7.10. Furthermore, it is assumed that: 

Xd = constant, w = constant, 'r/t E [0,Til. (7.130) 

In practise the assumption that Xd is constant can be relaxed to Xd being slowly-varying 
compared to the state dynamics. A similar argument can be used for w. It is also common to 
drop the disturbance feedforward term since integral action in the controller can compensate 
for non-zero slowly-varying disturbances. 

I 
I '~'. 

....,.r--
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'future time and 
Ou!pu1""""",se to input r(1)= sin(t) 

I', 2. iii I iii ~i ._. x,1111 (7.123) 
- - X2 
-X

nti iJ is gillen by	 _X
d 1 

d2
11 
&l

~' 

(7.124) 
.2 I I , I , , ! I , ! I~ o 2 3 4 5 6 6 9 10(7.125) Tme(Il8C.) 

zoe Iii I I i I I " 
-U(I)f (7.126) 

10 

rward and back	 ! 
:g 0The simulation 
.3 

·10 

·20 ,. 'I	 , I I , -t 

o 4 5	 9 10 ~	 Tine(__) 

I" 

r	 Figure 7.9: Upper plot: states xland X2 and the reference trajectories Xdl and Xd2 as function 
(7.127)	 of time. Lower plot: optimal control u as function of time. 

<,,Julionof the LQ 
Dynami: _ ofp(tl

'y assuming that 

(7.128)	 ,.'~f::::::~:I~:~~~ 

lao the constant o 1 2 3 ~micbebolh6(1) 7 6 9 10
l 

..: 5OOt~~
(7.129)	 "~ 

t oW, wbI'f&!"'liiM 
-500---~ 

o 1 2 3 ~miCbetij.viorofh ~(I) 7 6 9 10 

::::: P oo for all 
i assumed that: 

(7.130) Jt:::=:~
o	 1 2 3 4 5 6 7 6 9 10 

TIme (sec.) 

slowly-varying 
ilso common to 
:an compensate Figure 7.10: Optimal solutions of the elements in P, hI and h2 as function of time. 
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disturbance feedforworri w=constant 
Matlab: 
The fimI::bl 
the rnatriccI 

reference feedforward 

full statefeedback 

Fora..-. 
ingExLqtJ: 

Figure 7.11: Block diagram showing the full state feedback LQ tracker solution with distur
bance feedforward. 

Next, if the eigenvalues of the matrix: 

(7.131) 

(7.132) 

have negative real parts, that is: 

the steady-state solution for hI and h 2 in (7.110) and (7.111) on [0,TIl can be approximated 
as: 

h l oo = (A + BGd-TQXd 

h200 = -(A + BGd-TP=Ew 

Substitution of (7.129) into (7.108) yields the steady-state optimal control law: 

8!! 
(7.l35J" 

(7.133) 

(7.134) 

where Yd=constant and w =constant, and: 

G l 
G 2 

G 3 

= 

= 

_R-1BTp= 

-R-IBT(A+BGd-TCTQ 

R-IBT(A+BGd-TP=E 

(7.136) 

(7.137) 

(7.138) 
.~,~Ol 

~.. -'WI! l. = 

This solution is shown in Figure 7.11. 



r 

on with distur

,. 
(7.131)t, 

I (7.132) 

.approximated 

~ 

(7.133) 

(7.134) 

f .: 

(7.135) 

(7.136) 

(7.137): 

(7.138) 
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Matlab:
 
The function lqtracker.m is implemented in the GNC toolbox for computation of
 
the matrices GI, G2 and G 3 :
 

function [Gl,G2,G3] = lqtracker(A,B,C,Q,R)
 
[K,P,E] = lqr(A,B,C'*Q*C,R);
 
Gl = -inv(R)*B'*P;
 
Temp = inv((A+B*Gl)');
 
G2 = -inv(R) *B'*Temp*C' *Q;
 
G3 = inv(R)*B'*Temp*P*E;
 

For a mass-damper-spring system the optimal trajectory tracking controller is found us
ing ExLQtrack.m: 

%Design matrices 
Q = diag ( [l] ) ; % tracking error weights 
R=diag([l]); % input weights 

% System matrices 
A = [0 1; -1 -2]; % state matrix 
B = [0; 1]; % input matrix 
C = [1 0]; % output matrix 

% Optimal gain matrices 
[Gl,G2,G3] = lqtracker(A,B,C,Q,R) 

SISO Systems 

Consider the SISO state-space model: 

x = Ax+bu+Ew (7.139) 

y = cTx (7.140) 

!	 
where x E JRn

, uE JR and yE JR. For SISO systems, the performance index (7.105) simplifies 
to: 

fT (qe2+ru2J=min{! lim ) dr 
u 2 T--+oo Jo 

2..« lim r (e2 + ~ u) dt} (7.141) 
2 T--+oo Jo q 

where q 2 0 and r > 0 are two scalars. By choosing q = 1 (without loss of generality) and
 
defining A= r / q > 0, the performance index (7.141) reduces to:
 

J* = min {! lim iT (e2 + AU2) dt}	 (7.142) 
u 2 T--+oo to 

-~..i" _	 .._.....
II' 
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Consequently, the steady-state optimal solution can be approximated as: 

U= X+g2 Yd + w 

where 

g"[ = 

92 

gJ == 

-'!'bA Tp 
00 

-~b T(A + bgi)-T c 

~b T(A + bgi)-TpooE 

Here P 00 = p ~ > 0 is the solution of the algebraic Riccati equation (ARE): 

143) 

(7.144) 

(7.145) 

(7.146) 

(7.147) 

For a mass-damper-spring system the term g"[x can beviewed as a PD-controller while g2Yd 
and gJw represent reference and disturbance feedforward, respectively. 

7.3 State Feedback Linearization 

The basic idea with feedback linearization is to transform the nonlinear systems dynamics 
into a linear system (Freund 1973). Conventional control techniques like pole placement 
and linear quadratic optimal control theory can then be applied to the linear system. In 
robotics, this technique is commonly referred to as computed torque control (Sciavicco and 
Siciliano 1996). Feedback linearization are discussed in more detail by Isidori (1989) and 
Slotine and Li (1991). 

Feedback linearization is easily applicable to ships and underwater vehicles since these 
models basically are nonlinear mass-damper-spring systems which can be transformed into a 
linear system by using a nonlinear mapping (Fossen 1994). Transformations that can be used 
both for b- and n-frame applications will be presented. With b-frame applications we mean 
tracking control of the body-fixed velocities while n-frame applications will be position and 
attitude control. Combined position and velocity schemes are also discussed. 

7.3.1 Decoupling in the b-Frame (Velocity)
 

The control objective is to transform the vessel dynamics into a linear system
 

(7.148) 

where a b can be interpreted as a body-fixed commanded acceleration vector. The body-fixed 
vector representation should be used to control the vessels' linear and angular velocities. 

7.3 State JI't 

-,. '"'~' , 
Comida' 
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(7.143) 
''''\\' 

Figure 7.12: Nonlinear decoupling in the b-frame. (7.144) 

(7.145) Consider the nonlinear vessel dynamics in the form: 

(7.146) Mv+n(v,TJ)=-r (7.149) 

where TJ and v are assumed to be measured and n is the nonlinear vector: 

n(v, TJ) = C(v)v +D(v)v + g(TJ) (7.150) 

(7.147~, The nonlinearities can be canceled out by simply selecting the control law as (see Figure 

ber. 7.12): 

whileg2Yd 
T = Mab + n(v, 11) (7.15

l where the commanded acceleration vector a b can be chosen by e.g. pole placement or linear 
quadratic optimal control theory. However, note that to investigate optimality of the original 
system, the optimal control and cost function must betransformed back through the nonlinear

dynamics 
mapping.

placement 
"stem. In 
ivicco and Pole Placement 

1989) and 
Let A > 0 be a diagonal design matrix 

IDee these A =diag{AI, A2'... , An}
nedinto a 
In beused used to specify the desired control bandwidth, v d the desired linear and angular velocity
 
we mean
 vector and v = v - V d the velocity tracking error. Then the commanded acceleration vector 
sition and can be chosen as a PI-controller with acceleration feedforward: 

l l t 

a b = Vd - Kpv - K i v(T)dT (7.152) 

Choosing the gains as: (7.148) 

xly-fixed K, = 2A. K; =A2 

elocities. 

-

~I. 
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. , 

yields the 2nd-order error dynamics: 

bM(v - a ) = M(t, + 2Aii + A2it ii(r)dr) = 0 (7.153) 

This implies that for each DOF both poles are in s = -Ai (i = 1, ... , n). Consequently: 

(7.154) 

The reference model of Section 5.1 can be used to generate a smooth velocity trajectory Vd 

for tracking control. 

Example 7.6 (Speed Control) 
Consider a simplified model ofa ship in surge, that is: 

(7.1SS) 

The commanded acceleration is calculated as: 

ba = Ud - Kp(u - Ud) - K, it (v - vd)dr (7.156) 

This suggests that the speed controller should be computed as: 

(7.157) 

with reference model (see Section 5.1) 

2 bUd + 2('WUd + W2Ud = w r (7.158) 

where (' > 0 and W > 0 are the reference model damping ratio and naturalfrequency while 
r b is the commanded input (desired surge speed). 

7.3.2 Decoupling in the n-Frame (Position and Attitude) 

For position and attitude control the vessel's dynamics and kinematics are decoupled in the 
NED reference frame. Consider: 

(7.159) 

where an can be interpreted as the n-frame commanded acceleration. Consider the dynamic 
and kinematic equations in the form: 

Mz> + n(v, "1) = T (7.160) 

1] = J(71) v (7.161) 

where both "1 and v are assumed measured. Differentiation of the kinematic equation with 
respect to time yields: 

(7.162) 

The nonlinear control law: 

applied 106c, 
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nsequently: 

(7.153) 

(7.154) 

y trajectory v« 

t 

T = Mab + n(v, 11) 

an = j(11)V + J(11)ab 

M(v  a b) = MJ-1(11)[1i - j(11)V - J(11)abj = 

applied to the vessel dynamics, yields: 

Choosing: 

yields the linear decoupled system: . 

0 (7.164) 

(7.165) 

M*(1i - an) = 0 (7.166) 

(7.155) where M* = J-T (11)MJ- I (11) > O. From (7.165) it is seen that: 

a b = J- I(11)[an - j(11)v] (7. 

l, (7.156) 
where the commanded acceleration an should bechosen as a PID-control1aw with accelera
tion feedforward: 

~ 
(7.157) 

',. 
an = 1id - Kd.q - Kp'ij - x, 1t 

'ij(T)dT (7.168) 

t (7.158) 

equency while 

L.;f! . 

where K p , K d , and K, are positive definite matrices chosen such that the error dynamics: 

i,+ Kd.q + Kp'ij + x, 1t 

'ij(T)dT = 0 

is stable. One simple pole placement algorithm for PID-control is: 

(7.169) 

~ledin the (8 + Ad31t 'ij(T)dT = 0, (i = 1, ... , n) (7.170) 

(7.159) 

r the dynamic 
which yields: 

(7.160) 

(7.161) 

equation with 

Kp 

Kd 

K; 

3A = 3diag{A1, A2, 

3A 2 = 3diag{AI,A2, 

A 3 = diag{ At, A~, 

, An} 

,An} 

,A~} 

~; 

(7.162) 
This is shown in Figure 7.13. When implementing the tracking control a 3rd-order reference 
model can be used to compute smooth position and attitude trajectories 11d; see Section 5.1. 

~ 

L- ~, 
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If the equaIi• 
can be appb ,11 

Here 8 = 8 
function of, 
an = JI'1IIJ 

a" 

• 
PremuJtipIyi 
the n-frame , 

Figure 7.13: Nonlinear decoupling in the n-frame with transformation to the vessel b-frame. 

Example 7.7 (Heading Control System) 
Consider the ship model (Norrbin 1963): 

;p = r (7.171) 
wbereK~ >mf + d1r + d21rlr = r (7.172) 

where 7/J is the yaw angle. Hence, the commanded acceleration can be calculated as (Fossen� 
and Paulsen 1992):� 

an = Td - Kd(r - rd) - Kp(7/J -7/Jd) - tc, I t 

(7/J -7/Jd)dr (7.173) 

where r d is the desired angular velocity and 7/Jd is the desired heading angle. For this partic ~ 
wberex = tular example an = ab, which yields the decoupling control law: 

r = m [Td - Kd(r - rd) - Kp(7/J - 'l/Jd) - K, I t 

(7/J -7/Jd)dr] + d1r + d21rlr (7.174) 

with reference model (see Section 5.1): 

(7.175) 
:~~ 
I~ 

7.3.3 Adaptive Feedback Linearization wllr:RP =' 
iIIeerror dytSo far only feedback linearization under the assumption that all model parameters are known� 

has been discussed. In this section, a parameter adaptation law to be used together with the� 
previous control laws is derived. Taking the control law to be:� 

T = Mab + il(Y, 11) (7.176) 

where the hat denotes the adaptive parameter estimates, yields the error dynamics: _ 

M[v - abJ = [M - M]ab+ [il(Y, '1) - n(Y, lI)J (7.177) 



I;
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il [:M - M]ab+ [ft(v, 11) - n(v, 11)] = ~(ab, u, 11)8 (7.178)11 ~': 
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Ifthe equations of motion are linear in a parameter vector 0, the following parameterization 
can be applied: 

Here iJ = iJ - (J is the unknown parameter error vector and ~(ab, u, 11) is a known matrix 
function of measured signals usually referred to as the regressor matrix. Using the result 
an = j(11)V + J(11)abfrom (7.165), gives: 

MJ-1(11)[1i - an] = ~(ab,v,11)8 (7.179) 

Premultiplying this expression with J-T(11) and letting M*(11) = J-T(11)MJ-1(11) yields� 
the n-frame error dynamics: \': 

i:'.� 

·····1··'····.····~ 

M*(11)[1i - an] = J-T(11)~(ab, u, ry)O (7.180) 
I b-frame. 

Furthermore, let the commanded acceleration be chosen as the PD-type control: 

~! 

an = r,d - Kil - Kpii (7.181) 
.,.".x>,'~>,"···· -""w._,-"",,,.,' ''''''r'Mim "'Yrhi -"ji:i.;;;;;;~"," 

(7.171) 

(7.172) where K p > 0 and K d > O. Hence, the error dynamics can be expressed according to: 

s (Fossen M*(11)[i] + Kcti] + Kpii] = J-T(11)~(ab, v ,11)8 (7.182) 

Writing this expression in state-space form, yields: 
(7.173)� 

x= Ax + arT(11)~(ab, v, 11)0 (7.183)� 
ispartie

where x = [ii T, i]T]T and: 

(7.184)A = [_~p -~d]' B = [ (M*(:»-l ] 

Convergence of ii to zero can be proven by defining: 

(7.175) 
V(x,8, t) = x Tp(t)X + lJTr-1lJ (7.185)

i 

where P = P T > 0 and r = r T > O. Differentiating V with respect to time and substituting 
e known the error dynamics into the expression for Y, yields: 
with the 

Y = XT(p + PA+ A Tp)X+ 2(xTpBJ-T~ + OTr-l)O (7.186) 

where r = r" > 0 is a positive definite weighting matrix of appropriate dimension. This 17.176) 
suggests the parameter update law (assuming constant parameters-i.e., iJ = 0): 

(7.177) 

l 

......� 

iJ = -r~T(ab,v,ry)J-l(11)Y 

• -'� 
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where a new signal vector y defined as: 

y=Cx, (7.188) 

has been introduced. In order to prove that V ::; 0, let: 

C = [col cll] (7.189) 

where co > 0 and CI > 0 are two scalars to be interpreted later. Furthermore, let: 

PA+ATp=-Q; (7.190) 

where P and Q are defined according to (Asare and Wilson 1986): 

P = [ coM*Kd + clM*Kp coM * ] (7.191)COMo clM* 

_ [ 2coM*Kp 0 ] (7.192)Q - 0 2(cIM*Kd - COM*) 

Assume that there exists a constant {3 > 0 such that: 

Tp' = T [ CO:M*Kd -J: clM*Kp CO~*] < {3 T [ M* 0 
(7.193)x x x COM* clM* x - x 0 M* ]x 

Hence,P = P T > 0, CO > 0, CI > 0 and xTQx > XTpx implies that: 

V = xT(P - Q)x ::; 0 (7.194) 

if the following requirements are satisfied: 

(i) (cOKd + clKp)Cl > cgI 
(ii) 2COKp > j31 
(iii) 2(clKd - COl) > {31 

" 

.... 1 

Here {3 usually is taken to be a small positive constant while K p > 0 and Kd > 0 can be 
chosen as diagonal matrices. Consequently, convergence of ij and i, to zero is guaranteed 
by applying Barbalat s lemma (Barbiilat 1959); see Appendix A.2. It is also seen that the 
parameter vector iJ will be bounded but not necessarily convergent. 

Adaptive feedback linearization has been applied to the ship autopilot control problem of 
Example 7.7 by Fossen and Paulsen (1992). 

7.4 Integrator Backstepping 

Backstepping is a design methodology for construction of a feedback control law through 
a recursive construction of a control Lyapunov function (CLF). Nonlinear backstepping de
signs are strongly related to feedback linearization. While feedback linearization methods, 
however, cancel all nonlinearities in the system it will be shown that when applying the back
stepping design methodology more design flexibility is obtained. In particular the designer is 
given the possibility to exploit "good" nonlinearities while "bad" nonlinearities can be dom
inated e.g. by adding nonlinear damping. Hence, additional robustness is obtained, which is 
important in industrial control systems since cancellation ofall nonlinearities require precise 
models that are difficult to obtain in practise. 
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7.4.1 A Brief History of Backstepping 

The idea of integrator backstepping seems to have appeared simultaneously, often implicit, in 
the works of Koditschek (1987), Sonntag and Sussmann. (1988), Tsinias (1989), and Byrnes 
and Isidori (1989). Stabilization through an integrator (Kokotovic and Sussmann 1989) can 
be viewed as a special case of stabilization through an SPR transfer function which is a fre
quently used technique in the early adaptive designs (see Parks 1966, Landau 1979, Narendra 
and Annaswamy 1989). Extensions to nonlinear cascades by using passivity arguments have 
been done by Ortega (1991) and Byrnes et af. (1991). Integrator backstepping appeared as 
a recursive design technique in Saberi et al. (1990) and it was further developed by Kane1
lakopoulos et al. (1992). The relationship between backstepping and passivity has been estab
lished by Lozano et al. (1992). For the interested reader, a tutorial overview of backstepping 
is given by Kokotovic (1991). 

Adaptive and nonlinear backstepping designs are described in detail by Krstic et al. 
(1995). This includes methods for parameter adaptation, tuning functions, and modular de
signs for both full state feedback and output feedback (observer backstepping). 

In Sepulchre et al. (1997) extensions to forwarding, passivity, and cascaded designs are 
made. Also discussions on stability margins and optimality are included. 

In Krstic and Deng (1998) stochastic systems with focus on stochastic stability and regu
lation, stochastic adaptive backstepping designs and disturbance attenuation are presented. 

The focus of this section is practical designs with implementation considerations for me
chanical systems. This is done by exploiting the nonlinear system properties of mechanical 
systems like dissipativness (good damping), symmetry of the inertia matrix, and the skew
symmetric property of the Coriolis and centripetal matrix. In addition, emphasis is placed on 
control design with integral action. Two techniques for integral action in nonlinear systems 
using backstepping designs are discussed (see Loria et al. 1999, Fossen et al. 2001). 

Finally, this section is written in a vectorial setting in order to exploit the structural prop
erties of nonlinear MIMO systems. This technique is referred to as vectorial backstepping 
(see Fossen and Berge 1997, Fossen and Gravlen 1998). 

7.4.2 The Main Idea of Integrator Backstepping . 

Integrator backstepping is a recursive design technique using control Lyapunov functions 
(eLF). The CLF concept is a generalization of Lyapunov design results by e.g. Jacobson 
(1977) and Jurdjevic and Quinn (1978). 

Definition 7.3 (Control Lyapunov Function)� 
A smooth positive definite and radially unbounded/unction V : lRn -+ lR+ is called a control� 
Lyapunovfunction for (see Arstein 1983, Sontag 1983):� 

x=j(x,u) (7.195) 

where x E jRnand u E R" if: 

J~lr {:- (x)f(x, u) } < 0, Yx oF 0 (7.196) 

'.;;..'-'" 

J� 
"""!I!'''!lI!!''''''!l,!!,,'n:_ ~IIIII 
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u 

Figure 7.14: 2nd-order nonlinear system with one single nonlinearity /(XI) and a pure inte
graor at the input. 

The main idea of integrator backstepping can be demonstrated by considering a simple 
nonlinear scalar system: 

Xl = /(xd + X2 (7.197) 

X2 = U (7.198) 

Y = Xl (7.199) 

where Xl E JR, X2 E JR, y E JR and u E JR. The second equation represent a pure integrator; 
see Figure 7.14. 

Let the design objective be regulation of y(t) --+ 0 as t --+ 00. The only equilibrium 
point with y = 0 is (XI,X2) = (0,-/(0)) corresponding to Xl = /(0) + Xz = O. The 
design objective is to render the equilibrium point GAS or GES. Since the nonlinear system 
(7. 197}--{7.l98) consists of two states Xl and X2, this will be a recursive design in 2 steps. 
Equations (7. I97}-{7.198) are therefore treated as two cascaded systems, each with a single Bc.:c.
input and output. The recursive design starts with the system Xl and continues with Xz. A 'I,]change of coordinates: 

T1IeK'l 
z = ¢(x) (7.200)1 =:15".dIe. 

~is introduced during the recursive design process where x =[XI,X2)T, Z =[Zl' zz)T is a new 
.... Cstate vector, and ¢( x) :JRn --+ jRn is a transformation to be interpreted later. The backstepping 

transformation is a global diffeomorphism-i.e., a mapping with smooth functions ¢(x) and 
¢-I(X). Hence, the existence of an inverse transformation: 

.ill' 
(7.201 ) j..,.is guaranteed. 

ec.a 
11:.....Step 1� 

For the first system (7.197) the state X2 is chosen as a virtual control input while it is recalled� 
that our design objective is to regulate the output y = Xl to zero. Hence, the first backstepping ......� 
variable is chosen as:� 

(7.202) 
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u X2 Z2 Zl=X1 

Figure 7.15: Stabilization of the xI-system by means ofthe stabilizing function al = al (xd. •Note that 01 (xd when integrated cancels out the feedback term -al (xI). 

The virtual control is defined as: 

X2 := al + Z2 (7.203) 

where 

al = stabilizing function 
Z2 = new state variable 

Hence, the Zl-system can be written: 

,j
ZI = !(ZI) + al + Z2 (7.204) 

The new state variable Z2 will not be used in the first step, but its presence is important since 
Z2 is needed to couple the zl-system to the next system, that is the z2-system to be considered 
in the next step. Moreover, integrator backstepping implies that the coordinates during the 
recursive design is changed from (Xl, X2) to (ZI, Z2). 

A eLF for the ZI-system is: 

1 2
VI -zi (7.205)

2 

VI = ZIZI 

= zl(f(zd + ad + ZIZ2 (7.206) 

We now tum our attention to the design of the stabilizing function al which will provide 
the necessary feedback for the zl-system. For instance, choosing the stabilizing function as 
(feedback linearizing control): 

al = - !(ZI) - klzi (7.207) 

where kl > 0 is the feedback gain, yields: 

VI
• = -klz

2
l + ZlZ2 (7.208) 

~!'.~
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and: 
(7.209) 

A block diagram showing the stabilizing function and the new state variable is shown in 
Figure 7.15. Hence, if Z2 = 0 then the zl-system is stabilized. We now tum our attention to 
the z2-system. 

Step 2 

The z2-dynamics is computed by time differentiation of (7.203): 

Z2� = 3;2 - al 

= U-al (7.210) 

A eLF for the z2-system is: 

1 2V2� = VI + '2Z2 (7.211) 

V2� = VI + Z2Z2 If /(%1) = -~ 

=� (-klzi + ZlZ2) + Z2Z2 

=� -klzi + Z2(ZI + 2'2) "j',I= -klzi + Z2(U - al + Zl)� (7.212) 
I, I 

~._ 

--~~ 

& 

as" 

Since our system has relative degree 2, the control input u appears in the second step. Hence, w&-;:a. 

choosing the control law as: :;.
(7.213) 

with k2 > 0, yields:� ... " 

lk h d 
.."� (7.214) 

Implementation Aspects 

When implementing the control law (7.213) it is important to avoid expressions involving the 
time derivatives of the states. For this simple system only al must be evaluated. This can be 
done by time differentiation ofal (Xl) along the trajectory ofXl. Hence, al can be computed 
without using the state derivatives: 

(7.215) 

The final expression for the control law is then: • 
(7.216) L 

't m~
 

1111 
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(7.209) 

Ie is shown in 
I~ attention to 

• 

u 

lu=aCZI - k2Z2 

X2 Z2 ZI=XI 

(7.210) 

(7.211) 
Figure 7.16: Stabilization of the X2-Systemby means of the control input u = u(al' Zl, Z2). 

~ .. (7.212) 

(7.213) 

(7.214) 

~. 

~.. 

.-

:ad step. Hence, 

• 

t 
<, 

If f(xI) = -Xl (linear theory), it is seen that: 

u = - (-1 + kl ) (-Xl + X2) - Xl - k2(X2 - Xl + klxd 

= - (2+ kika  kl - k2 ) Xl - (kl + k2 - 1)x2 
, • J '-v-" 

K p Kd 

(7.217) 

(7.218) 

which is a standard PD-controllaw. In general, the expression for u is, however, a nonlinear 
feedback control law depending on the nonlinear function f (Xl)' 

Backstepping Coordinate Transformation 

The backstepping coordinate transformation z = 4J(x) takes the form: 

[ ~~ ] = [ ~~ + f(Xl) + klXl ] 

while the inverse transformation x = 4J-1 (z) is: 

(7.216) 

5 involving the 
d, This can be 
II be computed 

(7.215) 

(7.219) 

(7.220)[ 
Zl ] 
Z2] + [~1 • 

--..-.
skew-symmetrical matrix 

l ~l ] = - [kl 0] [Zl 
Z2 Ok2 Z2--...-

diagonal matrix 

[ ~~ ] = [ ~~ - f(zd  klzl ] 

The Final Check 

If you have performed the backstepping design procedure correctly the dynamics of the 
closed-loop system in (Zl, Z2) coordinates can always be written as the sum of a diagonal 
and skew-symmetric matrix times the state vector. This can be seen by writing the resulting 
dynamics in the form: 

- . _.' 

