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PREFACE

This Instructor’s Solutions Manual provides answers and worked-out solutions to all end of chapter
questions and problems from chapters 1 — 15 of Physics: Principles with Applications, 7th Edition, by
Douglas C. Giancoli. At the end of the manual are grids that correlate the 6th edition questions and problems
to the 7th edition questions and problems.

We formulated the solutions so that they are, in most cases, useful both for the student and the instructor.
Accordingly, some solutions may seem to have more algebra than necessary for the instructor. Other solutions
may seem to take bigger steps than a student would normally take: e.g. simply quoting the solutions from a
quadratic equation instead of explicitly solving for them. There has been an emphasis on algebraic solutions,
with the substitution of values given as a very last step in most cases. We feel that this helps to keep the
physics of the problem foremost in the solution, rather than the numeric evaluation.

Much effort has been put into having clear problem statements, reasonable values, pedagogically sound
solutions, and accurate answers/solutions for all of the questions and problems. Working with us was a team
of five additional solvers — Karim Diff (Santa Fe College), Thomas Hemmick (Stony Brook University),
Lauren Novatne (Reedley College), Michael Ottinger (Missouri Western State University), and Trina
VanAusdal (Salt Lake Community College). Between the seven solvers we had four complete solutions for
every question and problem. From those solutions we uncovered questions about the wording of the problems,
style of the possible solutions, reasonableness of the values and framework of the questions and problems, and
then consulted with one another and Doug Giancoli until we reached what we feel is both a good statement
and a good solution for each question and problem in the text.

Many people have been involved in the production of this manual. We especially thank Doug Giancoli for

his helpful conversations. Karen Karlin at Prentice Hall has been helpful, encouraging, and patient as we have
turned our thoughts into a manual. Michael Ottinger provided solutions for every chapter, and helped in

the preparation of the final solutions for some of the questions and problems. And the solutions from

Karim Diff, Thomas Hemmick, Lauren Novatne, and Trina VanAusdal were often thought-provoking and
always appreciated.

Even with all the assistance we have had, the final responsibility for the content of this manual is ours. We
would appreciate being notified via e-mail of any errors that are discovered. We hope that you will find this
presentation of answers and solutions useful.

Bob Davis (rbdavis@taylor.edu)
Upland, IN

J. Erik Hendrickson (hendrije@uwec.edu)
Eau Claire, WI

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.






INTRODUCTION, MEASUREMENT, ESTIMATING

Responses to Questions

(a) A particular person’s foot. Merits: reproducible. Drawbacks: not accessible to the general public;
not invariable (size changes with age, time of day, etc.); not indestructible.

(b) Any person’s foot. Merits: accessible. Drawbacks: not reproducible (different people have
different size feet); not invariable (size changes with age, time of day, etc.); not indestructible.

Neither of these options would make a good standard.

The distance in miles is given to one significant figure, and the distance in kilometers is given to five
significant figures! The value in kilometers indicates more precision than really exists or than is
meaningful. The last digit represents a distance on the same order of magnitude as a car’s length!
The sign should perhaps read “7.0 mi (11 km),” where each value has the same number of
significant figures, or “7 mi (11 km),” where each value has about the same % uncertainty.

3. The number of digits you present in your answer should represent the precision with which you
know a measurement; it says very little about the accuracy of the measurement. For example, if you
measure the length of a table to great precision, but with a measuring instrument that is not
calibrated correctly, you will not measure accurately. Accuracy is a measure of how close a
measurement is to the true value.

4. If you measure the length of an object, and you report that it is “4,” you haven’t given enough
information for your answer to be useful. There is a large difference between an object that is
4 meters long and one that is 4 feet long. Units are necessary to give meaning to a numerical answer.

5. You should report a result of 8.32 cm. Your measurement had three significant figures. When you
multiply by 2, you are really multiplying by the integer 2, which is an exact value. The number of
significant figures is determined by the measurement.

The correct number of significant figures is three: sin 30.0° = 0.500.

7.  Useful assumptions include the population of the city, the fraction of people who own cars, the
average number of visits to a mechanic that each car makes in a year, the average number of weeks a
mechanic works in a year, and the average number of cars each mechanic can see in a week.

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
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Chapter 1

(a)

(b)

There are about 800,000 people in San Francisco, as estimated in 2009 by the U.S. Census
Bureau. Assume that half of them have cars. If each of these 400,000 cars needs servicing twice
a year, then there are 800,000 visits to mechanics in a year. If mechanics typically work

50 weeks a year, then about 16,000 cars would need to be seen each week. Assume that on
average, a mechanic can work on 4 cars per day, or 20 cars a week. The final estimate, then, is
800 car mechanics in San Francisco.

Answers will vary.

Responses to MisConceptual Questions

1.

(@)

(a)

(b)

(b)

(b)

@)

(e)

()

One common misconception, as indicated by answers (b) and (c), is that digital measurements
are inherently very accurate. A digital scale is only as accurate as the last digit that it displays.

The total number of digits present does not determine the accuracy, as the leading zeros in (¢)
and (d) are only placeholders. Rewriting the measurements in scientific notation shows that (d)
has two-digit accuracy, (b) and (c) have three-digit accuracy, and (a) has four-digit accuracy.
Note that since the period is shown, the zeros to the right of the numbers are significant.

The leading zeros are not significant. Rewriting this number in scientific notation shows that it
only has two significant digits.

When you add or subtract numbers, the final answer should contain no more decimal places than
the number with the fewest decimal places. Since 25.2 has one decimal place, the answer must
be rounded to one decimal place, or to 26.6.

The word “accuracy” is commonly misused by beginning students. If a student repeats a
measurement multiple times and obtains the same answer each time, it is often assumed to be
accurate. In fact, students are frequently given an “ideal” number of times to repeat the
experiment for “accuracy.” However, systematic errors may cause each measurement to be
inaccurate. A poorly working instrument may also limit the accuracy of your measurement.

This addresses misconceptions about squared units and about which factor should be in the
numerator of the conversion. This error can be avoided when students treat the units as algebraic
symbols that must be cancelled out.

When making estimates, students frequently believe that their answers are more significant than
they actually are. This question helps the student realize what an order-of-magnitude estimation
is NOT supposed to accomplish.

This addresses the fact that the generic unit symbol, like [L], does not indicate a specific
system of units.

Solutions to Problems

(a)
(b)
(©)

214 |3 significant ﬁgures|

81.60 |4 significant ﬁgures|

7.03 |3 significant ﬁgures|

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
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Introduction, Measurement, Estimating 1-3

(d 0.03 |1 significant ﬁgure|

(e) 0.0086 |2 significant figures|

H 3236 |4 significant ﬁgures|

(g) 8700 |2 significant ﬁgures|

2. (@) 1.156=[1.156x10°

(b) 21.8=[2.18x10!
(¢) 0.0068=[68x107"

(d) 328.65=|3.2865x10?

(e) 0219=|2.19x107"

0 sucfrir]
3. (@ 8.69%10* =[86,900]

(b)  9.1x10° =[9100
(¢) 88x107'=[0.88
(d) 4.76x10% =[476

(e) 3.62x107 =[0.0000362

@ (a) 14 billion years =|(1.4 X 101 years
7
(b) (1.4x10" w)(%} =[4.4%10"7 s
yr

% uncertainty = 0.25m x100% =
548 m

6. (a) % uncertainty = %x 100% = 3.636% ~
DS

(b) % uncertainty = 252 S % 100% = 0.3636% ~
S

(¢) The time of 5.5 minutes is 330 seconds.

02s

% uncertainty = x100% = 0.0606% = |0.06%

S

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
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14 Chapter 1

7. To add values with significant figures, adjust all values to be added so that their exponents are all the
same.

(9.2x10° )+ (83x10% 5)+(0.008 x 10° s) = (9.2 10> 5)+(83x10° s)+ (8 x 10° 5)

=(92+83+8)x10° s =1002x10° s ={1.00x 10> s

When you add, keep the least accurate value, so keep to the “ones” place in the last set of parentheses.

8. When you multiply, the result should have as many digits as the number with the least number of
significant digits used in the calculation.

(3.079%10% m)(0.068x 107" m) =2.094 m? =

9. The uncertainty is taken to be 0.01 m.

01 m?
- x100% = 0.637% = [1%]
1.57m

% uncertainty =

10. To find the approximate uncertainty in the volume, calculate the volume for the minimum radius and
the volume for the maximum radius. Subtract the extreme volumes. The uncertainty in the volume
is then half of this variation in volume.

_4 3 _ 4 3 _ 3
Vipecified = 3 Flipecified =3 7(0.84 m)” =2.483 m

3

Vi = 2703, = 4 7(080 m)* = 2145 m?

V 2%”3131)(_ 7[(088111) _2855111

AV = %(Vmax —Vinin) = %(2-855 m?® —2.145 m3) =0355m>
The percent uncertainty is AV 0 355 m’ x100=143 = ,

Vspeciﬁed 2-483 m?

11. To find the approximate uncertainty in the area, calculate the area for the specified radius, the
minimum radius, and the maximum radius. Subtract the extreme areas. The uncertainty in the area

is then half this variation in area. The uncertainty in the radius is assumed to be 0.1x 10* cm.
2 4 2 9 2
Aspeciﬁed = ”rspeciﬁed = 7[(31 x10 Cm) =3.019%x10" cm

A =7r’

min

12 =m(3.0x10% cm)? =2.827x10° cm?
A = Tt = 1(3.2x10* cm)? =3.217x10° cm?

=1 Aoy — Amin) =3(3.217x10” em® —2.827 x10” em?) = 0.195x10° em”

Thus the area should be quoted as |A =(3.0+£02)x 10° cm? |

12. (a) 286.6mm 286.6x107° m 0.2866 m
(b) 85uV 85x107° v 0.000085 V

(¢) 760 mg 760%107° kg 0.00076 kg| (if last zero is not significant)

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Introduction, Measurement, Estimating 1-5

(d) 621ps 621x107% s 0.0000000000621 5|
() 225nm 225%107 m 0.0000000225 m
(/) 2.0 gigavolts 2.50x10° volts 2,500,000,000 volts|

Note that in part (f') in particular, the correct number of significant digits cannot be determined when
you write the number in this format.

13. (@) 1x 10® volts 1 megavolt| =1 MV
(b)) 2x 107® meters =2 um
(c) 6x 10° days 6 kilodays| = 6 kdays
(d) 18x10° bucks =18 hbucks or 1.8 kilobucks
(e) 7TX 1077 seconds |7OO nanoseconds| =700ns or 0.7 us

1m

14.  1hectare = (1 hectare)
1 hectare

2
1.000x10* m? [3.281 ftJ 1 acre
4356x10* ft?

J =(2.471 acres

15. (a) 93 million miles = (93 10° miles)(1610 m/1 mile) =[1.5x 10! m
(b) 15x10" m=(15x10" m)(1 km/10* m)=|1.5x10® km

16. To add values with significant figures, adjust all values to be added so that their units are all the same.

180 m+1425cm+534x10° um =180 m+1.425 m+0.534 m =3.759 m =

When you add, the final result is to be no more accurate than the least accurate number used. In this
case, that is the first measurement, which is accurate to the hundredths place when expressed in meters.

17. (@ 10x107°% m=1.0x10""" m)(3937 in/l m)=(3.9%107 in
() (1.0cm) Im I atom =[1.0x10% atoms
100 cm

1.0x107% m
18. (a) (1km/h) 0621mi ) _ 651 mi/h, so the conversion factor is 0621 mi/h
1 km 1 km/h
(b) (1mJs) 38M) 308 ft/s, so the conversion factor is 328 fUs|
Im 1 m/s

0.278 m/s
lkm/h |

(¢) (1km/h) 1000 m & =0.278 m/s, so the conversion factor is
lkm )| 3600s

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
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1-6 Chapter 1

Note that if more significant figures were used in the original factors, such as 0.6214 miles per
kilometer, more significant figures could have been included in the answers.

(a) Find the distance by multiplying the speed by the time.

1.00 Iy = (2.998 x 10® m/s)(3.156x107 s) =9.462x10"° m ={9.46 x10'> m

(b) Do a unit conversion from ly to AU.

15
(1.00 ly)| 2:462x10" m TAU 1 _[631x10* AU
1.00 1y

150x10'" m

One mile is 1609 m, according to the unit conversions in the front of the textbook. Thus it is 109 m
longer than a 1500-m race. The percentage difference is calculated here.

109 m

1500 m

x100% =|7.3%)

21.  Since the meter is longer than the yard, the soccer field is longer than the football field.

1.094 yd
Esoccer - Kfootball =100.0 m x l—n’ly_looo yd =194 Yd

1

m
Csoccer ~ L footbal =100.0 m—100.0 yd x m =

Since the soccer field is 109.4 yd compared with the 100.0-yd football field, the soccer field
is longer than the football field.

. 3156x107 s 7
22. (a) #ofsecondsin 1.00 yr: 1.00 yr = (1.00 —— [=]316x10" s
g ; =0y 22010
7 9
(b) # of nanoseconds in 1.00 yr: 1.00 yr = (1.00 yr)(3'1561><10 SJ(1X110 nSJ=3.l6><1016 ns
yr s
. 1yr 3
(¢) #ofyearsin 1.00s: 1.00s=(1.00s)| —————— |=[3.17x10"" yr

3156x107 s

15
23. (a) 10 kg I proton or neutron = |1012 protons or neutrons|
1 bacterium 10727 kg
1077 k 1
(b) 0 £ proton or neutron | _ |1010 protons or neutrons|
1 DNA molecule 10727 kg

1 human

© 10 kg || 1 proton or neutron
1077 kg

] = |1029 protons or neutrons|

(@)

104 kg J[l proton or neutron

> J = |1068 protons or neutrons|
107" kg

1 Galaxy

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
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Introduction, Measurement, Estimating 1-7

[TPRL)

24. The radius of the ball can be found from the circumference (represented by “c” in the equations
below), and then the volume can be found from the radius. Finally, the mass is found from the volume
of the baseball multiplied by the density (p = mass/volume) of a nucleon.

3
- _ Sball . _ 4.3 _4_| Cball
Cpall = 27hpall = Toall =5 Voall =3 Tlal =37
2r 2
— _ Myucleon | _ Mpucleon _ Mpucleon
Misatl = Voall Pructeon = Voall (— =Voan| 57— 5 [=Voat| —— 3
nucleon 3 TTucleon %ﬂ' (%d nucleon )
’ ’ 023m )
_ 4 | Cball Myucleon _ Sball _ 1027 23 M
_3”( o0 j 4 (1 3 _mnucleon(ﬂ_d =(10""" kg) ”(10_15 )
m
37 (E d pucleon ) nucleon

=3.9x10" kg z

25. (@) 2800=28x10°=1x10° =
(b)  8630x10° =8.630x10* ~10x10* =
© 00076=76x10" ~10x107 =

@ 15.0x10° =1.5%10° ~1x10° = |10°]

26. The textbook is approximately 25 cm deep and 5 cm wide. With books on both sides of a shelf, the
shelf would need to be about 50 cm deep. If the aisle is 1.5 m wide, then about 1/4 of the floor space is
covered by shelving. The number of books on a single shelf level is then

1 book
(0.25 m)(0.05 m)

stored is as follows:

(7.0x104ﬂ (8 shelves) =6 x10° books
shelf level

27. The distance across the U.S. is about 3000 miles.
(3000 mi)(1 km/0.621 mi)(1 h/10 km) ~

%(3500 m2)[ ] =7.0x10% books. With 8 shelves of books, the total number of books

Of course, it would take more time on the clock for a runner to run across the U.S. The runner
obviously could not run for 500 hours non-stop. If he or she could run for 5 hours a day, then it would
take about 100 days to cross the country.

28. A commonly accepted measure is that a person should drink eight 8-oz. glasses of water each day.
That is about 2 quarts, or 2 liters of water per day. Approximate the lifetime as 70 years.

(70 yr)(365 d/1 yr)(2 L/1d) = |5x10* L

An NCAA-regulation football field is 360 feet long (including the end zones) and 160 feet wide,

which is about 110 meters by 50 meters, or 5500 m?. We assume the mower has a cutting width of

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
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1-8 Chapter 1

0.5 meters and that a person mowing can walk at about 4.5 km/h, which is about 3 mi/h. Thus the
distance to be walked is as follows:

_area _ 5500 m?
width 05m

=11000 m=11km

At a speed of 4.5 km/h, it will take about 11 km X =~ to mow the field.

4.5km

There are about 3x10° people in the U.S. Assume that half of them have cars, that they drive an
average of 12,000 miles per year, and that their cars get an average of 20 miles per gallon of gasoline.

(3x 108 people) ( 1 automobile ] ( 12,000 mi/auto J ( léggllo.n J ~lix10" galiyr
mi

2 people 1yr

31. In estimating the number of dentists, the assumptions and estimates needed are:
« the population of the city
« the number of patients that a dentist sees in a day
* the number of days that a dentist works in a year
* the number of times that each person visits the dentist each year
We estimate that a dentist can see 10 patients a day, that a dentist works 225 days a year, and that each
person visits the dentist twice per year.

(a) For San Francisco, the population as of 2010 was about 800,000 (according to the U.S. Census
Bureau). The number of dentists is found by the following calculation:

2 visits/ 1 1 dentist -
(8x10° People)( yrj(225 W(ilrrk days]( j =~ |700 dentists

1 person 10 visits/workday

(b) For Marion, Indiana, the population is about 30,000. The number of dentists is found by a
calculation similar to that in part (@), and would be about . There are about 40

dentists (of all types, including oral surgeons and orthodontists) listed in the 2012 Yellow Pages.

32.  Consider the diagram shown (not to scale). The balloon is a distance 4 =200 m d h
above the surface of the Earth, and the tangent line from the balloon height to the
surface of the Earth indicates the location of the horizon, a distance d away from
the balloon. Use the Pythagorean theorem.

(r+h)? = +d*> = P +2rh+h’ =1 +d?

wh+h?=d®> — d=N2rh+h’

d=2(64x10° m)(200 m)+(200 m)? =51x10* m=[5x10* m|(= 80 mi)

33. At $1,000 per day, you would earn $30,000 in the 30 days. With the other pay method, you would
get $0.01(2H) on the tth day. On the first day, you get $0.01(2H) =$0.01. On the second day,

you get $0.01(2%71) =$0.02. On the third day, you get $0.01(2°>~") = $0.04. On the 30th day, you
get $0.01(23 0_1) =$5.4x10°, which is over 5 million dollars. Get paid by the .

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
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Introduction, Measurement, Estimating 1-9

34. In the figure in the textbook, the distance d is perpendicular to the radius that is drawn approximately
vertically. Thus there is a right triangle, with legs of d and R, and a hypotenuse of R+ 4. Since

h< R, h* < 2Rh.

2
d>+R>=(R+h)?* =R>+2Rh+h* — d*>=2Rh+h* — d*>=2Rh - r=L

2h
(4400 m)* p
= - -6.5 %x10° m
2(1.5 m) -

A better measurement gives R = 6.38x10° m.

35. For you to see the Sun “disappear,” your line of sight ~  To Istsunset — d_~
to the top of the Sun must be tangent to the Earth’s Qg A —~
surface. Initially, you are lying down at point A, and
you see the first sunset. Then you stand up, elevating
your eyes by the height 4 =130 cm. While you stand, )
your line of sight is tangent to the Earth’s surface at A
point B, so that is the direction to the second sunset.

The angle 6 is the angle through which the Sun

appears to move relative to the Earth during the time

to be measured. The distance d is the distance from

your eyes when standing to point B. Earth center

To 2nd sunset .-/ ’

Use the Pythagorean theorem for the following relationship:
d*>+R*=(R+h)*> =R*+2Rh+h* — d* =2Rh+h*

The distance / is much smaller than the distance R, so h* < 2Rh which leads to d*> =~ 2Rh. We also
have from the same triangle that d/R =tané, so d = Rtan§. Combining these two relationships gives

2h
tan> 49.

d?> =2Rh=R*tan’ @, so R =

The angle 6 can be found from the height change and the radius of the Earth. The elapsed time
between the two sightings can then be found from the angle, because we know that a full revolution

takes 24 hours.

R= 2}2’ — f=tan"! /ﬁztan‘l Ln’6)=(3..66><10‘2)°
tan” @ R 638%x10° m

0 t sec

360° 24h><36OOS

—-2\0

/= o 24h><3600$ _ (3.66x107°) 24h><3600s :

360° 1h 360° 1h

. . mass units M
36. Density units=—————=|| —
volume units I
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37. (a) For the equation v = A — Bt, the units of Ar® must be the same as the units of v. So the units

of A must be the same as the units of />, which would be . Also, the units of Bt must be

the same as the units of v. So the units of B must be the same as the units of v/¢, which would

be [L/7%]
(b) For A, the SI units would be , and for B, the SI units would be .

38. (a) The quantity vt has units of (m/s)(sz) =mes, which do not match with the units of meters for x.

The quantity 2at has units (m/s2 )(s) = m/s, which also do not match with the units of meters for x.

Thus this equation [cannot be correct|.

(b)  The quantity vyt has units of (m/s)(s)=m, and Lar” has units of (m/s*)(s*) =m. Thus, since
each term has units of meters, this equation .

(¢) The quantity vyt has units of (m/s)(s)=m, and 2az* has units of (m/s*)(s?) = m. Thus, since

each term has units of meters, this equation .

39.  Using the units on each of the fundamental constants (¢, G, and %), we find the dimensions of the
Planck length. We use the values given for the fundamental constants to find the value of the Planck
length.

Gh [ /MT*[ML*/T] >Prrm 5 >
0, = |22 - === |=[L
g \/; - \/ [L/TT \/{ M7 r [ } [£]

-1 _3 2 34 D
0= /G_3h: (6.67%107"" m?® /kges )(86.63><310 keem®/S) _ 06010755 m
c (3.00x10° m/s)

Thus the order of magnitude is 107 m|
2 _ .
_cm 100% =|1x107%|. The distance of 20,000,000 m needs to be

2%x10" m

distinguishable from 20,000,002 m, which means that 8 significant figures| are needed in the distance
measurements.

40. The percentage accuracy is

41. Multiply the number of chips per wafer by the number of wafers that can be made from a cylinder.
We assume the number of chips per wafer is more accurate than 1 significant figure.

(400 chlpsj 1 wafer 250.mm _133%10° cl.nps
wafer /| 0.300 mm )\ 1 cylinder cylinder

42.  Assume that the alveoli are spherical and that the volume of a typical human lung is about 2 liters,

which is 0.002 m®. The diameter can be found from the volume of a sphere, %ﬂr3.
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3
4_3_4 3_nd
gﬂ'l’ —gﬂ'(d/z) —T

3 ;4 1/3
(3><108)7zd?=2><10_3m3 - d={wm3} =[2x10 m|

3x108 7

43. We assume that there are 40 hours of work per week and that the typist works 50 weeks out of the
year.

1 char y 1 min y 1 hour y 1 week 1 year
Ibyte 180char 60 min 40 hour 50 weeks

- [0 yer]

44. The volume of water used by the people can be calculated as follows:

3 3
(4x10" peopley| 1200 Lday |(365 days ) (1000 e | 1km | _ oo os s
4 people lyr 1L 10° cm

(1.0x10'? bytes) x =4.629x10* years

The depth of water is found by dividing the volume by the area.

-3 3 5
d =% - 428x lokml?n b =(8.76>< 107 9)(1?;“1} =876 cm/yr =
50 yr m

45.  We approximate the jar as a cylinder with a uniform cross-sectional area. In counting the jelly beans
in the top layer, we find about 25 jelly beans. Thus we estimate that one layer contains about 25 jelly
beans. In counting vertically, we see that there are about 15 rows. Thus we estimate that there

are 25%15=375=|400 jelly beans| in the jar.

1/3
46. The volume of a sphere is given by V' = %ﬂ'r3, so the radius is » = [4—) . For a 1-ton rock, the
V3

volume is calculated from the density, and then the diameter from the volume.

3
V= T)[2000 lbj{ L leo.g ft>

1T 186 1b

1/3 3 1/3
k14 3(108 ft°)
d=2r=2|— =2 —= =274ft=[3ft
SR AL

T

47. We do a “units conversion” from bytes to minutes, using the given CD reading rate.

8 bits 1s 1 min
(783.216x10° bytes)x X X =74.592 min = |75 min]
Ibyte 1.4x10° bits 60 -

48. A pencil has a diameter of about 0.7 cm. If held about 0.75 m from the eye, it can just block out the
Moon. The ratio of pencil diameter to arm length is the same as the ratio of Moon diameter to Moon
distance. From the diagram, we have the following ratios.
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distance
Moon

distance

Pencil diameter _ Moon diameter

Pencil distance  Moon distance
Pencil diameter

. . 7%107 m s
Moon diameter = ——— (Moon distance) = —— (3.8 X 10° km) = {3500 km
( )= )

Pencil distance 75m

The actual value is 3480 km.

49. To calculate the mass of water, we need to find the volume of water and then convert the volume to

mass. The volume of water is the area of the city (48 kmz) times the depth of the water (1.0 cm).

2

5 -3 .

(48 kmz)[l?kcm] (1.0 cm)(lo igj(l met;i tonJ =4.8x10° metric tons = |5><105 metric tons|
m lcm 10° kg

To find the number of gallons, convert the volume to gallons.

2
5
(48km2)[1(1)kcm] (l.Ocm)[ 1L J(Sl;ggai)=1.27x108 gal =|1x10° gal
m .

1x10° cm?®

50. The person walks 4 km/h, 12 hours each day. The radius of the Earth is about 6380 km, and the
distance around the Earth at the equator is the circumference, 27 Rg,,. We assume that the person
can “walk on water,” so ignore the existence of the oceans.

lh |(1lday) N
27(6380 km) [mj[ Dh J =835 days = |800 days

51.  The volume of the oil will be the area times the thickness. The area is 77> = 7(d /2)2.

1000 cm3( Im

3
4 IOOcmj 3
V=m(d2)* — dzz/—zz =-3><1o m
t 7(2%1071% m)

This is approximately 2 miles.

52. [ﬁj(l—yr}doo‘yoz 3%1075%

Lyr )| 3156107 s

0 0 -10
53. (a) 1.0A=(1.0Aj 0 _m ( L nm J:
1

-9
1A 07 m
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0 o107 m|[ 1fm S
(b) l.OA:(l.OAj - ( ]=1.0><10 fin

-15
1A 107" m
(3]
o
(¢ 10m=(1.0m) 11—% =[1.0x10" A
107 m

o
(d 10ly=(1.01ly) =[9.5x10%° A

15 o
9.46x10° m 1A
1y 107 m

54. Consider the diagram shown. Let ¢ represent the distance he walks upstream. Then
from the diagram find the distance across the river.

tan 60° =% — d=(tan60° = (65 strides)(ofgljtan 60° =
stride

55. (a) Note thatsin15.0° =0.259 and sin15.5° =0.267, so !
Asin@=0.267-0.259 =0.008.

0 . -3
(A—ajlooz[o'—soo}ooz (Asmejlooz[ﬂ]looz
15,

o sin @ 0.259

(b) Note that sin75.0° =0.966 and sin75.5° =0.968, so Asin&=0968-0.966 = 0.002.

o . -3
(ﬁjwo:(“ JlOOz (Asmejloo{zggl& JIOO:
7 .

0 5.0° sin@

A consequence of this result is that when you use a protractor, and you have a fixed uncertainty in the

angle (+0.5° in this case), you should measure the angles from a reference line that gives a large angle
measurement rather than a small one. Note above that the angles around 75° had only a 0.2% error in
sin 6, while the angles around 15° had a 3% error in sin 6.

56. Utilize the fact that walking totally around the Earth along the meridian would trace out a circle whose
full 360° would equal the circumference of the Earth.

. 1° 272(638x10° km) |( 0.621 mi .
1 minute =|1.15mi
( )(60 minuteJ[ 360° 1 km

57. Consider the body to be a cylinder, about 170 cm tall (= 5’7"), and about 12 cm in cross-sectional

radius (which corresponds to a 30-inch waist). The volume of a cylinder is given by the area of the
cross section times the height.

v =rh=2(012m)* (1.7 m) = 7.69%102 m® =
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58. The units for each term must be in liters, since the volume is in liters.

[units of 4.1][m]=[L] —|[units of 4.1]= L
m
. . L
[units of 0.018][year]=[L] — |[units of 0.018]=——
year

[units of 2.7] = L|

59. Divide the number of atoms by the Earth’s surface area.

number of atoms _ 6.02 102 atoms _6.02x 102 atoms —l118x10
mZ ATRZ 4 47(638%10° m)®> | m

9 atoms

This is more than a billion atoms per square meter.

60. The density is the mass divided by volume. There will be only 1 significant figure in the answer.

. mass 6g 3 3
density = = =2118 g/cm z-2 /cm
Y~ Volume 28325 em’ & £

61. Multiply the volume of a spherical universe times the density of matter, adjusted to ordinary matter.

The volume of a sphere is %ﬂr3 .

3
15
9.46x10 m] ©004)

m=pV =(1x107%° kg/m3)§;r((13.7>< 10° ly) x
=365x%10°! kg =|4x10°! kg

Solutions to Search and Learn Problems

1. Both Galileo and Copernicus built on earlier theories (by Aristotle and Ptolemy), but those new
theories explained a greater variety of phenomena. Aristotle and Ptolemy explained motion in basic
terms. Aristotle explained the basic motion of objects, and Ptolemy explained the basic motions of
astronomical bodies. Both Galileo and Copernicus took those explanations of motion to a new level.
Galileo developed explanations that would apply in the absence of friction. Copernicus’s Sun-centered
theory explained other phenomena that Ptolemy’s model did not (such as the phases of Venus).

2. From Example 1-7, the thickness of a page of this book is about 6x10™ m. The wavelength of

orange krypton-86 light is found from the fact that 1,650,763.73 wavelengths of that light is the
definition of the meter.

-5
1 page[6 x10 mJ{ 1,650,763.73 wavelengthsj =99 wavelengths = |100 wavelengths

1 page I m
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3.

The original definition of the meter was that 1 meter was one ten-millionth of the distance from the
Earth’s equator to either pole. The distance from the equator to the pole would be one-fourth of the
circumference of a perfectly spherical Earth. Thus the circumference would be 40 million meters:

C=4x10" m| We use the circumference to find the radius.
7
C=27zr%r=2£=m= 637x10° m
V4

2r

The value in the front of the textbook is 6.38x10° m.

We use values from Table 1-3.

2
Mhuman — 10 kg :
MpNA 107" kg
molecule

The surface area of a sphere is given by 472r%, and the volume of a sphere is given by %ﬂr3 .

(a) AEanh — 47[R]%Zarth _ Réar‘th — (6~38X1O3 km)2 _

farth _ L ——=[134
Avtoon  4TRZ0on  Rioon  (1.74%10% km)

3
o Ve 37Rewh R _ (638X10° km)®

= ——=[493
MMoon 2 7Rytoon  Ritoon  (1.74x10° km)
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DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

Responses to Questions

A car speedometer measures only speed. It does not give any information about the direction, so it
does not measure velocity.

2. Ifthe velocity of an object is constant, then the speed and the direction of travel must also be constant.
If that is the case, then the average velocity is the same as the instantaneous velocity, because nothing
about its velocity is changing. The ratio of displacement to elapsed time will not be changing, no
matter the actual displacement or time interval used for the measurement.

3. There is no general relationship between the magnitude of speed and the magnitude of acceleration.
For example, one object may have a large but constant speed. The acceleration of that object is then
zero. Another object may have a small speed but be gaining speed and therefore have a positive
acceleration. So in this case the object with the greater speed has the lesser acceleration.

Consider two objects that are dropped from rest at different times. If we ignore air resistance, then the
object dropped first will always have a greater speed than the object dropped second, but both will

have the same acceleration of 9.80 m/s”.

4. The accelerations of the motorcycle and the bicycle are the same, assuming that both objects travel in a
straight line. Acceleration is the change in velocity divided by the change in time. The magnitude of
the change in velocity in each case is the same, 10 km/h, so over the same time interval the
accelerations will be equal.

Yes. For example, a car that is traveling northward and slowing down has a northward velocity and a
southward acceleration.

6. The velocity of an object can be negative when its acceleration is positive. If we define the positive
direction to be to the right, then an object traveling to the left that is having a reduction in speed will
have a negative velocity with a positive acceleration.

If again we define the positive direction to be to the right, then an object traveling to the right that is
having a reduction in speed will have a positive velocity and a negative acceleration.
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10.

—_
—

12.

14.

15.

If north is defined as the positive direction, then an object traveling to the south and increasing in
speed has both a negative velocity and a negative acceleration. Or if up is defined as the positive
direction, then an object falling due to gravity has both a negative velocity and a negative acceleration.

Yes. Remember that acceleration is a change in velocity per unit time, or a rate of change in velocity.
So velocity can be increasing while the rate of increase goes down. For example, suppose a car is
traveling at 40 km/h and one second later is going 50 km/h. One second after that, the car’s speed is

55 km/h. The car’s speed was increasing the entire time, but its acceleration in the second time interval
was lower than in the first time interval. Thus its acceleration was decreasing even as the speed was
increasing.

Another example would be an object falling WITH air resistance. Let the downward direction be
positive. As the object falls, it gains speed, and the air resistance increases. As the air resistance
increases, the acceleration of the falling object decreases, and it gains speed less quickly the longer it
falls.

If the two cars emerge side by side, then the one moving faster is passing the other one. Thus car A is
passing car B. With the acceleration data given for the problem, the ensuing motion would be that car A
would pull away from car B for a time, but eventually car B would catch up to and pass car A.

If there were no air resistance, the ball’s only acceleration during flight would be the acceleration due
to gravity, so the ball would land in the catcher’s mitt with the same speed it had when it left the bat,
120 km/h. Since the acceleration is the same through the entire flight, the time for the ball’s speed to
change from 120 kim/h to 0 on the way up is the same as the time for its speed to change from 0 to
120 km/h on the way down. In both cases the ball has the same magnitude of displacement.

(a) [If air resistance is negligible, the acceleration of a freely falling object stays the same as the

object falls toward the ground. That acceleration is 9.80 m/s>. Note that the object’s speed
increases, but since that speed increases at a constant rate, the acceleration is constant.

(b) In the presence of air resistance, the acceleration decreases. Air resistance increases as speed
increases. If the object falls far enough, the acceleration will go to zero and the velocity will
become constant. That velocity is often called the terminal velocity.

Average speed is the displacement divided by the time. Since the distances from A to B and from B to
C are equal, you spend more time traveling at 70 km/h than at 90 km/h, so your average speed should
be less than 80 km/h. If the distance from A to B (or B to C) is x km, then the total distance traveled is
2x. The total time required to travel this distance is x/70 plus x/90. Then

S_d 2x_ 2(90)(70)

= = =78.75 km/h = 79 km/h.
t  x/70+x/90  90+70

Yes. For example, a rock thrown straight up in the air has a constant, nonzero acceleration due to
gravity for its entire flight. However, at the highest point it momentarily has zero velocity. A car, at the
moment it starts moving from rest, has zero velocity and nonzero acceleration.

Yes. Any time the velocity is constant, the acceleration is zero. For example, a car traveling at a
constant 90 km/h in a straight line has nonzero velocity and zero acceleration.

A rock falling from a cliff has a constant acceleration IF we neglect air resistance. An elevator moving
from the second floor to the fifth floor making stops along the way does NOT have a constant
acceleration. Its acceleration will change in magnitude and direction as the elevator starts and stops.
The dish resting on a table has a constant (zero) acceleration.
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16. The slope of the position versus time curve is the object’s velocity. The object starts at the origin with
a constant velocity (and therefore zero acceleration), which it maintains for about 20 s. For the next
10 s, the positive curvature of the graph indicates the object has a positive acceleration; its speed is
increasing. From 30 s to 45 s, the graph has a negative curvature; the object uniformly slows to a stop,
changes direction, and then moves backwards with increasing speed. During this time interval, the
acceleration is negative, since the object is slowing down while traveling in the positive direction and
then speeding up while traveling in the negative direction. For the final 5 s shown, the object continues
moving in the negative direction but slows down, which gives it a positive acceleration. During the
50 s shown, the object travels from the origin to a point 20 m away, and then back 10 m to end up 10 m
from the starting position.

17. Initially, the object moves in the positive direction with a constant acceleration, until about ¢t =45 s,

when it has a velocity of about 37 m/s in the positive direction. The acceleration then decreases,
reaching an instantaneous acceleration of 0 at about # = 50 s, when the object has its maximum speed
of about 38 m/s. The object then begins to slow down but continues to move in the positive direction.
The object stops moving at £ = 90 s and stays at rest until about # = 108 s. Then the object begins to
move in the positive direction again, at first with a larger acceleration, and then with a lesser acceleration.
At the end of the recorded motion, the object is still moving to the right and gaining speed.

Responses to MisConceptual Questions
1. (a,b,c,d, e f,g) Allofthese actions should be a part of solving physics problems.

2. (d) Itis acommon misconception that a positive acceleration always increases the speed, as in
(b) and (c). However, when the velocity and acceleration are in opposite directions, the speed
will decrease.

3. (d) Since the velocity and acceleration are in opposite directions, the object will slow to a stop.
However, since the acceleration remains constant, it will stop only momentarily before moving
toward the left.

4. (c¢) Students commonly confuse the concepts of velocity and acceleration in free-fall motion. At the
highest point in the trajectory, the velocity is changing from positive (upward) to negative
(downward) and therefore passes through zero. This changing velocity is due to a constant
downward acceleration.

5. (a) Since the distance between the rocks increases with time, a common misconception is that the
velocities are increasing at different rates. However, both rocks fall under the influence of
gravity, so their velocities increase at the same rate.

6. (c¢) Since the distances are the same, a common error is to assume that the average speed will be
halfway between the two speeds, or 40 km/h. However, it takes the car much longer to travel the
4 km at 30 km/h than at 50 km/h. Since more time is spent at 30 km/h, the average speed will be
closer to 30 km/h than to 50 km/h.

7. (¢) A common misconception is that the acceleration of an object in free fall depends upon the
motion of the object. If there is no air resistance, the accelerations for the two balls have the
same magnitude and direction throughout both of their flights.

8. (b, ¢) Each of the given equations is based on Eqs. 2—11a—d. Answer (a) has the acceleration replaced
properly with —g, but the initial velocity is downward and as such should be negative. Answer (d) is
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incorrect because the initial velocity has been inserted for the average velocity. Answers (b) and (c)
have the correct signs for each variable and the known values are inserted properly.

9. (a) Increasing speed means that the slope must be getting steeper over time. In graphs (b) and (e),
the slope remains constant, so these are cars moving at constant speed. In graph (¢), as time
increases x decreases. However, the rate at which it decreases is also decreasing. This is a car
slowing down. In graph (d), the car is moving away from the origin, but again it is slowing
down. The only graph in which the slope is increasing with time is graph (a).

Solutions to Problems

1. The distance of travel (displacement) can be found by rearranging Eq. 2-2 for the average velocity.
Also note that the units of the velocity and the time are not the same, so the speed units will be
converted.

D=Ax/At — Ax=0At=(95 km/h)(%lol; j(z.o s)=0.053 km =
S

2. The average speed is given by Eq. 2—1, using d to represent distance traveled.

U =d/At =235km/2.75 h =|85.5 km/h

3. The average velocity is given by Eq. 2-2.

ﬁzﬂz8.50m—4.80m:3.7cm:0.57cm/S
At 4.5s—(-2.0s) 6.5s

|The average speed cannot be calculated.| To calculate the average speed, we would need to know the
actual distance traveled, and it is not given. We only have the displacement.

4. The average velocity is given by Eq. 2-2.

17_&_ —42cm-84cm -12.6cm

= —4.1cm/s
At 6.1s—3.0s 3.1s

The negative sign indicates the direction.
5. The time of travel can be found by rearranging the average velocity equation.

V=MAx/At — At=Ax/0=(3.5km)/(25km/h)=0.14 h|=8.4 min

6. (a) The speed of sound is intimated in the problem as 1 mile per 5 seconds. The speed is calculated
as follows:

distance 1mi)( 1610 m
speed=———=| — =322m/5z-300m/s

time 1mi

() The speed of 322 m/s would imply the sound traveling a distance of 966 meters (which is
approximately 1 km) in 3 seconds. So the rule could be approximated as |1 km every 3 seconds)

7. The time for the first part of the trip is calculated from the initial speed and the first distance, using d to
represent distance.

180 km

————=1.895h =113.7 min
95 km/h

Ay Y
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The time for the second part of the trip is now calculated.
Aty = Aty — A =450 —1.895h =2.605h =156.3 min

The distance for the second part of the trip is calculated from the average speed for that part of the trip
and the time for that part of the trip.
d
D, = j - dy =D,At, = (65 km/h)(2.605 h) =169.3 km =170 km
2

(a) The total distance is then d, ;) =d; +d, =180 km+169.3 km =349.3 km =|350 km |

(b) The average speed is NOT the average of the two speeds. Use the definition of average speed,
Eq. 2-1.
diorr _ 349.3 km

=77.62 km/h = -78 km/h
JAY 45h

’D:

8. The distance traveled is 38 m+%(38 m) =57 m, and the displacement is 38 m —%(38 m)=19 m. The
total time is 9.0 s+1.8 s=10.8 s.

distance ~~ 57m _ S3mis

a) Average speed= = =
@ 8C P ime clapsed 1085

_ displacement _ 19m

=[1.8 m/s

b)  Average velocity=v,,, = = =
©) £ Y= P time elapsed 10.8s

g

9. The distance traveled is 3200 m (8 laps X 400 m/lap). That distance probably has either 3 or 4

significant figures, since the track distance is probably known to at least the nearest meter for
competition purposes. The displacement is 0, because the ending point is the same as the starting point.

(a) Average speed = 4. w(l mlnj =13.68 m/s

At 145min\ 60 s
(b) Average velocity =0 = Ax/At = m

10. The average speed is the distance divided by the time.

_d (1x10°km [ lyr 1d s 3
D="= =1.141x10 km/hz-lxlo km/h
t [ ][365.25dj(24h]

Lyr

Both objects will have the same time of travel. If the truck travels a distance d then the distance

truck »

the car travels will be d,, = d;, +210 m. Using the equation for average speed, U = d/At, solve for

car
time, and equate the two times.

A[:dtm—‘:k:dc_ﬁf dtruCk :dtruck+210m
ﬁtruck acar 75 km/h 95 km/h
(75 km/h)

=787.5m.

Solving for d ives d =210 m
g truck £ truck ( )(95km/h—75] 1)

The time of travel is

d . i .
Ar = —tuck 787.5m (60 mln)=0.63 m1n=37.8s:@
oo 1 75,000mm )\ 1h
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12.

13.

14.

15.

Also note that Af =

j =0.63min =37.8s.

D, 95,000 m/h lh

car

ey _(787.5 m+210 mj(60 min

ALTERNATE SOLUTION:

The speed of the car relative to the truck is 95 km/h —75 km/h = 20 km/h. In the reference frame of the
truck, the car must travel 210 m to catch it.

t:0.21km 3600 s —3785
20km/h\ 1h

The distance traveled is 500 km (250 km outgoing, 250 km return, keep 2 significant figures). The
displacement (Ax) is 0 because the ending point is the same as the starting point.

To find the average speed, we need the distance traveled (500 km) and the total time elapsed.

