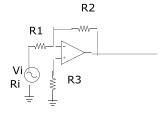

H045 Online Test

Ref489

R1=1 K Ω , R2= 10K Ω V = 10 mV

In given inverting amplifier, what is minimum voltage gain?

Α	11	В	9
С	12	D	10
	Answer		


Ref490

Non inverting amplifier , voltage gain is 20. Input 10mV P-P, 10% to 90% rise time. $3.5\mu s$. Input is increased to 1V, out put is increased from 10 to 90% & rise time is increased to 12.8 μs .

Calculate (a) Bandwidth (b) Rise time (c) Gain bandwidth product.

А	200 KHZ, 1.25μS, 2 MHZ	В	100 KHZ, 0.625μS, 1 MHZ
С	300 KHZ, 2.5μS, 3 MHZ	D	
	Answer		

Ref491

R1= 1 K Ω , R2=100 K Ω , R3= 1.57 K Ω Ri = 600 $\Omega.$ Offset current is 2 mA

Out put dc voltage is

Α	2 mV	В	0.5 mV
С	3 mV	D	1 mV
	Answer		

Ref492

Bias compensated Op-Amp, Rf = 100 K Ω , Ri = 1600 Ω , Drift V_{IO} =30 μ V/ °C. Drift I_o =300 PA/ Z. Null at 20°C . Find dc offset at 80°C.

А	236 mV	В	118mV
С	59 mV	D	30mV
	Answer		

Ref493

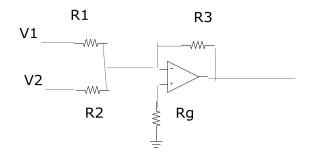
Calculate the full power bandwidth of an Op-amp which has a slew rate 0.2 V/ μ S and works with +/- 15 V power supply.

Α	9.1 KHZ	В	18 KHZ
С	27 KHZ	D	4 KHZ
	Answer		

Ref494

Noise density 15 nV/VHZ . Find noise voltage over a bandwidth 30KHz.

Α	2.6 μV rms	В	1.3 μV rms
С	3.9 μV rms	D	5.2 μV rms
	Answer		


Ref495

Op-amp circuit. The source resistance is 30 K Ω . The thermal noise due to the source resistance is 2.8 μV . The internal noise current of op-amp is 60 PA and the internal noise voltage of the op-amp is 4.1 μV .

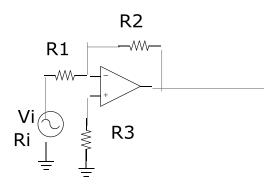
- (a) What is the total equivalent input noise voltage?
- (b) What will be the new value if bandwidth is tripled?

Α	2.7 μV, 3.2 μV	В	10.6 μV, 4.8 μV
С	5.3 μV, 9.6 μV	D	
	Answer		

Ref496

R1= 10 K Ω , R2= 4.7 K Ω , R3 =100 K Ω , Rg = 3.3 K Ω

Rs value is


А	4 ΚΩ	В	3.2 ΚΩ
С	12.8 ΚΩ	D	6.4 ΚΩ
	Answer		

Ref497

The noise voltage equation is

А	Er = √ K T Rs B	В	Er = √ 4 K T Rs B
С	Er = √ 2 K T Rs B	D	Er = √ 1.5 K T Rs B
	Answer		

Ref498

 $R1 = 4.7 \text{ K}\Omega$, $R2 = 100 \text{ K}\Omega$, $R3 = 3.3 \text{ K}\Omega$

Calculate (a) Input signal to noise ratio (b) Output signal to noise ratio

Α	66.8 dB, 57.1 dB	В	10 dB, 25 dB
С	66dB, 38 dB	D	33.4 dB, 19 dB
	Answer		

Ref499

When the phase angle is less than - 180° , the amplifier is

А	Unstable	В	Stable
С		D	
	Answer		

Ref500

If phase margin is less than 45°, the system is

Α	Critical damp	В	Underdamp
С	Over damp	D	
	Answer		