.---r....
~~~II 
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or equivalently: 

= -Kz+Sz (7.221) 

S = _ST = [0 (7.222)1]
-1 0 

where S satisfies zTSz = 0, Vz. In some cases the diagonal matrix will be a function of the 
state, that is K(z) >0. This is the case when nonlinear damping is added or when some of 
the nonlinearities not are cancelled by the controller. 

Investigation of Stability 

It is also seen that: 
rip1

lt2 = -zTz (7.223) :.2 

\12 = zT(-Kz + Sz) bepofa.~ 

10 rl I fCIDCl= -zTKz (7.224) 
~ 

Hence, Lyapunov's direct method for autonomous systems ensures that the equilibrium point 
(Xl, X2) = (0, - j(O)) is GAS. In fact, this system will also be GES since it can be shown 
that the state vector x decays exponentially to zero by using Theorem A.3, that is: 

IIz(t)lb :5e-,8(t-to) Ilz(to)112 (7.225) 1
where (3 = Amin (K) > 0 is the convergence tate. 

A generalization to single-input single-output (SISO) mass-damper-spring systems is 
done in Section 7.4.3 while extensions to MIMO control is made in Section 7.4.6. 

Backstepping versus Feedback Linearization 

The backstepping control law ofthe previous section is in fact equal to a feedback linearizing il 
controller since the nonlinear function j(XI) is perfectly compensated for by choosing the� 
stabilizing function as: -,�c(7.226) • 
The disadvantage with this approach is that a perfect model is required This is impossible in 
practise. Consequently, an approach of cancelling all the nonlinearities may be sensitive for 
modeling errors. 

One of the nice features of backstepping is that the stabilizing functions can be modified ..Air .. 
to exploit so-called "good" nonlinearities. For instance, assume that: 

.; 
(7.227) 

i; = 
where ao,al and a2 are assumed to be unknown positive constants. Since both aoxland 
a2 IXII Xl tend to damp out the motion these two expressions should be exploited in the con
trol design and therefore not cancelled out. On the contrary, the destabilizing term alxI must 
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(7.222) 
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Figure 7.17: Domination ofdestabilizing terms by adding nonlinear damping. 
(7.223) 

~. be perfectly compensated for or dominated by adding a nonlinear damping term proportional 
tox1 (rernember that zj = Xl)'(7.224) 

Nonlinear damping suggests the following candidate for the stabilizing function: 

al= -klzl -lI:lZl3 

~ --.....
linear nonlinear 

(7.225) .~ damping damping 

tg systems is where kl > 0 and 11:1 > 0; see Figure 7.17. Hence: !. 
.6. 

Zt = j(zd + (al + Z2) 

= -aOZl - alZ~ - a21zl1 Zl - (kl + II:lZ~)Zl + Z2 

:k linearizing = -(ao+a2Izll+kl)Zl- alzi -lI:lZ~+Z2 (7.229) 
'-v----' "'""-'cboosing the 
gooddamping bad damping 

Consider the eLF:(7.226) 
1 2impossible in (7.230)\Jl = 2" Zl 

sensitive for . 234\Jl = -(aD + a21 zl1 + kdzl - alzl - II:lZl + ZlZ2 (7.231) 

be modified In the next step it is seen that: 

1 2 
V2 = \Jl + 2" Z2(7.227) 
• 2 

V2 = -( ao + a21zl1 +kdzl- alZ3
l -II:IZt + Z2(Zl + u - 0:1)

oth aoxland '-..,.-; '-..-' 
energy dissipation d in the con energy dissipation! 

malxi must generation 

---".".==""",. 
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From this expression it can be concluded that the good damping terms contribute to the energy� 
dissipation. The bad damping term, however, must be dominated by the nonlinear damping� 
term. Choosing:� 

(7.232) 

finally yields: 
(7.233) 

This expression can be rewritten by completing the squares. Consider the expression: 

(7.234) 

~ 

( 
)22 1 1 

-xy - I\;IY = - --x+JKIy +_X2 (7.235)2JfZl 41\;1 

Equation (7.233) with x = alZI and y = z~, yields: 

(7.236) 

Since: 

- (2~ZI +JK1z~)2 < 0 

-a21z11 < 0 (7.237) 

it then follows that: 2) ,. a1 2 2V2 $ - (ao + k 1 - - ZI - k2Z2 (7.238) 
41\;1 

Hence, by choosing the controller gains according to: 

1\;1 > 0 (7.239) 
2 

_1 -aok1 > 
a

(7.240) 
41\;1 

k2 > 0 (7.241) 

our design goal to render V2 < 0 is satisfied. Notice that the controller (7.232) with (7.228)� 
is implemented without using the unknown parameters ao,ai, and a2. Hence, a robust non�
linear controller is derived by using backstepping. This result is more attractive than the one� 
obtained from feedback linearization which needs perfect model cancellation.� 

7.4.3 Backstepping of SISO Mass-Damper-Spring Systems 

The results of Section 7.4.2 can be generalized to the following class of single-input single�
output (SISO) mechanical systems:� 

7.4 Integnl 

iW.JQ 

where :r is tb 
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to the energy� 
ear damping� 

(7.232) 

't 
(7.233) m 

X 
ion: 

(7.234)� 
Figure 7.18: Nonlinearmass-damper-spring system.� 

(7.235) 

j; = v (7.242)� 

mil + d(v)v + k(x)x = r (7.243)� 

Y = x (7.244)� 

2zi (7.236) 

where x is the position, v is the velocity and: 

m = mass (positive)� 
d(v)v = nonlinear damping force (non-negative)� '\ 
k(x)x = nonlinear spring force (non-negative) 

(7.237) The nonlinear mass-damper-spring system is shown in Figure 7.18. 

r! Nonlinear Tracking Control 
(7.238) 

Backstepping of the mass-damper-spring can be performed by choosing the output: 

~ e = Y -Yd (7.245) 

(7.239) where e is the tracking error and Yd(t) E CT is an T times differentiable (smooth) and bounded 
reference trajectory; see Section 5.1. Regulation of Y = x to zero is obtained by choosing 

(7.240) 
ild = Yd = O. Time differentiation of e yields the following model: 

(7.241) 

:? I with (7.228) e = v - Yd (7.246) 

'. a robust non mil = r - d(v)v - k(x)x (7.247) 
ve than the one 

The backstepping control law solving this problem is derived in two recursive steps similar 
to the integrator backstepping example in Section 7.4.2. 

Step 1: 

e-input single- Let Zl = e = Y - Yd, such that: 
i l = V - Yd (7.248) 

lIIIii 

~. 

--- ..._~-_ .._. _.~ 

~ 
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Taking v as virtual control: ResnItiJII Error 
v = 0:'1 + Z2 (7.249) 

The resulting ern 
where Z2 is a new state variable to be interpreted later, yields: 

12 .2
i 1 = 0:'1 + Z2 - Yd (7.250)� 

Next, the stabilizing function 0:'1 is chosen as:� 

0:'1 = Yd - [k1 + n1(zl)]Zl (7.251) 

where k1 > 0 is a feedback gain and n1(ZI) ~ 0 is a nonlinear damping term e.g. a nonlinear I.nondecreasing function nl (Zl) = K1 IZ11n1 with n1 > 0 and K1 ~ O. This yields:� .. ~ 

i 1 = -[k1 + n1(zl)]ZI + Z2 (7.252)� 

A CLF for Zl is:� 

1 2� (7.253)Vt = '2Z1 

lit = Z1 i 1 

= -[k1 + n1(Zl)]Z~ + ZlZ2 (7.254) 

Step 2: 

The second step stabilizes the z2-dynamics. Moreover, from (7.249) it is seen that: 

mi2� = mil - rnQ-1 

= r - d(v)v - k(x)x - m Q1 (7.255) 

Let V2 be the second CLF which is chosen to reflect the kinetic energy ~mv2 of the system.� 
However, it makes sense to replace the velocity v with Z2 in order to solve the trajectory� 
tracking control problem. This is usually referred to as "pseudo kinetic energy":� 

I
!i

1 2
V2 = VI + '2mZ2, m> 0� (7.256) 

I:� ..V2 = \\ + mz2 i 2 -= -[k1 + n1(zl)]Zr + ZlZ2 + z2[r - d(v)v - k(x)x - rnQ-1] (7.257) 

Since the input r appears in V2 , a value for r can be prescribed such that V2 becomes negative N • T PD-U 
definite. For instance: 

The~ 

1. 
~ WIiIing (7.262)where k2 > 0 and n2(z2) = K21z21n2 ~ 0 can be specified by the designer. This yields: 

•� 2 2
V2 = -[k1 + n1(Zl)]Zl - [k2 + n2(Z2)]Z2 (7.259) 

When implementing the control law, Q1 is computed by taking the time derivative of0:'1 along 
the trajectories of u« and Zl, see (7.251). Hence: 

• 00:'1 .. 00:'1 . •• 00:'1 ( .)
0:'1 = -.Yd - -Zl = Yd - - V - Yd (7.260)

0Yd OZl OZl 

in order to avoid the state derivatives in the control law. Notice that the desired state Ydis 
assumed to be smooth such that Yd and Yd exist. 

ill 
~''''IIIIIIIIIIII\m\\\\\\\\\\\\\\\\~1I 
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~,. 

f 
t 

(7.249) 
Resulting Error Dynamics 

The resulting error dynamics is written: 

~ 

(7.251) 

(7.250) 

• 

[ 
1 0 o m 

] [ Zl 
Z2 

] 
= 

tt 
-

[ kl + nl (zd
0 

0 ] [ Zl] [0
k2+ n2(z2) Z2 + -1 

1] [
0 

Zl 
Z2 

] 

rID e.g. a nonlinear 
yields: 

Mz = -K(z)z + Sz (7.261) 

(7.252) 
where z = [Zl, Z2]T and 

(7.253) 

(7.254) 

M = 
K(z) = 

S= 

diag{l,m} 

-diag{kl+nl(zl),k2+n2(z2)} 

[~1 ~] 

,een that: 

(7.255) 

n·2 of the system. 
»Ive the trajectory -, 
:rgy": Zl = x 

Hence, the equilibrium point (Zl' Z2) = (0,0) is GES. This can be seen from V2(z) = 
!zTMz which after time differentiation yields V2 (z) = -zTKz since zTSz =0, 'Vz. Notice 
that kinetic energy has been applied in the Lyapunov analysis to achieve this. 

Set-Point Regulation 

Set-point regulation is obtained by choosing lid = Yd = O. For simplicity let nl (Zl) = 
n2 ( Z2) = 0 such that: 

.mal] 

~;. 

(7.257) 

(7.256) 

and 
T = Tl'l.(}l + d(v)v + k(x)x 

01 = -klzl 

Zl - k2z2 (7.262) 

becomes negative Nonlinear PD-Control 

~ ....-. 
" 

(7.258) 

The backstepping control law (7.262) can also be viewed as a nonlinear PD-controllaw: 

u = -Kp(x)x  Kd(v)v (7.263) 

~. This yields: by writing (7.262) as: 

(7.259) ~ 

r ... e of'o, along 

(7.260) 

desired state Ydis 

Hence: 

u = 
= 

[d(v)  mkl]v + [k(x) - l]x  k2(v + klx) 

[d(v)  mk l - k2]v + [k(x) - 1  klk2]x 

Kp(x) = 

Kd(v) 

kska + 1 - k(x) 

mk, + k2 - d(v) 

(7.264) 

(7.265) 

(7.266) 

..... _... 
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Nonlinear PID-Control� Cae I: Dina 

The nonlinear PD-controUer (7.263) can be extended to include integral action by using con The backing c 
stant parameter adaptation or by augmenting an additional integrator to the plant. The ttaekingerror. 
following two methods for "backstepping with integral action" will be presented: 

1. Constant parameter adaptation: An unknown constant (or slowly-varying) disturbance with: 
is added to the dynamic model. This constant or bias is estimated on-line by using 
adaptive control. The resulting system with parameter estimator can be shown to be 
UGAS for the case of regulation and trajectory tracking (Fossen et al. 2001). J 

wIIrn =2 is a2. Integrator augmentation: An additional integrator is augmented on the right-side of 
OIOtw..g thes

the integrator chain in order to obtain zero steady-state errors. The resulting system is 
proven to be GES. 

7.4.4� Integral Action by Constant Parameter Adaptation 
neE. s -r 

The constant parameter adaptation technique is based on Fossen et al. (200 I). For simplicity a 
mass-damper-spring system is considered. Hence, adaptive backstepping results in a control 
law of PID-type since a 2nd-order mechanical system is used. Two representations of the 
integral controller are discussed depending on which state equation the disturbance w enters. 
These are: o -f ~C 

1. Integral action based on "matching" between the disturbance and the control input: 

X=V (7.2671~! 
tni: +d(v)v + k(x)x = T + w (7.268) 'i,l 

w= 0 (7.269)'� ____ _ J.• 
.....-.; .. = •. 

In this case the control input T can compensate for the unknown parameter w directly 
(both terms are in the same state equation). 

2. Integral action based on "extended matching" between the disturbance and the control� 
input:� 

.iIcre it is 
X=v+w� (7.270) 

mi: + d(v)v + k(x)x = T (7.271) 

w=o (7.272) 

In the extended matching case there is a structural obstacle since the control law cannot be� 
used to compensate for the unknown term w directly. This is due the fact that wand T� 

does not enter the same state equation. However, this problem can be solved by adaptive� 
backstepping.� 
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Case 1: Direct "matching" of the disturbance and the control input 

The tracking control law for the "matching" case can be designed can by considering the� 
tracking error:� 

Zl = X-Xd (7.273)� 

with: 
i l� = X - Xd 

=V - Xd (7.274) 
= (0:1 + Z2) - Vd 

where Z2 is a new state variable and v = 0:1 + Z2 is viewed as the virtual control fOI" Zl. 
Choosing the stabilizing control: 

01 = Xd - k1 z1 (7.275) 

yields: 
i 1 = -k1Z1 + Z2 (7.276) 

The definition Z2 := v - 01 implies that: 

Z2 = 1; - Id + k 1(v - Xd)� (7.277) 

mZ2 = T - d(v)v - k(x)x + w - mId + mk1(v - Xd) (7.278) 

Consider the CLF: 

I 2 1_2VI = 2" Zl + 2p w , P > 0 (7.279) 

. . 1 _ .:.
Vi = ZlZl + -ww 

p 

2� 1 - ~ 

= ZlZ2 - k1Zl + -ww� (7.280) 
P 

where w=w- w is the parameter estimation enol". Next, consider the CLF: 

1� 2 
V2 =VI + 2" m Z2� (7.281) 

V2 = VI + z2(mi2) 
2� 1 . =ZlZ2 - k1z1 + -ww 

P 

+ Z2[r - d(v)v - k(x)x + w - mXd + mk1(v - Xd)] (7.282) 

where it is noticed that .JJ = -zt. Choosing the control law as: 

T = d(V)O:l + k(x)x - w+ mid - mk1(v - Xd) - Zl - k2z2 (7.283), 

where 0:1 = v - Z2, yields: 

• 2 2V2 = ~klZ1 - [k2 + d(V)]Z2 + w(1pW.- Z2 ) :; 0 (7.284) 

Choosing the update law as: 

~-..-
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yields: 

finally yields: 
. z z

Vz = -klzl - [kz + d(v)]zz (7.286) 

The error dynamics takes the form: 

(7.287)[ ~~ ] = [ __k{ -k ~ d(v) ] [ ;~ ] + [ ~I ] Wz 

tt = -p [0 -I] [ ;~ ] (7.288) 

~ 
z= h(z,t) + bw (7.289) 

tt = -pbT ( 8W~:, t)) T (7.290) 

Notice that the dissipative term d(v) = d(zz + al) = d(zz - klzl + Xd(t)) > 0, "Iv has 
not been "cancelled out" in order to exploit this as good damping in the error dynamics. 
The price for exploiting the so-called "good nonlinearities" in the design is that the error 
dynamics becomes nonautonomous. Since the feedback gains are assumed to be positive, 
that is k l > 0 and kz > 0, P > 0, b = [0, _I]T, and b Tb = 1 > 0, Theorem A.S with 
W(z) = ~z T z guarantees that the non-autonomous systems (7.287}--(7.288) is UGAS. 

Notice that if a feedback linearizing controller is applied instead of (7.283) (replacing the 
damping term dlule , withd(v)v): 

(7.291) III 
the error dynamic becomes autonomous, that is: a-4 

[-k l 1] [Zl] [0]_Zl] (7.292)[ Zz = -1 -kz Zz + -1 w o 
In this case, Krasovskii-Lasalle 50 invariant set theorem (Theorem A.2) can be used to prove 
GAS. .. 

......� 

Case 2: "Extended matching" of the disturbance and the control input 

In the extended matching case, backstepping is applied to overcome the structural obstacle 
(see Krstic et al. 1995). Let Zl = x - Xd denote the tracking error. Consider: 

2'1 = x- Xd 
= V+W -Xd (7.293) 
:= (al + zz) + W - Xd 

where Zz is a new state variable and v = al + Zz is viewed as the virtual control for Zl' 
Choosing the stabilizing control: 

(7.294) 
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yields: 

ZI = -k1z1 - W + Z2 

The definition Z2 = v - al implies that: 

Z2 = V - Vd + k 1(v - Vd) + k 1(w - w) + ill 

Hence: 

1 2 1_2Vi = 2ZI + 2pw , p > 0 

. . 1 _ .:. 
VI = Z1Z1 + -ww 

p 

" = Z1 Z2 - klZI2 + w - (1pW~ - ZI) 
The choice ofupdate law for wis postponed to the next step. Moreover: 

1 2 
V2 = VI + 2mZ2� 

V2 = VI + Z2(mZ2)� 

2=21Z2 - k1z1 +w(1pW.- ZI - mk1z2) 
+ Z2[T - d(v)v - k(x)x - mid + mk1(v - Xd) + mk1w+ mill] 

Choosing the parameter update law and control law as: 

tt = P(ZI + mk1z2) 

and 

T� mid + d(v)al + k(x)x - mk1(v - Xd) - mk1w- mill - ZI 

mid + d(v)al + k(x)x 

-mk1(v - Xd) - mk1w- (mp + I)ZI - tmpk, + k2)Z2 

271 

(7.295) 

(7.296) 

(7.297) 

(7.298) 

(7.299) 

(7.300) 

(7.301) 

I control for ZI. 
where al = v - Z2, yields: 

• 2 2
(7.294)� V2 = -k1z1 - [k2 + d(V)]Z2 (7.303) 

~. : 
1.':-', 
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The error dynamics takes the form: 

[ ~l 
Z2 

] = [ -k1 

-1 
1 

-k2 - d(v) ] [ ~~ ] + [ _~lkl ] i» (7.304) 
i 

JJ = -p [ -1 -rmk, ] [ 

~ 
Z = h(z, t) + bi» 

JJ = _pbT (8~~,t))T 

~~ ] (7.305) 

(7.306) 

(7.307) 

: 

Notice that the dissipative damping term d(v) > 0, \:Iv has not been "cancelled out" in the 
error dynamics. This implies that the resulting error dynamics is non-autonomous. The 
feedback gains are assumed to satisfy k1 > 0 and k2 > o. Since p > 0, b = [-1, -mk1]T 
and b Tb = 1 + m2kr > O. Theorem A.5 with W(z) = ~z Tz guarantees that the non
autonomous systems (7.304}--(7.305) is UGAS. 

The difference between these two cases are that the extended matching case use both Zl 

and Z2 to compute 'Ii; while the direct matching case only uses Z2, that is the last zi-variable 
(i = 1, ... ,n). Hence, it seems attractive to formulate a SISO backstepping control law with 
integral action using direct matching. 

N.-......N ' 

: - -

7.4.5 Integrator Augmentation Technique 

Consider the 2nd-order mass-damper-spring system: 

:,:. 

:i; 

mv+d(v)v+k(x)x 

Y 

= 
= 

= 

v 

r+w 

x 

(7.308) 

(7.309) 

(7.310) 

~"'i!~1 
~-

s-p I: 

where w is a constant unknown disturbance. Let e denote the tracking error: 

e = Y - Yd (7.311) 

where Yd is the desired output. Hence: a .. 2 6r'~ 

e 
mv+d(v)v+k(x)x 

= 

= 
v - v« 
r+w 

(7.312) 

(7.313) 

Nonlinear PD 

If w = 0, backstepping results in a nonlinear control law of PD-type similar to the result in 
Section 7.4.3. However, by augmenting the plant with an additional integrator at the right 
end of the integrator chain, nonlinear Pill-control can be obtained. 

Ed 

. ~----

.£9� 
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Figure 7.19: Augmentation of an additional integrator. 

Nonlinear PID-Control 

Augmentation of an additional integrator e[ = e to the 2nd-order plant (7.312}-(7.3 13), 
yields: 

e[ = e (7.314) 

e = v-ild (7.315); 

mil + d(v)v + k(x)x = T + W (7.316) 

For simplicity let us first assume that w = O. Hence, backstepping with Zl = et results in 
three steps: 

Step 1: 

Zl� = e 

= (tl + Z2 (7.317) 

Choosing the stabilizing function oi = -klzl, yields: 

Zl = -klz[ + Z2� (7.318) 

Hence: 

Vl = 1 2
-Zl
2 

(7.319) 

~i = ZlZl 

~.-klZi +ZlZ2 . (7.320) 

!IIIII 
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Step 2: 

Z2� = e- al 
=� v - Yd - al 
=� (0:2 + Z3) - Yd - al (7.321) [: 

Hence: 

1 2V2� (7.322)= VI + 2Z2� 

k 2 •�V2 - lZl + ZlZ2 + Z2 Z2 

= -klZ~ + Z2(Zl + 0:2 + Z3 - Yd - al) (7.323) 

Choosing the stabilizing function 0:2 = al + Yd - k2Z2 - Zl, yields: 

(7.324) 

(7.325) 

Step 3: 

mZ3 = mil - ma2 

=� T+w-d(v)v-k(x)x- m a2 

=� T - d(V)0:2 - d(V)Z3 - k(x)x - ma2 (7.326) 

[:Let: 

,.....1� 2
V3� = V2 + 2mz3 (7.327) 

.~, 

.,__ 0V3� = -klZ~ - k2Z~ + Z3(Z2 + mZ3) (7.328)� 

= -klZ~ - k2Z~ + Z3(Z2 + T - d(V)0:2 - d(V)Z3 - k(x)x - m(2)� 

Choosing the control law as: .� .
5 

......L,~::~MJm" ";§.A$n.x~¥'·:t'~ 

(7.329)� n.e~.. ... 
_!~ 

yields:� ow.6£_ 
(7.330) 

and: 

(7.331) 
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Error Dynamics 

For the undisturbed case w = 0, the error dynamics takes the form: 

[1 0 0] [ ~l [ ».� ] [ Zl ] ] o 00 0� Z2(7.321)� 01 Z2 =- k 2 0 
o 0 m Z3 0 o d(v) + k 3 Z3 

0 1 0] [ Zl ] + -1 0 1 Z2 (7.332) 

(7.322)� 
[ o -1 0 Z3 

Hence, the equilibrium point (Z1' Z2, Z3) = (0,0,0) is GES and therefore the tracking error 
e converges to zero. If w = constant, the error dynamics takes the form: (7.323) 

1 

[1 0 0] [ ~1 [ o 0 [ ]] k� ] Z1o 1 0 Z2 = - 0 k 2 0 Z2 

o 0 m Z3 0 o d(v) + k 3 Z3(7.324) " 

".I', 

+ [~1 ~ ~] [~~ ]+ [ ~ ] w(7.325) o -1 0 Z3 1 

Hence, in steady-state (2: = 0 and d(v) = 0) such that: ". 
Z2 = k 1z1 =e - a1 = e + k 1z1 =? e =0 (7.333) 

The equilibrium point for w = constant is: 

(7.326) [k1 -1 0] -1 0] =� 1 [1][Zl]Z2 = 1 ka -lOw k1 w 
[ 1 k 1 k1k2k3+k1+k31+klk2Z3 0 3

! (7.334) 
Therefore it can be concluded that for the case w = constant the equilibrium point (Zl, Z2, Z3)(7.327) 
is GES but (Zl, Z2, Z3) will converge to the constant non-zero values given by (7.334) even '-. (7.328)� though e = O. This shows that augmentation of an additional integrator when performing 
backstepping leads to zero steady-state errors in the case of regulation under the assumption z- m02) 
ofa constant disturbance w. 

t: 
"I~ 

Implementations Considerations 

The integrator augmentation technique is particular interesting for implementation on me
chanical systems since the integral term is computed by integrating Zl = Y - Yd which 
for a mechanical system is the position tracking error. This corresponds to applying a PID
controller on a 2nd-order system. On the contrary, when using constantparameter adaptation 

• the integral term will be the integral of a linear combination of the state tracking errors, see 
~ 

(7.330) 
(7.301). For a mechanical system this implies that both the position and velocity tracking 

""'_c_,., 

errors are used to provide integral action. In many cases it is difficult to measure the velocity 
with the same accuracy as the position. This implies that the adaptive method will be more 

(7.331) 
sensitive to measurement noise than the integrator augmentation technique. 

~- -', 

"III". 



"
I

i

.~~",,~p/-=-----~~~-"'-------------------------~
 .-II� 
~ 

7A ..... 

7.4.6 Backstepping ofMIMO Mass-Damper-Spring Systems� .. 276 Control Methods for Marine Vessels 

In this section vectorial backstepping is applied to mechanical systems and ship control (see 
Fossen and Berge 1997, Fossen and Grevlen 1998)~ Consider a MIMO nonlinear mass
damper-spring system in the form: 

x = v (7.335) 

Mv + D(v)v + K(x)x = Bu (7.336) .. 6c • 

where x ERn is the position vector, v ERn is the velocity vector, u ERr (r ~ n) is the con
trol input vector, D(v) ERnxn represents a matrix of damping coefficients, K(x) ERnxn .1is a matrix of spring coefficients, M ERnxn is the inertia matrix, and B ERnxr is the input 

~ matrix. Hence, backstepping can be performed in two vectorial steps. 
..~ 
" 

Step 1: 

For the first system (7.335) consider v as the control and let: 

v = s + 01 (7.337) 

where: ......New state vector used for tracking control 
Stabilizing vector field to be defined later 

Here v = v - v d and x = x - Xd are the velocity and position tracking errors, respectively, 
and A > 0 is a diagonal matrix of positive elements. The definition of the s-vector is mo
tivated by Slotine and Li (1987) who introduced s as a measure of tracking when designing 
their adaptive robot controller, It turns out that this transformation has the nice property of 
transforming the nonlinear state-space model to the form: 

Ms + D(v)s = Mv + D(v)v - MV - D(v)vr r 
..� rBu - MVr - D(v)v - K(x)x (7.338)r 

,
where v; can be interpreted as a "virtual" reference trajectory:� c 

vr� = V - S 

= Vd -Ax (7.339) 

The position error dynamics of Step I can therefore be written: 

X V-Vd 

=� S+OI-Vd (OI=Vr=V-s) 
~T 

= -AX+s (7~340) ---
I~.I

Hence: 

(7.341) 

-�
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and 

• T'
VI = X KpX 

= xTKp(-Ax + s) 
-TK"::'=� -x pLLA+STK-pX (7.342) 

Step 2: 

In the second step we choose a CLF motivated by "pseudo" kinetic energy, that is: 

V2= -
1 

s 
T

Ms+Vlo M=MT >0� (7.343)
2 

. T . 
V2� = S Ms+VI 

= ST (Bu - MV r - D(v)v - K(x)x - D(v)s) - xTKpAx + sTK px r 

=� sT(Bu - MVr - Dtvjv, - K(x)x - D(v)s + Kpx) - xTKpAX (7.344) 

Hence, we are ready to propose a control law e.g.: 

Bu = MVr + D(v)v, + K(x)x - Kpx - KdS, x, >0 (7.345) 
.·",.<ilukf WfikW'C' r (. t M' . t Yf1tn W"',.~, ":,,,,dfif rd'·';.x'it'&=/~:::::"" '""7 ill . c; 

which results in: 
V2= -sT(D(v) + Kd)s - xTKpAx 

Since V2 is positive definite and V2 is negative definite it follows from Theorem A.3 that 
the equilibrium point (x, s) = (0,0) is GES. Moreover, convergence of s ---> 0 and x --+ 0 
implies that v --+ O. When implementing the control law (7.345) it is assumed that B has an 
inverse: 

Bt = BT(BBT)-l� (7.346) 

or simply B-1 for the square case r = n. 

Nonlinear Mass-Damper-Spring System with Actuator Dynamics 

Consider the mass-damper-spring system of the previous section with actuator dynamics: 

x v (7.347)� 

Mv + D(v)v + K(x)x Bu (7.348)� 

Tu+u u c (7.349)� 

where T ElRr x r is a diagonal matrix of actuator time constants and u., ElRr is a vector of 
actuator commands. Instead ofchoosing the controller u in Step 2, u., is treated as the control 
input to be specified in Step 3. Recall that: 

V2= S T(Bu - MVr - D(v)v - K(x)x - D(v)s + Kpx) - xTKpAx (7.350)r 
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Step 3: 

Let Bu be the virtual control vector of Step 3. Hence: 

Bu = Z+02 (7.351) 

02 = MVr + D(v)v + K(x)x - Kpx - KdS (7.352)r 

where z is a new state variable. This results in: 

(7.353) 

Choosing: 

(7.354) 

V3� = zT Kz+V2 

= ZT(BiI - (2) + STZ - ST (D(v) + Kd)s - xTKpAx 

= zT(BT-1(uc - u) - O2 + s) - ST (D(v) + Kd)s - xTKpAx (7.355) 

The control law: 

(7.356) 

yields 
~ = -zTKzz - ST (D(v) + Kd)s - xTKpAX (7.357) 

Again GES is guaranteed. The main drawback of including the actuator dynamic is that 02 
must be computed. The expression for 02 will not depend of the state derivatives since: 

n� OOt 2 • 

02� = L o( ) (state), 
i=l state i 

•
(state), "system equation depending on the states only" 

Example 7.8 (MIMO Backstepping of Robots)� 
This example is based on the results ofFossen and Berge (1997). Consider the nonlinear� 
robot model (Sciavicco and Siciliano 1996):� 

it = v 

M(q)v + C(q, v)v + g'(q) T (7.359) 

where M(q) = M T (q] >0 is the inertia matrix, C(q, v) is a matrix of Coriolis and cen
tripetal terms defined in terms ofthe Christoffel symbols and g( q) is a vector ofgravitational 
forces and moments. q ERn is a vector ofjoint angles, v ERn is a vector ofjoint angular 

7.......� 

I 

s.p 1: D4 

"I 
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(7.351)I. 

(7.352) 

(7.353) 

(7.354) 

f 
Figure 7.20: Robot manipulator. 

KpAi (7.355) 

t, . 
rates and TERn is a vector 0/ control torques. Vectorial backstepping 0/a robot manipu
lator can be done in two steps: 

(7.356) 
~, Step 1: Define the virtual control vector: 
r 

q = v = s + 01 (7.360) 
(7.357)� 

where S is a new state variable and 01 is stabilizing/unction which can be chosen as:� 
amic is that 02� 
uves since: Q1= vn V r = vd-Aq (7.361)� 
~ 

where A > 0 is a diagonal design matrix and q = q - 'ld is the tracking error. Combining 
(7.360) and (7.361) yields: 

V= -Aq+s (7.362) 

whereq = v.,J, 

Step 2: Consider the CLF: 

r the nonlinear V = ~ (sTM(q)s + q TKqq) >0, 'Vs # O,ii# 0 (7.363) 

. TIT- T
V = s M(q)s+2's M(q)s + q Kqv 

(7.358) 

(7.359) = sTM(q)S+~STM(q)s_qT KqAq+qTKqs (7.364) 

Equations (7.360) and (7.361) can be combined to give: 

riolis and cen
M(q)s = M(q)v - M(q)aof,gravitational� 

ifjoint angular = T - M(q)vr-C(q, v)vr-g(q) - C(q, v)s (7.365)� 

-------' 
~ 

,~I!IiJi",; 
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Substituting (7.365) into (7.364) yields: 

v = ST (T-M(q)vr-C(q,v)vr-g(q) + KqCi) 

+sT (~M( q) - C(q, V)) s - CiT KqACi 

= ST (T-M(q)vr-C(q,v)vr-g(q) + KqCi) 
-TK A-q q q (7.366) 

Here the skew-symmetric property sT ( -! M(q) - C( q, v))s = 0, \:Is has been applied. This 
suggests that the control law can be chosen as: 

(7.367) 

where K, = KJ > 0 andKq = K; > 0 are design matrices. Thisfinally yields: 

(7.368) 

and GES follows. The control law (7.367) is equivalent with the control law ofSlotine and 
Li (1987) with perfectly known parameters (non-adaptive case) except for the additional 
feedback term Kqij which is necessary to obtain GES andA which replaces the scalar weight 
.A. 

7.4.7 MIMO Backstepping of Ships 

Conventional ship control systems are designed under the assumption that the kinematic and 
dynamic equations of motion can be linearized such that gain-scheduling techniques and 
optimal control theory can be applied (see Fossen 1994). This is not a good assumption 
for tracking applications where the surge and sway positions (n, e) and yaw angle 'l/J must 
be controlled simultaneously. The main reason for this, is that the rotation matrix in yaw, 
typically must be linearized about 36 operating points (steps of 10 degrees) to cover the 
whole circle arc with adequate accuracy. In addition to this, assumptions like linear damping 
and negligible Coriolis and centripetal forces are only good for low-speed applications, that is 
station-keeping and dynamic positioning (DP). These limitations clearly motivate a nonlinear 
design. MIMO nonlinear backstepping designs can be used for this purpose by exploiting 
nonlinear system properties like symmetry of the inertia matrix, dissipative damping and 
skew-symmetry of the Coriolis and centripetal matrix (see Fossen and Fjellstad 1995). 

A MIMO nonlinear backstepping technique for marine vessels where the nonlinear sys
tem properties are exploited is presented below (Fossen and Strand 1998). An alternative 
reference is Fossen and Strand (l999a). 

Vectorial Backstepping of Marine Vessels in 6 DOF 

Consider a vessel described by the following model class: 

(I) I 
(ii) ( 

(w) I 
(iv) I 
(v) J 

~.".. 

~lc_ ... _ 

~e'9' 51*11 

."-e.... 
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TJ J(11)v (7.369)� 

Mz> + C(v)v + D(v)v + g(11) T (7.370)� 

T = Bu (7.371)� 

This model describes the motion of a vessel in n=6 DOF. It is assumed that r 2: n control 
inputs are available. 

The system (7.369)--{7.371 ) satisfies the following properties: 

(i) M = M T > 0 => x TMx >0, "Ix =I- 0 
(ii) C(v) =� _CT(v) E 88(6) => x TC(v)x = 0, "Ix 
(iii) D(v) >0 => xTD(v)x =~xT(D(v) + D T(v))x >0, "Ix =I- 0 
(iv) BBT and T are non-singular 
(v) J(11) =Euler angle transformation matrix (not defined for () = ±900) 

Assumption (i) can be relaxed to systems with nonsymmetric inertia M =I- M T by using 
acceleration feedback; see Section 7.1.5 or Fossen et al. (2002) for details. 

New State Variables 

Assume that the reference trajectory given by 11~3), ijd, TJd, and 11d is smooth and bounded. 
The virtual reference trajectories in b- and n-frame coordinates are defined as: 

TJr =� TJd - Aij (7.372) 

J- 1(11)TJu; = , () =I- ±90o� (7.373)r 

where i] = 11 - 11d. is the tracking error and A > 0 is a diagonal design matrix. Furthermore, 
let: 

8 = TJ - TJr = ~ + Ai] (7.374) 

The marine vessel dynamics (7.369)--{7.370) can be written (Fossen 1993a): 

M*(11)ij +C*(v, 11)TJ + D*(v, 11)TJ + g*(11) = J- T (11)T (7.375) 

where: 

J- T(11)MJ-1(11)M*(11)� = 

I I� J(11).t(11)]J-l(11)C*(v, 11) =� J- 'I'(11) [C(v) - MJ

D*(V,11) J- T (11)D(v)J-1(11) 

g*(11) J- T (11)g(11) 

Hence, the marine vessel dynamics can be written in the following form: 

M*(11)S =� -C*(v, 11)8 - D*(v, 11)8+J-T (11)Bu 

-M*(11)ijr -� C*(v,11)TJr - D*(v,11)TJr - g*(11) (7.376) 

or equivalently: 

M*(11)S =� -C*(v, 11)8 - D*(v, 11)8 

+J-T (11)[Bu - MVr - C(V)Vr - D(v)vr - g(11)] (7.377) 

... 
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-r ~ 
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-------. \" ../ ~ ----- :~'·.L -=V-

Figure 7.21: Nonlinear MIMO backstepping controller for 6 DOF control. 

Step 1: 

Consider the error dynamics: 

(7.378) 

Let v be the virtual control vector: 

v = s + 01 

The position error dynamics can therefore be written: 

ij = J(71)(V - v d) 

= J(71)(S + 0l-Vd) {01= tr; = J-1(71)(r,d -

= J(71)(S + r 1 (71)r,d- J  1 (71)Aij  v d ) 

= -Aij + J(71)S 

Hence, a CLF is: 

Aij)} 

(7.379) 

(7.380) 

(7.381) 

... 

7.4 Integrator I 

resulting in: 

Step 2: 

Intbe~. 

T = 
• = 

,.......� 

~Kc>o. 

.. ~ 
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resulting in: 

. T'
VI r, Kpr, 

r,T K p( -Ar, + J(1])S) 

= -r,TKpAr,+sTJT(1])Kpr, (7.382) 

Step 2: 

In the second step a eLF motivated by the "pseudo" kinetic energy is chosen, that is: 

1 T *()] V2=2 S M 1] s+Vi, M* = (M*)T > 0 (7.383) 

V2 = STM*(1])S+~S TM*(1])s+VI 

= -sT[C*(v, 1]) + D*(v,1])]s 
-+sT J- T (1])[Bu - Mvr-C(v)vr-D(v)vr-g(1])] 

+4sTM*(1])s - r,TKpAr, + STJT (1])Kpr, (7.384) 

t,__ -,  Using the skew-symmetric property: 

t· 
S T (M*(1])-2C*(v,1])) S =0, 'rIv,1],S (7.385) 

If control. 
i: 

yields 

V2 = sTJ-T(1]) [BU-MVr-C(v)Vr-D(v)vr-g(1])+JT(1])Kpr,] 

-sTD*(v, 1])s - r,TKpAr, (7.386) ~,.-. 
(7.378) 

Hence, the control law can be chosen as (see Figure 7.21): 

(7.379) 
-r = MVr + C(v)vr + D(v)vr + g(1]) - JT (1])Kpr, - JT (1])K~ ds 

U = at

\ij)} where Kd > O. This results in: 

V2= -sT (D* (v, 1])+K - r,T KpAr,(7.380) d)s 

Since V2 is positive definite and V2 is negative definite it follows from Theorem A.3 that the 
equilibrium point (r" s) = (0,0) is GES. It follows from convergence of s -+ 0 and r, -+ 0 

(7.381) that iJ -+ o. 

t� 

.,. 

~ -- >;;;;i,liil1lfi 
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Vectorial Backstepping in 3 DOF 

Vectorial baclcstepping in 3 DOF (surge, sway, and yaw) is a special case of the general 6 
DOF solution which can be applied for surface (floating) vessels. Typical applications are 
station-keeping and maneuvering of ships, semi-submersibles, and high-speed craft. 

In this case the Euler angle transformation matrix J (TI) reduces to (see (2.38) in Section 
2.2): 

J(TI) E R6 X6 
-+ R('ljJ) ESO(3) (7.389) 

which is the rotation matrix in yaw. This implies that: 

(7.390) 

The dynamic equation (7.375) therefore becomes: 

M*('ljJ)ij + C*(v,'ljJ)iJ + D*(v,'ljJ)iJ = R('ljJ)T (7.391) 

where the gravitational and buoyancy forces are assumed to outbalance each other such that 
g(TI) = 0, and: 

M*('ljJ) = R('ljJ)MRT('ljJ) 

C*(v,'ljJ) = R('ljJ)[C(v) - MRT ('ljJ)R('ljJ)]RT ('ljJ) 

D*(v,'ljJ) = R('ljJ)D(v)RT ('ljJ) .w 

7.4.8 MIMO Backstepping Design witb Acceleration Feedback 

The results of the previous section can be extended to include acceleration feedback. A ship 
'!k (Iin surge, sway, and yaw will be considered to illustrate the design procedure. Recall from 
A~.Sections 3.2.1 and 7.1.5 that M A I:- M1 for ships moving at positive speed (maneuvering _.�

situations). However, acceleration feedback can be be used to symmetrize the system inertia� 
matrix (Fossen et al. 2002). For simplicity a PD control law will be designed. Integral action� 
can easily be included by using adaptive backstepping (Fossen et al. 2001); see Section 7.4.5.� 

The 3 DOF maneuvering model (surge, sway, and yaw) is: 

iJ R('ljJ)v (7.392) 

Mv+C(v)v+D(v)v = T (7.393) 

where: 
m-Xu 

M= 0 (7.394)
[ o 

.~ 
Notice that M23 :1= M32 (nonsymmetric). Acceleration feedback from only it and ir; implies xa
that: ... 

(7.395)' 

----- ....~'--=====-::..:;;..;;;;==""""'=========~ 

1 
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r where: 

se of the general 6 K 12 
[ K" ~ ].al applications are K m = K 21 K 22 (7.396) 

peed craft. K 31 K 32 

:e (2.38) in Section 0 -K"u ~ K"v ] 
, Cm(v) = 0 Knu + K 12V . (7.397) 
, 

,. (7.389) [ K"uLnv -Knu - K 12V 0 
i. ~ 

The expression for Cm(v) in (7.395) is based on (3.100). Consequently, the system inertia 
matrix after acceleration feedback becomes: 

(7.390) 

m-Xu+Kll K12 

H =M+Km = K 21 m- Y iI + K 22 mxgO_Yr ] (7.398) 
[ K 31 mxg-N iI + K 32 i.:», 

(7.391) 

while 
ICb other such that CH(V) = C(v) + Cm(v) (7.399) 

[:� The feedback term Cm(v)v is necessary for:� 

sT[H*(1/J)-2CiI(v,1/J)]s=0, s¥O (7.400) 

to hold for: 

H*(1/J) = R(1/J)HRT (1/J) (7.401)
dback 

C'H(v,1/J) = R(1/J) [CH(v)-HRT (1/J)R(1/J)]RT (1/J) (7.402) 

I feedback. A ship 
The control law (7.395) gives us some flexibility since the acceleration feedback terms K n ,tIure. Recall from 

eed (maneuvering K 12, K 21, K 22, K 31, and K 32 can be chosen such that H = H T > O. A symmetric expres
sion independent of hydrodynamic added mass terms is obtained by choosing: the system inertia 

ed. Integral action 
K 12 see Section 7.4.5. Kll 0] [ Xu + ~Kll 0 0 ] 

K m = K21 K 22 0 = 0. Yil + ~K22 0 (7.403) 
~.I. [ 

K 31 K32 0 ° Nil - Y". 0 

(7.392) 
where ~Kl1 and ~K22 can be treated as additional design parameters for the mass in the x,l (7.393) and y-directions. The resulting expression is: 

i m+~Kn 0� 
H = 0 m+~K22 mxgO-y". ] (7.404)� 

(7.394) [ o mXg-Yr i.:», 

If ~Kll = ~K22 (the mass in the x- and y-directions is equal) the PID controller will 
, Ii and V, implies 

be independent of the heading angle which is advantageous when tuning a ship dynamic 
positioning system for instance. 

The resulting dynamics after acceleration feedback is: 

Hzi + CH(V)V + D(v)v = TPD (7.405) 

L _~, 

-~<
 ...~ 

IIIII! "'iiimiii",-.. .J 
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Notice that H replaces M such that H = H T > 0 even though M i- M T. Consider the 
CLF: 

VI 21 
Z 1 

T 
KpzI, ZI = Tld-TI� (7.406) 

1 TV2 = VI + 2v Hv� (7.407) 

where VI and V2 represent the "pseudo" potential and kinetic energy, respectively. 

New State Variables� 
Assume that the reference trajectory, TI~3), 11d' tu. and TId' is smooth and bounded. A virtual� 
reference trajectory is defined as:� 

(7.408) 

" ... 'where iI = " - TId is the tracking error and A > 0 is a diagonal design matrix. Furthermore� 
let:� 

s = r, - r,r = i) + Ail (7.409)� 

The vessel dynamics (7.392}--(7.405) can be transformed to: 

\ 
H*(1/I)11 + C~(v,1/I)r, + D*(v,1/I)r, = R(1/I)Tp D� SlIp 1: 

.6e~. 
Hence: 

H*(1/I)s =� -C~(v,1/I)s - D*(v,1/I)s + R(1/I)Tp D 

-H*(1/I)11r - C H(v,1/I)r,r - D*(v,1/I)t7r 
~i = S 

or equivalently: 
= • 

Step 1:� 
Consider the error dynamics:� 

(7.410) 

'!Il~
Let v be the virtual control vector v = s + 01. The position error dynamics can therefore be c r- "d~_11 

,.,1 written: 

=� vdl ,.,~..iI R(1/I)[v - "."'+":'",~,~ 
T(1/I)[fJd-AiI]} = R(1/I)[S+01-Vd], {01=vr=R

R(1/I)[S + R T (1/1 )r,d-R T (1/1)Ail - v d] 

= -Ail + R(1/I)s (7.411) 

Hence:� ; = 

(7.412)� PD~( 

w5 -, oarc 
and� er 5edimt -.-4. 
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acceleration feedback 
,-----------------------, 
, I 
, I 
I I 
I I 
I I 

i__ ---p~~'-t+'~---- j 
'PID 

Figure 7.22: Acceleration feedback and PID-controller. 

. T·
Vi = ii Kpii 

= ijTK p(- Aii + R (1jJ)8) 

= -iiTKpAii + 8TRT (1/J)Kpij 

Step 2: 
In the second step we choose a CLF motivated by "pseudo" kinetic energy, that is: 

(7.413) 

V2=~STH*(1/J)s+V1 (7.414) 

V2 = TIT· . 
S H*(1/J)s+2"S H*(1/J)s+V1 

= s T [-C~(v,1/J)s - D*(v,1jJ)s+R(1/J) [TPo-Hvr-CH(V)vr-D(v)vrJ]

+isTiJ*(1/J)s -iiTKpAii + sTR T (1/J) K pii 

Using the skew-symmetric property sT[iJ*(1/J)-2C~(v,1/J)]s=O, yields: 

V2 = 8TR(1/J)[TPO-Hvr-CH(v)vr-D(v)vr +RT (1/J)KpiiJ 

-8TD* (V,1/J)S - ijTKpAii 

Consequently, the 3 DOF control law: 
,. 

TPO = HV r + CH(V)Vr + D(v)v,. - R T (1/J)[Kpii + Kds] 
,·,,",/,,*jf""':_:':::~0.h<~;"'»·'vtM{\.t' ''''''j ""V%I' y". Y' w. ",:.,., ---%W:~'--~-'-'-----;";.W:,,:,;·"'fu;,,,.;;.•_~,_, ............w"" 

(7.4 15) 

results in: 
V2= -sT (D*(v,1/J)+K d)s -iiTKpAii 

Since V2 is positive definite and V2 is negative definite it follows that the equilibrium point 
(ii, s) = (0,0) is GES. Moreover, convergence ofs ~ 0 and ii ~ 0 implies that i)~ O.The 
PD controller can easily be replaced with a PID controller by using the adaptive backstepping 
technique of Fossen et al. (200 I) which is referred to as backstepping with integral action; 
see Section 7.4.5. In this case only UGAS is guaranteed. 

? 

., '_~ ._ii 
' IIill::::::1II1II • 
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7.5 Control Allocation 

For marine vessels in n DOF it is necessary to distribute the generalized control forces 
T E IRn to the actuators in terms of control inputs U E IRr as shown in Figure 7.23. If r > n 
this is an overactuated control problem while r < n is referred to as underactuated control. 
The input matrix is square for r = n, that is, the number of actuators is equal to n DOE 

Computation of u from T is a model-based optimization problem which in its simplest 
form is unconstrained while physical limitations like input amplitude and rate saturations 
imply that a constrained optimization problem must be solved. Another complication is ac
tuators that can be rotated at the same time as they produce control forces. An example is 
azimuth thrusters on an offshore supply vessel. This increases the number of available con
trols from r to r +p, where p denotes the number of rotatable actuators for which additional 
nonlinearities are introduced. 

Control V,'l 

allocation 

Figure 7.23: Block diagram showing the control allocation block in a feedback control sys
tem. 

7.5.1 Actuator Models� 

The control force due to a propeller, a rudder, or a fin can be written (assuming linearity):� 

F=ku� (7.416) 

where k is the force coefficient and u is the control input depending on the actuator con
sidered; see Table 7.1. The linear model F = ku can also be used to describe nonlinear 
monotonic control forces. For instance, if the rudder force F is quadratic in rudder angle 8, 
that is F = k 8181, the choice u = 8181 which has a unique inverse 8= sign(u)M satisfies 
(7.416). 

For marine vessels the most common actuators are: 

•� Main propellers: the main propellers of the vessel are mounted aft of the hull usually 
in conjunction with rudders. They produce the necessary force Fx in the x-direction 
needed for transit. 

•� Tunnel thrusters: transverse thrusters going through the hull of the vessel. The pro
peller unit is mounted inside a transverse tube and it produces a force Fy in the y
direction. Tunnel thrusters are only effective at low speed which limits their use to 
low-speed maneuvering and dynamic positioning. 

•� Azimuth thrusters: thruster units that can be rotated an angle a about the z-axis and 
produce two force components (Fx , Fy ) in the horizontal plane are usually referred to 

IU • $Lb . 

c. 
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-
Finslabilizators 

Figure 7.24: Fin stabilized ship where the vertical force F 
u for small deflections. 

= ku is proportional to the angle 

as azimuthing thrusters. They are usually mounted under the hull of the vessel and the 
most sophisticated units are retractable. Azimuth thrusters are attractive in dynamic 
positioning systems since they can produce forces in different directions leading to an 
overactuated control problem that can be optimized with respect to power and possible 
failure situations. 

• Aft rudders: rudders are the primary steering device for conventional vessels. They 
are located aft of the vessel and the rudder force Fy will be a function of the rudder 
deflection. A rudder force in the y-direction will produce a yaw moment which can be 
used for steering control. 

• Stabilizing fins: stabilizing fins are used for damping of vertical vibrations and roll 
motions. They produce a force F; in the z-directions which is a function of the fin de
flection. For small angles this relationship is linear. Fin stabilizators can be retractable 
allowing for selective use in bad weather. The lift forces are small at low speed so the 
most effective operating condition is in transit. 

..r 

.. 
lo 
c: 
:~ 

• Control surfaces: control surfaces can be mounted at different locations to produce 
lift and drag forces. For underwater vehicles these could be fins for diving, rolling, and 
pitching, rudders for steering, etc. 

• Water jets: water jets is an alternative to main propellers aft of the ship. They are 
usually used for high-speed craft. 

Table 7.1 implies that the forces and moments in 6 DOF corresponding to the force vector 

W�·· II 
,rl .~.II.
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Fx 

Fy 
I,.,.......�s; 

(7.417)
Fzly - Fylz 
Fxlz - ri; 
Fylx - Fxly 

where r = [lx, ly, lzjT are the moment arms. For rotatable (azimuth) thrusters the control� 
force F will be a function of the rotation angle a; see Figure 7.25. Consequently, an azimuth� 
thruster in the horizontal plane will have two force components Fx = F cos a and Fy =� 
F sin a, while the main propeller aft of the ship only produces a longitudinal force Fx = F,� 

F:~ - ~~:
see Table 7.1. .--- .......� 

Table 7.1: Definition of actuators and control variables. 

Actuator u (control input) a (control input) f (force vector)� 

main propellers (longitudinal) pitch and rpm [F,O,O]� 
tunnel thrusters (transverse) pitch and rpm [O,F,O]� 

..... OC\F 1,.11
azimuth (rotatable) thruster pitch and rpm angle IF cos a, F sin a, 0]� 
aft rudders angle [O,F,O]� 
stabilizing fins angle [O,O,F]� 

t.= I,A unified representation ofcontrol forces and moments is: 

'T = 'I'(o) Ku (7.418)
'-v-" 

f I 
,. an.where u ElRr and aEIRP are control inputs defined by the vectors: 
£1 "..: III" 

(7.419) 

and f = Ku ElRr is a vector of control forces. 

Force Coefficient Matrix 

The force coefficient matrix K ElRr x r is always diagonal such that: 

,...",.,~ 

K - I =dilag {IK}' ... , K (7.420) 
r 

Id"'lIlIl:IE __ 

Actuator Configuration Matrix 
.-I

n x r The actuator configuration matrix T(a )ElR is defined in terms ofa set of column vectors ..~ 

tiElRn
: ~-

_:....

III11 
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~... ' •..

\JJ 
-.. ~F 

Azimuth thruster Podded propeller Contra-rotatingpropeller 

Figure 7.25: Propellers that can be rotated an angle a to produce a force F in an arbitrary 
direction. 

T(a)= [t},..., tr] (7.421) 

In 4 DOF (surge, swtry. roll, and yaw) the column vectors take the following form: 

-------v� 
azimuth thruster� 

Examples using this representation are found in Section 9.3 (fin and rudder control systems) 
and 11.2 (dynamic positioning systems). The 3 DOF representation (surge, sway and yaw) is 
found by deleting the 3rd row (roll) in the expressions for ti. 

7.5.2 Unconstrained Control Allocation (Nonrotatable Actuators) 

The simplest allocation problem is the one where all control forces are produced by thrusters 
in fixed directions alone or in combination with rudders and control surfaces. This implies 
that: 

a = ao = constant, T = T(ao) 

It will be assumed that the allocation problem is unconstrained-i.e., there are no bounds on 
the vector elements Ii, ai, and Ui, and their time derivatives. Saturating control and con
strained control allocation are discussed in Sections 7.5.3-7.5.4. 

For marine craft where the configuration matrix T is square or non-square (r ~ n), that is 
there are equal or more control inputs than controllable DOF, it is possible to find an "optimal" 

"'lIII IlIIT 
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distribution of control forces f, for each DOF by using an explicit method. Consider the 
unconstrained least-squares (LS) optimization problem (Fossen and Sagatun 19910): 

J = min {fTWf}
f (7.423)

subjectto: T - Tf = 0 

Here W is a positive definite matrix, usually diagonal, weighting the control forces. For 
marine craft which have both control surfaces and propellers, the elements in W should 
be selected such that using the control surfaces is much more inexpensive than using the 
propellers. 

Explicit Solution to tbe LS Optimization Problem using Lagrange Multipliers 

Define the Lagrangian (Fossen 1994): 

L(f, >..) = fTWf + >..T(T - Tf) (7.424) 

where >.. E R" is a vector of Lagrange multipliers. Consequently, differentiating the La
grangian L with respect to f, yields: 

Next, assume that TW-1TT is non-singular such that: 

T = Tf = ~TW-ITT >.. =} >.. = 2(TW-1TTf I 
T (7.426) 

Substituting the Lagrange multipliers X = 2(TW-1TT)-IT into (7.425) yields: 

= W-1TT(TW-1TTfl T (7.427) 
, # v 

Tt, 

where the matrix: 

(7.428) 

is recognized as the generalized inverse. For the case W = I, that is equally weighted control 
forces, (7.428) reduces to the Moore-Penrose pseudo inverse: 

(7.429) 

Since: 
f-- Ttw T (7.430) 

the control input vector u can be computed from (7.418) as: 
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f� 
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tbod Consider the 
u = K-1Tt Trun 1991a):� w (7.43 

Notice that this solution is valid for all 0:0 but not optimal with respect to a time-varying 0:0 
~ (7.423) 

(only f). Optimality with respect to 0: in addition to (7.425) is discussed in Section 7.5.4. 

:ontrol forces. For� Matlab: 
tents in W should� The generalized inverse for the case T = T(O:o)=constant is implemented in the GNC 

L� 
rive than using the Toolbox as:� 

u~ucalloc(K,T,W,tau)
 

IIlipliers 

7.5.3 Constrained Control Allocation (Nonrotatable Actuators) 

~ (7.424) 10industrial systems it is important to minimize the power consumption by taking advantage 
of the additional control forces in an overactuated control problem. From a safety critical 

rentiatiog th~, e La- point of view it is also important to take into account actuator limitations like saturation, tear 
and wear as well as other constraints. 10 general this leads to a constrained optimization 
problem. 

• '~ (7.425) 

r'� 
Explicit Solution using Piecewise Linear Functions� 

Recently, an explicit solution approach for parametric quadratic programming has been de
(7.426)� veloped by Tendel et al. (2001). An on-line algorithm is presented in Tendel et al. (2003) 

while applications to marine vessels are presented by Johansen et al. (2002). In this work the 

I yields: constrained optimization problem is formulated as: 

j
(7.427)� J = mil! {fTWf + STQs+,8 f}

f,s,J "' 
subject to: 

(7.432) " tsa· -= ."'''':W'§Wl-'w' t#f5� Tf=T+s 
:S f :S f m ax� 

" 

" h,···fr 
,7~. 

I'(7.428� " 

where s ElRn is a vector of slack variables. The first term of the criterion corresponds to ,'4 

the LS criterion (7.423), while the second term is introduced to minimize the largest force 
~. weighted control 1 = maxi Ifi I among the actuators. The constant ,8 2: 0 controls the relative weighting of 

m in the two criteria. This formulation ensures that the constraints f i :S 1i:Sf i 
m ax (i = 1, ... , r) 

are satisfied, if necessary by allowing the resulting generalized force Tf to deviate from its 
(7.429)� specification T. To achieve accurate generalized force, the slack variable should be close to 

zero. This is obtained by choosing the weighting matrix Q » W >0. Moreover, saturation 
is handled in an optimal manner by minimizing the combined criterion (7.432). 

Letting z = [fT ST f-]T E IRr +n+1 and p = [TT fT. fT ,8]T E JRn+2r+l denotes , ,� , mm i max'(7.430) 
the parameter vector, it is straightforward to see that the optimization problem (7.432) can be 
reformulated as a QP problem: 

L-~,
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J = m1n { Z T ~z + Z T Rp} 

subjectto: (7.433) 
A1z = C1p 
Azz ~ Czp 

where: 

0." ] [ O(r+t)XI ] ]~ Q Onxl R = [ O(r+n+l)x(n+2r)� 

Olxr Olxn 0� 
= [0:. Orxn 

Al = [T -In x n Onxl ] , C1 = [ In x n O..nx(2r+l) ] 

-Irxr Orxn Orxl� 

I r x r Orxn Orxl� 

[; -Ir x r OrxrIrxr Orxn Orxl ]
Orxr I r x r Orxl

A 2 
Orxr Orxr Orxl 

Orxr Orxr Orxl 

Orxn - [;] 
Since W >0 and Q >0 this is a convex quadratic program in z parametrized by p. Convexity 
guarantees that a global solution can be found. The optimal solution z" (p) to this problem is 
a continuous piecewise linear function z" (p) defined on any subset: 

Pmin s P s Pmax (7.434) 

of the parameter space. Moreover, an exact representation of this piecewise linear function 
can be computed off-line using multi-parametric QP algorithms (Tendel et al. 200 I). Conse
quently, it is not necessary to solve the QP (7.432) in real time for the current value ofT , and 
the parameters !min, !max, and /3, if they are allowed to vary. In fact it suffices to evaluate the 
known piecewise linear function z" (p) as a function of the given parameter vector p which 
can be done efficient with a small amount of computations. For details on the implementation 
aspects of the mp-QP algorithm; see Johansen et al. (2002) and references therein. 

Explicit Solutions based on Minimum Norm and Null-Space Methods 

In flight and aerospace control systems, the problems of control allocation and saturating 
control have been addressed by Durham (1993, 1994a, 1994b). They also propose an explicit 
solution to avoid saturation referred to as the "direct method". By noticing that there are 
infinite combinations of admissible controls that generates control forces on the boundary of 
the closed subset of attainable controls, the "direct method" calculates admissible controls 
in the interior of the attainable forces as scaled down versions of the unique solutions for 
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force demands. Unfortunately it is not possible to minimize the norm of the control forces 
on the boundary or some other constraint since the solutions on the boundary are unique. 
The computational complexity of the algorithm is proportional to the square of the number 
ofcontrols, which can be problematic in real-time applications. 

In Bordignon and Durham (1995) the null space interaction method is used to minimize 
the norm of the control vector when possible, and still access the attainable forces to over
come the drawbacks of the "direct method". This method is also explicit but much more 
computational intensive. For instance 20 independent controls imply that up to 3.4 billon 
points have to be checked at each sample. In Durham (1999) a computationally simple and 
efficient method to obtain near-optimal solutions is described. The method is based on prior 
knowledge of the controls' effectiveness and limits such that precalculation of several gener
alized inverses can be done. 

Iterative Solutions 

An alternative to the explicit solution could be to use an iterative solution to solve the QP 
problem. The m-file function quadprog. m in the Matlab" optimization toolbox can be 
used for computer simulations, while a stand-alone compiled QP solver must be implemented 
in a real-time application. The drawback with the iterative solution is that several iterations 
may have to be performed at each sample in order to find the optimal solution. An advantage 
of the iterative approach is that there is more flexibility for on-line reconfiguration, as for ex
ample a change in W may require that the explicit solutions are recalculated. Computational 
complexity is also greatly reduced by a "warm start"-i.e., the numerical solver is initialized 
with the solution of the optimization problem computed at the previous sample. 

7.5.4 Constrained Control Allocation (Azimuthing Thrusters) 

The control allocation problem for vessels equipped with azimuth thrusters is in general a 
non-convex optimization problem that is hard to solve. The primary constraint is: 

T = T(a)f (7.435) 

where a E 1~.P denotes the azimuth angles. The azimuth angles must be computed at each 
sample together with the control inputs U E jRr which are subject to both amplitude and rate 
saturations. In addition, azimuthing thrusters can only operate in feasible sectors ai,min S 
ai Sai,max at a limiting turning rate 0:. Another problem is that the inverse: 

TUa) = W-1TT (a)[T(a)W-1TT (a)r
1 

(7.436) 

can be singular for certain a-values. The consequence of such a singularity is that no force 
is produced in certain directions. This may greatly reduce dynamic performance and maneu
verability as the azimuth angles can be changed slowly only. This suggests that the following 
criterion should be minimized (Johansen et al. 2003): 

=,,~=:;- 
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I.� ae .. 
((Itt-

J = min� ao)Tn(a - ao){tPi Ifl/2 +5TQs + (a 
f,a,s .� 2. aelil 

,=1 ae.. 
+ (! }� (7.437)

c + det(T(a)W-ITT(a)) lklacltm 
subject to: 

T(a)f = r+s� 
fmin :S f :S fmax� 
amin :S a :S a max� 
~amin :S a - ao:S ~amax
 

where: 

2
•� E~=1 Pi Ifil3/ represents power consumption where Pi > 0 (i = 1, ..., r) are positive� 

weights.� 

•� s T Qs penalizes the error s between the commanded and achieved generalized force.� 
This is necessary in order to guarantee that the optimization problem has a feasible� 
solution for any rand ao. The weight Q >0 is chosen so large that the optimal solution� 
is s ~ 0 whenever possible.� 

•� fmin :S f :S fmax is used to limit the use offorce (saturation handling). ...c.. 
• amin :S a :S a max denotes the feasible sectors of the azimuth angles. 

•� ~amin :S a - ao:S ~amax ensures that the azimuth angles do not move to much� 
within one sample taking ao equal to the angles at the previous sample. This is equiv�
alent to limiting a-i.e. the turning rate of the thrusters.� 

~ iq:tCkl 
• The term:� ~:.-

~.-e + det(T(a)W-ITT (a)) , . 
a __ c.is introduced to avoid singular configurations given by det(T(a)W-1TT (a) = O. To� 

avoid division by zero, c > 0 is chosen as a small number, while (! > 0 is scalar weight. ~~dIr
 

A large (! ensures high maneuverability at the cost of higher power consumption and --~
 

vice versa.� 

The optimization problem (7.437) is a non-convex nonlinear program and it requires a sig
I'I~SI 

nificant amount of computations at each sample (Nocedal and Wright 1999). Consequently,� 
the following two implementation strategies are attractive alternatives to nonlinear program -~~
 

efforts. ~~
 

sw.=a" di 

Iterative Solutions using Quadratic Programming 

The problem (7.437) can be locally approximated with a convex QP problem by assuming 
that: 
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1. the power consumption can be approximated by a quadratic term in f, near the last� 
force fo such that f = f0 + ~f.
 

2. the singularity avoidance penalty can be approximated by a linearterm linearized about� 
the last azimuth angle ao such that a = aD + ~a.
 

The resulting QP criterion is (Johansen et al. 2003): 

J= min {(fQ+~f)Tp(fo+~f)+sTQs+~aTn~a 

Af,Aa,s 

-t: (c+det(T(afw-ITT(a)))lao ~a} (7.438) 

subjectto: 

s + T(ao)Af+ a~ (T(ao)f)lao,foAa = T - T(ao)fo 
fmin - fo ~ f ~ fmax - fo 
amin - ao ~ Aa ~ a max - ao 
~amin ~ Aa ~ Aam ax

• 
The convex QP problem (7.438) can be solved by using standard software for numerical� 

optimization for instance the m-file function quadprog. m in the Matlab" optimization� 
toolbox.� 

Iterative Solutions using Linear Programming 

Linear approximations to the thrust allocation problem has been discussed by Webster and 
Sousa (1999) and Lindfors (1993) . In Lindfors (1993) the azimuth thrust constraints: 

lim ax Ilil = V(!iCOSOi)2 + (lisinoi)2 ~ (7.439) ." 
Wl 

are represented as circles in the (Ii cos Qi, Iisin Qi )-plane. The nonlinear program is trans�
formed to a linear programming (LP) problem by approximating the azimuth thrust con�
straints by straight lines forming a polygon. If 8 lines are used to approximate the circles� " 
(octagons), the worst case errors will be less than ±4.0 %. The criterion to be minimized is� 
a linear combination of IfI, that is magnitude of force in the x- and y-directions, weighted� 

1,0 

against the magnitudes IV(Ii cos Qi)2 + (Ii sin Qi PI representing azimuth thrust. Hence, 

~ 

:~ 

singularities and azimuth rate limitations are not weighted in the cost function. If these are ::1 

important, the QP formulation should beused. 

Explicit Solution using tbe Singular Value Decomposition and Filtering Techniques 

An alternative method to solve the constrained control allocation problem is to use the sin
gular value decomposition (SVD) and a filtering scheme to control the azimuth directions 
such that they are aligned with the direction where most force is required, paying attention 
to singularities (Serdalen 1997b). Results from sea trials have been presented in Serdalen 
(1997a). A similar technique using the damped-least squares algorithm has been reported in 
Berge and Fossen (1997) where the results are documented by controlling a scale model of a 
supply vessel equipped with four azimuth thrusters. 

JbIem by assuming 

__,~.m",,'''.''"'''"' • = .. 
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7.6 Exercises 

Exercise 7.1 Consider a marine craft in 6 DOF where: 

iJ = J(17)v 

Mil + C(v)v + D(v)v + g(17) = T 

Here v =[u, v, w,p, q, rjT and 17 = tn, e,d, ¢, 19, 'ljJ]T. Let V(17, v) be a Lyapunovfunction: 

1 1 
V(17, v) = 2vTMv + 217TKp17 
~ '--v-" 
kinetic energy potential energy 

whereMT = M> OandK; = Kp > O.� 

a) Show that:� 

b) Assume that vTD(v)v >0 andfind a control law T such that: 

. T 
V(17,V) = -v [D(v) + Kd]v::::; 0, K d > 0 

c) The assumption K; = K p > 0 is relaxed to K p > 0 - i.e. x TKpx >0, x i- O. Is it 

possible to find a control T for this case satisfying V(17, v) = -vT[D(v) + Kd]v ::::; O. 
Hint: xTAx = ~xT(A + A T)x + ~x T(A - A T)x = ~xT(A + A T)xsince 
x T(A - A T)x = O. 

Exercise 7.2 Consider the attitude dynamics ofa satellite (Euler's equations): 

• b
8 = Te(El)wnb 

{� 
loW~b + W~b X (loW~b) = m~
 

where m~ is the control input vector. Next let V(W~b' 8) be a CLF:� 

b IbT bIT
V (Wnb, 8) =2(Wnb) loWnb + 28 K p8 

I. 
i: where IJ = 10 > 0 and K; = x, > O. 

,.j, 

a) Show that: 

V(W~b' 8) =(W~b)T [m~ + S(loW~b)W~b + T~(e)KpEl] 

Hint: W~b x (Iow~b) = -(loW~b) X W~b = -S(loW~b)w~b 

b) Use the fact that xTSx =0, "Ix E JR3 ifS = -STPind a moment control law m~ such 
that: 

V(W~b' 8) = -(W~b) TKdW~b s 0, x, > 0 

Is this a P, PD or PID control law? (Explain why). 

c) Explain why this solution is local alternatively global 

( .. 
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Exercise 7.3 Consider a torpedo where the forward speed u is given by: 

(m  Xu)u - Xlulu lui u = T 

and where T represents the control input. Assume that the reference speed u« and accelera
tion Ud are smooth known signals. Wewill now construct a torpedo speed tracking controller 
using Lyapunov analysis. 

a)Assume that m and  Xu are positive constants. Show that the nonlinear speed controller: 

T = - Kmu +(m 
'-v-" ' 

acceleration 
feedback 

Xu)Ud - Xlulu lui Ud) 
I 

refe':ence 
feedforward 

KdU 
~ 

Pscontroller 

with K m 

function: 
> 0 and Kd > 0 results in a GES error system. 

V(U) = ~(m - Xu + K m )ii2 

Use the following Lyapunov 

where U= U - Ud in your analysis. 

b) Assume that the mass m ofthe torpedo is reducedduring speedcontrol due to consumption 
of'fuel while hydrodynamic added mass Xu is constant. Let: 

m(t) = tn., + ~m(t) 
where tn., =constant is the mass ofthe torpedo without fuel and ~m(t) denotes the mass of 
the fuel. The fuel consumption dynamics can be described a first-order system: 

T~m(t) + ~m(t) = 0, T> 0 

where ~m(O) = Srn; =constant is the initial mass of the fuel and limt--+oo ~m(t) = O. 
Let the acceleration feedback gain K m (t) be a function oftime and use the speed controller 
and Lyapunov function in la) tofind a differential equation for Km(t) with initial condition 
Km(O) = 0 such that: 

V(u) = -(Kd - Xlulu luI)u2 < 0, "tu i- 0, U E 1R 

Ii. 

''. 

c) Find exact solutions for Km(t) and ~m(t) by solving the ODEs and sketch the solutions 
as functions oftime (in the same plot). Comment the results. 

.0 

~,: 

I" 

'" 

Exercise 7.4 Consider the model: 

i; 

mil + dv + kx 

= 
= 

v 

T + W 

Y = x+vm 

where wand Vm 

E(v;'). 
are zero mean white noise signals with variance q = E( w 2 ) and r = 

a) Under what conditions are this model observable? The conditions should only depend on 

::j 

,. 
{~ • --,t" 
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the model parameters that is m, d and k. 

b) Construct a continious-time Kalmanfilter: 

~x = Ax+ bu+k(y - cTx) 

and compute the steady-state Kalman filter gains k = [k1 , k2]T as a function ofthe modelpa
rameters (m, d, k) and noise variances (q, r). (Hint: solve the steady-state Riccati equation 
for P by setting P = 0). 

c) Explain why x --+ x when using the estimator 2b). (Hint: analyze the estimation error 
dynamics) 

Exercise 7.5 Consider the ship autopilot model: 

1p = r 

Tr+H(r) = K8 

:5 = f(8) + 8c 

where 1/J is the yaw angle. r is the yaw rate and8 is the rudder angle. The input to the steering 
machine is Oc while H(r) and f(o) are two nonlinear functions describing the nonlinear 
maneuvering characteristic and steering dynamics, respectively. 

a) Construct a backstepping controller with nonlinear damping for tracking of a smooth 
reference signal given by 1/Jd' rd and rd using Oc as input. The solution should be presented 
in three recursive steps using Lyapunov function analysis. 

b) Write the error dynamics in the standardform: 

Mz = -K(z)z + Sz 

where S = _ST. The expressions for M, K(z) and S should be derived 

I'
" ,
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This chapter discusses model-based autopilot design, including Pill-control, LQ design
techniques, feedback linearization, and backstepping designs. Both full state and output

feedback are discussed. The main motivation for using model-based control and not neural
networks, fuzzy systems,"genetic algorithms etc. is that the course dynamics of the ship
is quite easy to model with good accuracy. Consequently, it is advantageous to exploit the
ship dynamics when designing the autopilot. Experimental results with both model ships and
full-scale vessels are used in the case studies to illustrate the different design techniques.

The principal blocks of a heading angle autopilot system, shown in Figure 8.1, are:

Control System: The control system provides the necessary feedback signal to track the
desired yaw angle 1/Jd. The output is the yaw moment TN.

Control Allocation: This module distributes the output from the feedback control system,
usually the yaw moment TN, to the actuators (rudders and in some cases propellers,
thrusters, etc.) in an optimal manner; see Section 7.5. For single screw ships the
controller yaw moment TN will simply be a function of the rudder command be.

Reference Model: The autopilot reference model computes smooth trajectories 1/Jd , rd, and
rd needed for course-changing maneuvers. Course-keeping is the special case then
1/Jd = constant and r d = rd = 0; see Section 5.1

Compass/Yaw Gyro: The compass measures the yaw angle 1/J which is needed for feedback.
In some cases a yaw gyro is available for yaw rate feedback. that is feedback from
r = i;J; see Sections 6.1 and 6.2.

http:8.5Exercises.��..�������������������������������.������������..����..��������
http:������������������.����....�������
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wind •loadswind 

feed forward 

yaw angle 
and rate 11 

wave filter 

Figure8.1: Block diagram ofautopilot system. 

• 
IiObserver/Wave Filter: In its simplest form the lst-order wave-induced motion components� 

v; and rw are filtered out from the measurements YJ = 'Ij; + v; and Y2 = r + rw ,� 

and consequently prevented from entering the feedback loop. This is known as wave� 
filtering where the output of the filter is the low-frequency motion components 'Ij; and� 
r. This is necessary to avoid excessive rudder action. In cases where Y2 is not measured� 
the wave filter must be constructed as a state observer so that r can be estimated from� 
the yaw angle measurement Yl; see Sections 6.1.3 and 6.1.4� 

U 
WindFeedrorward: In cases where a wind sensor is available for wind speed and direction, 

• 
Li 

a wind model can be used for wind feedforward. This is often advantageous since� 
the integral action term in the PID-controller does not have to integrate up the wind� 
disturbance term, However, an accurate model of the wind force and moment as a� 
function of ship speed and wind direction is needed to implement wind feedforward;� 
see Section 4.1.� I.j 

8.1 Autopilot Models 

Before discussing autopilot design the most important autopilot models from the literature I
are reviewed. .." 

• 
II.8.1.1 Rigid-BodyShip Dynamics 

:1
!! 

e. 
In Section 3.5.1 the 3 DOF model (surge, sway, and yaw) was written: 

~~'~""fiW*1::c"","",,:'r:'-"C""r>' '--;:1!"' •. ¥ .#.#',ifig_,~_,,~~~~w~'_~ 2." ".;,~.,.,,,,,,, ..-,-.A"YM,,,,--, M ' M%QJ¥@_J "",{t:Qti!,AI.XI; ..,,,J:¥!,,i!ll'~'h,,r~ .~
MRBV + CRB(V)V';' TRB (8.1) 

" --h 
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where TRB = [X, Y,N] T and: 

o o o -m(xgr + v) ] 
MRB ~[I m ffiXg 

] 
,CRB(V) = [ ~ o mu 

ffiXg /z m(xgr +v) -mu o 
yaw angle (8.2) 
and rate This is based on the assumptions that: ISS 

wi I. 
• the body-fixed coordinate origin is set in the center line of the vessel, that is Yg = O. 

--' 
•� the vessel has a homogeneous mass distribution and the hull is symmetrical about the 

xz-plane such that /xy = /yz = 0; see Section 3.4.2. 

•� the heave, roll, and pitch modes can be neglected for normal operations, that is, w =~. 

p = q = 'Ii; = P= q = O. 

Nonlinear Rigid-Body Equations of Motion 

Expanding (8.1), yields the horizontal plane model: 
lD components 
!f2=r+rw , 

DOwn as wave Surge: m(u - vr - xgr2 ) X 
ponents 'Ij; and Sway: m(v + ur + XgT) = Y (8.3) 

soot measured Yaw: /zT +mxg(v +ur) N 
:s&imated from 

Linear Rigid-Body Equations of Motion 

r anddirection, Linear theory is based on the assumption that the mean forward speed U ~ Uo is constant (or 
ldageous since at least slowly-varying) and that v ~ 0 and r ~ 0, such that: 
te up the wind 
I moment as a U=";U2+V2~Uo	 (8.4)
II feedforward; 
~ Linearization of(8.1) about (u, v, r) = (uQ, 0, 0), yields: 

~ 

Speed equation:� mD..u D..X 

,� (8.5)Steering equations: m(D..v +UoD..r + xgD..T) D..Y 
/zD..T + ffiXa(D..v + D..N 

the literature 

where D..(.) denotes the perturbation away from the nominal value. Notice that linearization 
implies that the speed equation (surge equation) is decoupled from the steering equations 
(sway-yaw subsystem). The assumption that the mean forward speed is constant implies that 
this model is only valid for small rudder angles. 

" 
Hydrodynamic Control Forces and Moments 

(8. For ships with one single-screw propeller, thrust and rudder deflection are denoted by T and 

J",",,0"'i,"0'jfui 8, respectively. The force and moment terms X, Y, andN are nonlinear functions of (8,T); 

... ,,,"',,,,,,,,,,,,,,,,, ."" ~ ....._.....--"",.," """, 
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the velocities (u, v, r); and the accelerations (u, v, f), that is 

X = X(u, v, r, U,8,T)� 
Y = Y(v,r,v,f,8) (8.6)� 
N = N(v,r,iJ,f,8)� 

Deeoupling the Speed Equation from the Steering Equations 

The speed equation relates the propeller thrust T to the velocity u and it is obtained by 
combining (8.3) and (8.6) as: 

m(u - vr - xgr ) = X(u, v, r, U,8, T) (8.7)2 

•Here X is a nonlinear function describing the hydrodynamic surge force. An example is the 
model by Blanke (198 I): 

X = Xuu + XvrVT + X1u1ululu + X rrr 2 + (1 - t)T + XccMc282 + X ext (8.8) 

The hydrodynamic coefficients in this expression are: 1 

Xu - added mass in surge 

X!ulu - drag force coefficient in surge (resistance) 
t - thrust deduction number 

XccM - resistance due to rudder deflection 
T - propeller thrust 
c - flow velocity past the rudder 
110ss - loss term or added resistance 
(m + X vr) - excessive drag force due to combined sway-yaw motions 
(Xrr + mxg ) - excessive drag force in yaw 
Xext - external force due to wind and waves 'Ill 

i
Substituting (8.8) into (8.7), yields: 

11 

(Tn - Xu)u = X/u1ululu + (1- t)T + l1(k~s (8.9)� 

where:� 
(8.10) 

It should be noted that the resistance and the propeller thrust will outbalance each other in� 
steady state if the loss term Tlo~s = 0, that is:� 

u= 0 => -X/u1ululu = (1 - t)T (8.11) 

The flow past the rudder is of course strongly influenced by the propeller-induced flow. A� 
theoretical framework showing this relationship is included in Blanke (1981). This is based� 
on the experiments of Van Berlekom (1975). In many cases it is assumed that the effect of� 
the flow velocity c can be neglected such that:� 

Xcc6lj C
2 = X 66 = constant (8.12) 

Linearization of(8.9) about u = 1.1.0, yields: 
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(m - Xu)~u = X1L~U + (1 - t)~T + ~l1oss 

where Xu = 2uoXu /u / is the linear damping derivative in surge. The cruise speed Uo as a 
function of steady thrust To for (11088)0 = 0 is given by (8.11). Consequently: 

(1 - t) ITol
Uo = sgn(To) (8.14) 

-Xlul" 

8.1.2 The Linear Ship Steering Equations 

The ship steering equations of motion are obtained by considering the sway-yaw subsystem 
corresponding to thestate variables v, r, 'l/J, and the control input (j. 

The Model of Davidson and Schiff (1946) 

Consider the linear steering dynamics (8.5) in the form: 

MRBV + CRB(UO)V = TRB (8.15) 

where II = [v, r]T is the state vector and: 

m mxg] 0 muo ] (8.16)M RB = [ mX I;r. , CRB(Uo) = [ 0 mxguo
g 

Notice that CRB(UO) is not skew-symmetric for the reduced order model (8.15) with constant� 
forward speed UQ. Linear theory suggests that the hydrodynamic force and moment can be� 
modeled as (Davidson and Schiff 1946):� 

TRB = -MAv - DII- b8R (8.17) 

where (jR is the rudder angle, b = [-~, -No]T and: 

-y,,] -Yr]-Y" -Yv (8.18)D=[MA = [ -N" -N" ' -Nv -Nr 

Notice that Davidson and Schiff (1946) assume linear damping Dv and that the hydrody�
namic added mass CA(II)II (quadratic terms in velocity) can be neglected� 

For notational convenience, it is common to define:� 

(j=-(jR 

Iih., , , ,. " ' ", ,.. " '"'' 

such that a positive rudder angle (j results in a positive yaw rate r. The resulting model then� 
becomes:� 

"->--~~'--~~, 

"� 
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Mil + N(uo)v = b8 

where: 

m - Yv mxg - Y" ] b _ [ -Yo]M = (8.21)[ mXg - Nil I, - N" ' - -No 

rN(uo) C(uo)+D=[ -Yv muo-Y ] (8.22)
<N; mxgUo - N; 

For positive speed Uo ~ 0, the system inertia matrix M # M T since Y.. # Ns; 

State-Space Modeling 

The corresponding state-space model is obtained by letting x = [v, r]T be the state vector 
andu = 8. Consequently: 

x = Ax+ bl'u (8.23) 

where: 
12]A = -M-IN = [all a (8.24) 

a21 a22 

The coefficients are obtained from: 

-(1z - N,,)yv + (mxg - Y,,)Nv
 
all = det(M)
 

(1z - N,,)(muo - Yr ) - (mxg - Y,,)(mxgUo - N,,) 
a12 = det(M) 

-(m - Yil)Nv + (mxg - Nv)Yv
 
tl21 = det(M)
 

(m - Yv)(mxguo - N r ) - (mxg - Nv)(mUo - Y;.) 
a22 = det(M) 

-(1z - N,,)Yo + (mxg - Y,,)No
bi = det(M)
 

bz = -(m - Yv)No + (mxg - Nil)Yo
 (8.25)
det(M) 

where det(M) = (m - Yv)(1z - N,,) - (mxg - Nv)(mxg - Y,,) > 0 is the determinant of 
the system inertia matrix. 

The Models of Nomoto (1957) 

An alternative representation of the model of Davidson and Schiff (1946) was proposed by 
Nomoto et al. (1957). This model is obtained by eliminating the sway velocity v from (8.20). 
The result is Nomoto's 2nd-order model which simply is the transfer function between rand 
6, that is: 

)!}.,-.":,,.., . Alit"".·,,··"'· .- cy·-",-,~....,:··,·,-"·, -"S'~~~~~"",""::'''t;~,·"",, __ ,.,--8Y:=~''':'-

r K(l + T3s) 
(8.26);5(s) = (1 + T I s)(l + T2s) 
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where T; (i = 1, ... , 3) are time constants and K is the gain constant. 

Matlab:
 
This Nomoto transfer function is computed numerically in Matlab" from the state

space model (8.23) by:
 

A -inv(M)*N 
bl inv(M)*b 
In, d) ss2tf(A,bl) 

A similar expression is obtained for sway: 

v K v(l +Tv 8) 
(8.27)8(8) = (1 + T18)(1+T2 8) 

where Kv and Tv are the gain and time constants in sway, respectively. 
A 1st-order approximation to (8.26) is obtained by defining the effective time constant: 

T = T1 +T2 - T3 (8.28) 

such that: 

r K 
(8.29)8(8) = (1 + T8) 

where T and K are known as the Nomoto time and gain constants, respectively. Neglecting 
the roll and pitch modes (</> = () = 0) such that: 

;p = r (8.30) 
,0' 

finally yields: . 
K(l +T38 ) 

!(8) = 
8 8(1 +T18)(1 +T28) 

K 
(8.31)

~ 8(1 +T8) 

This model is the most popular model for ship autopilot design due to its simplicity and 
accuracy. 

Time-Domain Representations of tbe lst- and 2nd-Order Nomoto Models 

Combining Nomoto's 2nd-order model (8.26) with (8.30), yields: 

T1T21/J(3 ) + (T1 + T2);j; +;P = K(8 + T38) (8.32) 

A similar expression is obtained for (8.29) and (8.30): 

T;j; +;P = K8 (8.33) 

Hili 
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Matlab:
 
The accuracy of the 1st-order Nomoto model when compared to the 2nd-order model
 
is illustrated in Example 8.1 where a course stable cargo ship and a course unstable oil
 
tanker are considered.
 

function nomoto(T1,T2,T3,K)
 
% NOMOTO(T1,T2,T3,K) generates the Bode plots for
 
%
 
% K K (1+T3s)
 
% HI (s) H2(s)
 
% (l+Ts) s s (1+T1s) (1+T2s)
 
%
 
% Author: Thor I. Fossen
 
% Date: 19th June 2001
 
% Revisions:
 

T ; T1+T2-T3;
 
d1 ; [T 1 0]; n1 ; K;
 
d2 ; [T1*T2 T1+T2 1 0]; n2; K*[T3 1];
 
[mag1,phase1,w] bode(n1,d1);
 
[mag2,phase2] bode (n2, d2 , w) ;
 

% shift ship phase with 360 deg for course unstable ship
 
if K < 0,
 
phase1 phasel-360;
 
phase2 phase2-360;
 
end
 

clf,subplot(211),semilogx(w,20*log10(mag1»,grid
 
xlabel('Frequency [rad/s]'),title('Gain [dB]')
 
hold on,semilogx(w,20*log10(mag2),'-'),hold off
 
subplot(212),semilogx(w,phase1) ,grid
 
xlabel('Frequency [rad/s]'),title('Phase [deg]')
 
hold on,semilogx(w,phase2,'-'),hold off
 

Example 8.1 (Frequency Response for Nomoto lst- and 2nd-Order Models) 
Consider a Mariner class cargo ship (Chislett and Strem-Tejsen 1965a) and a fully loaded tanker 

(Dyne and Tragardh 1975) given by the parameters in Table 8.1. The Bode diagram is generated 

by using the GNC Toolboc commands: 

Tl;118;T2;7.8;T3;18.5;K;O.185;
 
nomoto (Tl, T2, T3, K)
 

Tl=-124.1;T2;16.4:T3=46.0;K=-O.019;
 
nomoto{Tl,T2,T3,K)
 

It is seen from Figure 8.2 that the lst-order approximation is quite accurate up to 0.1 rad/s for 

the cargo ship and the tanker. A small deviation in the phase around 0.5 radls is observed This is 

due to the cancellation ofthe sway dynamics. 
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Figure 8.2: 1st-order and 2nd-order Nomoto transfer functions for a course stable Mariner 
class cargo ship and a course unstable oil tanker. 

r't ... 
' 

i:j! 

::;1 

Table 8.1: Parameters for a cargo ship and a fully loaded oil tanker. 
\Iodels) 

I
 L(m) \l (dwt) K (1/s) T1 (s) T2 (s) T3 (s)
~Ily loaded tanker Uo (m/s) 
cargo ship 161 7.7 16622 0.185 118.0 7.8 18.5~am is generated 
Oil tanker 350 8.1 389100 -0.019 -124.1 16.4 46.0 

t 

8.1.3 Non-Dimensional Autopilot Models 

When designing course autopilots it is often convenient to normalize the ship steering equa
7 (0 0.1 rad/s for tions ofmotion such that the model parameters can betreated as constants with respect to the 
observed. Thisis instantaneous speed U defined by: 

U = Vu2 + v2 = J(uo + ~U)2 + ~v2 (8.34) 

;.::: 

--~------------~--'--:---------.,.,. 
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where U() is the service speed and ~u and ~v are small perturbations in the surge and sway 
velocities, respectively. Hence, 

U ~ Uo	 (8.35) 

During course changing maneuvers the instantaneous speed will decrease due to increased 
resistance during the turn. 

The most commonly used normalization forms for marine vessels are the Prime-system 
ofSNAME (1950), and the Bis-system ofNorrbin (1970). 

Prime-System: This system uses the ship's instantaneous speed U, the length L = Lpp (the 
length between the fore and aft perpendiculars), the time unit L/U, and the mass unit 
12pL3 or 12pL2T as normalization variables. The latter is inspired by wing theory 
where the reference area A = LT is used instead ofA = L2. The prime system cannot 
be used for low-speed applications like dynamic ship positioning, since normalization 
of the velocities u, v, w implies dividing by the cruise speed U, which can be zero for 
a dynamically positioned ships. As a consequence, the prime system is mostly used in 
ship maneuvering. 

Bis-System: This system can be used for zero speed as well as high speed applications since 
division of speed U is avoided. The His-system is based on the use of the length 
L = Lpp , the time unit JL/g such that speed becomes JL9 > O. In addition the 
body mass density ratio J.L = m]pV, where m is the mass unit and V is the hull 
contour displacement, is applied. The density ratio J.L takes the following values: 

J.L<1 Underwater vehicles (ROVs, AUVs, submarines etc.)
 
J.L=1 Floating ships/rigs and neutrally buoyant underwater vehicles
 
J.L>1 Heavy torpedoes (typically J.L = 1.3-1.5)
 

The normalization variables for the Prime- and His-systems are given in Table 8.2. The 
non-dimensional quantities in the Prime- and His-systems will be distinguished from those 
with dimension by applying the notation (.), for the Prime-system and (.)" for the His-system. 

Example 8.2 (Normailzation of Parameters) 
The hydrodynamic coefficient Yr can be made non-dimensional by using the Prime- and Bis
systems. First, let us determine the dimension ofYr. Consider: 

Yr r 
......".... ......".... 

[unknown] [radls] 

Hence. the unknown dimension must be kgm/s since rad is a non-dimensional unit. The non
dimensional values Y: and Y:' arefound by using kg, m, and s from Table 8.2. Consequently: 

, Yr __l_y' 
(8.36)Yr = [	 p£3][L] - ~pL3U r 

L/U] 

y" =	 Yr = 1 Y. (8 37) 
r [l'pV'llL] J.LpV,;r;g r	 . 

vL79 
For aftoating ship Y:' can be further simplified since J.L = 1 and m = pV. Hence: 

y" = _l_y'	 (8.38) 
r rmJL9 

-..
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Table 8.2: Normalization variables used for the Prime-system and Bis-system. 

Unit Prime-system I Prime-system II Bis-system 
Length L L L 
Mass ~pL3 ~pL2T IlP"V 
Inertia moment ~pL5 ~pL4T IlP"VL2 

Time L L JL/gn V 
Reference area L2 LT Il 2i 
Position L L L 
Angle 1 1 1 
Linear velocity U U ..;rg 
Angular velocity u u Jg/LL L 

u2 u2 
Linear acceleration L L 9 

u' u' .!J..Angular acceleration V L' L 

Force ~pU2 L2 ~pU2LT Ilpg"V 
Moment ~pU2L3 ~pU2L2T Ilpg"VL 

Example 8.3 (Normalization of States and Parameters)
 
Consider the model of Davidson and Schiff (1946). Normalization of (8.20) according to
 
the Prime-system suggests:
 

M'v' +N'(u~)v' = b'8' (8.39) 

where v' = [v', r'lT and: 

M' = [ 
m'  Y'v 

m'x~ - N~ 

m'x' - Y! ] [9 r '_
I~ - N; ,b 

- y:, ]8 
- N;' 

N'(u~) = [ 
-Y'
-Ntv 

m'u~-Y'] 

m'x' u' - N'9 0 r 

where 
Uo 

~ = U :::::: 1, for ~u :::::: 0 and ~v :::::: 0 (8.40) 

The non-dimensional velocities and control input can be transformed to its dimensional val
ues by: 

U, 
v = Uv', r= L r, 8 = 8' (8.41) 

6 DOF Normalization Procedure 

A systematic procedure for 6 DOF normalization is found by defining a transformation ma
trix: 

(8.42)T = diag { 1,1,1, ±'±'±} 
T-1 = diag{I,I,I,L,L,L} (8.43) 

oIilI&o.~;''S,-........
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~~ 
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Table 8.3: 6 DOF normalization variables. 

Prime-system Bis-system 

acceleration i/ = gTi/" 
velocity v =.;rg Tv" 

•
position/attitude 1] =LT1]" .... -. <;. 
control forces/moments T = !-Lpg\! T-1T" 

'", S'~l'Il 

Consider the non-dimensional MIMO model (see Example 8.3): 

M'i/' + D'v' + G'1]' = T' (8.44) 

When designing vessel simulators and gain-scheduled controllers it is convenient to perform 
the numerical integration in real-time using dimensional time. Consequently, it is convenient 
to use the non-dimensional hydrodynamic coefficients as input to the simulator or controller, 
while the states u, 1], and input T should have their physical dimensions. For the Prime
system this is obtained by applying the following transformation to (8.44); 

,(L -I.) ,(1 -I) ,(1 -I ) 1M U2T v + D U T v + G 17 1] = ~pU2 L2TT (8.45) 

n. _ $ 
such that: y." 

._,~ 

(8.46) 

Notice that u, 1], and the input vector T now have physical dimensions while M', D' and G' .-a.: ..y _ .......
5 
are non-dimensional. Similarly, Bis-system scaling gives: 

''''!'''l'l'!'~·_'~:~''<~"0~~"""",.:-_K__ ~")%%Ft!M; .~.~~W'l!''-:lf'''''~'i~:\i 

I 
' (TM"T-1)i/ + fi (TD"T-1)v + 2... (TG"T- 1)1] = _1_T2T (8.47)" 

VL L !-Lp\! "1Ir __ '

..' .....--., . 
--*Ill-=: .. .: The following example demonstrates this for the model of Davidson and Schiff (1946). 

t.: I 

Example 8.4 (Normalization of Parameters wblle keeping tbe Actual States) - . 
Consider the model in Example 8.3: 

M'i/ + N'(u~)v' = b'tS' (8.48) 

Transforming the states v' and control input {)' in (8.45) to dimensional quantities, yields: 

(8.49) 

where .~" ... - ~I 
T = diag{l,l/L} (8.50) .. 

m 
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Notice that 8 = 8'. Expanding (8.49). yields: 

2m~1 Lm,~2 ] [ ~ ] + U [;~~ L~~2] [ V ] = U [ l.b~, ] 8 (8.51)
[ ±m~1 m 22 r L L n 21 n 22 r L L b2 

where m~j' d~j and b~ are defined according to Prime systems I or II in Table 8.2 

Example 8.5 (Normalization Procedure for the Nomoto Time and Gain Constants)
 
The gain and time constants in Nomoto 50 1st- and 2nd-order models can be made invari

ant with respect to Land U by defining:
 

K' = (LjU) K, T' = (UjL)T (8.52) 

This suggests that the 1st-order ship dynamics can be expressed as: 

(LjU)T'r+r= (UjL)K'8 (8.53) 

or 

r=_(U)~r+(U)2K'8 (8.54)
L T' L T' 

This representation is quite useful since the non-dimensional gain and time constants will 
typically be in the range: 0.5 < K' < 2 and 0.5 < T' < 2 for most ships. An extension to 
Nomoto 50 Znd-order model is obtained by writing: 

(LjU)2 T{ T~ 7/1(3) + (LjU) (T{ + T~) ¢ + ip = (UjL) K' 8 + K' T~ J (8.55) 

where the non-dimensional time constants TI are defined as: TI = Ti (U j L) for (i = 1, 2, 3) 
and the non-dimensional gain constant is K' = (LjU) K. 

:1 

8.1.4 Nonlinear Models for Autopilot Design 

The linear Nomoto models of Section 8.1.2 can be extended to include nonlinear effects 
by adding static nonlinearittes referred to as maneuvering characteristics. Commonly used 
models are: 

Nonlinear Extension of Nomoto's Ist-Order Model 

In Norrbin (1963) the following 1st-order model was proposed: 

Tr + HN(r) = K8 (8.56) 

HN(r) = n3r3 + n2r2 + nIr + no 

where HN (r) is a nonlinear function describing the maneuvering characteristics. For HN (r) = 
r, the linear model (8.33) is obtained. 

~. 

I;i!lIIiiii .... Ji!!! ---• 
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Nonlinear Extension of Nomoto's 2nd-Order Model 

Bech and Wagner Smith (1969) propose a 2nd-order model: 

4J!.t ; .,@iiLM, ,¥:,:"'fHf~\$!l;r'%j¥1'TIj~ ~!!!llI'III!!!!llI'III!~ 

T}T2 r+ (T} + T2 )f + KHB(r) = K(8 + T38) (8.58) 

HB(r) = b3r
3 + b2r

2 + b}r + bo (8.59) 

where HB (r) can be found from Bech's reverse spiral maneuver. The linear equivalent (8.32) 
is obtained for HB(r) = r. 

The linear and nonlinear maneuvering characteristics are shown in Figure 8.13 in Section 
8.3. They are generated by solving for r as an function of 8 using the steady-state solutions 
of (8.56) or (8.58): 

(8.60) 

The nonlinear maneuvering characteristics can also be generated from full-scale maneuvering 
tests. For stable ships both the Bech and Dieudonne spiral tests can be applied while the Bech 
spiral is the only one avoiding the hysteresis effect for course unstable ships; see Section 8.3 
for details. 

For a course-unstable ship, b} < 0 whereas a course-stable ship satisfies b} > O. A 
single-screw propeller or asymmetry in the hull will cause a non-zero value of boo Similarly, 
symmetry in the hull implies that b: = O. Since a constant rudder angle is required to 
compensate for constant steady-state wind and current disturbances, the bias term bo could 
conveniently be treated as an additional rudder off-set. This in turn implies that a large 
number of ships can be described with the simple polynomial: 

(8.61) 

The coefficients b, (i = 0, ... ,3) are related to those in Norrbin's model n; (i = 0, ... ,3) 
by: 

(8.62) 

resulting in: 
(8.63) 

This implies that, nl = 1 for a course-stable ship and n} = -1 for a course-unstable ship. 

The Nonlinear Model of Abkowitz (1964) 

One of the standard nonlinear ship models in the literature is that of Abkowitz (1964). Con
sider the nonlinear rigid-body equations of motion (8.3): 

2m(u - vr - xg r ) = X(x) 
m(v + ur + xgf) = Y(x) (8.64) 

I z f + mxg(v + ur) = N(x) 

where 
• . . J:]Tx= (u,v,r,u,v,r,u (8.65) 

-...�..,_.....� 

.r'~:, ~ 

I~ 
T"x' :a:r 

,'~ 

~ 1[' =-
wIDE.h = 
2 .... 

4"'~.....,...... 
%1"'''''''';''1... 

~ f tI,, 

Ji-m.. 
~ -.,.,...
~...._......�
~ = r 

.x.... 

.x.. 
1-,". = 
1:. 

r... 
)( = ... 

.... ...-
-'6. 

-'--�
.i!' j. 

:1 

~"'~. 

_PEP 



Ii

1IIIIIi..... ·.;.,·
 I.,. ..
i!. ii, 

I

I' 
I' 

Course Autopilots 

~: 

II' 

II' 

~ 

(8.58) 

(8.59) 

:ar equivalent (8.32) 

gure8.13 in Section 
eady-state solutions 

~ (8.60) 

-scale maneuvering 
lliedwhile the Bech 
ips; see Section 8.3 

uisfies b1 > O. A 
lie of boo Similarly, 
ngle is required to 
bias term bo could 

IDplies that a large 

! 
r (8.61) 

l n, (i = 0, ... ,3), 
(8.62) 

l 
(8.63) 

se-unstable ship. 

I\\itz {I964). Con

~ 

(8.64) 

~ 

~ (8.65) 

I!!I 

8.1 Autopilot Models 317 

Based on these equations, Abkowitz (1964) proposed a 3rd-order truncated Taylor series
 
expansion of the functions X(x), Y(x) and N(x) at:
 

X o = [uo' 0, 0, 0, 0, 0, O]T	 (8.66) 

This gives: 

2	 3 
n (OX (x) I 1 0 X(x) I 2 1 0 X(x) I 3)

X(x) :::::: X(Xo)+ L ~ LlXi + 2 (ox.)2 LlXi +"6 (ox-)3 LlXi 
i=l 'XQ 'XQ ' XQ 

~ (OY(X) I 1 02y(x) I 2 1 oJY(x) I 3)
Y(X) :::::: Y(Xo)+ L..J -0-' LlXi + 2 (0 .)2 LlXi +"6 (0)3 Llxi 

i=l X, Xo x, Xo x, XQ 
2~ ( oN(x) I 1 0 N(x) I 2 1 oJN(x) I 3)

N(x) :::::: Z(Xo)+ L..J -0-' LlXi + 2 (0 .)2 LlXi +"6 (0)3 Llxi 
i=l X, Xo x, Xo x, XQ 

where ax = x - Xo = [LlxI, LlX2, ...Llxn]T. Unfortunately, a 3rd-order Taylor series ex
pansion results in a large number of terms. By applying some physical insight, the complexity 
of these expressions can be reduced. Abkowitz (1964) makes the following assumptions: 

1. Most ship maneuvers can be described with a 3rd-order truncated Taylor expansion about
 
the steady state condition u = UQ.
 

1. Only Ist-order acceleration terms are considered. 

3. Standard port/starboard symmetry simplifications except terms describing the constant
 
force and moment arising from single-screw propellers.
 

4. The coupling between the acceleration and velocity terms is negligible. 

Simulations of standard ship maneuvers show that these assumptions are quite good. Apply
ing these assumptions finally yields: 

X = X· + Xuu + Xu~u + Xuu~U2 + Xuuu~u3 + X vvv 
2 + X rrr 2 + Xoo8

2 

+ X rvrv8 + Xror + X vov8 + X vvuv ~u + X rrur ~u + Xoou8
2 ~u2 2	 

r.'
::1+	 Xrvurvu + Xrour8~u +Xvouv8~u
 

3 3
Y = Y· + Yu~u + Yuu~u2 + Yrr + Yvv + Yd + Y"V + Yo8 + Yrrrr + Yvvvv
 
28 2v
+ Yooo83 + Yrr8r + Yoor82r + Yrrvr 2v + Yvvrv 2r + Yo8v8 + Yvv8v28 + v.svr8vr 

+ Yvuv~u + Yvuuv~u2 + Yrur~u + Yruur~u2 + Y8u8~u + Y8uu8~U2 

3 3N = N· + Nu~u + Nuu~U2 + Nrr + Nvv + Nd + N"v + No8+ Nrrrr + Nvvvv
 
28 2 28
+ Nooo8

3 + N rror + Noor8 r + Nrrvr2v + Nvvrv 
2r + N88v82V + Nvvov 

+ Novr8vr + Nvuv~u + NvuuV~U2 + Nrur~u + Nruur~u2 + Nou8~u 

+ Nouu8~U2	 (8.67) 

The hydrodynamic derivatives are defined as: 

F· = F(Xo), FX i = O~;~) IXQ 

1 o3F(x) I
FX i X j
 = ~ ~:~~:; IXQ ' FXiXjXk = "6 OXiOXjOXk Xo 

where FE {X, Y, N}. 

......_ _. .__ ._ __ _----..J
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The NonUnear Model of Norrbin (1970) 

Norrbin (1970) developed a nonlinear mathematical model for ship maneuvering in deep and 
confined waters. This model is based on both experimental and analytical methods. 

Similar to Abkowitz's model, Norrbin's model consists of three principal equations de
scribing the axial and transverse forces (X and Y) and the yaw moment (N). Coefficients 
and parameters are made non-dimensional by applying the Bis-system (see Section 8.1.3). 
For deep water Norrbin's model takes the following form: 

Speed equation: 

(1 - X~')U = !L-1X" u2 + -.!...L-2g-1X" u4 + g(l- t)T" + (1 + X" )vr
u 2 uu 24 uuuu vr 

" IX") 2 -IX" I I 2 I I .2+ L(X g + 2" rr r + 6l L-2
g uvvvU v v + 4"l L- ix clcloo C CUe 

Steering equations: 

(1 - Yt')iJ = L(Yj' - x~)f + (Y~~ - l)ur + ~(Lg)-1/2Y~~rU2r 

+ L-1y" uv + !L-3/ 2g-1/2y" u 2v + !L-1y:" Ivlv + !LY:" Irlr uv 2 uuv 2 Ivlv 2 Irlr 

+ J1~lrlvlr + Y~lrlvlrl + ~L-IJI~lcolclc8e + k-ygT" 

((k;)2 - Nnf = L-1(N: - x~)iJ + L-1(N::r - x~)ur 

+ !L-3/2 -1/2N" 2 + L-2N" + !L-5 / 2 -1/2N" 22 g uurU r uvuv 2 g uuvu v 

l L-2N" I I IN" I I L-1
7l.T" I I + 2" Ivlv v v + 2" Irlr r r + Hlvlr V r 

1
+L-IN~rlvlrl + 2"L-2N(~lcOlclc8e +L-1gkNT" 

where 

8e 

C 

T" 
t 

effective rudder angle (8e = 8 for v = r = 0) 
- flow velocity past rudder 
- non-dimensional propeller thrust 
- thrust deduction factor 

(k~)2 = 
g 
L 

I~ - non-dimensional squared radius of gyration 
- acceleration of gravity 

length of hull 

The radius ofgyration with respect to the z-axis is defined as: 

(8.68) 

This number simply tells how far from the z-axis the entire mass m might be concentrated 
and still give the same I z> Semi-empirical methods for estimation of the force and moment 
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derivatives are found in Norrbin (1970). A quasi-stationary approach can be used to model 
the effective rudder angle oe. Norrbin (1970) gives the following expression: 

ring in deep and� 
ethods, Oe = 0 + (kv vc + k; Lr2c)lOi (8.69)� 
al equations de�

where 8 is the rudder angle and typical values for k; and k r are kv = -0.5 and kr = 0.5.n. Coefficients 
Norrbin (1970) suggests fitting the flow velocity past the rudder for positive thrust from the : Section 8.1.3). 
open water propeller diagram as: 

.2 1 2 2 2 1 .2 I� 1 2 2 
c: = 2CUuu + cunun + 2Cfnlnln n + 2Cnnn (8.70) 

where n is the propeller revolution. The four coefficients in this equation depend on the screw 
(1 + X:r)vrT"� characteristics as well as the wake factors. Besides, the equation for the flow velocity c at the 

rudder, an auxiliary equation for the propeller thrust T is needed. This equation is written: 
Xclcloo IclcO~ 

lL-lT" 2 Til 1 7' I lILT 29T" =2 uuu + unun+2LLlnlnnn+2 nnn (8.71) 

In Norrbin (1970) a more general version of this model describing large tankers in deep and 
confine waters is presented. 

Tbe Nonlinear Model of Blanke (1981) nl~lrlrlr 

A simplified form of Norrbin's nonlinear model which retains the most important terms for 
loSe + k"l9T" steering and propulsion loss assignment has been proposed by Blanke (1981). For conve

nience, this model is written in dimensional form as: 

~. Speed Equation: 
(m - Xu)u = Xlulujulu + (1- t)T + 11081 (8.72)

:",u2v ,� where the loss term is:� 

11088 = (m + Xvr)vr + (mxg + X r r)r
2 + X o802 + Xext (8.73) 

+- L-1gkNT"� In addition to this simplification, Blanke suggests that the terms Xu and (mxg + X r r ) 

can be taken to be zero since these terms will be quite small for most ships. In fact, 
Xu will typically be less than 5% of the ship mass. The last term is multiplied with the l·. 2. .- square angular rate r , which will be less than 0.0003 (rad/s)2 for a ship limited by a 
turning rate ofrmax = 1 (deg/s) = 0.0175 (rad/s). 

Steering Equations: 

t� (m - y,.,)v + (mxg - y".)f = -(m - Yur)ur + Yuvuv + Yjv[vlvlv 

+Yjvlrlvlr + Y8 0 + Yext (8.74) 

(mxg - N,.,)v + (Iz - Nf)f = -(mxg - Nur)ur + Nuvuv + Nlvjvlvlv, +N1v1rlvlr + N80 + Next (8.75) 

It should be noted that all models discussed in this chapter are based on the assumption 
(8.68)� that the ship motion is restricted to the horizontal plane. In Section 9.1, it is shown how 

the roll motion can be included to describe the coupled ship motion in 4 DOF; that is be concentrated 
surge, SW~, roll, and yaw.

fee and moment 

l 

l .~_.,-, 

y--



..,� 

" 

, ,I 

320 Course Autopilots 

8.2 Open-Loop Stability Analysis of Ships 

Stability of the uncontrolled ship can be defined as the ability to return to an equilibrium 
point after a disturbance, without any corrective action of the rudder. Maneuverability, on the 
other hand, is defined as the capability of the ship to carry out specific maneuvers. Excessive 
stability implies that the control effort will be excessive in a maneuvering situation whereas 
a marginally stable ship is easy to maneuver. Thus, a compromise between stability and 
maneuverability must be made. 

8.2.1 Stability Considerations for Ship Steering and Positioning 

For ships it is common to distinguish between three types of stability, namely straight-line, 
directional and positional motion stability. Consider the following test system: 

:i; = u cos 'l/J - v sin 'l/J ~ Uo cos 'l/J (8.76) 

iJ = u sin 'l/J + v cos 'l/J ~ Uo sin 'l/J (8.77) 

1;; = r (8.78) 

Tf+r = K8+w (8.79) 

where w is the external disturbances and Uo = constant is the cruise speed. Let the rudder 
control system be ofPD type, that is: 

(8.80) 

where e., = constant is used to denote the desired heading angle and K p and Kd are two 
positive regulator gains. Substituting the control law (8.80) into Nomoto's 1st-order model 
yields the closed loop system: 

T 1i; + (1 + KKd) 1;; + KKp'l/J = KKp'l/Jd + w (8.81) 
~~~~ 

m d k f(t) 