Ax;
During the outgoing portion, U, = ﬂ, so Aty = —1= 250 km =2.632 h. During the return portion,
Ay v 95km/h
Ax
D, = &, so Aty = =z 250 km =4.545 h. Thus the total time, including lunch, is
At, v, 55km/h

Aty = A + Aty on + At =8.177 h.

Axtotal — 500 km —
Aty 8.177h

V= 61 km/h

To find the average velocity, use the displacement and the elapsed time.

U =Ax/At=0

Since the locomotives have the same speed, they each travel half the distance, 4.25 km. Find the time
of travel from the average speed.

d d  425km 60 min
=L a=So A2 o4 h| M)y 645 min = [1.6 min| = 99
A 7 155 km/h ( Ih j min ~[1.6 min| ~ 99

N}

t

(a) The area between the concentric circles is equal to the length times the width of the spiral path.

(R} —R?)  7[(0.058 m)> —(0.025m)?] 3
ARZ —mRP =wl — /22 10— =5.378%10 mz-5400m
> w 1.6x10° m

2m

1s 1 min
b) 5378x10°m —— |=74.69 min = -75 min

The average speed of sound is given by v, = Ax/At, so the time for the sound to travel from the

end of the lane back to the bowler is Aty 4 = i = 165m
L, 340 m/s

sound

oun

=4.85x1072 5. Thus the time for the

ball to travel from the bowler to the end of the lane is given by A# ) = At,y — At

2.805—4.85x1072 s =2.7515s. The speed of the ball is as follows:

Vpatt = A _165m o o069 s = [6.00 ms

Aty 275155

sound —
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Describing Motion: Kinematics in One Dimension 2-7

16.  For the car to pass the train, the car must travel the length of the train AND the distance the train
travels. The distance the car travels can thus be written as either d,, t =(95 km/h)t or

dear = izain + Vgain? =1.30 km + (75 km/h)z. To solve for the time, equate these two expressions for
the distance the car travels.

1.30 km
95 km/h)t=130km+(75km/h)t - t=————=0.065h =({3.9 mi
( ) m+( ) ot

- vcar

Note that this is the same as calculating from the reference frame of the train, in which the car is
moving at 20 km/h and must travel the length of the train.

The distance the car travels during this time is d = (95 km/h)(0.065 h) =6.175 km = .

If the train is traveling in the opposite direction from the car, then the car must travel the length of the
train MINUS the distance the train travels. Thus the distance the car travels can be written as either
deae = (95 kmv/h)t or d,, =1.30 km— (75 km/h)z. To solve for the time, equate these two expressions

for the distance the car travels.
_ 130km

= =765%x10" h=[28s
170 km/h

(95 km/h)t =1.30 km— (75 km/h)t  — ¢

The distance the car travels during this time is d = (95 km/h)(7.65 x 1073 h)=10.73 km|.

17. The average acceleration is found from Eq. 2—4.

Av_ 95kmh—0kmh U knﬂh){l?(l)gnﬂ(%lo}(l) j
aq=—-= = =|6.1m/s
At 43s 43s

. . . — Av 9.00m/s—0.00 m/s >
18. (a) The average acceleration of the sprinter is a =— = =16.52 m/s”|.
@ g p N e =[e.s2 mis?]

(b) We change the units for the acceleration.
2
1k
7= (652 m/s>)| Ak |[ 36008} g 45 10% km/h?
1000 m 1h

19.  The initial velocity of the car is the average velocity of the car before it accelerates.
_ Ax 120m
V=—=
At 50s

=24m/S:UO

The final velocity is v =0, and the time to stop is 4.0 s. Use Eq. 2—11a to find the acceleration.
v-vy 0-24m/s

v=yytat — a= - 40 =-6.0 m/s’
Os

. .o lg
Thus the magnitude of the acceleration is 6.0 m/s>|, or (6.0 m/sz)(—j =10.61 g’s|.
S0 ) l0s1e

20. We assume that the speedometer can read to the nearest km/h, so the value of 120 km/h has three
significant digits. The time can be found from the average acceleration, a = Av/At.
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2-8 Chapter 2

(55 km/h)(lm/sj
=8.488s=(8.5s

2 A0 _ 120 km/h—65 kivh _ 3.6 km/h
a 1.8 m/s? 1.8 m/s?
21. (a) poAx_38m-25m =
At 200s-3.0s
_ Av 45.0m/s—11.0m/s 5
b === =2.00 m/s
) == T 005 305

22.  The acceleration can be found from Eq. 2—11c.

2 .2 2
2 2 (2 ) 0—(28 m/s) 2
V=0 +2a(x—x - a= = =-—4.5rn/s
0 ( O) Z(X—XO) 2(88 m) _

. Lo - 21 -14
23. By definition, the acceleration is a = V"% _ m/6s 0 m/s =1.167 m/s® = .
t 0Os

The distance of travel can be found from Eq. 2—11b.
x—xo =yt +Lat® = (14 m/s)(6.0 5)+1(1.167 m/s*)(6.0 5)* =105 m =
It can also be found from Eq. 2—7 and Eq. 2-8.

oy 14 m/s +21
x—x0=qu=“°20At= nﬂs; M5 (6.05) =105 m =[110 m]

24. Assume that the plane starts from rest. The distance is found by solving Eq. 2-11c¢ for x—x.

22 2
V=0 +2a(x—x,) — x—xp=2 : Y% _ S8 =0 42 m=[2.0x102 m
a

2(3.0 m/s?)

25.  For the baseball, vy =0, x—x, =3.5m, and the final speed of the baseball (during the throwing
motion) is v =43 m/s. The acceleration is found from Eq. 2—11c.

2 2 2
_ 4 —
V=02 +2a(x—xg) — a=— % _BW=0_ 50 2~ [260 mis
2(x—xp) 2(3.5m)

26. The sprinter starts from rest. The average acceleration is found from Eq. 2—11c.

22 2
V=02 +2a(x—x) — a=—"t _ASW)7 050002 [3.67 mis?
2x-x))  2(18.0m)

Her elapsed time is found by solving Eq. 2—11a for time.
_v-yy 11.5m/s-0

=[3.13s
a 3.674 m/s’

U:U()+at -t

27. The words “slows down uniformly” imply that the car has a constant acceleration. The distance of
travel is found from combining Eqgs. 2—7 and 2-8.

ey = UO;vt=[28'0m/;+0m/SJ(8.OOS)=

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Describing Motion: Kinematics in One Dimension 2-9

The final velocity of the car is zero. The initial velocity is found from Eq. 2—11c with v =0 and
solving for 1. Note that the acceleration is negative.

V=08 +2a(x—xp) — Dy =y0° —2a(x—xp) =y0—2(~4.00 m/s>)(65 m) =[23 ms|

29. The final velocity of the driver is zero. The acceleration is found from Eq. 2-11c with ¥ =0 and
solving for a.

, o-{(% km/h)(

mmn}[lhﬂz
tkm J\36008)] _ 4350mis® — |a|z

_v-u
2(x =) 2(0.80 m)
. 4352 m/s’
Converting to “g’s”: |a|=————— =144 g’s|.
i (9.80 m/s>)/g

30. (a) The final velocity of the car is 0. The distance is found from Eq. 2—11c¢ with an acceleration of
a =-0.50 m/s> and an initial velocity of 85 km/h.

, 0{(75 km/h)[

2
IOOOmj( 1h ﬂ
_ 1km )| 3600
. =434 m = [430 m]

2a 2(=0.50 m/s?)

— X

() The time to stop is found from Eq. 2—11a.

0 {(75 km/h)(

IOOOmj( 1h H
_ 1km )| 3600
= _ =41.67s=[425]

t= = 5
a (=0.50 m/s?)

(¢) Take xy=x(t=0)=0. Use Eq. 2-11b, with a =-0.50 m/s? and an initial velocity of 75 km/h.
The first second is from £ =0s to # =1s, and the fifth second is from t=4s to t=5s.

1m/s

x(0)=0; x(1)=0+(75 km/h)[m

x(1)— x(0) = 20.58 m =

)(1 $)+1(-0.50 m/s®)(15)* =20.58m  —

1m/s
x(4)=0+(75 km/h)[mJ (45)+1(-0.50 m/s®)(45)* =79.33m
x(5) =0+(75 km/h) [%] (55)+1(-0.50 m/s*)(55)* =97.92 m

x(5)—x(4)=97.92m-79.33m=18.59 m =

31. The origin is the location of the car at the beginning of the reaction time. The initial speed of the car is

(95 km/h) 1000m )t _1h =26.39 m/s. The location where the brakes are applied is found from
1 km 3600 s

the equation for motion at constant velocity.
Xo =Uptr =(26.39 m/s)(0.40 s) =10.56 m

This is now the starting location for the application of the brakes. In each case, the final speed is 0.
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2-10 Chapter 2

(a) Solve Eq. 2—11c for the final location.

v? 205 +2a(x—xy) —

2.2 _ 2
¥ =g+ 2a”° =10.56m+%=126.63mz

(b) Solve Eq. 2—11c for the final location with the second acceleration.

2_ .2 _ 2
x=x0+v 3 Y% =10.56m+%:
a —6.0 m/s

Calculate the distance that the car travels during the reaction time and the deceleration.
Ax) = YyAt = (18.0 m/s)(0.350s) = 6.3 m
V' -1} 0—(18.0 m/s)>

vzzu§+2an2 - Ax, = = > =444 m
2a 2(-3.65 m/s)

Ax=63m+444m=50.7m

Since she is only 20.0 m from the intersection, she will NOT be able to stop in time. She will be 30.7 m|
ast the intersection.|

33. Use the information for the first 180 m to find the acceleration and the information for the full motion
to find the final velocity. For the first segment, the train has vy =0 m/s, v =18 m/s, and a

displacement of x; —x, =180 m. Find the acceleration from Eq. 2—-11c.

ol -v; (18 m/s)> -0

1)12=Ug+2a(x1—x0) - a= =0.90 m/s?

Find the speed of the train after it has traveled the total distance (total displacement of
Xy — Xy =255 m) using Eq. 2-11c.

V2 =08 +2a(xs —x0) = Dy =AJUF +2a(x, — %) =1/2(0.90 m/s)(255 m) =

34. Calculate the acceleration from the velocity—time data using Eq. 2—11a, and then use Eq. 2—-11b to
calculate the displacement at =2.0s and ¢ =6.0s. The initial velocity is vy = 65 m/s.

v-v, 162 m/s—85 m/s
t 10.0s
x(6.08) = x(2.05) =[(xy + (6.0 5) +%a(6.0 s)%) - (xp +15(2.05) +%a(2.0 $)H)]

a= =7.7 m/s? X=X +l)0t+%at2 -

=1y(6.05-2.05)+14[(6.05)” —(2.05)°]= (85 m/s)(4.0 5) +1 (7.7 m/s*)(325%)

=463.2m:

35. During the final part of the race, the runner must have a displacement of 1200 m in a time of 180 s
(3.0 min). Assume that the starting speed for the final part is the same as the average speed thus far.
_ Ax  8800m
v=—o

- —5432m/s=1,
At (27x60) s
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Describing Motion: Kinematics in One Dimension 2-11

The runner will accomplish this by accelerating from speed v, to speed v for ¢ seconds, covering a
distance d;, and then running at a constant speed of v for (180—¢) seconds, covering a distance d,.
We have these relationships from Eq. 2—11a and Eq. 2-11b.

v=yy+at dy=vt+iar® d, =v(180-1)= (v, +ar)(180-1)
1200 m = d, +d, = vyt +Lat” + (v +ar)(180-1) — 1200 m =1800, +180at—Lar® -

1200 m = (180 5)(5.432 m/s) + (180 $)(0.20 m/s* )t = £(0.20 m/s*)* —

| 3654362 —4(0.10)(222.24)
B 2(0.10)

Since we must have ¢ <180 s, the solution is .

36. (a) The train’s constant speed is V,;, = 5.0 m/s, and the location of the empty box car as a function

0.1062 =36 +22224=0 — ¢ =353.75,6.28s

of time is given by X, = Ugain? = (5.0 m/s)¢. The fugitive has vy =0 m/s and a =1.4 m/s?
until his final speed is 6.0 m/s. The elapsed time during the acceleration is

_v-1y _6.0m/s
a 14ms

run. The first possibility to consider is, “Can the fugitive catch the empty box car before he
reaches his maximum speed?” During the fugitive’s acceleration, his location as a function of

=4.286 s. Let the origin be the location of the fugitive when he starts to

acc

time is given by Eq. 2-11b, Xpygiiyve = X + Uyt +%at2 =0+0 +%(l.4 rr1/s2)t2. For him to catch

the train, we must have Xy, = Xgiive — (5.0 m/s)r = %(1 4 m/s*)2. The solutions are
t=0s, 7.1s. Thus the fugitive cannot catch the car during his 4.286 s of acceleration.

Now the equation of motion of the fugitive changes. After the 4.286 s of acceleration, he runs
with a constant speed of 6.0 m/s. Thus his location is now given (for times ¢ > 5s) by the

following:
= %(1.4 m/s?)(4.286 5)? +(6.0 m/s)(r —4.286 s) = (6.0 m/s)r —12.86 m
So now, for the fugitive to catch the train, we again set the locations equal.

Yiggin = Xgitve = (SOM/S) =(6.0m/s) 1286 m — 1=1286s=135]

xfugitive

() The distance traveled to reach the box car is given by the following:

Xpugitive ( =15.0 5) = (6.0 m/s)(12.86 5) ~12.86 m =

37. For the runners to cross the finish line side-by-side, they must both reach the finish line in the same
amount of time from their current positions. Take Mary’s current location as the origin. Use Eq. 2—11b.

For Sally:  22=5.0+5.06+1(-040)> — *-25(+85=0 —

25+4/25% —4(85
t= @) _ 4059 s, 20.94 s

2

The first time is the time she first crosses the finish line, so that is the time to be used for the problem.
Now find Mary’s acceleration so that she crosses the finish line in that same amount of time.

22-4r 22-4(4.
ForMary: 22=0+4r+ia’ — a==""= (4059 _[0.70 ms?]

1 1 2
Lt 1(4.059)
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38. Define the origin to be the location where the speeder passes the police car. Start a timer at the instant
that the speeder passes the police car and find another time that both cars have the same displacement
from the origin.

For the speeder, traveling with a constant speed, the displacement is given by the following:
1 m/s

Ax, = vt = (135 km/h)| ———
s =0t =( )(3.6km/h

J(r) =(37.5)m

For the police car, the displacement is given by two components. The first part is the distance traveled
at the initially constant speed during the 1 second of reaction time.

1 m/s

Ax >
3.6 km/h

o1 = Uy (1.005) = (95 km/h)[

)(1.00 s)=26.39 m
The second part of the police car displacement is that during the accelerated motion, which lasts for
(t—1.00) s. So this second part of the police car displacement, using Eq. 2—11b, is given as follows:
Ax,y =, (¢ =1.00)+ L a, (1-1.00)* =[(26.39 m/s)(t ~1.00) +1(2.60 m/s*)(¢ —1.00)* | m
So the total police car displacement is the following:
Ax, = Axy; +Ax; =(26.39+26.39(¢—1.00) +1.30(¢ -1.00)*) m

Now set the two displacements equal and solve for the time.

26.39+26.39(¢—1.00)+1.30(¢—1.00)> =37.5¢ — ¢*>—10.55¢+1.00=0

10.55++/(10.55)% — 4.00
t= 1959 =9.57x107 s,

2

The answer that is approximately 0 s corresponds to the fact that both vehicles had the same
displacement of zero when the time was 0. The reason it is not exactly zero is rounding of previous
values. The answer of 10.5 s is the time for the police car to overtake the speeder.

as a check on the answer, the speeder travels Ax, =(37.5 m/s)(10.5 s) =394 m, and the police car
travels Ax, =[26.39+26.39(9.5) +1.30(9.5)* 1 m =394 m.

39. Choose downward to be the positive direction, and take y, =0 at the top of the cliff. The initial

velocity is U, =0, and the acceleration is @ =9.80 m/s>. The displacement is found from Eq. 2-11b,
with x replaced by y.

y=yo+yt+ta® - y-0=0+1980m/s)(3555)° — y=[61.8m]

40. Choose downward to be the positive direction, and take y, =0 to be at the top of the Empire State
Building. The initial velocity is v, = 0, and the acceleration is a =9.80 m/s?.

(a) The elapsed time can be found from Eq. 2—11b, with x replaced by y.

, 2y [2(380 m)
y—yo =t +tar® - 1= L= |22 —8806s~[8.8 5
02 a  \9.80 m/s2

(b) The final velocity can be found from Eq. 2—11a.
V=1 +at =0+(9.80 m/s>)(8.806 s) =
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41. Choose upward to be the positive direction, and take y, =0 to be the height from which the ball was

thrown. The acceleration is a =—9.80 m/s>. The displacement upon catching the ball is 0, assuming
it was caught at the same height from which it was thrown. The starting speed can be found from
Eq. 2-11b, with x replaced by y.

y=yp+yt+ia®=0 -

- Yo —Lar?
U =yy% =—Lar=-1(-9.80 m/s?)(3.45) =16.66 m/s = [17 ms]

The height can be calculated from Eq. 2—11c¢, with a final velocity of v =0 at the top of the path.

2 2 2

s v -0 0—(16.66 m/s)
v =5 +2a(y-y)) = Y=yt =0+ =14 m|

0 0 " 24 2(-9.80 m/s?)

42.  Choose upward to be the positive direction, and take y, =0 to be at the height where the ball was hit.
For the upward path, vy =25 m/s, v =0 at the top of the path, and a =—-9.80 m/s?.
(a) The displacement can be found from Eq. 2—11c, with x replaced by y.

2 2 2
2 2 1 Uy 0—(25 m/s)
vV =0y+2a(y-yy) — y=y+ =0+ :-32m
0 0 " 24 2(-9.80 m/s?)

() The time of flight can be found from Eq. 2—11b, with x replaced by y, using a displacement of 0
for the displacement of the ball returning to the height from which it was hit.

y=yp+yt+ta® =0 - twy+lan=0 -

t:()’tzz_ﬂ: 2(25 m/s) 1y

a -980m/s>
The result of £ =0 s is the time for the original displacement of zero (when the ball was hit), and the
result of £= 5.1 s is the time to return to the original displacement. Thus the answer is £ = 5.1 seconds.

(c¢) This is an estimate primarily because the effects of the air have been ignored. There is a non-
trivial amount of air effect on a baseball as it moves through the air—that’s why pitches like the
“curve ball” work, for example. So ignoring the effects of air makes this an estimate. Another
effect is that the problem says “almost” straight up, but the problem was solved as if the initial
velocity was perfectly upward. Finally, we assume that the ball was caught at the same height as
which it was hit. That was not stated in the problem either, so that is an estimate.

43.  Choose downward to be the positive direction, and take y, =0 to be at the maximum height of the
kangaroo. Consider just the downward motion of the kangaroo. Then the displacement is y =1.45m,

the acceleration is a = 9.80 m/s”, and the initial velocity is vy = 0. Use Eq. 2-11b to calculate the
time for the kangaroo to fall back to the ground. The total time is then twice the falling time.

/2
y=y0+l)0t+%a12=0 - yz%at2 =t = 7)/ -

2y 2(1.45 m)
o = 2,2 =2, |2 709 ]
total a (9.80 m/s?) [L095]
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Choose upward to be the positive direction, and take y, =0 to be at the floor level, where the jump

45.

starts. For the upward path, y =1.2m, v =0 at the top of the path, and a =-9.80 m/s”.

(a) The initial speed can be found from Eq. 2—11c¢, with x replaced by y.
v? = u& +2a(y—-yy) —
Uy =V —2a(y — yp) = /—2ay =+/-2(=9.80 m/s?)(1.2 m) = 4.8497 /s = [4.8 ms|
() The time of flight can be found from Eq. 2—11b, with x replaced by y, using a displacement of 0

for the displacement of the jumper returning to the original height.

— 1,2 _ 1 —
Y=Yy + vt +5at =0 - t(v0+3at)—0 —

20y _ 204897 m5) _fga

-a  9.80 m/s?

The result of # =0 s is the time for the original displacement of zero (when the jumper started to
jump), and the result of # = 0.99 s is the time to return to the original displacement. Thus the
answer is £ = 0.99 seconds.

t=0,t=

Choose downward to be the positive direction, and take y, =0 to be at the height where the object

was released. The initial velocity is v, = 0, and the acceleration is @ =9.80 m/s”.

(a) The speed of the object will be given by Eq. 2—11a with v, =0, so v=at =(9.80 m/sz)t. This
is the equation of a straight line passing through the origin with a slope of 9.80 m/s>.
(b)  The distance fallen will be given by Eq. 2-11b with v, =0, so y = y, + vyt +%at2 =

04+0+(4.90 m/ sz)tz. This is the equation of a parabola, with its vertex at the origin, opening
upward.

.
=1

a0

. pd

= [
o o
\n

=

=1

~

1 2

time (s)

3

speed (m/s)
distance fallen {(m)

[T
=T

\

time (s)

Choose upward to be the positive direction, and y, =0 to be the height from which the stone is
thrown. We have v, =24.0 m/s, a=-9.80 m/s*, and y—y, =13.0 m.
(a) The velocity can be found from Eq. 2—11¢, with x replaced by y.

V2 =03 +2a(y-yy)=0 —

v= ing +2ay = J_r\/(24.0 m/s)? +2(—9.80 m/s?)(13.0 m) = £17.9 m/s

Thus the speed is .
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() The time to reach that height can be found from Eq. 2—11b.
2, 2(24.0 m/s) - 2(-13.0m) _
-9.80 m/s>  —9.80 m/s’
e 4.898+ \/(4.898)2 —4(2.653) _
2
(o) |There are two times at which the object reaches that heighd—once on the way up (¢ =0.620s)

and once on the way down (¢ =4.28s).

0

y=yo+ut+ta’® - 1

2 —4.898¢+2.653=0

|t=4.285, 0.620 5|

47. Choose downward to be the positive direction, and take y, =0 to be the height from which the object
is released. The initial velocity is v, =0, and the acceleration is a = g. Then we can calculate the

position as a function of time from Eq. 2—11b, with x replaced by y, as y(¢) = % gt2 . At the end of each
second, the position would be as follows:

y0)=0; y=1g y2=1g2)’=4y1); »3)=1g(3)’=9y()

The distance traveled during each second can be found by subtracting two adjacent position values
from the above list.

d)=yM=y0)=y1); d2)=y2)-yH)=3yD); d@B)=y3)-y(2)=5y1)
We could do this in general. Let n be a positive integer, starting with 0.

ymy=Lgn®  ym+=Lgmn+1y’

dn+1)=y(n+1)-y(m) =L gn+1)> -1 gn* =Lg(n+1)* -n%)

=%g(n2+2n+1—n2)=%g(2n+l)

The value of (2n+1) is always odd, in the sequence|l, 3,5, 7, ...|.

48. (a) Choose upward to be the positive direction, and y, =0 at the ground. The rocket has v, =0,

a=3.2m/s?, and y =775 m when it runs out of fuel. Find the velocity of the rocket when it
runs out of fuel from Eq. 2—11c, with x replaced by y.

Viism =g +2a(y—yy) —

Vrsm =+ U +2a(y— yy) = £4/0+2(3.2 m/s?)(775 m) =70.43 m/s = |7.0x10" mis

The positive root is chosen since the rocket is moving upward when it runs out of fuel. Note that
the value has 2 significant figures.

(b) The time to reach the 775 m location can be found from Eq. 2—11a.

U775m — ¥ 70.43 m/s—-0
U775m =V talpsm = ly7sm = P TS :22'015z

(¢) For this part of the problem, the rocket will have an initial velocity v, =70.43 m/s, an

acceleration of @ =-9.80 m/s?, and a final velocity of v =0 at its maximum altitude. The
altitude reached from the out-of-fuel point can be found from Eq. 2—11c.

v? =035, +2a(y-775m) —

0—1202 —(70. 2
=775m+ﬂ=775m+w=775m+253m=1028m: 1030 m
2a 2(-9.80 m/s?)

y max
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(d) The time for the “coasting” portion of the flight can be found from Eq. 2—11a.

V-1, 0-70.43 m/s
a  —9.80 m/s>

Thus the total time to reach the maximum altitude is # =22.015+7.195s =29.20s = ﬂ

=7.19s

V=075 m + atcoast - tcoast =

(e)  For this part of the problem, the rocket has vy =0 m/s, a=-9.80 m/s?, and a displacement of
—1028 m (it falls from a height of 1028 m to the ground). Find the velocity upon reaching the
Earth from Eq. 2—11c.

v? :vg+2a(y—yo) -

v =40} +2a(y— ) = +,J0+2(=9.80 m/s?)(~1028 m) = —141.95 m/s =
The negative root was chosen because the rocket is moving downward, which is the negative
direction.
()  The time for the rocket to fall back to the Earth is found from Eq. 2—11a.
v-0) —141.95m/s-0
a 980 m/s’
Thus the total time for the entire flight is 7 =29.20s+14.48 s =43.68 s = |44 s|.

V= 1)0 +at — tfall = =14.48s

49.  Choose downward to be the positive direction, and take y, =0 to be the height where the object was

released. The initial velocity is v, =—5.40 m/s, the acceleration is a =9.80 m/sz, and the
displacement of the package will be y =105 m. The time to reach the ground can be found from
Eq. 2-11b, with x replaced by y.

2 =5.
y=yo+ut+tat® - P, g L oy 540m£s)t_ 20105 mg =0
a a 9.80 m/s 9.80 m/s
1.102£+/(1.102)% —4(-21.43
2 -1.102t-21.43=0 t= \/( 2) ( )=5.215,—4.115

The correct time is the positive answer, |t =5.21 s|.

50. (a) Choose y =0 to be the ground level and positive to be upward. Then y, =15m, a=-g, and
t =0.83 s describe the motion of the balloon. Use Eq. 2—11b.
Y=Y +Uot+%at2 -
y=yo—tar® 0-15m-1(-9.80 m/s*)(0.835)*

B t - (0.83s)

So the speed is .
(b) Consider the change in velocity from being released to being at Roger’s room, using Eq. 2—11c.

2 .2 2
V= +2ahy — Ay=Y "% (1401 Wzs) =10.01m
2a 2(-9.8 m/s7)
Thus the balloons are coming from two floors above Roger, or the [fifth floor.

=-14.01 m/s ~[-14 m/s]

[2)
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51. Choose upward to be the positive direction and y, =0 to be the location of the nozzle. The initial

velocity is v,, the acceleration is a =-9.80 m/s”, the final location is y=-1.8 m, and the time of
flight is ¢ =2.5s. Using Eq. 2—11b and substituting y for x gives the following:

Y=>» +l)0t+%at2 -

~La? 1.8 m-1(=9.80 m/s?)(2.55)*
uozyj = 2(255 X )=11.53m/szm

52.  Choose upward to be the positive direction and y, =0 to be the level from which the ball was thrown.

The initial velocity is v, the instantaneous velocity is v =14 m/s, the acceleration is a =—-9.80 m/s’ ,
and the location of the window is y =18 m.

(a) Using Eq. 2—11c and substituting y for x, we have

v = vg +2a(y—yy) —

Uy = £JV* = 2a(y— yp) = +/(14 m/s)* —2(=9.80 m/s>)(18 m) = 23.43 m/s = [23 m/s]

Choose the positive value because the initial direction is upward.

(b) At the top of its path, the velocity will be 0, so we can use the initial velocity as found above,
along with Eq. 2—11c.

2 2 2
2 2 v — UO 0—(2343 Il'l/S)
V' =yy+2a(y—-yy) — Vy=yo+ =0+ =-28m
0 0 " 24 2(-9.80 m/s?)

(¢) We want the time elapsed from throwing (velocity v, =23.43 m/s) to reaching the window
(velocity v =14 m/s). Using Eq. 2—11a, we have the following:

vovprar — (=LZN JIMSTBBME_ 0650963
a —9.80 m/s

(d) We want the time elapsed from the window (v, =14 m/s) to reaching the street
(v=-23.43 m/s). Using Eq. 2-11a, we have:

v=vytar - t=“_“0=_23'43m/5n;13m/s=3.819wm
a ~9.80 m/s

The total time from throwing to reaching the street again is 0.9622s+3.819s=4.8s.

53.  Choose downward to be the positive direction and y, =0 to be the height from which the stone is
dropped. Call the location of the top of the window y,,, and the time for the stone to fall from release

to the top of the window is ¢,,. Since the stone is dropped from rest, using Eq. 2—11b with y
substituting for x, we have y,, =y, + 0t +1ar’ =0+0+1gt;. The location of the bottom of the

window is y,, +2.2 m, and the time for the stone to fall from release to the bottom of the window is

t,, +0.31s. Since the stone is dropped from rest, using Eq. 2-11b, we have the following:
Yy +22m=yy+vpt+Lar’ =0+0+1g(r, +0.31s)°

Substitute the first expression for y,, into the second one and solve for the time.
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latr +220m=1g(t, +0315° — L +22=1g( +2,(03D)+(031)°)—
22=1g(2t,(03D)+(03)*) — 22=1,(03D)g+1g(0.31)° >

_22-1g(031)

ty =0.569 s
(0.31)g

Use this time in the first equation to find the desired distance.

vy =1L gtd =1(9.80 m/s?)(0.569 5)> =1.587 m =

54.  For the falling rock, choose downward to be the positive direction and y; =0 to be the height from
which the stone is dropped. The initial velocity is vy =0 m/s, the acceleration is @ = g, the final
position is y = H, and the time of fall is #. Using Eq. 2—11b with y substituting for x, we have

H =y, +yt +%t2 =0+0 +% gt?. For the sound wave, use the constant speed equation that

H . . H . .
Y, = Zﬁ =T which can be rearranged to give #{ =7 ——, where T =3.4s is the total time
t T-t v,

elapsed from dropping the rock to hearing the sound. Insert this expression for # into the equation for

S

H from the stone, and solve for H.

2
20 Uy

2
H:%g[T—ﬁj N LHZ—[£+1JH+%gT2:O -
D,

S
4.239x107° H* ~1.098H +56.64=0 — H =51.7 m, 2.59x10*m
. . H . .
If the larger answer is used in #; =T ——, a negative time of fall results, so the physically correct
v,

answer is |H =52 m|.

55.  Slightly different answers may be obtained since the data come from reading the graph.

(a) The greatest velocity is found at the highest point on the graph, which is at .

S

() The indication of a constant velocity on a velocity vs. time graph is a slope of 0, which occurs
from [t=90s to =108 s|.

(c) The indication of a constant acceleration on a velocity vs. time graph is a constant slope, which

occurs from |t =0s to t =42 s|, again from |t ~65s to t=83 s|, and again from

[f=90s to =108 s|

(d) The magnitude of the acceleration is greatest when the magnitude of the slope is greatest, which

occurs from |t ~65s to t=83 s|.

56. Slightly different answers may be obtained since the data come from reading the graph. We assume
that the short, nearly horizontal portions of the graph are the times that shifting is occurring, and those

[T3PR L)

times are not counted as being “in” a certain gear.

.. . _  Av -
(a) The average acceleration in 2nd gear is given by a, = At2 = 24 r;l/s i4 m/s = .
5 s—4s

A -
(b) The average acceleration in 4th gear is given by a, = A1t)4 = 44;71/8 i; m/s =0.64 m/s?|.
4 s—16s
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57.  Slightly different answers may be obtained since the data come from reading the graph.
(a) The instantaneous velocity is given by the slope of the tangent line to the curve. At 1 =10.0s,
the slope is approximately v(10) = 3m=0 =10.3 m/s|.
10.0s-0
(b) At t=30.0s, the slope of the tangent line to the curve, and thus the instantaneous velocity, is

approximately v(30) = % =12 m/s|.
s—25s

x(5)-x(0) 1.5m-0
50s-0s 50s
x(30)-x(25) 16 m-9m _
30.0s—25.0s 5.0s

o _ x(50)—x(40) 10m-19.5m
e) The average velocity is given by D = = =1-0.95 m/s|.
© g I Y S 0s—400s  10.0s

0.30 m/s|.

(¢) The average velocity is given by 0 =

(d) The average velocity is given by 0 = 1.4 m/s|.

58.  Slightly different answers may be obtained since the data come from reading the graph.

(a) The indication of a constant velocity on a position versus time graph is a constant slope, which

occurs from |t=0s tot=18s|.

(b) The greatest velocity will occur when the slope is the highest positive value, which occurs at

about .

(c) The indication of a 0 velocity on a position versus time graph is a slope of 0, which occurs at
about .

) |The object moves in both directions.| When the slope is positive, from t=0s to ¢t =38 s, the

object is moving in the positive direction. When the slope is negative, from ¢ =38 s to 1 =50s,
the object is moving in the negative direction.

59. The v vs. t graph is found by taking the slope of the x vs. ¢
graph.

Both graphs are shown here.

v{m/s)

20 —

E / o
"‘ :’/" v 10k
0 F"“-M" -15 1
0 10 20 30 40 50

60. Choose the upward direction to be positive and y, =0 to be the level from which the object was
thrown. The initial velocity is v, and the velocity at the top of the path is v = 0. The height at the top
of the path can be found from Eq. 2—11¢ with x replaced by y.
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2
2_ .2 -V
VT =1y +2a(y-yy) — y—J’OZZ_aO

From this we see that the displacement is inversely proportional to the acceleration, so if the
acceleration is reduced by a factor of 6 by going to the Moon, and the initial velocity is unchanged,

then the |disp1acement increases by a factor of 6|.

61. We are treating the value of 30 g’s as if it had 2 significant figures. The initial velocity of the car is
1 m/s

= (95 knvhy| -5
% =( )(3.6km/h

j =26.39 m/s. Choose x;, =0 to be location at which the deceleration

begins. We have v=0 and ¢ =-30g =-294 m/s. Find the displacement from Eq. 2—11c.

2_ .2 _ 2
v2=vg+2a(x—x0) - x=x0+v Y% =0+0 (26'39111/28) :1.18mz
2a 2(-294 m/s”)

62. (a) For the free-falling part of the motion, choose downward to be the positive direction and y, =0

to be the height from which the person jumped. The initial velocity is vy, =0, acceleration is

a =9.80 m/s>, and the location of the net is v =18.0 m. Find the speed upon reaching the net
from Eq. 2—11c with x replaced by y.

v’ = vg +2a(y-yy) —

v =20+ 2a(y—0) = £:/2(9.80 m/s2)(18.0 m) = 18.78 m/s

The positive root is selected since the person is moving downward.

For the net-stretching part of the motion, choose downward to be the positive direction, and
o =18.0 m to be the height at which the person first contacts the net. The initial velocity is

vy =18.78 mv/s, the final velocity is v =0, and the location at the stretched position is
y=19.0 m. Find the acceleration from Eq. 2—11c with x replaced by y.

v -u; 07 —(18.78 m/s)®

2 2 2
VO =uy+2a(y-yy) — a= = =|-176 m/s
2(y =) 2(1.0 m)

This is about 18 g’s.

(b) For the acceleration to be smaller, in the above equation we see that the displacement would
have to be larger. This means that the net should be .

63. Choose downward to be the positive direction and y, =0 to be at the start of the pelican’s dive. The
pelican has an initial velocity of v, =0, an acceleration of a = g, and a final location of y =14.0 m.
Find the total time of the pelican’s dive from Eq. 2—11b, with x replaced by y.

f2 /214.
y=y0+1)0t+%at2 - y=0+0+%at2 = lgive = 2= (—()mz)=1.69s
a 9.80 m/s

The fish can take evasive action if he sees the pelican at a time of 1.69 s —0.20 s =149 s into the dive.
Find the location of the pelican at that time from Eq. 2—11b.

y=yy+upt+tar=0+0+1(9.80 m/s*)(1.495)* =10.9m

Thus the fish must spot the pelican at a minimum height from the surface of the water of

140 m—10.9 m =.
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64. The initial velocity is v, =15 km/h, the final velocity is v = 65 km/h, and the displacement is
Xx—xo =4.0 km =4000 m. Find the average acceleration from Eq. 2—-11c.

v? = vg +2a(x—xy) —

. [(65km/h)2—(15km/h)2]( Lm’s

2
- 3.6 km/h)
2(x—xp) 2(4000 m)

1m/s

65. The speed limit is 40 km/h
3.6 km/h

j=11.11m/s.

(a) For your motion, you would need to travel (10+15+50+15+70) m =160 m to get the front of

the car to the third stoplight. The time to travel the 160 m is found using the distance and the
speed limit.
Ax  160m

Ax=VDAt - At=—=——=1440s
v 11.11m/s

, you cannot make it to the third light without stopping, since it takes you longer than
13.0 seconds to reach the third light.

(b) The second car needs to travel 165 m before the third light turns red. This car accelerates from
Uy =0 to a maximum of v=11.11m/s with a =2.00 m/s?. Use Eq. 2—11a to determine the
duration of that acceleration.

_v-yy 11.11m/s—0m/s

Ca 2.00ms?

The distance traveled during that time is found from Eq. 2—11b.

(X=X )ace = Vplace + 1 @ty =0+1(2.00 m/s”)(5.556 5)* =30.87 m

Since 5.556 s have elapsed, there are 13.0 —5.556 = 7.444 s remaining to clear the intersection.

The car travels another 7.444 s at a speed of 11.11 m/s, covering a distance of
Ax t=(11.11m/s)(7.444 s) =82.70 m. Thus the total distance is

V=Uy+at — ty =5.556s

constant speed = vavg

30.87 m+82.70 m=113.57 m. , the car cannot make it through all three lights without

stopping. The car has to travel another 51.43 m to clear the third intersection and is traveling at a
speed of 11.11 m/s. Thus the front of the car would clear the intersection a time

Ax  5143m
t =— =———=14.6 5| after the light turns red.
PRNTNITT :
L —d d
66. The average speed for each segment of the trip is given by v = v so At =— for each segment.
v
For the first segment, Af = é = M =20917h.
v 720 km/h
For the second segment, At, = {—2 _ 2800km _ 2.828 h.
D, 990 km/h

Thus the total time is At = Aty +At, =2.917h+2.828 h=5.745h =|5.7 h|.
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The average speed of the plane for the entire trip is

= do 2100 km+2800 km _oor oy 850 ki),
Aty 5.745h

Note that Eq. 2—11d does NOT apply in this situation.

67. (a) Choose downward to be the positive direction and y, =0 to be the level from which the car was
dropped. The initial velocity is v, =0, the final location is y = H, and the acceleration is
a = g. Find the final velocity from Eq. 2—11c, replacing x with y.

V? = u& +2a(y-yy) — v= i«/vg +2a(y—yy) =*J2gH
The speed is the magnitude of the velocity, \2gH |
2

() Solving the above equation for the height, we have that H = 12)— Thus for a collision of
g
v =35 km/h, the corresponding height is as follows:

) {(35 km/h)( L m’s
V

H=—= 3'6kmhﬂ =4.823m=[4.8m|

2g 2(9.80 m/s?)

(¢) For a collision of v =95 km/h, the corresponding height is the following:

) {(95 km/h)( L m’s
V

H=—= 3'6kWhﬂ =35.53mz

2¢ 2(9.80 m/s?)

68.  Choose downward to be the positive direction and y, =0 to be at the roof from which the stones are
dropped. The first stone has an initial velocity of 1, =0 and an acceleration of a = g. Eqs. 2-11a and
2-11b (with x replaced by y) give the velocity and location, respectively, of the first stone as a function of time.

V=yytat — U =g4 y=y0+1)0t+%at2 - ylz%gtlz

The second stone has the same initial conditions, but its elapsed time is #, =# —1.30 s, so it has
velocity and location equations as follows:

v, = g(t; —1.30 s) vy =1g(t,-1305)
The second stone reaches a speed of v, =12.0 m/s at a time given by
=224 1305 — 4=130s+2=130 S+Lm/sz=2.524s
g g 9.80 m/s

The location of the first stone at that time is
v =1lerf =1(9.80 m/s?)(2.5245)* =31.22m
The location of the second stone at that time is

¥y =1e(t,-1.305)> =1 (9.80 m/s*)(2.5245-1.305)” =7.34m

Thus the distance between the two stones is y; — ¥, =31.22m-734m=23.88m = .
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69. For the motion in the air, choose downward to be the positive direction and y, =0 to be at the height

of the diving board. Then diver has vy =0 (assuming the diver does not jump upward or downward),

a=g=9.80 m/s?, and y =4.0 m when reaching the surface of the water. Find the diver’s speed at
the water’s surface from Eq. 2—11c, with x replaced by y.

V2 = 0 +2a(y— o )x — 0=+ +2a(y - yy) =/0+2(9.80 m/s>)(4.0 m) =8.85 m/s

For the motion in the water, again choose down to be positive, but redefine y, = 0to be at the surface
of the water. For this motion, v, =8.85m/s, v=0, and y -y, =2.0 m. Find the acceleration from
Eq. 2—11c, with x replaced by y.

2.2 3 2
V=0f+2a(y-yy) - a=——2 _9 ngmgs) =-19.6 m/s> = |[-20 m/s’]
Um

C2(y-yp)x

The negative sign indicates that the acceleration is directed upward.

70.  First consider the “uphill lie,” in which the ball is being putted down the hill. Choose x;, =0 to be the
ball’s original location and the direction of the ball’s travel as the positive direction. The final velocity
of the ball is v =0, the acceleration of the ball is @ =—1.8 m/s*, and the displacement of the ball will

be x—xy =6.0m for the first case and x —x, = 8.0 m for the second case. Find the initial velocity of
the ball from Eq. 2—11c.

0—2(=1.8 m/s?)(6.0 m) = 4.65 m/s
vzzvg-i-Za(x—xO) - 1)024’1)2—2a(x—x0):\/ ( X )

JO-2(~1.8 m/s2)(8.0 m) = 5.37 m/s

The range of acceptable velocities for the uphill lie is |4.65 m/s to 5.37 m/s|, a spread of 0.72 m/s.

Now consider the “downhill lie,” in which the ball is being putted up the hill. Use a very similar setup
for the problem, with the basic difference being that the acceleration of the ball is now a =-2.6 m/s>.
Find the initial velocity of the ball from Eq. 2—11c.

0—2(=2.6 m/s>)(6.0 m) =5.59 m/s
vz=vg+2a(x—x0) - 1)0=«/1)2—2¢1(x—x0)= \/ ( X )
Jo —2(=2.6 m/s>)(8.0 m) = 6.45 m/s

The range of acceptable velocities for the downhill lie is |5.59 m/s to 6.45 m/s|, a spread of 0.86 m/s.

Because the range of acceptable velocities is smaller for putting down the hill, more control in putting
is necessary, so putting the ball downhill (the “uphill lie’) is more difficult.

=
—

Choose upward to be the positive direction and y, =0 to be at the throwing location of the stone. The

initial velocity is v, =15.5 m/s, the acceleration is a =—9.80 m/sz, and the final location is
y=-75m.

(a) Using Eq. 2-11b and substituting y for x, we have the following:
y=yo+yt+ta® - (A9m/s7)’ —(155m/s)-75m=0 —

,_155 +1/(15.5)2 — 4(4.9)(-75)
- 2(4.9)

The positive answer is the physical answer: .