The closed-loop system represents a 2nd-order mass-damper-spring system: 

m1i; + d1;; + k'l/J = f(t) (8.82) 

with driving input f(t) = k'l/Jd + w. The eigenvalues ),1,2, the natural frequency W n , and the 
relative damping ratio ( for the mass-damper-spring system are: 

-d± Jd2 - 4km d 1 
(8.83)),1,2 = 2m ' (=2..;km 

Matlab: 
The closed-loop system (8.81) is simulated in Matlab™ using the GNC Toolbox script: 

StabDemo 

&.20,...1 

nc..... 

7 
s 'T j. 

:
,� 

s- id UI 
JIIIIIL... 
path ~ 

I 
c.
*PI 

c, 

! ~ 
\1 

I 
I, 

IJ 
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(8.76) 

(8.77) 

(8.78) 

(8.79) 

d Let the rudder 

r: (8.80) 

> and K d are two 
, I st-order model 

(8.81) 

W n , and the 

(8.83) 

8.2 Open-Loop Stability Analysis of Ships 

The following stability considerations are made for the system (8.81): 

Instability: For uncontrolled ships (Kp = Kd = 0) instability occurs when: 

Al = _ !!:- _ 1m--r>O and A2 = 0 

which simply states that T < O. This is common for large tankers. 

Straigh-Line Stability: Consider an uncontrolled ship (Kp = Kd = 0) moving in a straight 
path. If the new path is straight after a disturbance w in yaw the ship is said to have 
straight-line stability. The direction of the new path will usually differ from the initial 
path because no restoring forces are present (k = 0). This corresponds to: 

d 1 
Al = -- = -- < 0 and A2 = 0 

m T 

Consequently, the requirement T > 0 implies straight-line stability for the uncontrolled 
ship (15 = 0). 

xv-Plot Straight-line stability 
200 

150 

100 

50 

o 

-50 

-100 
o 500 1000 1500 2000 2500 3000 

r (degls) 'II (deg) 

::1 
Q~ 

~ 1\ 1: . 4 

0.03 

O'Ol I \..1 2

0.01 

0' , 0 
o 200 400 600 0 200 400 600 

sec sec 

Figure 8.3: Straight-line stability for a ship when an impulse w(t) is injected at t = 100 (s). 

~""
 



322 Course Autopilots 

Directional Stability (Stability on Coune): Directional stability is a much stronger require�
ment than straight-line stability. Directional stability requires the final path to be par�
allel to the initial path which is obtained for K p > 0 ~ k > O. Additional damping is� 
added through Kd > 0, that is, PO-control. The ship is said to be directionally stable� 
ifboth eigenvalues have negative real parts, that is:� 

The following two types of directional stability are observed: 

No oscillations (<p - 4km 2: 0): This implies that both eigenvalues are negative and real�
i.e., ( 2: 1 such that:� 

Al,2 = -d ± ~~ - 4km = ( _( ± ~) W n < 0 

For a critically damped system ( = 1.0, such that Al,2 = - 2;" = -Wno 

XY-Plot: Directional slability (critical damped) 
10,-------,------,------,----..,-----...,..------, 

5 ..........�~ 

-6'---------'------'-------'-----'----.........------J� 
o� 500 1000 1500 2000 2500 3000� 

" (deg)� 

r (degls) 
0.08r-----~--~--..., 0.7r--------~--..., 

0.05� 0.6 

0.04� 0.5 

0.03� 0.4 

0.02� 0.3 

0.01� 02 

o� 0.1� 
o'--....J-_~_____=~
__...

.{l.01 '-----~--~----' 

o 200 400 600� o 200 400 600 

sec 

Figure 8.4: Directional stability for a critically damped ship «= 1.0) when an impulse w(t)� 
is injected at t = 100 (s).� 
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Damped oscillator (d2 - 4km < 0): This corresponds to two imaginary eigenvalues }.1,2 

with negative real parts «( < 1), that is: 

_
}.1,2

-d±jJ4km-dm _ 
,,_ . -

(_r±' ~) 

" JVl-c,, W n 

Directional stability for a critically damped «( = 1.0) and under damped ship «( = 0.1) 
is shown in Figures 8.4-8.5. Notice the oscillations in both positions and yaw angle in 
Figure 8.5. Directional stability requires feedback control since there are no restoring 
forces in yaw. However, in heave, roll and pitch where metacentric restoring forces are 
present (k > 0) no feedback is required to damp out the oscillations. 

10 iii 

XY.ft>t Directional a1abIliIy (undertla""4>"d) 

5 ....~ 

-0 
0 500 1000 

r (degls) 
0.06 c--------------, 

0.02 

0.04 

1500 2000 2500 3000 

., (deg) 

1.5~----------

:1 

i,; 

200 

sec 

400 600 

-<1.5 ,-I 

o 200 

~ 

sec 

400 

~ 

600 

---' 

Figure 8.5: Directional stability for a under damped ship «= 
injected at t = 100 (s). 

0.1) when an impulse w(t) is 

Positional Motion Stability: Positional motion stability implies that the ship should return 
to its original path after a disturbance. This can be achieved by including integral 
action in the controller. Hence, a Pill-controller can be designed to compensate for 
the unknown disturbance term w while a PD-controller will generally result in a steady 
state offset. 
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2 

1.5 ----- ...... 
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0 
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Figure 8.6: Positional motion stability for a PID-controlled ship when an impulse w(t) is� 
injected at t = 100 (s).� 

Example 8.6 (Straigh-Line Stability)� 
Consider the cargo ship and oil tanker ofExample 8.1. Recall that the equivalent time con�
stant in Nomoto 's 1st-order model was defined as:� 

Hence, the uncontrolled cargo ship has an equivalent time constant: 

Tcargoship = 118.0 + 7.8 - 18.5 = 107.3 (s) > 0 

while the oil tanker has an equivalent time constant 

Toil tmrker = -124.1 + 16.4 - 46.0 =-153.7 (8) < 0 

This implies that the cargo ship is straight-line stable while the oil tanker is unstable. 
"'. 

8.2.2 Criteria for Straight-Line Stability 

Recall from Section 8.2.1 that a ship is said to be dynamically straight-line stable if it returns 
to a straight-line motion after a disturbance in yaw without any corrective action from the ~. 
rudder. Consequently, instability refers to the case when the ship goes into a starboard or 
port turn without any rudder deflections. 10the same section, Nomoto's 1st-order model was 

-~------ - . ---- - ... _--_..
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l 
used to find a simple criterion for straight-line motion. This leads to the requirement that the 
time constant T must be positive. Similarly, it is possible to derive a criterion for straight-line 
stability for the state-space model (8.20): 

Mil + N(uo)v = b<5 (8.84) 

J where v = [v, r]T. Applications ofLaplace's transformation to the linear model (8.84) with 
v(O) = 0, yields: 

[Ms + N(uo)]v(s) = M(s) (8.85) 
3000 

Consequently, 

v(s) = [Ms + N(ua)]-Ib<5(S) = adj(Ms + N(uo))
-'_Lt.. AI"- , l\.Tt_ \\ b<5( s) (8.86) 

The characteristic equation is: 

det(MO" + N (Uo)) = A 0"2 + B 0" + C = 0 (8.87) 

where 
eoo 

( 
A = det(M) 

~' B = nUm22 + n22mU - n12m21 - n21m12 

C = det(N(uo)) (8.88)

rulse w(t) is The two roots 0"1,2 of (8.87), both of which must have negative real parts for open-loop 
stability are: 

Re{0"1,2} = Re {-B ± JB2 - 4AC} (8.89)"valent time con- 2A <0 

t' 
(' The quantities 0"1,2 are often referred to as the controls-fixed stability indexes for straight-line 
"•...., stability. 

The Routh stability criterion was developed in the 1860s by the British scientist E. J. 
Routh. 

Theorem 8.1 (The Routh Stability Criterion)I
. . 

Consider the characteristic equation: 

anAn + an_lAn-1 + an_2An-2 + ... + ao = 0 (8.90) 

~le. To apply the Routh criterion, the Routh array shown in Table 8.4) must be constructed The 
coefficients ai are the coefficients ofthe characteristic equation (8.90) and bi, Ci, di , etc. are 
defined as: 

able if it returns 
action from the b1 = a n-lan-2 - a nan-3an-l b2 = an-lan-4 - a nan-San-l 

Cl = b1an-3 - an-lb2bl C2 = b1an-s - an-lb3blI a starboard or 
d: = Clb2 - c 2b1Clrder model was 

J� 



326 Course Autopilots 

Table 8.4: Routh array. 
,\n an a n-2 a n-4 

,\n-l 
an-l a n-3 a n-5 

,\n-2 b1 ~ b3 
,\n-3 Cl C2 C3 
,Xn-4 d1 d2 d3 

Necessary and sufficient conditionsfor the system to be stable are: 

1. All the coefficients ofthe characteristic equation must be non-zero and have the same sign. 
2. All the coefficients ofthe first column ofthe Routh array must have the same sign. 

IfCondition 2 is violated, the number ofsign changes will indicate how many roots of the 
characteristic equation which will have positive real parts. Hence, the system will be unsta
ble. 

Proof. See Routh (1877). • 

According to the Routh Stability criterion, necessary and sufficient conditions for the ship to 
be stable are: 

A, B, C > 0 (8.91) 

The first condition A = det(M) > 0 is automatically satisfied since the vessels's inertia 
matrix M always is positive definite. Condition B > 0 implies that: 

(8.92) 

Consequently, the products of the diagonal elements of M and N (uo) must be larger than 
the products of the off-diagonal elements. This is is satisfied for most ships. Consequently, 

.,

.' condition (8.91) reduces to: 
,i 

C = det(N(U(j)) > 0 (8.93) 

This condition has also been proved by Abkowitz (1964) who stated the following theorem. 

Theorem 8.2 (Straight-Line Stability (Abkowitz 1964)) 
A ship is dynamically stable in straight-line motion ifthe hydrodynamic derivatives satisfy: 

det [ - Yv muo - Yr ]det(N(uo)) (8.94)
-Nv TnXgUO - N; 

Yv(Nr - mxguo) - Nv(Yr - muo) > 0 
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8.2 Open-Loop Stability Analysis of Sbips 

Proof. This is seen as a consequence of(8.93) and (8.22) .• 

It is interesting to notice that making C more positive will improve stability and thus reduce 
the ship's maneuverability, and the other way around. Straight-line stability implies that the 
new path of the ship will be a straight line after a disturbance in yaw. The direction of the 
new path will usually differ from the initial path. Contrary to this, unstable ships will go into 
a starboard or port turn without any rudder deflection. It should be noted that most modem 
large tankers are slightly unstable. For such ships, the criterion (8.94) corresponds to one of 
the poles being in the right half-plane. 

Straigbt-Line Stability in Terms of Time Constants 

The criterion (8.91) can be related to Nomoto's 2nd-order model (8.26) by noticing that: 

A B 
T1T2 = - > 0; T1 +T2 = C > 0 (8.95)

C 

Consequently, straight-line stability is guaranteed if T 1 > 0 and T2 > O. This can also be 
seen from: 

1 0R {-B±VB2-4AC}
0"12 =-- = e < (8.96) 

, T1,2 2A 

8.2.3 Criteria for Directional Stability 

Dynamic stability on course, or directional stability, cannot be obtained without activating 
the rudder. Usually a Pill-control system is used to generate the necessary rudder action to 
stabilize the ship. For simplicity, consider a PD-controller: 

8 = -Kp (¢ - ¢d) - KdT (8.97) 

which after substitution into Nomoto's 2nd-order model, yields the closed-loop dynamics: 

T1T2¢(3) + (T1 +T2 +T3KKd),¢ + (1+ KKd +T3KKp),(p + KKp¢ = KKp'I/Jd (8.98) 

From this expression, the cubic characteristic equation: 

A 0"3 + B 0"2 + C 0" + D = 0 

is recognized, where: 

A T1T2 

B T1 + T2 + T3KKd 

C 1 + KKd + T3K K p 

D KKp 

The requirement for directional stability is: 

Re{0"1,2,3} < 0 

-..~.,;. 

(8.99) 

(8.100) 

(8.101) 

(8.102) 

(8.103) 

(8.104) 
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This can be checked by forming the Routh array: 1I",!Ii'*.' 

A C 
B D 

(8.105)BO-AD oB 
D 

Consequently, sufficient and necessary conditions for the ship to be dynamically stable on 
course are: 

(i) A,B,C,D > 0 (8.106) 

(ii) BC-AD>O (8.107) 

This again implies that the controller gains Kp and Kd must be chosen such that the condi
tions (8.106) and (8.107) are satisfied. 

.8.3 Maneuverability .. 
Several ship maneuvers can be used to evaluate the robustness, performance and limitations • •...of a ship. This is usually done by defining a criterion in terms of a maneuvering index or by
 
simply using a maneuvering characteristic to compare the maneuverability of the test ship 

.~
 

. ,
with previously obtained results from other ships. A frequently used measure of maneuver • 
ability is the turning index ofNorrbin (1965). 

1-' 
~", 

The Norrbin Measure of ManeuverabiUty 
JII'I 

Norrbin (1965) defines a turning index as: .1[..
.-t 

1jJ' (e = 1)"j P = --'::-;--0-----:'  (8.108) -.. 
d' (t/ = 1) 

.' I 
where t/ = t( UIL) is the nondimensional time. P is a measure of turning ability or maneu
verability since it can be interpreted as the heading change per unit rudder angle in one ship 
length traveled at U = 1 (m/s). An expression for P can be found by solving the ODE: 

T';p' +;p' = tcs (8.109) 

with s = constant. This results in: 

1jJ/ (t/) = K'[t' - T' + T' exp( -(t/IT'))W (t/) (8.110) 

A 2nd-order Taylor expansion of exp(-t/ IT') is: 
.~ 

/ t/ (t')2 
exp(-t IT') = 1- T' + 2(T')2 + 0(3) (8.111) 
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such that: 

7jJ'(t') ;:;:: K' [t' - T' +T' (1- ~ + ~)] = K(t')2 (8.112)
0' (t') T' 2(T')2 2T' 

7jJ'(t' = 1) ;:;:: K' [(t')2] = K' (8.113)
o'(t' = 1) 2T' t'=l 2T' 

Consequently: 

P~ !K' (8.114)
2 T' 

The P-number is a good measure of maneuverability for course-stable ships. Norrbin con
cludes that P > 0.3 guarantees a reasonable standard ofcourse change quality for most ships 
while P > 0.2 seems to be sufficient for large oil-tankers. For poorly stable ships it is recom
mended to use P together with another maneuverability index, for instance the slope dr' Ido' 
or the width of the r'-J' loop; see Section 8.3.4. 

Maneuvering Cbaracteristics 

A maneuvering characteristic can be obtained by changing or keeping a predefined course 
and speed of the ship in a systematic manner by means of active controls. For most sur
face vessels these controls are rudders, fins, propellers and thrusters. However, since ship 
maneuverability depends on the water depth, environmental disturbances, ship speed and hy
drodynamic derivatives etc. care must be taken when performing a full-scale maneuvering 
test. A guide for sea trials describing how these maneuvers should be performed is found in 
SNAME (1989) . The following standard ship maneuvers have been proposed by the Inter
national Towing Tank Conference (lITC): 

•	 Turning Circle: This trial is mainly used to calculate the ship's steady turning radius 
and to check how well the steering machine performs under course-changing maneu
vers. 

•	 Kempf's Zig-Zag Maneuver: The zig-zag test is a standard maneuver used to com
pare the maneuvering properties and control characteristic of a ship with those of other 
ships. Another feature is that the experimental results of the test can be used to calcu
late the K and T values of Nomoto's 1st-order model. . 

•	 Pull-Out Maneuver: The pull-out maneuver can be used to check whether the ship 
is straight-line stable or not. The maneuver can also be used to indicate the degree of 
stability. 

•	 Dieudonne's Spiral Maneuver: The spiral maneuver is also used to check straight
line stability. The maneuver gives an indication of the range of validity of the linear 
theory. 

•	 Bech's Reverse Spiral Maneuver: The reverse spiral maneuver can be used for un
stable ships to produce a nonlinear maneuvering characteristic. The results from the 

(8.111) test indicate which rudder corrections that are required to stabilize an unstable ship. 

,"L:;	 to" 
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•	 Stopping Trials: Crash-stops and low-speed stopping trials can be used to determine 
the ship's head reach and maneuverability during emergency situations. 

8.3.1 Turning Circle 

This is probably the oldest maneuvering test. The test can be used as an indication on how 
well the steering machine and rudder control performs during course-changing maneuvers. It 
is also used to calculate standard measures ofmaneuverability like tactical diameter, advance 
and transfer shown in Figure 8.7); see Gertler and Hagen (1960) for a detailed description. 

Matlab:
 
The turning circle for the Mariner class vessel is computed using the GNC Toolbox script
 
ExTurnCircle.m where:
 

t_final = 700; % final simulation time (sec) 
t rudderexecute 100; % time rudder is executed (sec) 
h = 0.1; % sampling time (sec) 

% Mariner class cargo ship, cruise speed UO = 7.7 m/s 
x	 = zeros(7,1); % x=[u v r x y psi delta]' (initial values) 
u	 i= -15*pi/1BO; % delta c=-delta R at time t = t rudderexecute 

[t,u,v,r,x,y,psi,U] =... 
turncircle('mariner', x, ui, t_final, t_rudderexecute, h); 

The results are shown in Figure 8.7. Similar results are obtained by replacing, mariner.m, 
with the container ship, container.m; see ExTurnCircle.m. 

The maneuvering characteristics for the Mariner class vessel were computed to be 

Rudder execute (x-coordinate); 769m 
Steady turning radius: 711 m 
Maximum transfer: 1315 m 
Maximum advance: 947m 
Transfer at 90 (deg) heading: 534m 
Advance at 90 (deg) heading: 943m 
Tactical diameter at 180 (deg) heading: 1311m 

The steady turning radius R is perhaps the most interesting quantity obtained from the 
turning trials. In the maneuvering trial code of the 14th ITTC (1975) it is proposed to turn the 
ship over at maximum speed and with a rudder angle of minimum 15 degrees to obtain the 
turning circle. The rudder angle <5 should be held constant such that a constant rate of turn is 
reached (in practice a turning circle of 540 degrees may benecessary). 

The output from a positioning system is used to calculate the tactical diameter, steady 
turning radius, maximum advance and maximum transfer. A typical turning circle corre
sponding to a negative rudder angle is shown in Figure 8.7. 
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For a constant rudder angle 8, the ship will move in a circle with constant turning radius 
R and speed U in steady state, that is v = O. Solving (8.20) for the steady-state solution of 
v = [v, r]T, yields: 

(8.115) 

The equation for r in this expression becomes: 

r = (YvN<5 - NvY<5) 8 (8.116)
Yv(Nr-mxguo) - Nv(Yr - muo) 

The ship's turning radius R is defined as: 

R= U where (8.117) 
r 

Introducing the length L = Lpp of the ship the following expression for the ratio (RIL) is 
obtained: 

(8.118) 

where 

(stable ship) 

is recognized as one ofthe stability derivatives in the straight-line stability criterion discussed 
in Section 8.2.2. From (8.118) it is seen that increased stability (large C) implies that the 
turning radius will increase. Consequently, a highly stable ship requires more maneuvering 
effort than a marginally stable one. The ratio (RIL) can also be written in terms of non
dimensional quantities by: 

(R) = Y~(N; - m'x~) - N~(Y: - m') 1 
(8.119)

L Y'N' - N'Y' 8'v <5 v <5 

This formula is independent of the ship speed. It should be noted that the formulas for the 
turning radius are based on linear theory which assumes that 8 is small and accordingly that 
R is large. 

Another feature of the turning test is that the Nomoto gain and time constant can be 
determined. This is illustrated in the following example where a cargo ship is considered. 

Example 8.7 (Determination of the Nomoto Gain and Time Constants) 
The Nomoto gain and time constants can be computedfrom a turning test by using nonlinear 
least-squares curve fitting.for instance. Solving the ODE: 

Tr+r = Ko (8.120) 

for a step input 8 = 80 = constant, yields: 

r(t) = exp(-tIT)r(O) + [1 - exp( -tIT)] K80 (8.121) 

where KandT are unknowns. The Matlab™ GNC Toolbox script ExKT.mjits this model to 
a simulated step response ofthe model mariner.m which is a nonlinear model ofthe Mariner 
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class vessel. 
The resultsfor a step 80 = 5(deg) and U = 7.7 (m/s)=15 (knots). are (see Figure 8.8): 

K = 0.09 (s-l), T = 22.6 (s) (8.122) 

The Norrbin measure ofmaneuverability becomes: 

p = ~ K' = ~ K (~)2 = ~ (0.09) (160.9)2 = 087 (8.123)
2 T' 2 T U 2 22.6 7.7 . 

which guarantees good maneuverability since P > 0.3. The turning circle is shown in Figure 
8.7 indicating that the steady-state turning radius is 711 (m). 

Matlab: 

% ExKT Script for computation of Nomoto gain and time constants 
% using nonlinear least-squares. The rudder input is 5 deg at t=O. 

N 2000; % number of samples 
h 0.1; % sample time 

xout = zeros(N,2); 
x = zeros(7,1); 
delta_R = 5*(pi/180); 

for i=l:N, 
xout (i , :) = [(i-I) *h ,x (3)]; 
xdot = mariner(x,delta_R); 
x = euler2(xdot,x,h); 

end 

% time-series 
tdata = xout(:,l); 
rdata = xout(:,2)*180/pi; 

% rudder angle step input 

% nonlinear Mariner model 
% Euler integration 

% nonlinear least-squares parametrization: x(l)=l/T and x(2)=K
 
xO = [0.01 0.1]'
 
F = inline('exp(-tdata*x(l))*O + ...
 

x(2)*(1-exp(-tdata*x(1)) )*5' ,'x' ,'tdata') 
x = lsqcurvefit(F,xO, tdata, rdata); 

plot(tdata,rdata,'g',tdata,exp(-tdata*x(l))*O + •.• 
x(2)*(1-exp(-tdata*x(1)))*5,'r'),grid 

title('NLS fit of Mariner model for \delta = 5 (deg)') 
xlabel('time (s)') 
legend('Nonlinear model' ,'Estimated 1st-order Nomoto model') 
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Nonlinear least-squares fit of Mariner model for I) = 5 (deg) 
0.5 r----.,----r----.---~--_._--_._--r_-__,r__-__r--_, 

- Nonlinear model 
... - Estimated 1st-orner Nomoto model 

80 100 120 140 160 180 200 
time (s) 

Figure 8.8: Plot showing the estimated linear model and the nonlinear Mariner model for a 
step 8 = 80 = 5 (deg). 

8.3.2 Kempf's Zig-Zag Maneuver 

The zig-zag test was first proposed by Kempf (1932). Comprehensive test results of 75 
freighters are published in Kempf(1944). 

The zig-zag time-response (see Figures 8.9-8.10) is obtained by moving the rudder to 20 
degrees starboard from an initially straight course. The rudder setting is kept constant until 
the heading is changed 20 degrees, then the rudder is reversed 20 degrees to port. Again, 
this rudder setting is maintained until the ship's heading has reached 20 degrees in the op
posite direction. This process continues until a total of 5 rudder step responses have been 
completed. This test is usually referred to as a 20°-20° maneuver (the first angle refers to 
the actual rudder settings while the second angle denotes how much the heading angle should 
change before the rudder is reversed) and was standardized by the International Towing Tank 
Conference (ITTC) in 1963. 

For larger ships, IITC has recommended the use ofa 10°_10° or a 20°-10° maneuver to 
reduce the time and waterspace required. The only apparatus required to perform the test is a 
compass and a stopwatch. Alternatively a PC interfaced for real-time logging ofcompass data 
can be used. The results from the zig-zag maneuver can be used to compare the maneuvering 
properties ofdifferent ships 

Example 8.8 (Zig-Zag Maneuvering Trials) 
Both the Mariner class vessel (marinerm) and the container ship (containenm) are simu
lated/or a 20°-20° and a 20°-10° zig-zag maneuver, respectively, by using the Matlab™ 
script ExZigZag.m. 

The simulation results for the two vessels are shown in Figure 8.9-8.10. 
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Matlab: 
t_final 
t rudder
h = 0.1; 

= 
ex

600; 
ecute 10; 

% final simulation time 
% time rudder is execute
% sampling time (sec) 

(sec) 
d (sec) 

% 20-20 zig-zag maneuver for the Mariner class cargo ship 
% cruise speed UO = 7.7 mls (see mariner.m) 
x = zeros(7,1); % x = [ u v r x y psi delta ]' (initial values) 
ui = 0; % delta_c = 0 for time t < t rudderexecute 
[t,u,v,r,x,y,psi,Uj 

zigzag ('mariner' ,x,ui,t_final,t_rudderexecute,h, [20,20]); 

% 20-10 zig-zag maneuver for a container ship� 
% cruise speed 8.0 mls see container.m)� 
x = [8.0 0 0 a 0 0 0 0 0 70]'; % x = [ u v r x y psi delta n ]'� 
delta_c = 0; % delta_c = 0 for time t < t_rudderexecute� 
n_c = 80; % n_c = propeller revolution in rpm� 
ui = [delta_c, n_c];� 
[t,u,v,r,x,y,psi,U] = .•.� 

zigzag (' container' ,x,ui,t_final,t_rudderexecute,h, [20,10]); 

-_._._------~-------.~_ ..__....._-----_._-_.-:;......_
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Figure 8.10: 20°-10° maneuver for the container ship. 

8.3.3 Pull-Out Maneuver 

In 1969 Roy Burcher proposed a simple test procedure to determine whether a ship is straight
line stable or not. This test is referred to as the pull-out maneuver (12th I'I'TC 1969a). The 
pull-out maneuver involves a pair of maneuvers in which a rudder angle of approximately 20 
degrees is applied and returned to zero after steady turning has been attained. Both a port and 
starboard turn should be performed. 

During the test the ship's rate of turn must be measured or at least calculated by numerical 
derivation of the measured compass heading. If the ship is straight-line stable the rate of turn 
will decay to the same value for both the starboard and port turn (see Figure 8.11). The ship 
is unstable if the steady rate of turn from the port and starboard turn differ (see Figure 8.12). 
The difference between these two steady rates of turn corresponds exactly to the height of the 
Dieudonne's spiral loop that we will discuss next. 

Example 8.9 (Pullout Maneuver for a Stable and an Unstable Ship) 
Both the Mariner class vessel (mariner.m) and the Esso Osaka tanker (tanker.m) are sim
ulated under a pullout maneuver by using the Matlab™ script ExPullout. m. 

-.k .. 
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Figure 8.11: Pullout maneuver for the Mariner class vessels. Notice that the positive and 
negative curves meet for the stable ship. 
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Figure 8.12: Pullout maneuver for the Esso Osaka tanker. Notice that the positive and nega
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Matlab: 

delta c = 20*pi/180; % rudder angle for maneuver (rad) 
h = 0.1; % sampling time (sec) 

% Mariner class cargo ship, speed UO = 7.7 m/s (see mariner.m) 
x = zeros(7,1); % x = [ u v r x y psi delta ]' (initial values) 
ui = delta_c; % ui = delta_c 
[t,r1,r2] = pullout('mariner',x,ui,h); 

% The Esso Osaka tanker (see tanker.m) 
n = 80; 
U = 8.23; 
x = [ U 0 0 0 0 0 0 n ]'; % x = [ u v r x y psi delta n ]' 
n c = 80; % n_c = propeller revolution in rpm 
depth = 200; % water depth 
ui = [delta_c, n c, depth]; 
[t,r1,r2] = pullout('tanker',x,ui,h); 

The results are shown in Figures 8.11-8.12 where the curves meetfor the stable ship (Mariner 
class vessel) while there is an off-set between the curves for the unstable model ofthe Esso 
Osaka tanker. 

8.3.4 Dieudonne's Spiral Maneuver 

The direct spiral test was published first in 1949-1950 by the French scientist Jean Dieudonne. 
An English translation is found in Dieudonne (1953). The direct spiral maneuver is used to 
check straight-line stability. As seen from Figure 8.13, the maneuver also gives an indication 
of the degree of stability and the range of validity of the linear theory. 

To perform the test the ship should initially be held on a straight course. The rudder angle 
is then put to 25 degrees starboard and held until steady yawing rate is obtained. After this the 
rudder angle is decreased in steps of5 degrees and again held until constant yawing rates are 
obtained for all the rudder angles. The procedure is performed for all rudder angles between 
25 degrees starboard and 25 degrees port. In the range around zero rudder angle the step of 5 
degrees rudder should be reduced to obtain more precise values. The results are plotted in an 
r--/S diagram as shown in Figure 8.13. It should be noted that the spiral maneuver should be 
performed in still air and calm water to obtain the best results. 

For straight-line unstable ships it is recommended to use Bech's reverse spiral maneuver. 

8.3.5 Bech's Reverse Spiral Maneuver 

For stable ships both Dieudonne's direct and Bech's reverse spiral tests can be used. For 
unstable ships within the limits indicated by the pull-out maneuver Bech's reverse spiral 
should be applied. The reverse spiral test was first published by Mogens Bech in 1966 at 
the Nordic ship technical meeting in Malmo, Sweden and later by Bech (1968). Since then 
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Figure 8.13: r - 8 diagram showing the Dieudonne amd Bech spirals for both a stable and 
course stable ship. Notice the hysteresis loop in the Dieudonne spiral for the unstable ship. 

the reverse spiral test has been quite popular, because of the simplicity and reliability of 
the method. The reverse spiral is particularly attractive since it is less time-consuming than 
Dieudonne's spiral test. 

By observing that the ship steering characteristic is nonlinear outside a limited area, Bech 
(1968) suggested that one describe the mean value of the required rudder deflection 88 8 to 
steer the ship at a constant rate of turn r 88 as a nonlinear function: 

88s = HB(rss ) (8.124) 

where H B (rss) is a nonlinear function describing the maneuvering characteristic. " 

This can be understood by considering Nomoto's 2nd-order model: 

T1T2r+ (T1 +T2 )1' + KHB(r) = K(8 +T3 £5 ) (8.125) 

where the linear term r has been replaced with a function HB(r). Assuming that r = rs s is 
constant in steady-state, that is, f = l' = £5 = 0 directly gives (8.124). This implies that the 
r-J curve will be a single-valued (one-to-one) function of r for both the stable and unstable 
ship; see Figure 8.13. If the conventional spiral test is applied to an unstable ship a hysteresis 
loop will be observed. 

The full-scale test is performed by measuring the necessary rudder action required to 
bring the ship into a desired rate of turn. For an unstable ship this implies that the rudder 
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angle will oscillate about a mean rudder angle. The amplitude of the rudder oscillations 
should be kept to a minimum. After some time a "balance condition" is reached and both the 
mean rudder angle and rate of turn can be calculated. Care should be taken for large ships 
since they will require some more time to converge to their "balance condition". 

8.4 Course-Keeping Autopilots and Turning Control 

The different autopilot blocks ofFigure 8.1 are designed in this section using the ship models 
of Section 8.1. We will first discuss reference models before the different feedback control 
strategies are applied. 

8.4.1 Autopilot Reference Model 

A modem autopilot must have both course-keeping and turning capabilities. This can be 
obtained in one design by using a reference model to compute the desired states 'ljJd, ra, and 
Td needed for course-changing (turning) while course-keeping, that is: 

'ljJd = constant (8.126) 

can be treated as a special case of turning. A simple 3rd-order filter for this purpose is; see 
Section 5.1: 

'ljJd(S) = w~ (8127)
'ljJr (s +wn)(s2 + 2(w ns +w;) . 

where the reference 'ljJr is the operator input, ( is the relative damping ratio, and Wn is the 
natural frequency. Notice that: 

(8.128) 

and that;Pd and;j;d are smooth and bounded for steps in 'ljJr' This is the main motivation for 
choosing a 3rd-order model. 

In many cases it is advantageous to limit the desired yaw rate Irdl ~ r m ax during turn
ing. This can be done by including a saturating element in the reference model (see Van 
Amerongen 1982, Van Amerongen 1984). The yaw acceleration ad = ;j;d can also be limited 
such that ladl ~ am ax by using a second saturating element. The resulting state-space model 
including velocity and acceleration saturating elements becomes: 

;Pd = sat(rd) (8.129) 

Td = sat(ad) (8.130) 

ad = -(2( + l)wnsat(ad) - (2( + l)w;sat(rd) + w~.('l/Jr - 'ljJd) (8.131) 

The saturating element is defined as: 

sat(x) = {xsgn(x)xm ax if Ixl2: X m ax (8.132)
else 

The autopilot reference model has been simulated in Matlab" with yaw rate limitation 
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Figure 8.14: The plots show the effect of including a rate limitator ofTm ax = 1 deg in a 
3rd-order reference model for heading. Notice that rd becomes very high in the linear case 
while 'ljJd looks satisfactory in both cases. 

Tm ax = 1.0 (deg/s), acceleration limit am ax = 0.5 (deg/s"), and command 'ljJr = 30 (deg). 
The results are shown in Figure 8.14. Notice that the unlimited (linear) case yields unsatis
factory high values for rd. 

The main motivation for using a rate limiting element in the reference model is that the 
course-ehanging maneuver will bedescribed by three phases (positive turn): 

I Start of tum, acceleration (rd > 0 and 0 < i« S amax) 

II Steady turning (rd = Tm ax and Td = 0) 

In End of tum, deceleration tr« > 0 and -amax ~ i« < 0) 

The same three phases applies to negative turns but with opposite signs on rd and ad. The 
three phases are advantageous when performing a large change in course. The effect of a 
saturating element and nonlinear damping in a reference model are also demonstrated in 
Example 5.1 in Section 8.1. 

A more sophisticated method for generating heading reference signals could be to use 
optimization techniques to compute the desired yaw angle, but then at the expense of a more 
complicated software algorithm to be implemented in real time. 

1>
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8.4.2 Conventional pm-Control 

The autopilot systems of Sperry and Minorsky were both single-input single-output (SISO) 
control systems where the heading (yaw angle) of the ship was measured by a gyro compass; 
see Section 1.1. Today, this signal is fed back to a computer in which a Pill-control system 
(autopilot) is implemented in software. The autopilot compares the operator set-point (de
sired heading) with the measured heading and computes the rudder command which is then 
transmitted to the rudder servo for corrective action. 

The main difference between the autopilot systems of Sperry and Minorsky and the mod
ern autopilot is the increased functionality that has been added with sophisticated features 
like: 

•	 Wave filtering; avoids Ist-order wave disturbances being fed back to the actuators; see 
Section 6.1. 

•	 Adaptation to varying environmental conditions. shallow water effects and time-varying 
model parameters, e.g. changes in mass and centre of gravity. 

•	 Wind feedforward for accurate and rapid course-changing maneuvers. 

•	 Reference feedforward using a dynamic model. 'l/J d' rd, and ra, for course changing 
maneuvers. Course-keeping is obtained by using a constant reference signal, 'l/Jd = 
constant. as input to the reference model; see Section 8.4.1. 

Full State Feedback 

Assume that both 'l/J and r are measured by using a compass and a rate gyro. A PID-eontroller 
for full state feedback is (see Section 7.1): 

TN(S) = TFF(S) -x; (1 +Tds + ~s) '¢(s) (8.133) 
,	 I 

'" 

where TN is the controller yaw moment. TFF is a feedforward term to be decided. '¢ = 'l/J - 'l/Jd 

is the heading error and: 

«, > 0 proportional gain constant 

Td > 0 derivative time constant 

T; > 0 integral time constant 

A continious-time representation of the controller is: 

t 

TN(t) = TFF - Kp'¢ - KpTdr - Kp/Ti l ;j;(T)dT (8.134) 
'-v-" "-v-" 0 

«; tc, 

where r = r - rd and '¢ = 'l/J - 'l/Jd. The controller gains can be found by pole placement, see 
Section 7.1.3. This gives: 
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8.4 Course-Keeping Autopilots and Turning Control rAutoPUOts 

~tput (SISO) Kp = Tw n 
2 

.1 gyro compass; Kd 2(wnT -1 
rh:ontrol system Wntc.sor set-point (de lOKp 

.. which is then 

~. and the mod where ( is the relative damping ratio and W n is the natural frequency of the closed-loop 
asticated features system. 

Consider Nomoto's Ist-order model (8.29) in Section 8.1.2 with two rudder inputs olandIt 
02: 

abeactuators; see Ti: + T = K(OI + 02) + Twind (8.135) 
, ylit ,/ , 

TN 

where T wind represents the wind moment. In cases where wind is a measured term, T windr~VUYIDg 

can be cancelled directly by the controller. If T wind is unknown, then the integral term in the 
controller must compensate for the slowly-varying wind loads. 

Optimal control allocation for a ship equipped with two equal rudders implies that: 

course changing 
oce signal, 'l/Jd = Wind feedforward: 01 = 02 = 0.5 (TN -;w;nd ) 

(8.136) 
Integral action compensates for wind: 01=02=0.5(~) 

~, 
A more general discussion on control allocation is found in Section 7.5. 

tPlD-coDJroIler The feedforward term TFF in (8.133) is determined such that perfect tracking during 
course-changing maneuvers is obtained. Using Nomotc's lst-order model (8.135) as basis 
for feedforward, suggests that reference feedforward should be included according to: r: (8.133) 

) TFF = Trd + r« (8.137) 

:i<kd,;P = 'l/J-'l/Jd 
Substituting (8.137) and (8.133) into (8.135), the error dynamics becomes: 

Te + e= TPID (8.138) 

where e = 'l/J - 'l/Jd' Since this system is linear, the closed system can be analyzed in the 
frequency plane by using Bodeplots. Define the transfer function: 

e 1
h(s) = -(s) =-- (8.139) 

TPID 

and let (see Figure 8.15): 

hPID(S) = Kp(I+TdS+~s) 

ole placement, see K TiTdS2 + Tds + 1 
(8.140) 

p TiS 

t. 
~ .---------_._----- _______ _.. __J 

I 
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Figure 8.15: Bode plot showing asymptotic curves for the Pill-controller with (solid) and 
without (dotted) limited differentiation. 

Hence, the loop transfer function becomes: 

l(S) = h(s)hpID(S) 

tc; (TiTds2 +TdS+ 1) r 
= (8.141)

Ii s2(1 +Ts) 

A frequently used approximation for (8.140) is found by assuming that T; » Td such that 
T; ~ T; + Td • Hence: 

hPID(s) = tc, (1 +Tds+ ~s) 
2 

, n, 
~ K 1 + (Ti +Td)S + TdTis .. ,. ,,-

p TiS 

K (1 + Tis)(1 +Tds) 
(8.142) 

p TiS 

This expression is particular useful when sketching a Bode diagram using asymptotic approx
imations, see Figure 8.15. .1 • 

Matlab: » 71The transfer function (8.140) can be plotted by using the command: 
,-.::. 

bode(Kp.*[Ti*Td,Td,l], [Ti,O]) 
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Output Feedback using Only Compass Measurements 

In many cases ships are only equipped with a gyrocompass for feedback control. Hence, the� 
D-term in the controller must be replaced with a limited differentiator:� 

TdS 
r(s) ~ T. 'lj;(S) , 0 < a «: 1 (8.143)

1 +a dS 

such that the high-frequency components of 'lj;(s) are filtered out. If we apply the low-pass� 
filter:� 

1 
(8.144)hLP(s) = 1 + aTds 

to all terms in the Pill-controller, (8.142) takes the form: 

(1+ Tis)(1 + Tds) 
hpID(s) = K p Iis(l + aTds) 

The controller can be implemented in the time-domain as: 

TN = TFF - Kp¢LP - KpTd TLP - Kp/Ti t ¢LP( T )dT (8.-...- ---....-..- 10 
«; K. 

with two filters: 

1 - Tds ¢(s)- () - 'lj;(s), (8.l46)!'lj;LP S - 1 + aTds TLP(S) = 1 + aTds 

The parameter 0 < a < 1 is usually chosen to 0.1 while T; = 10 Td , such that: 

1 1 1-«:-«: (8.147)
t; t; «t; 

This is illustrated in Figure 8.15. 

Example 8.10 (Experimental testing of Car Carrier Autopilot)� 
In Figure 8.16 a scale model of MV Autoprestige of the United European Car Carriers� 
(UECC) is shown. UECC is transporting vehicles for the global automotive industry.� 

The mode scale is 8 = 21.6 and the length ofthe ship is L s = 128.8 (m). Hence, the 
length ofthe model becomes: 

Lrn = Ls/8 = 5.96(m) (8.148) 

The maneuvering tests of the vessel were performed in the Ocean Basin at MARINTEK in 
Trondheim, see Figure 8.2. This is a large testing facility where irregular waves can be 
generated by using wave makers. Also current generators and wind fans can be used to 
produce realistic conditions. The experiments were performed at service speed Urn = 2.3 
(mls) corresponding to: 

Us = YSUm = 10.7 (mls) = 20.8 (knots) (8.149) 

."'" 
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Figure 8.16: Model of the MY Autoprestige car carrier scale S = 21.6. Courtesy to MAR
INTEK and the United European Car Carriers (UECC). 

in full scale. The wave makers were configured to produce regular waves corresponding to 
Sea State Codes 4 and 5 according to: 

sea wave significant wave wave frequency of 

state direction wave height period frequency encounter 

(3 H 1/ 3 To Wo 
_ 2,.. 
- To We = 

w2 

wO-7Us cos (3 
4- bow sea -135° 1.3 m 8.5 s 0.70 radJs 1.08 radls 
5 - quatering sea 50° 3.5 m 9.0 s 0.74 radJs 0.36 radls 

Only course-keeping was tested The wave direction is defined in Section 4.2.3. The desired 
heading was chosen as 'I/Jd = constant with rd = rd = 0 in the two experiments. Only a 
PD-controller was needed because the size of the basin limited each test to approximately 
12 (s) which is not enough for the integrator to converge. Hence for sea-keeping, the Ocean 
Basin autopilot reduces to: 

TN -Kp ({p - 'l/Jd) - KpTd f- (8.150) 

(8.151)01 = c;)02 = ~ 

where;P and f- are computed using the passive wave filter described in Section 6.1.5; see 
Example 6.5. The inputs to the wave filter are position and attitude camera measurements 
and a Seatex MRU-6 motion unit, which are integrated in a state observer. 

The experimental results for bow andfollowing seas are shown in Figure 8.18-8.19. It 
is seen that the ship suffers from heavy rolling due to lateral incoming waves. Even though 
this is an extreme situation, the autopilot performs satisfactorily, thanks to the wave filter. It 
is important to notice that the estimated LF component ofthe heading ;p tracks the desired 
heading under relatively large WF motions both in roll and yaw. This also reduces the rudder 
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Figure 8.17: The Ocean Basin at MARINTEK., Trondheim. Courtesy to MARINTEK. 

action significantly. It is also seen that the ship's rolling motion for following seas, which is 
a well known phenomenon. 

The lest was also performed without wavefiltering using Yl = 'l/J + 'l/Jwand Y2 = r + rw 

directly in the feedback controller. The result was bang-bang control at maximum allowed 
rudder amplitude resulting in performance degradation in yaw. Poor performance in yaw 
will induce larger roll amplitudes which was clearly seen in the experiments. From this it 
can be concluded that all commercial autopilot system should include a wave filter to reduce 
rolling and to obtain accurate course control. I. 

8.4.3 PID Control including Acceleration Feedback 

The autopilot system of Section 8.4.2 can be extended to include acceleration feedback (see 
Section 7.1.3) by differentiating the output of a yaw rate gyro rgyro according to: 

. s 
r ~ --- r gy ro (8.152)

wf+s 

The filter frequency Wf must, however, be larger than the control bandwidth Wh. In most 
cases this is easy to satisfy since wf can be chosen as high as 10-50 Hz (or 63--314 rad/s) 
if an accurate yaw rate gyro is applied. A discrete-time representation of the filter (8.152) 
is found in Appendix B.3. This is particular useful for smaller vessels, which are more 
vulnerable to environmental disturbances than large vessels. The main idea is to increase the 
moment of inertia by yaw rate feedback, such that external disturbances are suppressed; see 
Section 7.1.3. Consider the controller: 
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I TFF -KpiJ;- KdT - tc, it iJ;(T)dT (8.153) 
, ,.. 

accelerationPID 

feedback 

(8.154) 

Notice that the term Km must be included in TFF correspondingly. Substituting this expres
sion into (8.135) yields the closed-loop error dynamics: 

(T + Km)e + (1 + Kd)e + Kpe + «,it e(T)dT = 0 (8.155)

I This suggests the following pole placement algorithm (see Section 7.1.3): 

Autopilot Pole Placement Algorithm (PID and Acceleration Feedback) 

I 
1. Specify the bandwidth Wb > 0 and the relative damping ratio ( > 0 
2. Compute the natural frequency: W n = J 1 Wb 

1-2(2+J4(4_4(2+2 

3. Specify the gain: K m ~ 0 (optional acceleration feedback) 
4. Compute the P-gain: K p = (T + Km)w;' 
5. Compute the D-gain: K d = 2(wn (T + Km ) - 1 
6. Compute the I-gain: K, = 18-K p 

A final implementation issue is the problem of lst-order wave-induced disturbances. Using 
a wave filter for 'IjJ, r, and, r is recommended if all these signals are used in feedback. Wave 
filtering for systems using velocity and acceleration feedback is discussed by Lindegaard and 
Fossen (2001a) , and Lindegaard (2003). 

8.4.4 PID Control including Wind Feedforward 

The main result of Section 8.4.2 was a Pill-controller: 

TN(S) = TFF(S) -tc, (1 + Tds + ~S) :;j;(s) (8.156) 
, .,

V' 

r r-ro 

with reference feed forward: 
(8.157) 

For a ship with two simultaneously controlled rudders the rudder commands are computed 
as: 

(8.158) 

where 

• to UECC. (8.159) 

,~--
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is a vector of three nonlinear functions; X wind = X win d (v;. ,'Yr),Ywind = Ywind(Vr, 'Yr), 
and N win d = Nwind(Vr,'Yr) of relative wind speed, Vn and direction, 'Yr' respectively. It is 
straightforward to measure Vr and 'Yr using a conventional wind sensor. These measurements 
are usually low-pass filtered and used as inputs to a wind load model for the generation of 
forces and moments; see Section 4.1. 

In cases where wind feedforward is omitted (7wind = 0), integral action can be used 
to compensate for wind loads. The drawback is that the integrator needs several minutes to 
remove a large wind component during the start-up of an autopilot system. Integral action 
works fairly well during fixed heading (station-keeping and transit) while in a maneuvering 
situation large course deviations might be expected. Consequently, it is advantageous to 
implement wind feedforward to reduce the loads on the integrator and to obtain maximum 
performance during start-up and in maneuvering situations. 

8.4.5 Linear Quadratic Optimal Control
 

The ship autopilot problem can bedefined as a linear quadratic optimization problem:
 

(8.160) 

where a is a constant to be interpreted later, e = 'l/Jd - 'I/J is the heading error, 8 is the actual 
rudder angle, and A1 and A2 are two factors weighting the cost of heading errors e and heading 
rate r against the control effort 8. 

Sailing in restricted waters usually requires accurate control, while the minimization of 
fuel consumption is more important in open seas. This can be obtained by changing the 
weights A1 and A2' We will discuss three criteria for control weighting. 

Tbe Steering Criterion of Koyama (1967) 

The first criterion was derived by Koyama (1967) who observed that the ship's swaying mo
tion y could be approximated by a sinusoid during autopilot control, that is: 

y = sin(et) =} y = ecos(et) (8.161) 

The length of one arch La of the sinusoid can be calculated as: 

(8.162) 

Hence, the relative elongation due to a sinusoidal course error is: 

(8.163) 

This suggests that the percentage loss of speed during course control can be calculated by 
using the elongation in distance due to a sinusoidal course error. Consequently, Koyama 
(1967) proposed minimizing the speed loss term e2 /4against the increased resistance due to 
steering given by the term 82 
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7r	 ) 2 1 r [e 2 
] 00076 r 2 2 } (8.164)J	 = mjn { 100 ( 180 T io "'4 + A262 dr:::::: T i [e + A26 ]dr 

o 

-¥jjM1¥ 

In this context (8.160) can be interpreted as: 

J = loss of speed (%)	 (8.165) 

0: = 0.0076	 (8.166) 

Notice that AI = 0 in this analysis. In practice it might be desirable to penalize r 2 by choosing 
Al > O. Koyama suggested a A2-factor of approximately 8-10. Experiments show that such 
high values for A2 avoids large rudder angles, and thus high turning rates. Therefore, A2 = 10 
will be a good choice in bad weather, where it is important to suppress high frequency rudder 
motions. 

The Steering Criterion of Norrbin (1971) 

Another approach for computation of A2 was proposed by Norrbin (1972). Consider the 
surge equation (8.7}-(8.8) in the form: 

(m - Xu)u = Xlulululu + (1 - t)T + 11068 (8.167) 

where: 

11055 = (m + Xvr)vr + X ccooc 
2 62 + (Xrr + mxg)r 

2 + Xext (8.168) 

Norrbin (1972) suggested minimizing the loss term 11055 to obtain maximum forward speed 
u. Consequently, the controller should minimize the centripetal term vr, the square rudder 
angle 62 and the square heading rate r 2 while the unknown disturbance term X ext is neglected 
in the analysis. The assumptions in doing this are as follows: 

1.	 The sway velocity v is approximately proportional to r. Combining (8.26) and (8.27), 
yields: 

Kv(1 + Tvs) ) tc;
v(s) = K(l +Ts) res :::::: Kr(s) (8.169) 

under the assumption that Tv :::::: T. Hence, the centripetal term vr will be approxi
mately proportional to the square of the heading rate, that is vr :::::: (Kv/K)r2 

2.	 The ship's yawing motion is periodic (sinusoid) under autopilot control such that 

rm ax = W r emax	 (8.170) 

where W r is the frequency of the sinusoidal yawing. 

These two assumptions suggest that the loss term 11055 can be minimized by minimizing e2 

and 62 which is the same result obtained in Koyama's analysis. The only difference between 
the criteria of Norrbin and Koyama is that the A2-values arising from Norrbin's approach 
will be different when computed for the same ship. The performance of the controller also 
depends on the sea state. This suggests that a trade-off between the A2-values proposed by 
Koyama and Norrbin could be made according to: 

lIIiiilll'!
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(calm sea) 0.1 :S A2 :S 10 (rough sea) (8.171) 
"---v-'" ~ 

Norrbin Koyama 

The Steering Criterion of Van Amerongen and Van Nauta Lemke (1978) 

Experiments with the steering criteria of Koyama and Norrbin soon showed that the perfor
2mance could be further improved by considering the squared yaw rate r , in addition to e2 

and 62 (Van Amerongen and Van Nauta Lemke 1978). Consequently, the following criterion 
was proposed: 

. a.00761T( 2 \ 2J = rmn -T e + Air + (8.172) 
6 0 

For a tanker and a cargo ship, Van Amerongen and Van Nauta Lemke (1978, 1980) gave the 
following values for the weighting factors Al and A2 corresponding to the data set ofNorrbin 
(1972): 

tanker: L = 300m Ai = 15.000 A2 = 8.0 
cargo ship: L = 200 m Ai = 1.600 A2 = 6.0 

The solution of the optimal steering criteria is found by considering Nomoto's 1st order model 
in the form: 

.,
't/J = r' (8.173) 

T'i'+ (U/L)r = (U/L)2K' 6 (8.174) 

Straightforward application of optimal control theory to the criterion of Van Amerongen and 
Van Nauta Lempke (1978), yields (see Section 7.2): 

(8.175) 

where (see Exercise 8.6): 

If (8.176) 

= L V'---I-+-2-K-T U-/-L-)-2-(A-i-/)..-2-) - 1 
p-K-"T-'-+-K-'2-(, (8.177)

U K' 

Consequently, the solution of the criteria of Koyama and Norrbin is obtained by setting Ai = 
'I" oand A, =n Awhich yields: 
<l 

tc, = (8.178)If 
L Jl + 2KpK'T' - 1 

(8.179)Kd = U K' 

•
. _-~-
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From these expressions it is seen that K p depends on the weighting factor A. while Kd de
pends on K p as well as the model parameters K' and T'. Hence, accurate steering requires 
that K' and T' are known with sufficient accuracy. 

An extension to Nomoto's 2nd-order model is found by considering (see Section 8.1.2): 

x = Ax+Bu (8.180) 

y = Cx (8.181) 

where x = [v, r, '¢]T, U = 8 and: 

a12 0]
a22 0 ,	 C=[O,l,l] (8.182)A = a~l

[ 

a ll 

B~[~]'1 0 

Let x, = [O,O''¢d]T and:	 ". 

e	 = Y - Y« 

= C(x - Xd) (8.183) 

The steady-state optimal solution minimizing the quadratic performance index (assuming 
Yd = constant): 

J = ~in { ~ l T 

(eTQe + uTau) dr}	 (8.184) 

where Q =diag{O, q22, q33}2: 0 and a =rn > 0 are the weights is (see Section 7.2): 

u = G 1 X+G2Yd	 (8.185) 

where: 

G 1 = -R-1BTpoo (8.186)
 

G 2 = _R-1BT(A + BG1)- TC T Q (8.187) ."
l 
and P 00 is the solution of the matrix Riccati equation: 

PooA + A Tpoo - PooBR-1BTpoo + CTQC = 0 (8.188) 

The robustness of optimal autopilots for course-keeping control with state estimator is ana
lyzed in Holzhuter (1992). 

Example 8.11 (Experimental Results with an Optimal Autopilot) 
An optimal autopilot using the criterion of Van Amerongen and Van Nauta Lemke (1978) 
has been implemented and tested experimentally. The vessel considered is the "Nordmann 
Borg" supply vessel shown in Figure 8.20. The performance ofthe heading controller with 
reference feedforward is shown in Figure 8.21. The upper plot shows the course changing 
capabilities for different autopilot inputs. while the lower plot is a zoom showing the step 
responses during the interval t E [1950,2350] (s). 

t·•.
~. 
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Figure 8.20: The Nordmand Borg Supply Vessel. Courtesy to Solstad Shipping. 
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Figure 8.21: Heading as a function of time. A reference model is used to avoid steps during 
course-changing. 
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8.4.6 State Feedback Linearization 

Full state feedback implies that both YI = 't/J + 't/Jw and Y2 = r + rw are measured. For 
systems where r is estimated in a state observer by using the yaw angle measurement YI, an 
output feedback controller must be designed, see Section 8.4.10. Even though both YI and Y2 
are measured, a wave (notch) filter is needed in order to reduce wear and tear of the steering 
machine; see Section 6.1. 