=5.802s, —2.638s
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() Use Eq. 2—11ato find the velocity just before hitting.
V=1 +at=15.5m/s+(-9.80 m/s*)(5.802s) =—4l.4m/s — [v|=[41.4m/s

(c) The total distance traveled will be the distance up plus the distance down. The distance down
will be 75 m more than the distance up. To find the distance up, use the fact that the speed at the
top of the path will be 0. Then using Eq. 2—11c we have the following:

2 2
V'=vy+t2a(y-y)) — y=y+

2 2 2
v — — .
) =O+0 (15.5 m/s)

- =1226m
2a 2(-9.80 m/s?)

Thus the distance up is 12.26 m, the distance down is 87.26 m, and the total distance traveled is

950

72.  This problem can be analyzed as a series of three one-dimensional motions: the acceleration phase, the
constant-speed phase, and the deceleration phase. The maximum speed of the train is as follows:
1m/s

(95 km/h)[—
3.6 km/h

j =26.39 m/s
In the acceleration phase, the initial velocity is vy =0, the accelerationis a =1.1 m/sz, and the final

velocity is v =26.39 m/s. Find the elapsed time for the acceleration phase from Eq. 2—11a.
V-1, 26.39m/s-0

p; T =23.99s

v=yytat o by =

Find the displacement during the acceleration phase from Eq. 2—11b.

(X =) )aee = Vot +Lar®* =0+1(1.1m/s%)(23.995)* =316.5m
0 /acc 0 2 2

In the deceleration phase, the initial velocity is v, =26.39 m/s, the acceleration is a =-2.0 m/sz, and
the final velocity is v =0. Find the elapsed time for the deceleration phase from Eq. 2—11a.

_ V-1 0-2639m/s

V=Uy+at —> g = ; > 0w/ =13.20s

Find the distance traveled during the deceleration phase from Eq. 2—11b.
(X = X0 )dee = Vot +Sat” =(26.39 m/s)(13.205) +1(-2.0 m/s*)(13.20 5)* =174.1m

The total elapsed time and distance traveled for the acceleration/deceleration phases are:
toce Flee =23.995+13.205=37.19 s
(X =X0)gec T (X=X )gee =316.5m+174.1m =491 m

15,000 m 5
000 m
interstation segments. A train making the entire trip would thus have a total of 5 interstation

segments and 4 stops of 22 s each at the intermediate stations. Since 491 m is traveled during
acceleration and deceleration, 3000 m—491 m =2509 m of each segment is traveled at an

(a) If the stations are spaced 3.0 km =3000 m apart, then there is a total of

average speed of U =26.39 m/s. The time for that 2509 m is given by Ax=0DAt —

2 . . .
At oonstant = @ _ 2509m _ 95.07 s. Thus a total interstation segment will take
speed v 2639m/s
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37.19 s4+95.07 s =132.26 s. With 5 interstation segments of 132.26 s each, and 4 stops of 22 s
each, the total time is given by £ ¢y, =5(132.265)+4(225)=749s = .

15,000 m _
5000 m
interstation segments. A train making the entire trip would thus have a total of 3 interstation

segments and 2 stops of 22 s each at the intermediate stations. Since 491 m is traveled during
acceleration and deceleration, 5000 m—491 m =4509 m of each segment is traveled at an
average speed of U =26.39 m/s. The time for that 4509 m is givenby d =0t —
t= i = _4509m =170.86 s. Thus a total interstation segment will take

v 26.39m/s

37.19 s+170.86 s = 208.05 s. With 3 interstation segments of 208.05 s each, and 2 stops of 22 s
each, the total time is given by 5 o}, =3(208.055)+2(225) =668 s = .

(b) Ifthe stations are spaced 5.0 km =5000 m apart, then there is a total of

1 m/s

73.  The car’s initial speed is v, = (35 km/h)| ——
3.6 km/h

) =9.722 m/s.

Case I: trying to stop. The constraint is, with the braking deceleration of the car (¢ =—-5.8 m/ s? ), can

the car stop in a 28-m displacement? The 2.0 seconds has no relation to this part of the problem. Using
Eq. 2—11c, the distance traveled during braking is as follows:

22 2

v -1y 0-(9.722 m/ —

(x—x¢) = 0 = ( 2S) =8.14m |She can stop the car in time.

2a 2(-5.8 m/s*)

Case II: crossing the intersection. The constraint is, with the acceleration of the car
{ (65 km/h —45 km/h)[ 1 m/s
a —

J =0.9259 m/s? }, can she get through the intersection

6.0s 3.6 km/h
(travel 43 m) in the 2.0 seconds before the light turns red? Using Eq. 2—11b, the distance traveled
during the 2.0 s is

(x—xp) = vyt +Lat® = (9.722 m/s)(2.0 5)+1(0.9259 m/s*)(2.0 5)* =213 m
She should stop.

74. The critical condition is that the total distance covered by the passing car and the approaching car must
be less than 500 m so that they do not collide. The passing car has a total displacement composed of
several individual parts. These are (i) the 10 m of clear room at the rear of the truck, (ii) the 20-m
length of the truck, (iii) the 10 m of clear room at the front of the truck, and (iv) the distance the truck
travels. Since the truck travels at a speed of v =18 m/s, the truck will have a displacement of

Axiy ok = (18 m/s)z. Thus the total displacement of the car during passing is
Ax =40 m+ (18 m/s)z.

passing
car

To express the motion of the car, we choose the origin to be at the location of the passing car when the
decision to pass is made. For the passing car, we have an initial velocity of vy =18 m/s and an

acceleration of @ =1.0 m/s>. Find Ax from Eq. 2-11b.

passing
car

Ax

passing —
car

X, —Xo = Ut ++at = (18 m/s)t +1.(0.60 m/s*)r>
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75.

76.

77.

Set the two expressions for Ax, equal to each other in order to find the time required to pass.

passing
car
40 m+ (18 m/s)t, o = (18 m/s)tp, +3(0.60 m/s™)e, . — 40m=1(0.60 m/s”), o —
80
t =,[——s" =11.55s
P35 Y 0.60

Calculate the displacements of the two cars during this time.

AXpyssing =40 m+(18 m/s)(11.555) =247.9 m
car

AXqpproaching = Vapproaching? = (25 m/s)(11.55s) = 288.75m
car car

Thus the two cars together have covered a total distance of 247.9 m+ 288.75 m = 536.65 m, which is

more than allowed. |The car should not pass.|

Choose downward to be the positive direction and y, =0 to be at the height of the bridge. Agent Bond
has an initial velocity of v, =0, an acceleration of a = g, and will have a displacement of
y=15m-3.5m=11.5m. Find the time of fall from Eq. 2—11b with x replaced by y.

y=yotvp+ia? - 1= o 2(“'—5mz)=1.532s
a  \9.80 m/s

If the truck is approaching with v =25 m/s, then he needs to jump when the truck is a distance away
given by d = vt = (25 m/s)(1.532 s) =38.3 m. Convert this distance into “poles.”

d =(38.3 m)(1 pole/25 m) =1.53 poles
So he should jump when the truck is about |1.5 poles| away from the bridge.

The speed of the conveyor belt is found from Eq. 2-2 for average velocity.

_ _ A& 12m
AX=DAt —> V=—= =0.4286 m/min = |0.43 m/min
T 043 m/min|

The rate of burger production, assuming the spacing given is center to center, can be found as follows:

(1 burgerj(0.4286 mj _|; 7 burgers

0.25m 1 min min

Choose downward to be the positive direction and the origin to be at the top of the building. The
barometer has y, =0, v, =0, and a =g =9.8 m/s>. Use Eq. 2-11b to find the height of the building,
with x replaced by y.

y=yo+upt+tar® =0+0+1(9.8m/s?)’

Vim0 =108m/s7)(2.08)° =19.6m  y,53=1(9.8m/s7)(2.35)>=259m

The difference in the estimates is 6.3 m. If we assume the height of the building is the average of the

. . . 63
two measurements, then the % difference in the two values is > 75m X100 = 27.7% =~ |30%).
75 m
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The intent of the method was probably to use the change in air pressure between the ground level and
the top of the building to find the height of the building. The very small difference in time
measurements, which could be due to human reaction time, makes a 6.3-m difference in the height.
This could be as much as 2 floors in error.

78. ()

(b)

(©)

(d)

(e)

The two bicycles will have the same velocity at any
time when the instantaneous slopes of their x vs. ¢ A
graphs are the same. That occurs near the time f A

as marked on the graph. b

graph is concave upward, indicating a positive
acceleration. Bicycle B has no acceleration because
its graph has a constant slope.

1
1
|
)
Bicycle A has the larger acceleration, because its !
|
1
1
1

~V

The bicycles are passing each other at the times g

when the two graphs cross, because they both have the same position at that time. The graph
with the steepest slope is the faster bicycle, so it is the one that is passing at that instant. So at the
first crossing, bicycle B is passing bicycle A. At the second crossing, bicycle A is passing

bicycle B.

Bicycle B has the highest instantaneous velocity at all times until the time #, where both graphs
have the same slope. For all times after #, bicycle A has the highest instantaneous velocity. The
largest instantaneous velocity is for bicycle A at the latest time shown on the graph.

The bicycles appear to have the same average velocity. If the starting point of the graph for a
particular bicycle is connected to the ending point with a straight line, the slope of that line is the
average velocity. Both appear to have the same slope for that “average” line.

79. To find the average speed for the entire race, we must take the total distance divided by the total time.
If one lap is a distance of L, then the total distance will be 10L. The time elapsed at a given constant

speed is given by ¢ =d/v, so the time for the first 9 laps would be # = _oL and the time for

196.0 km/h’

the last lap would be ¢, = L/v,, where v, is the average speed for the last lap. Write an expression for

the average speed for the entire race, and then solve for v,.

’[7:

dyotal 10L 1
= :2 . k h - — = 24 . h
4+t oL L 000 b2 o9 >0
196.0 km/h v, 200.0 km/h 196.0 km/h

80. Assume that y, =0 for each child is the level at which the child loses contact with the trampoline

surface. Choose upward to be the positive direction.

(a)

The second child has vy, =4.0 m/s, a=-g=-9.80 m/s?, and v=0m/s at the maximum
height position. Find the child’s maximum height from Eq. 2—11c, with x replaced by y.

VP =05 +2a(y, - vy) =

2 2 2
= o+ =0+ =0.8163m=|0.82m
Y2 =N 2a

2(-9.80 m/s?)
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(b)  Since the first child can bounce up to one-and-a-half times higher than the second child, the first
child can bounce up to a height of 1.5(0.8163 m) =1.224 m = y; — y,. Eq. 2-11c is again used to
find the initial speed of the first child.

2.2
v =v5 +2a(n —yy) —

Ut = +JV* ~2a(y ~ y5) =0~ 2(-9.80 m/s>)(1.224 m) = 4.898 m/s =[4.9 /3]
The positive root was chosen since the child was initially moving upward.

(¢) To find the time that the first child was in the air, use Eq. 2—11b with a total displacement of 0,
since the child returns to the original position.

y=yo+upt+la > 0=(4.898 mis)y +1(-9.80 m/sP)f - 4=05,09996s

The time of 0 s corresponds to the time the child started the jump, so the correct answer is .

81. Choose downward to be the positive direction and the origin to be at the location of the plane. The
parachutist has v, =0, a=g=9.80 m/s?, and will have y—yp =3200m—-450 m =2750 m when

she pulls the ripcord. Eq. 2—11b, with x replaced by y, is used to find the time when she pulls the
ripcord.

y=yo+ot+ial® > t=2(y-yy)la = \/2(2750 m)/(9.80 m/s®) =23.69 s =
The speed is found from Eq. 2—11a.

v=y,+at=0+(9.80 m/sz)(23.69 s)=232.16 m/s = (230 m/s (%j =840 km/h

This is well over 500 miles per hour!

82. Asshown in Example 2—15, the speed with which the ball was thrown upward is the same as its speed
on returning to the ground. From the symmetry of the two motions (both motions have speed = 0 at
top, have same distance traveled, and have same acceleration), the time for the ball to rise is the same
as the time for the ball to fall, 1.4 s. Choose upward to be the positive direction and the origin to be at
the level where the ball was thrown. For the ball, v =0 at the top of the motion, and a =—g. Find the

initial velocity from Eq. 2—11a.

v=yj+at - vy =v-ar=0-(-9.80 m/s’)(1.45)=13.72 m/s = [14 m/s|

83. (@) Multiply the reading rate times the bit density to find the bit reading rate.

N - 1.12 m 1 bit =4.3%10° bits/s
s

0.28x107% m
(b) The number of excess bits is N — N,,.

N =N,y =4.3x10° bits/s—1.4x10° bits/s = 2.9x10° bits/s

f— 6 1
N NO :2.9X106 bltS/S:O,67:
N 4.3x10° bits/s
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Solutions to Search and Learn Problems

1. The two conditions are that the motion needs to be near the surface of the Earth and that there is no air
resistance. An example where the second condition is not even a reasonable approximation is that of
parachuting. The air resistance caused by the parachute results in the acceleration not being constant,

with values much different than 9.8 m/s>.

2. The sounds will not occur at equal time intervals because the longer any particular bolt falls, the higher
its speed. With equal distances between bolts, each successive bolt, having fallen a longer time when
its predecessor reaches the plate, will have a higher average velocity and thus travel the interbolt
distance in shorter periods of time. Thus the sounds will occur with smaller and smaller intervals
between sounds.

To hear the sounds at equal intervals, the bolts would have to be tied at distances corresponding to
equal time intervals. The first bolt (call it bolt #0) is touching the plate. Since each bolt has an initial

speed of 0, the distance of fall and time of fall for each bolt are related to each other by d; = % gt

Thus for bolt #1, d; =1 gt?. For bolt #2, we want Bolt Height Distance
0 .
bove | Time to | between
ty=24, so dy =Lg} =Lg(21)? =4(Lgr?) =4d,. .|
2 1> SO dj 2g2 2g( l) (zgl) 1 # floor fall bolts
Likewise, t; =3¢, which leads to d; =9d,; t, =44, 0 0 0
which leads to d, =16d,, and so on. If the distance from 1 d, t d,
t}?e bolt initially on the pan to the next jbolt is d, th'en the 2 |di=dd, |ti=2t, 3d,
distance from that bolt to the next one is 3d,, the distance 3 1 d.—94 3 s
to the next bolt is 5d;, and so on. The accompanying = LR L
table shows these relationships in a simpler format. 4 |di=16dyj14=41y| Td,
5 d5=25d1 I5=5I1 9d1
3. Take the origin to be the location where the speeder
passes the police car. The speeder’s constant speed is Ugpeeder = (140 km/h) (%) =38.89 my/s,
.6km

and the location of the speeder as a function of time is given by
t =(38.89 m/s)t, The police car has an initial velocity of vy =0 m/s and

The location of the police car as a function of time is given by

xspeeder = Uspeeder speeder speeder *

a constant acceleration of a

police*
Eq.2-11b.
— 1.2 _ 1 2
Xpolice = Vot + 2 at” = 2 apolicetpolice

(a) The position vs. time graphs would qualitatively look
like the graph shown here.

(b) The time to overtake the speeder occurs when the

speeder has gone a distance of 850 m. The time is X Speeder
found using the speeder’s equation from above.

Police car
1

| ‘ ‘

850 m
850 m = (38.89 m/s)¢ - t =—=21.86s=|22s
( ) speeder speeder 38.89 m/s
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(¢) The police car’s acceleration can be calculated knowing that the police car also had gone a
distance of 850 m in a time of 21.86 s.

850 M =14 01e 218657 > argiee =0 ™) _3 558 ms? =

(21.865)?
(d) The speed of the police car at the overtaking point can be found from Eq. 2—11a.
V=1, +at =0+(3.558 m/s”)(21.86 5) = 77.78 m/s = 78 m/s|
Note that this is exactly twice the speed of the speeder, so it is 280 km/h.

4. (a) During the interval from A to B, it is |moving in the negative direction|, because its

displacement is negative.

() During the interval from A to B, it is |speeding up|, because the magnitude of its slope is

increasing (changing from less steep to more steep).

(¢) During the interval from A to B, [the acceleration is negative|, because the graph is concave

downward, indicating that the slope is getting more negative, and thus the acceleration is
negative.

(d) During the interval from D to E, it is |rnoving in the positive direction|, because the

displacement is positive.

(e)  During the interval from D to E, it is |speeding up|, because the magnitude of its slope is
increasing (changing from less steep to more steep).

(/  During the interval from D to E, |the acceleration is positive

, because the graph is concave

upward, indicating the slope is getting more positive, and thus the acceleration is positive.

(g) During the interval from C to D, |the object is not moving in either direction|.

|The velocity and acceleration are both O.|

5. Weare given that x(f) =2.0 m— (3.6 m/s)¢ + (1.7 /s’ )t2, where ¢ is in seconds.

(a) The value of 2.0 m is the initial position of the ball. The value of 3.6 m/s is the initial speed of
the ball—the speed at # = 0. Note that the ball is initially moving in the negative direction,

since —3.6 m/s is used. The value of 1.7 m/s” is the acceleration of the ball.
(b) The units of 2.0 are meters. The units of 3.6 are m/s. The units of 1.7 are m/s”.
() x(1.0s)=2.0m—(3.6 m/s)(1.0s)+(1.7 m/s*)(1.0s)* =
x(2.05)=2.0m—(3.6 m/s)(2.0s)+ (1.7 m/s>)(2.05)° =
x(3.08)=2.0 m— (3.6 m/s)(3.0 )+ (1.7 m/s>)(3.0 5)* =

d v=—=——"""—=|32m/s

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



KINEMATICS IN TWO DIMENSIONS; VECTORS

Responses to Questions

No, the two velocities are not equal. Velocity is a vector quantity, with a magnitude and direction. If
two vectors have different directions, they cannot be equal.

2. No. The car may be traveling at a constant speed of 60 km/h and going around a curve, in which case it
would be accelerating.

3. (1) During one year, the Earth travels a distance equal to the circumference of its orbit but has a
displacement of 0 relative to the Sun.

(i) Any kind of cross-country “round trip” air travel would result in a large distance traveled but a
displacement of 0.

(iii) The displacement for a race car from the start to the finish of the Indianapolis 500 auto race is 0.

4. The length of the displacement vector is the straight-line distance between the beginning point and the
ending point of the trip and therefore the shortest distance between the two points. If the path is a
straight line, then the length of the displacement vector is the same as the length of the path. If the path
is curved or consists of different straight-line segments, then the distance from beginning to end will
be less than the path length. Therefore, the displacement vector can never be longer than the length of
the path traveled, but it can be shorter.

5. Since both the batter and the ball started their motion at the same location (where the ball was hit) and
ended their motion at the same location (where the ball was caught), the displacement of both was the
same.

6. Vis the magnitude of the vector V; it is not necessarily larger than the magnitudes ¥; and/or V,. For

instance, if V; and V, have the same magnitude and are in opposite directions, then ¥ is zero. The
magnitude of the sum is determined by the angle between the two contributing vectors.

7. If the two vectors are in the same direction, the magnitude of their sum will be a maximum and will be
7.5 km. If the two vectors are in the opposite direction, the magnitude of their sum will be a minimum
and will be 0.5 km. If the two vectors are oriented in any other configuration, the magnitude of their
sum will be between 0.5 km and 7.5 km.
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10.

11.

-
5

13.

14.

15.

Two vectors of unequal magnitude can never add to give the zero vector. The
only way that two vectors can add up to give the zero vector is if they have
the same magnitude and point in exactly opposite directions. However, three
vectors of unequal magnitude can add to give the zero vector. As a one-
dimensional example, a vector 10 units long in the positive x direction added
to two vectors of 4 and 6 units each in the negative x direction will result in the zero vector. In two
dimensions, if their sum using the tail-to-tip method gives a closed triangle, then the vector sum will

be zero. See the diagram, in which A +B+C =0.

>

(a) The magnitude of a vector can equal the length of one of its components if the other components
of the vector are all 0; that is, if the vector lies along one of the coordinate axes.

(b) The magnitude of a vector can never be less than one of its components, because each
component contributes a positive amount to the overall magnitude, through the Pythagorean
relationship. The square root of a sum of squares is never less than the absolute value of any
individual term.

The odometer and the speedometer of the car both measure scalar quantities (distance and speed,
respectively).

To find the initial speed, use the slingshot to shoot the rock directly horizontally (no initial vertical
speed) from a height of 1 meter (measured with the meter stick). The vertical displacement of the rock
can be related to the time of flight by Eq. 2—11b. Take downward to be positive.

y=yg+vt+ia® > Im=1lg - t=+/2(1 m)/(9.8 m/s*) =0.45 s

Measure the horizontal range R of the rock with the meter stick. Then, if we measure the horizontal
range R, we know that R =v,t =v,(0.45 s), so v, = R/0.45 s, which is the speed the slingshot

imparts to the rock. The only measurements are the height of fall and the range, both of which can be
measured with a meter stick.

The arrow should be aimed above the target, because gravity will deflect the arrow downward from a
horizontal flight path. The angle of aim (above the horizontal) should increase as the distance from the
target increases, because gravity will have more time to act in deflecting the arrow from a straight-line
path. If we assume that the arrow was shot from the same height as the target, then the “level

horizontal range” formula is applicable: R = vg sin 26)/g — 6 =% sin”! (Rg/ vg ). As the range

and hence the argument of the inverse sine function increases, the angle increases.

If the bullet was fired from the ground, then the y component of its velocity slowed considerably by
the time it reached an altitude of 2.0 km, because of both the downward acceleration due to gravity and
air resistance. The x component of its velocity would have slowed due to air resistance as well.
Therefore, the bullet could have been traveling slowly enough to be caught.

The balloons will hit each other, although not along the line of sight from you to your friend. If there
were no acceleration due to gravity, the balloons would hit each other along the line of sight. Gravity
causes each balloon to accelerate downward from that “line of sight” path, each with the same
acceleration. Thus each balloon falls below the line of sight by the same amount at every instant along
their flight, so they collide. This situation is similar to Conceptual Example 3—7 and to Problem 36.

The horizontal component of the velocity stays constant in projectile motion, assuming that air
resistance is negligible. Thus the horizontal component of velocity 1.0 seconds after launch will be the

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Kinematics in Two Dimensions; Vectors 3-3

16.

—
~

18.

-
g

20.

21.

same as the horizontal component of velocity 2.0 seconds after launch. In both cases the horizontal
velocity will be given by v, =1, cos 8 = (30 m/s)(cos 30°) =26 m/s.

A projectile has the least speed at the top of its path. At that point the vertical speed is zero. The
horizontal speed remains constant throughout the flight, if we neglect the effects of air resistance.

(a) Cannonball A, with the larger angle, will reach a higher elevation. It has a larger initial vertical
velocity, so by Eq. 2—11c it will rise higher before the vertical component of velocity is 0.

() Cannonball A, with the larger angle, will stay in the air longer. It has a larger initial vertical
velocity, so it takes more time to decelerate to 0 and start to fall.

(¢) The cannonball with a launch angle closest to 45° will travel the farthest. The range is a
maximum for a launch angle of 45° and decreases for angles either larger or smaller than 45°.

(a) The ball lands at the same point from which it was thrown inside the train car—back in the
thrower’s hand.

(b) If the car accelerates, the ball will land behind the thrower’s hand.
(c¢) If'the car decelerates, the ball will land in front of the thrower’s hand.

(d) If the car rounds a curve (assume it curves to the right), the ball will land to the left of the
thrower’s hand.

(e) The ball will be slowed by air resistance and will land behind the thrower’s hand.

Your reference frame is that of the train you are riding. If you are traveling with a relatively constant
velocity (not over a hill or around a curve or drastically changing speed), then you will interpret your
reference frame as being at rest. Since you are moving forward faster than the other train, the other
train is moving backward relative to you. Seeing the other train go past your window from front to rear
makes it look like the other train is going backward.

Both rowers need to cover the same “cross-river” distance. The rower with the greatest speed in the
“cross-river” direction will be the one that reaches the other side first. The current has no bearing on
the time to cross the river because the current doesn’t help either of the boats move across the river.
Thus the rower heading straight across will reach the other side first. All of his “rowing effort” has
gone into crossing the river. For the upstream rower, some of his “rowing effort” goes into battling the
current, so his “cross-river” speed will be only a fraction of his rowing speed.

When you stand still under an umbrella in a vertical rain, you are in a cylinder-shaped volume in which
there is no rain. The rain has no horizontal component of velocity, so the rain cannot move from
outside that cylinder into it. You stay dry. But as you run, you have a forward horizontal velocity
relative to the rain, so the rain has a backward horizontal velocity relative to you. It is the same as if
you were standing still under the umbrella but the rain had some horizontal component of velocity
toward you. The perfectly vertical umbrella would not completely shield you.

Responses to MisConceptual Questions

1.

(¢) The shortest possible resultant will be 20 units, which occurs when the vectors point in opposite
directions. Since 0 units and 18 units are less than 20 units, (a) and (b) cannot be correct
answers. The largest possible result will be 60 units, which occurs when the vectors point in the
same direction. Since 64 units and 100 units are greater than 60 units, () and (e) cannot be
correct answers. Answer (c) is the only choice that falls between the minimum and maximum
vector lengths.
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2. (a)
3. (b
4. (a)
5. (b)
6. (b
7. (o)
8. (d)
9. (o)
10. (b)

The components of a vector make up the two legs of a right triangle when the vector is the
hypotenuse. The legs of a right triangle cannot be longer than the hypotenuse, therefore (c¢) and
(d) cannot be correct answers. Only when the vector is parallel to the component is the
magnitude of the vector equal to the magnitude of the component, as in (). For all other vectors,
the magnitude of the component is less than the magnitude of the vector.

If you turned 90°, as in (a), your path would be that of a right triangle. The distance back would
be the hypotenuse of that triangle, which would be longer than 100 m. If you turned by only 30°,
as in (¢), your path would form an obtuse triangle; the distance back would have to be greater
than if you had turned 90°, and therefore it too would be greater than 100 m. If you turned 180°,
as in (d), you would end up back at your starting point, not 100 m away. Three equal distances of
100 m would form an equilateral triangle, so (b) is the correct answer.

The bullet falls due to the influence of gravity, not due to air resistance. Therefore, (b) and (c)
are incorrect. Inside the rifle the barrel prevents the bullet from falling, so the bullet does not
begin to fall until it leaves the barrel.

Assuming that we ignore air resistance, the ball is in free fall after it leaves the bat. If the answer
were (a), the ball would continue to accelerate forward and would not return to the ground. If the
answer were (¢), the ball would slow to a stop and return backward toward the bat.

If we ignore air friction, the horizontal and vertical components of the velocity are independent
of each other. The vertical components of the two balls will be equal when the balls reach
ground level. The ball thrown horizontally will have a horizontal component of velocity in
addition to the vertical component. Therefore, it will have the greater speed.

Both you and the ball have the same constant horizontal velocity. Therefore, in the time it takes
the ball to travel up to its highest point and return to ground level, your hand and the ball have
traveled the same horizontal distance, and the ball will land back in your hand.

Both the time of flight and the maximum height are determined by the vertical component of the
initial velocity. Since all three kicks reach the same maximum height, they must also have the
same time of flight. The horizontal components of the initial velocity are different, which
accounts for them traveling different distances.

The baseball is in projectile motion during the entire flight. In projectile motion the acceleration
is downward and constant; it is never zero. Therefore, (a) is incorrect. Since the ball was hit high
and far, it must have had an initial horizontal component of velocity. For projectile motion the
horizontal component of velocity is constant, so at the highest point the magnitude of the
velocity cannot be zero, and thus (b) is incorrect. However, at the highest point, the vertical
component of velocity is zero, so the magnitude of the velocity has a minimum at the highest
point. So (¢) is the correct answer.

Both the monkey and bullet fall at the same rate due to gravity. If the gun was pointed directly at the
monkey and gravity did not act upon either the monkey or bullet, the bullet would hit the monkey.
Since both start falling at the same time and fall at the same rate, the bullet will still hit the monkey.

11. (b, e) In projectile motion the acceleration is vertical, so the x velocity is constant throughout the

motion, so (a) is valid. The acceleration is that of gravity, which, when up is positive, is a
constant negative value, so (b) is not valid and (c) is valid. At the highest point in the trajectory
the vertical velocity is changing from a positive to a negative value. At this point the y
component of velocity is zero, so (d) is valid. However, the x component of the velocity is
constant, but not necessarily zero, so (e) is not valid.
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12. (@) The maximum relative speed between the two cars occurs when the cars travel in opposite
directions. This maximum speed would be the sum of their speeds relative to the ground or
20 m/s. Since the two cars are traveling perpendicular to each other (not in opposite directions),
their relative speed must be less than the maximum relative speed.

Solutions to Problems

1. The resultant vector displacement of the car is given by
Dp =Dy +D

!

The westward displacement is south-

west

south--
west

225 km + (98 km) cos 45° =294.3 km and the southward
displacement is (98 km) sin 45° = 69.3 km. The resultant displacement has a magnitude of

V294.3% +69.3% =[302 km| The direction is 6 = tan™" 69.3/294.3 = [13° south of west|

(e

east

2.  The truck has a displacement of 21+ (-26) = -5 blocks north and 16 blocks
east. The resultant has a magnitude of ~ -

D, D
\(=5)% +16> =16.76 blocks = [17 blocks| and a direction of " south
tan~! 5/16 =[17° south of east|. D

3. Given that V, =9.80 units and ¥, =—6.40 units, the magnitude of V is

givenby ¥ = \[V2 + 7 =/9.80 + (-6.40)* =[11.70 units]. The

o _1-64
direction is given by & = tan 1% = , or 33.1° below the

positive x axis.

4. The vectors for the problem are drawn approximately to scale. The
resultant has a length of and a direction north of east. If

calculations are done, the actual resultant should be 17 m at 23° north of
east. Keeping one more significant figure would give 17.4 m at 22.5°.

5. (a) See the accompanying diagram.

(b) V,=-248co0s23.4°= V, =24.8sin23.4°=
() V=yV2+V2 =228 +(9.85) =

1985

0 =tan = |23.4° above the — x axis|
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6. @ W=[66uis] ¥, =[0unit]

Vyy =8.5 cos 55° = 4.875 units = v, V4V,
V3, =8.5sin 55°=6.963 units ~
() To find the components of the sum, add the components of the v ¢
individual vectors.
Vi+V, = (W, +Va,, Vi, +15,) = (-1.725, 6.963)
Vi +V,|= J(=1.725) +(6963)* =7.173 units = 7.2 units @ = tan"" 6963 _ 760

The sum has a magnitude of |7.2 units| and is |76° clockwise from the negative x axis|, or 104°

counterclockwise from the positive x axis.

7. We see from the diagram that A = (6.8, 0) and B = (5.5, 0).
(@ C=A+B=(68,0)+(-55,0)=(13,0). The magnitude is [L3 units|, and the direction is [+x]
(b) C=A-B=(68,0)-(-55,0)=(123,0). The magnitude is [12.3 units|, and the direction is [+x]
() C=B-A=(-550)-(68,0)=(123,0). The magnitude is[12.3 units|, and the direction is [x]

8. (@) Upom = (835 km/h)(cos 41.5%) =[625 km/h| v, = (835 km/h)(sin 41.5%) =[553 km/h
(B)  Ador = Vporn = (625 km/h)(1.75 h) =[1090 km
Ad gy = Dyoyt = (553 km/h)(1.75 h) =[968 km

A, =44.0 cos 28.0° = 38.85 A, =44.0 sin 28.0° = 20.66
B, =—26.5c0s56.0°=~14.82 B, =26.5sin 56.0°=21.97
C, =31.0cos 270°=0.0 C, =31.0sin 270°=-31.0
(@) (A+B+C), =38.85+(-14.82)+0.0 = 24.03 = [24.0]
(A+B+C), =20.66+21.97+(-31.0)=11.63 =[11.6]

(b) |K+]§+C|=\/(24.03)2+(11.63)2= e=tan‘l%=

10. A4, =44.0cos 28.0°=38.85 4, =44.0sin 28.0° = 20.66
B, =-26.5c0s56.0°=-14.82 B, =26.5sin 56.0°=21.97

(@) (B—A), =(-1482)-3885=-53.67 (B—A), =21.97-20.66=1.31

Note that since the x component is negative and the y component is positive, the vector is in the
2nd quadrant.

[B-A| = 53672 + (1312 =[53.7] 6, =tan™" ;33 27 = [1.4° above — x axis|
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(b) (A-B), =38.85-(-1482)=53.67 (A-B), =20.66—-21.97 =—131

Note that since the x component is positive and the y component is negative, the vector is in the
4th quadrant.

|A—1§| = (53672 +(-1.31)% = 6 =tan™! % =[1.4° below + x axis]

Comparing the results shows that B— A is the opposite of A-B.

11. A,=44.0cos 28.0°=38.85 4, =44.0sin 28.0° =20.66
C, =31.0cos 270°=0.0 C, =31.0sin 270°=-31.0

(A-C), =38.85-0.0=3885  (A-C), =20.66—(-31.0)=51.66

|A—é|=\/(38.85)2 +(51.66) =[646] O=tan 210

38.85

12. A4, =44.0 cos 28.0°=38.85 4, =44.0sin 28.0° =20.66
B, =-26.5c0s56.0°=-14.82 B, =26.5sin 56.0°=21.97

C, =31.0 cos 270° = 0.0 C, =31.0sin 270°=-31.0
(@ (B-3A), =-14.82-3(3885)=-131.37 (B-3A), =21.97-3(20.66) =—40.01
Note that since both components are negative, the vector is in the 3rd quadrant.
|1§—3A| = J-13137)% +(~40.01)? =137.33 =

) 4001
~131.37

() (2A-3B+2C), =2(38.85)—3(-14.82)+2(0.0) =122.16

6 =tan

|16.9° below —x axis|

(2A-3B+20C),, =2(20.66)-3(21.97) +2(-31.0) = -86.59

Note that since the x component is positive and the y component is negative, the vector is in the
4th quadrant.

-1-86.59 =(35.3° below + x axis

2A—3B+2C| =\/(122.16)2 +(-86.59)? =[149.7] 6 =tan

13. A4, =44.0cos 28.0°=38.85 A, =44.0sin 28.0° = 20.66
B, =-26.5c0s56.0°=-14.82 B, =26.5sin 56.0°=21.97
C, =31.0cos 270°=0.0 C, =31.0sin 270°=-31.0

(@) (A-B+C), =38.85—(-14.82)+0.0 = 53.67
(A-B+C), =20.66—21.97+(-31.0) = -32.31

Note that since the x component is positive and the y component is negative, the vector is in the
4th quadrant.

A-B+(|= J(53.67) +(=32.31)% = 6 = tan

13231 [31.0° below + x axis]
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() (A+B—-C), =38.85+(-14.82)—0.0 =24.03
(A+B-C), =20.66+21.97—(-31.0)=73.63

|A+1T:’.—(:|:J(24.o3)2 +(73.63)% =[77.5] 9=tan_l%=

() (C—A-B), =0.0-38.85—(-14.82) = —24.03
(C-A-B), =-31.0-20.66-21.97 =-73.63
Note that since both components are negative, the vector is in the 3rd quadrant.

-1 _73'6§ =171.9° below — x axis

€~ A-B|=(-24.03)% +(-73.63)" = 6 = tan

Note that the answer to (c¢) is the exact opposite of the answer to (b).

14, If the angle is in the first quadrant, then V', =V sin ¢ and V,, =V cos ¢. See the first diagram. If the

angle is in the second quadrant, then V, =V sin ¢ and V,, =V cos ¢. See the second diagram.

15.  The x component is negative and the y component is positive, since the summit is to the west of north.
The angle measured counterclockwise from the positive x axis would be 122.4°. Thus the components
are found to be the following:

x=-4580sin 38.4°=-2845m  »=4580cos 38.4°=3589m z=2450m
[F = (2845 m, 3589 m, 2450 m)|  [F| = /(~2845)% +(3589) +(2450)* =[5190 m

16. (a) Use the Pythagorean theorem to find the possible x components.

90.0° =x* +(-65.0)> — x*=3875 — x=

(b)  Express each vector in component form, with V the vector to be determined. The answer is
given both as components and in magnitude/direction format.

(62.2, —65.0)+(Vy, V,) = (-80.0,0) —

V,=(800-622)=-1422 ¥, =650 V=[(-142.2,650)

. | 65.0

V] =41/(=142.2)? +65.0%> =[156 units| @ =tan™' ———— =[24.6° above — x axis
V]=yE1422) ! |

17.  Choose downward to be the positive y direction. The origin will be at the point where the tiger leaps
from the rock. In the horizontal direction, v,, =3.0 m/s and a, = 0. In the vertical direction,
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Uy = 0, a, = 9.80 m/sz, o =0, and the final location is y = 7.5 m. The time for the tiger to reach the

ground is found from applying Eq. 2—11b to the vertical motion.

y=yo+vt+iat - 75m=0+0+1080mis7) - 1= &m)zzl.zsn
9.80 m/s

The horizontal displacement is calculated from the constant horizontal velocity.

Ar=v.t=3.0m/s)(1237s) =

18.  Choose downward to be the positive y direction. The origin will be at the point where the diver dives
from the cliff. In the horizontal direction, v,y =2.5m/s and a, =0. In the vertical direction, v,,, =0,

a, =9.80 m/s?, Yo =0, and the time of flight is # = 3.0 s. The height of the cliff is found from
applying Eq. 2—11b to the vertical motion.
Y=y +vttia > y=0+0+10980m/s?)3.05) =

The distance from the base of the cliff to where the diver hits the water is found from the horizontal
motion at constant velocity:

Ax=v,1=(2.5m/5)(3.0s) =

19.  Apply the level horizontal range formula derived in the text. If the launching speed and angle are held
constant, the range is inversely proportional to the value of g. The acceleration due to gravity on the

Moon is one-sixth that on Earth.

2 - 2 .-
vy sin 26, vy sin 26,
REanh = Moon — - REanthanh = RMoongMoon
8Earth EMoon
_ SEarth _
RMoon - REarth - 6REarth
Moon

Thus, on the Moon, the person can jump |6 times farther|.

20. Choose downward to be the positive y direction. The origin will be at the point where the ball is

thrown from the roof of the building. In the vertical direction, Uy =0, a, = 9.80 m/sz, Yo =0, and

the displacement is 7.5 m. The time of flight is found from applying Eq. 2—11b to the vertical motion.

Y=y tvtta s’ > 75m=1080msY) A - 1= mzl.zns
9.80 m/s

The horizontal speed (which is the initial speed) is found from the horizontal motion at constant
velocity.

Av=vt > v, =Av/t=9.5m/1237s=[7.7 ms|

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



3-10 Chapter 3

Choose downward to be the positive y direction. The origin is the point where the ball is thrown from
the roof of the building. In the vertical direction Vyo = 0, yo =0, and a, = 9.80 m/s>. The initial

horizontal velocity is 12.2 m/s and the horizontal range is 21.0 m. The time of flight is found from the
horizontal motion at constant velocity.

Ar=vt — 1=Ax/v, =(21.0m)/(12.2 m/s)=1.721s

The vertical displacement, which is the height of the building, is found by applying Eq. 2—11b to the
vertical motion.

y=yp+vt+iat - y=0+0+1(980m/s?)(1.7215)* =[14.5 m]

22.  Choose the point at which the football is kicked as the origin, and choose upward to be the positive y
direction. When the football reaches the ground again, the y displacement is 0. For the football,

vy =(18.0sin 31.0°) m/s, a,, =—9.80 m/s?, and the final y velocity will be the opposite of the
starting y velocity. Use Eq. 2—11a to find the time of flight.

Uy, =V (-18.05in 31.0°) m/s—(18.0sin 31.0°) m/s _ T89S

V, =V, tat = t=

a -9.80 m/s’
23.  Apply the level horizontal range formula derived 2
in the text.
2 € 1.5+
UO sin 290 =
R=2""°-7 P
g g /
2 @
sin 26, = R—f _ 25 m)(980 rzn/s ) 05799 |8 / \
Uy (6.5 m/s) 0.5
B b=
26, =sin' 0.5799 — 6, =]18°, 72° 2 — ‘
. 0 0.5 1 1.5 2 2.5
There are two angles because each angle gives horizontal distance (m)

the same range. If one angle is 8 =45°+ 9, then
6 =45°—-7 is also a solution. The two paths are shown in the graph.

24.  When shooting the gun vertically, half the time of flight is spent moving upward. Thus the upward
flight takes two seconds. Choose upward as the positive y direction. Since at the top of the flight the
vertical velocity is zero, find the launching velocity from Eq. 2—11a.

v, =vg+at > v, =0, -at=0=(9.80m/s’)(2.05)=19.6 m/s

y

Using this initial velocity and an angle of 45° in the level horizontal range formula derived in the text
will give the maximum range for the gun.

2 . . [e}
g bosin 26, _(19.6 m/s)* sin §2><45 ) :
g 9.80 m/s

25.  The level horizontal range formula derived in the text can be used to find the launching velocity of the
grasshopper.

2 .
U, 26,
R= 0 Sin 0

2
S oy |- Rg _ (0.80 m?(9.80 m/s”) 8 ms
g sin 26, sin 90°
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Since there is no time between jumps, the horizontal velocity of the grasshopper is the horizontal
component of the launching velocity.

v, =1, cos 6, = (2.8 m/s) cos 45° =|2.0 m/s

26. (a) Take the ground to be the y =0 level, with upward as the positive direction. Use Eq. 2—11b to
solve for the time, with an initial vertical velocity of 0.

y=yo+upt+iat - 150m=910m+1-9.80 ms*)* —

‘= w:uAsszm
(-9.80 m/s”)
(b) The horizontal motion is at a constant speed, since air resistance is being ignored.

Ax =0t = (4.0 m/s)(12.455) =49.8 m ~ [5.0x10' m

Choose the origin to be where the projectile is launched and upward to be the positive y direction. The
initial velocity of the projectile is v, the launching angle is 6, a, =—g, and v, =, sin 6.

)
~

(a)  The maximum height is found from Eq. 2-11c¢ with v, =0 at the maximum height.

v;-vyy —usin? @, uEsin®@, (36.6m/s)* sin® 42.2°
Vmax =0+ = = = 5 =[30.8 m
Zay -2g 2g 2(9.80 m/s”)

(b) The total time in the air is found from Eq. 2—11b, with a total vertical displacement of O for the
ball to reach the ground.

Y= +Uy0t+%ayt2 4 0=UO sin Qot—%gtz 4

20, sin @ . in 42.2°
(== sm 0:2(366921(/)1):/11;422 —50173s~[5.025|and =0
g . S

The time of 0 represents the launching of the ball.

(¢) The total horizontal distance covered is found from the horizontal motion at constant velocity.
Ax = 0,1 = (1, c0s Gyt = (36.6 m/s)(cos 42.2°)(5.0173 s) =

(d) The velocity of the projectile 1.50 s after firing is found as the vector sum of the horizontal and
vertical velocities at that time. The horizontal velocity is a constant v, cos 6, =

(36.6 m/s)(cos 42.2°) = 27.11 m/s. The vertical velocity is found from Eq. 2—11a.
Uy, =0, +at =y, sin 6, — gt = (36.6 m/s) sin 42.2°—(9.80 m/s?)(1.50 s) = 9.885 m/s

Thus the speed of the projectile is as follows:

v=u2 +0} =711 m/s)? +(9885 m/s)? =[28.9 m/s

28. (a) Use the level horizontal range formula derived in the text.

2 o 2
2 . .
R:UO sin 26 S = .Rg _ (7 8011.1)(9 80 m/s”) — 1972 /s
g sin 26, sin 54.0°
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29.

30.

31.

(b) Now increase the speed by 5.0% and calculate the new range. The new speed would be
9.72 m/s (1.05) =10.21 m/s and the new range would be as follows:
R vy sin 26, _ (10.21m/s)* sin 54°

g 9.80 m/s> =8.600m

This is an increase of |O.81 m (10% increase) |

Choose the origin to be the point of release of the shot put. Choose upward to be the positive y
direction. Then y, =0, v, = (14.4 sin 34.0°) m/s =8.05 m/s, a, =-9.80 m/s?, and y=-210m
at the end of the motion. Use Eq. 2—11b to find the time of flight.

y=y0+vy0t+%ayt2 - %ayt2+vy0t—y=0 -

~0, i\/vﬁo ~4(1a,)=y) _ ~8.05%+/(8.05)2 —2(-9.80)(2.10)

t= ]
2§ay _9.80

=1.8725,-0.2290 s

Choose the positive result since the time must be greater than 0. Now calculate the horizontal distance
traveled using the horizontal motion at constant velocity.

Ax =, =[(14.4 cos 34.0°)](1.872'5) =

Choose the origin to be the point on the ground directly below the point where the baseball was hit.
Choose upward to be the positive y direction. Then y, =1.0m, y =13.0 m at the end of the motion,

Uy =(27.0 sin 45.0°) m/s =19.09 m/s, and a, =-9.80 m/s>. Use Eq. 2—-11b to find the time of flight.

y=y0+vy0t+%ayt2 - %ayt2+vy0t+(yo—y)=0 -

2
~0, i\/vyo ~4(5a, )00 =) —19.09:+1/(19.09)2 —2(-9.80) (-12.0)
1 - _
2§ay 980
= 0.788's, 3.108 5

=

The smaller time is the time when the baseball reached the building’s height on the way up, and the
larger time is the time at which the baseball reached the building’s height on the way down. We must
choose the larger result, because the baseball cannot land on the roof on the way up. Now calculate the
horizontal distance traveled using the horizontal motion at constant velocity.

Ax = vt =[(27.0 cos 45.0°) m/s](3.108 s) =

Choose the origin to be the location on the ground directly below the airplane at the time the supplies
are dropped, and choose upward as the positive y direction. For the supplies, y, =235m, v, =0,

a, =—g, and the final y location is y = 0. The initial (and constant) x velocity of the supplies is

v, = 69.4 m/s. First the time for the supplies to reach the ground is found from Eq. 2-11b.

) —
y=yo+vt+iat - 0=y +0+ta’® - t=\/ Yo _ 2(235“2 =6.9255
a (—9.80 m/s”)

Then the horizontal distance of travel for the package is found from the horizontal constant velocity.

Ax =, =(69.4 m/s)(6.925s) =
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32.  We have the same set-up as in Problem 31. Choose the origin to be the location on the ground directly

below the airplane at the time the supplies are dropped, and choose upward as the positive y direction.
For the supplies, yy =235m, v, =0, a, =—g, and the final y location is y = 0. The initial (and
constant) x velocity of the supplies is v, = 69.4 m/s. The supplies have to travel a horizontal distance
of 425 m. The time of flight is found from the horizontal motion at constant velocity.

Ax=v,t — t=Ax/v, =425m/694m/s=6.124s
The y motion must satisfy Eq. 2—11b for this time.
y=yp+vt+iat -
= ~ta® 0-235m-1(-980 m/s?)(6.1245)°
0= =

=|-837 m/s
7 t 6124 s

Notice that since this is a negative velocity, the object must be projected DOWN.

The horizontal component of the speed of the supplies upon landing is the constant horizontal speed of
69.4 m/s. The vertical speed is found from Eq. 2—11a.

U, = Uy +a,t =—8.37 m/s+(-9.80 m/s?) (6124 5) = 68.4 m/s

Thus the speed is given by v= /v + 02 =/(69.4 m/s)® +(68.4 m/s)* =[97.4 ms

33.  Choose the origin to be the water level directly underneath the diver when she left the board. Choose
upward as the positive y direction. For the diver, y, =4.0 m, the final y positionis y =0 (water

level), a,, =—g, the time of flight is =13 s, and the horizontal displacement is Ax =3.0 m.

(a) The horizontal velocity is determined from the horizontal motion at constant velocity.

Ax 3.0
Ax=vt = UV, =—= m
’ t 13s

=2.308 m/s

The initial y velocity is found using Eq. 2—11b.
y=yo+vt+iat - 0=40m+v,(1.35)+1(-9.80m/s?)(1.35)° —
Uy =3.293 m/s

The magnitude and direction of the initial velocity are the following:

U = V2 + 03 =(2.308 m/s)* +(3.293 ms)” =[4.0 ms]

(%
6 =tan' 2% = tan™"! 3293 m/s
v 2.308 m/s

X

= |55° above the horizontal|

(b)  The maximum height will be reached when v, =0. Use Eq. 2-11c.

vy =v5+2ahy > 0=(3.293m/s)” +2(-9.80 m/s*) (e, —40m) —

Yinax =[4.6 m|

(c¢) To find the velocity when she enters the water, the horizontal velocity is the (constant) value of
v, =2.308 m/s. The vertical velocity is found from Eq. 2—-11a.

v, =V, +at =3.293 m/s +(=9.80 m/s?) (1.3 5) = ~9.447 mv/s
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The magnitude and direction of this velocity are found as follows:

v=u2 +02 =/(2.308 m/s)® +(~9.447 m/s)* =9.725 m/s =[0.7 ms

v _
f=tan"' L =tan”! 22447 mis = |—76° (below the horizontal)|
v 2308 m/s

X

34. Choose the origin to be the point of launch and upward to be the positive y direction. The initial
velocity is ¥y, the launching angle is 6, a, =—g, ¥y =0, and v, =, sin §,. Eq. 2-11a is used to

find the time required to reach the highest point, at which v, =0.
_ vy _vy() _ O_UO Sin90 _ 1)0 Sin90

T a g g
Eq. 2-11c is used to find the height at this highest point.

Uy = Uyo + atup —

2 2 2 .2 2 -2
v, -0 - 6, 6
2 .2 _ y yO _ UO sin 0 _ 1)0 sin 0
vy_vy0+2ay(ymax_y0) > Vmax = Yot =0+ -
2a, —2g 2g

Eq. 2-11b is used to find the time for the object to fall the same distance with a starting velocity of 0.

vg sin’ 6 _ Y, sin 6,

— 1 2 _ 1,42
y_y0+vy0t+5ayt - 0= +0 (tdown)_fgtdown = ldown = g

A comparison shows that .

35. Choose upward to be the positive y direction. The origin is the point from which the football is kicked.
The initial speed of the football is vy =20.0 m/s. We have v,y =1 sin 37.0°=12.04 m/s, y, =0,

and a, =-9.30 m/s?. In the horizontal direction, v, =1, cos 37.0° =15.97 m/s, and Ax =36.0 m.
The time of flight to reach the goalposts is found from the horizontal motion at constant speed.
Ax=vt — t=A/v,=36.0/15.97 m/s =2.254s

Now use this time with the vertical motion data and Eq. 2—11b to find the height of the football when it
reaches the horizontal location of the goalposts.

¥ =1y + 0yt +1a,t* = 0+(12.04 m/s)(2.254 5)+ 1 (-9.80 m/s”) (2.2545)* =224 m

Since the ball’s height is less than 3.05 m, [the football does not clear the bar|. It is 0.81 m too low
when it reaches the horizontal location of the goalposts.

To find the distances from which a score can be made, redo the problem (with the same initial
conditions) to find the times at which the ball is exactly 3.05 m above the ground. Those times would
correspond with the maximum and minimum distances for making the score. Use Eq. 2—11b.

y=yo+vt+iat - 305=0+(12.04 mis)+1(-9.80 misP) P —

- 12.044+/(12.04)2 — 4(4.90) (3.05)
B 2(4.90)
Ax, = 0, =15.97 m/s (0.2868 5) = 4.580 m; Ax, = v, =15.97 m/s (21703 5) = 34.660 m

So the kick must be made in the range from |4.6 m to 34.7 m/|.

490> —12.04¢+3.05=0

=2.1703s, 0.2868 s
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36. Choose the origin to be the location from which the balloon is fired, and
choose upward as the positive y direction. Assume that the boy in the
tree is a distance H up from the point at which the balloon is fired and
that the tree is a horizontal distance d from the point at which the
balloon is fired. The equations of motion for the balloon and boy are as
follows, using constant acceleration relationships:

— — : 1,42 _ 1,2
XBalloon = Yo €08 ¢ VRalloon = 0+ sin Gyt —Egt VBoy = H _Egt
Use the horizontal motion at constant velocity to find the elapsed time after the balloon has traveled d
to the right.

d

d=vycosbt — t=—-—
Uy cos 6,

Where is the balloon vertically at that time?

2
: . d d
YBalloon = Vp S 901—%g12 =1, sin 901) _%g
Uy cos b, Uy cos 6,

Where is the boy vertically at that time? Note that 4 =d tan§,.

2 2
d d
=H-lgP=H-lg| —— | =dtang,-Lg| ———
YBoy 28 28 o cos 6, 0728 v, cos 6,

Note that yg,jipn = VBoy» S0 the boy and the balloon are at the same height and the same horizontal

location at the same time. Thus they collide!

37. (a) Choose the origin to be the location where the car leaves the ramp, and choose upward to be the
positive y direction. At the end of its flight over the 8 cars, the car must be at y =—1.5 m. Also

for the car, v,y =0, a, =-g, v, =1, and Ax =22 m. The time of flight is found from the

¥
horizontal motion at constant velocity: Ax=v,t — t=Ax/v,. That expression for the time is

used in Eq. 2—11Db for the vertical motion.
y=yo+ot+ialt > y=0+0+lg)ar/y)’ -
—g(Ax)?  |—(9.80 m/s?)(22 m)? .
vy = = =39.76 m/s = |4.0x10" m/s
= LT o mi)E

(b) Again, choose the origin to be the location where the car leaves the ramp, and choose upward to
be the positive y direction. The y displacement of the car at the end of its flight over the 8 cars
must again be y =—1.5m. For the car, v,y =, sin 6y, a, =-g, v, =1, cos §,, and

Ax =22 m. The launch angle is 6, =7.0°. The time of flight is found from the horizontal

motion at constant velocity.
Ax

szvxt - [=—
1)0 Ccos 60

That expression for the time is used in Eq. 2—11b for the vertical motion.
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2
1 2 . AX 1 Ax

=YtV t+La t® - y=v,sinfg———+L-g)| ———| -

Y=yt vyt tya, y =1 0y <05 6, 5 ( g)[vocost%J

2 2 2
Yo = g(Ax) M (9.80 m/s”)(22 m) . —ams
2(Ax tan 6, — y)cos” 6, 2((22 m) tan 7.0°+1.5 m) cos” 7.0°

38. Call the direction of the boat relative to the water the positive direction. For the jogger moving toward
the bow, we have the following:

Viogger = Viogger T Vboatrel = 2.0 m/s+8.5 m/s
rel. water rel. boat water

=|10.5 m/s in the direction the boat is moving

For the jogger moving toward the stern, we have the following:

Viogger = Vjogger T+ Vboatrel, = 2.0 m/s+8.5 m/s

rel. water rel. boat water

=16.5 m/s in the direction the boat is moving

39. Call the direction of the flow of the river the x direction and the VHuck
direction of Huck walking relative to the raft the y direction. v rel. bank
Huck
Viuck = VHuck T Viafirel, = (0, 0.70) m/s +(1.50, 0) m/s rel. raft
rel. bank rel. raft bank P

=(1.50, 0.70) Vs -

v raf
Magnitude: Vg =1.50% +0.70% = rel. bank

rel. bank (current)
. -1 0.70 - -

Direction: 8 = tan”™' Ts0 = |25° relative to r1ver|

40. From the diagram in Fig. 3-29, it is seen that V“lfqater rel.
shore
Vboat rel. = Upoat rel. €086 = (1.85 m/s) cos 40.4° ={1.41 m/s|.
shore water -
Vboat rel. -
. . shore Vboat rel.

41. If each plane has a speed of 780 km/h, then their relative speed of water

approach is 1560 km/h. If the planes are 10.0 km apart, then the time for
evasive action is found as follows:

Ad 10.0 km 3600 s
Ad=vt — t=—= =|23.1s <
[1560km/hj( 1h j - v

(% passenger

rel. water
I . L v
42.  Call the direction of the boat relative to the water the x direction //7 rel boat

and upward the y direction. Also see the diagram. v

Vboat rel.
water

Vpassenger Vpassenger * Vboat rel.
rel. water rel. boat water

=(0.60 cos 45°, 0.60 sin 45°) m/s
+(1.70, 0) m/s = (2.124, 0.424) m/s

L0424
Vpassenger = (2124 m/s)2 +(0. 424 m/s)” =217 /5] 6 senger = tan ™' —omr =

rel. water rel. water 2.124
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43. (a) Call the upward direction positive for the vertical motion. Then the velocity of the ball relative to
a person on the ground is the vector sum of the horizontal and vertical motions. The horizontal
velocity is v, =10.0 m/s and the vertical velocity is v, =3.0 m/s.

v=(10.0m/s,3.0m/s) — v=1/(10.0m/s)> +(3.0 m/s)* =[10.4 m/s|

9o o) 30 s

= |17° above the horizontal|

S

(b)  The only change is the initial vertical velocity, so v, =—5.0 m/s.

v=(10.0m/s, —3.0m/s) — v=\/(10.0 m/s)? +(=3.0 m/s)? =[10.4 m/s

-1 -3.0m/s
10.0 m/s

0 = tan = |17° below the horizontal|

44. Call east the positive x direction and north the positive y direction. Then the
following vector velocity relationship exists.

Vplane rel. = Vplane + vair rel.
(a) ground rel. air ground
=(0, —688) km/h +(90.0 cos 45.0°,90.0 sin 45.0°) km/h
=(63.6,—624) km/h AV e
ground
Uplane rel, = J(63.6 km/h)? + (=624 km/h)? =628 km/h
ground vplane
rel. air
0 =tan"! ﬂf =[5.82° east of south|
(b) The plane is away from its intended position by the distance the air l
has caused it to move. The wind speed is 90.0 km/h, so after 11.0 min
(11/60 h), the plane is off course by this amount. A el

Ax = Uxt = (900 km/h) (%h) = ground

45. Call east the positive x direction and north the positive y direction. Then the
following vector velocity relationship exists.

Vplane rel. = Vplane * Vair rel. -
ground rel. air ground - -
v Vplane rel.

plane ground

rel. air

[0, ~ Uplane rel_J =(—688 sin 6, 688 cos ¢) km/h

ground

+(90.0 cos 45.0°, 90.0sin 45.0°) km/h

Equate x components in the above equation.

0=—688 sin 6+90.0 cos 45.0° —> i

@ =sin"! % =15.31°, west of south
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46. Call the direction of the flow of the river the x direction and the direction S 1
straight across the river the y direction. Call the location of the swimmer’s r{f:,lfer ek

starting point the origin.

— - - A\
Vowimmer = Vewimmer T Vwater rel. = (0, 0.60 m/s) +(0.50 m/s, 0) swmmer .
rel. shore rel. water shore swimmer
rel. shore
=(0.50, 0.60) m/s
(a) Since the swimmer starts from the origin, the distances covered in
the x and y directions will be exactly proportional to the speeds in those directions.
vt D Ax .
A _Ud b A _050mfs Ax=37.5mz
Ay vt v, 45m 0.60 m/s
() The time is found from the constant velocity relationship for either the x or y direction.
Ay 45m
Ay=vt — t=—=———=|75s
YT v, 0.60ms
(a) Call the direction of the flow of the river the x direction and the V ater rel.
direction straight across the river the y direction. shore
vwater rel. v swimmer
sing=shore _050ms 1 990 g6 4g0 Vawimmer g
Ugwimmer ~ 0-60 m/s 0.60 rel. water
rel. water
(b) From the diagram, her speed with respect to the shore is found as follows:
Vswimmer = Vswimmer €08 @ = (0.60 m/s) cos 56.44° = 0.332 m/s
rel. shore rel. water
The time to cross the river can be found from the constant velocity relationship.
4 :
Av=vr - == BM 3550 1205=23min
v 0332m/s
A ) . . ) . Vwatcr rel.
48. Call the direction of the flow of the river the x direction (to the left in 118m shore

the diagram) and the direction straight across the river the y direction
(to the top in the diagram). From the diagram,

6 =tan"' 118 m/285 m = 22.49°, Equate the vertical components of 285m
the velocities to find the speed of the boat relative to the shore.

— 1 o]
Uboat rel. €08 0= Uboat rel. S 45 -

shore water
sin 45°
=(2.50 m/s)————=1.913 m/s
Phoat el ( ) c0s22.49°
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Equate the horizontal components of the velocities to find the speed of the current.

. _ o
Upoat rel. SN 0= Uboat rel. COS 45°— Vyater -
shore water rel. shore
— o M
Uywater = Upoat rel. €OS 45° - Uboat rel. S11 0
rel. shore water shore

= (2.50 m/s) cos 45°— (1.913 m/s) sin 22.49° =1.036 m/s = [1.0 m/s]

49. The lifeguard will be carried downstream at the same rate as the child. Thus only the horizontal motion

need be considered. To cover 45 m horizontally at a rate of 2 m/s takes jinl/n =225s= for the
s

lifeguard to reach the child. During this time they would both be moving downstream at 1.0 m/s, so
they would travel (1.0 m/s)(22.5s)=22.5m = downstream.

50. Call east the positive x direction and north the positive y direction.
The following is seen from the diagram. Apply the law of sines to the _
triangle formed by the three vectors. V plane rel.

air

D, D,

Uplane_ air rel. air rel. X
: rel. air _ g'round 5 sin@= ground sin128° —s Vgll.?,?;ﬁl‘
sin128°  sin @ Uplane !
rel. air !
Vair rel. g
.- d . - .
0 =sin"!| -2 §in 128° |=sin”! [— sin 128°J =6.397°
Uplane 580 km/h
rel. air
So the plane should head in a direction of 38.0°+6.4° = |44.4o north of east|.
.. . . .. . . i;car2 rel.
51. Call east the positive x direction and north the positive y direction. From the street

first diagram, this relative velocity relationship is seen.
\4

\/ﬁ v L car 1
- = < — car 1 rel.
Vear1rel. = Vear 1rel. T Vear2rel. ™ Vearlrel = (=55)"+(35) car?2 rel.

street
street car 2 street car 2

@ =tan"! 55/35= [58° west of north|

For the other relative velocity relationship:

< < 2 2
Vear2rel. = Vear 2rel. T Vear1rel. ™ Ucar2rel. = (55) + (_35)

street car 1 street car 1

=165 km/h

6 =tan! 35/55= [32° south of east|

Notice that the two relative velocities are opposites of each other: v v

car 1 rel.
car 1 car 2

car 2rel. —
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52. (a) For the magnitudes to add linearly, the two vectors must be parallel. \71 ||\72

(b) For the magnitudes to add according to the Pythagorean theorem, the two vectors must be at

right angles to each other.
(c) The magnitude of vector 2 must be 0.

1 m/s

53.  The deceleration is along a straight line. The starting velocity is 110 km/h| —————
3.6 km/h

J =30.6 m/s,

and the ending velocity is 0 m/s. The acceleration is found from Eq. 2—11a.

v=uytat — 0=30.6m/s+a(7.0s) — a=—m=—4.37m/s2

Os

The horizontal acceleration is a;,. = a cos 6 =—4.37 m/s> (cos 26°)=|-3.9 m/s?|.
horiz

The vertical acceleration is @y, = a sin @ = —4.37 m/s* (sin 26°) = .

The horizontal acceleration is to the left in Fig. 3-48, and the vertical acceleration is down.

54. Call east the x direction and north the y direction. Then this relative

velocity relationship follows (see the accompanying diagram). 15°

Vplane rel. = Vplane * Vair rel. plane rel.
ground rel. air ground ~ ground
Vplane
rel. air
Equate the x components of the velocity vectors. The magnitude of A
Vplane rel, 1S given as 135 km/h. Vair rel.
ground ' @ ground
(135 km/h)sin15.0° = 0+ 0y q, = Vyingx = 34.94 km/h.

From the y components of the relative velocity equation, we find Vg -

~135¢0815.0° = ~185+Vying, = Uyingy =185-135¢0515.0° = 54.60 kivh

The magnitude of the wind velocity is as follows:

Vying = Vind + Viny = (3494 ki/h)? +(54.60 km/h)* = 64.82 kmv/h =[65 kmv/h

v .
The direction of the wind is = tan™" Zwindy _ tan”™! % =57.38° =|57° north of east|.

Uyind x

55. The time of flight is found from the constant velocity relationship for horizontal motion.

Ax=vt — t=Ax/v,=8.0m/9.1m/s=|0.885

The y motion is symmetric in time—it takes half the time of flight to rise, and half to fall. Thus the
time for the jumper to fall from his highest point to the ground is 0.44 s. His vertical speed is zero at
the highest point. From this time, starting vertical speed, and the acceleration of gravity, the maximum
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height can be found. Call upward the positive y direction. The point of maximum height is the starting
position y, the ending position is y =0, the starting vertical speed is 0, and a =—g. Use Eq. 2-11b

to find the height.
y=yg+vt+iat - 0=y, +0-108m/s*)0445)° - y, =

57
&

Choose upward to be the positive y direction. The origin is the point from which the pebbles are
released. In the vertical direction, a y = -9.80 m/sz, the velocity at the window is v, =0, and the

vertical displacement is 8.0 m. The initial y velocity is found from Eq. 2—11c.

2_ .2
v, =V +2a,(y—yy) —

Dy = V2 ~2a,(y— ) =0~ 2(-9.80 m/s>)(8.0 m) =12.5 m/s

Find the time for the pebbles to travel to the window from Eq. 2—11a.
Uy _UyO _ 0-12.5m/s

=1.28s
a —9.80 m/s>

V, =V, tat = t=

Find the horizontal speed from the horizontal motion at constant velocity.
Ax=vt — v, =Ax/t=85m/1.285=(6.6 m/s|

This is the speed of the pebbles when they hit the window.
57. Assume that the golf ball takes off and lands at the same height, so that the level horizontal range
formula derived in the text can be applied. The only variable is to be the acceleration due to gravity.
2 2
REarth =1 s 290 /gEanh RMoon =1 sin 2HO/gMoon

2 .
Rpartn _ V0 SN 26) /8gartn _ V/8Earh _ 8Moon _ 32M _ o yome

Rytoon Ug sin 26y /2nvoon /gmoon  &rarmn  180m

Ertoon = 01778 gporgy = 0.1778(9.80 m/s?) = 1.742 m/s? =

58. (a) Use the level horizontal range formula from the text to find her takeoff speed.

2 2
vy sin 26, gR (9.80 m/s”)(8.0 m)
R=2"200 5 gy = = =8.854 m/s = [8.9 m/s]
0" 4/sin 26, sin 90°

g
(b) Let the launch point be at the y =0 level, and choose upward to be positive. Use Eq. 2—11b to

solve for the time to fall to 2.5 m below the starting height, and then calculate the horizontal
distance traveled.

y=yo+ut+ia,t - -2.5m=(8.854m/s)sin 45°% +1(-9.80 m/s?)r>

491> -6.261t-25m=0 —

6.261++/(6.261)* —4(4.9)(-2. t
i J(6261)° ~4(4.9)-2.5) _ 626129391 _ 1 3195,1.597 s
2(4.9) 2(4.9)

Use the positive time to find the horizontal displacement during the jump.
Ax =0yt =, cos 45°t = (8.854 m/s) cos 45°(1.597 s) =10.0 m

|She will land exactly on the opposite bank, neither long nor short.|
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59. Choose the origin to be at ground level, under the place where the projectile is launched, and upward
to be the positive y direction. For the projectile, v, =65.0 m/s, 6§, =35.0°, a,=-g, yo = 115m,

and v, =, sin .
(a) The time taken to reach the ground is found from Eq. 2—11b, with a final height of 0.

y=y0+vy0t+%ayt2 - 0=y0+vosin00t—%gt2 -

—V sin §, i\/vg sin’ & —4(—%g)y0

2(Lg) =9.964,-2.36555=[9.96 5]

Choose the positive time since the projectile was launched at time 7 = 0.

=

() The horizontal range is found from the horizontal motion at constant velocity.
Ax = 0,1 = (1, cos 6,)t = (65.0 m/s)(cos 35.0°)(9.964 s) =

(¢) At the instant just before the particle reaches the ground, the horizontal component of its velocity
is the constant v, =1 cos 6, = (65.0 m/s) cos 35.0° =|53.2 m/s|. The vertical component is

found from Eq. 2-11a.
v, =0, +at =y sin 6, — gf = (65.0 m/s) sin 35.0°—(9.80 m/s? )(9.964 s)
=|-60.4 m/s

(d) The magnitude of the velocity is found from the x and y components calculated in part (c) above.

v= V2 +0F =J(53.2 m/s)? +(~60.4 mis)® =[80.5 ms

N o a Y _1-60.4 L .
(e) The direction of the velocity is 8 = tan 122 — tan™! % =—48.6° so the object is moving
() .

X

|48.6° below the horizontal|.

(/ The maximum height above the cliff top reached by the projectile will occur when the y velocity
is 0 and is found from Eq. 2—11c.
v§:v§0+2ay(y—yo) - 0=07 sin® ) — 28V mux
2 2 2 .2
vy sin” G, 65.0 m/s)” sin” 35.0°
2g 2(9.80 m/s*)

60. Since the arrow will start and end at the same height, use the level horizontal range formula derived in
the text. The range is 27 m, and the initial speed of the arrow is 35 m/s.

2 2
g Yo sin 26, S sin26, =R_£g _ (27m)(9.80 r2n/s )
g vy (35 m/s)

6y =1sin™' 0.216=6.2°83.8°

=0.216

Only the first answer is practical (the arrow might hit the son’s head after piercing the apple if it comes

in almost straight down), so the result is .
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61.

62.

63.

Choose the x direction to be the direction of train travel (the direction the
passenger is facing), and choose the y direction to be up. This relationship exists v

_ v _.
e - - . 1.
among the velocities: V i el = Vyainrel. + Virainrel.- From the diagram, find the ~ Vrain el eround
ground train ground train
expression for the speed of the raindrops.
Vtrain rel v, .
. train rel.
round d
tan 6 = = = o = |Vrainrel. = or £
Vrain rel. Vrain rel. ground tan 6
ground ground

Work in the frame of reference in which the train is at rest. Then, relative to the train, the car is moving
at 20 km/h. The car has to travel 1 km in that frame of reference to pass the train, so the time to pass
can be found from the constant horizontal velocity relationship.

Av=vg - g, = Ax _ 1km :0.05h(36005j:
direction  (Ux )same 20 km/h 1h
direction

The car travels 1 km in the frame of reference of the stationary train, but relative to the ground, the car
is traveling at 95 km/h so relative to the ground the car travels this distance:

Ax=vt,. =(95km/h)(0.05h)=

direction

If the car and train are traveling in opposite directions, then the velocity of the car relative to the train
will be 170 km/h. Thus the time to pass will be as follows:

Lopposite = A = Lm = [L hj(3600 Sj =
on (D)opposite 170 km/h {170 1h
direction

The distance traveled by the car relative to the ground is calculated.

AY = Ulpposite = (95 km/h)(% hj =[0.56 km

direction

(a) Choose downward to be the positive y direction. The origin is the point where the bullet leaves
the gun. In the vertical direction, Uy = 0, yo=0, and a, = 9.80 m/s>. In the horizontal
direction, Ax =38.0 m and v, =23.1m/s. The time of flight is found from the horizontal
motion at constant velocity.

Ax=v,t — t=Ax/v, =38.0m/23.1m/s=1.645s
This time can now be used in Eq. 2—11b to find the vertical drop of the bullet.

y=yo+vt+iat - y=0+0+1(9.80 m/s*)(1.6455)” =[13.3m

(b) For the bullet to hit the target at the same level, the level horizontal range formula derived in the
text applies. The range is 38.0 m, and the initial velocity is 23.1 m/s. Solving for the angle of
launch results in the following:

2
— sin26, :R—f — 6y =Lsin™ (38.0m)(9.80 f’/s )
g 0 (23.1 m/s)

2 .
v 26,
R= o S 0
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Because of the symmetry of the range formula, there is also an answer of the complement of the
above answer, which would be 67.9°. That is an unreasonable answer from a practical physical

viewpoint—it is pointing the bow nearly straight up.

64. Choose downward to be the positive y direction. The origin is at the point from which the divers
push off the cliff. In the vertical direction, the initial velocity is Uy = 0, the acceleration is

a, =9.80 m/s, and the displacement is 35 m. The time of flight is found from Eq. 2—11b.
2 ! 2,2 2(35 m)
y=y+vttiarl > 35m=0+0+10980 sy’ — = =274
The horizontal speed (which is the initial speed) is found from the horizontal motion at constant
velocity.
Av=v1 — v, =Ax/t=50m/2.7s=[L9 ms|

65. The minimum speed will be that for which the ball just clears the
fence; that is, the ball has a height of 8.0 m when it is 98 m
horizontally from home plate. The origin is at home plate, with
upward as the positive y direction. For the ball, y, =1.0 m,

y=80m, a,=-g, v,y =1 sin ), v, =1, cos§,, and

6, =36°. See the diagram (not to scale). For the constant-velocity
horizontal motion, Ax = v, =1, cos ft, sO t =———.
vy cos 6,
For the vertical motion, apply Eq. 2—11b.

2 : 2
Y=y +Uy0t+%ayt =y + Vg (sin Bo)t—%gt

Substitute the value of the time of flight for the first occurrence only in the above equation, and then
solve for the time.

Uy cos 6,
—y+Ax tan 6, .Om-8. °
. 2[y0 y an OJ: ) 1.0m 80m+(982m)tan36 —13620s
g 9.80 m/s

Finally, use the time with the horizontal range to find the initial speed.

Ax 98 m
Ar=tpeosfy = = ~ G205 con 30 2

t cos 6,

66. Choose the origin to be the location on the ground directly underneath the ball when served, and

choose upward as the positive y direction. Then for the ball, y;, =2.50 m, V=0, a,=-g, and the

y location when the ball just clears the net is y = 0.90 m. The time for the ball to reach the net is
calculated from Eq. 2—11b.
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67.

68.

y=yp+vt+iat - 090m=250m+0+1(-9.80 ms*)

te = 2(_1‘—6(”112)=0.57143s
net _980 m/S

The x velocity is found from the horizontal motion at constant velocity.

Ax  150m
Ax=vt — UV, =—=—""—=2625=|263m/s
D ST iy T 26~ 03

This is the minimum speed required to clear the net.

To find the full time of flight of the ball, set the final y location to be y = 0, and again use Eq. 2-11b.

y=y0+vy0t+%ayt2 - 0=2.50m+%(—9.80m/52)t2 -

2(~2.50 m)
foal = [~ — 07143~ [0.714 5
€74 Z9.80 mys? 07143

The horizontal position where the ball lands is found from the horizontal motion at constant velocity.

Ax=v,t=(26.25m/s)(0.71435) =18.75 =

Since this is between 15.0 and 22.0 m, the ball lands in the “good” region|.

Work in the frame of reference in which the car is at rest at ground level. In this reference frame, the

helicopter is moving horizontally with a speed of 208 km/h —156 km/h =52 km/h[—3 2nk]r/j/hj =

14.44 m/s. For the vertical motion, choose the level of the helicopter to be the origin and downward to
be positive. Then the package’s y displacement is y = 78.0 m, Uy =0, and a,=g. The time for the

package to fall is calculated from Eq. 2—-11b.

y=yp+vt+ia st - 780m=1080m/s’) - = &Omz)zw%
9.80 m/s

The horizontal distance that the package must move, relative to the “stationary” car, is found from the
horizontal motion at constant velocity.

Ax =0, = (14.44 m/s)(3.995) = 57.6 m

Thus the angle under the horizontal for the package release will be as follows:

1 Ay 1 78.0 m
@=tan"'| = |=tan =53.6°z-54°
(ij (57.6mj

The proper initial speeds will be those for which the ball has /z

traveled a horizontal distance somewhere between 10.78 m /79 y=095m
and 11.22 m while it changes height from 2.10 m to 3.05 m e

with a shooting angle of 38.0°. Choose the origin to be at the Ar=10.78 m—11.22 m

shooting location of the basketball, with upward as the

positive y direction. Then the vertical displacement is

y=095m, a,=-9.80 m/s?, Uy =1 sin 6, and the
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69.

70.

(constant) x velocity is v, =, cos §,. See the diagram (not to scale). For the constant-velocity

horizontal motion, Ax =0t =V, cos yt, so t = oS B For the vertical motion, apply Eq. 2—11b.
Uy cos 6,

— 1 2 _ : 1,42
Y=Yyt 0yt +5a,t" = (v, sin )t — gt

Substitute the expression for the time of flight and solve for the initial velocity.

2 2
y = (v sin O)t —L gr* =v; sin 6 Ax _lg{ Ax J=Axtan0— g(Av)

Uy cos 6, Uy cos 6, 208 cos® 6,

by = g(Av)?
2 cos? 6y (—y +Ax tan )

For Ax=11.00m—0.22 m =10.78 m, the shortest shot:

2 2
v = - (080 m/s”)(10.78 m) =11.078 m/s = [11.1 m/s
2 cos® 38.0° [(=0.95 m +(10.78 m) tan 38.0°)]

For Ax=11.00 m+0.22 m =11.22 m, the longest shot:

2 2
v = - (080 m/s”)(11.22 m) =11.274m =[11.3 m/s
2 cos” 38.0°[(—=0.95 m+(11.22 m) tan 38.0°)]
Call the direction of the flow of the river the x direction, and the direction V;‘}’l‘gfcf rel.
the boat is headed (which is different from the direction it is moving) the y
direction. v
V b}(l)al rel.
2 2 2 2 oat rel. shore
(a) Uboat rel. = \/vwater rel. T Uboat rel. = \/(1'20 m/s) + (2'20 m/s) boat !
shore

shore water e
=2.506 m/s =|2.51 m/s ¢

6 =tan"! % =28.6°% ¢=90°-60 = |61.4O relative to shore

(b)  The position of the boat after 3.00 seconds is given by the following:
Ad = Uyt rert =[(1.20 m/s, 2.20 m/s)](3.00 s)

shore

= |3.60 m downstream, 6.60 m across the river|

As a magnitude and direction, it would be 7.52 m away from the starting point, at an angle of
61.4° relative to the shore.

Choose the origin to be the point from which the projectile is launched, and choose upward as the
positive y direction. The y displacement of the projectile is 135 m, and the horizontal range of the

projectile is 195 m. The acceleration in the y direction is a,, =—g, and the time of flight is 6.6 s.

The horizontal velocity is found from the horizontal motion at constant velocity.

Ax=vt — vx=g=l95m
t 6.6s

=29.55m/s
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71.

72.

=)
93]

Calculate the initial y velocity from the given data and Eq. 2-11b.
y=yp+ 0yt +1a,? - 135m=0(6.65)+1(-9.80 m/s*)(6.65)* - v, =52.79 m/s

Thus the initial velocity and direction of the projectile are as follows:

vy = \/vﬁ +Uy = \/(29.55 m/s)? +(52.79 m/s)* = 60.4978 m/s = |6.0x10' m/s

1Y% 1 52.79 m/s
0 =tan"' - =tan 1—=--61°
29.55 m/s

X

Find the time of flight from the vertical data, using Eq. 2—11b. Call the floor the y = 0 location, and
choose upward as positive.

y=yo+upt+ia, - 3.05m=240m+(12 nvs) sin 35% +1(-9.80 m/s*)?
490> —6.883+0.65m=0 —

. 6.883+4/6.8832 — 4(4.90)(0.65)
2(4.90)

=1.303s, 0.102 s

(a) Use the longer time for the time of flight. The shorter time is the time for the ball to rise to the
basket height on the way up, while the longer time is the time for the ball to be at the basket
height on the way down.

x =0, = y(cos 35°) = (12 m/s)(cos 35°)(1.303s) =12.81 m =
(b) The angle to the horizontal is determined by the components of the velocity.

v, =1, cos 6, =12 cos 35°=9.830 m/s
V), =0, +at =y sin §, — g¢ =12 sin 35°-9.80(1.303) = —5.886 m/s

v -
6 =tan™' X =tan™! 2886 _ -30.9° =

. 9.830

The negative angle means it is below the horizontal.

Let the launch point be the origin of coordinates, with right and upward as the positive directions.
The equation of the line representing the ground is y,,q =—x. The equations representing the motion

g 2
_%_2 Xrock -

Y
Find the intersection (the landing point of the rock) by equating the two expressions for y, and thereby

find where the rock meets the ground.

of the rock are x,.y =yt and y, 4 = —% gt2, which can be combined into y, =

2
g 2 20, x 2y, 2(05m/s)
- Lo T ¥ o IEWE S S VSRR

g v g 9.80m/s’

Choose the origin to be the point at ground level directly below where the ball was hit. Call upwards the
positive y direction. For the ball, we have v, =28 m/s, 6, =61°, a,=-g, Yo = 0.90 m, and y =0.

(a) To find the horizontal displacement of the ball, the horizontal velocity and the time of flight are
needed. The (constant) horizontal velocity is given by v, = v, cos §,. The time of flight is found

from Eq. 2-11b.
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y=yp+vt+iat - 0=y +y singr-lert -

~vy sin 6 +[uf sin® 6y —4(~1 ) v,
2(-3)
—(28 m/s)sin61° + \/(28 m/s)” sin” 61° —4(~1)(9.80 m/s*)(0.90 m)
2(-1)(9.80 m/s*)

1=

=5.0345s,-0.0365s

Choose the positive time, since the ball was hit at # = 0. The horizontal displacement of the ball
will be found by the constant velocity relationship for horizontal motion.

Ax = 0,1 = 1,y cos Gyt = (28 m/s)(cos 61°)(5.034 5) = 68.34 m =

(b) The centerfielder catches the ball right at ground level. He ran 105 m — 68.34 m = 36.66 m
to catch the ball, so his average running speed would be as follows:

Ad 36.66 m
=—= =7.282m/s = -7.3 m/s
t 5.034s

avg

74.  Choose the origin to be the point at the top of the building from which the ball is shot, and call upward
the positive y direction. The initial velocity is v, =18 m/s at an angle of &, = 42°. The acceleration
due to gravity is a,, =—g.

(@) v, =1, cos g, =(18m/s) cos 42°=13.38 m/s = m

V,0 =¥ sin 6 = (18 n/s) sin 42° =12.04 m/s =[12 m/s

(b) Since the horizontal velocity is known and the horizontal distance is known, the time of flight
can be found from the constant velocity equation for horizontal motion.

Av=og - (=2 BOM 4
v, 1338ms

X

With that time of flight, calculate the vertical position of the ball using Eq. 2—11b.
y=yp+ 0yt +1a,t? = (12.04 m/s)(4.1115)+1(-9.80 m/s*)(4.1115)?

=-333m=|-33m|

So the ball will strike 33 m below the top of the building.

75.  First we find the time of flight for the ball. From that time we can calculate the vertical speed of the
ball. From that vertical speed we can calculate the total speed of the ball and the % change in the
speed. We choose the downward direction to be positive for vertical motion.

1 m/s
v, =1, = (150 km/h)| ——— | =41.67 m/s
e = Vo = )[3.6kmh]
Ax=vt — po A 18m g3
v, 41.67m/s

X

v, =1y, +at =(9.80 m/s”)(0.432 5) = 4234 m/s

v=Ju2 +0? =J(41.67 m/s)? +(4.234 m/s)> =41.88 ms

% change = 2~ % 100 = 28874167 100 _ [050%
v 41.67
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Solutions to Search and Learn Problems

1. Consider the downward vertical component of the motion, which will occur in half the total time. Take
the starting position to be y = 0 and the positive direction to be downward. Use Eq. 2—11b with an
initial vertical velocity of 0.

2
y=yo vt tia st - h=0+0+%gt§0wn=%g(%) :%t2:1.225t2z

As can be seen from the equation, by starting the analysis from the “top” point of the motion, the
initial vertical speed is 0. This eliminates the need to know the original launch speed or direction in
that calculation. We then also realize that the time for the object to rise is the same as the time for it to
fall, so we have to analyze only the downward motion.

2. Consider two balls thrown at different angles 8 and different initial velocities v. The initial
¥ component of the velocity can be written as v, = v sin 8. Use Eq. 2—11c to write the initial vertical

velocity in terms of the maximum height /, given that the vertical velocity is zero at the maximum
height. We choose upward as the positive vertical direction.

v§=v§0—2g(y—yo) - 0=u§0—2gh - vy0=«/2gh

The total time of flight is the time it takes for the projectile to return to the ground (y = 0). Insert the
initial velocity into Eq. 2—11b to solve for the total time of flight.

20, 2\/2gh 2h
y=Yo+vt—et o 0=0+v,—Lg =t(vy, —Lgt) > t:%:TgZZ’?

Since both balls reach the same maximum height, they will have the same time of flight. The ball
thrown at the shallower angle must have a larger initial velocity in order to have the same initial
vertical speed and thus reach the same maximum height. However, it will reach that height in the same
time as the ball thrown at the steeper angle.

3. The horizontal component of the speed does not change during the course of the motion, so v, =v,,.
The net vertical displacement is 0 if the firing level equals the landing level, so y—y, =0. Eq. 2-11c

then gives vﬁ = fo +2a,(y—y) = Ufo. Thus v)% = 1)50, and from the horizontal vf = v?o. The
initial speed is v = /U2, + Vo The final speed is v =/v + 03 =,/v% + Vs =y Thus [v=
nitial speeda 1s UO = U){O Uyo . € Imal speed 1S V= U){ Uy = UXO vyo = Uo. us |V = UO .

4. The ranges can be written in terms of the angles and initial velocities using the level horizontal range
equation derived in the text. Then setting the two ranges equal, we can obtain the ratio of the initial
velocities.

2 . 2 : o 2 fe) . o
R= V) sin 260 N Uy sin (2x30°) _Upsin (2x60°) N v_A:\/sm 120 _ v_A=1
g g g U

sin 60° | vp

The two projectiles each have the same initial velocity.
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The time of flight is found using Eq. 2—11b with both the initial and final heights equal to 0 and the
initial vertical velocities written in terms of the launching angle. We choose the positive vertical

direction to be upward.

g g

_1

— 1 — 2 _ 1 —
Y=YtV =587 — 0=0+uv,t S8t —t(voy—igt) - t=

B _ Zvos1n60°/g sin 60° \/_/2

tn  20ysin 30°/g sin30° 12

The projectile launched at 60° is in the air 1.73 times as long as the projectile launched at 30°.

We have v, . =12 m/s. Use the diagram, showing the snow falling 0 Voow rel.

sround :)‘/l ]
. . : Voow el
straight down relative to the ground and the car moving parallel to the aromd

ground, and illustrating V,w rel. = Venow rel. T Vearrel, » 10 calculate chel
ground car ground grounél

the other speeds.