State Feedback Linearization 

Consider the nonlinear autopilot model of Norrbin (1963) in Section 8.1.4: 

Tr + H ( ) r = K6 + Twind (8.189)N '-v--' 

TN 
.. ;-,;. 

where r wind represents wind loads and: 

HN(r) = n3r3 + n2r2 + nir + no (8.190) 

A state feedback linearizing control law with wind feedforward for this system can be de
signed according to (Fossen 1993b): 

6 = rN - rwind (8.191)
K 

where 

rN = Ta + n3r3 + n2r2 + nir (8.192) . r� 
a = ;jJd - Kp;P - Kd;P - K, i ;P(r)dr (8.193) 

o 

Here a can be interpreted as the commanded angular acceleration in yaw. For a more detailed 
;. 

discussion on feedback linearization, see Section 7.3. Notice that the constant term no in 
(8.190) due to an rudder angle offset is not compensated for in rN since a includes integral 
action. Therefore, the integral part of the controller will remove the constant term no, and 
possibly r wind if wind feedforward is omitted. Wind feedforward is, however, advantageous 
since it might take a long time to integrate up an estimate of the wind load in bad weather, that 
is, for large values of r wind. This again yields poor performance when starting the autopilot 
system (cold start). 

The resulting error dynamics become: 

Tii + (1 + Kd)e + Kpe + tc; r e(r)dr = 0 (8.194) . io 
indicating how the controller gains K d , Kp , and K, should be chosen. Extensions to adaptive 
feedback linearization is found in Fossen and Paulsen (1992), while feedback linearization 
with saturating and slew rate limiting actuators is discussed by Tzeng et al. (1999). 

L.~,
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8.4.7 Adaptive Feedback Linearization and Optimality 

An adaptive optimal course-keeping autopilot can bederived by means ofLyapunov stability 
theory (Fossen and Paulsen 1992). Consider the nonlinear ship steering dynamics (8.189) in 
the form: 

where 

[r3,r2,r,lf¢o(r) = (8.196) 

00 = [n3,n2,nl,no]T (8.197) 

Here ¢o(r) is the regressor vector (known) and 00 is a vector of unknown parameters to be 
estimated on-line. 

Feedback Linearization and Optimality 

The model (8.195) can be transformed to a linear 2nd-order system: 

;p = a (8.198) 

by choosing the feedback linearizing controller as: 

,~,,,. fUWM4V} U)l(#4bjH:,%iWJwmf}}ff;¢"A"iH 4Jrrn~ff+¥t?4\":,l.',,wM+':'? 

'TN = Ta + ¢ri (r)Oo (8.199) 

where a can be interpreted as the commanded acceleration; see Section 7.3. Hence, this can 
be formulated as an optimal control problem with performance criterion: 

(8.200) 

Here the tracking error 1/Jd - 1/J is penalized together with the yawing rate 1;; and the com
manded acceleration a with factors Al and A2, respectively. Solving this LQ problem for the 
system model-e = a, yields the following steady-state solution for the optimal commanded 
acceleration (see Section 7.2.1): 

(8.201) 

where: 

(8.202) 

Notice that (8.201) does not depend on the unknown system parameters T and O. 
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Parameter Adaptation 

The adaptive control law can be chosen as: 

~~ 

, T
TN =:	 Ta + </>0 (r)Oo 

</>T(r)O (8.203) 

''''.'.'.'-/-><'' _.,.__ ,_,_,/,A ""'MCY' F 'fW Wf>w4 {srilli....ni4#c ~, ...-.....-.......
 

where the hat denotesthe parameter estimates and: 

- ,- T T
</>(r) = [a, </>J(r)JT, 0= [T,OoJ (8.204) 

Let us define the parameter estimation errors as t = T - T and 0 = 0 - O. Consequently, 
the closed-loop dynamics can be written: 

T [ij. - a] = </>T (r)O (8.205) 

Substituting the optimal controller (8.201) into this expression, yields: 

f T [ij. + Kd;P + Kp('I/J - 'l/Jd)] = </>T(r)O (8.206) 
·-t,,· 

It is then clear that optimality with respect to (8.200) requires that 0 = 0 (no parametric 
uncertainties). With these goals in mind a parameter estimator can be derived by applying 
Lyapunov stability theory. Let the closed-loop dynamics be written in abbreviated form as: 

1 T 
X = (r)O	 (8.207)Ax + bT</>
 

where x = ['I/J - 'l/Jd,;PF is the state vector and:
 

1] [0] - - -T TA = [-K0 -K b = 1 0 = [T, 00 J (8.208) 
p d 

The parameter updating mechanism for 0can now bederived by using the Lyapunov function 
~ 

candidate: 
- T 1 -T 

.;,	 V(x,O) = x Px + TO r-10 (8.209) .. 
~ .' 

where T = r T > 0 is the adaptation gain. Differentiating V with respect to time, gives: 

. T T 2 -T .:.
V = x Px+x Px+ TO r-10 

= xT(ATp + PA)x + ~OT (r-10 + </>(r)bTPx) (8.210) 

":.~	 Choosing the parameter update law as: 

(} = -r</>(r)e (8.211) 

with e = c T x and: 

ATp+PA -Q 
Pb c (8.212) 

,.1.,
 "~; 
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where P = P T > 0 and Q = Q T > 0, gives: 

V = -xTQx S;O (8.213) 

Notice that iJ = iJ since iJ = 0 (constant parameter assumption). Since this expression is only 
- T- . 

negative semi-definite (a quadratic error term -() () is missing in V) only global convergence 
ofx ---+ 0 can be guaranteed. Lyapunov stability theory for autonomous systems ensures that 
'I/J --+ 1/Jd and;P ---+ 0 as t --+ 00, and that lJ is bounded. It should be noted that lJ will converge 
to zero only if the system is persistently excited. This is, however, not necessary for perfect 
tracking since 1/J ---+ 'I/J d even though iJ =I- o. 

Notice that the controller possesses integral action through the bias term no which is 
estimated on-line using the element 1 in the regressor vector. This is a well known trick in 
adaptive control. In fact, the bias term no will also include an estimate of wind, currents, 
and wave drift forces since these are slowly-varying disturbances which can be treated as a 
system bias. 

8.4.8 NonUnear Backstepping 

The feedback linearizing controller can beextended to include nonlinear damping terms and 
to exploit good damping terms in the model by using backstepping designs. In this sec
tion only full state feedback is considered. The nonlinear back stepping controller can be 
designed by writing the autopilot model (8.56) in SISO strict feedback form (Fossen and 
Strand 1999a): 

;p = r (8.214) 

mi + d(r)r = d (8.215) . 

where m = T / K and d(r) = *'HN(r). The only nonlinearity in this model is due to the 
maneuvering characteristic HN(r). 

In Section 7.4.3 it was shown that the backstepping controller for this system is: 

<5 = mal + d(r)r - Z1 - k2z2 - n2(z2)z2 (8.216) 

(}:1 = rd - [kl + nl(zl)]Z1 (8.217) 

where k l > 0 and k2 > 0 are two feedback gains, and ni(zi) 2: 0 (i = 1,2) are two optional 
nonlinear damping terms, e.g. chosen as nondecreasing functions ni(zi) = "'i IZilni with 
ni 2: 1 and "'i 2: 0 (i = 1, 2) as design parameters. The following change of coordinates is 
needed to implement the controller: 

(8.218) 

(8.219) 

The backstepping controller includes a PD-term as well as reference feedforward. In addition 
the nonlinear damping terms ni (zd (i = 1,2) can be used to improve the performance and 
stability of the closed-loop system. 
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When using feedback linearization all the nonlinearities in HN (r) are compensated for. 
This requires that the dissipative terms are known with good accuracy which is not true in 
many cases. The backstepping controller gives more design flexibility with respect to the 
damping terms, In fact, it is possible to exploit good damping terms like n3r3 and nl r in 
HN(r) instead of cancelling them. This is straightforward in set-point regulation; see Krstic 
et al. (1995), for instance. In trajectory tracking control, however, it is not clear how good 
damping with respect to a time-varying reference trajectory should be defined. A discussion 
on backstepping versus feedback linearization is found in Section 7.4.2. 

Extensions to integral action can be done by using the method of Loria et al. (1999) and 
Fossen et al. (2001) which is referred to as "backstepping with integral action". Alternatively, 
an integrator augmentation technique can be applied. Both these methods are described in 
detail in Sections 7.4.4 and 7.4.5. 

.~~ The actuator dynamics can be included in the design by using the approach of Fossen and
 
Berge (1997) where backstepping is performed in three steps to include a first-order actuator
 
model.
 

.~~ 

8.4.9 SISO Sliding Mode Control 

Another attractive nonlinear design technique is sliding mode control (Utkin 1977) which 
incorporates techniques to handle model uncertainty. Sliding mode techniques are discussed 
in detail by Utkin (1992) while applications to marine vessels are found in Yoerger and Slotine 
(1985), Slotine and Li (1991), Healey and Lienard (1993), McGookin et al. (2000a, 2000b), 

~, 

'i." for instance.
 
Define a scalar measure of tracking:
 

8 = ~ + 2>.1); + >.2lt 

1);(r)dr (8.220) 
i::',· 

where 1); = 'l/J - 'l/J d is the yaw angle tracking error and>. > 0 is a design parameter reflect
ing the bandwidth of the controller. For s = 0 this expression describes a sliding surface 
(manifold) with exponentially stable dynamics. To see this let us define a second sliding 
surface: 

( 0 

t. 
80 = 1); + >.It 

¢(r)dr (8.221) 

such that the manifold s = 0 can be rewritten as: 

I 8 = So + >'80 = 0 (8.222) 

I 
Hence, both 80 and ¢ converge exponential to zero since the linear system: 

~: (8.223) 

I 

~.. 
[t]= [~>. !>.] [ : ] 

~ 

~ 

~ 

I 

;~;-~' 

has to real eigenvalues at ->.. This ensures that the tracking error 'l/J ---> 0 on the manifold 
8 = O. Hence, the control objective is reduced to find a nonlinear control law which ensures 
that: 

lim 8 = 0 (8.224) 
t-+oo 

1 Ii.'"
.""_,'',-'1111111100 r ;i 
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s.
 

--~--.....::..,:------:~-~----=:..o:----- S. 

Figure 8.22: Graphical interpretation of the sliding surface s = 
o » o. 

So + ASo and boundary layer '.'IIIl,'!IIII! 

A graphical interpretation of the sliding surfaces is given in Figure 8.22. 
It is seen that a trajectory starting at S > 0 will move towards the sliding surface S = o. 

Then S = 0 is reached the trajectory will continue moving on the straight line corresponding 
to s = 0 towards the equilibrium point So = O. A similar behavior is observed when starting 
with a negative value of s. 

When deriving the control law, a stable ship model with nonlinear damping is considered: 

Tf + n3r3 + nIr = K8 + 7 wind (8.225) 

::1· 
:a:i

!1,~Ir,,:"
II~~:.--< 

,',i 
! 

v=r-s =::} s=r-v 

Ts = Tf-Tv 

= K8 + 7wind - (n3r2 + nI)r - Tv 

= K8 + 7wind - (n3r2 + nI)(v + s) - Tv 

such that 

where 7 wind represents wind loads. Define a new signal v according to: 

(8.227) 

(8.226) 

Consider the CLF: 

V(s) = 
1 
2Ts2, T> 0 (8.228) 

Differentiating V along the trajectories of s yields: 

\1(s) = 
= 
= 

sTs 
s[K8 + 7 wind - (n3r2 + nI)(v + s) - Tv] 
-[n3r2+ nI]s2 + s[K8 + 7wind - [n3r2 + nI]v - Tv] (8.229) 

,-
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',! , 

Let the control law be chosen as: 

where K d > 0 and K, > 0, while i: k, and 713 are estimates ofT, K, and n3, respectively. 
Notice that nl = 1 for a stable ship; see Section 8.1.4. The signum function is defined as: 

:$ 
if 

(8.230)
i , I, 2 1

c5 = --;:-V + --;:-[n3r + nl]v - --;:-Twind - Kds - Kssgn(s)
KKK 

sgn(s) = { ~ 

-1 

ifs > 0 
ifs = 0 

otherwise 
(8.231) 

This implies that: 

V(s) = -[n3r2 + nl + K d]s2 - K; lsi 

+ [(~ - ~) v+ (~ - ~) [nlv-T~nd] 

,~. 

+ (~ - ;; ) r2v] 
s (8.232) 

layer 

l 
=0. 
ding 
rting (8.233) 

tc, ~ 1(~-~)vl+I(~-~)[nlV-T~d]1 

I(
fi3 n3) 21+ k - K r v 

In order for this expression to become negative, K; must be chosen to be so large that the 
parameter errors are dominated. Consequently: 

226) 

Rd: 

225) 

(8.235)T . 1 fi3 I 2 IK; ~ 1.2k Ivi + 1.2k InlV - Twindl + 1.2k r v 

implies that: 
V(s) ~ -(n3r2 + nl + K d)s2 s 0 (8.234) 

Consequently, s ---. 0 and thus ;p ---. O. One way to find an estimate of K, is to assume e.g. 
20 % uncertainty in all elements such that: 

j, 

~ 

t' 

227) 

r 
228) 

(8.236)if IsNI > 1 
otherwise

sat(s) = { sgn(s)
s/¢ 

It is well known that the switching term Kssgn(s) can lead to chattering for large values of 
K s • Hence, K, > 0 should be treated as a design parameter with (8.233) as a guideline. 
Recall that Lyapunov stability analysis results in conservative requirements for all gains. 

Chattering in the controller can be eliminated by replacing the signum function with a 
saturating function. Slotine and Li (1991) suggest smoothing out the control discontinuity 
inside a boundary layer according to: 

229) 

where ¢ > 0 can be interpreted as the boundary layer thickness. This substitution will assign 
a low-pass filter structure to the dynamics inside the boundary layer; see Figure 8.22. Another 
possibility is to replace Kssgn(s) with K; tanh(s/¢) where ¢ > 0 is a design parameter used 
to shape the slope of the tanht-) function close to the origin. 

r R .' 
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Example 8.12 (Experimental Testing ora Medium Sized Ship) 
A simplified version ofthe sliding mode controller was implemented and tested onboard the 
MIS Nornews Express. This is a 4600 (dwt) ship with length L pp = 110 (m) and beam 
B = 17.5 (m). The Nomoto gain and time constants were k = 0.35 (S-1) andT = 29.0 (s) 
in the experiment suggesting that n3 = 0 and n1 = 1 (linear stable ship); see Section 8.1.4. 
No windfeedforward was used. The control law used in the experiment was chosen as: 

(8.237) 

with K; = 0 since the estimates ofK andT were quite good The feedforward signals were 
computed as: 

iJ = r-s=rd-2>.r->..21j; (8.238) 
t 

v = T- S = Td - 2>.:(P - >.21 1j;(r)dr (8.239) 

Notice that KdS contains three terms representing a conventional PID-controller. The per
formance ofthe autopilot with these model parameters are shown in Figure 8.23. This design 
can easily be robustified by using K; > 0 and </J > O. Similarly, nonlinear damping can be 
included by choosing n3 > O. 

6O,.----r---....,----r---...,------r------, 

40~" >~""""=i===-_-' :. 

o 

·20'-----'-----'----'------'-------L-----' 
o 50 100 200 250 300 

5r---...,----.....,..---.-----..,------.----, 

o 

-10 

50 100 150 200 250 300 
time (5) 

Figure 8.23: Tracking control with the MIS Nomews Express. Upper plots show e and '¢d 
while lower plot shows the rudder angle 8. 
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8.4.10 Output Feedback 
the 

f 
Many ships are only equipped with a compass for heading control. In these cases a state 

lQm 
observer reconstructing r from Y1 = 'l/J + 'l/Jw must be constructed; see Sections 6.1.3-6.1.4. 
The state observer can be combined with a state feedback controller, and stability can be 
proven through a separation principle. This is an attractive approach from an industrial 
point of view, since it gives a modular software representation; one subroutine for the state 
observer and one for the feedback controller. For linear systems this design is recognized as 
the LQG-controller where you combine a linear quadratic (LQ) controller with the Kalman 37) 
filter. Nonlinear extensions are also possible thanks to the results of (Panteley and Loria 1998)
 
which in fact is a nonlinear separation principle. A nonlinear separation principle allows
 

'ere the designer to combine a nonlinear state feedback controller with a nonlinear observer in
 
cascade and thereafter prove uniform global asymptotic stability (UGAS) for the total system.
 ~ 

This has been done with great success in Loria et al. (2000) where the case study was ship 
38) positioning in 3 DOF; see Section 11.2.4 for a detailed description. This result can also be 

applied to the I DOF autopilot case by removing the sway-yaw subsystem in the analysis. 
39) An alternative approach to the separation principle is to design an output feedback con

troller directly by specifying Y1 = 'l/J + 'l/Jw as the system output. In this case an "internal t 
estimate" of r will be generated in the controller. This section discusses observer backstepJe1'
ping and semiglobal Lyapunov-based design techniques for this purpose. More results on rign 
nonlinear observer design can be found in Nijmeijer and Fossen (1999), while an adaptive be 
output feedback controller is proposed by Lauvdal and Fossen (1998a). 

Observer Backstepping 

An output feedback autopilot can easily be designed by using the vectorial observer back
stepping approach of Fossen and Grevlen (1998). An extension to course unstable ships is 
found in Robertson and Johansson (1998) while integral action and wave filtering can also be 
included by using the technique of Aarset et al. (1998). Consider the autopilot model in the 
form: 

'l/J = r (8.240) 

mr+dr = 6 (8.241) 

where Nomoto's l st-order model is recognized by choosing m = TIK and d = 11K. The 
main result is the following observer: 

~ f+K1'l/J (8.242) 

mf+df 6+K2 'l/J (8.243)~ 

I, 
while the controller is given by: 

9(21, 22'~) + C22 2 + D222 + Zl (8.244)'l/J d 2 -,
-(C1 + Dd 21 + (C 1 + D 1 ) ( Z2 + K 1 'l/J ) - i« - dsb (8.245); 

~l:' 

~
 

k
 
,iii 

I,· " 
~. 

V 
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with: 

ZI = ;p -1/Jd (8.246) 

Z2 = f - QI (8.247) 

QI = rd - CIZI - DIzI (8.248) 

where C I > 0 and C2 > 0 represent linear damping and D I and D 2 are nonlinear damping 
gains. The gain requirements are: 

K I = QdP}, PI> 0 (8.249)
 

K 2 = PI/P2 +d, P2 > 0 (8.250) i~l!i:
 

P2d = Q2 (8.251 ) 

DI = dIK?, dI > 0 (8.252) 

D2 = d4wi, d4 > 0 (8.253) 

WI = (CI + DI)KI + K 2 (8.254) 

where QI > 1(1 + 1.) > 0 and Q2 > 4~. > 0; see Section 11.2.5. The stability analysis 
1 

of the observer-controller in 3 DOF is also presented in Section 11.2.5 where GES is proven. 
The autopilot case is therefore a I DOF special case of the more general solution. 

Extension to systems with nonlinear damping can be done for systems in the form: 

mi + dr + dn(r) = T (8.255) 

where dn (r) is a monotone nonlinear damping term (see Arcak and Kokotovic 1999a, Arcak 
and Kokotovic 1999b), that is: 

8dn (r) .-a;:- > 0 ~ dn(r) r > 0, '1r E R (8.256) 

For more details on designs with nonlinear damping see Aamo et al. (2000) and references
 
, therein.
 

, I 

II 
I 

Semiglobal Output Feedback Control 

An attractive design methodology for heading control of ships is the serniglobal exponential 
output feedback controller of Vik and Fossen (1997). This controller is based on results in 
robotics (Berghuis 1993), but augmented with a wave filter. The main result when applied to 
Norrbin's model (8.56) is: 

8 K
1 

(Trd
. + HN(rd) - K d lsI - 82]) (8.257) 

81 = ~ + 2>'1-¢ + Ai it -¢(r)dr (8.258) 

82 = 'I/; + A2'1/; (8.259) 

) 
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where 

if = (YI - -0w) - 7/Jd (tracking error) (8.260) 

¢ = Y1 - (-0 + -0w) (estimation error) (8.261) 

and YI = 7/J + 7/Jw is the compass measurement. The controller has the following design 
parameters Kd > 0, >'1 > 0, and >'2 > 0 while the observer states are updated as: 

7/J = i'+K1if+L1¢ (8.262) 

f = ;Pd + K2if + L2¢ (8.263) 

~w = -0w + L3¢ (8.264) 
~ 2' 

-0w = -2>'wo7/Jw - wo~w + L47/J (8.265) 

where K, (i = 1,2) and L j (j = 1, ... ,4) are the observer gains. In Vik and Fossen (1997) 
it was shown, after some laborious calculations, that the equilibrium point of the closed-loop 
observer-controller error dynamics is semiglobal exponentially stable. A simulation study of 
the Mariner class vessel (Chislett and Strom- Tejsen 1965b) is also found in Vile and Fossen 
(1997). This reference also gives insight on how the controller-observer gains should be 
chosen. 

8.5 Exercises 

Exercise 8.1 Find a non-dimensional state-space model for the Nomoto model (8.55) in 
Example8.5. 

Exercise 8.2 Find the scalingfactors a, f3 and 'Y in the expressions: 

N'v = ~Nv a 
1

Z"p = -pZp 

1 
X~' = -x;v 

'Y 

Exercise 8.3 Compute the turning radius Rfor the ship model in mariner.m theoretically for 
8R = 15 (deg) and U = 8 (m/s). Use the Matlab™ GNC toolbox and simulate the ship in 
a turning circle. Does the theoretically computed value correspond to the simulated results? 
Explain this result. Simulate the ship for different speeds andplot R as a function U. 

Exercise 8.4 Derive a nonlinear backstepping controllerfor the model ofBech and Wagner 
Smith (1969): 

;p = r (8.266) 

T1T1T + (T1+ T2 )f + KHB(r) = K(8 + T38) (8.267) 

andprove that the equilibrium point ofthe closed-loop system is GES. 

"j[tl 
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Exercise 8.5 Consider the nonlinear ship model: 

;p = r (8.268) 

mi + dr + dn (r) = 5 (8.269) 

and the control law: 
5= -Kp'I/J-Kdr (8.270) 

where K p > 0 and Kd > O. Show that the Lyapunov junction: 

(8.271) 

satisfies V ::; 0 ifdn (r) is a monotonic junction, that is: 

(8.272) 

What are the conditions on H B ( r) and Hn (r ), see the models in Section 8.1.4, for this to be 
true. 

Exercise 8.6 Consider Nomoto 's model in the form: 

;p = r (8.273) 

T'f+(UjL)r = (UjL)2K'5 (8.274) 

and let the LQ weighting matrices be chosen as: 

(8.275) 

where Al > 0 and A2 > O. Show that (8.176) and (8.177) are the LQR solution to (8.172), 
see Section 7.2.J. 
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This chapter discusses methods for autopilot roll stabilization using fins alone or in combi
nation with rudders. The main motivation for using roll stabilizing systems on merchant

ships are to prevent cargq damage and to increase the effectiveness of the crew by avoiding or
reducing seasickness. This is also important from a safety point of view. For naval ships crit
ical marine operations like landing a helicopter, formation control, underway replenishment,
or effectiveness of the crew during combat are critical operations.

Several passive and active (feedback control) systems have been proposed to accomplish
roll reduction; see Burger and Corbet (1960), Lewis (1967), and Bhattacharyya (1978) for a
more detailed discussion. Some passive solutions are:

Bilge keels: Bilge keels are fins in planes approximately perpendicular to the hull or near
the turn of the bilge. The longitudinal extent varies from about 25 to 50 percent of
the length of the ship. Bilge keels are widely used, are inexpensive but increase the
hull resistance. In addition to this, they are effective mainly around the natural roll
frequency of the ship. This effect significantly decreases with the speed of the ship.
Bilge keels were first demonstrated in about 1870.

Hull Modifications: The shape and size of the ship hull can be optimized for minimum
rolling using hydrostatic and hydrodynamic criteria. This must, however, be done be
fore the ship is built.

Anti-Rolling Tanks: The most common anti-rolling tanks in use are free-surface tanks,
V-tube tanks and diversified tanks. These systems provide damping of the roll motion
even at small speeds. The disadvantages of course are the reduction in metacenter

http:����.���....�.........��...�����


368 Autopilots with RoD Damping 

height due to free water surface effects and that a large amount of space is required. 
The earliest versions were installed about the year 1874. 

The most widely used systems for active roll damping are: 

Fin Stabilizers: Fin stabilizers are a highly attractive devices for roll damping. They pro
vide considerable damping if the speed of the ship is not too low. The disadvantage 
with additional fins are increased hull resistance and high costs associated with the 
installation, since at least two new hydraulic systems must be installed. Retractable 
fins are popular, since they are inside the hull when not in use (no additional drag). It 
should be noted that fins are not effective at low speed and that they cause underwater 
noise in addition to drag. Fin stabilizers were patented by John I Thornycroft in 1889. 

Rudder-Roll Damping (RRD): Roll damping by means of the rudder is relatively inexpen
sive compared to fin stabilizers, has approximately the same effectiveness, and causes 
no drag or underwater noise if the system is turned off. However, RRD requires a 
relatively fast rudder to be effective, typically rudder rates 8m ax = 5-20 (deg/s) are 
needed. RRD will not be effective at low ship speeds. 

For a history of ship stabilization, the interested reader is advised to consult Bennett 
(1991), while a detailed evaluation of different ship roll stabilization systems can be found in 
Sellars and Martin (1992). 

9.1 Autopilot Models for Steering and Roll Damping 

The 3 OOF horizontal models in Section 8.1 can easily be extended to include the roll mode. 
The resulting model is a 4 DOF model in surge, sway, roll, and yaw. 

9.1.1 The Linear Model of Van Amerongen and Van Cappelle (1981) 

The speed equation (8.9) can be decoupled from the sway. roll, and yaw modes. The resulting 
linear model takes the form: I 

Ii 

where Uo =constant, v = [v,p, rjT and TJ = [e, ¢, 1fl]T are the states while T is the control 
vector. 

For a ship with homogeneous mass distribution and xz-plane symmetry, I xy = I yz = 0 
and Yg = O. In addition, it is convenient to choose the origin r g = [xg , 0, zglT of the body
fixed coordinate system such that Ixz = 0 with corresponding added inertia K; = N p = 0; 
see Exercise 9.1. 

From the general expressions (3.55) and (3.92) in Sections 3.1.3 and 3.2.1, respectively, 
we get (with non-zero I xz): 

m-Y,:, -mzg - Yp mXg 
- Y" ]

-mzg - K,:, Ix -Kp (-Ixz-Np) = 0 
(9.2)

mXg -N,:, (-Ixz - N p) = 0 / I z -Nr 
, .I 

V' 

Exercise 9.1 
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- Y

l The expression for N(uo ) is obtained by linearization ofC(v) and D(v) about v = [UO, 0, O)T
i.e.: 

ti - Yp muo - Yr ] 
N(uo ) = <K; -Kp -mzguo - K; (9.3)

[..� -Nv -Np mxguo - Nr 

Recall from Section 3.2.3 that the linear restoring forces and moments for a surface vessels 

C can be written: 
G =diag{O, WGMr, O} (9.4)II� 

It where W = mg is the weight of water and GM r is the transverse metacenter height.� 
:r In addition to these equations, the kinematic equations (assuming q = () = 0):� 
~. 

¢=p (9.5) 

;P=cos4>r~r (9.6) 

must be augmented to the system model. The general kinematic expressions are found in 
Section 2.2.1. 

Actuator Model for Combined Fin and Rudder Control Systems 

The actuator model can be written, see Section 7.5: 

u. 
T=TKu� (9.7) 

«.,,>;;'··'J~i'·'·"!J; 

.~ , 

~ 

;;~	 

where K =diag{K}, ... , K r} is a diagonal matrix of force coefficients K, (i = 11, ... , r), 
and T is a matrix describing the location and direction of the different actuators. For fully 
actuated ships T = IY, K, N)T and u E~r (r ~ 3). The model (9.7) can be used to describe 
an arbitrar number of fin and rudder servos. 

I·State-Space Model� I 
~. 

<. 
The linear model (9.1) together with (9.5}-(9.6) can be written in state-space model by defin
ing the state vector as x = [v,p, r, 4>, t/I]T. The elements associated with the matrices A and 
B are given by: 

au 

,. 
" 

X = 
a21 

I a31 

0 
0 

a12 a13 a14 0 bll b12 ... b1r 

a22 a23 a24 0 b21 b22 ., . b2r 

a32 a33 a34 0 x+ b31 b32 . .. b3r I u (9.8) 
1 0 0 0 0 0 ., . 0 
0 1 0 0 0 0 ... 0 

, , 
'" '" A B 

where the elements aij are found from: 

a12� [:a14
[ au au ]

a21 a22 a23 = -M-1N(uo ) ; a24 : ] ~ -M-'G (9.9) 
a31 a32 a33 . a34 

{~ 

,ilill� ~. 
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while the elements bi j are given by B = M-1TK. Finally, the roll and yaw outputs are 
defined as: 

</> = [0,0,0,1, OJ x, 1{J = [0,0,0,0, IJ x (9.10) 
'-v-" ~ 

c~lI ciaw 

Decompositions in Roll and Sway-Yaw Subsystems 

To simplify the system for further analysis, the state vector is reorganized such that state 
variables associated with the steering and roll dynamics are separated. Consequently, (9.8) is 
rewritten as: 

[~];p
P 

if; 

= [:~: :~: ~ :~~ :~:] [~]
0 1 0 0 0 7/J 

a21 a23 0 a22 a24 P 
00010 ¢ 

+ [:~: :~~
0 0 

b21 b22 

00 

(9.11) 

Define: 

[ ::] [~:: ~:;] [ ~: ] + [ :: ] u 
(9.12) 

where x1/J = [v, r, tjJJT and xq, = [p, ¢JT. If the coupling matrices are small, that is A1/Jq, = 
Aq,1/J = 0, the following subsystems: 

[ ~ ] = [a~2 a~4] [ : ] + [ ~l ~2 (9.13)o 
and 

~~ ::: ~~:] u (9.14)[ ~ ] = [:g: :f ~][;] + [ ~: a ... 0 

will describe the ship dynamics. The last expression is recognized as the 2nd-order Nomoto 
model with r control inputs. 

Transfer Functions for Steering and Rudder-Roll Damping 

The linearized model is quite useful for frequency analysis of RRD systems. For simplicity 
consider a ship with one rudder u = 8 such that b = [bn,b21,b3 b O, OjT. For the state
space model (9.11) the transfer functions ¢(s)/o(s) = c~l1(sI - A)-lb and 1{J(s)/o(s) = 

c;aw(sI - A)-lb become: 

¢ ~s2+blS + bo ~ Kroll W;ol1 (1 + Tss)
-(s) = ---:---=:,,--:~---=._-~ 2 (9.15)s s4+a3s3+a2s2+als + ao (1 + T 4s)(s +2(wroll s + W~ol1) 

" ,v 
no couplingbetweenroll and sway-yaw 

tjJ
-(s) = (9.16)s s(l + T 1 s)(1 + T 2s)" ,

" no couplingbetweenroll and sway-yaw 
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Figure 9.1: Transfer functions for the roll and sway-yaw subsystems corresponding to the ~~) 
Son and Nomoto container ship. 

where the decoupled models (9.13) and (9.14) have been applied. In most cases, this ap
~t>	 proximation is rough so care should be taken. In Figure 9.1 it is seen that the phase of the 
IOto� roll transfer function is quite inaccurate for the decoupled model. This can be improved by 

using a model reduction via a balanced state-space realization (see modredm and ssbal.m in~~. 

Matlab™). 
~ 

t jill",Also parametric investigations show that cross-couplings between steering and roll might I-
give robust performance problems ofRRD control systems (Blanke and Christensen 1993). ~ 

city This is also documented in Blanke (1996) who has identified the ship parameters for several • 
Ilte loading conditions during sea trials with a series of ships. The results clearly show changes 

l:=� in the dynamics between the different ships in the series indicating that there is a robustness 
problem due to changes in load conditions and rudder shape. Nonlinear effects also give 

~,,:,: rise to the same problem. Identification of ship steering-roll models are discussed by Blanke 
and Tiano (1997). The interested reader is also advised to consult Van der Klugt (1987) for 
a discussion on decoupled linear models for RRD, while nonlinear models are presented in 15) 
Section 9.1.2. 

Example 9.1 (Roll and Sway-Yaw Transfer Functions)� 
The roll and yaw transfer functions corresponding to the model ofSon and Nomoto (1981)�16) 
are plotted in Figure 9.1 using the Matlab™ GNC Toolboxfile ExRRDl.m The plots show 
both thefull state-space model (9.8) and the decoupled models (9.13)-(9.14). The model con
sidered is a container ship oflength L = 175 (m) and with a displacement volume of21, 222 
(m3 ) . The ship is moving at service speed Uo = 7.0 (m/s). The model ofSon and Nomoto 

_mll/IIIIIIII"'" 
~i· 
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Figure 9.2: Roll angle 104> and yaw angle 1/J versus time for a 10 (deg) rudder step in 50 (s). 
Notice the inverse response in roll and speed reduction during turning. 

(1981) is based on a Srd-order Taylor series expansion (see Section 8.1.4) ofthe hydrody
namic forces including higher order restoring terms replacing (9.4). The nonlinear model is 
included in the GNC Toolbox under the file name con ta iner . m while a linearized version 
ofthis model isfound in Lcontainer. m The nonlinear model is described more closely 

'1 in the next section. The numerical values for the transferfunctions are: 

¢ 0.0032(8 - 0.036)(8 + 0.077) 
-(8) = a (8 + 0.026)(8 + 0.116)(8 2+0.1368 + 0.036) 

0.083(1 + 49.18) 
~ (9.17)

(1 + 31.58)(82+0.1348 + 0.033) 

and: 

1/J 0.0024(8 + 0.0436)(i+o.1628 + 0.035)
-(8) = a s(s + 0.0261)(8 + 0.116)(8 2+0.1368 + 0.036) 

0.032(1 + 16.9s) 
~ (9.18)

s(1 + 24.0s)(1 + 9.2s) 

corresponding to Wroll = 0.189 (rad/s) and ( = 0.36. It is seen that the amplitudes ofthe 
roll andyaw models are quite close. However, the decoupled model in roll does not describe 

AM. 
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"!"~l'"the phase with sufficient accuracy. so stability problems could be an issue when designing 
. ,a model-based RRD. The main reason for this is that one pole-zero pair is omitted in the 

:~... :"".~'.,~decoupled roll model. Since, this is a right-half-plane zero, Z = 0.036 (radls), the pole-zero� 
pair gives an additional phase lag of -180 (deg) as observed in the plot of the full model. 

:~
 

This will ofcourse result in serious stability problems when trying to damp the roll motion.� 
In practise it will be difficult to design a RRD for this system since the controller should 

reduce the energy at the peakfrequency Wroll = 0.189 (rad/s) which is much higher than the 
,."� right-half-plane zero Z = 0.036 (radls). This is a non-minimum phase property which cannot� 

be changed with feedback (recall that only poles and not zeros can be moved usingfeedback� 
control). The non-minimum phase characteristic is observed as an inverse response in roll� 
when a step input is applied; see Figure 9.2.� 

The plots are generated by simulating the nonlinear model of Son and Nomoto (see 
ExRRD3 . m}. The non-minimum phase behavior due to the right-half-plane zero is discussed 
more closely by Fossen and Lauvdal (1994) where both linear and nonlinear analyses ofthe 
models ofSon and Nomoto are considered. The nonlinear equivalent to a right-half-plane 
zero is unstable zero dynamics. 

9.1.2 The Nonlinear Model of Son and Nomoto (1981) 

A nonlinear model including roll for a high speed container ship has been proposed by Son 
and Nomoto (1981, 1982): 

:-" .� (m+mx)u- (m+my)vr = X +Tx (9.19) 

(m + my)v + (m + mx)ur + myQyr - mylyp = Y + Ty (9.20) 
1(s). (Ix + Jx)p - mylyv - mxlxur = K - WGMT ¢ + Tk (9.21) 

~, (Iz + Jz)r + myQyv = N - xgY + Tn (9.22) 

where m x, my. J x, and Jy denote the added mass and added moment of inertia in the x,.dy
and y-directions about the z- and z-axes, respectively. The control inputs are recognized as Wis 
T = [Tx, Tu» Tk, Tn]T. The added mass z-coordinares of m x and my are denoted by Qx andJion 
Qy,while lx and Ly are the added mass z-coordinates of rn; and my, respectively. 

The terms on the right-hand side of (9.19}-(9.22) are defined in terms of a 3rd-order I;" 
Taylor series expansion where small coefficients are neglected. The remaining terms are: ,I,~	 X = X(u) + (1 - t)T + Xvrvr + X vvv 2 + X rrr 2+ X</></>¢2

~ 

+X.s sin ri + X ext (9.23) 
U7) Y = Yvv + Yrr + Y</>¢ + Ypp + Yvvvv 3 + Yrrrr 3 + Yvvrv 2r + Yvrrvr

2 

+Yvv</>v2¢ + Yv</></>v¢2 + Yrrtpr 
2¢ + Yr</>q,r¢2 + Y.s cos d + Yext (9.24) 

K = Kvv + Krr + K</>¢ + Kpp + K vvvv 3 + K rrrr 3 + K vvrv 
2r + K vrrvr ' ;.'	 2 

:..~ +Kvvq,v
2¢ + K v</></>v¢2 + K rrq,r

2¢ + K rq,q,r¢2 + K.s cos d + K ext (9.25)
" ~ N = Ni,» + Nrr + Nq,¢ + Npp + Nvvvv 3 + Nrrrr 3 + Nvvrv 2r + Nvrrvr

2 

1.18) 
lit.� +Nvvq,v2¢ + Nv</>q,v¢2 + Nrr</>r

2¢ + N rq,q,r¢2 + N.s cosri + Next (9.26) 

where X(u) is usually modelled as quadratic drag X(u) = X1u1ululu and the subscript extrthe"'""
denotes external forces and moments due to wind, waves, and currents. 'Tibe 

I� 
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Matlab:� 
These models of Son and Nomoto (1981) are implemented in the GNC Toolbox as:� 

[xdot,U] = container(x,ui) 

The linearized model for U = Un is accessed as: 

[xdot,U] = Lcontainer{x,ui,UO) 

where xdot=[u v r x y psi p phi delta] 'and ui=[ delta_c n_c]'. In the 
linear case only one input, del ta_c, is used since the forward speed uo is constant. For 
the nonlinear model propeller rpm, n_c, should be positive. 

9.1.3 The Nonlinear Model of Christensen and Blanke (1986) 

An alternative model formulation describing the steering and roll motions of ships has been 
, proposed by Christensen and Blanke (1986). This model is written as: 

;I� where the forces and moments associated with the roll motion are assumed to involve the 
square terms of the surge speed u2 and lulu. The terms ¥"xt, K ext, and Next consist of posII� sible contributions from external disturbances while control inputs like rudders, propellers, 
bow thrusters, etc., are included in T., ,Iii' ' 

I 
, 

9.2 Rudder-Roll Damping (RRD) Control Systems 

Rudder roll damping (RRD) was first suggested in the late seventies; see Cowler and Lambert 
(1972, 1975), Carley (1975), Lloyd (1975), and Baitis (1980). Research in the early eighties 
showed that it was indeed feasible to control the heading of a ship with at least one rudder 
while simultaneously using the rudder for roll damping. If only one rudder is used, this is an 
underactuated control problem. In the linear case this can be solved by frequency separation 
of the steering and roll modes since course control can be assumed to be a low-frequency 
tracking control problem while roll damping can be achieved at higher frequencies. 

Before designing a RRD system the applicability of the control system in terms of ef
fectiveness should be determined (Roberts 1993). For a large number of ships it is in fact 
impossible to obtain a significant roll damping effect due to limitations of the rudder servo 
and the relatively large inertia of the ship. 
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Motivated by the results in the 1970s RRD was tested by the U.S. Navy by Baitis et 
al. (1983, 1989), in Sweden by Kallstrom (1987), Kallstrom et al. (1988), Kallstrom and 
Schultz (1990), Kallstrom and Theoren (1994), and in the Netherlands by Amerongen and 
coauthors. Van Amerongen et al. (1987), Van Amerongen and Van Nauta Lempke (1987), 
and Van der Klugt (1987) introduced LQG-theory in RRD systems. A similar approach has 
been proposed by Katebi et al. (1987), while adaptive RRD is discussed in Zhou (1990). 

Blanke and co-workers have developed a RRD autopilot (Blanke et al. 1989) that has 
been implemented by the Danish Navy on 14 ships (Munk and Blanke 1987). Sea trials show 
that some of the ships had less efficient RRD systems than others. In Blanke and Christensen 
(1993) it was shown that the cross-couplings between steering and roll were highly sensitive 
to parametric variations which again resulted in robustness problems. Different loading con
ditions and varying rudder shapes have been identified as reasons for this (Blanke 1996). In 
Stoustrup et al. (1995) it has been shown that a robust RRD controller can be designed by 
separating the roll and steering specifications and then optimizing the two controllers inde
pendently. The coupling effects between the roll and yaw modes have also been measured in 
model scale and compared with full-scale trial results (Blanke and Jensen 1997) while a new 
approach to identification of steering-roll models have been presented by Blanke and Tiano 
(1997). 

More recently H 00 control has been used to deal with model uncertainties in RRD control 
systems. This allows the designer to specify frequency dependent weights for frequency sep
aration between the steering and roll modes; see Yang and Blanke (1997, 1998). Qualitative 
feedback theory (QFT) has also been applied to solve the combined RRD-heading control 
problem under model uncertainty; see Hearns and Blanke (1998). Results from sea trials are 
reported in Blanke et al. (2000a). 

Simulation and full-scale experimental results of RRD systems using a multivariate au
toregressive model and the minimum AlC estimate procedure have been reported by Oda et 
al. (1996, 1997). Experimental results with various control strategies are also reported by 
Sharif et al. (1996). A nonlinear RRD control system using sliding mode control for com
pensation of modeling errors is reported in Lauvdal and Fossen (1997). 

A gain scheduling algorithm for input rate and magnitude saturations in RRD damping 
systems have been developed by Lauvdal and Fossen ( 1998b). This method is motivated by 
the automatic gain controller (AGC) by Van der Klugt (1987) and a technique developed for I, 

stabilization of integrator chains with input rate saturation. 
In this section the focus will beon linear quadratic optimal RRD. The interested reader is 

recommended to consult the references above for other design techniques. 

9.2.1 Linear Quadratic Optimal RRD Control System 

Consider the state-space model (9.8) with r 2 1 rudder servos. This is written: 

x=Ax+Bu (9.27) 

with x = [v, p, r, rP, 'ljJ]T and: 

rP = C;:'llX, 'ljJ = c;awx (9.28) 

The control objective is simultaneous course control 'ljJ = 'ljJd = constant and RRD (Pd = 
rPd = 0). There will be a trade-offbetween accurate heading control (minimizing ¢ = 'ljJ-'ljJd) 

Ji ,. 
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and control action needed to increase the natural frequency Wroll and damping ratio (roll in 'D 
roll. Also notice that it is impossible to regulate <p to a non-zero value while simultaneously 
controlling the heading angle to a non-zero value by means of one single rudder. This can 
easily be seen by performing a steady-state analysis of the closed-loop system. This suggests 
that we want to specify the output to be controlled as: ... 

(9.29) 

JillDefining y = Cx implies that: 
III 

0 1 000] 
(9.30)c= ° ° 1 ° ° 

000 1 ° [ ° ° 001 iii
Application of optimal control theory implies that the control objective should be specified as .. 
an optimization problem for course-keeping, roll damping, and minimum fuel consumption. ... 
The trade-off between these quantities can be expressed as: 

(9.31) 

where y = y - Yd» X = X - Xd, and Xd = [0,0,0,0, 'l/Jd] T. Accurate steering is weighted IIi 
against roll damping by specifying the cost matrix Q =diag{Qp, Qr, Q"" Q.;,} 2 0, while ... 
R =diag{R1 , R21 , ..• , Rr} > 0 weights the use of the different rudder servos. CIIIi 

The solution to the LQ trajectory tracking problem is; see Section 7.2.3: 

(9.32) 

where 

G 1 = -R-1BTpoo (9.33)� 

G 2 = -R-1BT(A+BG1)-TCTQ (9.34)� 

with P 00 = p;;;' > °is given by: 

PooA + ATpoo - PooBR-1BTpoo + CTQC = 0 (9.35) 

Frequency Separation and Bandwidth Limitations ..,.
Since (A, B) is controllable and full state feedback is applied, it is possible to move all the� 
five poles of the system. The closed-loop system becomes:� • 

x = Ax + Bu = (A + BGi)x+ BG2 h'l/Jd (9.36)--......-. ~ 

Ac Yd 

where� 
h =[0,0,0, l]T (9.37)� 
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Jin The closed-loop transfer function in yaw is:� 
lSly� 
can 'l/J(s) = c;aw(sI - Ac)-lBG2 h 'l/Jd (S ) (9.38)� 

~ 

.. which clearly satisfy: 

ftm 'l/J(t) = 'l/Jd (9.39)
29) t->oo 

Notice that integral action is needed in a practical implementation of the controller. Similarly, 
the closed loop in roll becomes: 

<p(s) = c~lI(sI - Ac)-lBG2 h 'l/Jd (S) (9.40)
30) 

~ Ifone rudder is used to control both <p and 'l/J, frequency separation is necessary to achieve 
this. Assume that the steering dynamics is slower than the frequency 1ITI, and that the natural 

[ 
tlas frequency in roll is higher than 11Th. Hence, the VRU and compass measurements can be 

low- and high-pass filtered according to: 

<p h Ths-(s) = h(S) = (9.41) 

I 
<pyru l+ThS 

'l/J 1
-(s) = hl(s) = (9.42) 

'l/Jcompass 1 + Tis 

lied It is also necessary to filter the roll and yaw rate measurements pes) and res). These sig
bile nals can also be computed by numerical differentiation of <pyru(s) and 'l/Jyru (s) using a state 

estimator. Alternatively they can be measured directly by using a gyro; see Chapter 6. 
This suggests that the bandwidth of the course controller must satisfy (frequency separaL,t tion): 

32) Wb« Wroll (9.43) 
~.'..'.'."'... This again implies that the low- and high-pass filters must satisfy: 

33) 
Wyaw < Wb < < < Wroll34) -.............. ~ ...............� 

cross-over bandwidth natural 
frequency in yaw frequency 

~ 
35) 

which clearly puts a restriction on the ships that can be stabilized. For many ships this re
illlliih quirement is impossible to satisfy due to limitations of the rudder servos (control forces). 

h Example 9.2 (RRD Control System)� 
Let G 1 = [911,912,913,914,915] and G2 = [0,0,0,924] such that the solution (9.32) of�

the 
the SISO LQ trajectory tracker problem can be written (assuming one rudder): 

b 8 = [911,912,913,914,915] x + 924'l/Jd (9.44) 

or: 8 = -Kvv -Kp('ljJ - 'ljJd) - Kdr -Kr 1P - K r 2 <P (9.45) 
'-- -J , ~, ~ 

--.,--- 'V' 'V 

"I 

swayfeedback PD coursecontroller rolldamper 

f' 

iii 

II 
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where K; = -9u,Kp = -915 = 924,Kd = -913,Kr1 = -912, and K r2 = -914· 

Frequency separation suggests that: 

(9.46) 

where 

0course = -Kvv - Kp('l/J -'l/Jd) - KdT (9.47) 

droll = -Kr1P- K r24> (9.48) 

The controller gains can be found by using the GNC toolbox m-function; see Section 7.2.3: 

[G1,G2]=lqtracker(A,B,C,Q,R) 

Alternatively, the gains can be computed by usingpole placement. The two subsystems (9.13) 
and (9.14) with course autopilot and RRD become (neglecting the interactions between the 
systems and assuming frequency separation): 

P ] - [~~] [p]_ (9.49)[ ~ - -2<q,wq, -w~ 4> - 0 
1 0 

[ ~ ] = [ :~: =~~:~: :~: =~~:~~ =~:~:] (9.50) 
;p 0 1 0 

, The poles can placed directly in Matlab™ using: F~9: ' 

! .: ze;[Kr1, Kr2] =place (A_phiphi,B_phiphi, [p_phi1,p_phi2]) 

[Kv,Kp,KdJ=place(A_psipsi,B_psipsi,[p_psi1,p_psi2,p_psi3J) 

For roll it is seen that: 

I -w~ = a24 - b'.21Kr2, (9.51) 
" 

i'
,

or: i 
~2 + 2(.pw.p a24 + w~ 

j ~ K r1 = J.._ ' K r2 = b (9.52)
U21 21'I.I 

where (p and w.p are pole placement design parameters that can be used instead ofeigen
values. The model ofSon and Nomoto (see ExRRD2 . m in the GNC Toolbox) has been used to 
demonstrate how an LQ optimal RRD control system can be designed The linear state-space 
model for the container ship is: 

...,I
-0.0406 -1.9614 0.2137 0.1336 0]� 
O.DOll -0.1326 -0.1246 -0.0331 0� 

A = -0.0010 0.0147 -0.1l63 -0.0006 0 ,� 
o 1 000[ 
00100 ~.JII'!ll!I 

.-.i:.... 
The controllergains were computed using [G1, G2]=lqtracker (A,B, C, Q,R) with the weights .,.,J ,~':: 

Q=diag([10000 1000 10 1J), R=0.5 

resulting in: 

n._-_-...", ..� ... 
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= -914' 

(9.46).'. ~t2=: 

yaw angle '" (deg) 

:vo~: a~~~: I 
'···~1'·".i 
~"'~ 

(9.47) 

(9.48) 

,7.2.3: 

j 
f 

l 

o 100 200 300 400 500 600 700 800 900 1000 

ns (9.13) 
ween the 

.,; 
o 100 200 300 400 500 600 700 800 900 1000 

~. 

l 

(9.49) JE:~: I
o 100 200 300 400 500 600 700 800 900 1000 

(9.50) NO ROll. DAMPING ROLL DAMPING NO ROLL DAMPING time (s) 

Figure 9.3: Performance ofRRD control system during course-keeping and course-changing 
(10 deg). The RRD system is active between t = 300  700 (s). 

Gl=[0.1631-16.1193-6.7655-1.1644-0.4472J, G2=[0 0 00.4472J 

r 
(9.51) 

Notice that g15 = -g24. The open-loop and closed loop poles are computed in Matlab™ 
using the commands damp (A) and damp (A+B*Gl); see Table 9.1. 

by 

(9.52) 

ofeigen
'1 used to 
fie-space 

(9.53) 

Table 9.1: Eigenvalues, damping ratios and frequencies for RRD control systems. 

Eigenvalues 

open loop 

o 
-0.027 
-0.071 + 0.183i 
-0.071 - 0.183i 
-0.121 

closed loop 

-0.061 
-0.026 
-0.100 + 0.165i 
-0.100  0.165i 
-0.131 

Damping 

open loop closed loop 

1.00 
1.00 1.00 
0.36 0.52 
0.36 0.52 
1.00 1.00 

Frequencies(rad/s) 

open loop closed loop 

0.016 
0.027 0.026 
0.197 0.193 
0.197 0.193 
0.121 0.131 

'/': ' 
I.... 

, "-' 

the weights: 

It is seen that the naturalfrequency and relative damping ratio in roll are Wroll = 0.193(radls) 
and (roll = 0.36, respectively. This is improved to Wroll = 0.197(rad/s) and (roll = 0.52 by 
roll feedback. It is difficult to increase the relative damping ratio further due to limitations of 
the steering machine (jrnax = 20 (deg/s) and Jrnax = 20 (deg)). These values can, however, 
be changed in RRDcontainer. m 

Since the roll frequency WIUIJ is 0.193(radls) and the cross-over frequency in yaw wyaw 
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is 0.03 (rad/s), see Figure 9.1 in Example 9.1, it is approximately one decade between the 
frequencies wyaw and W ro//. Therefore, frequency separation can be obtained by choosing 
the low-pass and high-pass filter frequencies as liT/. = 0.1 (rad/s) in yaw and 11Th = 
0.05 (rad/s) in roll, respectively. It is seen that the heading controller moves the poles to 
-0.061, -0.026 and -0.131 resulting in satisfactory course-changing capabilities; see Fig
ure 9.3. It is also seen that the course-keeping performance is degraded during RRD. The 
additional yawing motion. typically 1 - 2 degrees in amplitude, is the price paidfor adding 
roll feedback to an autopilot system. Also notice that the right-half-plane zero in the transfer 
function ¢!(h (8) given by (9.15) is unchanged since feedback only moves the poles. 

9.2.2 Performance Criterion for RRD 

The percentage roll reduction ofRRD system can be computed by using the following crite
rion ofOda et al. (1992): 

"~~*"v._ -·f 

Roll reduction = 
, 

(JAP 

.. "" ·,:co.L..,__ . -ztt:nll),' __ ----:~ 

- (JRRD x 100(%) 
(JAP 

<"~'~;~:':-t'"iIfu##i¥i4¥%~H'%"'"-,jJ@#4UA,)..,,,MU.MJJH~~Bit 

(9.54) 

where 

AP = standard deviation of roll rate during course-keeping (RRD off) 
RRD = standard deviation of roll rate during course-keeping (RRD on) 

For the case study in Example 9.2, (JAP = 0.0105 and (JRRD = 0.0068. This resulted in a 
roll reduction of approximately 35 (%) during course-keeping. For small high-speed vessels 
a roll reduction as high as 5~75 % can be obtained. This of course depends on the shape 
of the hull (hydrodynamic effects) and the capacity of the steering machine. In particular the 
maximum rudder rate <Smax should be in the magnitude of 15-20 % to obtain good results. 

9.3 Fin Stabilization Control Systems and RRD 

This section discusses methods for RRD and fin stabilization. The most effective roll damp
ing systems are those which combine stabilizing fins and rudders; see Kallstrom (1981) and 
Roberts and Braham (1990). Warship stabilization using integrated rudder and fins are dis
cussed by Roberts (1992). More recently robust fin stabilizer controller design using the QFT 
and H 00 design techniques have been presented by Hearns et af. (2000) while the performance 
of classical PID, optimized Pill (Hickey et al. 2000), and Hoo-controllers are compared in 
Katebi et al. (2000). Sea trials with the MV Barfieur using Pill and Hoo-controllers are 
presented in Hickey et al. (1997), and experimental results with a finIRRD damping system 
onboard a frigate-size Royal Naval warship are reported in Sharif et al. (1995, 1996). 

Reduction of vertical accelerations of fast ferries using fins and a T-foil is discussed by 
Esteban et al. (2000) and Giron-Sierra et al. (2001) while the modeling and identification 
results are reported in de-la-Cruz et al. (1998) and Aranda et al. (2000). A Matiab/Simulink 
simulation tool for fast ferries is presented in Esteban et al. (200 I). 

Fin stabilizers are attractive for roll reduction since they are highly effective, works on a 
large number of ships, and are much more easier to control, even for varying load conditions 
and actuator configurations. Fins stabilizers are effective at high speed, but at the price of 

--=:.....:...::.~-_ ..
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9.3 Fin Stabilization Control Systems and RRD 381 

additional drag and added noise. The most economical systems are retractable fins, where 
additional drag is avoided during normal operation, since fin stabilizers are not needed in 
moderate weather. Another nice feature of fin stabilizing systems is that they can be used to 
control ¢ to a non-zero value (heel control). This is impossible with a RRD control system 
where accurate control of'l/J has the priority. 

9.3.1 Linear Quadratic Energy Optimal Autopilot with Roll Damping 

In this section an integrated fin and RRD system will be designed. Notice that a stand-alone 
fin stabilization system can be constructed by simply removing the rudder inputs from the 
input matrix. 

When designing an LQ optimal finlRRD system the following two different model repre
sentations can be used: 

Mil + DV=T where T= T Ku (9.55) 
~ 

f 

or 

v = -M-1D v+M-1TKu (9.56) 
--....-- '-v--' 
upper left part upper part 
of A in (9.8) of B in (9R) 

/"i:ifii&;:Hj:r-~' :.;.: ,c~"f~ (,;,f ~"",,,:' -. '.'We 

In the first representation generalized force T is used as control input while the last represen
tation use u, that is, propeller rpm, rudder angles, fin angles, etc. In practise it is advantageous 
to use (9.55) instead of (9.56), since actuator failures can be handled independently by the 
control allocation algorithm without redesigning the control law. Notice that the B matrix in 
(9.56) depends on T and K while these matrices are not used in (9.55); see Section 7.5. This 
is demonstrated in the following example: 

Example 9.3 (Actuator Model for Fins and Rudders) 
Consider a ship with port and starboardfins where 811 and 812 are used to denote the star
board and port fin angle deflections (forces in the z-direction). Let 8r1 and 8r2 denote the 
starboard andport rudders (forces in the y-direction). The control forces are (linear theory): 
see Section 7.5: 

Y = K 18r1 + K 28r2 (9.57) 

Z = K 3811 + K 4812 (9.58) 

Ifthe rudders are located aft ofthe ship at the positions (-lxr, ±lYr' 0) and the fins forward 
at (lxI' ±lYI' lZI) the roll andyaw moments become: 

K = lYIK3811 - lYIK4812 (9.59) 

N = -lxrKl8rl -lxrK28r2 (9.60) 

Ii., 



.~-

382 Autopilots with Roll Damping 

The input model (9.7) for sway, roll and yaw is: 

UI 

1 0 0 
T ~ [ ~ 0 ly! -ly! ] .~{K"",:2,K3,K4~U (9.61) 

-l -lx 0 0X r r ' K, .. 
T 

where u = [8 fl, 8rz, 8r 1 , 8r 2 ]T. Combined roll damping andyaw control suggests that r = 
[*, K, N]T, where K and N are the controls while * denotes that the force Y in sway is 
not controlled, but treated as an interaction force caused by the input u. The reduced order 
modelfor combined roll andyaw control is: 

0 ly! (9.62)
-lx r 0 

j' 
v 

I! 
indicating that 4 controls Ui (i = 1, ... ,4) can be used to generate K and N. The control 
inputs can be computed as u = K- 1 'f'tT , that is: 

The generalizedforce vector is found as: 

1 
-2l z r 

1 
-2l z r 

o 
o 

v 
j't 

while the resulting input vector in sway, roll, andyaw becomes: 

'T = [-l: ,K,N]T 

l 
-Ie: 

JL-:t..I.O(9.63) 
"'I::OW 

(9.64) 

(9.65) 

where K and N are generated by the control system. Notice that the control input in yaw, N, 
contributes with an interaction force - N / lX r in sway. 

Energy Optimal Criterion for Combined Fin and RRD StabOlzation 

It is possible to relate the LQ controllers for the models (9.55) and (9.56). This is demon
strated by considering a ship equipped with rl rudders and r2 fins. The total number of 
actuators is r = r i + r2, implying that u ERr. The DOFs considered are sway, roll, and yaw, 
that is, n = 3. Consequently, v = [v, p, r] TERn. It is also assumed that the ship is at least 
fully actuated such that r ~ n. 

An energy optimal criterion weighting the different control forces f = [II, ..., fr] T against 
accurate tracking and roll damping is: 

(9.66)J = rnJn {~lT(eTQe+fTRff) dT} 
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where e = y - Yd' The elements in Q =diag{Qp, Qr, Qq" Q,p} :2 0 are used to weight 
accurate steering against roll damping. The rudder and fin servos are weighted against each 
other by specifying the elements in Rf=diag{R81, R82,"" ROrJ' Rjl, Rf 2 , ... , Rfr 2} > 
O.Ifr1 = 0 and R81 = R,s2 = ... = R,srl = 0 only fin stabilization is obtained (no rudders). 

The performance index (9.66) can be rewritten as: 

J=min {! fT(eTQe+UTKTRfKU)dr} (9.67) 
u 2 J0 '--v---' 

Ru 

which again can be transformed to (recall from Section 7.5 that u = K-1Tt T and K is 
diagonal): 

J = min {~ f (eTQe + T T (Tt)Tn,T w T) dr} (9.68) 
T 210 ~ 

RT 

.--"" 
The difference of the criteria (9.66), (9.67), and (9.68) are that they weight control force f, 
actuator inputs u, and generalized force T against e, respectively. The control weights are 
related by: 

a, =KTRfK, R, = (T~)TRfTt (9.69) 

As mentioned earlier it is advantageous to solve for the optimal control force T, that is Cri
terion (9.68), and then use control allocation to compute u. The result is (see alloe. m in 
the Matlab" GNC Toolbox): 

u = K-1T t T w 

which gives us design freedom with respect to actuator failure since the state-space model 
(9.55) is independent ofK and T. Instead of specifying R; in (9.68) it is more convenient 
to specify R f' that is the price of control force, and then apply the transformation (9.69). 

The solution to the LQ problem (9.68) is (see Section 7.2.3): 

T=G1X+G2Yd (9.71) 

where 

G 1 = _[(T~)TRfTtrlBTpoo (9.72) 

G 2 = _[(T~)TRfTtr1BT(A+BGd-TCTQ (9.73) 

where Q and Rf are design matrices while P 00 = P:' > 0 is given by: 

[( t)T t ]-1 T TQ_PooA+ A TPoo-PooB T w RfTw B Poo+C C-O (9.74) 
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9.4 Operability and Motion Sickness Incidence Criteria 

Operability criteria for manual and intellectual work as well as motion sickness are important 
design criteria for evaluation ofautopilot and roll damping systems. Sea sickness is especially 
important in high-speed craft and ships with high vertical accelerations. 

9.4.1 Human Operability Limiting Criteria in RoD 

Operability limiting criteria with regard to vertical and lateral accelerations and roll angle for 
the effectiveness of the crew and the passengers are given in Table 9.2. 

Table 9.2: Criteria for effectivness of the crew (Faltinsen 1990). 

Standard Deviation (Root Mean Square) Criteria 
Vertical Lateral 
acceleration (w) acceleration (iJ) Roll angle (4)) Description of work 

0.20g 0.10 g 6.0deg Light manual work 
0.15 g O.07g 4.0 deg Heavy manual work 
0.10 g 0.05g 3.0 deg Intellectual work 
0.05 g O.04g 2.5 deg Transit passengers 
0.02g 0.03g 2.0deg Cruise liner 

This gives an indication on what type of work that can be expected to be carried out for 
different roll angles/sea states. 

9.4.2 Criterion for Motion Sickness Incidence (MSI) 

In addition to operability limiting criteria passenger comfort can be evaluated with respect to 
motion sickness. 

The ISO 2631-3:1985 Criterion for MSI 

The International Standardization Organization (ISO) motion seasickness incidence criterion 
is reported in ISO 2631-1 (1997). This report replaces ISO 2631-3 (1985); see http://www.iso.ch. 
The most important factors for seasickness are vertical (heave) accelerations az (m/s-}, ex
posure time t (hours), and encounter frequency We (radls). 

The ISO standard proposes an MSI of 10% which means that 10010 of the passengers 
become seasick during t hours. The MSI curves as function of exposure time are shown in 
Figure 9.4 where: 

0.5J27t for 0.1 Hz < ~ S 0.315 Hz 
(9.75)

az(t,we) = { 0.5J27t .6.8837 (~)1.67 for 0.315 Hz:S ~ S 0.63 Hz 
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ISO 2631 Motion Sickness Incidence (M51) 
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Figure 9.4: Heave acceleration a z (m/s2) as a function of frequency of encounter We (rad/s) 

for for different exposure times. The ISO curves represent a MSI of 10%. 

(:� Matlab: 
The MSI curves (9.75) as functions of the exposure time are implemented in the GNC 
Toolbox as: :ito 

[a_z,w_e] = ISOmsi(t)

k Figure 9.4 is generated by using the example file:� ", ~ .. 
,..... 

ExMSI 

rion 
iso.ch. The main limitation of the ISO criterion is that it only predicts the exceedence of the 10% 
ex- MSI point. It is also assumed that the accelerations in the CG are representative for the entire 

ship and that a representative wave period can be used instead of the actual wave. In many 
~ cases it is advantageous to use the extended sickness method for more accurate predictions. 
11 in This method is presented below. t 

I· 
! 

The O'Hanlon and McCauley (1974) Criterion for MSI 

The O'Hanlon and McCauley (1974) probability integral method is attractive to use since it 
.75) produces a MSI criterion in percent for combinations of heave acceleration az (m/s") and .. frequency ofencounter We (radls). The MSI index is defined as the number of sea sick people 

in percentage for an exposure time of two hours; see Lloyd (1989) and Lewis (1989). 