Usnow rel.
tan7.0° =M g e =(12m/s)tan7.0°=1.473 m/s =
Ucar rel. ground
ground
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DYNAMICS: NEWTON’S LAWS OF MOTION

Responses to Questions

1. When you give the wagon a sharp pull forward, the force of friction between the wagon and the child
acts on the child to move her forward. But the force of friction acts at the contact point between the
child and the wagon—we assume the child is sitting in the wagon. The lower part of the child begins to
move forward, while the upper part, following Newton’s first law (the law of inertia), remains almost
stationary, making it seem as if the child falls backward. The “backward” motion is relative to the
wagon, not to the ground.

2. (a) Mary, standing on the ground beside the truck, will see the box remain motionless while the
truck accelerates out from under it. Since there is no friction, there is no net horizontal force on
the box and the box will not speed up. Thus Mary would describe the motion of the box in terms
of Newton’s first law—there is no force on the box, so it does not accelerate.

(b)  Churis, riding on the truck, will see the box appear to accelerate backward with respect to his
frame of reference, which is not inertial. He might even say something about the box being
“thrown” backward in the truck and try to invoke Newton’s second law to explain the motion of
the box. But the source of the force would be impossible to specify. (Chris had better hold on,
though; if the truck bed is frictionless, he too will slide off if he is just standing!)

3. Yes, the net force can be zero on a moving object. If the net force is zero, then the object’s
acceleration is zero, but its velocity is not necessarily zero. [Instead of classifying objects as “moving”
and “not moving,” Newtonian dynamics classifies them as “accelerating” and “not accelerating.” Both
zero velocity and constant velocity fall in the “not accelerating” category.]

@ If the acceleration of an object is zero, the vector sum of the forces acting on the object is zero
(Newton’s second law), so there can be forces on an object that has no acceleration. For example, a
book resting on a table is acted on by gravity and the normal force, but it has zero acceleration,
because the forces are equal in magnitude and opposite in direction.

5. If only one force acts on an object, the net force cannot be zero, so the object cannot have zero
acceleration, by Newton’s second law. It is possible for the object to have zero velocity, but only for an
instant. For example (if we neglect air resistance), a ball thrown upward into the air has only the force
of gravity acting on it. Its speed will decrease while it travels upward, stops, then begins to fall back to
the ground. At the instant the ball is at its highest point, its velocity is zero. However, the ball has a
nonzero net force and a nonzero acceleration throughout its flight.
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]

10.

11.

(a) A force is needed to bounce the ball back up, because the ball changes direction, so the ball
accelerates. If the ball accelerates, there must be a force.

(b) The pavement exerts the force on the golf ball.

As you take a step on the log, your foot exerts a force on the log in the direction opposite to the
direction in which you want to move, which pushes the log “backward.” (The log exerts an equal and
opposite force forward on you, by Newton’s third law.) If the log had been on the ground, friction
between the ground and the log would have kept the log from moving. However, the log is floating in
water, which offers little resistance to the movement of the log as you push it backward.

(a) When you first start riding a bicycle you need to exert a strong force to accelerate the bike and
yourself, as well as to overcome friction. Once you are moving at a constant speed, you need to
exert a force that will just equal the opposing forces of friction and air resistance.

(b) When the bike is moving at a constant speed, the net force on it is zero. Since friction and air
resistance are present, you would slow down if you didn’t pedal to keep the net force on the bike
(and you) equal to zero.

When the person gives a sharp pull, the suddenness of application of the force is key. When a large,
sudden force is applied to the bottom string, the bottom string will have a large tension in it. Because
of the stone’s inertia, the upper string does not immediately experience the large force. The bottom
string must have more tension in it and will break first.

If a slow and steady pull is applied, the tension in the bottom string increases. We

approximate that condition as considering the stone to be in equilibrium until the Fup
string breaks. The free-body diagram for the stone would look like this diagram.
While the stone is in equilibrium, Newton’s second law states that @

Fyp = Fyown +mg. Thus the tension in the upper string is going to be larger than the F mg
down
tension in the lower string because of the weight of the stone, so the upper string

will break first.

The acceleration of both rocks is found by dividing their weight (the force of gravity on them) by their
mass. The 2-kg rock has a force of gravity on it that is twice as great as the force of gravity on the 1-kg
rock, but also twice as great a mass as the 1-kg rock, so the acceleration is the same for both.

(a) When you pull the rope at an angle, only the horizontal component of the pulling force will be
accelerating the box across the table. This is a smaller horizontal force than originally used, so
the horizontal acceleration of the box will decrease.

(b) We assume that the rope is angled upward, as in Fig. 4-21a. When there is friction, the problem
is much more complicated. As the angle increases, there are two competing effects. The
horizontal component of the pulling force gets smaller, as in part (¢), which reduces the
acceleration. But as the angle increases, the upward part of the pulling force gets larger, which
reduces the normal force. As the normal force gets smaller, the force of friction also gets smaller,
which would increase the acceleration. A detailed analysis shows that the acceleration increases
initially, up to a certain angle, and then decreases for higher angles.

If instead the rope is angled downward, then the normal force increases, which increases the
force of friction, and for all angles, the acceleration will decrease.
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Let us find the acceleration of the Earth, assuming the mass of the freely falling object is m =1 kg. If
the mass of the Earth is M, then the acceleration of the Earth would be found using Newton’s third law

and Newton’s second law.

FEarth =F

object - MaEarth =mg — dpguh =& m/M

Since the Earth has a mass that is on the order of 10% kg, the acceleration of the Earth is on the order

of 107%° g, or about 1072* m/s?. This tiny acceleration is undetectable.

13.  Because the acceleration due to gravity on the Moon is less than it is on the Earth, an object with a
mass of 10 kg will weigh less on the Moon than it does on the Earth. Therefore, it will be easier to lift
on the Moon. (When you lift something, you exert a force to oppose its weight.) However, when
throwing the object horizontally, the force needed to accelerate it to the desired horizontal speed is
proportional to the object’s mass, F' = ma. Therefore, you would need to exert the same force to throw
the 2-kg object with a given speed on the Moon as you would on Earth.

14. In a tug of war, the team that pushes hardest against the ground wins. It is true that both teams have the
same force on them due to the tension in the rope. But the winning team pushes harder against the
ground and thus the ground pushes harder on the winning team, making a net unbalanced force. The
free-body diagram illustrates this.

The forces are Fy g, the force on
! D —— e —
= = Team 1 — — T 2 -
team 1 from the ground, F the cam
g > TT,G» FTlG (winner) FT R FTR FTzG
forceﬂon team 2 from the ground, Large force from Equal and opposite Small force
and Frp, the force on each team ground tension forces from ground

from the rope.

Thus the net force on the winning team (FTIG —Fpg) is in the “winning” direction.

15. Ifyou are at rest, the net force on you is zero. Hence the ground exerts a force on you exactly equal to
your weight. The two forces acting on you sum to zero, so you don’t accelerate. If you squat down and
then push with a larger force against the ground, the ground then pushes back on you with a larger
force by Newton’s third law, and you can then rise into the air.

-
=)

The victim’s head is not really thrown backward during the car crash. If the victim’s car was initially at
rest, or even moving forward, the impact from the rear suddenly pushes the car, the seat, and the
person’s body forward. The head, being attached by the somewhat flexible neck to the body, can
momentarily remain where it was (inertia, Newton’s first law), thus lagging behind the body. The neck
muscles must eventually pull the head forward, and that causes the whiplash. To avoid this, use the
car’s headrests.

17. (a) The reaction force has a magnitude of 40 N.
(b) It points downward.
(c¢) Itis exerted on Mary’s hands and arms.

(d) Itis exerted by the bag of groceries.
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18.

-
g

20.

21.

22.

Both the father and daughter will have the same magnitude force acting on them as they push each
other away, by consideration of Newton’s third law. If we assume that the young daughter has less
mass than the father, her acceleration should be greater (a = F/m). Both forces, and therefore both
accelerations, act over the same time interval (while the father and daughter are in contact), so the
daughter’s final speed will be greater than her father’s.

Static friction between the crate and the truck bed causes the crate to accelerate.

On the way up, there are two forces on the block that are parallel to each other causing the
deceleration—the component of weight parallel to the plane and the force of friction on the block.
Since the forces are parallel to each other, both pointing down the plane, they add, causing a larger
magnitude force and a larger acceleration. On the way down, those same two forces are opposite of
each other, because the force of friction is now directed up the plane. With these two forces being
opposite of each other, their net force is smaller, so the acceleration is smaller.

In a very simple analysis, the net force slowing the moving object is friction. If we consider that the
moving object is on a level surface, then the normal force is equal to the weight. Combining these
ideas, we get the following:

Frep =ma = uFy =pumg —a=ug

From Table 4-2, the “steel on steel (unlubricated)” coefficient of friction (applicable to the train) is
smaller than the “rubber on dry concrete” coefficient of friction (applicable to the truck). Thus the
acceleration of the train will be smaller than that of the truck, and therefore the truck’s stopping
distance will be smaller, from Eq. 2—-11c.

Assume your weight is . If you weighed yourself on an inclined plane that is inclined at angle 6, then
the bathroom scale would read the magnitude of the normal force between you and the plane, which
would be W cos 6.

Responses to MisConceptual Questions

1.

2.

(a) The crate does not accelerate up or down, so the net force cannot be vertical. The truck bed is
frictionless and the crate is not in contact with any other surface, so there are no horizontal
forces. Therefore, no net force acts on the crate. As the truck slows down, the crate continues to
move forward at constant speed. (How did the crate stay on the truck in the first place to be able
to travel on the truck bed?)

(a, b, d) The forces in (a), (b), and (d) are all equal to 400 N in magnitude.

(a) You exert a force of 400 N on the car; by Newton’s third law the force exerted by the car on you
also has a magnitude of 400 N.

(b) Since the car doesn’t move and the only horizontal forces acting on the car are your pushing and
the force of friction on the car from the road, Newton’s second law requires these forces to have
equal magnitudes (400 N) in the opposite direction. Since the road exerts a force of 400 N on the
car by friction, Newton’s third law requires that the friction force on the road from the car must
also be 400 N.

(¢) The normal force exerted by the road on you will be equal in magnitude to your weight
(assuming you are standing vertically and have no vertical acceleration). This force is not
required to be 400 N.
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(d)
3. @
4. ()
5. (o)
6. (o)
7. (¢
8. (b
9. (¢)

The car is exerting a 400-N horizontal force on you, and since you are not accelerating, and the
only horizontal forces acting on you are the force from the car and the frictional force from the
ground, Newton’s second law requires that the ground must be exerting an equal and opposite
horizontal force. Therefore, the magnitude of the friction force exerted on you by the road is 400 N.

For Matt and the truck to move forward from rest, both of them must experience a positive
horizontal acceleration. The horizontal forces acting on Matt are the friction force of the ground
pushing him forward and the truck pulling him backward. The ground must push Matt forward
with a stronger force than the truck is pulling him back. The horizontal forces on the truck are
from Matt pulling the truck forward and the friction from the ground pulling the truck backward.
For the truck to accelerate forward, the force from Matt must be greater than the backward force
of friction from the ground. By Newton’s third law, the force of the truck on Matt and the force
of Matt on the truck are equal and opposite. Since the force of the ground on Matt is greater than
the force of the truck on Matt, the force of the truck on Matt is equal to the force of Matt on the
truck, and the force of Matt on the truck is greater than the friction force of the ground on the
truck, the ground exerts a greater friction on Matt than on the truck.

In order to hold the backpack up, the rope must exert a vertical force equal to the backpack’s
weight, so that the net vertical force on the backpack is zero. The force, F, exerted by the rope on
each side of the pack is always along the length of the rope. The vertical component of this force
is F'sin 8, where 6 is the angle the rope makes with the horizontal. The higher the pack goes, the
smaller 8 becomes and the larger F' must be to hold the pack up there. No matter how hard you
pull, the rope can never be horizontal because it must exert an upward (vertical) component of
force to balance the pack’s weight.

The boat accelerates forward by horizontal forces acting on the boat. The force that the man
exerts on the paddles pushes the paddles forward, but because he is part of the boat this force
does not accelerate the boat, so (@) is not correct. As the paddle pushes on the water it causes the
water to accelerate backward. This force acts to accelerate the water, not the boat, so () is
incorrect. By Newton’s third law, as the paddles push the water backward, the water pushes the
paddles (and thus the boat) forward. With the force of the water on the paddles pushing the boat
forward, the boat would move even when the water was still, so (d) is also incorrect.

The person’s apparent weight is equal to the normal force acting on him. When the elevator is at
rest or moving at constant velocity, the net force on the person is zero, so the normal force is
equal to his weight. When the elevator is accelerating downward, the net force is also downward,
so the normal force is less than his weight. When the elevator is accelerating upward, the net
force is upward, and the normal force (his apparent weight) is greater than his weight. Since his
actual weight does not change, his apparent weight is greatest when he is accelerating upward.

The weight of the skier can be broken into components parallel to and perpendicular to the slope.
The normal force will be equal to the perpendicular component of the skier’s weight. For a
nonzero slope, this component is always less than the weight of the skier.

The force of the golf club acting on the ball acts only when the two objects are in contact, not as the
ball flies through the air. The force of gravity acts on the ball throughout its flight. Air resistance is
to be neglected, so there is no force acting on the ball due to its motion through the air.

Since the net force is now zero, Newton’s first law requires that the object will move in a straight
line at constant speed. A net force would be needed to bring the object to rest.
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10. (d) By Newton’s third law, the force you exert on the box must be equal in magnitude to the force
the box exerts on you. The box accelerates forward because the force you exert on the box is
greater than other forces (such as friction) that are also exerted on the box.

11. () The maximum static friction force is 25 N. Since the applied force is less than this maximum, the
crate will not accelerate, Newton’s second law can be used to show that the resulting friction
force will be equal in magnitude but opposite in direction to the applied force.

12. (b, d) The normal force between the skier and the snow is a contact force preventing the skier from passing
through the surface of the snow. The normal force requires contact with the surface and an external
net force toward the snow. The normal force does not depend upon the speed of the skier. Any slope
less than 90° will have a component of gravity that must be overcome by the normal force.

13. (a) Ifthe two forces pulled in the same direction, then the net force would be the maximum and
equal to the sum of the two individual forces, or 950 N. Since the forces are not parallel, the net
force will be less than this maximum.

Solutions to Problems
1. Use Newton’s second law to calculate the force.
Y F =ma=(55kg)(1.4m/s*)=[77N]

2. Inall cases, W = mg, where g changes with location.
(@) Wan = M = (68 kg)(9.80 m/s”) =
(B)  Matoon = M8uoon = (68 ke)(1.7 m/s’) =
(©) Witars = Mntars = (68 kg)(3.7 m/s”) =
(@) Wippee = Mpace = (68 kg)(0) =[0]

3. Use Newton’s second law to calculate the tension.

> F = Fy =ma= (1210 kg)(1.20 m/s’) =1452 N =[1450 N

v-1; 0.35m/s—0.25 m/s
t 0.10's

4. The average acceleration of the blood is given by a = =1.0 m/s>.

The net force on the blood, exerted by the heart, is found from Newton’s second law.
F=ma=(20 x 10~ kg)(1.0 m/s*)=[0.02 N

5. Find the average acceleration from Eq. 2—11c, and then find the force needed from Newton’s second
law. We assume the train is moving in the positive direction.

1m/s

1)2 —1)2
v=0 v, =(120 km/h) = 0
3.6 km/h

e 2 (x—xp)

2 2 2
] ’ 0—(3333 mm/S) ° _
F. .= = =(3.6 x 10° k; =-1333x10° N=|-13x 10" N
avg maa"g m 2()6— ( g)|: 2 (1 50 ) _

Xp)

j=33.33 m/s a
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The negative sign indicates the direction of the force, in the opposite direction to the initial velocity.

We compare the magnitude of this force to the weight of the train.

Fog 1.333x10°N

- —=0.3886
mg  (3.6x10° kg)(9.80 m/s)

Thus the force is [39% of the weight] of the train.

By Newton’s third law, the train exerts the same magnitude of force on Superman that Superman

exerts on the train, but in the opposite direction. So the train exerts a force of 1.3x10° N| in the
forward direction on Superman.

6. We assume that 30 g’s has 2 significant figures. The acceleration of a person having a 30 “g”
9.80 m/s>

deceleration is a = (30g)(
lg

J =294 m/s®. The average force causing that acceleration is

F =ma = (65 kg)(294 m/sz) =[1.9x10* N|. Since the person is undergoing a deceleration, the

acceleration and force would both be directed opposite to the direction of motion. Use Eq. 2—11c¢ to
find the distance traveled during the deceleration. Take the initial velocity to be in the positive
direction, so that the acceleration will have a negative value, and the final velocity will be 0.

1 m/s

0y = (95 km/h)| ————
b = )(3.6knvh

j: 26.39 mv/s

2_ .2 o 2
vz—U§=2a(x—xO) - (x—xo)zv Y% =O (26.39111/25) :1.18m:m
2a 2(-294 m/s”)

7. Find the average acceleration from Eq. 2—4. The average force on the car is found from Newton’s
second law.

1m/s

v-v,  0-2639m/s _
3.6 km/h

t 8.0s

-3.299 m/s’

v=0 v, =(95 km/h)( j: 2639 mM/s  ay,, =

F,

avg —

Mgy = (950 kg)(-3.299 m/s?) =-3134 N =[=3100 N

The negative sign indicates the direction of the force, in the opposite direction to the initial velocity.

8. Find the average acceleration from Eq. 2—11c, and then find the force needed from Newton’s second
law.

v -8

gy =——————
ave 2(x—xp)

2 2 2

V-1 (13 m/s)” -0
Fpgg =My =m——2_= (7.0 kg)| {202 =0 | 511 25N = [210N]
g = Mllavg =y 3= g){ 2 (2.8m)

9. The problem asks for the average force on the glove, which in a direct calculation would require
knowledge about the mass of the glove and the acceleration of the glove. But no information about the
glove is given. By Newton’s third law, the force exerted by the ball on the glove is equal and opposite
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10.

11.

12.

to the force exerted by the glove on the ball. So we calculate the average force on the ball, and then
take the opposite of that result to find the average force on the glove. The average force on the ball is
its mass times its average acceleration. Use Eq. 2—11c to find the acceleration of the ball, with v =0,

Uy =35.0 m/s, and x—x, =0.110 m. The initial velocity of the ball is the positive direction.

W v’ —uf  0-(35.0 m/s)?
M8 2(x—x9)  2(0.110 m)

=-5568 m/s’

Fig = mag,, =(0.140 kg)(-5568 m/s”) = —7.80x10> N

Thus the average force on the glove was |78O N, in the direction of the initial velocity of the ba11.|

Choose up to be the positive direction. Write Newton’s second law for the vertical
direction, and solve for the tension force.

YF=F-mg=ma — Fr=m(g+a)
Fr = (1200 kg)(9.80 m/s* +0.70 m/s?) = [1.3x10* N

F
(a) The 20.0-kg box resting on the table has the free-body diagram shown. Its N
weight is mg = (20.0 kg)(9.80 m/s2) = . Since the box is at rest, the net
force on the box must be 0, so the normal force must also be [196 N|. i
- mg
(b) Free-body diagrams are shown for both boxes. F;, is the force on box 1 (the
top box) due to box 2 (the bottom box), and is the normal force on box 1. F =F
N1 12

F,, is the force on box 2 due to box 1, and has the same magnitude as

F;, by Newton’s third law. Fy, is the force of the table on box 2. That is Top pox (1)
the normal force on box 2. Since both boxes are at rest, the net force on 1

each box must be 0. Write Newton’s second law in the vertical direction mg
for each box, taking the upward direction to be positive.

LF=Fy-mg=0 FNZ

Fyi =mg =(10.0 kg)(9.80 m/s*) =[98.0 N|= F;, = Fy, Botthm tox
Y F,=Fy,—Fy —mg=0 (@)

Fyz = Fyy +myg =98.0 N+(20.0 kg)(9.80 m/s” ) = F

Choose up to be the positive direction. Write Newton’s second law for the vertical
direction, and solve for the acceleration.

Y F=F—mg=ma

_ _ 2
o= Fr—mg _ 163 N—(14.0 kg)(9.80 m/s*) _

m 14.0 kg

Since the acceleration is positive, the bucket has an acceleration.
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13.

14.

15.

sheets would not support him, because they would have to support the full 75 kg. But if
he descends with an acceleration, the sheets will not have to support the total mass. A
free-body diagram of the thief in descent is shown. If the sheets can support a mass of

58 kg, then the tension force that the sheets can exert is Fr = (58 kg)(9.80 m/sz) =568 N.

Assume that is the tension in the sheets. Then write Newton’s second law for the thief, mg
taking the upward direction to be positive.

If the thief were to hang motionless on the sheets, or descend at a constant speed, the 1 -
FT

Fr - - : :
SF=F-mg=ma — a=11 mg=568N (75kg)(980m/s)=_2'2m/82
m 75 kg

The negative sign shows that the acceleration is downward.

If the thief descends with an acceleration of 2.2 m/s> or greater, the sheets will support his descent.

In both cases, a free-body diagram for the elevator would look like the adjacent diagram.
Choose up to be the positive direction. To find the MAXIMUM tension, assume that the F
acceleration is up. Write Newton’s second law for the elevator.

YF=ma=Fr-mg — =
Fr=ma+mg=m(a+g)=m(0.0680g + g) = (4850 kg)(1.0680)(9.80 m/sz)

o]

To find the MINIMUM tension, assume that the acceleration is down. Then Newton’s second law for
the elevator becomes the following.

XF=ma=F-mg — Fr=ma+mg=m(a+g)=m(-0.0680g+g)
= (4850 kg)(0.9320)(9.80 m/s>) = |4.43x10* N

1 m/s

Use Eq. 2—-11c to find the acceleration. The starting speed is 35 km/h =9.72 m/s.
3.6 km/h

2.2 3 2
V=02 +2a(x—xg) — a=— "% _OZOT2m8 000 e ~[2800 mis?

2(x—xy)  2(0.017 m)

2779 m/s> (l—gj =284 ¢’s =280 g’

9.80 m/s’

The acceleration is negative because the car is slowing down. The required force is found by Newton’s
second law.

F =ma = (68 kg)(2779 m/s*) =[1.9x10° N

This huge acceleration would not be possible unless the car hit some very heavy, stable object.
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16.  There will be two forces on the woman—her weight, and the normal force of the scales [ )
pushing up on her. A free-body diagram for the woman is shown. Choose up to be the
positive direction, and use Newton’s second law to find the acceleration.

YF=Fy-mg=ma — 075mg-mg=ma — mg =
N
4=-025g=-02509.8 m/s?) =

Due to the sign of the result, the direction of the acceleration is Thus the elevator must have
started to move down since it had been motionless.

17. (a) There will be two forces on the sky divers—their combined weight and the upward
force of air resistance, F,. Choose up to be the positive direction. Write Newton’s
second law for the sky divers.

YF=Fy-mg=ma — 025mg-mg=ma —

a=-0.75 g =—0.75(9.80 m/s*) = |=7.35 m/s”

Due to the sign of the result, the direction of the acceleration is down.

(b) If they are descending at constant speed, then the net force on them must be zero, so
the force of air resistance must be equal to their weight.

Fy =mg = (132 kg)(9.80 m/s*) =

18.  Choose UP to be the positive direction. Write Newton’s second law for the elevator. F
T
YF=F-mg=ma —
Fr - - . 2
g=tr-me _2L70N (i;z tg)@ BOM/ST) _ 04353 ms? =[0.44 mss? mg
m g

19. (a) Use Eq.2-11c to find the speed of the person just before he strikes the ground. Take down to be
the positive direction. For the person, vy =0, y—y, =2.8 m, and a =9.80 m/s%.

2 2
v —vy =2a(y—yy) >

v=/2a(y— yp) =+/2(9.80 m/s?)(2.8 m) = 7.408 m/s = [7.4 m/s]

(b) For the deceleration, use Eq. 2—11c to find the average deceleration, choosing down to be
positive.

0, =8743ms V=0  y—y,=070m v’ - =2a(y—-y,) —
a2 _ 2

a= "V _Z(ABMS)" oy 2
24y 2(0.70 m)

The average force on the torso (F£7) due to the legs is found from Newton’s second

law. See the free-body diagram. Down is positive. F,
F

n

Fr =mg —ma=m(g—a) = (42 kg)[9.80 m/s® —(-39.2 m/s?)] =[2100N mg

The force is upward.

ot =mg—Fr=ma —
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20. Free-body diagrams for the box and the weight are shown. The tension exerts
the same magnitude of force on both objects. F F; F;

(a) If the weight of the hanging weight is less than the weight of the box, the
objects will not move, and the tension will be the same as the weight of
the hanging weight. The acceleration of the box will also be zero, so the - m,g
sum of the forces on it will be zero. For the box,

(b) The same analysis as for part (a) applies here.
Fy =mg—myg =710 N-60.0 N =

(c¢) Since the hanging weight has more weight than the box on the table, the box on the table will be
lifted up off the table, and normal force of the table on the box will be @

21. (a) Just before the player leaves the ground, the forces on the player are his
weight and the floor pushing up on the player. If the player jumps straight up,
then the force of the floor will be straight up—a normal force. See the first
diagram. In this case, while touching the floor, Fy > mg.

() While the player is in the air, the only force on the player is his weight. See
the second diagram.

22. (a) Justas the ball is being hit, if we ignore air resistance, there are two main bat

forces on the ball: the weight of the ball and the force of the bat on the ball. mg

(b)  As the ball flies toward the outfield, the only force on it is its weight, if air ~
resistance is ignored.

=)
s

Consider the point in the rope directly below Arlene. That point
can be analyzed as having three forces on it—Arlene’s weight, the
tension in the rope toward the right point of connection, and the
tension in the rope toward the left point of connection. Assuming
the rope is massless, those two tensions will be of the same
magnitude. Since the point is not accelerating, the sum of the
forces must be zero. In particular, consider the sum of the vertical forces on that point, with UP as the
positive direction.

Y F=Fsin10.0 +Fp sin10.0 —mg=0 —

2
mg _ (50.0kg)9.80m/s’) o

= 5 S
T 25in10.0 2 sin 10.0

24. The window washer pulls down on the rope with her hands with a tension force £y, so
the rope pulls up on her hands with a tension force F7. The tension in the rope is also

applied at the other end of the rope, where it attaches to the bucket. Thus there is
another force F; pulling up on the bucket. The bucket—washer combination thus has a

net force of 2F; upward. See the adjacent free-body diagram, showing only forces on

the bucket—washer combination, not forces exerted by the combination (the pull down
on the rope by the person) or internal forces (normal force of bucket on person).
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26.

27.

(a) Write Newton’s second law in the vertical direction, with up as positive. The net force must be
zero if the bucket and washer have a constant speed.

YF=F+F-mg=0->2F =mg—
1 1 2y N
Fr —Emg—5(72 kg)(9.80 m/s“) =352.8 N =|350N

(b) Now the force is increased by 15%, so F =358.2 N(1.15) = 405.72 N. Again write Newton’s
second law, but with a nonzero acceleration.
YXF=F+F-mg=ma —

_ _ 2
,_ 2Fr—mg _ 2(405.72N) 7(Z2kkg)(9.80 ws) g
m g

We draw free-body diagrams for each bucket. F,,

(a) Since the buckets are at rest, their acceleration is 0. Write
Newton’s second law for each bucket, calling UP the positive

direction.
YF=Fy-mg=0 — F, | |m8
Fp, =mg = (3.2kg)(9.80 m/s*) = Top (42) Bottom (4 1)

ZF2=FT2—FT1—mg=O —
Fpy = Fpy +mg =2 mg =2(3.2 kg)(9.80 m/s*) =

(b) Now repeat the analysis, but with a nonzero acceleration. The free-body diagrams are
unchanged.
YFH=Fy-mg=ma —

Fp, =mg+ma = (3.2 kg)(9.80 m/s* +1.25 m/s*) =35.36 N ~

Y Fy=Fry—Fy-mg=ma — Fpy=Fpy+mg+ma=2Fy=|TIN|

Choose the y direction to be the “forward” direction for the motion of the snowcats and the x direction
to be to the right on the diagram in the textbook. Since the housing unit moves in the forward direction
on a straight line, there is no acceleration in the x direction, so the net force in the x direction must be 0.
Write Newton’s second law for the x direction.

YF, =F)\ +Fy =0 — —F,sin48°+F;sin32°=0 —

FBzFA sin 48 :(4500N)s1n 48 —6311N ~[6300N

sin 32° sin 32°

Since the x components add to 0, the magnitude of the vector sum of the two forces will just be the
sum of their y components.

LF, =Fy, +Fg, = F, cos 48°+ I3 cos 32° = (4500 N) cos 48°+ (6311 N) cos 32°

:8363N:

Since all forces of interest in this problem are horizontal, draw the free-body diagram showing only the
horizontal forces. Fy; is the tension in the coupling between the locomotive and the first car, and it

pulls to the right on the first car. FTZ is the tension in the coupling between the first car and the second
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car. It pulls to the right on car 2, labeled Fr,y and to the left on car 1, labeled Fr,; . Both cars have

the same mass m and the same acceleration a. Note that [Fy,p| = [Fror | = Fr, by Newton’s third law.

Write a Newton’s second law expression for each car.

LF =Fp—Fry=ma LF, =Fry=ma

Substitute the expression for ma from the second expression into the first one.

Fry=Fry=ma=Fy, — Fp=2Fy — P/ =2

This can also be discussed in the sense that the tension between the locomotive and the first car is
pulling two cars, while the tension between the cars is only pulling one car.

28.  The net force in each case is found by vector addition with components.
(@) Fo,=—F=-102N F, -F,=-160N

nety =

1 -16.0

Fo = \/(—10.2)2 +(=16.0> =190 N  f=tan o= 57.48°

The actual angle from the x axis is then 237.48°. Thus the net force is

Fyo =[19.0 N at 237°

F, .
g="toe J1OON 103 s? at 2370 S
m 18.5kg ~
o o - F
() Fpy=F c0s30 =8833N  F,, =F-Fsin30 =109N E| /1

Fo = \/(8.833 N)? +(10.9 N)> =14.03N =[14.0 N

. F . -
0=tan_1£= azLet=14031\I=|0.7581‘n/s2 at 51.0° F, !
8.833 m 185 ke

29.  Since the sprinter exerts a force of 720 N on the ground at an angle of 22°
below the horizontal, by Newton’s third law the ground will exert a force of
720 N on the sprinter at an angle of 22° above the horizontal. A free-body
diagram for the sprinter is shown.

(a) The horizontal acceleration will be found from the net horizontal force.
Using Newton’s second law, we have the following:

2F, =F cos22°=ma, —

Fy cos 22° °
g, = Tp 008227 (20N €S 227 _ 1 7 12 [1.0x10' ms?

m 65 kg
(b) Eq.2-1lais used to find the final speed. The starting speed is 0.
v=yy+at — v=0+at=(10.27 m/s>)(0.32 s)=3.286 m/s = [3.3 m/s]
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30. We use the free-body diagram with Newton’s first law for the stationary chandelier to find
the forces in question. The angle is found from the horizontal displacement and the length

of the wire.
@ O=sin 22T 5 50
0Om
FnetzFT SinH—FH=0 — FH=FT Sin9
X
Fog=Frcos@-mg=0 — Fr= LSRN
y cos 8
Fy= ”’ge sin @ = mg tan 6 = (27 ke)(9.80 m/s?) tan 2.15° =
cos
mg (27 kg)(9.80 m/s?)
by Fr= = =260 N
® T cos 6 cos 2.15°

31. (a) Consider a free-body diagram of the object. The car is moving to the right
(the positive direction) and slowing down. Thus the acceleration and the net
force are to the left. The acceleration of the object is found from Eq. 2—11a.

v=vpt=as — a,=2 0= 0=25m8 _ 417 mys?
t 6.0s
Now write Newton’s second law for both the vertical () and horizontal (x) directions.

2F,=Fpcosf@-mg=0 — FT:c:)nng 2F, =-F;sin@=ma,

Substitute the expression for the tension from the y equation into the x equation.

mg
cos @

_ 2
g 9.80 m/s

(b) The angle is the windshield.

32. (a) See the free-body diagrams included. y * _

(b) For block A, since there is no motion in the vertical direction, we -
have Fy, =myg. We write Newton’s second law for the x NA —

ma, =—Fp sin @ =— sin@=-mgtan @ — a,=-gtanb

direction: X F,, = Fr =myay,. For block B, we only need to —

consider vertical forces: 2 Fp, = mpg — Fy = mpag,. Since the ~ e
two blocks are connected, the magnitudes of their accelerations A8 ’
will be the same, so let a5, = ag, =a. Combine the two force

equations from above, and solve for a by substitution.

Fr=mpa mpgg—Fr=mga — mgg—mya=mga —>

mp
mya+mga=mgg — |la=g———— Fr=mpa=g

mamg

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Dynamics: Newton’s Laws of Motion 4-15

33. (a) From Problem 32, we have the acceleration of each block. Both blocks have the same
acceleration.
mg 2 5.0 kg 2 -2
a=g—————=(9.80 m/s =2.722 m/s” =|2.7 m/s
i — ) 5.0 kg +13.0 kg)
() Use Eq.2-11b to find the time.
2(x— 2(1.2
x—x0=vot+%at2 - t=\/ (x x0)= ( 50m2) =10.96 s
a (2.722 m/s*)
(c) Again use the acceleration from Problem 32.
mg 1 mg 1
a=g———=—g > ———=— 5 my =99mz =199k
gmA+mB 100 & mptmg 100 A B
34, (a) Inthe free-body diagrams below, FAB =force on block A exerted by block B, FB A = force on
block B exerted by block A, Fyc = force on block B exerted by block C, and F = force on
block C exerted by block B. The magnitudes of FB A and FAB are equal, and the magnitudes of
Fpc and Fp are equal, by Newton’s third law.
i;ﬂ/\ N - .
FB N FC N
F FAB FBA FBC FCB
——"
| I |
lmAg | ot 1mc2
(b)  All of the vertical forces on each block add up to zero, since there is no acceleration in the
vertical direction. Thus, for each block, Fyy = mg. For the horizontal direction, we have the
following:
F
ZF=F—FAB+FBA—FBc+FCB=F=(mA+mB+mc)a —> a=—k
ma + mg + mc
(c¢) For each block, the net force must be ma by Newton’s second law. Each block has the same
acceleration since the blocks are in contact with each other.
m m m
FAnet =F—A FBnet =F—B FCnet =F—C
mA+mB+mC mA+mB+mC mA+mB+mC
(d)  From the free-body diagram, we see that for mc, Frog = Fc pet = |F —Mc | And by
ma + mg + mc

mc

Newton’s third law, Fpc = Feg =|F . Of course, F,; and F;, are in opposite

directions. Also from the free-body diagram, we use the net force on m, .

A — Fyg=F-F— "0

FoFpp=Fyq=F—"0
t
ne mA+mB+mC mA+mB+mC

mB+mC

ma +mB +mC
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. mg +m
By Newton’s third law, Fgp = Fap =|F B~ €

ma +mB +mC .

F 960N _

= =13.20 m/s?| Since all three masses are
mA +mB +mc 300kg

(e)  Using the given values, a =

the same value, the net force on each mass is F;,; = ma = (10.0 kg)(3.20 m/sz) =32.0N.
This is also the value of F-g and Fpc. The value of Fg and Fg, is found as follows:

Fig = Fgp = (mg +mc)a =(20.0 kg)(3.20 m/s?) =64.0 N
To summarize:

Fanet = Finet = Fenet =[320N]  Fyp = Fyp =[64.0N]  Fye = Fep =[32.0N]
The values make sense in that in order of magnitude, we should have F' > Fg, > Fg, since F'is
the net force pushing the entire set of blocks, F,p is the net force pushing the right two blocks,
and Fyc is the net force pushing the right block only.

We draw a free-body diagram for each mass. We choose up to be the F.
positive direction. The tension force in the cord is found from analyzing the
two hanging masses. Notice that the same tension force is applied to each
mass. Write Newton’s second law for each of the masses.

Fr—mg=ma,  Fr—mg=ma, P P,
Since the masses are joined together by the cord, their accelerations will
have the same magnitude but opposite directions. Thus @; = —a,. Substitute ~ -
this into the force expressions and solve for the tension force. F; F;
my m
Fr—mg=-ma, — Fr=mg-ma, — a _mg- 1.2 ke 32 ke
" m,g mg

mlg_FT] S = 2mmyg

Fr—myg =mya, =m,
ml ml +m2

Apply Newton’s second law to the stationary pulley.

4 . . . 2
Fo-2Fp=0 — Fo=2F = m1m2g=4(32kg)(12kg)(980rn/s)=

my +my 44 kg
36. A free-body diagram for the crate is shown. The crate does not accelerate i Fy P
vertically, so Fy =mg. The crate does not accelerate horizontally, so fr P
FP = F fr-

Fp = Fy, =t Fy = ffymg = (0.30)(22 kg)(9.80 m/s?) =

If the coefficient of kinetic friction is zero, then the horizontal force required is @, since there is no

friction to counteract. Of course, it would take a force to START the crate moving, but once it was
moving, no further horizontal force would be necessary to maintain the motion.
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37. A free-body diagram for the box is shown. Since the box does not accelerate F
vertically, Fy = mg. F, F

(a) To start the box moving, the pulling force must just overcome the force

of static friction, and that means the force of static friction will reach its l Z
maximum value of Fy = g Fyy. Thus, we have for the starting motion, 1
YF =Fp—-F, =0 —
F 350N
Fp=F = Py = thymg - — py=—1-= =
S ST mg (6.0 ke)(9.80 m/s?)

() The same force diagram applies, but now the friction is kinetic friction, and the pulling force is
NOT equal to the frictional force, since the box is accelerating to the right.

Fo—ma 35.0 N—(6.0 kg)(0.60 m/s’
1 = P — ( g)( . ) _
mg (6.0 kg)(9.80 m/s?)

38. A free-body diagram for you as you stand on the train is shown. You do not
accelerate vertically, so Fyy = mg. The maximum static frictional force is # Fy,

and that must be greater than or equal to the force needed to accelerate you in order
for you not to slip.

Fozma — ufFyzma — umg=ma — ,uSZa/g=0.20g/g=

The static coefficient of friction must be at least 0.20 for you not to slide.

39. See the adjacent free-body diagram. To find the maximum angle, assume
that the car is just ready to slide, so that the force of static friction is a
maximum. Write Newton’s second law for both directions. Note that for
both directions, the net force must be zero since the car is not accelerating.

LF,=Fy—-mgcos@=0 — Fy=mgcosb

2F.=mgsin@-F;, =0 — mgsin@=F;, = uFy = pumg cos 6

mg sin 6 -
=87 _an9=090 — @=tan"'0.90=[42°]
mg cos 6
o e a F,
40. The force of static friction is what decelerates the crate if it is not sliding on the F,
. . . . . . T
truck bed. If the crate is not to slide, but the maximum deceleration is desired, R |
then the maximum static frictional force must be exerted, so Fy. =y Fy. The =
direction of travel is to the right. It is apparent that F = mg since there is no l mg

acceleration in the y direction. Write Newton’s second law for the truck in the
horizontal direction.

y=—Fgp=ma — —-umg=ma — a=-Ug=—(0. . s?)=|-7. S
SF, =-F (0.75)(9.80 m/s®)

The negative sign indicates the direction of the acceleration, as opposite to the direction of motion.
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41.

42.

43.

Since the drawer moves with the applied force of 9.0 N, we assume that the maximum static frictional
force is essentially 9.0 N. This force is equal to the coefficient of static friction times the normal force.
The normal force is assumed to be equal to the weight, since the drawer is horizontal.

F; 9.0N
Fy = UFy = fhymg = g =—" = ~l049
fr sT'N s s mg (2.0 kg)(9.80 m/52)

A free-body diagram for the box is shown, assuming that it is moving to the right.
The “push” is not shown on the free-body diagram because as soon as the box

moves away from the source of the pushing force, the push is no longer applied to — |
the box. It is apparent from the diagram that Fy =mg for the vertical direction. 1 mg

We write Newton’s second law for the horizontal direction, with positive to the
right, to find the acceleration of the box.

XF. =—Fy=ma — ma=—-wFy=—mg —
a=— g =-0.159.80 m/s*) = —1.47 m/s*

Eq. 2—11c can be used to find the distance that the box moves before stopping. The initial speed is
4.0 m/s, and the final speed will be 0.

2 .2 _ 2
vz—vg =2a(x—-xy) — Xx—Xg =U % = 0-G.5 rn/s)2 =4.17mzm
2a 2(-1.47 m/s*)

We draw three free-body diagrams—one for the car, one for the trailer,
and then “add” them for the combination of car and trailer. Note that since
the car pushes against the ground, the ground will push against the car with

an equal but oppositely directed force. FCG is the force on the car due to

the ground, Fr¢ is the force on the trailer due to the car, and Fqp is the
force on the car due to the trailer. Note that by Newton’s third law,

| FCT| = [FTd .

From consideration of the vertical forces in the individual free-body
diagrams, it is apparent that the normal force on each object is equal to its
weight. This leads to the conclusion that

Fyy = i Fap = temrg = (0.15)(350 kg)(9.80 m/s?) = 514.5 N.

Now consider the combined free-body diagram. Write Newton’s
second law for the horizontal direction. This allows the
calculation of the acceleration of the system.

| Feg-Fy  3600N-5145N
mc +mT 1630 kg

=1.893 m/s’

Finally, consider the free-body diagram for the trailer alone. Again write Newton’s second law for the
horizontal direction, and solve for Fpc.

LF=Frc—Fy=ma —

Frc =F; +mpra =514.5 N+ (350 kg)(1.893 m/s?)=1177 N = [1200 N
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44.  Assume that kinetic friction is the net force causing the deceleration. See the free-
body diagram for the car, assuming that the right is the positive direction and the
direction of motion of the skidding car. There is no acceleration in the vertical
direction, so Fyy = mg. Applying Newton’s second law to the x direction gives the

following.

YF=-F=ma — —-uFy=-ymg=ma — a=—g

Use Eq. 2—11c to determine the initial speed of the car, with the final speed of the car being zero.

v? —vg =2a(x-xy,) —

Uy =y 0% —2a(x—xy) =J0—2(~p1 2)(x—xp) = 2(0.80)(9.80 m/s?)(72 m) =

45.  Assume that the static frictional force is the only force accelerating the racer.
Then consider the free-body diagram for the racer as shown. It is apparent that
the normal force is equal to the weight, since there is no vertical acceleration. It
is also assumed that the static frictional force is at its maximum. Thus

Fo=ma — umg=ma — MU, =alg.

The acceleration of the racer can be calculated from Eq. 2—11b, with an initial speed of 0.

x—x0=1)01+%at2 - a=2(x—x0)/t2

a 2(x—xy) 2(1000 m)
s = = 2 o= 2 2 =
g gt (9.80 m/s”)(12 s)

46. The analysis of the blocks at rest can be done exactly the same as that presented in Example 4-20, up
mgg— £ fr
ma + mg

to the equation for the acceleration, a = . Now, for the stationary case, the force of friction

is static friction. To find the minimum value of m,, we assume the maximum static frictional force.
mgg — Um . .
Thus a = M. Finally, for the system to stay at rest, the acceleration must be zero. Thus
ma + mg
mpg—Umpag =0 — my =mg/u, =2.0kg/0.30=6.7 kg

47. (a) For mg notto move, the tension must be equal to mgg, so mpgg = Fy. For m, not to move,
the tension must be equal to the force of static friction, so F = F;. Note that the normal force

on m, is equal to its weight. Use these relationships to solve for my .

mg

2.0k
mpg=Fr =F, Sumyg — mAZﬂ—=0—40g=5.Okg — my =2|5.0kg
A .