~ ~. 

! .� "':11, 
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O'H8nlon and McCauley (1974) Motion Sickness Incidence (MSI) 
100 r-----::-1 
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Figure 9.5: MSI is the number ofmotion sick persons in percent during a two hours exposure 
time as a function of encounter frequency We (rad/s) and heave acceleration o., (m/s"), 

The criterion is defined as: 

MSI = 100 (0.5 ±erf (± loglO (a~~) =F Jit..ISI )) (%) (9.76) 

where 
JiMSI = -0.819 + 2.32 (IOgIO we )2 (9.77) 

, I 
and 

1 r (z2)erf(x) = erf(-x) = y'21r J exp -2 dz (9.78) 
o 

Matlab:� 
The GNC Toolbox function:� 

can be used for computation of the MSI. Notice that the erf-function in HMmsLm is scaled 
different from the Matlab" function erf.m. The MSI curves in Figure 9.5 are plotted for 
different az and We using the example file: 

ExMSI 
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The major drawback of the O'Hanlon and McCauley method is that it only applies to a two 
hour exposure time. Another effect to take into account is that the O'Hanlon and McCauley 
MSI criterion is derived from tests with young men seated separately in insulated cabins. Ac
cording to the ISO 2631-1, the MSI number is about 1.5 higher amongst women and children 
suggesting that the actual MSI number for passengers of average age and sex distribution 
should be at least 1.25 times higher. 

9.5 Exercises 

Exercise 9.1 Show that the pair (x g, Zg) in r g = [xg, Yg, ZgJT describing the horizontal 
location of the body-fixed coordinate system in a ship can be chosen such that the inertia 
matrix 10 = IJ becomes diagonal. Assume homogeneous constant mass distribution and 
xz-plane symmetry such that I x y = Iy z = 0 and Yg = 0 (Hint: use the parallel axes theorem 
10 = I, - mS2(r~» 

Answer: mxgzg = -I~i where x g or Zg must be zero. Usually x g :/:- 0 and Zg =O. 

Exercise 9.2 A high-speed craft is moving at forward speed U = 20.0 (m/s) in head sea. 
Assume that the mean vertical acceleration is az = 2.0 (m/s2 ) . The peak frequency of the 
waves is Wo = 1.0 (radls). How many out of86 passengers become seasick if the 0 'Hanlon 
and McCauley MS! criterion is used? Compute the MS! for different values j3 of incident 
waves andplot the MS! as a function of j3. What are the most critical directions ofthe waves 
with respect to sea sickness and how many become seasickfor these angles? 

osure Answers: j3 = 180 deg (10 persons). j3 = 0 and ±90 deg (54 persons). 

:9.76) 

:9.77) 

9.78).-�
Jed 
for 

R 
'4;
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!

Trajectory Tracking and
Maneuvering Control

10.1 Trajectory Tracking Control 389
10.2 Maneuvering Control 394
10.3 Exercises 416

This chapter discusses trajectory tracking and maneuvering control. The objective in tra
jectory tracking control is to force the system output y(t) to track a desired output Yd(t),

while in maneuvering control the task is to converge to and follow a parametrized path Yd((})
as a function of a path variable denoted by () = (}(t). In maneuvering control the objective
is twofold: (1) converge to and follow a desired parametrized path Yd((}), and (2) satisfy a
desired dynamic behavior along the path (Skjetne et ai. 2002c), like a speed assignment for
B(t). This is in accordance with Definitions 5.1 and 5.4 in Section 5.2.

10.1 Trajectory Tracking Control

Conventional way-point guidance systems are usually designed as trajectory tracking con
trollers. In its simplest form this involves the use of a classical autopilot system where the
yaw angle command 1/Jd is generated such that the cross-track error is minimized. This can
be done in a multivariable controller, for instance of 'Hoc or LQG type, or by including an
additional tracking error control-loop in the autopilot. A way-point trajectory tracking system
is usually designed such that the ship can move forward with reference speed Ud at the same
time as the path cross-track error is minimized. The desired path can be generated using a
route management system or by specifying the desired route by way-points, see Section 5.2.
If weather data are available, the optimal route can be generated such that the effects of wind
and water resistance are minimized.

When designing a 3 DOF trajectory tracking control system, the solution will depend on
the number ofavailable actuators. In this section the following cases are discussed:
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•� 2 controls: Trajectory tracking control using forward thrust T for speed control and 
a single rudder &to minimize the cross-track error. The proposed solutions include 
methods based on Pill, line-of-sight, and LQG control for minimization of the cross
track error. 

•� 3 or more controls: Low-speed trajectory tracking control of ships in surge, sway, and 
yaw. This is usually referred to as a dynamic positioning (DP) system and the topic is 
treated separately in Section 11.2. 

In DP systems the surge and sway positions, and the yaw angle can be controlled indepen
dently, while trajectory tracking control with two controls is done by mapping the surge and 
sway tracking errors to cross-track errors. Such methods are presented below. 

) 

10.1.1 Conventional PID Cross-Tracking System 

Recall from Section 5.2.1 that the cross-track error e2 between a desired trajectory (Xd,Yd) 
and a moving vessel is: 

(10.1) 

For a vessel with coordinates (x, y) and heading 1jJ, the error term e2 represents the deviation 
to the path in the y-direction-i.e., in vessel-paralell coordinates; see Definition 3.4 in Section 
3.3.2. 

Assumption 10.1 (Straight-Line Path) 
Assume that the desired path is constructed as straight lines with the inertial frame x-axis 
along the path such that Xd = x and Yd = O. 

Assumption 10.1 implies that v and 1jJ will be small for a vessel moving along the path. This 
implies that the cross-track error can be approximated as: 

-v-«� "".;"'"," ... +..11· ., .. "". 

(10.2) 

and that the kinematic equations reduce to: 

lI~Oand 1/J~O 
X = u cos 1jJ - v sin 1jJ :::::: U� (10.3) 

lI~Oand1/J~O

iJ = usin1jJ + v cos 1jJ :::::: U1jJ� (10.4) 

Consequently, the vessel is moving with approximately constant speed U = vu2 + v2 :::::: u 
along the path. 

A conventional cross-track controller is usually designed by using Nomoto's model (8.29) 
such that: 

iJ U1jJ (10.5) 

1jJ T (10.6) 

Ti'+r = K8 +Tb (10.7) 

rb 0 (10.8) 
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where rb is a bias term and 8 is the control input. Consequently: 

riation 
;ection e2(S) = h,s(s)8(s) + hb(s)rb(s) 

where:". 
•� e2 KUx-axis h,s(s) = -;5(s) = s2(1 + 

e2 U 
~ This� hb(S) = rb(s) = s2(1 + Ts) 
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Figure 10.1: Autopilot including a LOS guidance system. 

(10.9) 

(10.10) 

(10.11) 

For this system it is straightforward to design a Pill-controller for regulation ofe2 to zero. In
tegral action is needed in order to compensate for the bias term rb representing environmental (10.2) 
disturbances and the rudder offset. 

~ 

10.1.2 Line of Sight Cross-Tracking System I 
I·.. 

(10.3) An attractive method for path following removing Assumption 10.1 is to use a line-of-sight 

(10.4)� (LOS) guidance system, see Section 5.3. For a ship, the cross-track error e2 is regulated to 
zero by designing the outer feedback loop and guidance system as: 

;2~u 

'l/Jd(t) = atan2 (Ylos - y(t), Xlos - x(t)� (10.12)(8.29) 

where the LOS coordinates (Xlos, YJos) are implicitly given by: 

(10.5) 

(10.6)� (Ylos - y(t»2 + (Xlos - x(t»2 (nL pp )2 (10.13) 

(10.7) 
YIOS - Yk-l) = Yk - Yk-l ) = constant (10.14)

(10.8) ( Xlos - Xk-l ( Xk - Xk~l 

hr-tdB 

I� 
~ 
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where n is the number of ship lengths L pp • 

A procedure for switching between the different way-points (Xk,Yk) for (k = 1, ... , N) 
is presented in Section 5.3. The autopilot and LOS guidance systems are shown in Figure 
10.1. 

10.1.3 Linear Quadratic Optimal Cross-Tracking System 

A linear quadratic Gaussian (LQG) optimal control system can be designed to minimize the 
cross-track error. 

Vessel Parallel Coordinates 

The LQG controller can be designed for the linear parameter varying (LPV) model: 

x. = A(uo)x+ Bu+ Ew + Fvo (10.15) 

where U o is surge speed.x = [71J, ~v T] T is the statevector using VP coordinates, u = T' 

and V o = [uo ' 0, 0, 0, 0, OF, see Section 3.3.2 for details. For this model, U o can be used as 
a LQG gain scheduling parameter. The VP coordinates are based on the assumption that the 
turning rate e is small which is less restrictive than Assumption 10.1. 

NED Coordinates 

An alternative to the VP model is to use NED coordinates-i.e., the coordinates (n, e) in (2.18) 
under the assumption that <P = () = O. Consequently: 

n = ucos'l/J + v cos 'l/J (10.16) 

e = usin'l/J+vcos'l/J (10.17) 

The nonlinear kinematic equations are linearized under the assumptions that sin 'l/J ~ 'l/J, 
cos 'l/J ~ 1 and v ~ 0, implying that the NED coordinate system must be rotated such that 
z-axis points towards the next way-point to make 'l/J is small-i.e., Assumption 10.1 is valid 
(Holzhuter 1990). It then follows that: 

n = U +dx (10.18) 

e = U'l/J+v+dy ( 10.19) 

2where U = vu2 + v ::::; U, and the two bias terms dx and dy are included to counteract for 
modeling errors due to the linearization. This model has been frequently used by Holzhuter 
and Schultze (1996), and Holzhuter (1997) In order to utilize optimal control and filtering 
theory, the resulting state-space model is written as: 

x=Ax+Bu+Ew (10.20) 

y=Cx (10.21) 

z= Hx+v (10.22) 
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where x = [~w, 'lj;w'n, e, 'lj;, u, v, T, Vb, Tb, dx , dy]T is the state vector and u =15. The control 
objective is regulation of y = [e, 'lj;]T to zero while GPS position and gyro measurements 
imply thatz = [n,e,'lj; + 'lj;w]T. Notice that the state vector includes two states (~w,'lj;w) for 
wave filtering, see Sections 6.1.3- 6.1.4. For the 2nd-order Nomoto model this gives: 

L 0 1 0 0 0 0 0 0 0 0 0 0 ~w 

ifw 
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-w~ 

0 
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V 0 0 0 0 0 a21 a22 0 -a21 -a22 0 0 v 
T O 0 0 0 1 0 0 0 0 0 0 0 r 

Vb 0 0 0 0 0 0 0 0 0 0 0 0 Vb 
T-b 0 0 0 0 0 0 0 0 0 0 0 0 rb 
dx 0 0 0 0 0 0 0 0 0 0 0 0 dx 

ely 0 0 0 0 0 0 0 0 0 0 0 0 ely 
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0 0 0 0 0 0 
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0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

+ I hI 
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B E 

For this system: 

0 0 1 0 0 0 0 0 0 0 
y (10.23)= 

,
[~ 0 0 0 1 0 0 0 0 0 0 ~]x 

" 
C 

0 1 0 0 0 0 0 0 0 0 
z = 0 0 1 0 0 0 0 0 0 0 (10.24)[~ 

'" 

nx+ [:]1 0 0 1 0 0 0 0 0 0 
, .. " 

H 

where aiJ and bi are defined in Section 8.1.2, and Vb and Tb are two slowly-varying parameters 
describing modeling errors and environmental disturbances. 

In many applications only forward speed U, heading angle 'lj; and position (x, y) are 
measured. Often estimation of the sway velocity v is ill-conditioned. In such cases a simpler 
model structure, neglecting the sway dynamics, is recommended 

LQG ControUer 

The control objective is: 

(10.25)J ~ ,,::n{ ~ t (yTQJ+ uTR"u) dT} 
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where Qc= Q~ > 0 and Rc>O are the state and controller weight matrices.� 

LQG controller is, see Section 7.2.1:� 

U -R~lBTpcx (10.26)---.....-.
G 

Pc = PcA+ATpc-PcBR~lBTPc+CTQcC (10.27) 

I,where x is the Kalman filter estimate of x given by, see Section 6.1.4: 

x Ax+Bu+PfHTRjl(Z-Hx) (10.28) 
'---v---' 

K 

Pf = APf+PfAT +EQfET -PfHTRj1HPf (10.29) 

Qf= QJ > 0 and Rf>O are the filter weight matrices. 

Optimal control using Bryson and Ho's time-varying controller for trajectory tracking and 
maneuvering control is discussed by Kvam et al. (2000), Due-Hung et al. (2000), and Due
Hung and Ohtsu (2000). 

10.1.4 Underactuated Trajectory Tracking Control 

In Pettersen and Nijmeijer (I 999a) an underactuated tracking controller controlling n, e, and 
'I/J is derived. Global exponential stability towards an arbitrarily small neighborhood of the 
reference trajectory (global exponential practical stability) is proven. Motivated by the sim
ilarities in structure between the ship model and chained form systems, it was shown in 
Pettersen and Nijmeijer (l999b) how a recursive technique for developing tracking con
trollers for chained form systems presented in Jiang and Nijmeijer (1999), can be used 
to develop a control law for the ship model with drift. Performing a change of coordi
nates to achieve model equations in a triangular-like form, and using integrator backstep
ping (Krstic et al. 1995), a continuous state feedback tracking control law was developed, 
giving semiglobal exponential stability of the desired trajectory. Sira-Ramirez (1999) used 
a combination of exact linearization and "high-gain" control to develop an output tracking 
controller for the ship, giving GES of the position trajectory. More recent results on underac
tuated tracking control are found in Pettersen and Nijmeijer (2001), Jiang (2002), and Do et .Ill! 
al. (2002a, 2002b, 2002c). 

10.2 Maneuvering Control 

The primary goal in maneuvering control is to steer the vessel along a desired path. The speed 
assignment along the path is the secondary goal. These goals are solved as two separate tasks 
(Skjetne et al. 2002c). The first task is to reach and follow a desired path as a function of a 
scalar path variable e, left as an extra degree of freedom for the second task. In the second 
task, e is used as a state variable to satisfy an additional dynamic specification along the 
path. This setting is more general than the trajectory tracking problem, in which the auxiliary 
variable e is assigned identically to a time signal e(t). 

-~_. 
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Hauser and Hindmann (1995) introduced a procedure to design a maneuver regulation 
controller. To determine the path variable (), they used a numerical projection from the cur
rent state onto the path. An already available tracking controller was then converted into a 
maneuver regulation controller, and a quadratic Lyapunov function was employed to guaran
tee that the states converge to the path and move along the path. This procedure applies to 
feedback linearizable systems, where the path is specified for the full state. Encarnacao and 
Pascoal (2001b) proposed an extension to solve the output maneuvering problem by back
stepping. However, for systems of relative degree higher than two, their approach requires 
higher order time derivatives of (). 

In this section, the general maneuvering problem is divided into a geometric task and a 
dynamic task (Skjetne et al. 2002c). The geometric task is to reach the path and stay on it, 
while the dynamic task specifies a time, speed, or acceleration assignment along it. The pro
posed method is a design procedure solving a robust maneuveringproblem for fully actuated 
systems in vectorial strict feedback form of any relative degree in presence of bounded dis
turbances or unknown parameters (Skjetne et al. 2002d). Extensions to adaptive systems and 
underactuated control-i.e., maneuvering control of ships in 3 DOF using only two controls 
are also discussed, while extensions to formation control are found in Skjetne et al. (2002b). 

The robust maneuvering controller solves the geometric part of the problem in n recursive 
steps. It then proceeds to construct an update law that ties together the geometric design with 
the speed assignment V s for e. The speed assignment may depend on the path v s «() ), or it 
may be given as an exogenous signal vs(t). For ships and underwater vehicles this gives 
design freedom since the speed profile can be specified along the path in real time. 

Since the output path is not time-dependent, the primary control objectives are: 

• to converge to and follow a desired parametrized output path Yd «()) 

• satisfy a desired dynamic behavior along the path for ()(t), e(t), or O(t) 

However, note that time may enter the closed loop through the dynamic assignment for 
()(t),O(t),or O(t). This motivates the following definitions: 

Definition 10.1 (Maneuvering Problem) 
Given a path ~«()) in the state space, the maneuvering problem is to design a controller 
that solves the following two tasks: 

1. Geometric Task: Given EeT > O,force the state x to enter an EeT - neighborhood of 
the desired path ~«()), that is, 3T 2:: 0 such that: 

[x (t) - ~ «()(t))1 5: ecr, 'Vt 2:: T (10.30) 

for any 0 1 function ()(t). 

2. Dynamic Assignment Task:� Given eDT> 0, satisfy one or more of the following as
signments: 

2.1 Time Assignment:� Force the variable () to enter an eDT - neighborhood of a 
desired time signal Vt(t), that is, 3T 2:: 0 such that 

I() (t) - Vt (t)\ 5: eDT, 'Vt 2:: T (10.31 ) 
\

;. 
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2.2 Speed Assignment: Force the speed iJ to enter an eDT - neighborhood ofa de
sired speed v s ( 0, t), that is, 3T ~ 0 such that 

(10.32) 

(10.33) 

10 (t)  V s (O(t), t)1 ~ eDT, "It ~ T 

IO(t) -Va (iJ(t),O(t),t) I~ cDT, "It ~ T 

23 Acceleration Assignment: Force the acceleration °to enter an eDT  neighbor
hood ofa desired acceleration va(O, 0, t), that is, 3T ~ 0 such that: 

Definition 10.2 (Output Maneuvering Problem) 
Given an output path Yd(O), the output maneuvering problem is to solve the maneuvering 
problem with respect to the output Y rather than the state x. 

10.2.1 Robust Output Maneuvering 

For simplicity it will be assumed that the dynamic assignment is a speed assignment (10.32). 
A more restrictive version of the speed assignment would be to satisfy (10.32) identically, 
0== Vs' In this case if'v, = k such that O(t) = 0(0) + kt, the maneuvering problem becomes 
a trajectory tracking problem where the desired output is a prespecified time signal Yd (t) . 

Consider the nonlinear plant in strict feedback form of vector relative degree n: 

Xl = G l (Xl)X2 +fl (Xl)+ WI (xl)l5l (t ) 
X2 = G 2(X2) X3 + f2 (X2) + W 2 (X2) 152(t) 

I 

Xn = G n (Xn) u + fn(xn) + W n (Xn) 15n (t ) 

y=h(XI) 

(10.34) ... 
~: 

(10.35)Y d = {y E!R
ID : Y = Yd(O), °E Je ~!R} 

where Xi E !Rm (i = 1, ... , n) are the states, Y E !RID is the output, u E !RID is the control, 

and 15; are unknown bounded disturbances. Xi denotes the vector Xi = [xi 0 x!, ... ,xf] T . 

The matrices Gi(xd and Vh(XI) = ::, (Xl) are invertible for all Xi, h is a diffeomorphism, 
and G i , f i o and Wi are locally Lipschitz. 

The control objective is to design a maneuvering controller that solves the output maneu
vering problem for a desired parametrized output path: 

...... 

..-
where Je is the interval of definition, Yd ( 0) is n times differentiable with respect to 0, and the 
path characterization vector: 

(10.36) 

is uniformly bounded in O. 

~.- ._--------------------..•---
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Recursive Design Procedure 

A backstepping design is developed to solve the maneuvering problem for (10.34). The first 
two steps are given to show how to deal with iJ while the i-th Step is given in Table 10.1. The 
design procedure is based on adaptive tracking and the concept of tuning functions (Krstic et 
al. 1995). 

Step 1: 

The new variables: 

W s = V s (0, t) - iJ 
Zl = Y - Yd(O) 

Zi = Xi - 0i-l, (i = 2, ... ,n) 

(10.37) 

(10.38) 

(10.39) 

are introduced, where V s is bounded and en-I, and 0i-l are virtual controls to be specified 
later. Differentiating (10.38) with respect to time results in: 

. ~). 

Zl = Y- y~iJ 

= 'VhG 1z2 + 'VhGlOl + 'Vhf l + 'VhW16l (t) 

where VI = Yf(0) = !lft. Choose a Hurwitz matrix AlSO that PI 
to PIAl + Al PI = -Ql < 0, and define the first CLF: 

VlVs + VlWs 

= p! > 0 is the solution 

~ VI = Z!PlZ1 (10.40) 

~ 

~ 

"1 
whose time derivative is: 

. T
VI = 2zl PI ['VhGlOl + 'Vhf l - VlVs ] 

+ 2zipl 'VhG 1z2 + 2zipl 'VhW16l + 2zip1V l W s 

Then the first virtual control law is picked as: 

01 = GIl ('Vh)-l [Alzl 
= fO l (Xl, 0,t) 

- 'Vhf l + VlVs + 010] 

(10.41) 
". 

where 010 is a nonlinear damping term to be picked. Define the first tuningfunction, 71 E JR., 
as: 

(10.42)71 = 2Z!PlVl 

After an application of Young's inequality, the derivative VI becomes: 

VI = -ziQ1Zl + 7lWs + 2zipl 'VhG 1Z2 + 2zipl 'VhW16l + 2zipl QlO 

:::; -z!QlZl + 7lWs + 2z!Pl 'VhG lz2 

T {I T T } IT+ 2zl PlOW + -1\:1 ('Vh) WIWI ('Vh) P 1Zl + -61612 1\:1 

f 
The nonlinear damping term is now chosen as: 

1 T T
. 010 = -21\:1 ('Vh) WIWI ('Vh) PlZl, 1\:1> a (10.43) 

} 
; 
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and the result of Step 1 is:� 

. T T T�Vi ::; -Zl Q1 Z1 + ~1 K1~1 + 2z1 PIV'bGlzZ+ 7"lWs (10.44 

Zl = A 1z1 - ~K1 (Vh) WIwi (Vh) T P 1Z1 + V'hGlzZ+ V'hW151 + V1Ws (10.45 

where ~1 = 51 and K 1 = I/K1.lfthis were the last step, then Zz = 0 and or, = 0 would 
reduce (10.44) to: 

{i- I 

\"II Z1/> -1~11
q1 

where qi = Amin (Qd, and k1 = I/K1, which implies ISS from the disturbance 51 to the 
state z;-To aid next step, let: 

(10.46) 

where 0"1 collects the terms in (h not containing 8and 51, Vz the terms multiplying 8, and 
'tV1,1 the terms multiplying the disturbance 51: 

00:1 00:1 
0"1 = &xl [G 1Xz + £1] + lit (10.47) 

Oa1I 
(10.48)Vz = a1 = 80 

00:1 
'Cl111 = --WI (10.49) 

, &xl 

Step 2: 

Consider X3 as the next control variable. Differentiating (10.39), i = 2, with respect to time 
gives: 

ZZ =)(z - a1 
= G Zz3 + G2a2 + f2 + W 252(t) - 0"1 - V28 - 'tV1,151 (t) 

where Z3 = X3 - Oz. Choose A z Hurwitz and let P z = pI > 0 be the solution to P 2A2 + 
AIp2 = -Q2 < O. Define the Step 2 CLF: 

(10.50) 

whose time derivative is: 

. T T IT T [ ]V2 ::; -Zl Q1 Z1 + 7"lWs + 2z 2 P 2V 2W . + -51 151 + 2z 2 P 2 W 252 - 'tV1,lt51 
1\;1 

+ 2zI {GJ (Vh) T P1Z1 + P z [G202 + fz - 0"1 - VZVs]} + 2zIp2GZZ3 

The second virtual control law is picked as: 

02 = G;-l [A2Z2 - p;-lGi (V'h) T P 1Z 1 - £z + 0"1 + V2Vs + o:zo] 

= f Q 2 (X2' 0, t) (10.51) 
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where 020 is a nonlinear damping term to be designed. Define the second tuning function, 
T2 E JR, as: 

-") 
T2 = Tl + 2zIp2V2 (10.52) 

;045) 
Using Young's inequality again, the derivative i-2 becomes:� 

'.Jd . TTl T T�
V2 ~ -Zl QlZl - Z2 Q2Z2 + T2Ws + -61 61 + 2z2 P2G2 Za 

Kl 

T { 1 [T T]} l[T T]+ 2z2 P 2 020 + "2K2 W 2W2 + 'tt71,1'tt71,1 P 2Z2 + K2 6262 + 6161 

and the second nonlinear damping term 020 is then chosen as: 

1 [T T ] 020 = -"2K2 W 2W2 + 'tt7l,1'tt71,1 P 2Z2, K2 > 0 (10.53)r: ~) 

Then Step 2 results in: 

t~ 

V2 ~ -ziQlZl - zI Q2Z2 + T2Ws + aIK2~2 + 2zIP 2G 2z3 (10.54) 

. -lGT (r7 )T P 1 [T T ] . ~7) Z2=-P2 1 vb lZI+A2Z2-"2K2 W2W 2 +'tt71,1'tt71,1 P 2Z2 

+ G 2Z3 + V2Ws - 'tt71,161 + W 262 (10.55)

~ ~8) 
where .0.2 = [6i, 6J]T andK2 = diag{';l + ,,~, ,;~}. Ifthis was the last step, then Za = 0� 

~9) 

and W s = 0 would give:� 

-2 • 2 - 2 
V2 ~ -Q2Iz2/ + k21a21 < 0, V IZ21 > -1.0.21 

Q2ome ~ 

where Q2 = Amin (Ql, Q2), k2 = I/Kl + I/K2' which indicates ISS from the disturbances 
61,62 to the states Zl, Z2. 

In aid of next step, differentiating 02 gives: I"• 
I': 

j... 

a2 = (72 + vi) + 'tt72,161 + 'tt72,262 (10.56)..:-"2+� 

where� 

a02 a02 a02 
(72 = Oxl [G lX2 + fll + Ox2 [G 2xa + f2l + 7it (10.57) 

I a0 2 (10.58)Va = °2 = aO 
a02 - a02 (10.59)'tt72,1 = Oxl Wi. 'tt72,2 - Ox2 W 2 

Step i:� 

Table 10.1 shows the general i-th Step of the backstepping procedure.� 

-�
10.51) ... 
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Table 10.1: Robust Maneuvering: Steps i = 3,...,n. i,.= 

...
~1

Oi=Gi 1 [Aizi-Pi IG;_lPi-1Zi-1-fi+O"i-1+ViVs+OiO] ..... 
=f"" (Xi,0, t)� 

OiO= -~Ki [WiWJ+ L~:~ Wi-1,jwl_1,j] PiZi, Ki> 0� 

PiAi+AJPi= -Qi< 0 
Ti=Ti-1 +2ZJPiVi i-th TuningFunction 

Step n: 

Upon the completion of Step n, the choice for the control law: ..... 
U = an (xn,e,t) 

= G~l[Anzn - p~lG~_lPn_1Zn_1 - fn + O"n-1 + VnVs + no) (10.60) 

Uo = -~Kn [WnWJ + I:Wn_1,jWJ_1,j] Pnzn, Kn > 0 (10.61) 
3=1 .~. 

results in: ...• (10.62) 
,"'·n ~ 
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i

" 

;'"
?~. 

1-'-·

f� 
r� 

I� 
which gives:� 

it ~ -zTQz - ~w;+A TKA (10.66)� 
J.Ll i~~fi 

... here Z = [zi,oo. ,z~]T, Q = diag{Ql,Q2, ... ,Qn}, A = An and K = K n .. In the 
.iisturbance-free case, V is negative definite, and as t -+ 00, ws(t) = v s(8(t ), t) - 8(t) -+ 

I ,.J. so that the speed assignment (10.32) is satisfied with exponential convergence. From 
10.65) it is seen that ws(t) and Yd(8(t)) are dependent on the system state x(t) through 

.oe final tuning function T no Hence, feedback from the system state x is introduced to shape II ::'JC desired output Y« (B) as a function of time. If, instead, we set W s == 0, we return to the 
aacking problem and loose this degree of freedom. 

The interconnected system can be divided into three parts; the plant, the controller, and the 

D)� o� jdance system as shown in Figure 10.2. The controller incorporates the dynamic equations 
, 10.37), rewritten here as: 

10.2 Maneuvering Control 

Zn = _p~IG:_IPn_1Zn_l + Anzn 

n-l 
+ VnWs + W nc5n - L w n - l ,j c5j 

j=l 

't 

n-l ]
~Kn W n W~ + L W n-l,jW:_1,j

[ )=1 

401 

PnZn 

(10.63) 

This implies that. ifwe lett», == 0, which renders iJ == Vs, then the system in the z-coordinates 
is an ISS system from the disturbances c5; to the error state zn where the gains Ki are used to 
attenuate the disturbances. According to Jiang et al. (1994), one can assign the gain from the 
disturbances c5i to the output error ZI = Y - Yd to ensure any desired maneuvering accuracy. 

In the case ofno disturbances, c5i = 0, one can set /'i,i = 0 (i = 1, ... , n). Then W s == 0 
would render the equilibrium zn = 0 UGES, but would not take advantage of the asymptotic 
formulation of the speed assignment task (10.32). For this task an extension of the above 
procedure is proposed. 

Speed Assignment Task 

To solve the speed assignment task (10.32), augment the Step n CLF to: 

1 2
V = Vn + -2ws' J.Ll > 0 (10.64) 

. J.Ll 

Its derivative along the solution of the closed-loop dynamics in the z-coordiDates is: 

. . 1 
V = Vn +-wsws� 

J.Ll� 

s - f zJ QjZj + [Tn + ~ws] ws+A:KnAn 
j=1 J.Ll 

where the update law for W is yet to be constructed. To deal with the sign indefinite tuning s 

function Tn' choose: 

WS=-AWs-J.LITn, A>O (10.65), 

~
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Figure 10.2: The main parts of the closed-loop system. 

e= V s (B,t) - W s (10.67) 

and (10.65). The control signal u is applied to the plant while the state (J is used by the guid
ance system. The guidance system incorporates the path definition (10.35), the path charac
terization vector (10.36), and the speed assignment vs(B, t). For a given Band exogenous t it 
returns to the controller the necessary path and speed assignment signals. 

Error Dynamics: 

To rewrite the closed-loop system in vector form, let A z E Rnmxnm, F E Rnmxnm, and 
W E IRnmxnm be defined by: 

o 

A 2+ P2 G 2 

-P31G I P 2 A 3+P3 
"I, 

o 
o 
o 
o 

111 

• 
1 

(i = 2, ... ,n) 1 .. 
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i = Azz + d, + d2 
w = 2Pz 

ills 

~ Figure 10.3: Closed-loop maneuvering system. 

I" . 

d by the guid
e path charac
exogenous t it 

(10.67) correspond to the nonlinear damping terms. Furthermore, let: 

I 0 0 
~ ~ 0&yd &y~ 

ffu.2. ffu.2. ~ 

F(xn,(J,t) = I &Yd &y~ &y~ 

8a n - l 8a n _ l 8a n _ l 

~ &y~ &Yr-

o 
o 
o 

8a n - l 

&y~n) 

(10.68) 

'Pn 

Itnmxnm, and 

I 

I 
o 
o 
o 

z= Azz + Fycvws + WLl 

Ws = -2tLlyJ"FT p z - AWs 

-'ti7n-l,l -'ti7n-l,2 -'ti7n - l ,3 

vsw, 0 0 
-Wn W2 0 

W (5Cn, B,t) = I -'ti721 -'ti722 W3 

This gives: 

Tn = 2yJ"FT p z 

where P = diag{Pl,P2,'" ,Pn } . Thus, the closed-loop is: 

o 
o 
o 

W n 

(10.69) 

(10.70) 

(10.71) 

r • 
•11' .
"' 

which has an interconnection structure as shown in Figure 10.3. This clearly implies the 
interconnection of two strictly passive systems. 

Theorem 10.1 (Robust Maneuvering) 
The closed-loop output maneuvering system consisting ofthe plant (10.34), the dynamic con
troller with dynamics (10.65) and (10.67), andcontrol law (10.60) is ISSfrom the disturbance 

~ 
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~ to the error states (z, ws ) where the gain ~ - (z, ws ) can be assigned arbitrarily small. 
Given CCT > 0 and cDT > 0, there exist ",* such that for "'i > ",*, i = 1, ... , n the 
maneuveringproblem with respect to the output path (l0.35) is solved: 

[yet) - Yd(O(t))]� :::; CCT, 'r:/t ? T 

[O(t) - vs(O(t), t)] S cDT, 'r:/t? T 

for some T ? O. In addition, ifeor < /vs(O(t), t)1 , 'r:/t ? 0, then the output yet) is ensured 
to move along the path with desired speed. 

In the disturbance-free case, ~ == 0, the nonlinear damping gains "'1, "'2, ... , "'n can be 
set to zero, and the closed-loop system (l0.71) and (l0. 72) has a UGES equilibrium (z,w s ) = 
(0,0). 

Proof. See Skjetne et al. (20020'). • 

10.2.2 Adaptive Output Maneuvering 

In this section, adaptive backstepping is applied to solve the maneuvering problem for para
metrically uncertain nonlinear systems in strict feedback form. Consider the plant with vector 
relative degree n: 

Xl = G I (Xl) X2 + f l (xr) + <PI (xr) e 
X2 = G2 (X2) X3 + f2(X2) + <P2 (X2) e 

(10.73) 

Xn = Gn (Xn ) U + fn(Xn) + <Pn (Xn ) e 
Y = h(XI) 

.,� where Xi E IRm (i = 1, ... , n) are the states, y E IRm is the output, u E IRm is the control, <Pi 
I,� are the regressor matrices, and e is the vector of constant unknown parameters. Xi denotes 

the vector X; = [xi. xJ, ... ,xJf. The matrices Gi(Xi) and 'Vh(XI) = ~ (Xl) are 
invertible for all Xi, h is a diffeomorphism, and G i , f i , <Pi are locally Lipschitz. 

The control objective is to design a maneuvering controller that solves the output ma
neuvering problem, the geometric task (10.30) and the speed assignment task (l0.32), with 
respect to the desired parametrized output path 

(10.74) 

where Yd is n times differentiable w.r.1. 0 and the path characterization vector Ycv (0) is 
uniformly bounded in B. 

Recursive Design Procedure 

The first steps is presented in detail while the 2nd and i-th Steps are given in Tables 10.2 and 
10.3, respectively. 

'III 

-,

•� 

cm"...~--====::::=;;;;;;;;;iiiiii • 
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• 
rily small. Step 1:� 
... ,n the� 

Define the error variables 

[� Ws = V s - iJ (10.75)� 

ZI =Y-Yd(O) (10.76)� 

I 

Zi = Xi - ai-I, (i = 2, ... ,n) (10.77) 

is ensured 8=8-8 (10.78) 

K n can be where e is the parameter estimate, V s is a bounded C":"! signal, andai-l are virtual controls 
,(z,ws ) = to be specified later. Differentiating (10.76) with respect to time results in: 

ZI = Y- YdO (10.79) 

= V'hG1z2 + V'hGlal + V'hf1 + V'hCPle + V'hCP18 - VIVs + VlW s 

where VI = yd(B). Choose Al Hurwitz and let PI = pi > 0 be the solution to PIAl + 
Aipl = -Ql < O. Define the first Lyapunov function as: 

III for para�
with vector T I- T 1

VI = Zl P l ZI + 28 r- 8 (10.80) 

whose time derivative is: 

VI = 2z!P1 (V'hG1a1 + V'hfl + V'hCP18 - v1vsl 
T T - T -T l~+ 2z l PI V'hG1Z2 + 2z1 PI V'hCP18 + 2z l PlVlWs - e r- e 

where e= -e. The first virtual control law is picked as: 

1 1 [ ~]al =G~ (V'h)- Alzl ~ V'hfl - V'hCPle + VlVs 

= fO I (XI, 8, 0, t) (10.81) 

Let al = V'hCPl' and define the first tuning function, Tl E JR, and the adaptive tuning 
function, PI E JRP, as: 

Tl = 2Z!P1V l (10.82)rl.- ma

with PI = 2a!PIZ l (10.83) 

Hence, the result of Step I is: 
ClO:74)� 

. T -T[ 1'] T�VI = -ZI QI ZI + TIWs + e PI - r- 8 + 2z1 PI V'hGl Z2 (10.84)0(8) is 

Zl = A 1z1 + V'hG1z2 + VlW s + a le (10.85) 

where the tenus containing zz, W s , and e are left for the next step. To aid the next step, let: 

2 and 
0:1 = tTl + II Z0+ Xl,l e + Xl,z8 (10.86) 
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Table I0.2: Adaptive Maneuvering: Step 2. 

"~ i Z2=X2-Ul = G 2 (X2 ) Z3+G2 (X2 ) 0 2+f2 (X2) . ..' 

;, 
. ! +CP2 (X2) E)+1+'2 (X2) 8-0'1-V2V s+V2Ws-Xl ,1E>-Xl,28 
it~ 

'$; I ; 
It 

~2=CP 2-Xll 
.il!! 72= 71+2zI p 2V 2 2nd Tuning Function 

P 2=Pl +2~Ip2Z2 2nd Adaptive Tuning Function 

': 111
;j' 0 2=G2"1 A 2z2-P2"

lGT (\lh) Plzl-f2-CP28+0'1 +V2V s+X12rP2 

= f0 2 02,8 ,B,t)
: ' ~I 

P 2A 2+A2 P 2= -Q2< 0 
'I 

, wI= 2Z!P2Xl ,2 
I: 

I: . i,I ' ~ 

::

;! 
., 

~i 
' 

I:"" 

I ' I~I .," 
., ~. ,'!!:
• ,. 

" 

i, 

where 

a O l [ A] aO l 
0'1 = ax G l X2 + fl + CPI E> + 7ft 

l 
I a n I 

V2 = n l = aB 
aO l 

Xl ,l = ax CPl
l 

an Ii 
Xl ,2 = as 

I 

it 
1'" 

.: :.1I!III_~ 

_. "- ..., ~--
.~ 

.. . ", 

1 
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~ 

Table 10.3: Adaptive Maneuvering: Steps i=3,....n, 

Zi=Xi-Qi-l =Gi(Xi)Zi+l +Gi(Xi)Oi+fi(Xi)� . 

+CPi(Xi)E>+CPi (xi )8-O'i-l -ViVs+ViWs-Xi_l ,1E>-X i-l,28 

Vi= V i- 1+ZJPiZi 
. i-I T - T [ 1 : ] T [ : ] .Vi= - Lj=1 Zj QjZj+El Pi-l-r- El +Wi- 1 rpi_l-El 

+2zJ {GJ-l P i-1Zi- 1+Pi [GiOi+fi+CPi8-O'i-l-ViVS-Xi_l,28] } 
T ( )- T T+2zi Pi CPi-Xi-l,1 El+Ti-lWs + 2zi PiViWs+2zi PiGiZi+l 

~ '={/'J .-v 

t .... t "'-i-II 

Ti= Ti-l +2z1piVi i-th Tuning Function 

Pi=Pi-l+2~JPiZi i-th Adaptive Tuning Function 

1 1 T ~	 ]Oi=Gi [Aiz i-Pi Gi_lPi-lZi-l-fi-CPiEl+O'i-l +ViVs+Xi_l,2rpi+~irWi-l 

=f (X;,8, e, t)a i� II, 

Iii P iAi+AJP i= -Qi< 0� 
w T =wT

1+2 z T p , v . 1 2� 2� t - t ..A.t- ~ 
I-.-

"r� ~l 

i
Qi=O'i+Vi+l O+Xi ,1E>+Xi,28 

""i [G f 6.] 8a 
i 

8a '� ·O'i= L.Jj=1 ~ jX j+l+ j+CPjO +8f 
1 

I 8a ' 
Vi+l =Oi. = 7ft .� '.'1.: ;,1 

'Ii I ""t 8a ' Xi,1=� L.Jj=1 ~CPj 

8a ' f= Xi , 2=~	 I , I 
I. 

~	 Step i: 
(10.87) 

Step 2 and Steps i = 3, ... , n are summarized in Tables 10.2 and 10.3. Notice the introducI tion of the terms Wi (i = 2, . . . , n) which from adaptive backstepping theory is known to 
(10.88) 

occur for plants of relative degree of 3 or higher (Krstic et al. 1995). 
• 
(10 .89) 

p� 
Step n: 

(10.90) 
Upon the completion of Step n the control law and the update laws are designed as: 

-� ..ii ' 
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u = a n (xn ,8 ,B,t) 

= G ;;I [An Zn  p;; IGJ_ IP n_ IZn_1-fn- c.pn 8+Un_1+Vn V s 

+Xn_12 r pn+anr'tVn  l ] (10.91) it 
8 =rPn (10.92) 

Ws = -AWs - J.L1 T n (10.93) 

The augmented Lyapunov function: 

V = Vn + _1_ w 2 
2J.LI s 

= ZTp z + ~e Tr-Ie + _1_ w 2 
2 2J.LI s 

(10.94) 

where P = diag[ P j , P 2, . . . , P n}, results in a negative semi-definite time derivative: l 
I 

• T ). 2
V = -z QZ - -Ws ::; 0 

J.LI 
It follows by application of the LaSalle-Yoshizawa Theorem that (z (t ),ws(t)) -> 

(10.95) 

(0,0 ) as 
I! 
I 

- ~ A ~ J 

Error Dynamics 

t -> 00, which solves the geometric task (10.30) and the speed assignment task (10.32). I 

I 

I 

1I • 
1: " 

I 

.- Of! 

To rewrite the closed-loop system in vector form , let A z E IRn m x n m , F E IRnm xnm and - ,;~ 

HE IRnm xnm be defined by: 

A , (xn,e,e,t) = :.' 
Al 'VhG I o o r'~di 

- P2"IG ! ('Vh) T PI 
o -

A2 

P - IG Tp 
3 2 2 

a J 

.1 
. I 

o 0 0 -P~IG J_IPn -1 J 
where "'i ,j = -2Xi_I ,2ra;Pj (i = 2, ... , n  1, j = i + 1, ... , n ) and: l ..~ --I 0 0 0 \ 

F(xn,8 , e,t) = 

~ 
8Y d 
~ 
8Yd 

~ 8yd 
~ 
8yd 

0 
~ 
8y:; 

0 

0 
(10.96) 

I--.. 
~--. 

~ Ii 8 a n _ l 

8Yd 
8a n _ l 

8yd 
8a n _ l 

8y :; 
8a n _ l 

8y~n) ",. - . 

'Vh 0 0 0 
_ !l!!l. I 0 0 

&xl 

H (xn-I,e ,e,t) -~ OXI 
~ 

- O X2 I 0 

0 

(10.97) 1
8 a n _ l----ax; 8a n - l 

-~ 
8a n _ l 

- 8 Xn  l 
I 

I 
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i = Azz +d, + d2 
w = 2Pz 

ills 
I 
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0 .. I-Ill"" ' 
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e 
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:-:''''' 

Figure 10.4: Closed-loop adaptive maneuvering system. 

Let the overall regressor matrix 4» E IRn m x p bedefined as: 

4- (Xn ) = [rpi (xd, rpI (X2), rpI (X3),"" rp~ (Xn)] T (10.98) 

~. and Ycv(()) is given by (10.36). Then the tuning function Tn and adaptive tuning function Pn 

are written: 

r« = 2y:'FTpz (10.99) 

P = 24-THTpz (10.100)n 

and the closed-loop equations are given by: 

. T 
Z = Azz +Fycvws + H4-8 (10.101) 

Ws = -2JllY~vFTpz - AWs (10.102) 

.:. T T
8 = -2r<) H pz (10.103) 

r:: 

~- The interconnection structure is shown in Figure 10.4. 

Tbeorem 10.2 (Adaptive Maneuvering) 
~ The closed-loop output maneuvering system, consisting ofthe parametrically uncertain plant 
. 

(10.73), the dynamic controller consisting ofthe update laws(10.67) and (10.93), the adap

~ .. tive update law (10.92), and the control law (10.91), has a UGS equilibrium (z, El, W s ) = 0 
~f where (z(t), ws(t)) --. aas t --. 00. This means that the maneuvering problem, with respect r 

to the path (10.35), is solved with limits: 

lim [y(t) - Yd(()(t))] = 0~ t--+oo1·':. 

lim [O(t) - vs(()(t), t)] = 0 
t--+oo 

•� re� 
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Proof. See Skjetne et af. (2002d). • 

Example 10.1 (Fully Actuated Container Ship) 
Consider a high-speed container ship in 3 DOF with data taken from Appendix £.1.3 of 
Fossen (1994). The ship is oflength L = 175 (rn), displacement volume of21.222 (m3) , and 
it is actuated by two rudders and a forward thrust propeller. Let 11 = [n, e, 'l/J] T denote the 

North-East positions andyaw angle, and v = [u, v, r] T be the velocity vector. The kinematic 
equation is: 

r, = R('l/J)v (10.104) 

where R( 'l/J) is the rotation matrix in yaw. Due to port-starboard symmetry of the ship, the 
surge speed equation and the steering equations (sway and yaw) are assumed to be decou
pled. The speed equation is given by: 

(m - Xu) it - Xuu - X 1u1u lui u = (1 - td) T 
!i:·' 

where Xu < 0 are the hydrodynamic coefficients, 0 < td < 1 is the thrust deduction number, 
u : 

and T is the propeller thrust. The steering equations are given by 

[ ~ ] = ~ [;~~l ~~:2] [ ~ ]+ ~2 [:~l :~~2] [ ~~ ] 
where ~ 1, ~2 are the rudder angles, the hydrodynamic coefficients iiij, hi j are nondimen�
sional, and U = vu2 + v2 is the total speed. The environmental forces (except lst-order� 
wave-induced disturbances which need to be filtered out) are assumed to be constant (or at� 
least slowly varying), and represented by an additive constant w denoting the environmental� 
force. This gives the dynamic equation:� ,.,� 

Mil + N(v)v = B (v) u + R T ('l/J)w (10.105) 

'. T
where u = [T, ~ 1,~2] is the control vector and: 

M = [ m - OlX2]02xlXu 
I2x2 

- X u - X1u1u lui 
N(v) = 

[ 
02xl 

B (v) = [ 1 - td U2 [Olx2 L 

The control objectives are: (1) to force the ship to converge to and follow the path, and (2) 
let the desired surge speed Ud be adjustable online. The desired output path is chosen as: 

(10.106) 

where Xd(()) = ()andYd(()) = 500sin(4~~O())' Thefirst part ofthe control objective is solved� 
as limt-+oo IZl (t) I = 0 is guaranteed. To solve the speed specification in the secondpart, we� 
note the relationship:� 

...~ n 
:J� 

,.. ~...
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t},fp, the 

r uo 
Figure 10.5: Output response of the container ship following the desired sinusoidal path on 
the ocean surface, for the adaptive system. 

raunber; Let Ud (t) = Uo be a constant desired set-point for Ud, then: 

r v (B) - Up 
s - ~1x~(1I)2+y~(1I)2 

(10.107)v' (B) = x~(II)x;;(II)+Y~(II)Y~(II) U and av.(II,t)
&t = 0 s [X~(1I)2+Yd(II)213 2 0 

sdimen where the commanded surge speed is: 
st-order 

4 (m/ s), 0 S; t < 400 (s)II (or at (10.108)
Uo = { 10 (m/ s), 400 S; t S; 800 (s)

rental 
In the model (10.105), the unknown constant parameter vector e and the corresponding 
regressor matrix <p are:0.105) 

and (2) 
r as: 

10.106) 

•solved 
»art, we 

I� 
~
 

e = [Xu, X1u1u, au, 0,12, 0,21, 0,22, W T]T (10.109) 

~pL2lulu 0 0 0 0 
ILv<p (TJ, v) = [~PLt 0 Ur 0 0 R T ('IjJ) ]L u ILr0 0 0 £'Iv L 

where Xu, X1u1u, and aij are nondimensional coefficients, and are given units by the corre
sponding multiplying terms in the regressor where p is the sea water density. The dynamic 
equation (10.105) becomes 

v = M-1B (v) u +M-1<p (TJ, v) e (10.110) 

and together with the kinematic equation (10.104) the plant is in the form of (10.73). This 
gives: 

Zl = TJ - TJd (B) 
Z2 = v - 01 (TJ, TJd(B), TJ~(B), vs(B, t)) 

01 = R T ('IjJ) [-Kpz1+ TJ~(B)vs(B, t)] 

0"1 = itT (r)R('IjJ)OI + R T ('IjJ) [-KpR('IjJ)V + TJ~(B) aVsi:' t)] 

V2 = R T ('IjJ) [KpTJ~(B) + TJ~(B)vs(B, t) + TJ~(B)v~(B, t)] 
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Figure 10.6: Plot of the surge speed u as a function of time t. ~= 
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Figure 10.7: The parameterestimates e as a function of time t. 
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10.2 Maneuvering Control 413 •
The control law, the adaptive update law, and the maneuvering update law are then given by 
the closed-loop system according to Figure 10.2: • 

r,=R(1/J)v 
Mi/ + Nv = Bu + R T ('¢)w

Plant 
inputs = [u, w]{ 

outputs = [77, v] 

iJ] [ vs«(),t)-ws ]
[ Ws = -2f.ll [PIZ! 77~(B) + P2Z J£12] - >.ws

Guidance 
inputs = [B, tj{ 

outputs = [77d(B)'Ycv«(}),vs(B,t), otJ-J:,t), ov~:,t)] 

e= 2P2r<pTM- T Z2� 

u ~ B-1M[-;;-RT(1/J)ZI - K d z 2 - M-11fl8 + 0"1 + V2Vs«(), t)]�Control� { inputs = [77, u, 77d«(})'Ycv«(}),vs«(}, t)]� 
outputs = [u, Ell 

The numerical values are takenfrom Appendix £.1.3 in Fossen (1994); m = 21.2· 106 , 

Xu = -6.38· 105 
, bll = bl2 = -0.2081, ~l = -~2 = -1.5238. The true unknown 

parameter vector is: 

a = [-4.226·10-\ -4.226·10-\ -0.7072, -0.2860, -4.1078, -2.6619, O.I,O,O]T 

and the controller settings are: K p = diag{0.02, 0.02, 0.2}, K d = diag{O.I, 0.1, 1O}, 
PI = 0.01 . I, P 2 = 10· I, >. = f.ll = 200 and T = 10-7 . diag{l, 1, 105 , 105 , 105 , 105, 5 . 
104,5.104 , 104 } . The initial conditions are 77(0) = [250,0, ilT, £1(0) = [1,O,OIT, ()(O) = 
250, ws(O) = 0, and 8(0) = [0,0, -1, -0.5, -2, -1,O,O,OIT. 

Figure 10.5 shows how the ship smoothly converges to and accurately follows the path. 
The smooth entrance to the path is characteristic for maneuvering systems. In Figure 10.6 it 
is shown how the surge speed u is first controlled to Uo = 4 (mj s) and then at t = 400 (s) 
to Uo = 10 (mj s). Hence, the surge speed is adjustable online by set-points specified by the 
operator. The time series ofthe parameter estimates 8(t) is shown in Figure 10.7. We notice 
that all parameters stay bounded, and that some converge close to their true values. 

Example 10.2 (Comparison of Tracking and Maneuvering Control) 
In this experiment the resulting response of a tracking design and a maneuvering design 
is compared when the controls saturate. This is done by deliberately commanding a forward 
speed that is faster than the ship is able to follow. For simplicity, the weather disturbance is 
w = 0, and the experiment is executed as a nonadaptive case. The maneuvering controller 
is simply obtainedfrom Example 10.1 with r = 0 and 8(0) = a. The tracking controller is 
implemented by letting co; :::::: 0 so that iJ = vs(B). 

The saturation levels are 18;1 ::; 20 0 and ITI ::; 106 (N). This means, in practise, thatthe 
ship can move with maximum speed u ::::; 8 (mj s), while the commandedsurge speed is again 
specified according to (10.108) and is therefore infeasiblefor t :2 400 (s). The controller set
tings are: K p = diag{0.2, 0.2, OAl, K d = diag{l, 1, 1O}, PI = 0.005·1, P 2 = 10·1, and 
.x = f.lI = 200. The initial conditions are 77(0) = [0,0, iJT, £1(0) = [4,0, OIT, (}(O) = 0, 
and ws(O) = O. 

The position responses are shown in Figure 10.8. While, not surprisingly, the tracking 

•� 
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• £ 
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Figure 10.8: Position response of the tracking system (small ship) and the maneuvering sys
tem (large ship). As expected, the ship based on the tracking controller goes unstable when 
an unfeasible desired surge speed is commanded. The ship based on the maneuvering system, 
on the other hand, is seen to keep following the path. 
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Figure 10.9: Surge speed u of the maneuvering based system. Note how the speed, due to 
saturation of the control thrust, converges to maximum possible speed (~ 8 tu] s) instead of 
the specified speed Uo = 10 tu] s. 
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Figure 10.10: Plots of V s (O(t)) and iJ(t). While the specified speed assignment vs(O(t)) 
corresponds to the infeasible surge speed Uo = 10 ta] 5, the resulting response of O( t) tracks 
a slower value according to the state of the ship. 

system goes unstable, it is observed that the maneuvering system moves along the path, in 
spite ofthe infeasible uo. The surge speed u ofthe maneuvering system is seen in Figure 10.9 
to converge to the maximum possible speed of8 (m/ s). Figure 10.10reveals some ofthe se
cret. The speed assignment vs(O(t)) strictly corresponds to the specified speed Uo according 
to (10.107). However, iJ(t) follows at a value about 2 (m/ s) slower, and the result is that 
O(t),and thus l1d(O(t)), moves notfaster than the ship is able to follow. 

10.2.3 Maneuvering Control of Underactuated Ships 

The maneuvering controller ofthe previous section assumes that the ship is fully actuated-i.e. 
T = [T surge, T sway, T yaw] T • For ships that only have two controls: 

• forward thrust T surge (main propeller) 

• yaw moment T yaw (rudder) 

a different approach must be applied since T sway = O. One way to solve this problem is to 
define an output mapping of dimension two which can be stabilized by using two controls. 
Two approaches for this are: 

Ie to 
ld of 

Surge-Yaw Maneuvering Control using only two Controls 

In Fossen et al. (2003) the output mapping is defined as the LOS angle 'l/J using position 
measurements (x,y) and the way-point database (Xk,Yk) for k = 1, ... , n, see Section 5.3. 
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In this approach the sway velocity v is proven to be uniformly bounded while the two controls 
Tsurge and T yaw are used to control ('I/J, u). The equilibrium pint ('I/J - 'l/Jd , U - Ud) = (0,0) 
of the closed-loop system is UGAS. This type of controller can be implemented for ships 
equipped with a conventional rudder and a main propeller. A case study exploring this is 
found in Fossen et al. (2003). 

Surge-Sway Maneuvering Control using only two Controls 

In Skjetne et al. (2002a) a maneuvering controller for underactuated ships is derived by using 
the inputs Tsurge and T yaw to control the positions (x, y). Hence, speed is controlled indirectly 

using U = J i;2 + iP. The main problem in doing this, is that the ship must be prevented 
from turning around This idea is based on the joint work of Lindegaard (1997), Fossen et al. 
(1998) and Berge et al. (1999) where the yaw dynamics is stabilized by locating a body-fixed 
coordinate frame in the bow or ahead of the ship. The point in which the coordinate system 
is located is referred to as the Vessel Reference Point (VRP). Hence, the ship bow, will be 
forced to track the desired path, while the aft part of the ship may deviate from the path. This 
will of course only work if the yaw mode is stable. Fortunately, this is easy to achieve, since 
introduction ofa VRP implies that the ship behaves like a pendulum in the gravity field, where 
the gravitational force corresponds to the mean environmental disturbances. Hence, moving 
the VRP ahead corresponds to increasing the length ofthe rope in which the pendulum hangs. 
This stabilizes the yaw dynamics. A complete case study showing the performance of the 
maneuvering controller in cruise condition and docking is given in Skjetne et al. (2002a) 

10.3 Exercises ~ 

Exercise 10.1 Simulate the LOS and linear quadratic optimal cross-tracking algorithms in 
Sections 10.1.2 and 10.1.3 using one the ofship models in the GNC toolbox. Comment on the 
performance ofthe two algorithms. What happens ifyou add a constant wind disturbance in 
the sway direction? Will both algorithms behave in a similar manner? 

Exercise 10.2 In Section 10.1.1 it was shown that the transfer function between the cross
track error and the rudder angle was: 

(lO.Ill) 

where: 

ho(s) = 
e2 
8(s) = 

KU 
82(1 + Ts)' (10.112) 

Consider the PID control law: 

1) (1 + T;s + TdTiS2)
0= -Kp (1 +TdS+ TiS e2 = -Kp TiS e2 (10.113) 

and show that: 

lim e2(t) = 0 (10.114)
t-+oo 

for rs =constant. Is this possible for a PD-controller? (Hint: Use the final value theorem). 
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This chapter discusses control systems for station-keeping and low-speed maneuvering.
These systems are commonly known as dynamic positioning (DP) systems. The Nor

wegian classification society, DnV (1990) defines a dynamically positioned vessel as a free
floating vessel which maintains its position (fixed location or predetermined track) exclu
sively by means of thruster. It is, however, possible to exploit rudder forces in DP also by
using the propeller to generate rudder lift forces (Lindegaard and Fossen 2002).

For ships that are anchored, additional spring forces are introduced into the control model.
These systems are referred to as position mooring (PM) systems.

Finally, optimality with respect to changing weather conditions will be discussed using
the concept of weather optimal positioning control (WOPC).

11.1 Models for Station-Keeping

For DP and PM systems a low-frequency (LF) control model will be employed for feedback
since dynamics at higher frequencies are negligible in station-keeping.

11.1.1 Vessel Kinematics and Dynamics

The vessel kinematics and dynamics are (see Section 3.5.1):

iJ = R(1jJ)v

Mv+Dv+Kl1 = T

(11.1)

(11.2)
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where u = [u, v, r]T, '1 =[n, e,.,pjT (North-East positions and heading), and: 

M = MT = m22 (11.3)[T 0 :'3 ]
m32 m33 

u 0 
D = 0 d22 (11.4)= D T [ d d~3 ] 

0 d32 d33 

K = diag{kll,k22,k33} ( 11.5) 

The LF assumption implies that added mass and damping can be computed at zero wave 
frequency and that linear damping is sufficient. The spring stiffness matrix K is only used 
in PM systems. It is assumed that spring forces and moment in surge, sway, and yaw are 
decoupled. The models (ll.l}-{ 11.2) can be transformed to VP coordinates TJp = R T (.,p)TJ 
by using the results in Section 3.3.2. Consequently: 

1}p 11 (11.6) 

Mil + DII + KTJp = 'T (11.7) 

In order to incorporate the limitations of the propellers, the model is augmented by actua
tor dynamics. The simplest way of doing this is to define three time constants in surge, sway, 
and yaw such that: 

(11.8) 

where'Teom is the commanded thrust and A thr = -diag{I/Tsurge, I/Tsway, l/Tyaw} is a 
diagonal matrix containing the time constants. The resulting state-space model becomes: 

x= Ax + B'Teom (11.9) 

where x = ['1;, u T , 'TT] T and: 

(Il.lO) 

This model is the basis for the LQ controller. 

11.1.2 DP and PM Thrust Models 

Most DP ships use thrusters to maintain their position and heading. Both fixed pitch (FP) and 
controllable pitch (CP) propellers are used for this purpose; see Section 6.2 in Fossen (1994) 
for a more detailed discussion on FP and CP propellers. 

..'
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Figure 11.1: Power consumption of fixed speed CP and variable speedFP propellers. ..(11.7)

Fixed Speed CP and Variable Speed FP Propellers 

• ~ actua The thrust F from a variable speed FP propeller can be modelled as: 
~sway, 

I	 F(n) = Kn InJ, (or F(n) = Kn) (lLlI) 

....-.. 
where K = constant is the thrust coefficient and n (rpm) is the propeller revolution. Some (I 1.8)

2 propellers show a linear behavior in n while others are quadratic. Even combinations of the'! 

linear and quadratic behavior are observed in practice. 
R.-} is a CP propellers are screw blade propellers where the blades can be turned under the control 
coes: of a hydraulic servo. This introduces a second control variable, pitch p, which is used to ob

tained the desired thrust F for different propeller revolutions n. If P is the "traveled distance 
(11.9)	 per revolution", D is the propeller diameter then p = PID represents the pitch ratio.
 

The thrust from afixed speed CP propeller can be approximated by:
 

'i	 F(n,p) = K(n)ICP - Po)l(p - po), (or F(n,p) = K(n)(p - Po)) (lLl2) 

~lI.lO)	 where the force coefficient K (n) now depend on the propeller revolution. Again, thrust is 
quadratic alternatively linear in p - Po or combinations of both. The pitch offset is denoted 
as Po. For DP ships using fixed speed CP propellers it is common to operate at one or two 
fixed propeller revolutions such that only p is used for active control by the DP system; see 
Example ILL 

For ships in transit a constant demand for thrust and power suggest that a fixed speed CP 
l,. propeller should be used while low-speed applications like DP operations require little thrust 

rFP) and in good weather suggesting that a variable speed FP propeller might be advantageous; see 

.(1994) 11.1. Notice that the fixed speed CP propeller require power also at zero thrust. 

I 
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Figure 11.2: Thrust F( n, p) = K(n)p Ipl versus pitch p for a main propeller (left plot) and 
a tunnel thruster (right plot). The asterisks are experimental measured values and the solid 
lines are least-squares fits to a quadratic model. 

Example 11.1 (Experimental Thrust Characteristics) 
The thrust of a main propeller and a tunnel thruster for a supply vessel is shown in Fig
ure 11.2 (Fossen et al. 1996). The asterisks represent the measured values, while the solid 
lines are least-squares fits to the quadratic thrustfunction (l1.12). The main propeller oper
ated at n = 122 (rpm) and n = 160 (rpm), while the tunnel thruster ran at n = 236 (rpm) 
resulting in: 

main propeller F(122,p) = 370Iplp F(236, p) = 1371pI p 
tunnel thruster F(160,p) = 6551plp 

Actuator Configuration and Thrust Coefficient Matrices 

The commanded forces and moment T eom E R3 (surge. sway, and yaw) can be written (see 
Section 7.5): 

T eom = T(o:) Ku 
'-v-' 

f 

where f = Ku ERr (r = number of thrusters) is the thrust force vector and u E R r is a DP 

-
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Figure 11.3: Offshore supply vessel. 

control variable defined as: 

[I and	 CPP: u = [IPllpl, Ip21p2, , IPrIPr]T, (oru = [Pl,P2, ,Pr]T) 
(11.14): solid	 FP: u = f1nllnl, In21n2, , Jnrlnr]T, (or u = [nl, n2, , nr]T) 

The thrust coefficient matrix K is a diagonal matrix of thrust coefficients defined as: '", 
K = diag{K1 (n l ), K2(n2), ... , Kr(nrH	 (11.15) 

I Fig The actuator configuration matrix T(a) E JR3xr only depends on the location of the actu
solid ators and possible angles a	 used for rotatable thrusters (azimuth thruster). Computation of 
operT(a) is best illustrated by considering using a real ship. 
rrpm) 

Example 11.2 (Actuator Configuration Matrix)
 
Consider the supply vessel in Figure 11.3. Let us assume that the ship is equipped with
 

i~;	 two main propellers (aft ofthe ship), two tunnel thrusters and two azimuth thrusters which 
can be rotated to arbitrary angles 0:1 and 0:2, and therefore produce thrust in different direc
tions, see Figure 11.4. Hence, we have 8 control variables (6 rpm set-points and 2 azimuth 
angles) for 3 DOF. The control variables are assigned according to (clockwise numbering of 
Ui).· 

Ul, 0:1 fore azimuth thruster U4 aft tunnel thruster 
U2 fore tunnel thruster Us starboard main propeller ~(see 

U3,0:2 aft azimuth thruster U6 port main propeller 

Using the results ofSection 7.5 implies that.' 
1.13) 

K = diag{Kl, K2 , K3, K4, tc; K 6 } (11.16) 

b .if	 0 cos 0:2 0 1[ cow,
T(a) = sin 0:1 1 sin 0:2 1 0 (11.17) 

aDP h sin 0:1 l2 -l3 sin 0:2 -l4 -ls ~ ] 
:r, 
t.I

"

" 
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Figure 11.4: Schematic drawing showing the thruster configuration for a typical supply ves
sel. 

where li (i = 1, ... , r) are the moment arms in yaw. It is also seen that ls = 16 (symmetrical 
location of main propellers). The thrust demands are defined such that a positive thruster 
force/moment results in positive motion according to the VP axis system. 

One of the advantages of the model representation (11.13) is that input uncertainties only 
appear in the diagonal force coefficient matrix K, since T(a) will be perfectly known. In 
fact, this decomposition is highly advantageous since it can be exploited when designing the 
feedback control system where robust measures for uncertainties in K must be taken. 

11.1.3 Environmental Disturbances 

A ship will be exposed to waves, currents, and wind. The observer-controller must be robust 
and compensate for environmental disturbances. These are the most important design re ·]IIII·.~ 

quirements in an industrial ship control system since a full-state feedback controller will not 
work in bad weather unless the environmental loads are included in the design specifications. 
In commercial DP systems it is therefore necessary to: 

•	 include integral action in the controller to compensate for slowly-varying disturbances 
(bias) due to ocean currents and wave drift forces (2nd-order wave theory). 

•	 use feedforward control to compensate for mean wind disturbances. Wind gust cannot 
be compensated for since the actuators do not the have the capacity of moving a large 
vessel in the frequency range of the wind gust. 

•	 include wavejiltering in the state estimator (observer) to avoid l st-order wave induced 
oscillations fed back to the control system. Again, the actuators cannot move a large 
vessel fast enough to suppress the disturbances. 

A closed loop DP system is shown in Figure 11.5. 
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.... wa- Figure 11.5: Dynamic positioing system. 
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1IIIi 

In the 1960s systems for automatic control ofthe horizontal position, in addition to the course, 
.....Jy were developed. Systems for the simultaneous control of the three horizontal motions (surge, 
-In sway, and yaw) are today commonly known as dynamic positioning (DP) systems. More 

recently anchored positioning systems orposition mooring (PM) systems have been designed;rAe 
see Section 11.3. For a free floating vessel in DP the thrusters are the prime actuators for 
station-keeping, while for a PM system the assistance of thrusters are only complementary 
since most of the position keeping is provided by a deployed anchor system. Different DP1111 

11/ .ill, 
applications are described more closely in Strand and Sorensen (2000). 

-'.st DP systems have traditionally been a low-speed application, where the basic DP func
"_"I'~ re- tionality is either to keep a fixed position and heading or to move slowly from one location 
I:·.oot to another (marked positioning). In addition, specialized tracking functions for cable and 

.kS~ pipe-layers, and operations of remotely operated vehicles (ROVs) have been included. The 
traditional autopilot and way-point tracking functionalities have also been included in modem

,1111111 

DP systems. The trend today is that high-speed operation functionality merges with classical 
DP functionality, resulting in a unified system for all speed ranges and types of operations.

~ 

The first DP systems were designed using conventional PID controllers in cascade with 
Imlll, low pass and/or notch filters to suppress the wave-induced motion components. This was 
~ based on the assumption that the interactions were negligible (Sargent and Cowgill 1976 and 

.~e Morgan 1978). From the middle of the 1970's a new model-based control concept utilizing 
stochastic optimal control theory and Kalman filtering techniques was employed with therll~!! 

DP problem by Balchen et al. (1976). The Kalman filter is used to separate the LF and 
":I-.nrced WF motion components such that only feedback from the LF motion components is used. 
11:.1 arge Later extensions and modifications of this work have been proposed by numerous authors; 

see Balchen et al. (1980a, 1980b), Grimble et al. (1980a, 1980b), Fung and Grimble (1983), 
Seelid et al. (1983), and more lately by Fossen et al. (1996), Serensen et al. (1996), Fossen 
and Grevlen (1998), Fossen and Strand (1999a) and Serensen et al. (2000). 
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Roll and Pitch Damping in DP 

Traditionally DP systems have been designed for 3 DOF low-speed trajectory tracking con
trol by means of thrusters and propellers. However, extensions to 5 DOF control for the 
purpose of roll and pitch damping of semi-submersibles has been proposed by Serensen and 
Strand (1998). It is well known that for marine structures with a small-waterplane-area and 
low metacentric height, which results in relatively low hydrostatic restoring compared to the 
inertia forces, an unintentional coupling phenomenon between the vertical and the horizontal 
planes through the thruster action can be invoked. Examples are found in semi-submersibles 
and SWATHs, which typically have natural periods in roll and pitch in the range of 35---65 
(s). If the inherent vertical damping properties are small, the amplitudes of roll and pitch 
may be emphasized by the thruster's induction by up to 2°_5° in the resonance range. These 
oscillations have caused discomfort in the vessel's crew and have in some cases limited the 
operation. Hence, both the horizontal and vertical planes DOF should be considered in the 
controller design as proposed in Sorensen and Strand (2000). 

Optimal Set-Point Chasing in DP for Drilling and Intervention Vessels 

Further extension in the development of DP systems includes extended functionality adapted 
the particular marine operation considered. In Sorensen et al. (200 I) a function for optimal 
set-point chasing in DP of drilling and intervention vessels is proposed in order to minimize 
riser angle offsets at the sea bed and on the vessel. 

11.2.1 Thrust Allocation in DP Systems 

In order to implement a DP control system a thrust allocation algorithm is needed. Thrust 
(control) allocation involves computing the thruster inputs Ui = IPilpi and azimuth angles Q'i 

(i = 1, ... ,r) from: 

T'com = T(a)f (11.18) 

f = Ku (11.19) 

for given controller commands 7'com. In the unconstrained case (no saturation) with a = 
constant, a formula for f can be found by minimizing the thrust vector f. This results in the 
generalized inverse: 

(H.20) 

where W = W T > 0 is a positive definite weighting matrix, usually chosen to be diagonal. 
W should be selected so that using the tunnel and azimuth thrusters is less expensive (small 
Ki-value) than using the main propellers (large Ki-value). 

Optimal solutions for systems which a is allowed to vary and where thrust f is limited 
are found in Section 7.5. 
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111 1	 Example 11.3 (Supply Vessel Thrust Allocation)
 
Consider the supply vessel in Example 11.2. The generalized inverse:
 

':lI! :::I1It

111111' tie 
Tt (0:) = 1 -1 T . 1TT 

"::~IIM	 (11.21)det[T(0:)W-1TT(0:)] W T (0:) adJ[T(0:)W- (0:)] 
"W:II, .;ad 

11111111 "be will be a function of the azimuth angles Q'1 and Q'2. The expression for the determinant in 
;:,::.~::m:I1 

(11.21) will be non-zero for all combinations ofQ'1 and Q'2, since the vessel has more ac
1:llllllt!lI::S tuators than needed for 3 DOF stabilization (overactuated). However, for some vessels a 

'1~' ~-

"",--J"'~) singular configuration may exist, that is the determinant becomes zero for certain combina
:-reb tions ofQ'i (i = 1, ... , r). The expression for the determinant can also be used to compute 
'.~ optimal angles Q'1 and Q'2 in a minimum energy sense by simply maximizing the determinant 

,:l~" ±le with respect to Q'1 and Q'2. 
" 1II :Dc 

11.2.2 Linear Quadratic Optimal Control 

The LQ controller is designed under assumption offull state feedback requiring that all states 
are measured or at least estimated. Navigation systems for OP, conventional linear observer 

1,1I£"TJ::d 
design (Kalman filtering) with extensions to nonlinear and passive observer design are treated 

1I111c:nal
in detail in Section 6.2. The observer is also needed in the case when all states are measured 
since it is necessary to separate the LF and WF motions (wave filtering). The WF estimates - (Ist-order wave-induced motion) should not be fed back. since this will cause wear and tear 
on the thruster actuators. 

The goal of this section is to design an optimal control law with wind feedforward and 
integral action. Consider the vessel model (11.9) in the form: 

~ 

"Oi	 (1x. = Ax + B (TLQ + TFF)

T co m 

:8) 

;" :9) 
where we have assumed that the commanded input T com can be divided into two parts; opti

~1I1 :::: mal feedback TLQ, and wind feedforward TFF.~.a. 
Optimal Feedback Control 

The LQ control objective is to obtain x = 0, that is TJp = v = T = O. Hence, we can 
compute TLQ by minimizing the performance index: II~,_'U)-	 J = If!~ {~ iT(xT Qx + TlQRTLQ) dT} (11.23).... 

-.II 
where R = R T > 0 and Q = Q T ;:: 0 are two cost matrices. The Q-matrix is defined as 

,1mICd Q =diag{Q1, Q2, Q3} where the weights Q1, Q2 and Q3 put penalty on position/heading 
TJ p ' velocity u, and actuator dynamics T, respectively. The optimal control law minimizing 

,~: (11.23) is (see Section 7.2.1): 
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TLQ x=--.......-
G 

where P 00 is the solution of the ARE: 

(11.25) 

Integral Action 

In order to obtain zero steady-state errors in surge, SWlry, and yaw, we must include integral� 
action in the control law. Integral action can be included by using state augmentation. Since� 
we are considering three outputs (x, y, 'ljJ) to be regulated to zero, we can augment no more� 
than three integral states to the system. Define a new state variable:� 

t Y(T)dT
Z= l =} z=Y (11.26) 

Here Y is a subspace of x defined as:� 
y=Cx (11.27)� 

with:� 
C=[IOO] (11.28)� 

Next define an augmented model with state vector X a = [zT, x TF such that: 
-...... 

Xa = Aaxa + B a T com (11.29) 

where 
· . 

A a = [~ ~], n, = [ ~ ] (11.30) 

The performance index for the integral controller becomes: 

. {I fT( T T } (11.31)J = ~{g 2J Xa QaXa + TLQRTLQ) dr 
o • 

where R = R T > oand: 

o, = [~ ~I] ~ 0 (11.32) .,....• 
The matrix QI = QI > 0 is used to specify the integral times in surge, SWlry, and yaw. The� 
optimal controller is (see Section 7.2.1):� 

TLQ = GaXa = Gx + GIlt Y(T)dT (11.33) 

'-v-" 
z 

where G a = [GI , G] and: IU 
G a = -R-1BJpoo (11.34) 

PooAa + AJPoo - PooBaR-1BJPoo + Qa = 0 (11.35) 

•� 
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Wind Feedforward 

I
 
,H.24)
 

It is straightforward to include wind feedforward Tpp in the optimal controller. However,
 
this requires that the wind forces and moment are known as functions of the wind speed and
 
direction, as well as ship hull parameters. Models for this are presented in Section 8.4.4. 

The Isherwood (1972) wind forces and moments are given by (4.10}-(4.12) implying 
that:il i.' I 1.25) 

"	 2
1 [ Cx(-rr)Pa Vr ATt TFF = "2 Cy(-rr)PaVr

2 AL	 (11.36) 
.ral	 ·..

It' 

:.::e	 ~~"'_••~1l:t·.L:l.~It:a._". 

-aIR	 
where Cx, Cy , and CN are wind drag and moment coefficients, Pa is the density of air, AT 
and AL are the transverse and lateral projected area, and L is the length of the ship. The 
relative wind speed and direction are: 

'=6) 

liiL	 v,. = Vw - Ju2 + v2 (11.37) 

"Ir = f3w - ('l/J+'l/Jw) (11.38)
~'7) 

where Vw is the wind speed and f3w is the wind direction.
 

. _..::iJ
 
LQG Control - Linear Separation Principle
 

In practise only some of the states are measured. Hence, the optimal integral controller 
~ .. ~...3t 

(11.33) should be replaced by: 

.,. 
TLQ = Gx + GTe I t 

X(T)dT	 (11 

where the state estimate xis computed using a: 
- ~, 

• Kalman filter (Section 6.2.3) 

• nonlinear passive observer (Section 6.2.4) 

.::~ For the Kalman filter in cascade with the LQ controller there exists a linear separation 
principle guaranteeing that x ---. x and that x ---. 0 (Athans and Falb 1966). This is referred 

dl_I.• 
to as LQG control and it was first applied to design DP systems by.Balchen et al. (1976, 
1980a, 1980b), and Grimble et al. (1980a, 1980b). 

1 
If the passive observer is applied the nonlinear separation principle of Section 11.2.4 

can be used to prove stability of the observer-controller. This holds for both a LQ and a PD 
controller in cascade with the passive observer of Section 6.2.4. 

11.2.3 Nonlinear PID Control 

A nonlinear MIMO Pill controller can be designed for station-keeping using the nonlinear 
models (11.1}-(11.2). Set-point regulation TJ = v = 0 is obtained by choosing (see Sections 

...  7.1.3-7.1.4): 

.,~ .. 
l!rIIl"", .,....-JiII' I~ 



428 

•
 
Positioning Systems 

(1 

where: 

(11.41) 

and H m (s) is an optional transfer matrix for frequency dependent acceleration feedback 
(Fossen et al. 2002). Acceleration feedback for marine craft is discussed in more detail in 
Section 7.1.5 and by Lindegaard (2003). 

For the case H m = constant and K, = 0 (PD-control with acceleration feedback) global 
asymptotic stability (GAS) of the equilibriwn point v = 1] = 0 follows directly from the 
eLF: 

V 
1 TIT .
2v (M +Hm)v + 21] K p 1] (11.42) 
, 

", 
, 

'--" 
kinetic potential 
energy energy 

V = -vT [D(v) + Kdlv (11.43) 

using Krasovskii-LaSaIle's theorem. In the case K; > 0 only local asymptotic stability 
can be proven. The nonlinear PID controller can be implemented together with the passive 
observer in Section 6.2.4 or the extended Kalman filter in Section 6.2.3. In Section 11.2.4 a 
nonlinear separation principle for cascaded PD-control and observer design is presented. 

11.2.4 Nonlinear Separation Principle for PD-ControlJObserver Design 

For the ship control systems presented so far, slowly-varying environmental disturbances 
have been compensated for by adding integral action in the controller. In this section it is 
shown how a globally converging observer and a simple PD-type control law plus a non
linear term of observer bias estimates can be combined to compensate for slowly-varying 
environmental disturbances (Loria et al. 2000). Moreover, the integral term is removed in 
the controller and replaced by a bias estimate. The stability proof is based on the separation 
principle. which holds for nonlinear systems. The separation principle is theoretically sup
ported by recent results on cascaded nonlinear systems and standard Lyapunov theory, and it 
is validated in practice by experimentation with a model ship. 

The observer-controller is designed in three steps: 

I. design a UGAS state estimator 

2. design the control law as if the whole state x and bias term b were known (measured) 
and free of noise 

3. implement the control law with the observer estimates x and b and show that the 
observer-controller error dynamics is GAS 

The stability proof of this approach requires that the separation principle hold for nonlin
ear systems. The method in this section relies on recent Lyapunov theorems on stability of 
cascaded time-varying systems to prove GAS (Panteley and Loria 1998). 
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Cascaded Systems 

The controller-observer is analyzed by using cascaded system theory. Consider the time
varying systems :E l and :E2 (Loria et al. 2000): 

'~Ii 1I 

,'!II.. ··c.l:I • 

.oil 
:El Xl = fl (t, xj ) + G(t, X)X2
 

'0
 :E2 X2 = f2(t, X2) 
.ICai4 • 

= .C.I	 where Xl E R", Xl E lRm , and X = [xi, xIJT. The function fl (t, xj ) is continuously differ
,""!IIIII'~- entiable in (t, xj ), while f2(t , X2) and G(t, x) are continuous in their arguments, and locally 

Lipschitz. The two subsystems :E l and :E2 will represent the controller and observer error 
dynamics, respectively, while G( t, X)X2 is the interaction term coupling these two subsys

.L~)	 

tems together. A growth rate condition on G (t, x) is needed in order to prevent the controller 
error dynamics :El from becoming unstable when the true states are replaced with observer 
estimates, 

The cascaded system (11.44}-(11.45) can be proven to be UGAS by reformulating The

~U-4l) orems 1 and 2 in Panteley and Loria (1998) according to: 

-"1)'	 Theorem 11.1 (UGAS for Cascaded Systems) 
:~	 The cascaded system (l1.44H11.45) is UGAS ifAssumptions AI-A3 are satisfied: 

JJlI ~"a 
I~	 A1) The system 

Xl = fl(t,Xl)	 (11.46) 

'1IIIItrl"~ is UGAS with a Lyapunov function V = (t, xj ), V : lR>o x lRn -+ lR>o, positive definite
i.e., V(t,O) = 0 and V(t, Xl) > Ofor all Xl =I 0, and-proper (radially unbounded) which 
satisfies: 

~-_.	 II: II IIXll1 ~ClV(t,Xl) 'tIlXllI?f.L (11.47) 

0
where Cl, f.L > O. It is also assumed that (8V/Oxl)(t, xj ) is bounded uniformly in tfor all 

""",,\Ii"'~QC: ;og
 
I~m Ilxlll < u. that is, there exists a constant C2 > 0 such that for all t ? to ? 0:
 

1111::::. M 

't IIXIII ~ f.L (11.48)
~ 11:II~C2 

-.... iI 

A2) The function G(t, x) satisfies: 

IIG(t,x)11 ~ fh (1I x211) + O2 (1I X211) IlxllI	 (11.49) 
'111111 d) 

where 01 , O2 : lR2:0 -+ lR2:0 are continuous. 

A3) Equation X2 = f2(t, X2) is UGAS, andfor all to ? 0:--*: 
- 'J 	 00 IIX2(t))1I dt ~ ¢(IIX2(to)ID (11.50)1
to 

~.Jof 

where the function ¢(.) is a class K-function. 

,'.> ..
 



430 

·.'1.1[,
 

Positioning Systems 

Main Result 

Consider the nonlinear DP model: 

7J =	 R(7j;)v (11.51) 

r+RT(7j;)bMv+Dv =	 (11.52), 

Y =	 1] +1]w (11.53) 

where b E ]R3 is a bias term representing slowly-varying environmental disturbances and 
Y E JR3 represent the measurements. Instead of using integral action to compensate for b, a 
PD-controller: 

e = 1] -1]d (11.54) 

can be implemented under the assumption that b is known (perfect compensation) and 7Jd = 
O. However, it is impossible to measure b so a state observer is needed. For this purpose the 
passive observer (6.1 05}--{6.109) in Section 6.2.4 can be used to generate estimates of 1], u, 
and b and at the same time provide wave filtering. Application of a nonlinear separation 
principle implies that the controller can be implemented using the estimated states iI, D, and 
b, that is: 

r=	 e = iI <n« (11.55) 

The proof needed to show that the passive observer with the controller (11.55) is UGAS is 
done in three steps corresponding to Assumptions AI-A3 in theorem 1l.1. 

Step 1: Observer Error Dynamics 

Since the observer error dynamics: 

(11.56) 

is UGES (and consequently UGAS) when considering the passive observer in Section 6.2.4, 
there exists positive constants Al and A2 such that: 

(11.57) 

and therefore Assumption A3 in Theorem ll.l is satisfied with <i> (1Ix2(tO)ID = (AdA2) I/x2(tO)1/ 

Step 2: Regulator Error Dynamics 

Tbefull state feedback controller (11.54) when applied to (l1.51}--{11.52) gives: 

e = R(7j;)v (11.58) 

Mv + (D + Kd) V + R T (7j;) Kpe = 0 (11.59) 

!IIIIII 

"llIl 
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This system is GAS according to LaSalle-Krasovskii's theorem since: 

v = ~ (vTMv + eTKpe + b T Tb) > 0, 'Vv :f:. 0, e :f:. 0, b :f:. 0 (11.60) 
i.' 

and 
v = -vT (D + Kd) v - b Tb -::;0 (11.61) 

. '"--.I This analysis is done with b = _T-Ib but is also possible to use b = O. This implies that 
!Im~" 

-. 
the system Xl = f l (Xl, t), see Assumption Al in Theorem 11.1, is UGAS. Next, a constant 
CI is easily found by considering: 

·"Ii,.. 

2II ~ 1IIIxIII s max{mM' kM , I} IIxl 1l 'V IlxIIi ? I-" (11.62).'. 
'11.~1 where mM = Amax(M) and kM = Amax(Kp ) . Hence, (11.47) is satisfied with: 

max{mM, kM, I}1:11'= (11.63)CI =.. min{mm,km,I} 
II"••.

where mm = AmiD (M) and km = AmiD (Kp ) . Also from (11.62) it is clear that (11.48) is - satisfied by: 

C2 = max{mM' ku, I}I-" (11.64)w - Step 3: Growth Rate Condition ..
Finally, it can be shown that the growth rate condition (11.49) on Xl is satisfied by choosing 

•• (h = constant and (h = 0 such that: 

IIG(t, X) II -::; 0dllx211) (11.65) 

la
 The details in this analysis is found in Loria et al. (2000).
 

Experimental Results.s, 
The nonlinear controller (11.55) and passive observer of Section 6.2.4 have been tested ex

lUlM. perimentally using CyberShip I in the GNC Laboratory at NTND. In this experiment wind 
disturbances were generated using a fan and a simple wave maker. More details regarding 
the experiment are found in Loria et al. (2000). 

In the experiments the desired position and heading of the ship during DP were chosen 
as:

I~i 

Xd = 208 (m) (11.66) 
111h: Yd = 334 (m) (11.67) 

1/Jd = -150 (deg) (11.68)

>I. The experiment was carried out for a ship scale 1:70, but the results have been transformed 
.::., to full scale. The development of the experiment is as follows: 

,
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1. During the first 350 seconds there are no environmental loads perturbing the ship. 

Comments: From Figure 11.7 it is seen that the bias estimate b and the WF estimate 
flw both are approximately zero as expected the first 350 seconds. The non-zero values 
of b are due to the water motion generated by the propellers. It is also seen that the 
regulation and estimation errors are very small during this phase; see upper plots in 
Figures 11.6 and 11.8. 

2. After 350 seconds wind loads are generated by using a ducted fan directed approxi
mately 30 degrees off the port side bow of the ship. 

Comments: When turned on, the fan produces a step input disturbance to the system, 
notice the peaks in Figures 11.6 and 11.8. This step is an unrealistic situation (in full
scale applications, no abrupt changes in the bias occur) however, it can be generated 
in the laboratory to show the performance of our observer-based controller. The bias 
estimates from the observer, b, are integrated to cancel the off-sets resulting from the 
change in magnitude of the wind force, see 11.7. These estimated values are used in the 
output feedback control law to obtain perfect regulation, which validates the separation 
principle, see Figure 11.8. Most of the wind disturbance is compensated by the control 
input, and therefore the regulation errors converge to zero in 100 - 150 seconds; see 
the first three plots of Figure 11.6. However, since the wind disturbance is a step, the 
observer needs some time for the bias estimate to converge to its true value, after which 
the controller compensates for the bias, hence keeping the boat almost still. 

3. After 800 seconds the wave generator is turned on: 

Comments: This results in an oscillatory wave frequency motion '1w which builds 
up over time. The estimated wave frequency motion flw is shown in the upper plots of 
Figure 11.7. Their effect in the position measurements is shown in the upper plots of 
Figure 11.6. In order to avoid flw entering the feedback loop, this signal is filtered out 
from the position measurement. This wave filtering results in more smooth controls; 
see bottom plots of Figure 11.7. The low frequency estimates are clearly shown in the 
upper plots ofFigure 11.6. 

4. After 1700 seconds both the wind and wave generators are turned off. 

Comments: Turning off the fan, produces a second step input disturbance while the 
wave-induced motion decays more slowly. We see from Figure 11.7 that the bias esti
mates drop to approximately their initial values in 100 - 150 seconds while the ampli
tudes ofthe WF motion estimates drop quite slowly. Again, almost perfect regulation to 
zero is obtained as soon as the bias estimates have converged to their true values. This 
clearly demonstrates the separation principle. In a full-scale implementation the wind 
force will build up quite slowly. Hence the step inputs do not constitute a problem. 

'~,' 
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Figure 11.6: Plots 1-3 show the components of the measurement vector y = [x + xw , y + 
Yw, 'l/J + 'l/Jw] and the wave filtered (LF-estimate) r, = [x, fj, -0]T during DP. Plots 4-6 show 
the estimated LF velocity components v = [iL, ii, f]T versus time. 
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Figure 11.7: Plots 1-3 show the estimated wave frequency (WF) motion components iJ = w 
[xw,Yw, -0w] T while plots 4-6 show the bias estimates b = [bI , b2 , b3 ]T versus time. 
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Figure ]1.8: Plots ]-3 show the components of the measured position y = [x + X w , Y + 
Yw, 'l/J + 'l/Jw]T together with the desired position TId = [Xd, Yd, 'l/Jd]T while plots 4-6 are the 
control inputs T = [T1' T2, T3F versus time. 
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11.2.5 Nonlinear Observer Backstepping 

This section presents a nonlinear DP and PM output feedback controller using vectorial back
stepping (Fossen and Grevlen 1998). Linearization of the kinematics is avoided by using a 
nonlinear state observer for velocity. Observer backstepping is used to provide nonlinear 
feedback from the state estimates (Krstic et al. 1995). The results of Krstic et al. (1995) 
are further improved by replacing the measured output with a filtered output when designing 
the feedback control law. Hence, the control inputs are generated by using filtered estimates 
of both the velocities and positions. Finally, GES is proven for the total system-i.e., is ship 
model, observer and control system. The control law was initially derived in component form 
by using 6 steps (3 for both the position and velocity components) when performing the back
stepping (Grevlen and Fossen 1996). Later the number of steps was reduced to 2 by using 
vectorial backstepping (Fossen and Grevlen 1998). 

Consider the DP and PM models (11.1)--(11.2) in the form: 

r, R(1jJ)v (11.69) 

v = AIl1+A2v+Br (11.70) 

where 
Al = -M-IK, A2 = -M-In, B = M-1 (11.71) 

It is assumed that only the North-East positions (n, e), and yaw angle 1jJ are measured, that 
is: 

(11.72) 

Nonlinear Observer Design 

The nonlinear observer is found by using Lyapunov theory, which places constraints on the 
choice of the filter gains. This is based on Fossen and Fjellstad (1995), where a nonlinear 
model-based observer for an underwater vehicle with filter gains that are functions of the 
measured attitude is proposed. 

An observer for (11.69) and (11.70) is constructed as: 

r, R(1jJ)v + K I 71 (11.73) 

v = Al r, + A 2v + B'r + K 211 (11.74) 

where 71 = 11 - r, is the position estimation error. Defining v = v - v, the error dynamics 

can be written: 

71 = R(1jJ)v - K I 71 (11.75) 

v = (AI - K 2 )71 + A2v (11.76) 

The matrices K I and K 2 in (11.73) and (11.74) can be chosen such that the observer is GES. 
This is obtained by defining a Lyapunov function candidate: 

(11.77 
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I' where PI = P I and P 2 = P r are positive definite matrices. Hence: 

1iIId V obs� = ~ TPl17 + ~ (f:,TPzv + vTpzf:,) 
llID!Jg a 
1111IID:ar = (R(y)v - Kl17) T Pl17 
III~) 

1111!IIng� +~vT (pzAz + AIpz) v + ~17T (AI - K z)T Pzv + ~vTP2 (AI - K z) 17 
'.llllcm::s 

T 
ll,;up� = _17TK~ Pl17 + ~vT (PzAz + AIpz) v + v (RT ('ljJ)PI + P z (AI - K 2 ») 17 

III ilIIlD 
Vobs can be made negative definite by defining: :lIEk

lIing RT('ljJ)PI +PZ(AI-Kz) =0 (11.78) 

Klp I =QI (11.79) 

~ (PzAz + AIPz) =-Qz (11.80)
'~ 

',1118)� where QI = Q! and Q2 = QI are positive definite design matrices and A z = -M-In 
is assumed to be Hurwitz. This implies that the ship must be course-stable. An extension '", 
to course-unstable ships can, however, be made by applying the approach of Robertson and '.- Johansson (1998). Hence: 

Vobs = -17T QI17 - VT Q2v < 0, V17 # 0, v # 0 (11.81)
~I[") 

111.,"� GES of the observer can be proven by defining x = [17 T, VT]T and: 

P = diag{PhP2}, Q = diag{Ql, Q2} (11.82) 
I.......~
 

and noticing that: 

1 (-Tp _ -Tp-)� (11.83)Vobs = 2 TJ ITJ+V� ZV 
'11111i11,k 

~ 1� T Amax(P) T 
= -x Px < x x 

,'I!II 'lIE� 2 2 

-TQ- -TQ-Vobs� = -TJ ITJ-V ZV (11.84) 

= -xTQx::; -Amin(Q)XTX 
II. 

,JIll� where Amin and Amax denote the minimum and maximum eigenvalue, respectively. Hence: 

Vobs(t) ::; e-2o t Vobs(0)� (11.85)- where 0 = Amin (Q) IAmax(P) > 0 can be interpreted as the convergence rate. The defini
tions (11.78) and (11.79) implies that: "'!III:

Illi.- K I� PIIQI (11.86) 

P2' IRT('ljJ)PK 2 ('ljJ )� I -AI (11.87) 

where P z is computed from the Lyapunov equation (11.80) and, PI, Qh and Q2 are constant :.� positive definite design matrices. 

_1111' 
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Observer Backstepping 

The observer backstepping problem is solved in two steps by using vectorial backstepping. 
The control objective is tracking ofa smooth reference trajectory T/d = [nd,es. 1Pd]T satisfy
ing: 

fid,TJd,1Jd E .coo (11.88) 

Station-keeping implies that 1Jd = constant. 

Step 1: I 

Since T/ is measured with sensor noise, the tracking error, T/ - 1Jd' is rewritten in terms of the 
estimate of 1J. Moreover, the tracking error, r, - 1Jd' is used for observer backstepping since 
the observer guarantees that r, ---+ 1J. Hence, the resulting control law will use feedback from 
the filtered measurements r, instead of 1J. Defining the error variable: 

(11.89) 

implies that: 
(11.90) 

The main idea of backstepping is to choose one of the state variables as virtual control. It 
turns out that: 

(11.91) 

is an excellent choice for the virtual control. Notice that the virtual control ~ 1 is defined as the 
sum of the next error variable Z2 and 01 which can be interpreted as a stabilizing function. 
Hence: 

2;1 = Z2 + 01 + K 1ii - TJd (I 1.92) 

The stabilizing function is chosen as: 

(11.93) 

where C 1 is a strictly positive constant feedback design matrix usually chosen to be diagonal 
and D 1 is a positive diagonal damping matrix defined according to: 

(11.94) 

where d, > 0 (i = 1, ... ,3) and k, (i = 1, ... ,3) are the column vectors of: 

(11.95) 

The motivation for the damping term - D I ZI is that K 1ii can be treated as a disturbance term 
in (11.90) to be compensated for by adding damping. The final equation for 2;1 is then: 

(11.96) 

Notice that D 1 is only used to compensate for the "disturbance" term K 1ii. In the next step, 
the desired dynamics of Z2 will be specified. 
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Step 2: 
Time differentiation of (11.91) yields: 

Z2 = e1 - 0:1� (11.97) 

which can be written according to: -
Z2 =� R('ljJ);> + R('ljJ)v + C1Z1 + D1z 1 - iidI 

~ Z2 =� -(C1 + D 1)2Z1 (11.98)
IIIiiIR

+(C1 + DJ(Z2 + K1ij) - iid + R('ljJ)v..� ~ 

+R('ljJ)(A1r, + A 2v + Br- + K 2ij ) II
Defining: 

0 -r� 0]
S(p) = rOO� (11.99).'..� p~[n, [000 

and p = p - p. Hence the time derivative of J (y) can bewritten:la 
j(y) =R('ljJ)S(p) = R('ljJ)S(p)+R('ljJ)S(P) (11.100)

'
Hence the product R( 'ljJ)v in (11.98) can be rewritten as: 

IlIIR 

r� R('ljJ)v = R('ljJ)S(p)v + R('ljJ)S(p)v 

= R('ljJ)T(v)v + R('ljJ)S(p)v (ILI01) 

where~ 

0 0 -V]
T(v) = 0 0 u� (11.102)lIB) [ o 0 0 

Substituting (11.101) into (11.98) yields: 

Z2 =� -(C1 + DJ2z 1 + (C 1 + D 1)(Z2 + K1ij) - iid 
+R('ljJ)(A1il + A 2v + B-r + K2ij) + R('ljJ)T(v)v + R('ljJ)S(p){H.103) 

Collecting terms in ij and v,yields: 

Z2 =� ((C1 + DJK1 + R('ljJ)K2) ij 

+R('ljJ)T(v)v + 1p(7]d' il, V, p, y) + R('ljJ)B-r (11.104)
'5) 

where: 
1m 

1p(11d"il,v,p,y) = -(Cl+Dd2Z1+(Cl+Dl)Z2-11d 

+R('ljJ)A1il + R('ljJ)(A2 + S(p))v (1LI05) 

r 
~ 

The following choice of feedback is made: 

-r = _B-1RT ('ljJ) (Ip(iid,il, V, p,y) + C 2Z2 + D 2z2 + Zl) (1LI06) 

•� 
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where C 2 is a strictly positive feedback design matrix usually chosen to be diagonal. The Timed 
resulting Z2-error dynamics is: 

(11.107) 

where!where 

0 1 : = (C 1 + DJK1 + R(?jJ)~2 (11.108) 

O2 : = R(?jJ)T(v) (11.109) suJ 
The matrix D 2 is defined in terms of the elements ofO I and 02, that is: 

(11.110) t 
with: A~ 

D 2 = diag{d4(wiWI + wIw4),ds(w;W 2 +w~ ws), titlwJW3)} (11.111) 

where d; > 0 (i = 4, ... , 6). 

·1'.1Error Dynamics I 

to(1:.~The resulting error dynamics can be written: 

z = -(Cz+Dz + E)z + W 1f1 + W 2v (11.112) 

f1 = R(?jJ)v-K1 ij (11.113) 

;:, = (AI - K 2 )ij + A 2v (1 i.i 14) 

where z= [zi, zJF and: 

(11.115) ':1....'I
(11.116) 

III 
Lyapunov Stability Analysis .. -.... 
A Lyapunov function candidate for the control law is: 

1 T 
l/;:on ="2z Z > 0, 'Vz i- 0 (ILl 17) 

Hence, a Lyapunov function candidate for both the control law and observer can be defined 
as: 

v l/;:on + Vobs .... 
(1 Ll18)~ 

V ~(ZiZ+ijTPIij+vTP2;:') (11.119) 

a,
m' ',,"I"'li'" 
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Time differentiation of V along the trajectories ofz, i} and V, yields: 

. T··
V = Z z+Vobs (11.120)

•...loij 

where the expression for Vobs is given by (11.81). Consequently: 

· T· -TQ - -TQ
, ,I 

V =z Z-1J I1J- v 2v (11.121) 
. i 

Substituting (11.112) into (11.121), and using the fact that zTEz =0, Vz, yields: 

. - D zZ+ - 2V -TQ I1J- V-TQ (11.122)-IIL.IIIt V=zT (czZ- w I1J+ w -) -1J 2v 

Adding the zero terms: 

.JlI1)
1 (- TG - - TG -) 0II 4: 1J I1J-1J I1J = (11.123) 

,III 1 (-TG - -TG -) 04: v 2 V -v 2V = (11.124) 

III' 
to (11.122) yields: 

'.IU) v = -zTczz-zTnzz+zTWli}+zTW2V (11.125) 
JJ!l3) 1 ( - TG - - TG -) - T(Q 1 G ) - - T (Q 1G )-- 1J I1J + v 2v -1J 1 - - 1 1J - V 2 - - 2 V 
!.:.II'JoC) 4 ,44 

Illr The matrices G 1 and G 2 are defined as: 

G 1 := 91 1, G 2 := 921 (11.126)315) 

where 

I 
6 1_n~ 1 1 

91 = L d ' 92 = d + d (11.127) 
i 4 si=1 

In Appendix I in Fossen and Grevlen (1998) it was shown that: 

TnzZ+z - - 1 (- TG 11J+ V 0 (11.128)-z "wI1J+ZTW2V - 4: 1J - - TG2v:S-)
1111) 

Hence: 

V :s -zTCzz - i}T(QI - ~Gl)i} - VT(Q2 - ~G2)V <0, Vi} =I- 0, v =I- 0 (11.129) 

It is then clear that V can be made negative definite by choosing the positive definite weight 
matrices Ql = Qi and Q2 = QJ such that IIQll1 > 9J/4 and IIQ211 > 92/4. Notice that 
G 1 and G 2 are not needed for implementation. ... 

Hence, according to Lyapunov stability theory, the ship model with contro11aw(11.105}
(11.106) and observer (11.73}-(11.74) is GES. 

"'.; 

,,,- -....
:11,,; 



,

1�
442 Positioning Systems llo2~ 

Resulting Control Law 

The resulting control law is given below. 

wh~~' 
Control law: 

isr~ 
r = _B-lRT('ljJ)(cp(ijd' 1], V, p,y) + C2Z2 + D 2z2 + Zl)� 
cp(ijd'1], V,p, y) = -ijd - (C1 + D l )2Zl + (C1 + DJZ2� 

+R(1/J)Al1]+ J(y)(A2 + 8(p))v� ~ 
Stabilizing function: 
al = -C1Zl - D1zl + iJd 

Observer: 

ft = R('ljJ)v + Klii 
£, = AIr, + A 2 v + B'r + K 2 (y )ii 

Observer gains: 
K 1 = P1lQl 
K 2(1/J) = P2lRT(1/J)Pl-Al 

Nonlinear damping: 
0 1 = (C1 + DJK1 + R('ljJ)K2('ljJ), 

'!II 
wh~~ 

system ~. 

The .... 

Deu.., 'I! 

A regiorlill" 
itive~. 

O 2 = R(1/J)T(v) 

or: 

D 1 = diag{dlkik1 , d2kJk2 , d3klk3 } 

D 2 = diag{d4 (w[ WI + w;W4), ds(wr w2 + wlws),dt;wIW3} 

Tbeonw'~1 

Am 
centerese 

Alternative Analysis using Contraction Theory that bal.• 

In Jouffroy and Lottin (2002b) the observer-controller by Fossen and Grevlen (1998) has As J; lIIllDl 

been analyzed using contraction theory. Contraction theory is a recent tool that can be used connee.:: 

to study the stability of nonlinear system trajectories with respect to each other. The original 
definition of contraction requires the uniform negative definiteness of the Jacobian of the 
system: 

x = f(x,t) (11.130) wh~ftt

Contracting behavior is determined upon the exact differential relation, that is: 
recogr-r-e
and r 
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ox =:: (x,t)t5x� (11.13
II~ 

I~I~II 

'.. 
where Ox is a virtual displacement-i.e., an infinitesimal displacement at fixed time and &flax 
is recognized as the Jacobian of the system. Define the local transformation: 

OZ = El(x.t)rI"x� (11.132) 

illl� where 8(x,t) is a coordinate transformation matrix. The generalized Jacobian of the oz
system is: 

;11 

= (. 8f) 8 (x,t) (11.133)F(x,t) El(x,t) + 8(x,t) ax(x,t) -1 

The main definition and theorem ofcontraction are taken from Lohmiller and Slotine (1998). 

Definition 11.1 (Contraction Region) 
A region of the state space is called a contraction region with respect to a uniformly pos

Jilli 
itive metric: I 

,I� M(x,t) = e T (x,t)8(x,t) (11.134) 

where 8(x,t) is a differential coordinate transformation matrix, ifequivalently: 

', 
F(x,t) = ( 8(x,t) + El(x,t):: (x,t)) El-1(x,t) (11.135) 

or: 

(:: (X,t)) T M(x,t) + M(x,t) + M(x,t) (:: (X,t)) (11.136) 

are uniformly negative definite. 

Theorem 11.2 (Exponential Convergence in Contracting Systems) 
Any trajectory, which starts in a ball ofconstant radius with respect to the metric M(x,t), 
centered at a given trajectory and contained at all times in a contraction region, remains in 
that ball and converges exponentially to this trajectory. 

II As a consequence of this, two systems contracting under possibly different metrics, and 

," connected in feedback form as: 

II.� [OZI] [F1 G] [ OZI ] (11.137)OZ2 = _GT F 2� OZ2 

'IIIII~I, where OZi = El(xi,t)OXi (i = 1,2), will represent a new system that is contracting. This is 
recognized as the well known feedback interconnection structure which is used in passivity 
and backstepping analysis. ,I: 

'.i1- .' 
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Again consider the nonlinear observer of Fossen and Grevlen (1998) :� dynamicJ 
arechma 

fJ = R('l/J)v + K 1(11- ij):= f 1(v ,iJ,7})� (11.138) 

v = Ad} + A 2v + Br + K 2 (7] - ij):= f 2 (v , ij, 7], r) (11.139) 

,
The incremental equations and the Jacobian of this system with respect to (ii, v) are: 

(11.140) 

This system is contracting, that is FT + F >0, if: 

The"
K 1 > 0 (11.141)� measc-en 

observeK 2 = A 1-R
T('l/J)� (11.142) 

It is seen that this design is somewhat restrictive because only K 1 > 0 can be tuned arbitrarily.� 
To relax the condition on K 2 , define 8zi = 8i8xi (i = 1,2) such that:� 

(11.143) 

The conditions for this system to be contracting are: 
'11!i. 

I Ii
-81K 18l 1 < 0� (11.144) 

ill 
8 2A28;-1 < 0� (11.145) Notia. 

- (82(AI - K 2) 8 11)T = 8 1R('l/J)8;-1 (11.146)� s.r.s-..I
-

Finally, choosing Pi = 8J8 i (i = 1,2), yields: 
an),: " 
siJra ai' 

A::M::ilIII''''''
Kip1 + P1K1 > 0� (11.147) dw. "II'" 

AJP2 + P 2A2 > 0 (11.148) Sl

P 21R T('l/J)P1 +A1K 2('l/J) =� (11.149) be alUIIIIIII'" 

~I' 

where K 1 > O. These conditions are recognized as the UGES conditions of the observer� 
backstepping method. This shows that contracting theory yields a UGES stable error system� 
similar to what is obtained when using backstepping. In addition, additional design freedom� 
is obtained in that the metrics 8 1 and 8 2 can be specified rather arbitrarily. For the interested� 

~reader, backstepping designs in terms of contraction theory are analyzed in Jouffroy and 
Lottin (2002a).� ~I" 

fO II ./1"... 
Case Studies e: 

......
Two case studies will be presented to illustrate the performance of the proposed controller. In� 
the first one, thruster assisted PM of a tanker is discussed. The second case study considers� 
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illllmll·::·I!I'.'M..1I11111"I!I! dynamic positioning ofa supply vessel. In both cases the control law and observer parameters 
;\\::1'] 

are chosen according to: 

I 
= diag{3.0, 3.0, 1.0} 

QI = diag{1.0, 1.0, 1.0} :;;. 
PI 

Q2 = diag{1.0, 1.0, 1.0} 
I ' 

CI = 0.1· diag{1.0, 1.0, 1.0} 
11l1li111 I C2 = 0.1· diag{1.0, 1.0, 1.0} 

d l = d2 = 10.0, d3 = d4 = ds = <k = 1.0 

The sampling time is 0.1 (s). In addition to this, Gaussian white noise was added to the 
,III~II.I~ , measurements and the ship dynamics, in order to demonstrate the filtering properties of the� 
11111111 observer.� 

,IMIIIIII' Example 11.4 (Thruster Assisted PM of a Tanker) 
The Bis-scaled system matrices for the moored tanker in Fossen and Grevlen (1998) are: 

III~IWIII iill~ 1.0852 0.0865o 0] o 0 ]2.0575 -0.4087 , D"= 0 0.0762 0.1510 
o -0.4087 0.2153 o 0.0151 0.0031 

M"~ [ o 
[ 

K"=diag{0.0389,0.0266,0} 

Notice that K 33 = 0 (no mooring moment in yaw). The non-dimensional eigenvalues ofthe 
system matrix: 

A2= - (M")-ID" 

are Al = -0.0797, A2 = -0.3498, and A3 = 0.0212. Hence. the tanker is course-unstable 
since the non-dimensional eigenvalue in yaw is positive. Consequently, the requirement that 
A 2 is Hurwitz is violated This did not have an effect ofthe performance ofthe ship mainly 
due to the stabilizing effect and robustness of the control law. It should be noted that if 
stabilization is a problem, the non-Hurwitz solution for the observer gain matrices should 
be applied (Robertson and Johansson 1998). The dimensional time constants are computed 
according to: 

1t: = --JLjg (i = 1'00.,3) (11.150)
Ai 

where L = 200.6 (m) is the length ofthe ship hull and 9 = 9.81 (m/s2) . Hence the time con
stants in surge, sway and yaw are found to be 56.7, 12.9, and -213.5 (s). The performance 
ofthe nonlinear control law is shown in Figures 11.9 where the desired yaw angle (heading) 
command are 10,5 and 0 (deg). The desired (n, e)-positions are shifted from (-10,10) to 
(0,0) during the course-changing maneuver. Smooth reference trajectories in surge, sway 
andyaw are generated by using three 2nd-order low-pass filters with relative damping ratios 
equal to 1.0 and natural frequencies equal to 0.5 (rad/s). The computer simulations show 
that the output feedback controller is highly robust for noise contaminated measurements. 

_.� 
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filtered and measured x-position (rn) law ... 
bolJr~I~ 
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Figure 11.9: Thruster assisted mooring of a tanker. The desired positions are changed from� 
(-10,-10) to (0,0). The desired yaw angle is changed between 10,5 and 0 (deg).� 

IIIIIIII!: 
Example 11.5 (Dynamic Positioning of a Supply Vessel)� 
The Bis-scaledsystem matrices for the supply vessel in Fossen and Grevlen (1998) are:� 

1.1274� 0.0358 oo 0]M"= 0 1.8902 -0.0744 , D"= 0 0.1183 -0.~124 ]
[� [o -0.0744� 0.1278 o -0.0041 0.0308 

Notice that K"= 0 for the supply vessel (no mooring forces). The model parameters of� 
the supply vessel have been identified by performing full-scale sea-trials in the North Sea,� 
see Fossen et al. (1996) for details. The non-dimensional eigenvalues of the system matrix� 
A 2 = - (Mil) -1D" are Al = -0.2429, A2 = -0.0627 and >'2 = -0.0318. The dimensional� 
time constants are computedaccording to (11.150) with L = 76.2 (m) resulting in 11.5,44.5� 
and 87.8 (s) for surge, sway andyaw, respectively. The performance ofthe nonlinear control� 

-�
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law is shown in Figures 11.10 where a time-varying smooth reference trajectory is used in 
JI!I!H both surge andyaw whereas the desired sway position is zero. Again, excellent performance ill,•

is demonstratedfor noise contaminatedposition measurements. 

filtered and measured x-position (m) 
100, , ii' 

------- ._~-- --------:- --

-100' 
o 

'ill!liIL, 
-10' 

o 

100, 

50 

o 
-50' 

o 

,;ill' 

, , , , , , , ,� 
, ,� , , 

I 
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filtered and measured y-position (rn) 
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II I 

Figure 11.10: DP of a supply vessel. Tracking of a time-varying reference trajectory in surge 
and yaw whereas the desired sway position is zero. 

It'll 

111f' 11.2.6 Nonlinear Inverse Optimal Control '.,
',,--:: Backstepping designs can be related to optimal control theory by using the concept of inverse.. optimal control, see Strand and Fossen (1998), Strand et al. (1998b), and Strand (1999). This 

",111111, is based on Eza1 (1998). A tutorial on nonlinear backstepping designs for ship control is 
'III.:, found in Fossen and Strand (1998). 
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II~ 

CIfII ...Ii
~ 

II
Figure 11.11; Positioning mooring system. ......

11.2.7 Vnderactuated Stabilization "111...
An underactuated ship belongs to a class of systems that cannot be asymptotically stabilized 

~I. 

by a static feedback control law u = o(x). The stabilization problem is, however, not .-.
solvable using linear control theory or "classical" nonlinear control theory like static feedback 
linearization. However, it is shown in Pettersen and Egeland (1996) that the ship is still small ....
time locally controllable from any equilibrium point. By Coron (1995) this implies that it is 
possible to asymptotically stabilize the ship using a periodic time-varying feedback control -... 
law u = (3(x, t). Therefore, to avoid the negative stabilizability result, one approach has 

~"\III 
been to introduce explicit time-dependence in the feedback control law, u = (3(x, t), an 
approach first used by Samson (1991) for the control ofmobile robots. Another approach has 
been the use of discontinuous feedback control laws, which give convergence to the desired 
equilibrium point, though not Lyapunov stability. 

In Wichlund et al. (1995) a continuous feedback control law is proposed that instead 
asymptotically stabilizes an equilibrium manifold. The desired equilibrium point is then 
stable as all the system variables are bounded by the initial conditions of the system. Fur
thermore, the position variables with this approach converge exponentially to their desired 
values. The yaw angle, however, converges to some constant value, but not necessarily to 
zero. In Reyhanoglu (1996) a discontinuous feedback control law is proposed, and this pro
vides exponential convergence to the desired equilibrium point, under certain assumptions Ion the initial value. In Pettersen and Egeland (1996) a time-varying feedback control law is 
proposed that provides exponential stability of the desired equilibrium point. However the 
feedback law only locally stabilizes the desired equilibrium point. In Pettersen and Nijmeijer 
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Figure 11.12: Anchored drilling vessel. 

(1999a) a time-varying feedback control law is proposed that provides semiglobal practical 
exponential stability of a simplified model of the ship. 

Control ofa hovercraft is discussed by Fantoni et a/. (2000) while a geometric framework 
for controllability analysis and motion control is proposed for mechanical systems on Lie 
groups, including the howercraft, by Bullo et a/. (1999). 

Even though there have been many theoretical developments in the area of underactu
ated systems, there have been relatively few experimental results reported that makes use 
of the developed theory. However, in Pettersen and Fossen (2000) experimental results for 
an underactuated ship are presented In Pettersen and Egeland (1996), using averaging the
ory and homogeneity properties, a time-varying feedback control law was developed that 
exponentially stabilizes n, e, and 'I/J using only two control inputs. The experimental results 
are reported in Pettersen and Fossen (2000) where it was shown that the ship under the ex
ponentially stabilizing feedback control law of Pettersen and Egeland (1996), experienced 
some stationary oscillations. Simulations indicated that the main reason for the oscillatory 
behavior was the environmental disturbances. It was thus pointed out that a topic of future 
research should be the inclusion of a constant environmental force in the analysis and control 
design, possibly including adaptation in the control scheme, in order to reduce or eliminate 
the stationary errors and oscillations. 

11.3 Position Mooring (PM) Systems 

In Section 11.1.1 a linear model for anchored and moored ships was presented. This model 
is written: 

TJp v (11.151) 

Mv+Dv+K1]p -r (11.152) 

'111!IIIII!II!i where the term K1]p represents the spring forces due to the mooring system. In thruster 
assisted position mooring (PM) systems the thrusters are complementary to the mooring sys

~I' 
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tem and the main idea is to provide the system with additional damping, e.g. by using a 
D-controller: 

T= 

The mooring term Kryp is in fact a P-controller but additional spring forces can be included 
by position feedback. Integral action is not used in PM systems, since the ship is allowed to 
move within a limited radius around the equilibrium point. 

PM systems have been commercially available since the 1980's, and provide a flexible 
solution for floating structures for drilling and oil and gas exploitation on the smaller and 
marginal fields (Sorensen et al. 2000). Modeling and control of turret-moored ships are 
complicated problems since the mooring forces and moments are inherently nonlinear (Strand 
et al. 1998a). Control design of PM using nonlinear theory is addressed by Strand (1999). 

11.4 Weather Optimal Positioning Control (WOPC) 

Conventional DP systems for ships and free-floating rigs are usually designed for station
keeping by specifying a desired constant position (nd, ed) and a desired constant heading 
angle '¢d' In order to minimize the ship fuel consumption, the desired heading '¢d should in 
many operations be chosen such that the yaw moment is zero. For vessels with port/starboard 
symmetry, this means that the mean environmental force due to wind, waves and currents act 
through the center line of the vessel. Then the ship must be rotated until the yaw moment is 
zero. 

Unfortunately, it is impossible to measure or compute the direction of the mean environ
mental force with sufficient accuracy. Hence, the desired heading '¢d is usually taken to be 
the measurement of the mean wind direction, which can be easily measured. In practise, how
ever, this can result in large off-sets from the true mean direction of the total environmental 
force. The main reason for this is the unmeasured current force component and waves that 
do not coincide with the wind direction. Hence, the DP system can be operated under highly 
non-optimal conditions if fuel saving is the issue. A small off-set in the optimal heading angle 
will result in a large use of thrust. 

One attractive method for computing the weather optimal heading '¢d is to monitor the 
resulting thruster forces in the x- and y-directions. Hence, the bow of the ship can be turned 
in one direction until the thruster force in the y-direction approaches zero. This method is 
appealing but the main catch in doing this is that the total resulting thruster forces in the x
and y-directions have to be computed since there are no sensors doing this job directly. The 
sensors only measure the angular speed and pitch angle of the propellers. Hence, the thrust 
for each propeller must be computed by using a model of the thruster characteristic resulting 
in a pretty rough estimate of the total thruster force in each direction. 

Another principle, proposed by Pinkster and Nienhuis (1996), is to control the x- and y 
position using a PID feedback controller, in addition to feedback from the yaw velocity, such 
that the vessel tends towards the optimal heading. This principle, however, requires that the 
rotation point of the vessel be located a certain distance forward of the centre of gravity, or 
even fore of the bow, and it also puts restrictions on the thruster configuration and the number 
of thrusters installed. 
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Figure 11.13: The principle of WOPC using the equivalence to a pendulum in the gravity 
I~ field where gravity is the unmeasured quantity. 
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This chapter describes the design of a new concept for WOPC of ships and free-floating 
:"'Il~III":I;" 

rigs. The WOPC controller was developed by Fossen and Strand (2001) . The control objec
~~II "'.'" 

tive is that the vessel heading should adjust automatically to the mean environmental distur
~",.",JIl,. 

bances (wind, waves and currents) such that a minimum amount of energy is used in order 
IllI.IJil'/~~~ 

to save fuel and reduce NOx/COx-emissions without using any environmental sensors. This 
~lrll"'111111' 

is particular useful for shuttle tankers and FPSOs, which can be located at the same position 
'''' for a long time. Also DP operated supply vessels which must keep their position for days in 

,11m1WtII, 

loading/off-loading operations have a great WOPC fuel saving potential. 
'~lIJIlIl:. 

The ship can be exponentially stabilized on a circle arc with constant radius by letting 
''''1 

the bow of the ship point towards the origin of the circle. In order to maintain a fixed posi
.11.111111111,'" 

tion at the same time, a translatory circle center control law is designed. The circle center is 
:~ 

translated on-line such that the Cartesian position is constant, while the bow of the ship is au
tomatically turned up against the mean environmental force (weathervaning). This approach 

i.' 
is motivated by a pendulum in the gravity field where gravity is the unmeasured quantity. The 

'mil" 
circular motion of the controlled ship, where the mean environmental force can be interpreted 

I~I'UIIIIII 'II' 
as an unknown force field, copies the dynamics of a pendulum in the gravity field; see Figure 

IlllIIT 
11.13. 

'11'~ln~\'.I1.11I 

11.4.1 3 DOF Equations of Motion using Polar Coordinates 

Consider the 3 DOF ship model: 

,llloIU,jii~:I::.:: 

iI.' 
,1;lllIlt;..:: r, = R(1/J)v (11.154) 

"'." Mv+C(v)v+D(v)v = r+w (11.155) 

where the North-East positions (n, e) and heading 1/J is represented by 1] = [n,e, 1/J]T and,-' the vessel-fixed vessel velocities are represented by u = [u, v, rj T. It is assumed that M = 

http:��..�..�
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M T > 0, M = 0, and D(v) > O. Unmodeled external forces and moment due to wind, Ship mod 
currents and waves are lumped together into an vessel-fixed disturbance vector w 
interpreted later. 

E ]R3 to be 
The ship n 
stituting 

Polar Coordinates 

The Cartesian coordinates (n, e) is related to the polar coordinates by: 

such that: 
n = no + p cos "(, e = eo + psin "(, (11.156) 

where (no, eo) is the origin of a circle with radius p and polar angle "(: 

p = J(n  no)2 + (e  eo), "( = atan2 ((e  eo), (n  no)). (lU5?) 

Time differentiation of(I 1.156), yields: 

it = no + pcos"(  psin "(1, (I1.I58) where: 

e = eo + psin "(+ Pcos "(1. (11.159) 

Define the state vectors: 

Po ~ [no,eo]T, (lU60) 
q(v.x. 

From (11.158) and (11.159) a new kinematic relationship can be written in terms of the 
vectors Po and x as: 

(11.161) 
1 

The ship d 
where: 

H(p) = [
100]0 pO, 
o 0 1 

L = [1 0]0 1 
0 0 

. (11.162) 

Dlsturbaa 
From (l1.16l) the Cartesian kinematics (11.154) can be replaced by a differential equation 
for the polar coordinates: 

The steady 
unknown e1 

,.">.,.:."m1'l,¥".",,,O;::j,)¥)},}§)40 ",- ii.;~ m'E"'V:""'''':':':''''':'''''?''S:'?:'''':~;:''~'''7'''7'''m'':T:"A",_ '. t 3 ,. ,·.!bA.;·I>'*""1'f'%!')!!#:UM@ffl)!@,,:;,:;; • ..4(;::;:;g;::~!l~; waves, and 

X = T(x)v  T(x)RT ('l/J)Lpo, (11.163) 
• a 510 

where coon 
T(x) = H-1(p) R T (r)R('l/J) 

'-..-" 
(11.164) 

• a 510' 
RT(r_,p) 

The \\1 
see Chapte 

Note that the conversion between Cartesian and polar coordinates is only a local diffeomor Since tl 
phism, since the radius must be kept larger than a minimum value, i.e. p > Pmin > 0 in order cient accur. 
to avoid the singular point p = O. leads to the 

---,... 
. 

" I ..",,,,,,,,"',,,,,,,,, 
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11.4 Weather Optimal Positioning Control (WOPC) 

Ship model transformation 

The ship model (11.155) can be represented by polar coordinates by using (11.163) and sub
stituting 

v = T-1(x)x+RTLpo (11.165) 

v = T-1(x)x+T-\x)x+RTLpo+RTLpo, (11.166) 

such that: 

Mv + C(v)v + D(v)v 

Mx(x)x+Cx(v,x)x+Dx(v,x)x 

where: 

1

r+w 

:D: p> 0 

= T-T[q(v,x,po,po)+r+w] (11. 

M, (x) = T-T(x)MT- (x) 

Cx(v, x) = T-T(x) (C(v) - MT-1(x)T(x») T-1(x) 

Dx(v,x) = T-T(x)D(v)T-1(x) 

q(v, x, Po' Po) = MRT(.,p)Lpo + MRT(.,p)Lpo + [C(v) + D(v)]RT(.,p)Lpo 

Here Mx(x), Cx(v, x), and Dx(v,x) can be shown to satisfy: 

Mx(x) = M; (x) > 0, Dx(v, x) > 0, '<Ix. 

The ship dynamics does also satisfy the skew-symmetric property: 

zT - 2Cx ) z = 0, '<Iz, x.� (11.168)(Mx 

Disturbance Modeling 

The steady-state LF motion of the ship and also the ship's equilibrium position depend on the 
unknown environmental loads acting on the vessel. Let the environmental loads due to wind, 
waves, and currents be represented by: 

•� a slowly-varying mean force Fe which attacks the ship in a point (lx, ly) in body-fixed 
coordinates. 

•� a slowly-varying mean direction Be' relative to the Earth-fixed frame; see Figure 11.14. 

The WF motion is assumed to be filtered out of the measurements by using a wave filter; 
see Chapter 6. 

Since there are no sensors which can be used to measure (Fe, Be) and (lx, ly) with suffi
cient accuracy, it is impossible to use feedforward from the environmental disturbances. This 
leads to the following assumptions: 
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x 
North x. 

y. 

p cos j p,:� 
Y ./� 

-~>.... 
f-: ( 110 . e.> - - - -----i 

p sin y 

Figure 11.14: Environmental force Fe decomposed into the components WI and Wz . 

AI: The unknown mean environmental force Fe and it 's direction (3e are assum ed to be� 
constant or at least slowly-varying.� 

A2: The unknown attackpoint (lx, ly) is constantfor each constant Fe. 

Discussion: These are good assumptions since the ship control system is only supposed to� 
counteract the slowly-varying motion components ofthe environmental disturbances.� 

From Figure 11.14 the body-fixed environmental load vector w E JR3 can be expressed as: 

He1fC2. 
(11.169) for w: , 

DeUM 
W --',Notice that the environmental loads vary with the heading angle 'ljJ of the ship. Consequently: 
~ 

Fe = J wi +w~, (3e = 'ljJ + tan"! (wz/wd· (11.170) 

The environmental forces X w and Yw with attack point (lx('ljJ) , ly('ljJ)) are shown in Figure 
11.14. Note that the attack point will change with the yaw angle 'ljJ . This relat ionship will be 

'P- : 
a complicated function of hull and superstructure geometries. 

01: 111 

11.4.2 Weather Optimal Control Objectives ~•The weather optimal control objectives make use of the following definitions (Fossen and 
~ 

Strand 2001): 

Definition 11.2 (Weather Optimal Heading)� 
The weather optimal heading angle 'ljJopt is given by the equilibrium state where the yaw� 
moment W3 ('ljJopt) = 0 at the same time as the bow ofthe ship is turned up against weather� 
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11.4 Weather Optimal Positioning Control (WOPC) 

'j ] ,.... Resulting environ menta l 
force in ther - and y- directions 

I (Earth-fi xed) ~ "Y 

'II ; P: !
I,� r, 

1 ~ ~( l l il , 

.. . oint) «:'>. 
(U"~""""" '"'~ ' I~::;~o ' ~ X)'�~~I	 ~ i 

I! 

Ii� 1JI " · "y w]� 

. . . int)t� y , ...).. (Stable equilibriumpo
+1 

-� 1.~ ~ .. »'1 w,~ F•
ij 

w,=w,=O~ 

'I� w,<O
Ii, 
I ~ 

Figure 11.15: Stable and unstable equilibriwn points for WOPC. 
I, 

I (mean environmental disturbances), that is W2 C¢opt) = O. This implies that the moment arms� 
~ lx('l/Jopt) = constant and ly('l/Jopt) = 0, and:� 
~ 

Wl ('l/JoPt)] [-Fe]
W('l/Jopt) = W2 ('l/Jopt) = 0 .

[ W3('l/Jopt)� 0 

Hence, the mean environmental force attacks the ship in the bow (minimum drag coefficient 
for water and wind loads)I. ' 
Definition 11.3 (Weather Optimal Positioning) 
Weather optimal positioning (station keeping) is defined as the equilibrium state where 'l/Jopt 
satisfies: 

Wl('l/Jopt) = -Fe' W2('l/Jopt) = W3('l/Jopt) = ly( 'l/Jopt) = 0 (11.171) 

and the position (n,e) = (nd,ed) is kept constant. 

These definitions motivates the following two control objectives: 

01 : Weather Optimal Heading Control (WOHC): This is obtained by restricting the 

1
'1 

ship's movement to a circle with constant radius P = Pd and at the same time force the 
I I�I ship's bow to point towards the center of the circle until the weather optimal heading 

angle 'l/J = 'l/Jopt is reached ; see Figure 11.15. An analogy to this is a pendulwn in 
gravity field; see Figure 11.13. The position (n,e) = (no + p COS''( , eo + p sin -y) will 
vary until the weather optimal heading angle is reached. This is obtained by specifying 
the control objective in polar coordinates according to: 

~."""" )&0.... 

. r� Pd = constant, 'Yd = 0, v« = 1r + "(. (11.172) 

. , p '� ,,,,,,.... ,. ;r 
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Discussion: The requirement Pd = constant implies that the ship moves on a circle 
with constant radius. The second requirement 1'd = 0 implies that the tangential speed 
tYr is kept small while the last requirement 'l/Jd = 7r + I ensures that the ship's bow 
points towards the center of the circle. 