(b) For mg to move with constant velocity, the tension must be equal to mgg. For m, to move

with constant velocity, the tension must be equal to the force of kinetic friction. Note that the
normal force on m, is equal to its weight. Use these relationships to solve for m, .

mpg =Fp =myg — my = % = % =110 kg|(2 significant figures)
k .
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48. Consider a free-body diagram for the box, showing force on the box. When -
Fp =23N, the block does not move. Thus in that case, the force of friction F,
is static friction, and must be at its maximum value, given by Fj; =W Fy. f;‘P
Write Newton’s second law in both the x and y directions. The net force in Pt F
each case must be 0, since the block is at rest. mg N

YF. =Fpcos0—-Fy=0 — Fy=Fpcosb

x=1p N N =1p
LF,=F+Ipsin0-mg=0 — F;+Fpsin@=mg
MU N +Fpsin@=mg — pFp cos @+Fp sin 8 =mg

F . 23N o . °
m =— (U, cos @+sin @) =——(0.40 cos 28 +sin 28 )= -.9 kg
g 9.80 [19ke]

m/s’
49. (a) Since the two blocks are in contact, they can be treated as a single P m, +
object as long as no information is needed about internal forces (like m,

the force of one block pushing on the other block). Since there is no F,
motion in the vertical direction, it is apparent that Fyg = (m; +m,)g, FN I l (m1 +m, ) g

so Fy = Ny = 1y (m +m,)g. Write Newton’s second law for the
horizontal direction.

ZFXZFP—Fﬁ:(ml‘i‘mz)a -

yoFo=Fi _ Fo— i (m+my)g _ 650 N—(0.18)(190 kg)(9.80 m/s?)

nmy +m2 nmy +m2 190 kg
=1.657 m/s =
(b) To solve for the contact forces between the blocks, an individual block le

must be analyzed. Look at the free-body diagram for the second block. "

Fz 1 1s the force of the first block pushing on the second block. Again, it _*—]
is apparent that Fy, =m,g, S0 Fpy =ty Froy = thm,g. Write Fi, F I m,g
Newton’s second law for the horizontal direction. s ’

my

LF =5 —Fyp=ma —
Fyy = fmyg +mya = (0.18)(125 kg)(9.80 m/s*) + (125 kg)(1.657 m/s*) =[430 N

By Newton’s third law, there will also be a 430-N force to the left on ~
block # 1 due to block # 2. F,

—

(¢) If the crates are reversed, the acceleration of the system will remain the m

same—the analysis from part (a) still applies. We can also repeat the

analysis from part () to find the force of one block on the other, if we frl F I l mg
N1

simply change m; to m, in the free-body diagram and the resulting

equations.

a=L7ms2 SF, = Fy~Fyy=ma -

By = om g +mya = (0.18)(65 kg)(9.80 m/s?) +(65 kg)(1.657 m/s?) =[220 N
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50. (a) We assume that the mower is being pushed to the right. Fﬁ is the F
friction force, and Fp is the pushing force along the handle.

(b) Write Newton’s second law for the horizontal direction. The forces
must sum to 0 since the mower is not accelerating.

LF,=F,cos45.0°- F; =0 —
Fy = F, cos 45.0° = (88.0 N) cos 45.0°=]62.2 N

(c) Write Newton’s second law for the vertical direction. The forces must
sum to 0 since the mower is not accelerating in the vertical direction.

LF,=Fy-mg—F,sin450°=0 —
Fy =mg+F, sin 45° = (14.0 kg)(9.80 m/s>)+(88.0 N) sin 45.0°=[199 N
(d) First use Eq. 2—11a to find the acceleration.
Pl 1.5m/s—0
t 25s

Now use Newton’s second law for the x direction to find the necessary pushing force.
LF,=F,cos45.0°~Fy =ma —>

Fr+ma 622 N+(14.0 kg)(0.60 m/s?)
F=—t— - =[999N
cos 45.0 cos 45.0

=0.60 m/s’

U—U():at -

51. The average force can be found from the average acceleration. Use Eq. 2—11c to find the acceleration.

2.2
vz=vg+2a(x—x0) - a=&
2(x—xp)
2.2 _ 2
F=ma=m| 2> —%_|=(60.0 ke) 0-000m/8)" |\ _ 159N
2(x—xp) 2(25.0 m)

The average retarding force is {1.20 X 10% N, in the direction opposite to the child’s velocity.

52. (a) Hereis a free-body diagram for the box at rest on the plane. The
force of friction is a STATIC frictional force, since the box is at rest.
(b) If the box were sliding down the plane, the only change is that the
force of friction would be a KINETIC frictional force.
(¢) Ifthe box were sliding up the plane, the force of friction would be a
KINETIC frictional force, and it would point down the plane, in the
opposite direction to that shown in the diagram.

Notice that the angle is not used in this solution.

53. A free-body diagram for the bar of soap is shown. There is no motion in the y
direction and thus no acceleration in the y direction. Write Newton’s second
law for both directions, and use those expressions to find the acceleration of
the soap.

2F,=Fy—mgcos §=0 — Fy=mg cos 8

2 F, =mg sin 0—F; =ma

ma =mg sin -y F\ = mg sin 6 — 1y mg cos 6

a=g(sin -t cos 6)
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Now use Eq. 2—11b, with an initial velocity of 0, to find the final velocity.

. /ﬁ_\/ 2x B 2(9.0 m) _[A8s
a \ g(sin @— g cos ) \(9.80 m/s>)(sin 8.0°—(0.060) cos 8.0°)

54. From the free-body diagram, the net force along the plane on the skateboarder is
mg sin 6, so the acceleration along the plane is g sin 8. We use the kinematical

data and Eq. 2—11b to write an equation for the acceleration, and then solve for
the angle.

X=X =vot+%at2 = vot+%gt2 singd —

9o i (ZAx—UOtJ ! (2(18 m)—2(2.0 m/s) (3.3 s)J _

at* (9.80 m/s?) (3.3 s)°

55.  For a simple ramp, the decelerating force is the component of gravity along the
ramp. See the free-body diagram, and use Eq. 2—11c to calculate the distance.

2F. =-mgsinf=ma — a=-gsinf

_vz—vg_ O—z)g _ 1)02

2a 2(—g sin 0) - 2gsin @

X=Xy

2
[(140 km/h)(3 éf&hﬂ mg |
_ : =14.0x10°> m

2(9.80 m/s) sin 11°

56. Consider a free-body diagram of the box. Write Newton’s second law for both
directions. The net force in the y direction is 0 because there is no acceleration
in the y direction.

LF,=Fy-mgcos@=0 — Fy=mgcosb
2F, =mgsin 0 —F; =ma

Now solve for the force of friction and the coefficient of friction.

F;, = mg sin @—ma =m(g sin 6 —a) = (25.0 kg)[(9.80 m/s*)(sin 27°) —0.30 m/s*]

=103.7Nz

F 103.7 N
Fy = i Fy = hmg cos 0 —  py =—L

= 5 =10.48
mg cos 6 (25.0 kg)(9.80 m/s”) cos 27°
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57. (a) Consider the free-body diagram for the block on the frictionless surface.
There is no acceleration in the y direction. Use Newton’s second law for
the x direction to find the acceleration.

2F. =mgsinf@=ma —

a =g sin 6=(9.80 m/s) sin 22.0° = |3.67 m/s’

(b) Use Eq.2-11c with vy =0 to find the final speed. ,
V12 =2a(x—x)) — v=yRa(x—xp) =2(3.67 m/s2)(12.0 m) =

58. (a) Consider the free-body diagram for the block on the frictionless
surface. There is no acceleration in the y direction. Write Newton’s
second law for the x direction.

2F, =mgsin@=ma — a=gsind
Use Eq. 2-11c with v, =—4.5 m/s and v =0 to find the distance that
it slides before stopping.

vz—vg =2a(x-xy,) —
VP -v;  0—(-4.5m/s)?
2 2(9.80 m/s?) sin 22.0°

=-2.758 m = (2.8 m up the plane|

(b) The time for a round trip can be found from Eq. 2—11a. The free-body diagram (and thus the
acceleration) is the same whether the block is rising or falling. For the entire trip, vy =—4.5 m/s

and v=+4.5 m/s.
v-1y (4.5 m/s)—(—4.5 m/s)

3 =2452s=|2.5s
a (9.80 m/s”) sin 22°

v=yyt+at — t=

59. (a) Consider the free-body diagram for the crate on the surface. There is no
motion in the y direction and thus no acceleration in the y direction. Write
Newton’s second law for both directions.

LF,=Fy—-mgcos0=0 — Fy=mgcos®
2F, =mgsin 0—-F, =ma

ma = mg sin 0 — 4y F\, = mg sin 8 — 14, mg cos 6

a = g(sin 8- . cos 0)
— (9.80 m/s?)(sin 25.0°=0.19 cos 25.0°) = 2.454 m/s? =[2.5 m/s?]

(b) Now use Eq. 2—11c, with an initial velocity of 0, to find the final velocity.
V-] =2a(x-x)) > v=12a(x—x,) =2(2.454 m/s’)(8.15 m) =[6.3 m/s]

60. (a) Consider the free-body diagram for the crate on the surface. There is no
acceleration in the y direction. Write Newton’s second law for both
directions, and find the acceleration.

LF,=Fy-mgcos@=0 — Fy=mgcosb

2 F, =mgsin 0+ F; =ma

ma = mg sin 6+ Fy = mg sin @+ (4, mg cos 6
a = g(sin 8+ ;. cos )
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Now use Eq. 2—11c, with an initial velocity of —3.0 m/s and a final velocity of 0 to find the
distance the crate travels up the plane.

Uz—vg =2a(x—xy) —
e -y —(=3.0 m/s)?
"7 24 2(9.80 m/sz)(sin 25.0°+0.12 cos 25.0°)

The crate travels up the plane.

(b) We use the acceleration found above with the initial velocity in Eq. 2—11a to find the time for the
crate to travel up the plane.

=-0.864 m

v=y,+tat — t ——Y _ (3.0 m/s) =0.5761s

P ey, (9.80 m/s?)(sin 25.0°+0.12 cos 25.0°)
The total time is NOT just twice the time to travel up the plane, because the acceleration of the
block is different for the two parts of the motion.
The second free-body diagram applies to the block sliding down the plane. A
similar analysis will give the acceleration, and then Eq. 2—11b with an initial
velocity of 0 is used to find the time to move down the plane.

XF,=Fy-mgcos@=0 — Fy=mgcosb
2 F, =mgsin - F; =ma

ma = mg sin 6 — y Fy = mg sin 68—y, mg cos 6

a = g(sin 8- gy cos 6)
X=Xy =1)0t+%at2 -
2(x— .
Tdown =\/ (=) = 5 2(0.864 m) =0.7495s
(9.80 m/s”)(sin 25.0°—0.12 cos 25.0°)
t =ty +lgown =0.57615+0.7495 s =1.3256 s =

It is worth noting that the final speed is about 2.3 m/s, significantly less than
the 3.0 m/s original speed.

A4own

61. The direction of travel for the car is to the right, and that is also the positive
horizontal direction. Using the free-body diagram, write Newton’s second law in
the x direction for the car on the level road. We assume that the car is just on the
verge of skidding, so that the magnitude of the friction force is Fj; =  Fy.

3.80 m/s’
zFx:_Ffr:ma Ffr:_ma:_:usmg - :uszi_—

¢ 980ms’ 03878

Now put the car on an inclined plane. Newton’s second law in the
x-direction for the car on the plane is used to find the acceleration. We again
assume the car is on the verge of slipping, so the static frictional force is at
its maximum.

YF. =—F,—-mgsinf@=ma —

_ —Fy—mgsin@ —ugmg cos 6—mg sin 6

a =—g(u, cos @+sin )

m m

= (9.80 m/s?)(0.3878 cos 9.3°+sin 9.3°) =
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62. Since the skier is moving at a constant speed, the net force on the skier
must be 0. See the free-body diagram, and write Newton’s second law
for both the x and y directions.

mg sin 0 = Fy, = 4 F\ = y;jmg cos 8 —
M, =tan 6 =tan 12°=0.21

63. A free-body diagram for the bobsled is shown. The acceleration of the
sled is found from Eq. 2—11c. The final velocity also needs to be
converted to m/s.

1 m/s

v=(60 km/h)(—
3.6 km/h

j=16.667 m/s

v? —vg =2a,(x-xy) —

. v’ -v7  (16.667 m/s)* -0
Y 2(x—xp) 2(75 m)

=1.852 m/s’

Now write Newton’s second law for both directions. Since the sled does
not accelerate in the y direction, the net force on the y direction must be 0. Then solve for the pushing
force.

LF,=Fy-mgcos@=0 — Fy=mgcosb
2 F, =mgsin 0+ F, —F; =ma,
Fp =ma, —mg sin 0+ F;, = ma, —mg sin 0+ uy F
=ma, —mg sin @+ , mg cos @ = mla, + g(4 cos € —sin 6)]
= (22 kg)[1.852 m/s” +(9.80 m/s>)(0.10 cos 6.0°—sin 6.0°)]=39.6 N =

64. Consider a free-body diagram of the car on the icy inclined driveway. Assume
that the car is not moving but is just ready to slip, so that the static frictional
force has its maximum value of Fj; = 1 Fy. Write Newton’s second law in each

direction for the car, with a net force of 0 in each case.

LF,=Fy-mgcos@=0 — Fy=mgcosb
2F. =mgsin@-F; =0 — mgsin 6= u,mg cos @
U, =sin @/cos@=tan § — O=tan"'g, =tan"'0.15=8.5°

The car will not be able to stay at rest on any slope steeper than 8.5°. |Only the driveway across the|
|street is safe for parking.|

65. We define the positive x direction to be the direction of v =
motion for each block. See the free-body diagrams. Write
Newton’s second law in both dimensions for both objects. NA y
Add the two x equations to find the acceleration. P L

x

[/
N L eB
v. !
o ]
]

5
}m
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Block A:

szA :FNA —mAg COS HA :0 _)FNA =mAg COS HA

ZFXA = FT —MmMpg sin 6_FfrA =mpa
Block B:

ZFyB=FNB—mBg COSHB=O —> FNB=mBg COoS (9]3

Add the final equations together from both analyses and solve for the acceleration, noting that in both
cases the friction force is found as Fj; = uFy.

mpaa=Fr—mygsin Oy —ympg cos 8,; mpa=mgg sin Og — figmpg cos g — Fr
mAa“l‘mBa = FT N4 sin HA —ﬂAmAg COoS 6A +mBg sin 93 —,UBmBg COoS HB _FT -

g g{—mA(sin O, + 1y cos O)+mp(sin O — g cos HB)}
(my +mg)
—(2.0 kg)(sin 51°+0.30 cos 51°) + (5.0 kg)(sin 21°—0.30 cos 21°)
(7.0 kg) }

=(9.80 m/sz){
=|-2.2 m/s?

66. We assume that the child starts from rest at the top of the slide, and then
slides a distance x —x, along the slide. A force diagram is shown for the
child on the slide. First, ignore the frictional force and consider the no-
friction case. All of the motion is in the x direction, so we will only consider
Newton’s second law for the x direction.

2F., =mgsin@=ma — a=gsinf

Use Eq. 2—11c to calculate the speed at the bottom of the slide.

2 2 2 "
VT -y =2a(x—xy) — U(No friction) =0y +2a(x—xy) =+/2g sin O(x—x;)

Now include kinetic friction. We must consider Newton’s second law in both the x and y directions
now. The net force in the y direction must be 0 since there is no acceleration in the y direction.

LF,=Fy-mgcos@=0 — Fy=mgcosb
2 F, =ma=mg sin 6 — Fy, = mg sin 0 — w4 Fy = mg sin 6 — g, mg cos 6
. =8 sin 6 — gy mg cos 6

= g(sin 8-, cos 0)

m

With this acceleration, we can again use Eq. 2—11c to find the speed after sliding a certain distance.

VP -u5 =2a(x=%)) > Ygiction) =\ U +2a(x—xy) =[2g(sin 6— g1 cos O)(x—x,)
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Now let the speed with friction be half the speed without friction, and solve for the coefficient of
friction. Square the resulting equation and divide by g cos 8 to get the result.

1 - 1 -
Utriction) = 7 UNo friction) \J2g(sin @ — gy cos O)(x—x,) = E\/ 2g(sin ) (x—xp)

2g(sin @ — . cos O)(x—xg) = %2g(sin ) (x—xg)

3 3
=—tan @ =—tan 34°=1{0.51
H=y 4

N
~

(@) Given that mg is moving down, m, must be moving up
the incline, so the force of kinetic friction on m, will be F,

directed down the incline. Since the blocks are tied
together, they will both have the same acceleration, so
ayg =days = a. Write Newton’s second law for each

myg

VB

mass. =
m,g
LFg=mgg—Fr=mga — Fp=mgg—mga
2F A =Fp—mpygsin@—F; =mpa
LFp=Fy-mygcos0=0 — Fy=mygcosb
Take the information from the two y equations and substitute into the x equation to solve for the
acceleration.
mpg —mMpga—mygsin @—thymyg cos@=mya —
- in @— 0 .
a="IBETMAE SN MA8HK COS O _ %g(l—sm@—,uk cos 6)
(mp +mg)

= 1(9.80 m/s”)(1 - sin 34°~0.15 cos 34°) =

(b) To have an acceleration of zero, the expression for the acceleration must be zero.

a=2g(l—sin -y cos@)=0 — l-sinf—gy cosf=0 —

1-sin @ 1-—sin 34°
My = = =

cos @ cos 34°

68. See the free-body diagram for the falling purse. Assume that down is the positive )
direction, and that the air resistance force F; is constant. Write Newton’s second law for éﬁy
the vertical direction. e

YF=mg—-F,=ma — F;=m(g—a)

Now obtain an expression for the acceleration from Eq. 2-11c with v, =0, and substitute
back into the friction force.

2,2 v’
V- —v; =2a(x— - a=——
o = 2a(x—xy) a 2—xg)
2 2
v 2 (27 m/s)
F = -——— [=(2.0kg)| 9.80 m/s* ——— =-6.3N
f m(g 2(x—x0)j ( g)[ 2(55 m)
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69. See the free-body diagram for the load. The vertical component of the tension force
must be equal to the weight of the load, and the horizontal component of the tension
accelerates the load. The angle is exaggerated in the picture.

. Frsin 0
Fy=Frsinf@=ma — azﬂ; F=Frcos@-mg=0 —
X m y
=8 ay =€ S0 _ o tan 0= (9.80 m/s?) tan 5.0° =[0.86 m/s’
cos @ cos@ m e
70. A free-body diagram for the person in the elevator is shown. The scale reading is the o

magnitude of the normal force. Choosing up to be the positive direction, Newton’s
second law for the person says that > F = Fy —mg=ma — Fy=m(g+a). The

kilogram reading of the scale is the apparent weight, Fyy, divided by g, which gives
Fy _m(g+a) mg || &
g g

(@ a=0 — Fy=mg=(75.0kg)(9.80 m/s*)=|7.35 x 10* N

FN-kg =

Faie :%: m=[75.0 kg

() a=0 — Fy=|735x10% N| Fy,, =|75.0 kg

(¢) a=0 - Fy=

7.35 x 10° N|, Fy,q =|75.0 kg

(d) Fy=m(g+a)=(75.0 kg)(9.80 m/s* +3.0 m/s*) ={9.60 x 10* N

Fy 960N
FN—kg =

¢ 980m/s2 980k

(e) Fy=m(g+a)=(75.0kg)(9.80 m/s* 3.0 m/s*)=[5.1 x 10° N
Fy 510N

INo 27 [52kg
g 9.80 m/s’

A N-kg =

71. The given data can be used to calculate the force with which the road pushes
against the car, which in turn is equal in magnitude to the force the car
pushes against the road. The acceleration of the car on level ground is found
from Eq. 2—11a.

V-1 2lm/s—0
t 12.5s

=1.68 m/s’

V-—yy=at — a=

The force pushing the car in order to have this acceleration is found from
Newton’s second law.

Fp = ma = (920 kg)(1.68 m/s*) =1546 N
We assume that this is the force pushing the car on the incline as well. Consider a free-body diagram

for the car climbing the hill. We assume that the car will have a constant speed on the maximum
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incline. Write Newton’s second law for the x direction, with a net force of zero since the car is not

accelerating.
. . Fp
2F. =Fp-mgsin@=0 — sinf=—
mg
6 =sin"! i3 =sin”! 1546 N o=
mg (920 kg)(9.80 m/s”)

72.  Consider a free-body diagram for the cyclist coasting downhill at a constant speed.
Since there is no acceleration, the net force in each direction must be zero. Write
Newton’s second law for the x direction (down the plane).

2F. =mgsin0-F; =0 — F;=mgsiné

This establishes the size of the air friction force at 6.0 km/h, which can be used in
the next part.

Now consider a free-body diagram for the cyclist climbing the hill. F} is the

force pushing the cyclist uphill. Again, write Newton’s second law for the x
direction, with a net force of 0.

2F . =F,+mgsin6-F =0 —
Fp = F; +mg sin 6 =2mg sin 6
=2(65 kg)(9.80 m/s?)(sin 6.5°) =

73.  Consider the free-body diagram for the watch. Write Newton’s second law for
both the x and y directions. Note that the net force in the y direction is 0 because there
is no acceleration in the y direction.

SF,=Fpcos @-mg=0 — Fp=—2 y]
cos 6
X
m

XF, =Fsin@=ma — sin @ = ma

cos @

a =g tan 8=(9.80 m/sz) tan 25° = 4.57 m/s>

Use Eq. 2-11a with v, =0 to find the final velocity (takeoff speed).
v-vy=al — v=vy+at=0+(457 m/s>)(16 s)=[73 m/s]

74. (a) We draw a free-body diagram for the piece
of the rope that is directly above the person.
That piece of rope should be in equilibrium.
The person’s weight will be pulling down
on that spot, and the rope tension will be
pulling away from that spot toward the
points of attachment. Write Newton’s second law for that small piece of the rope.

mg _ . -1 (72.0 kg)(9.80 m/s?)
2F; 2(2900 N)

YF,=2F sin@-mg=0 — @=sin"' = 6.988°

tan @ = — x=(12.5m)tan 6.988°=1.532 m=[1.5 m

12.5m
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() Use the same equation to solve for the tension force with a sag of only Y4 of that found above.

10383 m

x=4(1.532m)=0383 m; 6=tan
m

=1.755°

mg (720 kg)(9.80 m/s?)
2sin 6 2(sin 1.755°)

The Lrope will not break|, but it exceeds the recommended tension by a
factor of about 4.

=11,519 N=|12 kN

FT=

75. (a) Consider the free-body diagram for the snow on the roof. If the snow is
just ready to slip, then the static frictional force is at its maximum value,
F; = 4 Fy. Write Newton’s second law in both directions, with the net

force equal to zero since the snow is not accelerating.

LF,=Fy-mgcos §=0 — Fy=mg cos8
2F. =mgsin0-F;, =0 —

mg sin 8 = F;, = u Fy = ygmg cos @ — i, =tan @ =tan 34°=|0.67
If u, >0.67, then the snow would not be on the verge of slipping.

(b) The same free-body diagram applies for the sliding snow. But now the force of friction is kinetic,
so Fy = i Fy, and the net force in the x direction is not zero. Write Newton’s second law for
the x direction again, and solve for the acceleration.

2F,=mg sin 0—Fy =ma
L sin 6 — F; _mg sin @ -y, mg cos @

= g(sin 8-y cos 0)
m m

Use Eq. 2-11c with v, =0 to find the speed at the end of the roof.
v? —vg =2a(x—xg)
v= wlvg +2a(x—xg) = \/2g(sin 6 — 1y cos O)(x—x)

= /2(9.80 m/s2)(sin 34°—(0.10) cos 34°)(4.0 m) = 6.111 m/s =[6.1 m/s]

(c) Now the problem becomes a projectile motion problem. The projectile has an
initial speed of 6.111 m/s, directed at an angle of 34° below the horizontal.
The horizontal component of the speed, (6.111 m/s) cos 34° = 5.066 m/s, will
stay constant. The vertical component will change due to gravity. Define the
positive direction to be downward. Then the starting vertical velocity is

(6.111 m/s) sin 34°=3.417 m/s, the vertical acceleration is 9.80 m/s?, and the vertical
displacement is 10.0 m. Use Eq. 2—11c to find the final vertical speed.

2 2
Uy —Vy = 20()’_)’0)

v, =02 +2a(y — yy) = (3417 m/s)? +2(9.80 m/s>)(10.0 m) = 14.41 ms

To find the speed when it hits the ground, the horizontal and vertical components of velocity
must again be combined, according to the Pythagorean theorem.

v=u? +02 =/(5.066 ms)? +(14.41 m/s)* =15.27 m/s =[15 m/s]
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76. (a) To find the minimum force, assume that the piano is moving with a constant
velocity. Since the piano is not accelerating, Fp, = Mg. For the lower pulley,

f’.d
since the tension in a rope is the same throughout, and since the pulley is not
accelerating, it is seen that Fp| + Fpy =2F =Mg — Fp = Fpy = Mg/2.
It also can be seen that since F = F,, |F = Mg/2|.
. |
(b) Draw a free-body diagram for the upper pulley. From that diagram, we see that
3Mg
Fry=Fp + Fry+ F=—=. _ I w
T3 =11 712 > P F,, Upper F,
To summarize: pulley
F Lower FT2 -
T4
) ) ) pulley F
77. Consider a free-body diagram for a grocery cart being pushed up an

incline. Assuming that the cart is not accelerating, we write F,
Newton’s second law for the x direction.

. . K
YF. =F,—mgsin@=0 — sinf=-—" K,

mg _—

of ALL forces on the pilot. If we assume that the force of gravity and the force of the
cockpit seat on the pilot are the only forces on the pilot, then in terms of vectors,
F,

net

F,

seat —

6 =sin~' T _ gin~! 18N = 2 _lo\
mg (25 kg)(9.80 m/s?) 1 "
mg
78.  The acceleration of the pilot will be the same as that of the plane, since the pilot =
is at rest with respect to the plane. Consider first a free-body diagram of the pilot, 2% Fou
showing only the net force. By Newton’s second law, the net force MUST point in __18°.
the direction of the acceleration, and its magnitude is ma. That net force is the sum I_I

=mg +F,,,, =ma. Solve this equation for the force of the seat to find
F

net

cat
—mg =ma—mg. A vector diagram of that equation is shown. Solve for
the force of the seat on the pilot using components.

F qeat = Fy net =ma cos 18° = (75kg)(3.8 m/sz) cos18°=271.1N
Fy seat =mg+Fy net = Mg +ma sin 18°

= (75 kg)(9.80 m/s?) +(75 kg)(3.8 m/s?) sin 18°=823.2 N

The magnitude of the cockpit seat force is as follows:

F = [+ Fl o =J2T1INY +(8232 N) =866.7 N =[870 N

The angle of the cockpit seat force is as follows:

F, 8232 N .
6 =tan~! =% — tan ! TN above the horizontal

X seat
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79. (a) Both the helicopter and frame will have the same acceleration and can be treated -

as one object if no information about internal forces (like the cable tension) is | O
needed. A free-body diagram for the helicopter—frame combination is shown. \/
Write Newton’s second law for the combination, calling UP the positive T\
direction.

2L F = Fyg —(my +mg)g = (my +mg)a — Q/KQ

Fiig = (myy +myp)(g +a) = (7180 kg +1080 kg)(9.80 m/s* +0.80 m/s*)

=87,556 N =|8.76x10* N
(b) Now draw a free-body diagram for the frame alone, in order to find the tension (mH +my )é

in the cable. Again use Newton’s second law.
YF=F—mpg=mpa —
Fr = mg(g+a) = (1080 kg)(9.80 m/s* +0.80 m/s?)

T
=11,448 N =[1.14x10* N ﬁ E é
mg

(¢) The tension in the cable is the same at both ends, so the cable exerts a force of

1.14 x 10* N| downward on the helicopter.

80. Choose downward to be positive. The elevator’s acceleration is calculated by Eq. 2—11c. F,

- v -u;  0—-(3.5m/s)’
2(y—»o) 2(2.6 m)

See the free-body diagram of the elevator/occupant combination. Write Newton’s second mg
law for the elevator.

VP15 =2a(y-y)) — =-2.356 m/s’

ZFy =mg—Fr =ma
Fr =m(g —a) = (1450 kg)(9.80 m/s> ——2.356 m/s) =[1.76x10* N

81. See the free-body diagram for the fish being pulled upward vertically. From Newton’s F
second law, calling the upward direction positive, we have this relationship.

LF,=F-mg=ma — Fr=m(g+a)

(a) Ifthe fish has a constant speed, then its acceleration is zero, so Fr = mg. Thus the mg

heaviest fish that could be pulled from the water in this case is |45 N (10 1b)|.

(b) If the fish has an acceleration of 2.0 m/sz, and Fp is at its maximum of 45 N, then solve the
equation for the mass of the fish.
P 45N
" gva 98 mis +2.0 s

mg = (3.8 kg)(9.8 m/s”) =[37 N (= 8.4 Ib)]

(¢) Itis not possible to land a 15-1b fish using 10-1b line, if you have to lift the fish vertically. If the
fish were reeled in while still in the water and then a net was used to remove the fish from the
water, it might still be caught with the 10-Ib line.

=38kg —
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82. Use Newton’s second law.

AV mAv  (1.0x10'" kg)(2.0x10~> m/s) g
F=ma=m— — At= = =18.0x10" s[=93d
N . o5 8.0x10° |

83.  Since the climbers are on ice, the frictional force for
the lower two climbers is negligible. Consider the
free-body diagram as shown. Note that all the masses
are the same. Write Newton’s second law in the
x direction for the lowest climber, assuming he is at F
rest.

Fyy = mg sin 6 = (75 kg)(9.80 m/s®) sin 31.0° 19\ V
mg

SEy

Write Newton’s second law in the x direction for the middle climber, assuming he is at rest.

XF . =Fy—Fry—mgsin@=0 — Fp=Fp,+mgsin@=2F,gsinf=|760 N

|

—

84.  For each object, we have the free-body diagram shown, assuming that the string doesn’t I
break. Newton’s second law is used to get an expression for the tension. Since the string
broke for the 2.10 kg mass, we know that the required tension to accelerate that mass was O
more than 22.2 N. Likewise, since the string didn’t break for the 2.05-kg mass, we know —
that the required tension to accelerate that mass was less than 22.2 N. These relationships 1 mg
can be used to get the range of accelerations.

2F=F-mg=ma — Fp=m(a+g)

Fr Fr
Fr <myo(a+g); Fr >myps(atg) — ax -g<a s —-g>a >
max max m3 10 m3 05
Fr Fr
222N 222
I _g<ag<—2E _o -9.80 m/s® <a< N 980ms?

0.77 m/s’> <a<1.03m/s> — (0.8 m/s> <a<1.0m/s’

85. (a) First calculate Karen’s speed from falling. Let the downward direction be positive,

and use Eq. 2-11c with v, =0. IF”‘“
VP —108 =2a(y-yy) — v=+0+2a(y—y,) = \/2(9.8 m/s?)(2.0 m) = 6.26 m/s
Now calculate the average acceleration as the rope stops Karen, again using mg

Eq. 2-11g, with down as pOSitiVe.
2 2 2
v —(6.2
'UZ_'U(% :Za(y—yo) — a= 0 :O (6 6m/s)
2(y=»o) 2(1.0 m)

The negative sign indicates that the acceleration is upward. Since this is her acceleration, the net
force on Karen is given by Newton’s second law, F, ., = ma. That net force will also be upward.

=-19.6 m/s’

Now consider the free-body diagram of Karen as she decelerates. Call DOWN the positive
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direction. Newton’s second law says that F ., =ma=mg—F,,,. — F,c =mg—ma. The
F _ _ 2
ratio of this force to Karen’s weight is ——— = DEME _10-2=1.0 _Lm/; =3.0.
mg mg g 9.8 m/s

Thus the rope pulls upward on Karen with an average force of |3.0 times her weight|.

(b) A completely analogous calculation for Jim gives the same speed after the 2.0-m fall, but since

he stops over a distance of 0.30 m, his acceleration is —65 m/s?, and the rope pulls upward on

Jim with an average force of |7.7 times his weight | Thus, |Jim is more likely to get hurt.|

86. A free-body diagram for the coffee cup is shown. Assume that the car is moving to

the right, so the acceleration of the car (and cup) will be to the left. The deceleration F,
of the cup is caused by friction between the cup and the dashboard. For the cup not -

to slide on the dash and to have the minimum deceleration time means the largest F, |:
possible static frictional force is acting, so Fy;. = 4 Fy. The normal force on the -— -
cup is equal to its weight, since there is no vertical acceleration. The horizontal mg

acceleration of the cup is found from Eq. 2—11a, with a final velocity of zero.

v = (45 km/h)(—l /s j:12.5 m/s
3.6 km/h
v-1) 0-12.5m/s _

V-yy=at — a= ~3.57 m/s*

t 35s
Write Newton’s second law for the horizontal forces, considering to the right to be positive.

a -3.57 m/s’
LE =-Fy=ma — ma=-ulfy=-umg — U S 4 BTm)

87. See the free-body diagram for the descending roller coaster. It starts its
1 m/s
3.6 km/h
in the x direction is x —x; =45.0 m. Write Newton’s second law for both the

descent with v = (6.0 km/h)( j =1.667 m/s. The total displacement

x and y directions.

LF,=Fy-mgcos #=0 — Fy=mg cos8
2 F, =ma=mg sin @—F; =mg sin 6 -y F\y = mg sin 60—y, mg cos 0
.= sin @ — 4, mg cos 6

=g(sin @— 4 cos )
m

Now use Eq. 2—11c to solve for the final velocity.

v? —vg =2a(x—-xy,) —

vz\/vg +2a(x—xg) =\/vg +2g(sin 8-t cos B)(x—xg)

= \/(1.667 m/s)? +2(9.80 m/s?)[sin 45°—(0.12) cos 45°](45.0 m)
=23.49 m/s ~ [23 m/s| = 85 km/h
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88.  Consider the free-body diagram for the cyclist in the sand, assuming that the cyclist ~
is traveling to the right. It is apparent that /y = mg since there is no vertical

acceleration. Write Newton’s second law for the horizontal direction, positive to

the right. Ffr
—
ZFx:—Fﬁ,:ma — —Iukmg:ma — a:_lukg \
mg
Use Eq. 2—11c to determine the distance the cyclist could travel in the sand before
coming to rest.
2_,2 2 2
V- -V 20.0 m/
vz—vg=2a(x—x0) - (x—xp)= 0 _ o s) -29m

2a 248 2(0.70)(9.80 m/s?)

Since there is only 15 m of sand, |the cyclist will emerge from the sand | The speed upon emerging is

found from Eq. 2-11c.

v? —vg =2a(x-xy,) —

V=AU +2a(x - x0) =03 — 241, 8(x — xp) =/(20.0 m/s)? —2(0.70)(9.80 m/s2)(15 m)
=[14 ms]

89.  Since the walls are vertical, the normal forces are horizontal, away

from the wall faces. We assume that the frictional forces are at their P - y
maximum values, so Fy;, = ¢ Fy applies at each wall. We assume fil Fir ¥

that the rope in the diagram is not under any tension and does not climber i

exert any forces. Consider the free-body diagram for the climber. F NR

Fur s the normal force on the climber from the right wall, and NL lmg

Fy1 1s the normal force on the climber from the left wall. The
static frictional forces are Fyy =t Fyp, and Frp = Up FNr -

Write Newton’s second law for both the x and y directions. The net force in each direction must be
zero if the climber is stationary.

LF =Ry -Fw=0 — Fy=H~hg LF, =Fy + g —-mg=0
Substitute the information from the x equation into the y equation.
F +Far =mg = g Fyp + g Fng =mg = (UL + Up YN = mg

_mg _ (70.0kg)(9.80 m/s?)
(U + Her) 1.40

FaL =4.90x10> N

So |FyL =F\r = 4.90x10% N|. These normal forces arise as Newton’s third law reaction forces to the

climber pushing on the walls. Thus the climber must exert a force of at least 490 N against each wall.

(a) Consider the free-body diagrams for both objects, initially stationary. As sand is added, the
tension will increase, and the force of static friction on the block will increase until it reaches its
maximum, Ff, = 4 Fy. Then the system will start to move. Write Newton’s second law for each

object, when the static frictional force is at its maximum, but the objects are still stationary.

2F, bucket =mg—Fr=0 — Fpr=mg
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LFyplock = Fn—mg=0 — Fy=myg »
2F ok =Fr—F =0 — Fp=F

Equate the two expressions for tension, and substitute in the expression for F, F
the normal force to find the masses.

mg="F, — mg=uFy=umg — | ' =

my = tm, =(0.45)(28.0 kg) =12.6 kg F,
Thus 12.6 kg—2.00 kg =10.6 kg =|11 kg| of sand was added.

(b) The same free-body diagrams can be used, but now the objects will
accelerate. Since they are tied together, a,; = a,, = a. The frictional force is i l

now kinetic friction, given by F = 14 F\ = t4m,g. Write Newton’s second
law for the objects in the direction of their acceleration.

mg

2F, bucket =mg—Fr=ma — Fr=mg-ma
zFxblock:FT_Ffr:mza - FT:Ffr+m2a

Equate the two expressions for tension, and solve for the acceleration.
mg—ma= thmg+tma —

o= gw — (9.80 m/s?) (12.6 kg —(0.32)(28.0 kg)) _

(m, +m,) (12.6 kg +28.0 kg)

91. (a) See the free-body diagram for the skier when the tow rope is horizontal.
Use Newton’s second law for both the vertical and horizontal directions in order
to find the acceleration.

LF,=Fy-mg=0 — Fy=mg

LF, =Fp—Fy = Fr — iy Fy = Fr - ymg = ma

_ _ 2
o= Frtiing  CRONDBPGORND o gy 2 =05 mi’]
m g

(b) Now see the free-body diagram for the skier when the tow rope has an
upward component.
LF,=Fy+Frsin@-mg=0 — Fy=mg—Fysiné
2F,=F; cos 0—F; = Fp cos 60— i Fyy
= I cos 80—y (mg —Fr sin ) =ma

ue Fr(cos @+ tysin 0) — wy mg

m

o : oy _ 2
_ (240 N)(cos 12°+0.25 51(1; ézk)) 0.25(72 kg)(9.80 mis) _[oe— 5
g

(¢) The acceleration is greater in part (b) because the upward tilt of the tow rope reduces the normal
force, which then reduces the friction. The reduction in friction is greater than the reduction in
horizontal applied force, so the horizontal acceleration increases.
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92.  First consider the free-body diagram for the snowboarder on the incline. Write
Newton’s second law for both directions, and find the acceleration.

LF,=Fy-mgcos@=0 — Fy=mgcosb
2 F,. =mgsin 0—-F, =ma
ma = mg sin @ — 1 Fy = mg sin 8 — 1 ymg cos 6
giope = &(sin =t cos 6) = (9.80 m/s’ )(sin 28°—0.18 cos 28°)

=3.043 m/s® = m

Now consider the free-body diagram for the snowboarder on the flat surface. Again
use Newton’s second law to find the acceleration. Note that the normal force and the
frictional force are different in this part of the problem, even though the same
symbol is used. F,

LF,=Fy-mg=0 — Fy=mg YF. =—F; =ma mg

magy = —Fg ==l Fy = —lhgmg  —
i = ~th2g = ~(0.15)9.80 m/s?) = —1 47 m/s? =[1.5 m/s?]

Use Eq. 2—11c to find the speed at the bottom of the slope. This is the speed at the start of the flat
section. Eq. 2—11c¢ can be used again to find the distance x.

v? —1)02 =2a(x—x,) —

Uandof =1V + 2agpe (x—X9) =+/(5.0 m/s)® +2(3.043 m/s)(110 m) = 26.35 m/s

slope

v? —vg =2a(x—xy) —

2 2 o 2
(x_xo):l) 2% :0 (26.35 l’n/Sz) :236m:
2apy 2(—1.47 m/s )

93. (a) Assume that the earthquake is moving the Earth to the right. If an object is to
“hold its place,” then the object must also be accelerating to the right with the F
Earth. The force that will accelerate that object will be the static frictional force,
which would also have to be to the right. If the force were not large enough, the =
Earth would move out from under the chair somewhat, giving the appearance
that the chair were being “thrown” to the left. Consider the free-body diagram ~
. . . mg
shown for a chair on the floor. It is apparent that the normal force is equal to the
weight since there is no motion in the vertical direction. Newton’s second law says that
Fy. =ma. We also assume that the chair is just on the verge of slipping, which means that the

static frictional force has its maximum value of Fy. = y Fy = f,;mg. Equate the two expressions
for the frictional force to find the coefficient of friction.

If the static coefficient is larger than this, then there will be a larger maximum frictional force,
and the static frictional force will be more than sufficient to hold the chair in place on the floor.

2
(b) For the 1989 quake, < = A0S 641 Since , =0.25, fthe chair would slide

2 9.80 m/s’
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94.  Since the upper block has a higher coefficient of friction, that block
will “drag behind” the lower block. Thus there will be tension in the
cord, and the blocks will have the same acceleration. From the free-
body diagrams for each block, we write Newton’s second law for both
the x and y directions for each block, and then combine those equations
to find the acceleration and tension.

(a) Block A:
ZFyA =Fyp —mpygcos @=0 — Fys =myg cos

ZFXA =mAg Sin Q_FfrA _FT =mAa
maa=mpg sin @— Uy Fyp —Fr =myg sin @—p,my g cos 8—F;

Block B:
LFp=Fyp—mpggcos =0 — Fyg=mpgcos
2Fp=mygsin @—Fps +Fp =mga
mga =mgg sin @ — ygFyg + Fr =mpg sin 6 — gmgg cos 6+ Fy
Add the final equations together from both analyses and solve for the acceleration.
mya=mpg sin @—pympg cos 0—Fr; mga=mgg sin 6 — ygmpg cos 6+ Fr
mpa+mga=mpg sin @—pymy g cos @—Fp +mpg sin @— ugmpg cos O+ Fp —

o= g|:mA(sin 60— 1, cos 8)+mg(sin 60— g cos 8)
(ma +mg)
(5.0 kg)(sin 32°—-0.20 cos 32°)+ (5.0 kg)(sin 32°—-0.30 cos 32°)
(10.0 kg) }

=(9.80 m/sz){

=3.1155 m/s” zm

(b) Solve one of the equations for the tension force.
maa=mpg sin @—pymyg cos 6—-Fp —
Fr=my(gsin @—p,g cos 0—a)
= (5.0 kg)[(9.80 m/s)(sin 32°—0.20 cos 32°)—3.1155 m/s?] =

95.  We include friction from the start, and then for the no-friction result, set the
coefficient of friction equal to 0. Consider a free-body diagram for the car on
the hill. Write Newton’s second law for both directions. Note that the net force
on the y direction will be zero, since there is no acceleration in the y direction.

LF,=Fy-mgcos #=0 — Fy=mg cos8

2F. =mgsin 0—F; =ma —

~ g sin a_ﬂkmg cos 6
m

a=g sin H—ﬁ =g(sin @— 4 cos )
m

Use Eq. 2—11c to determine the final velocity, assuming that the car starts from rest.

V215 =2a(x—x)) — v=4J0+2a(x—x)) =+/2g(x—x0)(sin 8- g4 cos )

The angle is given by sin 8=1/4 — 6= sin10.25 =14.5°.
(@ =0 — v=,\2g(x-xp)xsin 6= /2(9.80 m/s?)(55 m) sin 14.5° =[16 ms]

B) =010 — v=+2(9.80 m/s2)(55 m)(sin 14.5°—0.10 cos 14.5°) =
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96. Consider the free-body diagram for the decelerating skater, moving to the
right. It is apparent that Fy = mg since there is no acceleration in the vertical

direction. From Newton’s second law in the horizontal direction, we have

XF=Fy=ma — —umg=ma — a=-—ig.

Now use Eq. 2—11c to find the starting speed.

v? —vg =2a(x—x,) —

Uy = U? —2a(x—x0) = J0+ 221, 8(x—x9) =/2(0.10)(9.80 m/s?)(75 m) = [12 m/s]

1 m/s
3.6 km/h

o)
~

The initial speed is v, = (45 km/h)( ) =12.5 m/s. Use Eq. 2—11a to find the deceleration of

the child.

V-1, 0-12.5m/s
t 0.20s

vV-yy=at — a= =—62.5 m/s’

The net force on the child is given by Newton’s second law.

F,

n

ot =ma = (18 kg)(-62.5 m/sz) =—-1116 N =|-1100 N|, opposite to the velocity

This force is about 250 Ib. We also assumed that friction between the seat and child is zero, and we
assumed that the bottom of the seat is horizontal. If friction existed or if the seat was tilted back, then
the force that the straps would have to apply would be less.

Solutions to Search and Learn Problems

1. (@) The forces acting on the small segment of the rope where FP acts are Fp in the y direction and

the two equal tensions acting along the direction of the rope at an angle 8 below the x axis. By
Newton’s third law, the tension in the rope is equal to the force that the rope applies to the car.
We use Newton’s second law in the y direction to determine the force on the car.

2
Fop =—2—= 30,0 No:1720Nz 2000 N
2sin@ 2sin5

(b) The mechanical advantage is the ratio of the force on the car to the force she is applying.

F
CR _ 1720 N :573 z@
F, 300N

(c¢)  This method is counterproductive when the mechanical advantage drops below one, which
happens when the force on the car is equal to the force she applies to the rope, Frp = Fp.

F, F, 1
Frp =—2 —  O=sin’!| =L |=sin!| = |=[30°]
R (ZF J 2

2sin @ CR
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2. (a) A free-body diagram for the car is shown, assuming that it is moving to the
right. It is apparent from the diagram that Fy = mg for the vertical direction.
Write Newton’s second law for the horizontal direction, with positive to the
right, to find the acceleration of the car. Since the car is assumed NOT to be
sliding, use the maximum force of static friction.
XF. =—Fy=ma — ma=-UuFy=—-umg — a=-Ug
Eq. 2—11c can be used to find the distance that the car moves before stopping. The initial speed
is given as v, and the final speed will be 0.
2 2 2 2
V7 -, 0-v v
V-0 =2a(x—x)) — (x—-x5)= 0 — =
2a 2(_:usg ) 2:usg
(b) Using the given values:
1 : 26. 2
v=(95 km/h)[ﬂj _2638ms  (v—xp)=—0— = 2638 W) —=[55m]
3.6 km/h 2ug  2(0.65)(9.80 m/s”)
(¢) From part (a), we see that the distance is inversely proportional to g, so if g is reduced by a
factor of 6, the distance is increased by a factor of 6 to 330 m|.

3. The static friction force is the force that prevents two objects from moving relative to one another. The
“less than” sign (<) in the static friction force tells you that the actual force may be any value less than
that given by the equation. Typically you use Newton’s second law to determine the value of the static
friction force. You then verify that the force calculated is in the allowed range given by the static
friction equation. The equals sign in the equation is used when you are searching for the maximum
force of static friction. For example, if an object is “on the verge” of moving away from a static
configuration, you would use the equals sign.

4.  As the skier travels down the slope at constant speed, her acceleration parallel to the slope must be

zero. Newton’s second law can then be written in component form as:
XF, =mgsin @ Fy=0  XF,=Fy—mgcos §=0

The vertical equation can be solved for the normal force, which can then be inserted into the horizontal
equation. The horizontal equation can then be solved for the coefficient of kinetic friction.

Fy =mg cos 8, mg sin 0—p (mg cos )=0 — ﬂk:M:tanH

mg cos 6
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CIRCULAR MOTION; GRAVITATION

Responses to Questions

1. The three major “accelerators” are the accelerator pedal, the brake pedal, and the steering wheel. The
accelerator pedal (or gas pedal) can be used to increase speed (by depressing the pedal) or to decrease
speed in combination with friction (by releasing the pedal). The brake pedal can be used to decrease
speed by depressing it. The steering wheel is used to change direction, which also is an acceleration.
There are some other controls that could also be considered accelerators. The parking brake can be
used to decrease speed by depressing it. The gear shift lever can be used to decrease speed by
downshifting. If the car has a manual transmission, then the clutch can be used to decrease speed by
depressing it (friction will slow the car), or, if on a steep downward incline, depressing the clutch can
allow the car to increase speed. Finally, shutting the engine off can be used to decrease the car’s speed.
Any change in speed or direction means that an object is accelerating.

(]

Yes, the centripetal acceleration will be greater when the speed is greater since centripetal acceleration
2

. . N 1% .

is proportional to the square of the speed (when the radius is constant): ag =—. When the speed is
r

higher, the acceleration has a larger magnitude.

3. No, the acceleration will not be the same. The centripetal acceleration is inversely proportion to the
2
. . % . . .
radius (when the speed is constant): ag = —. Traveling around a sharp curve, with a smaller radius,
r

will require a larger centripetal acceleration than traveling around a gentle curve, with a larger radius.

4. The three main forces on the child are the downward force of gravity (the child’s weight), the normal
force up on the child from the horse, and the static frictional force on the child from the surface of the
horse. The frictional force provides the centripetal acceleration. If there are other forces, such as
contact forces between the child’s hands or legs and the horse, which have a radial component, they
will contribute to the centripetal acceleration.

5. On level ground, the normal force on the child would be the same magnitude as his weight. This is the
“typical” situation. But as the child and sled come over the crest of the hill, they are moving in a
curved path, which can at least be approximated by a circle. There must be a centripetal force, pointing
inward toward the center of the arc. The combination of gravity (acting downward) and the normal
force on his body (acting upward when the sled is at the top of the hill) provides this centripetal force,
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3]

which must be greater than zero. At the top of the hill, if downward is the positive direction, Newton’s
2

second law says F,=mg—-Fy = mv—. Thus the normal force must be less than the child’s weight.
r

No. The barrel of the dryer provides a centripetal force on the clothes to keep them moving in a
circular path. A water droplet on the solid surface of the drum will also experience this centripetal
force and move in a circle. However, as soon as the water droplet is at the location of a hole in the
drum there will be no centripetal force on it and it will therefore continue moving in a path in the
direction of its tangential velocity, which will take it out of the drum. There is no centrifugal force
throwing the water outward; there is rather a lack of centripetal force to keep the water moving in a
circular path.

She should let go of the string at
the moment that the tangential
velocity vector is directed exactly
at the target. This would also be
when the string is perpendicular
to the desired direction of motion
of the ball. See the “top view”
diagram. Also see Fig. 5-6 in the
textbook.

Target

At the top of the bucket’s arc, the gravitational force and normal forces from the bucket, both pointing

downward, must provide the centripetal force needed to keep the water moving in a circle. In the
2

. . % .
limiting case of no normal force, Newton’s second law would give F,, =mg = m—, which means
r

that the bucket must be moving with a tangential speed of v = \/5 or the water will spill out of the

bucket. At the top of the arc, the water has a horizontal velocity. As the bucket passes the top of the
arc, the velocity of the water develops a vertical component. But the bucket is traveling with the water,
with the same velocity, and contains the water as it falls through the rest of its path.

For objects (including astronauts) on the inner surface of the cylinder, the normal force provides a
centripetal force, which points inward toward the center of the cylinder. This normal force simulates
the normal force we feel when on the surface of Earth.

(a) Falling objects are not in contact with the floor, so when released they will continue to move
with constant velocity until they reach the shell. From the frame of reference of the astronaut
inside the cylinder, it will appear that the object “falls” in a curve, rather than straight down.

(b) The magnitude of the normal force on the astronaut’s feet will depend on the radius and speed of

2 2
the cylinder. If these are such that v g (so that mv— =mg for all objects), then the normal
r r

force will feel just like it does on the surface of Earth.

(¢) Because of the large size of Earth compared to humans, we cannot tell any difference between
the gravitational force at our heads and at our feet. In a rotating space colony, the difference in
the simulated gravity at different distances from the axis of rotation could be significant, perhaps
producing dizziness or other adverse effects. Also, playing “catch” with a ball could be difficult
since the normal parabolic paths as experienced on Earth would not occur in the rotating
cylinder.
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10. (a) The normal force on the car is largest at point C. In this case, the centripetal force keeping the
car in a circular path of radius R is directed upward, so the normal force must be greater than the
weight to provide this net upward force.

() The normal force is smallest at point A, the crest of the hill. At this point the centripetal force
must be directed downward (toward the center of the circle), so the normal force must be less
than the weight. (Notice that the normal force is equal to the weight at point B.)

(c¢)  The driver will feel heaviest where the normal force is greatest, or at point C.

(d) The driver will feel lightest at point A, where the normal force is the least.

2
. . . . . % .
(e) Atpoint A, the centripetal force is weight minus normal force, or mg — Fy = mT The point at

which the car just loses contact with the road corresponds to a normal force of zero, which is the

2
= Upax = \/E

. . . . . Y,
maximum speed without losing contact. Setting Fiy =0 gives mg = —12%

11.  Yes, a particle with constant speed can be accelerating. A particle traveling around a curve while
maintaining a constant speed is accelerating because its direction is changing. However, a particle with
a constant velocity cannot be accelerating, since the velocity is not changing in magnitude or direction,
and to have an acceleration the velocity must be changing.

12.  When an airplane is in level flight, the downward force of gravity is
counteracted by the upward lift force, analogous to the upward normal force on
a car driving on a level road. The lift on an airplane is perpendicular to the plane
of the airplane’s wings, so when the airplane banks, the lift vector has both
vertical and horizontal components (similar to the vertical and horizontal
components of the normal force on a car on a banked turn). Assuming that the
plane has no vertical acceleration, then the vertical component of the lift
balances the weight and the horizontal component of the lift provides the
centripetal force. If F is the total lift and ¢ =the banking angle, measured

2
from the vertical, then F| cos¢ =mg and F} sing = mv—, S0 @ = tan ! (1)2 /gr).
r

13.  Whether the apple is (@) attached to a tree or (b) falling, it exerts a gravitational force on the Earth
equal to the force the Earth exerts on it, which is the weight of the apple (Newton’s third law). That
force is independent of the motion of the apple.

14.  Since the Earth’s mass is much greater than the Moon’s mass, the point at which the net gravitational
pull on the spaceship is zero is closer to the Moon. It is shown in Problem 30 that this occurs at about
90% of the way from the Earth to the Moon. So, a spaceship traveling from the Earth toward the Moon
must therefore use fuel to overcome the net pull backward for 90% of the trip. Once it passes that
point, the Moon will exert a stronger pull than the Earth and accelerate the spacecraft toward the
Moon. However, when the spaceship is returning to the Earth, it reaches the zero point at only 10% of
the way from the Moon to the Earth. Therefore, for most of the trip toward the Earth, the spacecraft is
“helped” by the net gravitational pull in the direction of travel, so less fuel is used.

15. The satellite needs a certain speed with respect to the center of the Earth to achieve orbit. The Earth
rotates toward the east so it would require less speed (with respect to the Earth’s surface) to launch a
satellite (a) toward the east. Before launch, the satellite is moving with the surface of the Earth so
already has a “boost” in the right direction.
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16.

17.

18.

19.

20.

21.

If the antenna becomes detached from a satellite in orbit, the antenna will continue in orbit around the
Earth with the satellite. If the antenna were given a component of velocity toward the Earth (even a
very small one), it would eventually spiral in and hit the Earth. If the antenna were somehow slowed
down, it would also fall toward the Earth.

Yes, we are heavier at midnight. At noon, the gravitational force on a person due to the Sun and the
gravitational force due to the Earth are in the opposite directions. At midnight, the two forces point in
the same direction. Therefore, your apparent weight at midnight is greater than your apparent weight at
noon.

Your apparent weight will be greatest in case (b), when the elevator is accelerating upward. The scale
reading (your apparent weight) indicates your force on the scale, which, by Newton’s third law, is the
same as the normal force of the scale on you. If the elevator is accelerating upward, then the net force
must be upward, so the normal force (up) must be greater than your actual weight (down). When in an
elevator accelerating upward, you “feel heavy.”

Your apparent weight will be least in case (c), when the elevator is in free fall. In this situation your
apparent weight is zero since you and the elevator are both accelerating downward at the same rate and
the normal force is zero.

Your apparent weight will be the same as when you are on the ground in case (d), when the elevator is
moving upward at a constant speed. If the velocity is constant, acceleration is zero and N = mg. (Note
that it doesn’t matter if the elevator is moving up or down or even at rest, as long as the velocity is
constant.)

If the Earth were a perfect, nonrotating sphere, then the gravitational force on each droplet of water in
the Mississippi would be the same at the headwaters and at the outlet, and the river wouldn’t flow.
Since the Earth is rotating, the droplets of water experience a centripetal force provided by a part of the
component of the gravitational force perpendicular to the Earth’s axis of rotation. The centripetal force
is smaller for the headwaters, which are closer to the North Pole, than for the outlet, which is closer to
the equator. Since the centripetal force is equal to mg — N (apparent weight) for each droplet, N is
smaller at the outlet, and the river will flow. This effect is large enough to overcome smaller effects on
the flow of water due to the bulge of the Earth near the equator.

The satellite remains in orbit because it has a velocity. The instantaneous velocity of the satellite is
tangent to the orbit. The gravitational force provides the centripetal force needed to keep the satellite in
orbit, acting like the tension in a string when twirling a rock on a string. A force is not needed to keep
the satellite “up”’; a force is needed to bend the velocity vector around in a circle. The satellite can’t
just have any speed at any radius, though. For a perfectly circular orbit, the speed is determined by the

orbit radius, or vice versa, through the relationship v,4;; =+/rg, where r is the radius of the orbit and
g is the acceleration due to gravity at the orbit position.

The centripetal acceleration of Mars in its orbit around the Sun is smaller than that of the Earth. For
both planets, the centripetal force is provided by gravity, so the centripetal acceleration is inversely
proportional to the square of the distance from the planet to the Sun:

2

myv°  Gmgm,, V> Gm
=—— S0 ag=—=—

r r r r

Since Mars is at a greater distance from the Sun than is Earth, it has a smaller centripetal acceleration.
Note that the mass of the planet does not appear in the equation for the centripetal acceleration.
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22.

i
bnad

For Pluto’s moon, we can equate the gravitational force from Pluto on the moon to the centripetal force
needed to keep the moon in orbit:

2
m, v _Gmpmm 3
— = m, =
r r

l)_zr 4drcr
G

This allows us to solve for the mass of Pluto (m,,) if we know G, the radius of the moon’s orbit, and

the velocity of the moon, which can be determined from the period 7 and orbital radius. Note that the
mass of the moon cancels out.

The Earth is closer to the Sun in January. See Fig. 5-29 and the o .
accompanying discussion about Kepler’s second law. The caption J \
in the textbook says: “Planets move fastest when closest to the Sun.” ¢
So in the (greatly exaggerated) figure, the time between points \
1 and 2 would be during January, and the time between points G
3 and 4 would be July. 2@ /

Sun

Responses to MisConceptual Questions

1.

() Asyou turn, you feel the force between yourself and the car door. A common misconception is
that a centrifugal force is pushing you into the door (answer (@)). Actually, your inertia tries to
keep you moving in a straight line. As the car (and door) turn right, the door accelerates into you,
pushing you away from your straight-line motion and toward the right.

(e) In circular motion, the velocity is always perpendicular to the radius of the circle, so (b), (¢), and
(d) are incorrect. The net force is always in the same direction as the acceleration, so if the
acceleration points toward the center, the net force must also. Therefore, (e) is a better choice
than (a).

(¢) A common misconception is that the ball will continue to move in a curved path after it exits the
tube (answers (d) or (¢)). However, for the ball to move in a curved path, a net force must be
acting on the ball. When it is inside the tube, the normal force from the tube wall provides the
centripetal force. After the ball exits the tube, there is no net force, so the ball must travel in a
straight-line path in the same direction it was traveling as it exited the tube.

(d) The phrase “steady speed” is not the same as “constant velocity,” as velocity also includes
direction. A common misconception is that if a car moves at steady speed, the acceleration and
net force are zero (answers (@) or (b)). However, since the path is circular, a radially inward
force must cause the centripetal acceleration. If this force (friction between the tires and road)
were not present, the car would move in a straight line. It would not accelerate outward.

(b) A common error in this problem is to ignore the contribution of gravity in the centripetal force.
At the top of the loop gravity assists the tension in providing the centripetal force, so the tension
is less than the centripetal force. At the bottom of the loop gravity opposes the tension, so the
tension is greater than the centripetal force. At all other points in the loop the tension is between
the maximum at the bottom and the minimum at the top.

(a) The forces acting on the child are gravity (downward), the normal force (away from the wall),
and the force of friction (parallel to the wall and in this case opposing gravity). In particular,
there is nothing “pushing” outward on the rider, so answers (), (d), and (¢) cannot be correct.
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7. (d) If the net force on the Moon were zero (answer (a)), the Moon would move in a straight line and
not orbit about the Earth. Gravity pulls the Moon away from the straight-line motion. The large
tangential velocity is what keeps the Moon from crashing into the Earth. The gravitational force
of the Sun also acts on the Moon, but this force causes the Earth and Moon to orbit the Sun.

8. () A common misconception is that since the Earth is more massive than the Moon, it must exert
more force. However, the force is an interaction between the Earth and Moon, so by Newton’s
third law, the forces must be equal. Since the Moon is less massive than the Earth and the forces
are equal, the Moon has the greater acceleration.

9. (¢) The nonzero gravitational force on the ISS is responsible for it orbiting the Earth instead of
moving is a straight line through space. Astronauts aboard the ISS experience the same
centripetal acceleration (free fall toward the Earth) as the station and as a result do not
experience a normal force (apparent weightlessness).

10. () A common misconception is that the mass of an object affects its orbital speed. However, as with
all objects in free fall, when calculating the acceleration the object’s mass is divided out of the
gravitational force. All objects at the same radial distance from the Earth experience the same
centripetal acceleration, and by Eq. 5—1 they have the same orbital speed.

11. (¢) Each of the incorrect answers assumes the presence of an external force to change the orbital
motion of the payload. When the payload is attached to the arm, it is orbiting the Earth at the
same distance and speed as the shuttle. When it is released, the only force acting on the payload
is the force of gravity, which due to the speed of the payload keeps it in orbital motion. For the
payload to fall straight down or to follow a curved path that hits the Earth, a force would need to
slow down the payload’s speed, but no such force is present. To drift out into deep space a force
would be needed to overcome the gravity that is keeping it in orbit, but no such force is present.

12.  (d) Since the penny is rotating around the turntable it experiences a centripetal force toward the
center of the turntable, as in (c¢). The rotation is also slowing down, so the penny experiences a
decelerating force opposite its velocity, as in (a). These two forces are vectors and must be added
together to give a net force in the direction of (d).

Solutions to Problems

1. (@) Find the centripetal acceleration from Eq. 5-1.
2

ag =“7=(1.10 m/s)?/1.20 m =1.008 m/s” = |1.01 m/s?

(b) The net horizontal force is causing the centripetal motion, so it will be the centripetal force.

Fy =mag =(22.5kg)(1.008 m/s?) =22.68 N =[22.7 N

2. Find the centripetal acceleration from Eq. 5-1.

2 2
v (525 m/s) 2 lg
ap =2 =22 (53,00 mis?)| — £ |=[5.41 g5
. 9.80 m/s>

r o 520%x10° m

3. Find the speed from Eq. 5-3.

2
LN v:\/FRr: (310N)(0.90m):11.81m/5:m
7 m 20kg
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4. To find the period, take the reciprocal of the rotational speed (in rev/min) to get min/rev, and then
convert to s/rev. Use the period to find the speed, and then the centripetal acceleration.

po|min )60 ) a3 S 175 m 0= 2 2POITIM) e 49 mis
45 rev )| 1 min rev T 1.333s

2 2

v (0.8249 m/s) 2 2
aR =—=—"—"———"—"=3.888m/s z-3.9m/s
R™ 0.175m

5. The centripetal force that the tension provides is given by Eq. 5-3. Solve that for the speed.
2

muv Frr (75 N)(1.3 m)
R = - V=,|— = [——F=1331m/s=|13m/s
R r \/ m \/ 0.55kg -

6. The centripetal acceleration of a rotating object is given by Eq. 5—1. Solve that for the velocity.

v=\Jagr = \/(1.25><105g)r = \/(1 25%10%)(9.80 m/s?)(7.00x102 m) = 2.928x10% m/s

(2.928x102 m/s)[ Irev ]( 60 j: 3.99x10* rpm
1 min

272(7.00x10~2 m)

7. A free-body diagram for the car is shown. Write Newton’s second law for
the car in the vertical direction, assuming that up is positive. The normal
force is twice the weight.

2
U

ZF:FN—mgzma - 2mg-mg=m— —
r

v=1rg = (115 m)(9.80 m/s?) = 33.57 ms = [34 ms]

In the free-body diagram, the car is coming out of the page, and the center of
the circular path is to the right of the car, in the plane of the page. The Fy
vertical forces (gravity and normal force) are of the same magnitude, because fr
the car is not accelerating vertically. We assume that friction is the force
causing the circular motion. At maximum speed, the car would be on the mg
verge of slipping, and static friction would be at its maximum value.

2
1 m/s
95 km/h)| =
v’ v? {( )[3.6 km/hﬂ

Fr=F, — m—=ukF=4mg — l=-——= =[0.57]
Room P TYNTES ST (125m)(9.80 m/s?)

Notice that the result is independent of the car’s mass.

9. A free-body diagram for the car at one instant is shown, as though the car is coming ~
out of the page. The center of the circular path is to the right of the car, in the plane F, -
of the page. At maximum speed, the car would be on the verge of slipping, and ﬂ fr
static friction would be at its maximum value. The vertical forces (gravity and
normal force) are of the same magnitude, because the car is not accelerating mg
vertically. We assume that friction is the force causing the circular motion.

2
%
R =F - m7:ﬂsFN:ﬂs’"g -

v =l =+/(0.65)(90.0 m)(9.80 m/s2) =23.94 m/s =~

Notice that the result is |independent of the car’s mass |
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10. (a) At the bottom of the motion, a free-body diagram of the bucket would be as
shown. Since the bucket is moving in a circle, there must be a net force on it
toward the center of the circle and a centripetal acceleration. Write
Newton’s second law for the bucket, Eq. 5-3, with up as the positive direction.

ZFR:FT—mg:mazmvz/r% mg

o [Fr-mg) _ \/(1.20 m)[25.0 N —(2.00 kg) (9-80 m/s”)] _ T
m 2.00 kg

(b) A free-body diagram of the bucket at the top of the motion is shown. The
bucket is moving in a circle, so there must be a net force on it toward the
center of the circle, and a centripetal acceleration. Write Newton’s second law
for the bucket, Eq. 5-3, with down as the positive direction. Fr mg

2
v f Fr+
ZFR:FT +mg=ma=m—r - V= —r( Tm mg)

If the tension is to be zero, then

v= "0 _ o= J1.20 m)©.80 mis?) =
m

The bucket must move faster than 3.43 m/s in order for the rope not to go slack.

The free-body diagram for passengers at the top of a Ferris wheel is as shown.
Fy 1is the normal force of the seat pushing up on the passengers. The sum of

the forces on the passengers is producing the centripetal motion and must be a
centripetal force. Call the downward direction positive, and write Newton’s
second law for the passengers, Eq. 5-3.

2

%
ZFR =mg—-Fy=ma=m—
r

Since the passengers are to feel “weightless,” they must lose contact with their seat,
and the normal force will be 0. The diameter is 25 m, so the radius is 12.5 m.

2
mg=m2— — v=1gr=+(9.80 m/s?)(12.5m) =11.07 m/s
r

I rev 60 s
11.07 nv/ =8.457 rpm =[8.5
( s)(Zﬂ'(IZ.S m)}( j P

1 min

-
5

(a) See the free-body diagram for the pilot in the jet at the bottom of the loop.
2
We have ap = Y 260 g.
r

, , {(840 km/h)[3 éi‘/nj/h H
Y -60g » r=——-= — = 925.9 m = [930 m|
r 6.0g 6.0(9.80 m/s?)

(b) The net force must be centripetal, to make the pilot go in a circle. Write Newton’s second law for

the vertical direction, with up as positive. The normal force is the apparent weight.
2

(4
ZFR =Fy —mg=m7
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13.

14.

15.

2

. L v
The centripetal acceleration is to be — =6.0g.
r

2

v 2
Fy=mg+m—=Tmg =7(78 kg)(9.80 m/s“) =5350 N =|5400 N
N =mg+m=—="Tmg =7(78 ke)( )

(¢) See the free-body diagram for the pilot at the top of the loop. The
normal force is down, because the pilot is upside down. Write
Newton’s second law in the vertical direction, with down as positive.

ZFR =Fy+mg=mv*/r=6mg — Fy =5mg=

To experience a gravity-type force, objects must be on the inside of the outer
wall of the tube, so that there can be a centripetal force to move the objects
in a circle. See the free-body diagram for an object on the inside of the outer
wall and a portion of the tube. The normal force of contact between the
object and the wall must be maintaining the circular motion. Write Newton’s Ey
second law for the radial direction.

2

ZFR:FN:mazmvT

This is to have nearly the same effect as Earth gravity, with Fy = 0.90 mg. Equate the two expressions

for normal force and solve for the speed.

2
Fy=m2-=090mg — v=1090gr =1/(0.90)(9.80 m/s2)(550 m) = 69.65 m/s
r

1rev 86,400 s
69.65 m/s : =1741rev/day = {1700 rev/da
) :

The radius of either skater’s motion is 0.80 m, and the period is 2.5 s. Thus their speed is given by
27(0.80 m)
Ss

v=2xr/T = =2.0 m/s. Since each skater is moving in a circle, the net radial force on

each one is given by Eq. 5-3.
2 2
v (55.0 kg)(2.0 m/s) )
—= =275 N =[2.8x10° N
= o [28x10° n]

The force of static friction is causing the circular motion—it is the centripetal
force. The coin slides off when the static frictional force is not large enough to F
move the coin in a circle. The maximum static frictional force is the coefficient
of static friction times the normal force, and the normal force is equal to the
weight of the coin as seen in the free-body diagram, since there is no vertical mg
acceleration. In the free-body diagram, the coin is coming out of the page and
the center of the circle is to the right of the coin, in the plane of the page.

FR=m

The rotational speed must be changed into a linear speed.
i 27(0.130
v:(38.0re—vj( lm‘nj( al m)]=0.5173m/s

i 60s 1rev

min
2 2 2
v v (0.5173 m/s)
R =F, —> m—=ulfy=ymg — U,=—= -
R =L , TN S g (0.130 m)(9.80 m/s?)

0.210
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16. For the car to stay on the road, the normal force must be greater
than 0. See the free-body diagram, write the net radial force,
and solve for the radius.

2 2

mv mv
- r

r _mgcosﬁ—FN

Fr =mgcos@—Fy =

For the car to be on the verge of leaving the road, the normal

ml)2 1)2

force would be 0, so 7. . This

critical —

mg cos @ B gcosd

expression gets larger as the angle increases, so we must
evaluate at the largest angle to find a radius that is good for all angles in the range.

2
02 3.6 km/h

Teritical = P = =747 m=

maximum & €08 Upay (9.80 m/s> )cos18°

17.  If the masses are in line and both have the same frequency of
rotation, then they will always stay in line. Consider a free- F F.
body diagram for both masses, from a side view, at the B B

!
ST

instant that they are to the left of the post. Note that the same Mg ma
tension that pulls inward on mass 2 pulls outward on mass 1,

by Newton’s third law. Also notice that since there is no myg m,g
vertical acceleration, the normal force on each mass is equal

to its weight. Write Newton’s second law for the horizontal

direction for both masses, noting that they are in uniform circular motion.

2 2
Ua

ZFRA =Frp —Frg =mpa, =my —r ZFRB = Frg =mpag :mBr_
A B

. 2
The speeds can be expressed in terms of the frequency as follows: v = ( f ﬂj(l r j =2zrf.
s rev

2
(%
I

B
2

Foro = Fo 4 UA_4 2 2, |42

Ta = Frg +mpa == =4xmgrg [ +mp Qry f) 1y =|47° 7 (mprs +mpry)
N

18. A free-body diagram of Tarzan at the bottom of his swing is shown. The upward
tension force is created by his pulling down on the vine. Write Newton’s second
law in the vertical direction. Since he is moving in a circle, his acceleration will be E I
centripetal and will point upward when he is at the bottom. !

2
F —
S F=F-mg=ma=m’ 5 v= |y —mg)r
r m o

The maximum speed will be obtained with the maximum tension.

(FT max — Mg [1150 N—(78 kg)(9.80 m/s’ )1(4.7 m)
Vpax = = =(4.8 m/
max \/ 78 kg

m
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19. (a) A free-body diagram of the car at the instant it is on the top of the hill is %
shown. Since the car is moving in a circular path, there must be a net - -
centripetal force downward. Write Newton’s second law for the car, with /f-’ E, Tl'mgx\\
down as the positive direction.

1)2
ZFR =mg-Fy=ma=m— -
r

Fommlo-¥ — (975 kg) 0.80 mys? ~ U80S | (oo N 5070 N
NEm T & 88.0m '

(b) The free-body diagram for the driver would be the same as the one for the car, leading to the
same equation for the normal force on the driver.

2 2
v > (18.0 m/s)
Fy=m| g——|=(62.0kg)| 9.80 m/s* —~————— |=|379 N

.Om

Notice that this is significantly less than the 608-N weight of the driver. Thus the driver will feel
“light” while driving over the hill.

(c) For the normal force to be zero, we must have the following:

2
FN:m{g—UTJZO > g=vIr - u:@:J(9.soms2)(ss.Om)=

20. The speed is 50 km/h, the curve is unbanked, and the static friction coefficient for rubber on wet
concrete is 0.7. If the car is just at the point of slipping, the static frictional force, which is providing
the acceleration, would be at its maximum.

1 m/s

50 km/h| ————
mv? v? 3.6 km/h
— =H4mg Dr=—-=

Hsg (0.7)(9.80 m/s?)

H =28.12mz

21.  The fact that the pilot can withstand 8.0 g’s without blacking out, along with the
speed of the aircraft, will determine the radius of the circle that he must fly as he
pulls out of the dive. To just avoid crashing into the sea, he must begin to form that
circle (pull out of the dive) at a height equal to the radius of that circle.

2 2 2
a =L =80g » r= U= CIOMS o]
r 8.0g 8.0(9.80 m/s*)

22.  Since the curve is designed for 65 km/h, traveling at a higher speed with
the same radius means that more centripetal force will be required. That
extra centripetal force will be supplied by a force of static friction,
downward along the incline. See the free-body diagram for the car on
the incline. Note that from Example 5—7 in the textbook, the no-friction
banking angle is given by the following:

2
1.0 m/s
2 {(65 km/h)[3.6 km/h ﬂ

6 =tan”! vr_ tan”! 3 =19.3°
rg (95 m)(9.80 m/s*)

Write Newton’s second law in both the x and y directions. The car will have no acceleration in the y
direction and centripetal acceleration in the x direction. We also assume that the car is on the verge of
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skidding, so that the static frictional force has its maximum value of F};, = g Fy. Solve each equation

for the normal force.

ZFyzFNCOSH—mg—Ffrsinﬁzo — Fycos@—ulFysinf=mg —

P S
(cos@ - sin 9)
v? v?
ZszFNsin9+Ffrc059=FR=m7 - FNsin9+ﬂsFNcost9+=m7 -

2
Fy=— mv°/r
(sin @ + p, cos 0)

Equate the two expressions for Fy and solve for the coefficient of friction. The speed of rounding the

curve is given by v = (95 km/h) 10mss =26.39 m/s.
3.6 km/h
mg mv? Ir

(cos@— . sinf)  (sinB+ p1, cosb)

2 2 2
(vcose—gsin HJ [v—gtan 9} ((26'3%/8)—(9.80 m/sz)tanl9.3°J
r r

95 m
gcos¢9+v—sin9 g+v—tan9 9.80 m/sz+utanl9.3°
r r 95 m
23.  Since the curve is designed for a speed of 85 km/h, traveling at that speed y i
would mean no friction is needed to round the curve. From Example 57 in X !
the textbook, the no-friction banking angle is given by
2
, (85 knyh)| LS 0.
v 1 3.6 km/h F,
f=tan — =tan 3 =36.10°
rg (78 m)(9.80 m/s*)

Driving at a higher speed with the same radius means that more centripetal force will be required than
is present by the normal force alone. That extra centripetal force will be supplied by a force of static
friction, downward along the incline, as shown in the first free-body diagram for the car on the incline.
Write Newton’s second law in both the x and y directions. The car will have no acceleration in the y
direction and centripetal acceleration in the x direction. We also assume that the car is on the verge of
skidding, so that the static frictional force has its maximum value of Fj;, = y Fy.

ZFyzFNcosé?—mg—Ffrsinazo — Fycos@—uFysind=mg —

Fy=— "5
(cos@ - sinB)
v? v’
ZFx=FNsin6+Fﬁcos¢9=m7 — FNsin¢9+,usFNcos¢9=m7 -

2
Fy = — mv-/r
(sin @+ p, cos @)
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Equate the two expressions for the normal force, and solve for the speed.
mv? Ir _ mg
(sin @+, cosd) (cos8— i sin )

(sin 0+ i  cos @)

o = |y (sin36.10°+0.30¢c0s36.10°)
e € (cos@— i, sinG)

(c0s36.10°—0.30sin36.10°)

\/(78 m)(9.80 m/s?)

3.6 km/h

=31.73m/s =32 m/s {31.73111/5(
s

]=ll4km/h =110 km/h}

Now for the slowest possible speed. Driving at a slower speed with the
same radius means that less centripetal force will be required than that
supplied by the normal force. That decline in centripetal force will be
supplied by a force of static friction, upward along the incline, as

shown in the second free-body diagram for the car on the incline.

Write Newton’s second law in both the x and y directions. The car

will have no acceleration in the y direction and centripetal acceleration

in the x direction. We also assume that the car is on the verge of skidding,
so that the static frictional force has its maximum value of Fj;, = y Fy.

ZFy =Fycos@—mg+F;sinf=0 —

. mg
Fycos@+ u Fysinb=mg —» HK=——"2——
N a & N (cos @+, sin @)
1)2 1)2
ZszFNsinH—Ffrc059=m7 - FNsinH—,uSFNcosﬁzmT—>

2
Fu=— mv°/r
(sin @ — 4, cos 9)

Equate the two expressions for the normal force and solve for the speed.

mv? Ir _ mg
(sin@ -y, cos@) (cosO+ i sin )

v= |rg (sin 6 -y C?SH) = |78 m)(9.80 m/s?) (sin36.10 —0.30c9s36.10 )
(cos @+, sin 9) (c0s36.10°+0.30sin36.10°)
=16.41m/s =16 m/s {16.41 m/S[MJ=59.08 km/h}
s

Thus the range is {16 m/s < v <32 m/s|, which is |59 km/h < <110 km/h|

24.  From Example 5-8, we are given that the track radius is 500 m (assumed to have two significant

figures), and the tangential acceleration is 3.2 m/s>. Thus the tangential force is

tan = Mgy = (950 kg)(3.2 m/s?) =3040 N = [3.0x10° N

F

The centripetal force is given by Eq. 5-3.
2

v 2
Fr =m—=(950 kg)(15 m/s)“ /(500 m) =427.5 N = [430 N
R =m——= (950 kg)(15 m/s)" /(500 m)
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25. The car has constant tangential acceleration, which is the acceleration that causes the speed to change.
Thus use constant-acceleration equations to calculate the tangential acceleration. The initial speed is 0,

1.0 m/s
3.6 km/h
of radius 220 m, so Ax,, =220z m. Find the tangential acceleration using Eq. 2—-11c.

2 2 2
2 _ 2 Vian ~ U (75 m/s) 2 2
vtan _UO tan — 2atanAxtan - atan = ta;Ax = = 2(22071_ m) = 4'069 m/s =

tan

the final speed is 270 km/h[ j =75 m/s, and the distance traveled is one-half of a circular arc

With this tangential acceleration, we can find the speed that the car has halfway through the turn, using
Eq. 2—-11c, and then calculate the radial acceleration.

Vo~V n = 2 M = Din = U tan + 20an A = /2(4.069 m/s> (1107 m) = 53.03 mis

2 2
ap =2 =222 W) 15 78 mis z-13m/s
R™ 220 m

The total acceleration is given by the Pythagorean combination of the tangential and centripetal
accelerations, a,y, = ap + a2, . If static friction is to provide the total acceleration, then
Iy =may, =m aﬁ + atzan . We assume that the car is on the verge of slipping and is on a level

surface, so the static frictional force has its maximum value of Fy;, = g Fy = y,mg. If we equate these
two expressions for the frictional force, we can solve for the coefficient of static friction.

— — [ 42 2 _
Ffr = Mgy = MAJAR + Ay = UG —>

3 3 2.2 252
+ 12.78 m/ +(4.069 m/

o ey 2T 0 mED g
g 9.80 m/s

S

This is an exceptionally large coefficient of friction, so the curve had better be banked.

26. In all cases, we draw a view from above, and the car is moving clockwise around the
circular path.

(a) Inthis case, the car is gaining speed, so it has a tangential acceleration in the
direction of its velocity, as well as a centripetal acceleration. The total
acceleration vector is somewhat “forward.”

(b) Inthis case, the car has a constant speed, so there is no tangential acceleration.
The total acceleration is equal to the radial acceleration.

(¢) Inthis case, the car is slowing down, so its tangential acceleration is in the
opposite direction as the velocity. It also has a centripetal acceleration. The total
acceleration vector is somewhat “backward.”
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27. We show a top view of the particle in circular motion, traveling clockwise.
Because the particle is in circular motion, there must be a radially inward
component of the acceleration.

2
. v
(@) ap =asinf=— —
r

v=+larsinf = \/(1.05 m/s? )(1.95 m)sin 25.0° =[0.930 m/s

(b) The particle’s speed change comes from the tangential acceleration, which
is given by a,,, = acos@. Since the tangential acceleration is constant,

we use Eq. 2—11a.

Vian — V0 tan = Gtan? —

Vian = Vo 1an + rant = 0.930 m/s+(1.05 m/s>)(cos 25.0°)(2.00 s) = [2.83 m/s

28.  The spacecraft is at 3.00 Earth radii from the center of the Earth, or three times as far from the Earth’s
center as when at the surface of the Earth. Therefore, since the force of gravity decreases as the square
of the distance, the force of gravity on the spacecraft will be one-ninth of its weight at the Earth’s
surface.

(1850 kg)(9.80 m/s”)
FG =%m<gEarth's = 9 =[2010N

surface

This could also have been found using Eq. 54, Newton’s law of universal gravitation.

29. (a) Mass is independent of location, so the mass of the ball is 24.0 kg| on both the Earth and the
planet.
(b) The weight is found by using W = mg.

Wearth = MZar = (24.0 kg)(9.80 m/s?) =[235 N
Wplanet = MZplaner = (24.0 kg)(12.0 m/s*) =288 N

30. For the net force to be zero means
that the gravitational force on the d

v

Moon
spacecraft due to the Earth must be
the same as that due to the Moon.
Write the gravitational forces on the spacecraft
spacecraft, equate them, and solve for X @) d—x
the distance x. We measure from the > >
center of the bodies.
M Earth mspacecraft M Moon mspacecraft
Fearth- = G—z; Fytoon - 7 2
spacecraft X spacecraft (d —-X )
G M Earth m;pacecraft -G M Moonmspagecraﬁ N XZ _ (d —x)z N X _ d—x
X (d — x) M Earth M Moon \/ M Earth \/ M Moon
M {5.97x10%* k

x=d Earth =(3.84x10® m) £ =[3.46x10° m

(VMyt00n + Mg | (\/7.35><1o22 kg ++/5.97x10%* kg)

This is only about 22 Moon radii away from the Moon. Alternatively, it is about 90% of the distance
from the center of the Earth to the center of the Moon.
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31. Assume that the two objects can be treated as point masses, with m; =m and m, =4.00 kg—m. The
gravitational force between the two masses is given by the following:
mm, _

_ )
. Gm(4'02 M) _ (6.67x107" N-m? kg?) 00 =M

; =2.5x10710 N
r r (0.25 m)

F=G

This can be rearranged into a quadratic form of m? —4.00m+0.234 =0. Use the quadratic formula to
solve for m, resulting in two values, which are the two masses.

m; =3.94 kg, my =0.06 kg

32. The acceleration due to gravity at any location on or above the surface of a planet is given by

Eplanct = OM pjanct /r?, where r is the distance from the center of the planet to the location in question.
M M 1 M 1 9.80 m/s’ 5
Splanet = G Plzanet =G Earth > = - G faﬂh — 4_0 SEarth = 0 —
r 20 Rgy)” (2.0 Riym . .

33. The force of gravity on an object at the surface of a planet is given by Newton’s law of universal
gravitation, Eq. 54, using the mass and radius of the planet. If that is the only force on an object, then
the acceleration of a freely falling object is acceleration due to gravity.

M m
FG:G%:mgMoon -
"Moon
M ~ _ 2
Sntoon = G2Moon _ (6,67x10711 N-m2 kg?) 210K [} 65 12
Moon (1.74x10” m)

34, With the assumption that the density of Europa is the same as Earth’s, the radius of Europa can be

calculated.
1/3
_ M Europa M Earth _ M Europa
P Europa — PEarth - - 7N Europa = "Earth
4 3 4 3 M
3 n Europa 3 T Earth Earth
1/3 2/3 1/3
g _ GM Europa _ GM Europa _ GM EuropaM Earth _ GM Earth M Europa
Europa ™ 3 - 2~ 2 T2 1/3
TEuropa M Europa 173 TEarth TEarth M Earth
TRarth | >,
M Earth
1/3
_ M Europa
= ZEarth M
Earth

oY) 1/3
~(9.80 m/sz){mJ ~1.98 m/s® ~

5.98x10%* kg

Mgy

35.  The expression for the acceleration due to gravity at the surface of a body is gpoqy =G TR where
body
Ryogy 1 the radius of the body. For Mars, gygyrs = 0.38gg,m-
GMMars =O38GMEarth N
2 : 2
RMars REarth
2 2
R 400 k
My =0.38Mp, (RMMS j =0.38(5.98x10%** kg)(%j =16.5x10% kg
Earth
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36. We assume that the distance from the Moon to the Sun is the same as the distance from the Earth to the Sun.