02:	 Weather Optimal Positioning Control (WOPC): In order to maintain a fixed Earth
fixed position (n,e) = (nd,ed), the circle center Po = [no,eo]T must be moved 
simultaneously as Control Objective 01 is satisfied. The is referred to as translatory 
circle center control. 

11.4.3 Nonlinear and Adaptive Control Design 

The WOPC positioning controller is derived by using the polar coordinate representation. 
The backstepping design methodology (Krstic et al. 1995) with extension to integral control 
(Fossen et al. 2001) is used to derive the feedback controller (see Section 7.4). It is assumed 
that all states can be measured by using conventional sensor technology and a satellite navi
gation system; see Chapter 6. 

The WOPC controller will be derived in 3 successive steps: 

1.	 Nonlinear backstepping (PD-control): the ship is forced to move on a circle arc with 
desired radius Pd' with minimum tangential velocity tYr and desired heading 'l/Jd. 

2.	 Adaptive backstepping (PID-control):'4b.is is necessary to compensate for the unknown 
environmental force Fe. 

3.	 Translational control ofthe circle center: the circle center (no, eo) is translated such 
that the ship maintains a constant position (nd' ed) even though it is moving on a virtual 
circle arc. Hence, the Captain of the ship will only notice that the ship is rotating a yaw 
angle e about a constant position (nd, ed) until the weather optimal heading 'l/Jopt is 
reached. 

Nonlinear Backstepping (PD-Control) 

A general positioning controller is derived by using vectorial backstepping (Fossen and Grevlen 
1998). The tracking objective is specified in polar coordinates using a smooth reference tra
jectory xj = [Pd,'d,'l/Jd]T E 0 3 where: 

Since the transformed system (11.167) is of order 2, backstepping is performed in two vec
torial steps resulting in a nonlinear PD-control law. First, a virtual reference trajectory is 
defined as: 

(11.173) 

where Zl = x - Xd is the NED tracking error and A > 0 is a diagonal design matrix. 
Furthermore, let Z2 denote a measure of tracking defined according to: 

(11.174) 

From (11.174), the following expressions are obtained: 

(11.175) 

IIlll! ....
 

•
 

il~I"".'


'1111111 
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-:Je This implies that the vessel model (1 1.167) can be expressed in terms of Z2, x,., and x, as: 
'ea1 

MxZZ+CxZ2+DxZ2 = T-TT+T-T q(·)-Mx:Xr-Cxxr -Dxxr+T-T w (11.176)
"'-1' ~',.'	 Step 1:
 

Let ZI be the first error variable, which from (11.174) has the dynamics:
-........ 
ZI= -Az1+ Z2-...n. 

A CLF for the first step is: 

VI = 2'ZI K p z 1II~I	 

1 T 

. T T
VI = -ZI K p A z 1 + ZI K p z2
 

:a. where K p = KJ > 0 is a constant design matrix.
 
." ..........
 
"~	 Step 2: 
III~·~ In the second step the CLF is motivated by the "pseudo" kinetic energy, that is: 

1111I~i.	 1 T T
V2 = VI + 2'Z2 M xz2, M x= M x > 0 

lIt: .... Time differentiation of V2 along the trajectories ofz} and Z2, gives: 

• . T • 1 T • 
V2 = VI + z2 M xz2 + 2'Z2 Mxzz'III! a 

which by substitution of (11.179) and (11.176), gives:
 

.dI
 TV. z = -ZITK pAz1+2'1Z2T(·M, - 2Cx)Z2 - z2T D xZ2+Z2T-T w .......... .....
 
+zf (Kpzl+T-TT + T-Tq(.) - Mx:Xr - Cxxr - Dxxr)
 

By using the property (1 1.168) and choosing the nonlinear PD-controllaw as:"~. 

'JII1'	 T-T T = Mx:Xr + Cxxr + Dxxr - Kpz1 - KdZ2-T- T q(.) 

where Kd > 0 is a strictly positive design matrix, we finally get:
 
'....ten
 V2 = -ziKp Az1 - zJ(Kd + Dx)Z2+ZTT-Tw'~D-

;~II Notice that the dissipative term zIDxzz > 0, 'Vz2 '" 0 is exploited in the design as it appears 
in the expression for V2 • With the control law (11.183) the closed-loop dynamics becomes: 

"I,L.~) 

""u'lli, II!C

"-'. 
Error dynamics: 
The error dynamics of the resulting system becomes nonautonomous since: 

M xz2 + (C, + D, + Kd)ZZ + K pz1 = T-Tw (11.185) 

iD'un,-

[ x, 
03x3 

03X3] [ ~I ]
M, Z2 [ 

KpA 
03x3 

03x3 
C, +Dx +Kd 

] [ ZI ] 
Zz 

'111111' 

-l) 

~ 

[+ 
03x3 
-K p 

x, ] [ ZI ] + [ 03~f 

03x3 Z2 T 
] w 

'j} M(x)z = -K:(x, 11)z+Sz+B(x)w (1 1.186) 

(11.177) 

(11.178) 

(11.179) 

(11.180) 

(11.181) 

(11.182) 

(11.183) 

(11.184) 
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where the different matrices are defined as: """Ilill 

M(x) 
III 

K(x, v) = 

s = • 
In the absence of disturbances, W == 0, the origin z = 0 is uniformly locally exponentially
 
stable (ULES) according to Lyapunov. Global results cannot be achieved due to the local dif

feomorphism between the Cartesian and polar coordinates, that is the transformation matrix
 
T(x) is singular for p = 0.
 

With disturbances W =f:. 0, the closed-loop system is input-to-state stable (ISS). In the
 
next section, it is shown how adaptive backstepping (backstepping with integral action) can
 
be used to obtain ULES for the case of a non-zero disturbance vector w =f:. o.
 

111" '' II". 'I 

Adaptive Backstepping (pID-Control) 

Since the mean disturbance w is non-zero this will result in a steady-state offset when using I
III 

the PD-controller of the previous section. The ship is, however, restricted to move on a circle ; ::
 

arc with w as a force field. Therefore there will be a stable and an unstable equilibrium point . 'i,
 

on the circle arc (similar to a pendulum in the gravity field); see Figure 11.13. The stable
 
equilibrium point is given by:
 

w = ¢Fe = [-l,O,O]T Fe 

Since, the disturbance Fe is assumed to be slowly-varying, adaptive backstepping can be
 
applied to obtain integral effect in the system. Thus, in the analysis it will be assumed that
 
Fe=O. Let the estimate of Fe be denoted as Pe' and F = t; - Fe. An additional step in the
 
derivation of the backstepping control law must be performed in order to obtain an adaptive I I:
 

update law for Pe : I h,
 

Step 3:
 
The adaptive update law is found by adding the square parameter estimation error to V2 •
 

Consequently:
 
1 -2 

(lU88)V3 = V2 + 2a Fe' U >° 
. . 1.:. 

V3 = V2 + -FeFe (11.189) 
U 

The nonlinear control law (11.183) is modified to: 

"1I1IIIi(lU90)' 

where the last term ¢Pe provides integral action. Hence, the z2-dynarnics becomes: 

(IU91)
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This implies that: 

. T T T -T - 1,:.
V3 = -ZI K pAzl - Z2 (K, + D x ) Z2 - z2 T ¢Fe+-FeFeCT 

T T - T -1 1,:.= -ZI K pAz l - z2 (K d + D x)Z2+Fe(-¢ T Z2+-Fe) (11.192)
CT 

The adaptive law Fe = Fe is chosen as: 

i 
"""-:'!v' : T-1 

Fe = CT¢ T Z2, CT > 0 (11.193) 
..... .;;u:.

• 1M 

such that: 
. T T 

-~ V3 = -ZI KpAzl - Z2 (Kd + D x )Z2 SO (11.194) 

ii 
-~ 

Error Dynamics
 
The nonautonomous error dynamics for the adaptive backstepping controller can be written:
 .... M(x)z = [-K(x, v) + S]z+B(x)Fe (11.195) 

~ =Fe -CTBT(x)z (11.196)-...... where: 

03Xl ] (11.197)B(x) = -T-T (x)¢ 

In order to satisfy Control Objective 01, the controller gains must be chosen according to: ... " [ 

-. 
..r 0[~, 00] [kd' o ] [ >, o 0] 
u::: K p = ~ o 0 ,KrI= 0 kd2 o ,A= 0 o 0 (11.198)i, 

o kp3 0 0 kd3 0 o A3::11...... 
Notice that kp2 = A2 = O. This implies that the ship is free to move on the circle arc 

,IIWJI ',~I~ with tangential velocity M. The gain k-n > 0 is used to increase the tangential damping 
(D-control) while the radius p and heading 'l/J are stabilized by using Pill-control 

""ii" II~ 

Semi-Definite Matrices
 
Since the controller gains kp2 and A2 are chosen to be zero, the matrices:
 

x, 2: 0, A 2: 0 (11.199) 

:1
are only positive semi-definite resulting in a positive semi-definite V3 • Uniform local asymp
totic stability (ULAS) of the equilibrium (z,Fe)= (0,0) can, however, be proven since the 
error dynamics (Zl> Z2) is ISS. Consider the reduced order system (Zlr, Z2) given by: 

E=[1Zlr = EZl> 00] (11.200)o 0 1 
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This implies that: 

ZIr	 = -EAzI + EZ2 
= -(EAET)ZIr + Ez2. (11.201) 

Notice that the last step is possible since the diagonal matrices A = diag{ AI,0, A3} satisfies: 

AETZIr = Az l .	 (11.202) 

Hence, the error dynamics (11.195)-(11.196) can be transformed to: 

Mr(x)zr = [-,(r(x, v) + Sr]zr+Br(x)Fe (11.203) 

Fe	 = -(1B~ (X)Zr' (11.204) 

where Zr = [zir' zJ]T and: 

T)
Mr(x) = MT (x) = [(EKpE 02X3] 

r 03x2 MAx) 
T) 2X3,(r(x, v) = [(EKpEoT)(EAE C ( ) °D ( ) K ] > 0 

3x2 x x, V + x x, v + d 

s, -S; = [_~:~T ~::], Br(x) = [ T~f(~)¢ ] . 

where the fact that KpETZIr = KpzI for K p = diag{kpI, 0, kp3} has been applied. 

Non-Autonomous Lyapunov Analysis 
Even though the Lyapunov function V3 corresponding to the states (Zl' Z2) is only positive 
semi-definite (since K p is positive serni-definite) the Lyapunov function V3r corresponding 
to the new output (ZIr, Z2) is positive definite. Using the fact that the closed loop system 
governed by (Zl, Z2) is ISS, asymptotic tracking is guaranteed by: 

V3r	 = ~ [Zir(EKpET)Zlr+zJMxZ2+~F;] >0, (11.205) 

tr	 = -zir(EKpET)(EAET)zlr - zJ (Kd + D x )Z2 ::; o. (11.206) 

T T	 - .
where EKpE > 0 and EAE > O. Hence, ZIr, Z2, Fe E £'00' Notice that V3 is only 
negative semi-definite since a negative term proportional to - F; is missing in the expression 
for V3 . ULES of the equilibrium point (ZIr, Z2'Fe )= (0,0,0) follows by using the stability 
theorem of Fossen et at. (2001) for nonlinear non-autonomous systems; see Appendix A.2A. 
Since, the closed-loop system (ZI, Z2) is ISS it is sufficient to consider the reduced order 
system (Zlr, Z2) with output Zlr = EZI in the stability analysis. According to Appendix 
A.2A, we can choose Xl = [zir' zJ]T, X2 = Fe, P =(1 and W(XI, t) = ~x;r xj , Then the 
equilibrium point (Zlr, Z2'Fe )= (0,0,0) of the nonlinear error system (11.195)-(11.196) is 
ULES since: 

and: 

max {llh(xl' t)lI, IlxIiI} max {IIM;I(X)[-,(r(X, v) + Sr]XIII ,lIxrll} 

< PI(llxIIII)llxIII 



461 

I 

III!'~~ ,� 
s 

(11201) 

I" >;&risfies: 

U lr .202 

111.203) 

111.204) 

t' 

'~;, rositive 
~g. 
.. i}'steIn
Ij 

, 11205) 

11.206) 

I. IS only 
~ession 

~ ,;.Wility 
Ii:l. .\.2.4. 
i:---: order 
"~dix 

~nthe 

..._196) is 

11.4 Weatber Optimal Positioning Control (WOPC) 

IIB(x,t)11 = IIM;l(X)Br(x)ll:c:; P2(I/Xllll) 

max{II 8B~, t) II ,1I8B~, t) II} = max{118M;;]Br(X) II} S P3(llxdll) 

Translational Control of the Circle Center 

The adaptive backstepping controller satisfies Control objective 01-i.e., weather optimal 
heading control. Weather optimal position control, control objective 02, can be satisfied 
by moving the circle center Po = [no, eo]T on-line such that the ship maintains a constant 

.. []Tposmon p = n, e . 
In order to meet the fixed position control objective, an update law for the circle center 

Po must be derived. The Cartesian Earth-fixed position of the ship is given by: 

T (11.207)p=L " 
:j~ 

where L is defined in (11.162). Let p = p - Pd denote the corresponding deviation from the 
desired position vector Pd ,§, [ed, ed]T. The desired position can either be constant (regu
lation) or a smooth time-varying reference trajectory. The control law for translation of the 
circle center is derived by considering the following CLF: 

LT
V. = -P P p 2 

. -T( • .) - T (LT. .)v.

V

p = P P - Pd = P " - Pd 

By using (11.161). L TL = 12 x 2 and x= Z2+x.. it is seen that: 

Vp = pT[LT(Rh)H(p)x + LPO)-Pd] 

= pT (Po - Pd + LTRh)H(p)xr) + pTLTRh)H(p)z2 

Now, by choosing the circle center update law as: 

Po = Pd - L TRh)H(p)xr-kop 

where ko > 0, it is seen that: 

p = -kopT P + pT LTRh)H(p)z2 

(11.208) 

(11.209) 

(11.210) 

(11.211) 

(11.212) 

In (11.212) a cross term in p and Z2 is noticed. In order to guarantee that the time derivative 
of the total system Vw o pc = V3r + v;, is negative semi-definite, the weather optimal controller 
(11.190) must be modified such that the cross term in (11.212) is cancelled. 

Weather Optimal Position Control (WOPC) 

The cross-terms involving p and Z2 in Vp can be removed by modifying the nonlinear con
troller (11.190) to: 
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T� TT (Mxxr + Cxxr + Dxxr - Kpz I - Kdz2)-q(·) - c/>Fe 

_TTET(p)RT(r)Lp (11.213) 

The last term in T implies that: 

Consider: 

(11.215) 

(11.216) 

and therefore the equilibrium point (zIr' Z2, Fe, p) = (0,0,0,0) is ULES. 
The term Po is needed in the expression for q(-) . This term is computed from (11.2Il) 

as: 

Po =� Pd - ko(p - Pd) - LTR(r)H(p)xr 

-LTR(r)H(p)xr - LTR(r)H(p)xr (11.217) 

Basin 

x 

y 

. 11.4.4 Experiments and Simulations 

Wind generator 
(dueled fan) 

:~:
\.\..... B......•. pJ 
<c.s> 

~~~ 
WIIY8 generator 

The proposed weather optimal positioning control system has been implemented and tested 
at the GNC Laboratory located at the Norwegian University of Science and Technology 
(NTNU). In the experiments Cybership I was used. This is a model ship of scale I :70. A 
ducted fan is used to generate a slowly-varying or constant wind disturbance. 

The length of the model ship is L m = 1.19 (m) and the mass is mm = 17.6 (kg). 
The experimental results are scaled to full scale by considering a supply vessel with mass 
m s = 4500 (tons) using the Bis system; see Section 8.1.3. 
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11.4 Weather Optimal Positioning Control (WOPC) 

Experiment 1: Weather Optimal Heading Control (WOHC) 

In the first experiment the ship was allowed to move on the circle arc (the circle center con
troller (11.211) was turned off, that is no = constant and eo = constant). This is referred to 
as WOHC. The fixed origin and circle arc are shown in Figure 11.16. Notice that the initial 
heading is approximately 30 degrees, see Figure 11.17, while the position (n, e) ~ (13, "743). 
These values are the one obtained when the fan was initially directed in 210 degrees (opposite 
direction of the ship heading). 

Position in the borizontal plane 

80 

.so ~ -40 -20 20 40 60 80 

Eat[m] 

Figure 11.16: WOHC experiment showing the circular motion of the ship when the circle 
center controller is turned off (WOHC). 

After 3000 seconds the fan was slowly rotated to 165 degrees corresponding to a weather 
optimal heading of -15 degrees, see Figure 11.17. During this process, the ship starts to 
move on the circle arc (with heading towards the circle center) until it is stabilized to its 
new heading, that is -15 degrees. The new position on the circle arc is (n, e) ~ (3,20). 
This clearly demonstrates that the ship heading converges to the optimal value (copies the 
dynamics of a pendulum in the gravity field). This is done without using any external wind 
sensor. 

In the next experiment, we will show how the circle center can be translated on-line in 
order to obtain a constant position (n, e). 

Experiment 2: Weather Optimal Position Control (WOPC) 

In the second experiment the ship should maintain its position (the circle center controller 
(11.211) is activated). The performance during station-keeping (dynamic positioning) and 
translation of the circle is shown in Figure 11.18. The position controller works within an 
accuracy of ±1 m which is the accuracy of the DGPS system. 

Again the weather optimal heading is changed from approximately 23 degrees to 2 de
grees but this time without changing the position (n, e) of the ship. The position deviations 
and the weather optimal heading are shown in Figure 11.19. These values are obtained by 
moving the fan from an initial angle of 203 degrees to 182 degrees. 

-�
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Figure 11.17: WOHC experiment showing the performance of the radius regulator (upper 
plot) and weather optimal heading (lower plot) versus time (s). 
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Figure 11.18: WOPC experiment showing how the circle center is moved to obtain station
keeping to (nd, ed) = (0,0). 
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Figure 11.19: WOPC experiment showing the North and East position accuracies (upper 
plots) and weather optimal heading (lower plot) versus time (seconds). The position accuracy 
is within ±1 m while the heading changes from 23 degrees to 2 degrees as the fan is rotated . ~-
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Figure 11.20: WOPC experiment showing the deviation for the radius regulator (upper plot) 
and the translation of the circle center (no, eo) (lower plots) versus time in seconds. The 
radius deviation is within ±1 m during the rotation of the fan. 
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11.5 Exercises 

Exercise 11.1 Compute the generalized inverse of the actuator configuration matrix T(a) 
in the Examples 11.2 and 11.3 using h = 30 (m), l2 = 20 (m), b = 15 (m), l4 = 20 (m) and 
l5 = l6 = 5 (m) with W=I.PlotthedeterminantofT(a)TT(a) as junction ofa.1 and 
0'.2 andfind the maximum value (energy optimal azimuth angles). Change the pricing on the 
actuators to W =diag{I, 1, 1, 1, 100, IOO} and plot the determinants ofT(a)TT (a) and 
T(a)W-1TT (a) together. Comment on the results. 

Exercise 11.2 Use the Matlab GNC toolbox to simulate the nonlinear PID controller in Sec
tion 11.2.3 when applied to the supply vessel in the Simulink library. Tune the controller 
gains such that the vessel can handle both waves and wind disturbances in all directions. 
Present an xy-plot showing the performance of the DP system when exposed to different 
disturbances. 

;ynems 

....�I'.� 
ill!1 
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Propeller Control System Design
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This chapter discusses model-based observer and control design techniques for underwater
vehicle propellers. Lyapunov analysis is used as the main tool in deriving the structure

of the output feedback controller.

12.1 Models for Propeller Shaft Speed and Motors

One-, two- and three-state dynamic models for propeller shaft speed are presented for use in
voltage, armature current, and torque controlled DC-motors.

12.1.1 Propeller Shaft Speed Models

In Yoerger et at. (1991) a one-state model for propeller shaft speed n with propeller thrust T
as output was proposed. This model can be written:

Jmn + Kn1n1n Inl = T

T = T(n,up )

(12.1)

(12.2)

where n is the shaft speed, up is the axial flow velocity in the propeller disc, and T is the
control input (shaft torque); see Figure 12.1. It is common to assume up = 0 when comput
ing T. However, up can be measured by using a laser-Doppler velocimeter (LDV) system, a
particle image velocimeter (PIV) system or an acoustic Doppler velocimeter system for in
stance. In Section 12.3 a state observer for reconstruction of up is designed by treating up as
an unmeasured state.

Healey et al. (1995) have modified the models (12.1)-(12.2) to describe overshoots in
thrust, which are typical in experimental data. Based on the results of Cody (1992) and

http:�.��.��....�������������.���
http:�����.���.�.�.���.����.�..��.�.�����
http:Motors.���.����.�����.���.��..�.�.��
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_--.J 

Figure 12.1: Definitions of axial flow velocity up, advance speed U a 

McLean (1991), Healey and co-workers proposed a two-state model: 

Jmn + Knn = r - Q 

mJ'iLp + df(Up - u) JuP - ul = T 

T = T(n, up) 

Q = Q(n,up ) 

12.1 ". 

12.1.2 
and vehicle speed u. The m.:oet:ll: 

mg IDOliJIr .~ 

• .1"1,1111111 

(12.3) 
• JIIaiII 

(12.4) 

(12.5) 

(12.6) lklil 
to Tab.t:.",where u is the forward speed of the vehicle and Q is the propeller torque. This was done 1m. _ 

by modelling a control volume of water around the propeller as a mass-damper system. The 
mass-damper of the control volume interacts with the vehicle speed dynamics, which are also 
representd by a mass-damper system. Experimental verifications of the one- and two-state 
models are found in Whitcomb and Yoerger (1999a). •

A more general model is the three-state propeller shaft speed model (Blanke et al. 2000b): 

Jmn+ Knn=r- Q 

mfup + dfOup + df lupl (up - ua) = T 

(m - Xu)u - Xuu - Xu/ulu lui = (1 - t)T 
T = T(n,up ) 

Q = Q(n,Up) 

(12.7) 
when l~, 

(12.8) and Q 1I",IIiI~ 

(12.9) arm I. 
<;::..:.,,, .,

(12.10) 
COIb_

(12.11) 

where damping in surge is modelled as the sum of linear laminar skin friction. - Xuu 
(Faltinsen and Sortland 1987) and nonlinear quadratic drag. -Xu1u1u lui (Faltinsen 1990). 
Similarly, linear damping, dfoup, is included in the axial flow, model since quadratic damp
ing, df [up[ up, alone would give an unrealistic response at low speeds. Linear skin friction 

':111gives exponential convergence to zero at low speeds. 'I " 
II ,llli 

The ambient water velocity U a in (12.8) is computed by using the steady-state condition: 
l 

M 
lt .mua = - w)u ..ti

The ..... 

where 0 < w < 1 is the wake fraction number (Lewis 1989). 

"11M 

,II~ 
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12.1 Models for Propeller Shaft Speed and Motors 

I 
,.1� 

Table 12.1: DC-motor control model.� 

[I ~ control input T ~ Linear damping «, ~ 

Km.v.[I Voltage ~ R q m ~~ ~ 

K".Kp . K 2 
--=..::..m.....~ Current ~ Ra+K Zdp ~ Ra+Kp ~ 

K 2
~Q --=..::..m.....~ Torque ~ Ra+Kp d ~ Ra+Kp ~ 

12.1.2 Unified Representation of DC-Motor Controllers 
II 

1 
1:1'1' The model (12.7) with parameter K n and control input T can be used to represent the follow
"I 

ing motor controllers: 

,III • Motor (armature) voltage control 

• Motor (armature) current control 

• Motor torque control 

The different DC-motor control strategies are obtained by choosing K n and T according 
to Table 12.1 (Fossen and Blanke 2000). 

This result is obtained by considering a DC-motor: 

d. R .LadtZm = - aZm - Kmw m + Vm (12.13) 

Jmn=Kmim -Q (12.14) 

where Vm is the armature voltage, i-« is the armature current, n is the propeller revolution 
and Q is the load from the propeller. In addition, La is the armature inductance, R a is the 
armature resistance, K m is the motor torque constant and Jm is the rotor moment of inertia. 

Since the electrical time constant Ta = La / R a is small compared to the mechanical time 
constant, time scale separation suggests: 

La d. --z ~O (12.15)R dt ma 

Hence, the shaftspeed dynamics is given by: 

0= -Raim - Kmn+ Vm (12.16) 

Jmn=Kmim-Q (12.17) 

Motor Current Control 

The motor current can be controlled by using a P-controller: 

Vm = j(p(id - i m ) , «; > 0 (12.18) 

IIII 

II~' 
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where id is the desired motor current. From (12.16) we get:� 12.1. 

(12.19)� Whet: 
by a: 

The motor dynamics (12.17) for the current controlled motor therefore takes the form: Thisi 
losse 

7. K~ KmKp • Q (12.20)Jm n + R K n = R' K ~d-a+ p a+ p� 

If a high gain controller Kp ~ Ra > 0 is used, this expression simplifies to (see Table 12.1):� 

(12.21) 

Motor Torque Control 

For a DC motor, the motor torque will be proportional to the motor current. Hence, the 
desired motor torque Qd can be written as: 

(12.22)� 

From (12.20) we see that this yields the following dynamics for a torque controlled motor:� 

. K~ K p Q QJ� (12.23)m n + R K n = R K d -a+ p a+ p 

which reduces to: 

(12.24) 

for tc, ~ u; > 0 (see Table 12.1). 

Motor Voltage Control • 
Finally, a motor voltage control is obtained by combining (12.16}--(12.17) to give: 

v ~L , ~ ..l!',l 

(12.25) 

Unified Representation of DC-Motor Controllers 

Based on the three models presented above, a unified control model for the DC-motor shaft 
speed dynamics can be written: 

(12.26) 

where motor voltage, current and torque control are obtained by choosing the control input T� 

and linear damping coefficient K n according to Table 12.1:� 

I 
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'I� 12.1.3 Propeller Losses 

·\!,!,II When designing an UUV control system, commanded forces and moments must be realized 
by a propeller control system using a mapping from thrust demand to propeller revolution. 
This is a non-trivial task since a propeller in water suffers several phenomena that cause thrust ".,. 
losses. The primaries are: 

.. ··••_· ..:.111 

~.-

Axial Water Inflow: Propeller losses caused by axial water inflow, that is the speed Up of 
the water going into the propeller. The axial flow velocity will in general differ from 
the speed of the vehicle. The dynamics of the propeller axial flow is usually neglected 
when designing the propeller shaft speed controller. This leads to thrust degradation 
since the computed thruster force is a function of both the propeller shaft speed and 
axial flow. The magnitude of the axial flow velocity will strongly influence the thrust 
at high speed so it is crucial for the propeller performance . 

..". Other effects that will reduce the propeller thrust are described in Sorensen et al. (1997) 
and references therein. Some of these effects are: 

..,....:JIII' 

Cross-Coupling Drag: Water inflow perpendicular to the propeller axis caused by current, 
vessel speed or jets from other thrusters. This will introduce a force in the direction of 
the inflow due to deflection of the propeller race. 

lilliE' 

,.JQI!11 

Air Suction: For heavily loaded propellers, ventilation (air suction) caused by decreasing 'II.""" 
pressure on the propeller blades may occur, especially when the submergence of the 
propeller becomes small due to the vessel's wave frequency motion. 

In-and-out-of Water Effects: For extreme conditions with large vessel motions the in-andI'" out-ofwater effects will result in a sudden drop of thrust and torque following a hys
teresis pattern. 

Thruster Hull Interaction: Thrust reduction and change of thrust direction may occur due 
to thruster-hull interaction caused by frictional losses and pressure effects when the 
thruster race sweeps along the hull. The latter is the Coanda effect; see Faltinsen 

• 
~ (1990), pp. 270-272. 

Thruster-Thruster Interaction: Thruster-thruster interaction caused by influence from the 
propeller race from one thruster on neighboring thrusters may lead to significant thrust 
reduction. 

",..; 
~."I '� 12.2 Propeller Thrust and Torque Modelling 

For a fixed pitch propeller the shaft torque Q and force (thrust) T depend on the forward 
speed u of the vessel, the advance speed U a (ambient water speed) and the propeller rate n; 
see Figure 12.1. In addition, other dynamic effects due to unsteady flows will influence the 

'-,'� propeller thrust and torque. According to Newman (1977), Breslin and Andersen (1994), and 
Carlton (1994) the following unsteady flow effects are significant: 
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• air suction 

• cavitation 

• in-and-out-of-water effects (Wagner's effect) 

• wave inftuenced boundary layer effect 

• Kuessner effect (gust) 

lUI 

For a deeply submerged vehicle, the first four effects above can be neglected. The Kuess
ner effect, which is caused by a propeller in gust, will appear as a rapid oscillating thrust 
component. These fluctuations are usually small compared to the total thrust in a dynamical 
situation. Under these assumptions, the thrust and torque models can be modelled using a 
quasi-steady representation. 

Unsteady modelling is, however, an important topic for future research since unsteady 
flow effects are significant in many practical situations, particularly for surface vessels. A 
more detailed discussion on the accuracy of unsteady and quasi-steady modelling is found in 
Breslin and Andersen (1994), pp. 374-386. 

12.2.1 Quasi-Steady Thrust and Torque 
'111Ii1...Quasi-steady modelling of thrust and torque is usually done in terms of lift and drag curves� 

which are transformed to thrust and torque by using the angle of incidence. This approach .1.. Ii"� 

has been used by Healey et al. (1995) and Whitcomb and Yoerger (1999a) for instance. dID:t.�

The lift and drag are usually represented as non-dimensional thrust and torque coeffi
cients computed from self-propulsion tests; see Fossen (1994) or Lewis (1989). The non '. 
dimensional thrust and torque coefficients KT and K Q are computed by measuring T, Q, 
and n. Consequently: I 
where D is the propeller diameter, p is the water density, and: 

··,.IQ:;;;$ .. UI:P: 
Jo= ..nD 

is the advance ratio. The numerical expressions for KT and KQ are found by open water 
tests, usually performed in a cavitation tunnel or a towing tank. These tests neglect the 
unsteady flow effects, so steady-state values ofT, Q, and n are used. •

The non-dimensional thrust and torque coefficients can also be described by the following 
parameters; see Oosterveld and Oossanen (1975): .' 

(12.29) 

-j (12.30) 

PropeDer ControlSystem Design 
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Figure 12.2: Open water K r (solid), 10·KQ (dash) and 770 (dash-dot) as a function ofadvance 
ratio Jo for P/ D = 0.7,0.89 and 1.1. Reconstructed from data in [24]. 

where P / D is the pitch ratio, AE / Ao is the expanded-area ratio, Z is the number of blades, 
Rn is the Reynolds number, t is the maximum thickness of the blade section, and c is the 
chord length of the blade section. 

From (12.27) the thrust T and torque Q can be written 

T =� pD4Kr(Jo)nlnl (12.31) 

pD5Kq(JQ = o)nlnl� (12.32) 

The open water propeller efficiency in undisturbed water is given as the ratio of the work 
done by the propeller in producing a thrust force to the work required to overcome the shaft 
torque according to: 

upT Jo Kr 
77 0 = 21rnQ = 21r . K (12.33)

Q 

The Kr, KQ, and 770 curves for different pitch ratios for a Wageningen B-screw series based 
on Table 5 in Oosterveld and Oossanen (1975), with Rn = 2 . 106

, Z = 4, D = 3.1 m, and 
AE/Ao = 0.52 are shown in Figure 12.2. 

For simplicity we will consider an underwater vehicle where Kr and KQ show a linear 
behavior in Jo. Experimental data for Kr and KQ are shown in Figure 12.3. The linear 
approximations are: 

Kr = Q1Jo + Q2� (12.34) 

K Q = (31JO+(32� (12.35) 

where Qi and (3i (i = 1,2) are four non-dimensional constants. It should be noted that 
nonlinear functions for K r and K Q can also be used. This is equivalent to the lint theory 
result (Blanke 1981). 
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Figure 12.3: Experimental results for K T and lOKQ versus Jo (circles) and least-squares fits 
to a straight line (solid lines), see Fossen and Blanke (2000). 

Formulas (12.34)-(12.35) imply that the mathematical expressions for Q and T can be 
written as; see Fossen (1994), pp. 94-97: 

T = Tnln1n Inl -7[nlu.. lnl Ua (12.36) 

Q = Qnlnln Inl - Qlnlua Inl U a ( 12.37) 

where 
Qnlnl = pD5(32 Tn1nl = pD4

0 2 (12.38)
Qlnlua = pD4

(3 1 7[nlua = pD3
0 1 

are positive propeller coefficients given by the propeller characteristics. Notice that T and 
Q are defined for all n even though Jo is undefined for n = O. This is important since the 
observer-controller will be based on the expressions for T and Q. 

The coefficient 7[nlua is derived from steady state, where U a has achieved its final value. 
To explicitly account for the dynamic variation in axial water speed, the thrust (12.36) is 
modified according to (Blanke et 01. 2000b): 

T = Tlnlnlnln - 'lI':.lu.. lnl U o - 'lI':.lua Inl (up - u a ) 

= 11nlnln ln - 'lI':.lua In[ up (12.39) 

where 'lI':.lu is defined in terms of the steady-state ratio Ua/Up, that is: 
a 

r7'O ua 1 
(12.40)

.L Inlua := up 11nlua = 1 + a 11nlua > 0 

Here a> 0 ~ 

mapping (12. 

12.3 N« 
Vf 

A nonlinear 
Blanke et 01. 
can be neglec 
case with qU2 

Nonlineai 
analysis as de 
be related to 
used as a too] 
underwater v' 

In this cb 
Blanke 2000 
performance 
observer-con' 

12.3.1 ~ 

Consider an 1 
hull. Let 'l1 ( 

is assumed I( 

according to 

where mf > 
For the 11' 

hydrodynam 
and quadrati 
propeller-hu' 
exponentiall 

Thedym 
for u = O. Fl 
constant. Th 
is (Lewis 19 

:1~ 

wherew > I 
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Here a> 0 is an axial flow parameter; see Lewis (1989), pp.13I-132. Similarly, the torque 
mapping (12.37) is modified to: 

Q = Qlnlnlnjn - Qlnlua Inlup	 (12.41) 

12.3	 Nonlinear Observer for Estimation of Propeller Axial 
Velocity 

A nonlinear observer for shaft speed estimation and fault detection has been proposed by 
Blanke et al. (1998) under the assumption that the effect of the propeller axial inlet flow up 
can be neglected. They have proven semiglobal asymptotic and exponential stability for the 
case with quadratic damping. 

I 
Nonlinear observers for underwater vehicles can also be designed by using contraction 

analysis as described by Lohmiller (1999), and Lohmiller and Slotine (1996, 1998). This can 
be related to the work of Lewis (1951) where it is shown that the Riemann metric can be 
used as a tool for contraction analysis of nonautonomous nonlinear systems. Applications to 
underwater vehicles are found in Jouffroy and Lottin (2003). 

r In this chapter a Lyapunov-based output feedback controller is constructed (Fossen and
 
fits Blanke 2000). Global exponential stability properties, which are important from a robust
 

performance point of view, are also proven. For a more detailed discussion on nonlinear
 
observer-controller design; see Nijmeijer and Fossen (1999) and references therein. lW 

lilT can be 
12.3.1 Vehicle Speed and Propeller Axial Flow Dynamics ...	 Consider an UUV moving in surge (x-direction) equipped with one single propeller aft of the 
hull. Let u (positive forwards) denote the forward speed of the UUV The surge dynamics 

.12.36) is assumed to be coupled to the axial flow velocity up of the propeller (positive backwards) 

1.12.37) according to (Fossen and Blanke 2000): 

r- (m - Xu}u - Xuu - Xu1u1u lui = (1 - t)T (12.42) 

1.12.38) mJ'up +dfOup + df jupl (up - ua ) =T (12.43) 

:- and 
-~tbe where mf > 0, dfD > 0, and df > O. 

For the vessel dynamics (12.42) in surge; m - Xu > 0 is the mass of the vessel including 
hydrodynamic added mass, -Xuu - Xu1u1u lui? 0 is damping due to linear skin friction 
and quadratic drag, and t > 0 is the thrust deduction number (typically 0.05-D.2) due to 
propeller-hull interactions. Notice that linear damping, -X"u, ensures that u converges 
exponentially to zero for T = O. 

The dynamics of the water (12.43), represents a nonlinear "hydrodynamic" mass-damper ~I 

for u = O. For a vessel moving at positive cruise-speed in steady flow, u = constant and Ua = 
constant. The relationship between ambient water velocity and vehicle speed in steady-state 
is (Lewis 1989): 

ua=(l-w)u (12.44) 

where w > 0 (typically 0.1--0.4) is denoted as the wake fraction number. 
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When designing the nonlinear observer in Section 12.3, the following assumption for the 
nonlinear term lupl is needed: 

Assumption Al: Under normal operation of the vehicle it is assumed that axial flow velocity 
up and propeller revolution n have the same signs, This implies that: 

Under Assumption AI, (12.39) and (12.42}-{12.44) can be combined to give: 

[ m  Xu 
o 

0] [ ~ 
m] up 

] 

The measurement equation is: 

Hx + Dox+ D1(x,n,y)x+ Inl Ex = f(n) 

y= hTx 

This can be written in state-space form according to: 

where x = [u, up]T, Y = u and: 

(12.46) 

(12.47) 

(12.48) 

l ~1IlI1111i 

eoJ.:Jli,II·" 

11...: 

,.-."Imll 

~, 

Frnlm 

12.3.2 Observer Equations 

In Fossen and Blanke (2000) a nonlinear state observer for the unmeasured state up is derived 
by copying the dynamics (12.47}-{12.48): 

,¥!11/f/11111"" 

I 
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12.3 Nonlinear Observer for Estimation of Propeller Axial Velocity 

m+ Dox+ D l(x, n, y)x + Inl Ex = f(n) + k(n)Y (12.49) 

y=hTx (12.5Q)" 
',',RI"+ 

where fj = y - y. The observer gain vector is chosen as: 

k(n) = [ ~~~ ] + Inl [ ~~~ ] (12.51) 

",- <,«'. '1 '("'f"w' 'j "+-:;~",,,••,;~~~ ... 

The error dynamics corresponding to x = x - x becomes: 

H~ = - (Do + Inl E + k(n)hT) X- IS (12.52) 

where the nonlinear estimation error term 0 is: 

0: = D = [(-XUIUI)IUIU-(-XUIUI)IUlu] (12.53)l(x,n,y)x-D l(x,n,y)x dfluplUp-dj juplup 

Defining: 

KllF = [ -Xu + K lO 0], (1 - t)71':.lu" 1 (12.54)G= KK 20 dfo [ 2 1 71':.lu" 
implies that (12.52) can be written: 

fu= -Fx-lnIGx-o (12.55) 
;;;dMeitrm'M;w;;,,; ';:0~:~"",«« 

Lyapunov analyis will now be used to derive criteria on the observers in k(n) such that the 
equilibrium point x = 0 is DOES. An alternative approach using contraction analysis is 
presented in JoutIroy and Lottin (2003). 

12.3.3 Lyapunov Analysis 

Consider the Lyapunov function candidate: 

Vobs(x, t) = xTHj{ (12.56) 

Vc,bs(X, t) = _xT (F + FT) x -Inl xT (G + GT) X - 2xT0 (12.57) 

where the design goal is to choose K lO , K 20 , Kii, and K2 1 such that Vobs < afor all i:f O. 
For a nondecreasingfunction f(x) it can be shown that: 

(x - x) T (f(x) - f(x)) ~ 0 (12.58) 

From (12.58) it is seen that the nonlinear coupling term iT0 = i l ol +X202 in Vobs satisfies: 

xT 0 = (u - u) 01 + (Up - Up)02 

= (u - u) (-Xu1ul) (lui u -lui u) + (up - up)dj (Iupl Up - lupl up) 

~ a (12.59) 

:1111111 

.~ 
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since -Xu1ul > 0 and df > O. This is due to the fact that dissipative damping terms like 
quadratic drag, u lui, and also higherorder terms in u luln (n = 1,2,3...) are all nondecreas
ing. Therefore: 

(12.60) 

Next we notice that the last term in (12.60) is zero if n = O. For non-zerovalues of n we 
therefore require that: 

(12.61) 

which is easy to satisfy since K ll and K 21 can be chosensuch that: 

K ll > 0 (12.62) 

4KllT(~'lua > ((1 - t)7j;.lua + K21) 2 (12.63) 

Hence, 
(12.64) 

The remainingtwo gains K lO and K 20 can be chosen such that: 

~bs(X, t) s _xT (F +F T 
) x 

< -2 -2 
_ -qlU - Q2 Up 

< 0, v« ::j:. 0, up::j:. 0 (12.65) 

where Ql > 0 and Q2 > O. In order to prove this the following lemma will be applied: 

Lemma 12.1 (Negative Quadratic Form) 
The quadratic form: 

(12.66) 

qII 

with P = {Pij} is bounded by: 

(12.67) 

with: 

Ql=Pn-f3>O 

_ _ (P12 +P21)2 > 0 
Q2 - P22 4f3 ' f3>O 

(12.68) 

(12.69) 

if: 

Pll>f3>O 

> (P12 +P21)2 > 0 
P22 4f3 

(12.70) 

(12.71)  I 
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like Proof. Expanding V, yields: 
~eas- . 2 2

V = -PllXI - (P12 +P2dxIX2 - P22 X2 

_ ( /3) 2 (1D/3 + (PI2+P21) )2 ( (PI2+P21)2) 2~ 11260) - - Pll - Xl - VI-lXI 2.j13 X2 - P22 - 4/3 x2 

2 ( (P12 +P2d
2) 

2r
 ( /3) (12.72)
::s -~XI - P22 - 4/3 x2 

ql • • • 
q2 

From this it is seen that (12.70}-{12.71) implies that ql > 0 and q2 > 0 and therefore that J1261) V < 0 for all Xl # 0 and X2 # O.• 

Theorem 12.1 (UGES Nonlinear Observer Error Dynamics)
 
The equilibrium point x = 0 of the observer error dynamics (12.55) is UGES if K ll and
 
K21 are chosen such that G + G T > 0, that is:
 _1262). 

«., > 0 (12.73)
, 11.63).. 4K1l7l':.lua> ((1 - t)71':.lua+ K 21) 2 (12.74) 

while K lO and K 20 must satisfy: 

2do/3 > Kio (12.75)f) 1 
K lO -Xu> 2/3 (12.76) 

where /3 > O. 

Proof. LetI !~.65)· 

P=F+FT = [2(-Xu + K lO ) K 20 ] (12.77)

I 
K 20 2dfo 

in Lemma 12.1. Hence, ql > 0 and q2 > 0 if: 

Pll = 2(-Xu + K lO ) > /3 > 0 (12.78)

r) K~o 

P22 = 2dfO > T > 0 (12.79) 

It then follows that V ::s -qlxi - q2X~ with ql > 0 and qz > O. Hence, it follows from 
(1267) Lyapunov stability theory that the equilibrium point x= 0 is UGES if/3 > o.• 
It 

J 

Remark 1 
,,12..68) It should be noted that UGES is proven under Assumption AI, that is lupl = sign(up)up ~ 

sgn(n)up. If this assumption is relaxed by using the estimate luplu instead ofsgn(n)upu 
. :'::.69) for the nonlinear coupling term luplu, Lyapunov stability analysis can still be used to prove 

semiglobal exponential stability. 

Remark 2 
It should be noted that bias state estimation has not been considered when designing the 

~ ~':"70) observer. In a practical implementation it might be necessary to augment a constant bias 
term to the dynamic model in order to improve robustness to unmodelled dynamics andpara

112-71) metric uncertainties. 

c.
 



I

484 Propeller Control System Design 

r 
L-.. _.._ _.======:.:===1 

11.4 

.... .... 
Up Up Q 

Nonlinear ~ _ 

I controller
propel 

I 
4 quadrant I 
propeller torque ! 
and thrust mappings! 

I ~ 
I 

~ 
i estUi Inner loop shaft speed controller 

feed 
st~ 

I 
Figure 12.4: Block diagram showing the two control loops. waI 

sUII 
12.4 Nonlinear Output Feedback Control Design ityl 

undl 
The control objective is to design a propeller shaft speed controller which tracks the desired dynl
propeller revolution nd (inner loop controller) by compensating the axial flow velocity up 
(Fossen and Blanke 2000). The desired propeller rate of revolution is generated by the UUV 11.4•speed controller where Ud denotes the desired vessel speed (outer loop controller). 

The dynamics of the two control loops can be summarized according to: Coo 

UUV Speed Control Loop: The surge dynamics of the UUV is: 

whil•x=u . (12.80) 
stitll 

(m - X,.)u - Xuu - Xu/ulu lui = (1 - t)T (12.81) 

where T is the control input (force) generated by a speed controller 

(12.82) 

designed such that U -> Ud. 

12JPropeller Shaft Speed Control Loop: The desired shaft speed is found from (12.39) as: 

Thr 
fun.: 

(12.83) 

Wf > 0 (12.84) 

!II
II,
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where Td is the desired thrust and (12.84) is a 2nd-order low-pass filter with natural 
frequency Wf used to generate two smooth reference signal nd and ii«. These signals 
are again used as reference for the propeller controller: 

r
 T =T(nd,nd,n,up ) (12.85)
 

corresponding to the two-state actuator dynamics: 

n = cPl(n, Q(n, up), T) (12.86) 

Va = cP2(n, Up, u) (12.87) 

T = T(n,up ) (12.88) 

.' 
t The two control loops are shown in Figure 12.4 indicating how a nonlinear shaft speed 

propeller controller together with a conventional UUV speed controller should exploit the 
estimate of the propeller axial flow velocity up- It is also seen that this is a nonlinear output 
feedback control problem. One solution to this control problem is to apply observer back
stepping (Krstic et al. 1995). This is the topic for the next section. 

Experiments with different shaft speed control strategies and position control of under
water vehicles are reported in Tsukamoto et al. (1997) and Whitcomb and Yoerger (1999b ).. 

In this section we will design a nonlinear output feedback propeller controller using only I~. 
surge speed measurements u and propeller revolution measurements n. The axial flow veloc
ity up will be estimated by the state estimator (12.49)--(12.50) which was proven to be UGES 
under Assumption Al (Theorem 12.1). The design goal is to render the closed-loop error 

E hired dynamics of the observer-controller UGES. 
~Up 

LlN 12.4.1 Nonlinear Model for Propeller Shaft Speed Control 

Consider the unified DC-motor model, se Section 12.1.2: 

Jmn + Knn = T - Q(n, up) (12.89) 

which can be used to describe motor voltage, current and torque controlled propellers. Sub
1~.80) 

stituting the expression for Q given by (12.41) into (12.89), yields the 3rd-order model: 
,12.81) 

t~ Jmn = -(Kn + Qnlnllnl)n + Qinlua Inl up + T (12.90) 

rf'~·" 

t
 
"U.82) Hi + Dox + D1(x, n, y)x + Inl Ex = f(n) (12.91)
 

y=hTx (12.92)
 

12.4.2 Lyapunov Analysis 
r~ The observer (12.49) is used to generate an estimate up of up' Consider the control Lyapunov 

function candidate: 

rI~.83)

v = Vobs + ~Jmii2 (12.93)• V ~ -QlU2 - Q2u~ + Jmii:fi (12.94) 

•
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where n= n - nd is the tracking error. Substituting (12.90) into (12.94), yields: 

V::; -qlu
2 

- Q2u; + n[r - Jmnd - (Kn +Qnlnllnl)n + QfnluaInlup] (12.95) 

The expression for V suggests that the control law T should be chosen to include three parts;
 
1) a nonlinear P-controller, -(KpO +K p1n 2 )n, 2) a nonlinear feedforward term based on the
 
measured propeller revolution n and the desired propeller revolution nd, and 3) a nonlinear
 
cross-term, -QfnluaInJ up, compensating for the axial flow into the propeller.
 

HeTheorem 12.2 (UGES Observer-Controller Error Dynamics) 
0(1Consider the nonlinearshaft speed controller: 
K"

•r = -(KpO + Kp1n 
2

)n + Jmnd + (Kn + Qnlnllnl)nd - QfnluaInl up (12.96) 
, 'V " V' ' '---v---" 12P-control Reference Feed Forward Axial Flow Compensator 

WIwith 
act 

KpO > 0, K p1 > ~ (Qfnlua)2 > 0 (12.97) dyI 

Let the estimateup begeneratedby using the nonlinearobserver (12.49)-(12.50) with Q2 > 1
 
in Lemma 12.1 implying that K20 must satisfy 2dfo > 1 + K'iolf3. Hence, the equilibrium
 
point (u, up, n) = (0,0,0) ofthe observer-controller error dynamics:
 

Mi/ + D(v,t)v + d = 0 (12.98) 

where v = [u, Up, n]T and' 

is UGES. 

Proof. Substituting (12.96) into (12.95), yields: 

V::; -QlU
2 

- Q2u; + Qfnlua Inl upn - (KpO + Kp1n 
2 + K n + Qnlnllnl)n

2 (12.99) 

Using the fact that 

Hence, the cross term in (12.99) can be replaced by: 

Qo I 1-- _ (Qfn,ua I 1- _)2 + (QfnluJ2 2-2 + -2/nlua n nup - - -2- n n - up 4 n n up (12.100) 

-




--

....
 
Design 

i (12.95) 

. ~ parts; 
1l"k>.<J on the 

amlinear 

I' 
I, 

(12.96)I," 

r(12.97) 

.c > 1 

.' .wbrium 

Iii (12.98).1 
IJ 

::.99) 

, ~:OO)
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implying that: 

2v S -qlU? - (q2 - 1) u; - (KPI - ~(Qfn'u,Y) n ij? 

2 

- (~Qfn,ua Inj ii - Up) - (Kpo + Kn + Qnlnllnl) 2 ii2 

< 0, 'Vu f- 0, Up f- 0, ii f- 0 (12.101) 

Hence, according to Lyapunov stability theory the equilibrium point (u, up, ii) = (0,0,0) 
of the observer-controller error dynamics (12.98) is DGES if ql > 0, q2 > 1, KpO > 0 and 
Kp l > (1/4)(QfnluJ2.• 

12.4.3 Extensions to Integral Control 

When implementing the shaft speed propeller controller, it is important to include integral 
action in order to compensate for non-zero, slowly-varying disturbances and unmodelled 
dynamics. This can be done by augmenting a constant bias term b to (12.89) according to: 

~' . .,Jmn = -Knn + T - Q(n,up ) + b (12.102) .~ ''; 

""1"",':1",:"
b=o (12.103) ;5;:,; 

Choosing the nonlinear control law of PI-type with reference feedforward and axial flow 
compensation, that is: 

T = -(KpO + K p ln
2 )ii - b+ Jmnd + (Kn + Qnlnllnl)nd 

" V' ,J, ". , 
Pl-control Reference Feed Forward 

Qfnlua Inl Up (12.104) 
'--v-" 

Axial Flow Compensator 

b= Kin, tc. > 0 (12.105) 

implies that (12.98) takes the form: 

'''Ill'
Xl = h(xl, t) + gX2 + d l (12.106) j' 
. K T

X2 = - ig Xl (12.107) 

with Xl = V E 1R3 , X2 =b- b E IR and 

h(Xl, t) = -M-lD(Xl + Vd(t))Xl (12.108) 

l 
g = M- [ ~ ] = [ ~ ] (12.109) 

-1 -l/Jm 

d l = -M-ld (12.IlO) 

where we have used v = Xl + Vd. The error dynamics (12.106}-(12.107) is a nonlinear 
noaautonomous system complicating the Lyapunov stability analysis since V is only negative 
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semi-definite. Hence, Lasalle-Krazovskii s theorem cannot be used to prove uniformly glob
ally asymptotic stability (UGAS). However, UGAS and uniformly locally exponentially sta
bility (ULES) ofthe equilibrium point (xi, X2) = (0,0,0,0) of the error dynamics (12.106}
(12.107) can be proven by applying the result ofAppendix A.2.4 known as"backstepping with 
integral action". 

A simulation study documenting the performance of the observer and controller is found 
in Fossen and Blanke (2000). Ch 
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Chapter 13

Decoupled Autopilot Design

13.1 Course Autopilot ••.••••••.••••••.•••••••••••••.•••••..••••••..••••.•••••••• 491
13.2 Depth Autopilot .•••.••••••••••••••••••••••••••••..••••...••......•••...•..• 495
13.3 Speed Control System ..•••..•••..•....•....••....••....•....••.••..•••.•... 498
13.4 Exercises .•••..•.•..•...••••.•.••......•...••......•........................498

This chapter discusses autopilot design for undelWater vehicles (submersibles). These are
usually classified according to type ofapplication, for instance:

• ROV: remotely operated vehicles

• AUV: autonomous undelWater vehicles

• UUV: unmanned undelWater vehicles

• URV: undelWater robotic vehicles

The vehicles are usually designed for submerged operation. A naval vessel or warship
that is capable of propelling itself beneath the water, as well as on its surface, is referred
to as a submarine. The submarine hull is usually a torpedo shaped, slender body for low
drag, while commercial undelWater vehicles, used in offshore gas and oil production are
often nonregular boxes equipped with robotic manipulators, cameras and other tools. Un
delWater vehicle speed and position control systems are subject to an increased focus with
respect to performance and safety. This is due to an increased number of commercial and
military applications of UUVs. Modeling and control ofundelWater vehicles are discussed
by Allmendinger (1990), Fossen (1994), Yuh (1995), and Triantafyllou and Hover (2002).

The 6 DOF undelWater vehicle equations ofmotion can be divided into three non-interacting
or lightly interacting subsystems for speed control, steering and diving; see Section 3.5. Each
systems consists of the state variables:

I) Speed system state: u(t).

2) Steering system states: v(t), r(t) and'ljJ(t).

3) Diving system states: w(t), q(t), fJ(t) and z(t).

http:���..���..�....�....���...��....�...���.��.������.�
http:���.����������������������������.�����..���......���..��
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Figure 13.1: The NPS AUV IT (Healey and Lienhard 1993). 

The rolling mode, that is pet) and <p(t), is left passive in this approach. This decom Ifd 
position has shown to describe the motion of slender formed vehicles like the the Naval 
Postgraduate School (NPS) AUV quite accurate; see Figure 13.1 (Healey and Marco 1992). 

For this vehicle configuration, forward speed is controlled by means of propellers, steer
ing/turning is obtained by using rudders, and bow and stem planes control the depth and 
pitch angle. This particular choice of actuators is inspired by those used in both flight and 
submarine control. 

13.
Guidance, Navigation and Control of Underwater Vehicles 

The 
bodGuidance, navigation and control of underwater vehicles have been addressed by a large 
inclnumber of authors Some useful references are; Fryxell et al. (1996), Pascoal et al. (1997), 

Leonard (1997), Conte and Serrani (1998), Yun et al. (1999), Caccia and Veruggio (2000), 
Liu et al. (2000), Lohmiller and Slotine (2000), Canudas de Wit et al. (2000), Grenon et 
al. (2001), Marco and Healey (2001), Leonard and Graver (2001), Encamacao and Pascoal 
(200Ia), and Encamacao and Pascoal (2001b). 

and 

Adaptive Control of Underwater Vehicles 

The highly nonlinear, time-varying dynamic behavior of underwater vehicles continually NOI 

changes the parameters of the system model. The uncertainties in hydrodynamic coefficient 
make system identification difficult. These issues have motivated reserach on adaptive au
topilots for underwater vehicles; see Yuh (1990), Fossen and Sagatun (199Ia), Fjellstad et al. 
(1992), Tiano et al. (1997), Yuh et al. (1999), Antonelli et al. (200I), Zhao et al. (200 I),'and 
Yuh et al. (200 I). Learning control for underwater vehicles have been discussed by Yuh and 
Lakshmi (1993), and Yuh (1994). 

• 

.., 



..........-.
 
~. 

"-Design 13.1 Course Autopilot	 491 

~., 13.1 Course Autopilot 

This section presents methods for robust control of underwater vehicles. In Section 3.5.3 the 
lateral underwater vehicle dynamics was written: 

m- Y.. -mzg - Yp mxg - Yo' ] - iJ ]
-mz _vYp g Ix-Kp -Izx-K;- P 

[ 
mXg - Yr· -Izx - K;- I z - N;- _ r 

-Y. p-Y -Yr][ V 

I'I
:

I'· + -M -Mp -cM; p	 (13.1)
[ -»;

v 

-Np -Nr r

] 

0 0 (m - Xu)u ] [ V] [ 0 ] [ /2 ]+ 0 0 0 p + W BGz sin¢ = /4
[ (Xu - y,.,)u 0 mxgu r 0 /6 

i~ decom If the rolling mode is assumed to be negligible, this model reduces to the autopilot model:
 
It be Naval
 
IImC:I 1992).
 

~ steer- m-Y· 
mXg - Y;- ] [ ~ ] + [ - Yv - Yr ] [ V ]
 

land [ mXg -Yo' I z -No' r -Nv -Nr r
 
,I. ~tand + [	 0 (m - Xu )u o ] [ v ] = [ /2 ] (13.2)

(Xu -Y,.. )11
0 

mXg U o r /6

Iii: 
'IIWI, 

13.1.1 PID, Optimal Control and 1too -Control 
IIWII 

The course autopilot can be designed using the methods in Chapter 8 since the dynamics of 
I'~ I large both ships and underwater vehicles are quite accurate described by Nomoto's models. This 
.. ' 1997), includes: 

1!!Dlim:'OOO), 
• PID-control (Sections 8.4.2-8.4.3)

m et 
.. :-ascoal • LQ control (Section 8.4.5) 

1IM1111 Nonlinear 'Hoo optimal PID control of AUVs are discussed by Park et al. (2000) while 
scheduling 'Hoo controllers have been proposed for ROVs by Kaminer et al. (1990) and Conte 
and Serrani (1998). 

13.1.2 Nonlinear Control 

. .ally	 Nonlinear control methods for autopilot control are described in Chapter 8. This includes: 
·,~;ent 

• state feedback linearization (Section 8.4.6) 
~au

. al. • backstepping (Section 8.4.8)
 
lIld
 

• SISO sliding mode control (Section 8.4.9) 
"~" jloA mid 

• output feedback control (Section 8.4.10) 

",.
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13.1.3 Sliding Mode Control using the Eigenvalue Decomposition 

Healey and Lienard (1993) have applied the theory of sliding mode control to control the 
NPS AUV II. A related work discussing the problems of adaptive sliding mode control in 
the dive plane is found in Cristi et al. (1990). Sliding mode control for highly maneuverable 
underwater vehicles is discussed by Lyshevski (200 I), who considers the 6 DOF underwater 
vehicle equations of motion. 

The method presented in this section can be applied to the lateral model (13.1) which 
includes the roll mode, or to the reduced order model (13.2) which is recognized as the model 
of Davidson and Schiff (1946); see Section 8.l.2. The state-space representation is (Healey 
and Lienard 1993): 

X= (13.3) 

where f(x,t) is a a nonlinear function describing the deviation from linearity in terms of 
disturbances and unmodelled dynamics, x = [v, r, .,plT, and u = 6R is the rudder angle. 
Consequently: 

an a12 0]

A = a21 a22 0 , (13.4)

[ o 1 0 

The experiments ofHealey and coauthors show that this model can be used to describe a large 
number of AUV maneuvers. The feedback control law is composed of two parts: 

u = _kT x+uo (13.5) 

where k E lR3 is the feedback gain vector. Substituting (13.5) into (13.3) yields the closed
loop dynamics: 

x= (A - bkT) x + bu, + f(x,t) (13.6) 
"-v---' 

Ac 

where k is computed by means of pole-placement. In order to determine the nonlinear part 
U o of the feedback control law, consider the output mapping: 

u(x) = h T X (13.7) 

where h E ]R3 is a design vector to be chosen such that u(x) ~ 0, implying convergence of 
the state tracking error x = x - Xd ~ O. The output mapping u(x) is also referred to as a 
sliding surface. Pre-multiplication of(13.6) with h T and then subtraction ofhT Xd from both 
sides, gives: 

u(x) = h T Acx + h Tbuo + h T f(x,t) - h T Xd (13.8) 

Assume that h Tb i- 0 and let the nonlinear control law bechosen as: 

1]>0 (13.9) 

a 

""II ,,"di"'lil!: ".. 
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where f(x,t) is an estimate off(x,t). This gives the a-dynamics: 

a(x) = h TAcx -17sgn(a(x)) + h T6.f(x,t) (13.10) 

where 6.f(x,t) = f(x,t) - f(x,t). The first term in this equation can be rewritten as:... 
hTAcx= x TA~ h =AxTh (13.11) 

111111 -iUch 
• nodeI by requiring that h is a right eigenvector of AJ such that: 
1JIIl6::aJcy

(A~)h = Ah	 (13.12) 

where A = A(AJ) is the eigenvalue corresponding to h. Hence: • 

I. 
~ \ 

a(x) = AXTh -17sgn(a(x)) + h T6.f(x,t) (13.13) 

-of Computation of hand k 
-.pe.

The eigenvalue A in (13.13) can be made zero by noticing that (13.4) has one pure integrator. 
Let: 

3.4) 

k=[k1 . k",OjT (13.14)IIWII 

• 
Hi 

.':.~e

such that the linear part of the controller only stabilizes the sway velocity v and yaw rate T. 

The yaw angle 1/1 is left uncontrolled in the inner loop since this results in a closed system 

::: matrix: 
a ll - b1k1 a12 - b1k2 

A c= a2l - ~kl a22 - ~k2	 (13.15) 
[

.: ::UiCd-	 o 1 n 
where one of the eigenvalues are zero. Consequently: 

II'B.6) 

AXTh = 0 if h is a right eigenvector of A~ for A = 0 

'-';wi 
With this choice ofh, the a-dynamics (13.13) reduces to: lilli, 

:7) o-(x) = -17sgn(a(x)) + h T 6.f(x,t)	 (13.17) 

.-.=rof	 and it follows from: 
1111• • V(a) =	 _0'2 (13.18)

2 -.. •	 1 

that: 

InJ'tIl-B) V(x,t) = 0'0a	 = -17a sgn(a) +ahT6.f(x,t) 

= -17/0'/ + ahT6.f(x,t)	 (13.19) 
" -l)-".....	 Selecting 17 as: 

,
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..... u underwater 

.41' 
vehicle , 

-
Uo 

I kT I 
I I 

u., = (hTb)-I [hTXd - hTf(x, t) - rysgn(a)] 

Figure 13.2: Nonlinear sliding mode controller. 

(13.20) 

finally yields: _ 
v~o (13.21) 

Hence, by application of Barbalat's lemma, a converges to zero in finite time iff] is chosen to 
be large enough to overcome the destabilizing effects of the unmodelled dynamics ~f(x,t)_ 

The magnitude of"l will be a trade-off between robustness and performance. 

Implementation Considerations
 

In practical implementations, chattering should be removed by replacing sgn(a) with:
 

if IsNI > 1
sat(s) = { s~~) (13.22)

otherwise 

where the design parameter 4> is the sliding surface boundary layer thickness. Alterna
tively, the discontinuous function sat(a / 4» could be replaced by the continuous function 
tanh(a /4». It should be noted that the proposed feedback control with a predescribed 1] usu
ally yields a conservative estimate of the necessary control action required to stabilize the 
plant. This suggests that 1] should be treated as a tunable parameter. 

Example 13.1 (Course Autopilot) 
Consider the ROV model: 

--1 

(13.23)[~ ]~ [~:: ~:: ~] [. ~.< ]+ [ ~ ] 0 

wherelvcl < v~ax is the transverse current velocity. The reference trajectory is specified 1 
according to: 

Pi 
(13.24) tb 
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13.2 Depth Autopilot 

while Vd = °during turning. Let x = [v, r, '¢']T and h = [k1, kz, ka]Tsuch that: 

a = hT (x - Xd) = hI v + hz(r - rd) + h3 ('l/J - 'l/J d) (13.25) 

Feedbackfrom the sway velocity v andyaw rate r, that is k = [k1, k2 , of, implies that: 

a ll - b1kl a12 - b1k2 0]�
A c = A - bkT = aZI - bzk l a2Z - bzkz ° (13.26)�

[ 010� 
where the yaw dynamics ;p = r is left unchanged. A pure integrator in yaw corresponding 
to the eigenvalue ..\ = °is necessary in order to satisfy: 

AxTh = ° (13.27) 

The eigenvector h is computed in Matlab as 

Matlab: 

p = [-1 -1 OJ % desired poles for Ac� 
k = place (A,b,p) % pole placement� 
Ac = A-b*k'� 
[V,DJ=eig(Ac' ) % eigenvalue decomposition 
for i = 1:3 % extract the eigenvector h from V 

hi = V (: , i) ; 
if norm (hi. ' *Ac) < le-IO; h = hi; end 

end 

The resulting tracking controller is: 

a= -k1v - kzr +. . 1. , [hzTd + hard -17sat (s)] (13.28) 

Since the disturbance Vc is unknown our best guess for: 

all ]
f(x) = - ~Zl Vc (13.29)

[ 

is f(x) = O. Hence: 

17 >/1 h /I. /I -[au,alz,OlTv~ax /I (13.30) 

,,'_IIIIi. 13.2 Depth Autopilot 
I:UiIJili! 

Pitch and depth control of underwater vehicles is usually done by using control surfaces, 
thrusters and ballast systems. For a neutrally buoyant vehicle, stem rudders are attractive for t"," 
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diving and depth changing maneuvers, since they require relatively little control energy com
pared to thrusters. Consider, the longitudinal model in Section 3.5.3 which can be written: 

.",1 

t� 
13.21 

13.2 

It isl 
-x; Froa 

[ m-X, mz, - X. ]
-X· m-Zw -mxg - Zq� 

mZg -Xq -mxg - Zq Iy-Mq� [~ ] 
-x,

[ -X -X, ] [~+ -Z: -Zw -Zq 
-ss; -u; -Mq ] 

wbclto 
o o ] [ wU] [ 00 ] = [ Tl ] refea-(m-Xu)u + Ta� 

(Zw - Xu)u mxgu q W BGzsinO T5� 

(13.31) 
The speed dynamics can be removed from this model by assuming that the speed controller 1 
stabilizes the forward speed such that: wllCll 

durilll 
u = U o = constant (13.32) S~ 

thep 
Hence, (13.31) reduces to a combined pitch and diving model: india 

oj 
Theti 
andd 

A state-space representation of this model is: 

when 
distul 

Ax+bu (13.33)ic. = Thisi 

l
Ex. 

all o The. 
a21 (13.34)o 
1 

where 8s is the stem rudder and the kinematic equations are based on the approximations 
(see Section 2.2.1): 

iJ = pcos</J - sin</J ~ q (13.35) 

d = -Uo sin ()+ v cos ()sin 1/J + w cos ()cos 1/J ~ w - uo() (13.36) 

for v = p = 0 and small values of () and </J. 
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13.2 Depth Autopilot� 497.' •. 
:..-.. 13.2.1 Optimal Control 

.-rca: 
It is straightforward to design an optimal diving autopilot based using the model (13.33). 
From Section 7.2.3 we have: 

u = -R-1bTPoeX - R-1bT(A + bg~)-TCTQYd (13.37) 
'------- --J ,� , 
~	 'V

gJ� gJ 
TIT -

PoeA + A Poe - -Poebb Poe + Q = 0 (13.38) 

where Q = QT > 0, T > 0, and Yd = dd is the desired depth, e.g. generated using the 
reference model: 

!il~.111	 Xd = AdXd + bdTcom (13.39) 
T. ..-� Yd = C Xd (13.40) 

'1111: 

where Tcom is the operator input. This controller is based on the assumption that () is small 
during depth changing maneuvers, and that the lateral states V,P, T, and <p are negligible. 

:32) Since, this is a decoupled design large course changing maneuvers during diving will reduce 
'1 . the performance of the autopilot. However, experiments with low-speed underwater vehicles 
I • indicates that these are good assumptions. 

/.
,: 

·1 

1·� 13.2.2 Sliding Mode Control using the Eigenvalue Decomposition 
~ 

The sliding mode controller of Section 13.1.3 can also be used to design a combined pitch 

] and diving autopilot for the model: 

x= Ax + bu + f(x,t)� (13.41)_i '"� where f(x,t) is a a nonlinear function describing the deviation from linearity in terms of 
disturbances and unmode1led dynamics, x = [w,q,(),djT, and u = Os is the stem angle. 
This is illustrated in the following example. 1.31 Example 13.2 (Pitch and Diving Autopilot) , 
The sliding surface for pitch and diving control can be constructed as: 

, ~.>.J)	 a = h T x=h1(w - Wd) + h2(q - qd)+ h3 ( () - ()d) + h4(d - dd) (13.42) 

where hi for (i = 1, ... ,4) are the components ofh. Let Xd = [Wd, qd, ()d, dd]T be a desired 
state vector given by a reference model. From (13.5) and (13.9) it is seen that: t,.1 

u = _kT x-l-tz., (13.43)r-- U o = (h Tb)-l[hTXd - h Tf(x,t) -1]sgn(a)], 1]>0 (13.44) 

where k = [k1,ka,0, k4]T. Notice that k3 = °since there is one pure integration in the pitch 

:35) channel. Hence, h is found by computing the eigenvalues A(Ac ) = A(A - bkT) where 
AJh = Ofor A3 = 0. Consequently:: .36) 

Os = -k1w-k2q- k4d+, b 1 h b [h1Wd + h2qd + h3()d + h4dd -1]sgn(a)] (13.45) 
1 1 + 2 2 
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13.3 Speed Control System v.: if. 
The forward speed controller is designed using the surge equation in (13.31): a)DeII. 

A3 =t 

bi Der 

c) Sim. 
where contains coupling tenus and environmental disturbances, This is a 1st-order initial11085 

system which can be easily controlled using a PI-controller with reference feedforward: .~1 
T] = Sm - X'-.)~d - XuUd, - K p ( U - Ud) - K, it (u - ud)dT (13.47) wherr 

altereereference feedforward' 'V '� 

PI-controller� 
- no dl 
- COIUl 

where Ud is the desired velocity. The error dynamics is: - time

(m - X,-.)z + (Kp - X..)i + Kiz = 11088 (13.48) Forc':.l 
results.where: 

z = - ud)dT (13.49) Hint:it (u 

Hence, it is straightforward to choose the controller gains K p > 0 and K, > 0 such that the Exe,,1� 
closed loop system is GES. A pole placement algorithm for this is: resc.� 

(from 1� 

Kp-X.. t~:.
= 2(wn (13.50)
m-Xu 

x, 

I= w2 (13.51)
m-Xu 

n 
-t . 

where relative damping ratio ( and natural frequency W n are the new design parameters. 
Hence: 

"2r ' 2 lIT" w~ 
Z + ,-WnZ + wnz = m _ Xu 11088 (13.52) 

13.4 Exercises 

Exercise 13.1 Consider Example 13.1 and let: 

V ] [-0.250 -0.870 0] [V - vc ] [ 0.220] Hf!'f'P 

[ $ = -0.0l~ -0.23~ ~ ~ + -O,04~ 8R d)7UII 
filnx. 

where 8R is the rudder input and Vc is the transverse current velocity in body-fixed coordi v~ 

nates. Let: a) F,,; 
Vc = Vc sin(¢c -1/J) 1tUlSJ 

where Vc and 1/Jc are the NED current speed and direction, respectively. Let 1/Jc = 900 while� 
the maximum current velocity is denoted as ao, that is SUPt Ivc(t)1 Sao. The current speed� 

kllllUid "' wlo. ",•• 

....� 
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Vc is defined below. Include in your model that the rudder angle is limited to Dm ax = 350 
• 

a)Determine k 1 and k 2 such that the eigenvalues ofA c becomes: A1 = -0.5, A2 = -0.32, 
A3 =0. 

-� b) Derive a sliding mode controllerfor the ROV andfind aformulafor TJ such that V:::; O.� 

c) Simulate the closed-loop system in Matlab or Simulinkfor a step response 'lfJ re f = 20° with 
","......� initial conditions (v(O), r(O),'lfJ(0» = (0,0,0) using the following reference model: ,-, 

.. • 2 2 v« + 2C,w o'lfJd + wo'lfJd = wo'lfJref 

~:.	 where C, = 0.8 and W o = 0.1. In the simulation study the boundary layer thickness should be 
alteredfrom ¢ = 1.0, 0.1 and 0.01for the following three cases: 

- no disturbances: Vc = 0 m/s 
- constant current speed v;, = 0.5 mls 
- time-varying current speed Vc = 0.5 sin(0.2t) m/s 

"-""*'� For each simulation present plots of all variables v, r, 'l/J and 8. Include comments to the 
results. 

Hinl: determine 1] by choosing /6f(x)/ = max /disturbance/. 

'....� Exercise 13.2 The crew onboard a nary submarine can in an emergency situation beed to be 
rescued by using a Deep Submergence Rescue Vehicle (DSR V). Consider the following model 
(from the lecture notes ofProfessorAnthony Healey, Naval Postgraduate School (NPS), Mon
terey, CA, 1992): 

it ueosO + wsinO,.;,., =� 
d = -usinO + weasO� -

_ ..� iJ = q 
illllll,: 

I 
where nand d are the North-Down positions, 0 is the pitch angle and: 

m-Zw ' 
[ -Mw -Zq ] [ ~ ] + [~~:	 ~;~] [ ~ ]] [ z ] = [ Zos ] 88 

I - u, q [ 0 0 0 Mos� 
I� ''I~	 ' + 0 -M, 

Here wand q are the heave velocity and pitch rate, respectively. This model describes the 
dynamics in heave and pitch at constant cruise speed u = Vo = 4.11 (m/s). A Matlab m
file for computation of the DSRV dynamics is included the Matlab GNC toolbox (type help 
vesselmodels). The following analysis should be performed: 

'''I~ 

11I1Ii1: a) Find a formula for the restoring moment in pitch, Ma, as afunction ofCG, CB, 0 and 
mass (Hint: see the general expression for g(1J) for a submerged vehicle)? 

b) Compute the naturalfrequency wa in pitch and the corresponding pitch period To (use the 
111'" numerical values in DSRV.m). Explain why there is no naturalfrequency ca, in heave? 

1,' 

I ' 
I:••'..
i i ·S. 
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c) For a mass-damper-spring system: 

mX+dX+kx = T 

~ 
x+2(wox+w~x = T 

it can be shown that: C 
d 2 k

2(wo = -, Wo = 
m m 1 

where W o is the natural frequency (d = 0). Assume that w = rwo is the frequency in the 
damped system d > 0 with 0 < r < 1 (indicates how much the frequency is reduced in the 6 
damped system). Show that: 

d=2~Vkm C 
This formula can be used to compute the damping coefficient d in heave, pitch and roll for� 
known k and m. For the other DOF this is impossible since k = O. Compute the r factor in� 
pitch (assume that there are no couplings between pitch and the other modes in the model). ~
 
How many percent reduction infrequency is observed due to damping?� 14.1 
d) Is the DSRVstablefor smallpitch angles ()during diving? (Hint: Compute the eigenvalues 14.J 
for the linearized model ofthe DSRV with steady-state value ()ss = 0). 14J 

- ~Exercise 13.3 Consider the DSRV in Example 13.2. 

a) Design a PID-based depth controller for the DSRV in Example 13.2 and simulate a depth 
changing maneuver from d = 10 (m) to d = 100 (m) for initial conditions w(O) = q(O) = I~ 
()(O) = O. Plot the trajectories d(t) and ()(t) asfunctions oftime. Also plot the depth profile. that 
Check your design by plotting the stem rudder displacement 8S (t) as function of time (the llSSII 

rudder should not saturate during the maneuver). ter, 

b) Assume that you only measure the states n(t), d(t), and ()(t), and that q(t) is unknown.� 
Estimate q(t) in a Kalman filter and plot q(t) (true value) and the estimate q(t) in the same� 
plot as a function of time. Does q(t) converge to q(t)? Does the PID-controller work sat

I.�,
isfactoryily ifall the states are replaced with the Kalman filter state estimates? (separation� 
principle). areI� 

whiJ� 
sem 

11 
Ind 
that 
T= 

UDC4 

~ 
•i 

usa 
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I n Chapter 13 it was shown how three different control systems could be designed indepen
dently for turning, diving and forward speed control. This was based on the assumption

that the longitudinal and lateral modes were decoupled. In addition, the speed equation was
assumed to be independent of heave and pitch, while roll was left uncontrolled. In this chap
ter, 6 DOF nonlinear controllers for simultaneously control of:

• position (surge, sway, and yaw)

• attitude (roll, pitch, and yaw)

are presented. These control laws are designed for high-speed coupled maneuvers in 6 DOF
while the decoupled control strategy should be used for noncoupled maneuvers. The pre
sented methods are based on Fossen (1991, 1994).

14.1 Nonlinear PID Control

In this section 6 DOF nonlinear PID control is applied to underwater vehicles. It is assumed
that the vehicles are fully actuated or overactuated such that the generalized control forces
T = Bu can be distributed to the actuators u using one of the methods in Section 7.5. In the
unconstrained case:

(14.1)

This formula is attractive due its simple real-time representation.
The 6 DOF equations of motion are written in accordance with the model representation

used in Chapter 3. Let:

http:��.�����������.����.����.������.������.��������������������������
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14..1 

Figure 14.1: Remotely operated vehicle (ROV). 

III 
r,1 = Je(8)v (14.2) II 

Mv + C(v)v +D(v)v + gl(8) = 7" + W (14.3) 
l1li 
Ihrand: 
LaS 
bull 
banr,2 = Jq(q)v (14.4) 
(PI[

Mv + C(v)v + D(v)v + g2(q) = 7" + W (14.5) 

POIIIi 

where the attitude dynamics is represented by the Euler angle and unit quaternion represen
tations (see Section 2.2): 

(14.6) 

and: 

pn ] _ [RI:(q) 03X3] [v~ ] (14.7)
[ it - 04x3 Tq(q) W~b 

'---v--'" ... ' ''--.-' 
~2 Jq(q) v 

The Euler angles can be transformed to unit quatemions and vice verse using Algorithms 2.2 
and 2.3 in Sections 2.2.3 and .2.2.4, respectively. Nonlinear control methods for both these 
representations are now presented. iftb 
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14.1.1 Set-Point Regulation 

Set-point regulations is obtained by specifying both the desired position Pd = [nd, ed, dd]T -
and attitude 8 d = [<Pd' ad,7Pd]T, alternatively qd = [17d' Cld,C2d, C3d]T, according to: 

Pd ] [constant ] (14.8)TJd = [ e d (or qd) = constant 

Position and Euler Angle Feedback 

In Section 7.1.4 it was shown that: 

1 T l_ TK  ]= 2v - [p-Pd (14.9)Vl Hv+2TJ l pTJl' '11 = e - ad 

where H = M + K m resulted in: 

~i = v T W - V T [D(v) + K d(8)] u, K d(8) = J~(e)KdJe(e) (14.10) 

ifthe control law was chosen to be ofPID type with acceleration feedback and gravitylbuoyancy 
compensation: 

T= gl(8) - Kmv - J~(e)TplD (14.1 I) 

( 14.2) TplD = Kp7h +Kdih + K i it ih (T)dT (14.12) 
(14.3)..... 

Ifw = 0 and K, = 0, it follows that Vl = -vT [D(v) +K d(8)] v :S 0, and Krasovskiit Lasalle's Theorem guarantees that the equilibrium point (71, v) = (0,0) is GAS. Ifw -=1= 0.. but bounded, the system trajectories will converge to ball about the origin. The radius of the 
ball depends on the magnitude of the disturbance vector w. If w is constant and K, > 0(14.4)� 
(PID-control) it can be shown that the system is locally asymptotically stable.� 

(14.5) 

l 
Position and Unit Quatemion Feedback 

rn- The attitude part of the nonlinear PID controller (14.12) can be modified to use unit quater
nion feedback. Hence, the singular point a= ±90 0 can be avoided in a maneuvering situ
ation (Fjellstad and Fossen I994b). Quaternions also have better numerical properties than (14.6) 
Euler angles. Let: 

t 1 T l_ T [ x, P - Pd ]
03x4 ] 712' 1 (14.13)V2 = 2v HV+ 2TJ 2 °4x3 cI4x4 . 712 = [ q- [ 03 X l ]r tI4.7) 

where K p = K; > 0 and c > O. It then follows that: 

funs 2.2 V2 = V TW - V T [D(v) + Kd(q)] u, Kd(q) = J; (q)KdJq(q) (14.14)
lib these 

J� 

if the controller is chosen as: 
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.J� 
T = g2(q) - Kmv - J; (q)TpID (14.15) JIIII,e

TpID = Kp712+Kd7]2 + x, it 712 (r)dr (14.16) 

For this system there are two closed-loop equilibria corresponding to: 

q = q - qd = [ii,el,e2,e3]T = [±I,O,O,O]T (14.17) 

Both equilibria represent the desired attitude qd. If q represent one certain attitude, then 
-q is the same attitude after a ±27r rotation about an axis. Physically these two points are ....indistinguishable, but mathematically they are distinct. In fact, ii = +1 is a stable equilibrium 
point, whereas ii = -1 is unstable. This can be seen from the following discussion: suppose 
ii = -1 and p = 03xI, then the steady-state value of the Lyapunov function V2 is: 

V2s = 2c 
~ 

~mlll:::: 

..' 

14.1.2 Trajectory Tracking Control 

In this section the assumption that 71d is constant is relaxed. Assume that 71d is a time-varying 
reference trajectory and that: 

(3).. • th dbo ded71d , 71d, 71d' 71d are smoo an un (14.18) 

Position and Euler Angle Feedback 

In Section 7.4.6 the trajectory tracking problem was solved for the model (l4.2)-{14.3). For 
underwater vehicles the controller (7.387) takes the form: 
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ilillmllll! 
11_, 

I.I~. ",I where: 

,j"
IIIIII! 

~IIII 

iill 

"I 

81 

r,r 

V r 

.q1 + A 1ih 

tu  A 1111l 

J e1 (8 )iJr , 

AI> 0 

(8 # ±900 
) 

(14.20) 

(14.21) 

(14.22) 

In Section 7.4.6 it was shown that thee equilibrium point (111,81) = (0,0) is GES such that 

'01111 
convergence of81 ........ 0 and 111........ 0 implies that v ........ O. 

Iltrlt 

·'--1 Position and Unit Quateruion Feedback 

II'II The position and attitude controller (14.19) can be modified to use unit quaternion feedback 
1:./ 

1 by using the approach of Fjellstad and Fossen (19940). The main problem in doing this is 
' I that J;;-I(q) does not exists since Jq(q) E JR..7X6 is a nonsquare matrix. Hence, the virtual 

reference signals (l4.20}-(14.22) cannot be used in conjunction with unit quatemions. This 
"_1.,11,1" problem is solved by defining the following signals (FjeUstad and Fossen 1994a): 

,~lli, ." 

IIIIIII!' 82 = V-Vr (14.23) 

1,- Vr = Vd _ [ ,\,Rb'(qd)T 
03x3 , 

03x3 
-2c sgn(ii)13 X3 

] [ 

" 

pne ] (14.24) 

y 

1\2 
''':I:~I 

,;1......111'1, iJd = Jq(q)Vd (14.25) 

~ 

where e= [El,E2, E3] T. Let the position and unit quaternion feedback tracking controller for 
the system (l4.4}-(14.5) be chosen as: 

...:I~: 

,Ill".• 

i11li 
II III.'
,~:. 

T = MVr + C(v)vr + D(v)vr + g2(q) - K ds 2 

Substituting (14.26) into (14.4) gives the error dynamics: 

MS2 + C(V)82 + D(V)82 + Kd82 = W 

(14.26) 

(14.27) 

Consequently: 
'1~1o,,-JIit 

!II V2 

.
V2 

= 
= 

1 T 
'282 M82 

T 
-82 (D(v) + K d )82 

(14.28) 

(14.29) 
~ 

implies convergence of 82 ........ 

(14.23) and (14.24): 
0 ifw = O.The dynamics associated with 82= 0 is found from 

~: 

~'4.~1 

~ 

"~-
[ -b]vo 

W~b 

_ 

-
['Rn()TA b qd 

03x3 
03x3 

2c sgn(ii)I3 x 3 

] [ -nP 
E: 

] (14.30) 



506 6 DOF Position and Attitude Control 

It will now be shown that both pn and W~b converge to zero for>' > 0 and c > o.� 
Since pn = R'b(q)v~ it follows that:� 

(14.31) all 

III 

Using (14.30) implies that Equation (14.31) can be written: \~-lin = >'Rb(q)pn, (14.32) 

where R'b(q) is strictly positive for ij2 > 1/2. Consequently, pn converges to zero for>' > O. 
The quaternion error is defined as: 

q = q* 0qd (14.33) 

where q*= [17, -CI, -C2, -c3]T is the conjugate of q = [17, CI, C2, c3]T. The symbol tc de
notes the quatemion product which is defined as (Chou 1992): .. 

q10q2 = 

= (14.34) 

To prove convergence ofW~b to zero consider (see (2.66) in Section 2.2.2): 

:. 1 [ -zT ] _ b (14.35)q = 2 ijI + See) Wnb ..•
Consider the Lyapunov function: 

1111 11 

W = 1 - abs(ij) (14.36) 

and: 

• 
(14.37) 

An expression for W~b is found in (14.30) such that: 

w = -~sgn(Tj)e T [2csgn(Tj)e] 

= _ciTe <0 (14.38) 
.~ 

Consequently, e 0 and ij ± 1 (recall that Tj2 + eT e= 1). It then follows from (14.30) 111IIIiI~' 

thatw~b----- o. 
A more general discussion on alternative kinematic representations is found in Fjellstad� 

and Fossen (1994c). Extensions to adaptive control can be done by using the approach of� 
Fossen and Sagatun (199Ib).� 
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J 14.2 State Feedback Linearization 

I In Section 7.3 feedback linearization was used as a tool for velocity and position/attitude 
,.,IIII' control. These methods were referred to as decoupling in the b- and n-frame, respectively. 

~ (1431) It is straightforward to apply these schemes for trajectory tracking control of underwater 
vehicles in 6 DOF.The nonlinear model of an underwater vehicle in terms ofEuler angle and 
unit quatemion representations is written: 

(1432) 
~ 

an'\ > o. 
, 

ill = Je(8)v (14.39) 

Mv + 0\ (v, 8) = T (14.40)' 

(14.33) 01(v,8) = C(v)v+D(V)V+gl(8) (14.41) 

a� 
t� 

"� 

• 

tiB, ,XVi/We< ''fiIY T' V'"~ 'imttw'fVtftPhfilftJ" co, .. (' ('- h':i',,"jl'i''Xi<' ~"","Jnx' "1''''':';",('* "c;;~'iii'iThiii-'3ilif-~::j;; 'w"jl '~ 

1111'e de-
and:

,,'"r~l. !III'I 

I 
1I1I 

TJ2 = Jq(q)v (14.42r 

Mv+02(v,q) = T (14.43)
(14.34) 

02(V,q) = C(v)v + D(v)v + g2(q) (14.44 

14.2.1 Trajectory Tracking Control 
(14.35) 

In this section trajectory tracking controllers using the reference trajectories: 

lld = [nd, ee. dd,4>d' Od, 'l/Jd]T (14.45) 

lld = [nd, ed,dd' '17d' Eld, E2d, E3df (14.46) 
(1436) where Pd= [nd, ed,dd]T is the NED positions, while attitude is specified using Euler angles 

8 d= [4>d' Od, 'l/Jd]T or unit quaternions qd= ['7d, Eld,E2d, E3d] T, respectively. 

Position and Euler Angle Feedback 

As shown in Section 7.3, the nonlinearities can be canceled out by choosing the control law 
(1437) 

as: 

T Mat + 01(v, S) (14.47)'i 

a b 
l Ji/(S)[a¥ - je(S)v] (14.48)} 

(1438) 
where ai E JR6 and a]' E JR6 are the commanded accelerations in the b- and n-frame, respec
tively. This transformation results in the decoupled system: 1-(14.30) 

iiI = Je(S)v + je(S)v
, .stad b • = Je(S)al+Je(S)vhof 

= a~ (14.49) 
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The commanded acceleration ai' is chosen as a PID-control law with acceleration feedfor�
ward:� 

when 
error 

where K p E ]R6X6, K d E ]R6X6, and K, E ]R6x6 are positive definite matrices. The linear� 
error dynamics becomes:� 

where: 

ZI= it 7h(r)dr 

Consequently K p , Kd' and K, can be found by using a pole placement algorithm. 

Position and Unit Quatemion Feedback 

When using unit quatemions the transformation matrix Jq(q) E ]R7x6 cannot be inverted.� 
However, the 6 x 6 matrix:� 

~3X3 ] (14.53) 
413 x 3 

has a nonsingular constant inverse I;1; see the properties of R~ (q) and Tq (q) in Section 
2.2.2. Consider: 

w 

772� = Jq(q)Ji +jq(q)v 

= b •
J q(q)a2+Jq(q)v 

= a2'� (14.54) 

Pre-multiplication of this expression with J;(q) gives: 

The(14.55) 

where a~ E 1R7 can be computed since 1;1 exists. Consequently, the feedback linearizing� 
controller based on unit quatemions becomes:� 

T Ma~ + D2(V,q)� (14.56) 
The 

1;1 (J;(q)a; - J; (q)jq(q)v) (14.57) 

The commanded acceleration an E ]R7 is chosen as a PID-control law with acceleration� 
feedforward: w� 
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~ 

~or-

an = fJd - K dfJ2 - Kpih - x, it T12(T)dT~ 

,U..L'O) 
E 1R7 X7,Kwhere K p E llex 7,and K, E jR7x7 are positive definite matrices. The linear d 

error dynamics becomes: 

(3) K·· K· K 0z2 + dZ2 + pZ2 + i Z 2 = (14.59) 

where: 

Z2= it ih(T)dT (14.60) 

II 14.2.2 Adaptive Feedback Linearization r The 6 DOF feedback linearization controllers of the previous section can be modified to 
include a parameter adaptation law for estimation of the unknown model parameters. For 
the Euler angle feedback representation, the adaptive control law is (see Section 7.3.3): ...... 

b ~111111,� I 

IIII11� T = ep(a1 , V, 8)9 
'li,l'

~J 'I, a~ = Jel(8)[a~ - je(8)v] 
·,11" Iii 

a~ fJd - KdfJl - KpfJl 
:111111 

I....
i where iJ is a vector of parameter estimate updates given by: II. 

-'11� 
iJ -repT (at V, 8)JE/(8)y, r =rT > 0 (14.64):; 

y cofJ + cl'11 (14.65) 

The constants CO and Cl must satisfy the following inequalities: ....� (i) (cOK d + c1Kp)Cl > r?al 
(ii) 2COK p > (31 
(iii) - col) > (31 

The regressor matrix ep(a~ , u, 8) is defined by: 

• Ma~ +lll(V,8) = ep(a~,v,8)9 

',,_,

".� 
where 9 is a vector of unknown model parameters. 

..� 
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•Example 14.1 (Adaptive Control of Underwater Vebicles) 14.3 
Consider the longitudinal underwater vehicle dynamics: 

Exeni 
left u~s: 

o 
o 

(Zw - Xu)u Hint: • 

This model can be written in regressor form: Enn. 

Ma~ + nl(v,8) = .(a~,v,e)8 (14.67) 

where a~ = [a~, a~, a~]T and v = [u, w, qlT. In order to do this, we collect the mass, damp
ing, and gravitationallbuoyancy parameters into three vectors 8:, 8J,and 0; such that: I 

(14.68) whelP, 

where: 

[~8m = [m-Xu,-XW,mzg-Xq,m-ZW,-mxg-Zq,Iy-Mq,mxglT� 

8d = [-Xu, -Xw, -Xq, -Zu, -Zw, -Zq, -Mu, -Mw, -Mql T� 

Og [W BGz ]� •AsSU"'J:Consequently, 
(14.69) 

where: 
Derr.«ba 0 0 03[at al the <.1<:::: ..bcPm(at v) = -u a~ 0 a~ a3 0 

b ~ ]U 0 a~ -u a~ a3 EIen:iI 
0 0 0 0 14.:[U v W 0 

cPd(V) = o 0 0 u v w 0 0 ~ ] Exndlo 0 0 0 0 0 u v 
COI1.

cPg(8 ) = ['iL] 
The parameter update laws are: 

«; = -r'mcP;;'(at v)Je1(El)y (14.70) 

e, = -r'dcPJ(v)Je1(El)y (14.71) 

1(8)y8g = -rgcPJ (El)Je (14.72) 
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14.3 Exercises 

Exercise 14.1 Derive a feedback linearizing controller where the pitch and roll modes are 
left uncontrolled. Assume that 74 = 75 = 0 and let u E JR.4 such that: 

1 000
,,' ~ 0 1 0 0 

o 0 1 0 
T =Bu, where B = I 0 0 0 0 

Hi]
0 000 
000 1 

• 

IJ� 

Hint: defineanoutputmappingy = O"wherey = [n,e,d,lfJ]T and let Y« 

Exercise14.2 Consider the underwater vehicle model: 

(14.67) 
11, = ucosB+wsinB 

ass, damp d = -usinB + wcos(} 
athat: iJ = q 

(14.68) where n and d are the North-Down positions, B is the pitch angle and: 

;]T [ -Mw 
m-Zw 

-z, ] [ ~ ] + [ ~;,; ~~ ][ ~] 0 ] [ 

l 1 - u, q [ 0 
• + 0 -M, 

Assume that the speed dynamics is: 

(14.69) 
(m - X,.)-u - Xuu - Xululu lui = 71 

= [nd,ed,dd,lfJdF. 

z ] = [ 73 ]
B 75 

Derive afeedback linearizing controllerfor trajectory tracking and let (nd, ed, Bd) represent 
the desired trajectory. 

Exercise 14.3 Find the regressor andparameter vector for the nonlinear model in Example 
14.2. 

Exercise 14.4 Derive an adaptive feedback linearizing controller for position and attitude 
control using the unit quatemion representation. 

(14.70) 

(14.71) 

414.72) 
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Nonlinear Stability Theory

A.I LyapUDOY Stability for Autonomous Systems .••••••••••••••••••••••••.••••••• 515
A.2 Lyapunoy Stability of Nonautonomous Systems •••••••••••••••••••••••••••••• 520

This chapter briefly review some useful results from nonlinear stability theory. This in
cludes:

• Lyapunov stability of nonlinear autonomous systems x= f(x), that is systems where
f(x) does not explicitly depend on the time t .

• Lyapunov stability of nonlinear nonautonomous systems x= f(x,t), that is systems
where f(x,t) does depend on t explicitly.

A.I Lyapullov Stability for Autonomous Systems

Before stating the main Lyapunov theorems for autonomous systems, the concepts ofstability
and convergence are briefly reviewed (Khalil 2002).

A.I.1 Stability and Convergence

Consider the nonlinear time-invariant system:

x = f(x), x(O) = Xo (A. I)

where x E]Rnand f :]Rn -.]Rn is assumed to be locally Lipschitz in x, that is for each point
x ED eRn, there exists a neighborhood Do E D such that:

IIf(x) - f(y) II ~ L Ilx - ylI, Vx,y E Do

where L is called the Lipschitz constant on Do.
Let X e denote the equilibrium point of (A. I ) given by:

(A.2)

(A.3)
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Table AI: Classification of theorems for stability and convergence. 

Autonomous V> 0, V < 0 Lyapunov's direct method GAS/GES 

systems V> 0, V ~ 0 Krasovskii-LaSalle's theorem GAS 

Non- V> 0, V < 0 LaSalle-Yoshizawa's theorem UGAS 
autonomous V> 0, V ~ 0 Matrosov's theorem UGAS 
systems V 2: 0, V ~ 0 Barbalat's lemma convergence 

The solutions x(t) of(Al) are: 

•� bounded, if there exist a non-negative function 0 < ,(x(O)) < 00, such that: 

Ilx(t)11 ~ ,(x(O)), 'Vt 2: 0 (A.4) 

In addition, the equilibrium point x, of (A. I) is: 

•� stable, if, for each E> 0, there exists a 8(E) > 0 such that: 

Ilx(O)1I < t5(E) '* Ilx(t)1I < E, 'Vt 2: 0 (A5) 

•� unstable, if it is not stable. 

•� attractive, if there for each r > 0, E > 0 exists a T(r, £) > 0 such that: 

Ilx(O)1I ~ r '* Ilx(t)11 ~ e, 'Vt 2: T(r,£) (A6) 

Attractivity implies convergence, that is limt_oo IIx(t)/1 = o. 
•� (locally) asymptotically stable (AS), if the equilibrium point x, is stable and attractive. 

•� globally stable (GS), if the equilibrium point x, is stable and 15(£) can be chosen to 
satisfy lim,,_oo 15(£) = 00. 

•� global asymptotically stable (GAS), if the equilibrium point x, is stable for all x(O) 
(region of attraction JRn). 

•� (locally) exponentially stable (ES), if there exist positive constants a, Aand r such that: 

Ilx(O)11 < r '* Ilx(t)1I < o exp]-At) Ilx(O)II , 'Vt 2: 0 (A.7) 

•� globally exponentially stable (GES), if there exist positive constants a, A and r such 
that for all x(O) (region of attraction JRn). 

Ilx(t)1I < aexp(-At) IIx(O)II , 'Vt 2: 0� (A.8) 

Different theorems for investigation of stability and convergence will now be presented. 
A guideline for which theorem that should be applied is given in Table A.I whereas the 
different theorems are listed in the forthcoming sections. 

Notice that for nonautonomous systems GAS is replaced by uniform global asymptotic 
stability (UGAS) since uniformity is a necessary requirement in the case of time-varying 
nonlinear systems . 

A.I LYll~ 

Theeren 
Let x, b� 
V :R"

then the� 
(positive� 

~ 
Proof. S 

The• 
Thisisi 

ExamJ 
Conside 

~ 
where T 

kinetic, 

..,

-
-

A.1.2 
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....� 

r� 
~'Tbeory	 A.I Lyapunov Stability for Autonomous Systems 

~ 

kx 

m 
d(v)v� X 

Figure A.l: Mass-damper-spring system. 
(A.4) 

A.1.2 Lyapunov's Direct Method 

Tbeorem A.I (Lyapunov's Direct Method) 
(A.5)� Let X e be the equilibrium point of (A.I) and assume that f(x) is locally Lipschitz in x. Let 

V : Rn -R+ be a continuously differentiable junction V(x) satisfying: 

eV(x) 

eV(x)
(A.6) 

eV(x) 

> 0 (positive definite) and V(O) = 0 (A.9) 

= 
aV(x)
a;z-f(x):S  W(x) :S 0 (A.lO) 

- 00 as IIxll -> 00 (radially unbounded) (A.ll) 

ad attractive.� then the equilibrium point x, is GS ifW(x) ~O (positive semi-definite) and GAS ifW(x) >0 
(positive dejinite) for all x =1= o. 

Ie chosen to 

~ Proof. See Khalil (2002) or Lyapunov (1907).• 
fi>r all x(O) 

~ The requirement that W(x) >0 such that V(x) <0 is in many cases difficult to satisfy. 
r such that: This is illustrated in the following example. 

(A.7) 
Example A.I (Stability of a Mass-Damper-Spring System) 

mid r such Consider the nonlinear mass-damper-spring system: •� :i: = v (A.l2)
(A.8) 

mv+d(v)v+kx2 = 0 (A.l3) 

presented. 
where m > 0, d(v) > 0, "Iv and k > 0, see Figure A.I. Let us choose V(x) as the sum of~the 

kinetic energy !mv2 andpotential energy! kx 2 such that: 
ssymptotic 
De-varying 2

V(x) = i (mv
2 + kx ) = ixT [~ ~] x (A.l4) 

,� 
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where x = [v,x]T, results in� A.I 
TheV(x)� = mvV + kx± 

= v(miJ + kx) Thel 
= -d(v)v2� Len 

V: l 
= _xT [ d(OV) 0] (A.15) o x 

Hence. only stability can be concludedfrom Theorem A.I, since V(x) =Oforall v=O. How�
ever, GAS can in many cases also be proven for systems with a negative semi-definite V(x)� 

with 
thanks to the invariant set theorem of Krasovskii-LaSalle, see LaSalle and Lefschetz (1961) 

GES 
and LaSalle (1966). 

.~ 
A.1.3 Krasovskii-LaSalle's Theorem� 1 

l 
The theorem of Krasovskii-LaSalle can be used to check a nonlinear autonomous system for whet 
GAS in the case ofa negative semi-definite V(x). 

Theorem A.2 (Krazovskii-LaSalle's Theorem)� 
Let V : lR.n --+ 1R.+ be a continuously differentiable positive definite function such that:� 

V(x)� --+ 00 as Ilxll --+ 00 

V(x)� :5 0, \Ix 

Let n be the set ofall points where V(x) =0, that is: 

and M be the largest invariant set in n, then all solutions x(t) converge to M. IfM = {xe }� 

then the equilibrium point x, of(A.I) is GAS.� 

Proof. See LaSalle (1966).• 

Example A.2 (Cont. Example A.l: Stability of a Mass-Damper-Spring System) 
Again consider the mass-damper-spring system ofExample A.I. The set n is found by re 1quiring that Integ 

V(x) = -d(v)v2 == 0 (A.l9) 

which is true for v = O. Therefore: 

Final 
n = {(XE lR,v = on� (A.20) 

Now, v� = 0, implies that mil = -kx, which is non-zero when x i- O. Hence, the system 
cannot get "stuck" at a point other than x = O. Since the equilibrium point of the mass

1damper-spring system is (x, v) = (0,0), the largest invariant set Min n contains only one� 
point, namely (x, v) = (0,0). Hence. the equilibrium point of (A.I) is GAS according to� ~ 
Theorem A.2.� This 
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['heory 

(A.15) 
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~ Vex) 
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t� 
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~ {Xe} 

t� 
by re

1.-\.19)

•� 
lAlO) 

......� 
~

tone 
~to 

A.l Lyapunov Stability for Autonomous Systems 

A.1.4 Global Exponential Stability� 

The following theorem is useful to guarantee exponential convergence.� 

Theorem A.3 (Global Exponential Stability)� 
Let x, be the equilibrium point of (A.1) and assume that f(x) is locally Lipschitz in x. Let� 
V : JR.n ---+JR.+ be a continuously differentiable and radially unboundedfunction satisfying: 

Vex) = X Tpx >0, "Ix ::j:. 0 (A.21) 

Vex) ~ -xTQx <0, "Ix ::j:. 0 (A.22) 

with constant matrices P = P T > °and Q = Q T > 0, then the equilibrium point Xe is 
GES and the state vector satisfies: 

Ilx(t)112 ~ 1/ ~::~; exp(-at) IIx (O)lb� (A.23) 

where 
Amin(Q) > ° (A.24)a = 2Amax(P) 

is a bound on the convergence rate. 

Proof. Since Vex) is bounded by: 

0< Amin(P) IIx(t)ll; s Vex) s Amax(P) IIx(t)II; , 

it is seen that: 
2 1

-lIx(t)112 ~ - \ m\ Vex) 

Hence, it follows from (A.22) that: 

Vex)� s -xTQx 

< -Amin(Q) Ilx(t)lI; 

< _ Amin(Q) Vex) 
- Amax(P) 
~ 

20: 

Integration of V(x(t)) yields: 

V(x(t)) Sexp (-2at) V(x(O)) 

Finally, (A.25) implies: 

'Vx::j:. 0 (A.25) 

(A.26) 

(A.27) 

(A.28) 

Amin(P) IIx(t)ll; < exp (-2at) Amax(P) Ilx(O)II; (A.29) 

IIx(t)112 s )~max~~~ e-o:t IIx(O)112 (A.30) 

This shows that IIx(t) 11 2 will converge exponentially to zero with convergence rate a.• 
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A.2 Lyapunov Stability of Nonautonomous Systems 

In this section several useful theorems for convergence and stability oftime-varying nonlinear 
systems: 

x = f(x,t), x(O) = Xo (A.3I) 

where x ElRn
, tElR+ and f :lRn x R.+ -+lRn is assumed to be locally Lipschitz in x and uni

formly in t are briefly reviewed. 

A.2.t Barbalat's Lemma 

Lemma A.I (Barbalat's Lemma)� 
Let 4> :lR+ -lR be a uniformly continuous junction and suppose that lim, __ oo f~ 4>(r)dr� 
exists and is finite, then:� 

lim 4>(t) = 0 (A.32)
t-+oo� 

Proof. See Barbalat (1959).•� 

Notice that Barbalat s lemma only guarantees global convergence. This result is particu
lar useful ir'there exists a uniformly continuous function V: IRn xlR+ -IR satisfying: 

i) V(x,t) 2: 0 
ii) V(x,t) ~ 0 
iii) V(x,t) is uniformly continuous 

Hence, according to Barbalat's lemma limt-.oo V(x,t) = O. The requirement that V should 
be uniformly continuous can easily be checked by using: 

V(x,t) is bounded ==:::} V(x,t) is uniformly continuous 

A.2.2 LaSalle-Yoshizawa's Theorem 

For nonautonomous systems the following theorem of LaSalle (1966) and Yoshizawa (1968) 
is quite useful: 

Tbeorem A.4 (LaSaUe--Yosbizawa's Theorem)� 
Let x, = 0 be the equilibrium point of (A.31) and assume that f(x,t) is locally Lipschitz� 
in x. Let V : R.n xlR+ -lR+ be a continuously differentiable junction V(x,t) satisfying:� 

eV(x,t) > o(positive definite) and V(O) = 0 (A.33) 

8V(x,t) 8V(x,t)f() W() 0eV(x,t) = at + Ox x,t ~ - x ~ (A.34) 

eV(x,t) - 00 as Ilxll- 00 (radially unbounded) (A.35) 

where W(x) is a continuousjunction, then all solutions x(t) of(A.31) are uniformly globally 
bounded and: 

lim W(x(t)) = 0 (A.36)
t--oo 

In addition, ifW(x) >0 (positive definite), then the equilibrium point x e = 0 of (A.31) is 
UGAS. 

Proof. See LaSalle (1966) and Yoshizawa (1968).• 

A.2 Lyap...... SbII 

A.2.3 Matr'Mt 

Nonautonomous sy 
(1962) is satisfied. 

Definition A.I (C1:I 
A continuous luna, 
creasing and 0 (0 I 
r -+ 00. 

Given two constanl� 

Matrosov's theoren� 

Theorem 2 (Main 
Consider the systen 

•�Iftherefor this 5)"S1: 

- a locally Lipschi 
- a continuous pas 
- junctions 0 1 . 0:: 

such that 

1. al (11x1D s 1 

2. V(t,x)~-l 

andfor each 0 < 6 
- a locally Lipschi 
- a continuous fun 
- strictly positive 

such that: 

3. max {IW(t.: 

4. W(t, x) s }' 
5. x E l-l(cS. .:1) 

Then, the origin of 

Matrosov's tbel: 
for integration of G 

Remark: If the sy 
replaced by: 

5. x E 1-l(6. SI 
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A.2 Lyapunov Stability of Nonautonomous Systems 

A.2.3 Matrosov's Theorem 

Nonautonomous systems where V(x,t) :S 0 are UGAS if Matrosov's Theorem Matrosov 
(1962) is satisfied. The version presented here is taken from Teel (2002) . 

-.~	 

Definition A.l (Class K, Function) 
A continuous function Q : [0, a) -t [0, 00) is said to belong to class K, if it is strictly in
creasing and Q(O) = O. It is said to belong to class K,oo if a = 00 and o:(r) - 00 as 
r-oo. 

\ ,1111 Given two constants 0 :S 8 :S ~ < 00, and 1t(8,~) := {x E JRn: 8 S; Ixj:S~} then 

lit Matrosov's theorem can be stated according to: 

..:::)� Theorem 2 (Matrosov's Theorem) 
Consider the system: 

.-il. • 
x = f(t, x), x(O) = "0, x E JRn� (A.37) 

Ifthere for this system exist:� 
" - a locally Lipschitzfunction V: JR x jRn - JR+� 
" 

- a continuous positive semi-definite junction U : JRn - JR+ 
- functions Ql, 0:2 E K,oo 

such that 

,!Im':~	 I. 0:1 (1Ixll):S V(t,x) :S 0:2 (IIxll) V (t,x) E jR x JRn 

2. V(t,x):S -U(x)for almost all (t,x) E R x Rn 

and/or each 0 < 8 :S ~ and1t(O,~) ~ jRn there exists: 
- a locally Lipschitzjunction W : JR x Rn - lR 
- a continuousfunction Y : Rn

- lR 
- strictly positive numbers ClI C2, 'IjJ > 0,'. 

such that: 
'.''I•.Iiu 

3. max{IW(t,x)I,IY(x)I}S;'ljI V(t,X)ElRx1t(O,~)"iimml','''''~~ 

4. W(t,x):S Y(x)forall(t,x) E JR x R n. 

5. x E 1t(o,~) n {x: U(x) :S cI} =? Y(x) S; -C2...... 
Then, the origin of(A.37) is UGAS. 

il"IIIIU"i,':",*','P Matrosov's theorem has been successfully applied to prove UGAS ofnonlinear observers 
for integration of GPS and INS by Vik and Fossen (2002). 

.'."� Remark: If the system (A.37) is time-invariant, that is x= f(x), then Condition 5 can be 
,III,,,,,..,,. 

-,� 

replaced by; 

5. x E 1t(8,~) n {x: U(x) = O} =? Y(x) < 0 
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A.2.4 UGAS when Backstepping with Integral Action 

When designing industrial control systems it is important to include integral action in the 
control law in order to compensate for slowly-varying and constant disturbances. This is 
necessary to avoid steady-state errors both in regulation and tracking. The integral part of 
the controller can be provided by using adaptive backstepping (Krstic et al. 1995) under the 
assumption of constant disturbances, see Section 7.4.4. Unfortunately, the resulting error 
dynamics in this case often becomes nonautonomous, which again implies that Krasovskii
Lasalle's theorem cannot be used. An alternative theorem for this case will be stated by 
considering the nonlinear system: 

x= f(x, u, e,t) (A.38) 

where x E JRn,U EJRn, and e E JRP (p ~ n) is a constant unknown parameter vector. Fur
thermore, assume that there exists an adaptive control law: 

u = u(x,xd,O) (A.39) 

o = c/>(x, x d ) (~.40) 

where XdECr and 0 EIRP, such that the error dynamics can be written: 

z= h(z, t) + B(t)9 (A.4I) 

9= _PB(t)T (8~~,t))T, P = pT > 0 (A.42) 

where W(z, t) is a suitable C 1 function and 9 = 0 - e is the parameter estimation error. 
The parameter estimate 0can be used to compensate for a constant disturbance - i.e. integral 
action. Hence, the conditions in the following theorem can be used to establish UGAS when 
backstepping with integral action. The conditions are based on Loria et al. (1999) alterna
tively Fossen et al. (200 I). This can also be proven by applying Matrosov's theorem. Bias 
estimation using Matrosov's theorem is discussed in detail by Vik and Fossen (2002). 

Theorem A.5 (UGASILES when Backstepping with Integral Action)� 
The origin ofthe system (A.41)-(A.42) is UGAS ifBT (t)B(t) is invertible for all i, P = P T >� 
0, there exist a continuous, non-decreasingfunction p : 1R+ ---> JR+ such that� 

max {llh(z, t) II, "8~~, t) II} s p(lIzlD IIzll (A.43) 

and there exist class-Koo functions O!l and 0!2 and a strictly positive real number c > 0 such 
that W(z, t) satisfy: 

O!l (11z1D ~ W(z, t) ~ 0!2(llzlD (A.44) 

8W(z, t) 8W(z, t) h( ) < _ II 11 2 (A.45)at + 8z z, t _ c z . 

If, in addition, 0!2 (8) <X 82for sufficiently small 8 then the origin is LES. 

I 

wher! 

u=-~ 

1� 
with: = 
that :ftI! 

whic« jo 



[.� 
r 
IICtion in the 
1CIeS. This is 
egral part of 
':' I under the 
All ting error 
Krasovsldi
be Slated by_: 

(A.38) 

, 
I~I 

! I, 
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(A.46) 

(A.47) 

(A.48) 

x = -a(t)x+O+u 

u = -Kpx  iJ 

iJ = px 

A.2 Lyapunov Stability of Nonautonomous Systems 

Proof. See Fossen et al. (2001).• 

Theorem A.5 implies that both z -> 0 and iJ -> 0 when t-« 00. The following example 
illustrates how a UGAS integral controller can be derived: 

Example A.3 (UGAS Integral Controller) 
Consider the non-autonomous system: 

\o.."1Or. Fur.. 
(A.39) 

(A.40) 

~. 

lilll; 
(A.49) 

(A.50) 

z = -[a(t)+Kp]z-O 

o = pz 

which is in theform (A.41)-(A.42) with W(z) = ~z2 andB =1. Since BTB =1 > 0 and; 

where 0 < aCt) :::; am ax , 0 = constant, Kp > 0, and p > O. This is a PI-controller since 

u = - Kpx - p J; x(7 )d7. Choosing z = x, the error dynamics can be written: 

(A.4l) 

(A.42)•BlOO error. 
-~ integral 
,G.AS when 

fk~-Bias 

(A.5l) 

(A.52) 

(A.53) 

1 -2
V(z, t) = W(z) +-0 

2p 
. 1-.:

V(z, t) = zz + -00 
p 

= -[aCt) + Kp]Z2 

< 0 

max {ja(t)z + Kpzl, Izl} s plzl 

with p = am ax +Kp , the equilibrium point z == 0 is UGAS according to Theorem A.5. Notice 
that the LaSalle-Yoshizawa Theorem fails for this case since: 

~ == pT > which by LaSalle-Yoshizawa only shows UGS and z(t) -> 0, but not 0 -> o. 

(A.43) 

>Osuch 

(A.44) 

(A45) 

•� 
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From a physical point of view, vessel dynamics and kinematics are most naturally derived
in the continuous-time domain using Newtonian or Lagrangian dynamics. In the imple

mentation ofa control law, it is desirable to represent the nonlinear dynamics and kinematics
in discrete time. This chapter discusses methods for discretization of linear and nonlinear
systems, numerical integration and differentiation.

B.1 Discretization of Continuous-Time Systems

This section discusses discretization oflinear state-space models with extensions to nonlinear
systems using the method of Smith (1977) .

Forward Shift Operator

For notational simplicity, let tk = kt such that x(k) = X(tk) and x(k + 1) = X(tk + h)
where h is the sampling interval. The forward shift operator z is defined by:

x(k + 1) ;= zx(k)

B.1.1 Linear State-Space Models

Consider the linear continuous-time model:

x=Ax+Bu

(B.l)

(B.2)
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Assume that u is piecewise constant over the sampling interval h and equal to u(k). Hence, 

s.r Di 

the solution of (B.2) can be written: 

. l(k+l)h 
x(k + 1) = exp(Ah)x(k) + exp(A[(k + l)h - r])Bu(k) dr (B.3) where 

kh 

which after integration yields the linear discrete-time model: 
is ( 

vector 
x(k + 1) = CPx(k) + Au(k) (B.4) 

where Mal 
<ll = exp(Ah), A = A -1(<ll - I)B (8.5) The 

Matlab:� 
The matrices <lland A can be computed in Matlab™ as:� 

[PHI,DELTA] = c2d(A, B,h) 

Consic 
Example B.l (Discretization ora 1st-Order Linear System) 
Consider the SISO linear system: 

:i; = ax+bu (8.6) 

y = ex +du (8.7) 
which 

Application of(B.3), yields: 

J 
x(k + 1) = exp(ah)x(k) + ~(exp(ah) - l)u(k) (8.8) 

a where 

y(k) = cx(k) + duCk) (8.9) 

Computation or the Transition Matrix 

The transition matrix cp can be computed numerically as: 

The e 
(8.10) discre 

Hence: 
1 1

A = A-l(cp - I)B = h + ,Ah2 + ...+ ,An-1hn +~. (B.ll)
2. n. 

Consequently, a lst-order approximation (Euler discretization) is obtained by: impli 

cp ~ 1+ Ah, A ~ Bh (8.12) 

Alternately, <ll can be computed by applying a similarity transformation: Let: 

"'" 

8.1.2 
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B.l Discretization of Continuous-Time Systems 

B.13) 

where 
exp(Ah) = diag{exp(Aih)} (B.14) 

is a diagonal matrix containing the eigenvalues Ai ofA and E is thecorresponding eigen
vector matrix. 

Matlab:� 
The transition matrix can be computed in Matlab" as:� 

[L,E]=eig(A) 
PHI=E*exp(L*h)*inv(E) 

B.l.2 Nonlinear State-Space Models 

Consider the nonlinear model: 

M v + C(v) v + D(v) v + g(1]) = Bu (B.15) 

r, = J(1])v (B.16) 

which can be expressed as a nonlinear time-invariant system: 

x= f(x, u) (B.17) 

where x = [1]T, V T]T and: 

J(1])v ] (B.18)f(x, u) = [ M-1[Bu - C(v)v - D(v)v - g(1])] 

Differentiating (B.17) with respect to time, yields: 

.. &(x, u) . af(x, u) . 
x= Ox x+ au u (B. 19) 

The effect of a zero-order-hold in the digital-to-analog converter makes u o over the 
discrete-time interval. Furthermore, the definition of the Jacobian: 

:J(x) = &(x, u) (B.20)
Ox 

implies that the nonlinear continuous equation (B.19) is reduced to a homogeneous equation: 

IIIIII~I, x = :J(x)x (B.2I) 

Let: 
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= af(x, u) I (B.22)
ax x=x(k) 

Hence, the solution of the homogeneous differential equation is: 

x = exp(J(x(O))(t - to)) x(O) (B.23) 

Integration of tbis expression over a sampling interval h, finally yields: 

x(k + 1) = x(k) + x(k) dr (B.24) 

Example B.2 (Discretization of a 2nd-Order Nonlinear System) 
Consider the SISO nonlinear system: 

Xl = X2 (B.25) 

X2 = !(X2) + u (B.26) 

where x = [Xl, xz]T is the state vector and u is the input. The Jacobian is found as: 

(B.27) 

Hence, applying a similarity transformation: 

exp(J(x(k))t) = E- I exp(At)E (B.28) 

where A is a diagonal matrix containing the eigenvectors ofJ and E is a matrix formed by 
the corresponding eigenvectors. yields: 

1exp(J(x(k))t) = [0 alk (1- exp(akt)) ] (B.29)
exp(akt ) 

where ak = a(xz(k)). Hence, 

The discrete model (B.24) can be simplified by approximating the exponential function 
to the first order, that is: 

exp(J(x(k))h) = 1+ J(x(k))h + O(hz) (B.31) 
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B.2 Numerical Integration Methods 
(B..2.2)� 

In this section numerical solutions to the nonlinear time-varying system:� 

x = f(x, u, t) (B.32) 

where the control input u is assumed to be constant over the sampling interval h (zero-order 
~ (B.l3) hold) are discussed. Four different methods will be presented. 

B.2.1 Euler's Method 

(B.24) Euler proposed the algorithm: 

x(k + 1) = x(k) + hf(x(k), u(k), tk) (B.33) 
~~I 

The global truncation error for Euler's Method is of order O(h). 
Applying Euler's method to a 2nd-order system: (B.25) 

(B.26) ± = v (B.34) 

mil + dv + kx = r (B.35)

~ 
yields: 

(B.27) 

1 d k]., v(k + 1) = v(k) + h [ -r(k) - -v(k) - -x(k) (B.36)
m m m 

x(k + 1) = x(k) + hv(k) (B.37) 
(B.28) 

It should be noted that Euler's method should only be applied to a well-damped 2nd-order 
system and not an undamped oscillator. In fact an undamped oscillator will yield an unstable rby solution as seen from Figure B.l where the circle in the upper left plot represents the stable 
region. An undamped oscillator will have eigenvalues on the imaginary axis, which clearly 
lie outside of the circle. 

(B.29) 

t Forward and Backward Euler Integration 

A stable method for the undamped 2nd-order system can be obtained by combining the for
ward and backward methods of Euler (dotted line in the upper left plot in Figure B.1). This (B.30)� 
suggests:� 

~ dr 

1 d k]Forward Euler v(k + 1) = v(k) + h -r(k) - -v(k) - -x(k) (B.38)
11 function [m m m 

l Backward Euler x(k + 1) = x(k) + hv(k + 1) (B.39)I(B31) 
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Euler� 
2� 

,/ 

/ 

.Eo 

-1 

-2 
-3 -2� -1 0� 

Re� 

RK-2 (Heun) 

2 

.Eo 
.. --.-.-1 CJ

-2� -2� 

_3L-~--'::::="~__.J�-3 
-3 -2� -1 0 -3 -2 -1 0� 

Re Re� 

Figure RI: Stability regions for the Euler, Adams-Bashford, RK-2 and RK-4 methods. 
.I 

Extension to Nonlinear Systems� 

The methods of Euler can be extended to the more general nonlinear system:� 

v = M-1 [Bu - C(v)v - D(v)v - g(l1)] (B.40) 

r, = J(l1)V (R41) 

by the following set of discrete-time equations:� I 

v(k + 1)� = v(k) + hM-1 • 
[Bu(k) - C(v(k))v(k) - D(v(k))v(k) - g(1](k))] (B.42) •

l1(k + 1) l1(k) + h [J(1](k))v(k + 1)]� (B.43) 

I 
~ 

8.2.2 Adams-8ashfortb's 2nd-Order Method 

Adams-Bashforth integration is more computationally intensive than the schemes of Euler.� 
For instance, the two-step Adams-Bashforth integration: •� 

x(k + 1) = x(k) + h [~f(X(k), u(k), tk) - ~f(X(k - 1), u(k - 1), t k-d] (B.44) 
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B.3 Numerical Differentiation 

implies that the old value: 

X(k - 1) = f(x(k -1), u(k - 1), tk-l) (BA5) 

must be stored. The global truncation error for this method is oforder 0 (h2 ) . The advantage 
with this method compared to Euler integration is seen from Figure B.l. 

B.2.3 Runge-Kutta 2nd-Order Method (Heuo's Method)� 

Heun's integration method can be written:� 

k 1 = f(x(k), u(k), tk) 
k 2 = f (x(k) + hk1, u(k), tk + h) 

(B,46) 

x(k + 1) = x(k) + (k 1 + k 2 ) 

The global truncation error for Heun's Method is oforder O(h2
) . 

B.2A Runge-Kutta 4th-Order Method� 

An extension of Heun's integration method to 4th-order is:� 

k 1 = f(x(k), u(k), tk)� 
k 2 = hf(x(k) + kI/2, u(k), tk + h/2)� 
k 3 = hf(x(k) + k2/2, u(k), tk + h/2)� (8,47)
k4 = hf(x(k) + k3/2, u(k), tk + h) 

x(k + 1) = x(k) + i(k1 + 2k2 + 2k3 + k4 ) 

The global truncation error for the RK.-4 Method is of order O(h4
) . 

B.3 Numerical Differentiation 

Numerical differentiation is usually sensitive to noisy measurements. Nevertheless, a rea
sonable estimate i]f of the time derivative r, of a signal TI can be obtained by using afiltered 
differentiation. The simplest filter is obtained by the lst-order low-pass structure: 

;.~ 

)" . ( ) -~ 1](s) (BA8)Tlj S - 1 + Ts 
."". 
• ,~' < 

~ corresponding to the continuous-time system: 

i: = ax+bu (BA9) 
". 

t y = cx+du (B.50) 
:i; 

with u = 1], Y = ilj' a = b = -1fT and c = d = 1. Using the results from Example B.l, 
the following discrete-time filter equations are obtained: 

~. 

"-". 
o 
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x(k + 1) exp(-h/T)x(k) + (exp{-h/T) -l)u(k) (B.51) 

y(k) x(k) + u(k) (B.52) 

...� 

. '," 
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The examples and computer simulations in the book is based on the Matlab™ GNC Tool
box by Fossen (2001). In order to use the Matlab™ GNC Toolbox you need Matlab 3.1,

6.0,6.1 or 6.5 from:

MATHWORKS INC

http://www.mathworks.coml

The toolbox is free of charge and can be downloaded from:

MARINE CYBERNETICS

http://www.marinecybernetics.coml

In order to use the Matlab™ GNC toolbox, several directories under .../tooJboxlgnd must
be added to your Matlab path. This is done automatically by typing:

»gnc

each time you use the toolbox. Alternatively you can add the path permanently to the Matlab
search list. The needed paths for a permanent configuration are found by opening the file
gnc.m in an editor.

How to use the Matlab GNC Toolbox

A list of the GNC toolbox commands are obtained by typing:

»help gnc

where more information on how to use the toolbox is given. You can also run several demo
files by typing:

»gncdemo
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C.I M-File Library If you , 
~ 

send an 
The toolbox directories are organized according to: 

r 
General Purpose Commands: ...Itoolboxlgnc contains general purpose m-file functions for� 

kinematic computations, dynamics, modeling, navigation, control, simulation etc.� 

Vessel Models: ...Itoolbox/gnc/vesselmodels/ contains stand-alone vessel m-files for feed
back control design and computer simulation. These models are based on articles pub TheG:" 
lished in literature (see references in the help text of the files), and industrial models system 
provided by several companies, international researchers and the author of this book. 
A list of the different models are presented by typing: ·(

»help vesselmodels ·.... 

.(
The format of the models is: 

• I[xdot,U]=model(x,ui, ... ) ·~
where xdotis the time derivative of the state vector x, Uis the speed of the vessel (op • 
tionally), and ui, is the input vector. Type 

• I 
»help model where model E {mariner, tanker, container,npsauv,etc.} 

to see the definitions of the input and output arguments. In order to simulate the models� 
you must include a numerical integration routine and store the time-series in an array.� 
Type:� 

»simdemo 

to see how this can be done. The scripts simdemol.m, simdemo2 .m, ... are user� 
editable scripts for this purpose. Copy the files to your work directory and perform the� 
necessary modifications needed for your case study.� 

Book Examples: .../toolbox/gnc/examples contains the example files used in this book. The� 
examples files make use of the GNC Toolbox commands and demonstrates how several� 
m-functions can be called. Type:� 

»help gnc/examples 

to see a list of the different example files. 

The GNC toolbox is updated on a frequent basis as indicated by the version number. This I· 
includes new m-file functionality, bug fixes and other modifications. Please use: Mat 

The 
http://www.marinecybernetics.com/ 

to download the latest version of the toolbox. Bugs and other problems can be reported to: 

bugs@marinecybernetics.com 
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:,', If you want to contribute new m-files or vessel models to be included in the toolbox, please ", send an e-mail, including the files and a short description to: 

info@marinecybernetics.com 
oosfor 
Ie. 

C.2 Simulink Library 
r iced
:spu~ The GNC Toolbox includes a Simulink library for simulation of marine vessels and control 
nodels systems. The library includes blocks for: 

•� Guidance (reference models, path planners and guidance systems) 

•� Navigation (wave filters, sensor systems, GPS and IMU integration filters) 

• Control (autopilots, DP control systems and tracking control systems)� 

I • Library blocks (kinematics, equations of motion, transformations etc.)� 

•� Models (tankers, cargo ship, rigs, underwater vehicles, propellers, rudders, wind, waves 
and currents) eI(~ 

• Examples (closed loop control systems) 

!tc.} 

oodels 
array. e3e3 e3
t Guidance Ubrary_ Examples 

~ c: 

e user e3e3
1D11bc� Navigation Models 

p, 

e3 Marine GNC Toolbox - Version 1.5 
to 11Jc Copyright (c) 2002 Marine Cybernetics 

ew:raI 
Author: Tbor I. FOlI8OD 

Control 

r� Figure C.I: The GNC Toolbox Simulink Library. 

[
This 

Matlab:� 
The GNC Simulink library is loaded from Matlab! by the following command:� 

:"." 
, 

marineGNC 
1 or by clicking on the Simulink library browser. 

t� 
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