M M M M
_ _ Moon*" Earth _ _ Moon*"" Sun
Fyg = F, = G=Moon—Farth, Fys = F, = G—Moon—Sun.
"Moon- "Moon-
Earth Sun
2 2 2 2
_ 2 2 _ M MoonM Earth M MoonM Sun _ M Earth M Sun
Foot =4+ Fs +F) = G—2 + G—2 = GM \ioon - | =
"Moon- "Moon- "Moon- "Moon-
Earth Sun Earth Sun

24 2 30 2
= (6.67x107"1 N-m?/kg?)(7.35%10% kg) ((5'98“0 kg)J +{(1.99><10 kg)}

(384x10° m)? (149.6x10° m)?
=4.79x10° N

G M Moon M Earth M Earth
2 2
"Moon- "Moon- i I\%Ioon—
F 7 M.
y Moon- Sun
G MMoonMSun MSun Earth
2 2
"Moon- "Moon-
Sun Sun

_ 1| (5:98%10% kg) (149.6x10° m)’ } ! {(5.98><1024 kg) (149.6x10° m)ﬂ

(384x10° m)?> (1.99x10°° kg) (384x10° m)> (1.99x10°° kg)
=tan"'0.456 =

37. The acceleration due to gravity at any location at or above the surface of a planet is given by

Gplanct = GM planet /r?, where r is the distance from the center of the planet to the location in question.

M 2.80M M
Zotanet = G = G Earth _ 2.80[Gf—th = 28085, =2.80(9.80 m/s?) = (27.4 m/s*

2 2
r REanh REarth

38. The acceleration due to gravity is determined by the mass of the Earth and the radius of the Earth.

_GM, _GM,,, _G2M, 2GM, ,
8o = 2 Enew = P - 2_9 2 _gg()
) Tew (3?‘0) )

So g is multiplied by a factor of [2/9].

39. The acceleration due to gravity at any location at or above the surface of a planet is given by

Gplanet = GM planet /r?, where r is the distance from the center of the planet to the location in question.
For this problem, Mpjynec = Mpan =5 97x10%* kg.

(@) 7= Rpyy, +6400 m = 6.38x10° m+ 6400 m

M _ . H
g=G—2u = (6.67x10"" N-m’ /kg”) CI8XI0T kD) g 78 1y’
r

(6.38x10° m+6400 m)*
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5-18 Chapter 5

(b) = Ry, +6400 km = 6.38x10° m+6.4x10° m =12.78x10° m (3 significant figures)

Enh_ 1 2, (5.98x10%" kg) >
g=G—EM —(667x107"' N-m /g)—z— 2.44 m/s

(12.78x10° m)

40.  The distance from the Earth’s center is 7 = Ry, +380 km = 6.38x10° m+3.8x10° m =

6.76x10° m. Calculate the acceleration due to gravity at that location.

5.97x10* kg
(6.76x10° m)*

M M
g=G—Hmh - g—Euth — (6.67x10" "' N-m*/kg?) =8.714 m/s?
r V

[T}

1%g
=8.714 m/s*| —=— |=0.889 g’s]
(9.80 m/sz]

This is only about an 11% reduction from the value of g at the surface of the Earth.

41. We are to calculate the force on Earth, so we need the distance of each planet from Earth.

K = (150—108)x10° km =4.2x10"" m g,y = (778—-150)x10° km = 6.28x10'! m

Venus Jupiter

Fearg, = (1430—150)x10° km =1.28x10'* m

Saturn

Jupiter and Saturn will exert a rightward force, and Venus will exert a leftward force. Take the right
direction as positive.

Miarn MJupiter +G Mgarin Msatum -G MgarinMyenus

FEarth- =G 2
planets TBarth TEarth TBarth
Jupiter Saturn Venus
= GM Eu 31811 2t 95.112 2 0'811(? 2
(62810 m)?  (1.28x10"2 m)?>  (4.2x10'" m)

=(6.67x107"" N-m?/kg?)(5.97x10** kg)*(4.02x107>* m2) =9.56x10"” N =9.6x10'" N

The force of the Sun on the Earth is as follows:

M M. _ ) 24 ) 30
FEarth_ =G Ear;h Sun — (667X10 11 NmZ/ng) (5 97x10 kg)(l 99x10 kg)

Sun o (1.50x10'" m)?
Sun

=3.52x102 N

So the ratio is Fp,q,. /FEarth_ =9.56x10"7 N/3.52x10*2 N =|2.7x107°|, which is 27 millionths.

planets Sun

<>

42. Calculate the force on the sphere in the lower left corner, using the free- @ d @
body diagram shown. From the symmetry of the problem, the net forces
in the x and y directions will be the same. Note & =45°. .
F, d
iag

2 2 2 T

m 1 m 1 F
F,=Fy 4 +Fy,, cos =G -6 l1— w .
right 7 diag FE (fd)%/ dz( 12 j /0'

—" @
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2
Thus F, =F, =G| 1+ L . The net force can be found by the Pythagorean combination of the
R LA G N /)

two component forces. Due to the symmetry of the arrangement, the net force will be along the
diagonal of the square.

2 2
1 m 1
F=JF}+F?=\2F} =F.\2 = Gm—(l+—)\/2 = G—(\/Z +—j
g a*\ 2\2 d* 2

2
= (6.67x107!! N-mz/kgz)%(ﬁ-i—lj =|1.1><10‘8 N at 45°
(0.80 m) 2

The force points toward the center of the square.

43. In general, the acceleration due to gravity of the Earth is given by g = GM g, /r?, where r is the
distance from the center of the Earth to the location in question. So, for the location in question,

_1 o Meatn _ 1 o Mearn
g= 10 Esurface 2 T 10 2
F REanh

r=\10Rp,q =~+10(6.38x10° m)=(2.02x10” m

— 2 =10 Ri

44. The acceleration due to gravity at any location at or above the surface of a star is given by
Gstar = CM g1 /r?, where r is the distance from the center of the star to the location in question.

M 5M ) 30
Estar =G = G%=(6.67X10_11 N~m2/kg2)w= 7%10'2 m/s2

r? r (Ix1 0* m)2

45. The shuttle must be moving at “orbit speed” in order for the satellite to remain in the orbit when
released. The speed of a satellite in circular orbit around the Earth is given in Example 5-12.

M,
Uorbit =4/C F;anh
a M . 24
v:\/G Bath _ |5 Earth — (6.67><10_“ N-mz/kgz) (5 968X10 kg) :
r (Rgare +780 km) (6.38x10° m+7.8x10° m)

=[7.46x10° m/s

46. The speed of a satellite in a circular orbit around a body is given in Example 5-12 as
Vorbit =/ GMpogy /7, Where 7 is the distance from the satellite to the center of the body.

M 24

Ry +4.8x10° m (6.38x10° m+4.8x10° m)
=(5.97x10* m/s

{

c
Il
Q
~
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47. Consider a free-body diagram of yourself in the elevator. FN is the force of the scale pushing
up on you and reads the normal force. Since the scale reads 77 kg, if it were calibrated in
newtons, the normal force would be Fy = (77 kg)(9.80 m/sz) =754.6 N. F, mg
Write Newton’s second law in the vertical direction, with upward as positive.
Fy-mg  754.6 N—(62kg)(9.80 m/s>) _
mo 62 kg -

ZF:FN—mgzma - a= 2.4 m/s? upward

Since the acceleration is positive, the acceleration is upward.

48. Draw a free-body diagram of the monkey. Then write Newton’s second law for the
vertical direction, with up as positive.
Fr—
ZF=FT—mg=ma 5 q=-1""8
m

For the maximum tension of 185 N,

185 N-(12.0 kg)(9.80 m/s?)

=5.62 m/s> = 5.6 m/s’
(12.0 kg)

Thus the elevator must have an upward acceleration greater than a =5.6 m/s? | for the cord to break.

Any downward acceleration would result in a tension less than the monkey’s weight.

49. The speed of an object in a circular orbit of radius 7 around mass M is given in Example 5-12 by
v=+/GM/r andis also given by v =2xzr/T, where T is the period of the orbiting object. Equate the
two expressions for the speed and solve for T.

/GMZZEF
r T

3 6 4 3
T:MJ P (1.741>1<10 n12+9.§><10 m) _
GM (6.67x107"1 N-m2/kg?)(7.35x10% m)

=[7.05%10% s =118 min

50. The speed of a satellite in circular orbit around the Earth is shown in Example 5-12 to be
/ M
VUorbit = G—Eah  Thys the velocity is inversely related to the radius, so the closer satellite will be
r

orbiting faster.

GMEarth
Vetone Taose _ [T _ REmh+1.5><107m_\/6.38><106m+1.5><107m:124
Kelose

Ve [GMgu Regry +7.5x10°m V'6.38x10°m +7.5x10°m

Toar

So [the close satellite is moving 1.2 times faster] than the far satellite.
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51. Consider a free-body diagram for the woman in the elevator. FN is the upward force

the spring scale exerts, providing a normal force. Write Newton’s second law for the
vertical direction, with up as positive.

ZF:FN—mgzma — Fy=m(g+a)

(a, b) For constant-speed motion in a straight line, the acceleration is 0, so the
normal force is equal to the weight.

Fy =mg =(58.0 kg)(9.80 m/s*) =
(c) Here a=+0.23 g, so Fy =1.23 mg =1.23(58.0 kg)(9.80 m/s*) =[699 N|.
(d) Here a=-023g, so Fy =0.77 mg =0.77(58.0 kg)(9.80 m/s*) = [440 N|

(e) Here a=-g, so Fy =|§|.

52. The speed of an object in an orbit of radius » around the Earth is given in Example 5-12 by
U=,/GM gy, /v and is also given by v =2xr/T, where T is the period of the object in orbit. Equate

the two expressions for the speed and solve for 7. Also, for a “near-Earth” orbit, » = Rg,, .

3
r T GMEal’th

3
T =27 | Neath_oq “(6.382106;11)3 ~— =|5070 s =84.5 min
GM g (6.67x107"" N-m” /kg*)(5.98x10** m)

, the result does not depend on the mass of the satellite.

53.  Consider the free-body diagram for the astronaut in the space vehicle. The Moon is h‘
below the astronaut in the figure. We assume that the astronaut is touching the inside of H o8
the space vehicle, or in a seat, or strapped in somehow, so a force will be exerted on the
astronaut by the spacecraft. That force has been labeled FN. The magnitude of that F, | ymg
force is the apparent weight of the astronaut. Take down as the positive direction.

(a) If the spacecraft is moving with a constant velocity, then the acceleration of the
astronaut must be 0, so the net force on the astronaut is 0.

D F=mg-Fy=0 —

22

=5923N
r? (25%10° m)?

Fy=mg=G

Since the value here is positive, the normal force points in the original direction as shown on the

free-body diagram. The apparent weight is |59 N, away from the Moon|.

(b) Now the astronaut has an acceleration toward the Moon. Write Newton’s second law for the
astronaut, with down as the positive direction.

Y F=mg-Fy=ma — Fy=mg—ma=5923N-(75kg)(18m/s*)=-76N
Because of the negative value, the normal force points in the opposite direction from what is

shown on the free-body diagram—it is pointing toward the Moon. So perhaps the astronaut is
pinned against the “ceiling” of the spacecraft, or safety belts are pulling down on the astronaut.

The apparent weight is |76 N, toward the Moon|.
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54. The apparent weight is the normal force on the passenger. For a person at rest, the normal force is
equal to the actual weight. If there is acceleration in the vertical direction, either up or down, then the
normal force (and hence the apparent weight) will be different than the actual weight. The speed of the
Ferris wheel is v =2zr/T =27(11.0 m)/12.5s =5.529 m/s.

(a) See the free-body diagram for the highest point of the motion. We assume
the passengers are right-side up, so that the normal force of the Ferris wheel
seat is upward. The net force must point to the center of the circle, so
write Newton’s second law with downward as the positive direction.

The acceleration is centripetal since the passengers are moving in a circle.
v? v?
ZF=FR =mg-Fy=ma=m— — Fy=mg—-m—
r r

The ratio of apparent weight to real weight is given by the following:

2 1)2

mg—m— -
S SO N € 2L LV S

mg g rg (1.0 m)980 m/s?)

(b) At the bottom, consider the free-body diagram shown. We assume
the passengers are right-side up, so that the normal force of the Ferris \ /
wheel seat is upward. The net force must point to the center of the circle,
so write Newton’s second law with upward as the positive direction. The F, mg
acceleration is centripetal since the passengers are moving in a circle.
v? v?
ZF=FR =Fy-mg=ma=m— — Fy=mg+m—
r r
The ratio of apparent weight to real weight is given by the following:
")

mg+m— 2 2
r_ Y, (5.529 m/s) Y
mg rg (11.0 m)(9.80 m/s*)

2
The centripetal acceleration will simulate gravity. Thus v 070 g — v=,/0.70gr. Also for a
r

O
It

rotating object, the speed is given by v =27zr/T. Equate the two expressions for the speed and solve
for the period.

0= '—0.70gr:ﬂ o= 2zr _ 272(16 m) :
T J0.70gr \/(0.70)(9.80 m/s%)(16 m)

56. (a) The speed of an object in near-surface orbit around a planet is given in Example 512 to be
v=+GM /R, where M is the planet mass and R is the planet radius. The speed is also given
by v=2xzR/T, where T is the period of the object in orbit. Equate the two expressions for the

speed.
M _2zR M _4n’R? M _4n’
—=—— -5 G—= - —=—
R T R 7 R* GT?
. . . . M M
The density of a uniform spherical planet is given by p = = . Thus

Volume % 7R3

3M 3 47’ | 3«

p = = — =
aZR® 4m GT? |GT?
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(b) For Earth, we have the following:

p=Z 37 = |5.4x10° kg/m®

GT?  (6.67x107"1 N-m?/kg?)[(85 min)(60 s/min)}>

57.  Use Kepler’s third law for objects orbiting the Sun.

2 3
(TNeptune /TEanh ) = (rNeptune /rEarth ) -

3/2 9 3/2
"Nept 4.5%10” km
T Neptune — Tearth ( P j = (1 year) (—J =160 years

TEarth 1.50x10% km

58.  Use Kepler’s third law for objects orbiting the Sun.

3 2 2/3 2/3
T T
{rkm] =[ Icam] = Ficarus = "Barth [%j =(1.50x10"! m)[%j =(1.6x10'"' m

TEarth T Earth Earth

59. Use Kepler’s third law for objects orbiting the Earth. The following are given:
T, = period of Moon = (27.4 day) [%J =2.367x10°%s
ay

r, =radius of Moon’s orbit = 3.84x10° m

r, =radius of near — Earth orbit = Ry, = 6.38x10° m

(T1/T2)2 :(rl/r2)3 -

6 3/2
T =T, (r/ry )" =(2.367x10° %%J =5.07x10° s|(= 84.5 min)
04X m

60. Knowing the period of the Moon and the distance to the Moon, we can calculate the speed of the Moon
by v =27zr/T. But the speed can also be calculated for any Earth satellite by v =,/GM /7, as

derived in Example 5-12. Equate the two expressions for the speed, and solve for the mass of the
Earth.

GMEarth/}":zﬂ'r/T -

2.3 2 8 3
Mg, = v dn”(3.84x10 m) =15.98x10** kg

GT?  (6.67x107"1 N-m?/kg?)[(27.4 d)(86,400 s/d)]?

61. There are two expressions for the velocity of an object in circular motion around a mass M:
v=~GM/r and v=2xr/T. Equate the two expressions and solve for 7.

NGM Iy =2rr/T —

3
3x10° m/s)(3.16x107 s)
3x10* Iy)
r (( Y Ly 15 8
T=2m,|—=2r = — - =5.8x10" s =1.8x10% yr
GM (6.67x107" N-m? /kg?)(4x10*' kg)

ST
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62. (a) The relationship between satellite period 7, mean satellite distance », and planet mass M can be

derived from the two expressions for satellite speed: v =+ GM /r and v =27zr/T. Equate the
two expressions and solve for M.

JGVTr 27T = M= 4
GT
Substitute the values for lo to get the mass of Jupiter.

2 8 3
MJupiter— = b (4.22X10 m) > = 1.90)(1027 kg
Io

(6.67><10‘“N.m2/kg2)[1 77 dx % 3610I(1)5J

(b) For the other moons, we have the following:

472 (6.71x10% m)*
M yupiter- = - > - =[1.90x10*" kg

Europa  (6.67x10~ 11 N-m? /kg?)(3.55%24x3600 s)

472 (1.07x10° m)®
M yupier- = > - =|1.89x10*" kg

Ganymede  (6.67x107'1 N-m? /kg?)(7.16%24x3600 s)

47%(1.883%10° m)*
M yupiter- = > - =|1.90x10*" kg

Callisto  (6.67x107M N-m? /kg?)(16.7x24%3600 s)
, the results are consistent—only about 0.5% difference between them.

63.  Use Kepler’s third law, Eq. 5-7b, to find the radius of each moon, using lo’s data for r, and T,.
(n/n) =M% — rl =r2(T1/T2)2/3
Peuropa = "o (TEumpa/TIO) = (422x10° km)(3.55 d/1.77 d)** =
Foanymede = (422X10° km)(7.16 d/1.77 d)** =
et = (422X10° km)(16.7 d/1.77 d)?3 =

The agreement with the data in the table is excellent.

64. As found in Example 5-12, the speed for an object orbiting a distance r around a mass M is given by

star
o Vﬁ S A Ok
star

65. Use Kepler’s third law to relate the orbits of Earth and Halley’s comet around the Sun.
3 2
(rHalley /rEarth ) = (THalley/TEarth ) -
2/3 6 2/3 6
Titalley = Tarth (Titattey /Tarn ) = (150x10° km)(76 yr/1 yr)*”* = 2690%10° km

This value is half the sum of the nearest and farthest distances of Halley’s comet from the Sun. Since
the nearest distance is very close to the Sun, we will approximate that nearest distance as 0. Then the
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farthest distance is twice the value above, or 5380x10° km =|5.4x10'> m|. This distance approaches

the mean orbit distance of Pluto, which is 5.9%10'% m. |It is still in the solar system, nearest t0|

Pluto’s orbit.

66. (a) UseKepler’s third law, Eq. 5-7b, to relate the orbits of the Earth and the comet around the Sun.
3 2
(rcomet j — [Tcomet ) N
TEarth Ty Earth

23 2/3
T
Tcomet = "Earth [ Tfomet ] =(1AU) [2410&) =179.3 AU =|180 AU

Earth yr

() The mean distance is the numeric average of the closest and farthest distances.

1.00 AU +
179.3 AU = frmax = o =357.6 AU =[360 AU

(¢) Refer to Fig. 5-29, which illustrates Kepler’s second law. If the time for each shaded region is
made much shorter, then the area of each region can be approximated as a triangle. The area of
each triangle is half the “base” (speed of comet multiplied by the amount of time) times the
“height” (distance from Sun). So we have the following:

— 1 _1
Areamin _Areamax - E(vmint)rmin _E(vmaxt)rmax -
Umin/ VUmax =% max/ min — 360/1

) {Z”REarth / r ] 4r’ Rgarn
1)

orbit orbit

67. The centripetal acceleration is ap = . The force (from Newton’s

Earth Rearth r?
orbit orbit

second law) is Fy = mp,,ag - The period is one year, converted into seconds.
4m*R

Earth 2 11
i 472 (1.50x10 -
g = ——omit_ 477 (1.50x Zm) =5.97%107 m/s?

72 (3.15x107 s)
Fr =ma=(5.97x10** kg)(5.97x107> m/s*) =|3.56x10%* N

exerts this force on the Earth. It is a gravitational force.

68. Since mass m is dangling, the tension in the cord must be equal to the weight of mass m, so Fp =mg.

That same tension is in the other end of the cord, maintaining the circular motion of mass M, so
2
v . . .
Fp = Fp = Mag = M —. Equate the expressions for tension and solve for the velocity.
r

Mv—zmg — v=|{mgR/IM

69. The force is a centripetal force, and is of magnitude 7.45 mg. Use Eq. 5-3 for centripetal force.

2

F=m =745mg — v=1J745rg =/7.45(11.0 m)(9.80 m/s?) = 28.34 m/s = [28.3 m/s
r

1rev
28.34 m/s)x ———— =|0.410 rev/s
( X o~ Q410 revis|
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70. The car moves in a horizontal circle, so there must be a net horizontal
centripetal force. The car is not accelerating vertically. Write Newton’s
second law for both the x and y directions.

mg
cos @

ZFy =Fycos@-mg=0 — Fy=

ZFX :ZFR = Fy sin @ = ma,

The amount of centripetal force needed for the car to round the curve is as follows:

2
(85 k)| _LOS
v? 3.6 km/h \
Fy =mZ—=(1050 kg) =8.130x10° N
r 72 m

The actual horizontal force available from the normal force is as follows:

Fy, sin @=-"5_sin 6 = mg tan & = (1050 kg)(9.80 m/s>) tan 14° = 2.566x10° N

cos
Thus more force is necessary for the car to round the curve than can be ¥
supplied by the normal force. That extra force will have to have a horizontal X

component to the right in order to provide the extra centripetal force.
Accordingly, we add a frictional force pointed down the plane. That
corresponds to the car not being able to make the curve without friction.

Again write Newton’s second law for both directions, and again the
y acceleration is zero.

. + I} sin 6
ZFy:FN cos@—-mg—F;sinf=0 — FNzu
cos @

)
ZFx =F\ sin @+ F; cos @ =m—

-

Substitute the expression for the normal force from the y equation into the x equation, and solve for the
friction force.

2 2
sin @+ F; cos @ = m (mg + Iy, sin 0) sin 6+ F, cos? @=mZcos @
cos 8 r r
V2
Fy =m—cos 8 —mg sin 6 = (8.13O><103 N)cos 14°— (1050 kg)(9.80 m/sz)sin 14°
r

mg + Fy sin 6

=5.399x10° N

So a frictional force of |5.4x10°> N down the plane| is needed to provide the necessary centripetal

force to round the curve at the specified speed.
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Consider the free-body diagram for a person in the “Rotor-ride.” Fy is the /\
normal force of contact between the rider and the wall, and Fy, is the static v
frictional force between the back of the rider and the wall. Write Newton’s IFfr
second law for the vertical forces, noting that there is no vertical acceleration.

D F,=Fy-mg=0 — Fy=mg K
mg
If we assume that the static friction force is a maximum, then v

Ffr=ﬂsFN=mg - FN=mg/:us

But the normal force must be the force causing the centripetal motion—it is the only force pointing to
2

2
. % . 4
the center of rotation. Thus Fy = Fyy =m—. Using v =27zr/T, we have Fy = mr
r

-

Equate the

two expressions for the normal force and solve for the coefficient of friction. Note that since there are
0.50 revolutions per second, the period is 2.0 s.
4% mr mg gT2 (9.80 m/s> )(2.0 s)2
FN = =— — :us = = =

0.18
T2 H 4’y 47%(5.5 m)

Any larger value of the coefficient of friction would mean that the normal force could be smaller to
achieve the same frictional force, so the period could be longer or the cylinder radius smaller.

There is no force pushing outward on the riders. Rather, the wall pushes against the riders. By
Newton’s third law, the riders therefore push against the wall. This gives the sensation of being pressed
into the wall.

72. A free-body diagram for the sinker weight is shown. L is the length
of the string actually swinging the sinker. The radius of the circle of
motion is moving is » = L sin 8. Write Newton’s second law for
the vertical direction, noting that the sinker is not accelerating
vertically. Take up to be positive.

mg
cos &

D F,=Frcosf-mg=0 — Fr=

The radial force is the horizontal portion of the tension. Write Newton’s second law for the radial
motion.

")
ZFR = Fr sin @ = mag =m7

Substitute the tension from the vertical equation and the relationships » = L sin 8 and v =2zr/T.

2 2 . 2
. . 4 mL T
FTsmé’:mv— - & sing= 7zm2s1n(9 — cosé?:g2
r cos @ T 4L
72 9.80 m/s>)(0.75 s)?
0=cos_1g—=cos_l( : 2 S220 [56°]
47’L 47%(0.25 m)
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73. At the top of a circle, a free-body diagram for the passengers would be as
shown, assuming the passengers are upside down. Then the car’s normal
force would be pushing DOWN on the passengers, as shown in the diagram.
We assume no safety devices are present. Choose the positive direction to be
down, and write Newton’s second law for the passengers.

v v
ZF:FN-i-mg:ma:m— - Fy=m|—-g
r r
We see from this expression that for a high speed, the normal force is positive, meaning the passengers
are in contact with the car. But as the speed decreases, the normal force also decreases. If the normal
force becomes 0, the passengers are no longer in contact with the car—they are in free fall. The

limiting condition is as follows:
2

P =0 =5 Dy, = g =980 ms?) (8.6 m) =[0.2 ms]

74. The speed of the train is (160 krn/h)[3 1 ms

— 1= 44.44 s,
6 km/hj

(a) Ifthere is no tilt, then the friction force must supply the entire centripetal force on the passenger.
2 2
v°  (55kg)(44.44 m/s) 2
Fr=m—= =190.6N:-1.9><10 N

(b) For the banked case, the normal force will contribute to the radial force
needed. Write Newton’s second law for both the x and y directions. The y
acceleration is zero, and the x acceleration is radial.

. + F sin 8
Z:Fy=FN cos @-mg—Fysinfd=0 — FN=%

2
. v
ZFX = Fy sin @+ Fj; cos 9=m7

Substitute the expression for the normal force from the y equation into
the x equation, and solve for the friction force.

. 2
wsin 9+Fﬁ_ COSHZWIU——)
cos @ r
")
(mg + I sin 6) sin 6 + I, cos’ @=m—cos 6 —
r
)
Fy =m| —cos 8—gsin &
r
(44.44 m/s)? 3. . 2
=(55kg)| ————c0s 8.0°—(9.80 m/s”) sin 8.0° |=113.7 N = [1.1x10° N
( g{ om O80mis)
75.  See the diagram for the two stars. d

(a) The two stars don’t crash into each other because of
their circular motion. The force on them is centripetal
and maintains their circular motion. Another way to
consider it is that the stars have a velocity, and the
gravity force causes CHANGE in velocity, not actual velocity.

If the stars were somehow brought to rest and then released under the influence of their mutual
gravity, they would crash into each other.
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(b) Set the gravity force on one of the stars equal to the centripetal force, using the relationship that
v=2xr/T =7d/T, and solve for the mass.
2 2 2 2 2 2
FG:GM—:FR:MU—:M2(nd/T) :272Md N GM_ZZﬂ'Md
d2 a2 d T2 d2 T2

243 2 11 3
Y2 272 (8.0x10"" m) _fex10” e

Gr? -
(6.67x107"! N-m2/kg2)[12.6 yrx 13107 s

Lyr

76. The acceleration due to the Earth’s gravity at a location at or above the surface is given by
g =GMp,, /r, where r is the distance from the center of the Earth to the location in question.
Find the location where g =
GM Earth _ l GM Earth

2 2
r 2 REarth

1
D 8surface -

- r2 = ZRJ%arth - r =\/§REanh

The distance above the Earth’s surface is as follows:

P = Regn = (N2 = 1) Rigrn = (V2 =1)(6.38x10° m) = |2.64x10° m|=0.414 Ry

77. We assume the water is rotating in a vertical circle of radius . When the bucket is

at the top of its motion, there would be two forces on the water (considering the water - "~
as a single mass). The weight of the water would be directed down, and the normal L7
force of the bottom of the bucket pushing on the water would also be down. See the Fy -

free-body diagram. If the water is moving in a circle, then the net downward force
would be a centripetal force.

1)2 1)2
ZF:FN-i-mg:ma:m— - Fy=m|—-—g
r r

The limiting condition of the water falling out of the bucket means that the water loses contact with the
bucket, so the normal force becomes 0.

Fy=m T—g - m Llcal_g =0 — Ucritical = V&

r

From this, we see that , it is possible to whirl the bucket of water fast enough. The minimum speed

is \/E . All you really need to know is the radius of the circle in which you will be swinging the

bucket. It would be approximately the length of your arm, plus the height of the bucket.

78.  For an object to be apparently weightless, the object would have a centripetal acceleration equal to g.

This is the same as asking what the orbital period would be for an object orbiting the Earth with an
2

orbital radius equal to the Earth’s radius. To calculate, use g=ag = U—, along with
Earth
V=27 R, /T, and solve for 7.
2 2 6
4m°R R 38x1 .
g=——="" TR, po9g |Rearth _ 5 wz 5.07x10° s|(~ 84.5 min)
REartn T g 9.80 m/s
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79.

80.

=
—_

82.

The speed of an object in an orbit of radius » around a planet is given in Example 5-12 as
U =/GM jjune /7, and is also given by v =27r/T, where T'is the period of the object in orbit. Equate

the two expressions for the speed and solve for 7.

, 3
GMPlanet — 2zr - T=2r r
r T GMPlanet

=7.3x107 m, and the outer orbit has radius

For this problem, the inner orbit has radius #, .,

=1.7x10® m. Use these values to calculate the periods.

7 3
T (7.3%10° m) =[2.0x10% s

et :2”\/ (6.67x1071" N-m? /kg?)(5.7x10% kg)

8 3
Touter =2ﬂ-\/ (1'7X10 m) = 7.1X104S

(6.67x1071 N-m? /kg?)(5.7x10% kg)

Touter

Saturn’s rotation period (day) is 10 h 39 min, which is about 3.8x10% s. Thus the inner ring will

appear to move across the sky faster than the Sun (about twice per Saturn day), while the outer ring
will appear to move across the sky slower than the Sun (about once every two Saturn days).

The speed of an object in an orbit of radius  around the Moon is given by v =,/GM .0, /7, and is

also given by v =27zr/T, where T is the period of the object in orbit. Equate the two expressions for
the speed and solve for 7.

GM yvioon /1 =27r/T  —

T=2rx

. |(Ryoon +100 km)® - (1.74x10° m +1x10° m)?
GM\1o0n GM\joon (6.67x1071 N-m? /kg?)(7.35x10* kg)

=|7.1x10° s (=2.0h)|

(a) The speed of a satellite orbiting the Earth is given by v =./GMg,,/r. For the GPS satellites,
7 = Rpp, +(11,000)(1.852 km) = 2.68x107 m.

24
v:\/(6.67><10_” N-mz/kgz)M =3.86x10° m/s = |3.9x10° m/s

2.68x107 m

(b) The period can be found from the speed and the radius.

7
T s T 2 2m(2.68%107 m)

v 3.86x10° m/s

= |44x10* s =12

(a) If the asteroid were a sphere, then the mass would be given by M = pV = %ﬂ'prS. We first find
the mass by multiplying the density and the volume, and then use that mass to solve for the
radius as if it were a sphere.

M =pV = (2.3><1o3 k—%](40000><6000x6000 m’) =3312x10"° kg
m
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1/3

1/3 15
3IM 3(3.312x10°° kg) 3
r= = :7005mz-7><10 m
(475/)] 3 kg
4| 2.3%10 —
m

(b) The acceleration due to gravity is found from the mass and the radius of the hypothetical sphere.
(3.312x10" kg)

. =4.502x107> m/s?
(7005 m)

g=GM/r* =(6.67x107"! N-m? /kg?)

=[5% s2

(¢) The speed of an object orbiting a mass M is given by v =+/GM /r. The period of an object
moving in a circle path is given by 7' =2zr/v. Combine these relationships to find the period.

4
po 2 _ 22(2x107 m) =3.781x10* s

M 15
\/Gr \/(6.67><10_” N.mz/kgz)w

(2x10* m)

83.  The lamp must have the same speed and acceleration as the train.
The forces on the lamp as the train rounds the corner are shown
in the free-body diagram included. The tension in the suspending
cord must not only hold the lamp up, but also provide the
centripetal force needed to make the lamp move in a circle. Write
Newton’s second law for the vertical direction, noting that the
lamp is not accelerating vertically.

mg
cos @

ZFy =Frcos@-mg=0 — Fp=

The force moving the lamp in a circle is the horizontal portion of the tension. Write Newton’s second

law for that radial motion.
")
ZFR =Frsin @ =mag =m—
r

Substitute the expression for the tension from the first equation into the second equation, and solve for

the speed.
2
me sinHzmgtanHzmv— -
cos ¢ r

v=,/rgtan @ = \/(215 m)(9.80 n1/s2)tan16.5° =(25.0 m/s

84. The speed of rotation of the Sun about the galactic center, under the assumptions made, is given by

M e
v= Grgﬂ, SO M gyjaxy = rs‘m%b“. Substitute in the relationship that v =277, it /T-
Sun orbit
47 (Fsun orbit)” 47%[(30,000)(9.5x10'5 m)P
Mgalaxy = GT2 =

2
7
(6.67x107" I\I-rnz/kgz)[(200><1o6 yr)[WIOSﬂ

Lyr
=3.452x10* kg = [3x10*! kg
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The number of solar masses is found by dividing the result by the solar mass.

M 452x10*" k
# stars = gy 3BDA0_KE _y 50601011 210" stars|

Mgy, 2.0x10% kg

-G Mgaim

ray = , where r is the distance of

85. (@) The gravitational force on the satellite is given by F,
p
the satellite from the center of the Earth. Since the satellite is moving in circular motion, then the

2

. . % o .
net force on the satellite can be written as F,,, = m—. By substituting v =2zr/T for a circular
r

net

ar’mr

orbit, we have £ =———. Then, since gravity is the only force on the satellite, the two
T

expressions for force can be equated and solved for the orbit radius.
Mgymm 4 mr

G
2 T

1/3 1/3
L [GMEthZ ] _ {(6.67 %107 N-m? /kg?)(6.0x10% kg)(6600 5)>
- 2 - 2

4 4r

=7.615x10° m =|7.6x10°® m

(b) From this value the gravitational force on the satellite can be calculated.

M ) 24
Fyy = G0 — (6,67x107"! N-m? /kg?) (8:0X10 kg)g550(2) ke)
r (7.615x10° m)

o]

(¢) The altitude of the satellite above the Earth’s surface is given by the following:

F—Rpyq =7.615%10° m—6.38x10° m ={1.2x10° m

86. The speed of an orbiting object is given in Example 5-12 as v =~/ GM /r, where r is the radius of the
orbit, and M is the mass around which the object is orbiting. Solve the equation for M.

2 17 5 2
v 5.7x10 7.8x10° m/
v=GM/r — M:%:( m)( 7 _[5.2x10 ke

(6.67x107" N-m? /kg?)

=3.796x10* N

The number of solar masses is found by dividing the result by the solar mass.
Mgalaxy _ 5.2)(1039 kg _
Mg,  2x10% kg

# solar masses = 2.6x10° solar masses|

87. Find the “new” Earth radius by setting the acceleration due to gravity at the Sun’s surface equal to the
acceleration due to gravity at the “new” Earth’s surface.
GM Earth _ GM Sun

&ZFarth = &Sun

new "Barth "Sun
new
Mg, g . |5.98x10%* kg G
Foart = i =(6.96x10° m) —=-1.21><10 m
po M\ Mgy, 1.99x10% ke

This is about 1/5 the actual Earth radius.
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88. Ifthe ring is to produce an apparent gravity equivalent to that of
Earth, then the normal force of the ring on objects must be given by

Fy =mg. The Sun will also exert a force on objects on the ring. F, vSlAmq
See the free-body diagram. Write Newton’s second law for the <1DC>Q'>
object, with the fact that the acceleration is centripetal. F, v
v?
D F=Fy =Fyy+Fy=m—
r
Lo . . M .
Substitute in the relationships v =27zr/T, Fy=mg, and Fg, =G S‘;nm , and solve for the period
r
of the rotation.
2 2 2
M 4 M 4
FSun+FN=mv— - G—S‘;“m-i-mg: ﬂ'Zmr - G Szun +g= 7z'2r
r r T r T
[ a4z | 477 (1.50x10'" m)

T= =
M 30
\/Gsz“+g (6.67x1071 N-m?/kg?) L2710k g g 12
r (1.50x10'" m)
=7.77x10° s =[8.99d

Note that the force of the Sun is only about 1/1600 the size of the normal force. The force of the Sun
could have been ignored in the calculation with no significant change in the result given above.

. . L /GM
89. The speed of an object orbiting a mass is given in Example 5-12 as v = , [—>u

r
Vpew = 1.5v and Vpew = 7 Sun. - 150v= Sun N 15\/ Sun _ \/ Sun
\I Thew V' Thew r Thew

1.52

Note that the answer doesn’t depend on either of the asteroid masses.

90. The goal is to form a quantity that has acceleration units, from the speed of the radius of an object in

circular motion. Speed has dimensions [?}, radius has dimensions [L], and acceleration has

. . L . . . .
dimensions [—2} To get time units squared in the denominator, the speed must be squared. But the
T

2

. . L .
dimensions of speed squared are {—2} This has one too many powers of length, so to reduce that,
T

divide by the radius.

12

v el [,
roo L] Lr?
Factors such as 2 or 7, if needed for the final formula, cannot be determined with dimensional
analysis.
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Solutions to Search and Learn Problems

1.  Ex.5-1: (i) The ball, (ii) tension in the string acting on the ball.
Ex. 5-2: (i) The Moon; (ii) gravitational force on the Moon from the Earth.
Ex. 5-3: (i) The ball; (ii) tension in the string acting on the ball.
Ex. 5-4: (i) The ball; (i1) at the top it is the sum of the tension and force of gravity;

at the bottom it is the difference between tension and gravity.
Ex. 5-5: (i) The tetherball; (i) the horizontal component of the tension.

Ex. 5-6: (i) The car; (ii) the force of static friction between the tires and the road.
Ex. 5-7: (i) The car; (i) the horizontal component of the normal force.
Ex. 5-8: (i) The race car; (ii) the radial component of the static friction.

Ex. 5-9: No centripetal acceleration
Ex. 5-10: (i) The spacecraft; (i) the force of gravity on the spacecraft from the Earth.
Ex. 5-11: No centripetal acceleration.

Ex. 5-12: (i) The satellite; (i1) the force of gravity on the satellite from the Earth
Ex. 5-13: (i) Mars; (ii) the force of gravity on Mars from the Sun.
Ex. 5-14: (i) Earth; (i1) the force of gravity on Earth from the Sun.

2. A free-body diagram for the ball is shown, similar to Fig. 5-7. The
tension in the suspending cord must not only hold the ball up, but also
provide the centripetal force needed to make the ball move in a circle.
Write Newton’s second law for the vertical direction, noting that the
ball is not accelerating vertically.

> F, =Frsin6-mg=0 — Fp=—=2
sin @

The force moving the ball in a circle is the horizontal component of the tension. Write Newton’s
second law for that radial motion.

)
ZFR = Fp cos 8 = may =m7

Substitute the expression for the tension from the first equation into the second equation, and solve for
the angle. Also substitute in the fact that for a rotating object, v = 277/T. Finally, we recognize that if
the string is of length L, then the radius of the circle is » = L cos 6.

FocosO=-""8 cos@= mv® _ 4’ mr _ 47°mL cos 8
T sin @ 7 72 T2
sin 6= 47 ’ s g=sin' 8L 2 sin-1 ©0:80 m/s?)(0.500'5)*
B 2 - 2, 2 =1J.
4L 47’L 47%(0.600 m)

. . mg  (0.150 kg)(9.80 ms?)
The tension is then given by Fr = = =142 N
& YT sin @ sin 5.94°
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2
3. From Example 5-7 in the textbook, the no-friction banking angle is given by 8 = tan™! Z—O, or
g

vg = Rgtan 8. The centripetal force in this case is provided by a component

of the normal force. Driving at a higher speed with the same radius requires ¥
more centripetal force than that provided by the normal force alone. The I_I
additional centripetal force is supplied by a force of static friction, downward
along the incline. See the free-body diagram for the car on the incline. The
center of the circle of the car’s motion is to the right of the car in the diagram.
Write Newton’s second law in both the x and y directions. The car will have
no acceleration in the y direction and centripetal acceleration in the x
direction. Assume that the car is on the verge of skidding, so that the static
frictional force has its maximum value of Fj;, = g Fy.

sz =Fycos@-mg—F;sinf@=0 — Fycos@—-uFysinf=mg —
Fy=—%
(cos 8- sin )
v? v?
ZFX =Fg =Fysin 0+ F; cosc9=m? — Fy sin @+ u Fy cos¢9=m7—>

_ mv? /R
N (sin @+ p, cos 0)

Equate the two expressions for the normal force, and solve for the speed, which is the maximum speed
that the car can have.
mv* IR mg

(sin @+ 4 cos 0) - (cos @— g sin 0)

sin @ (1+ 4,/ tan 6)
= R = UO
cos @ (1—u, tan 0)

(1+ Rg 1,/ v5)

Y 2
(1_:[131)0 /Rg)

max —

Driving at a slower speed with the same radius requires less centripetal
force than that provided by the normal force alone. The decrease in
centripetal force is supplied by a force of static friction, upward along the
incline. See the free-body diagram for the car on the incline. Write
Newton’s second law in both the x and y directions. The car will have no
acceleration in the y direction and centripetal acceleration in the x
direction. Assume that the car is on the verge of skidding, so that the static
frictional force is given by Fj;, = u Fy.

ZFy =Fycos@-mg+F;sind=0 —

. mg
F.cos@+urF,sinb=meg —» Fy =S
N AN & N (cos 6+ u sin 6)

2 2
ZFX =Fg =Fysin0-F; costm%%FN sin 8 — u Fy cosBzm%—)
mv* /R

(sin @ — 4 cos )
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Equate the two expressions for the normal force, and solve for the speed.

mv*/R _ mg
(sin @— 4, cos @)  (cos 8+ y sin )

sin @ (1— 4,/ tan 6) (- u,Rg/V3)
Vnin = ,|RE =Y >
cos 8 (1+ 4 tan 6) (14 1,5 /Rg)
(- u,Rg/ 0} f 1+ u,Rg/ v}
Thus |V, = Uy (A=#Re/v) f/%) and |V =y A+ uRe/vy) f/v()) .
(1+/USUO/Rg) (1—/151)0 /Rg)

4. An object at the Earth’s equator is rotating in a circle with a radius equal to the radius of the Earth and
a period equal to one day. Use that data to find the centripetal acceleration and then compare it with g.

( ijz 472 (6.38%10° m)

2 T 2 2

ag =2 = \TJ _ 4”_; ar __ (86,400 SZ —0.00344 ~ |
r r T g (9.80 m/s”) 1000

So, for example, if we were to calculate the normal force on an object at the Earth’s equator, we could
not say Z F = F\ —mg =0. Instead, we would have the following:
2 2

ZFzFN—mgz—mv— - Iy =mg—mv—
r r

2
% . .
If we then assumed that Fy = mg.¢ = mg—m—, then we see that the effective value of g is
r

2
v
Beff 875 g-0.003g =|0.997g|.

5. (a) The acceleration due to gravity at any location at or above the surface of a star is given by

Gar = GM g, /72, where r is the distance from the center of the star to the location in question.

star

M - 1.99x10* k
Eyar = G- = (6.67x10"" N-mz/kgz)Mz 4.38x107 m/s*
Rtoon (1.74x10° m)

(b) W =mgg, =(65kg)(4.38x10" m/s*)=|2.8x10° N
(¢) Use Eq. 2-11c, with an initial velocity of 0.

v? =0 +2a(x—x)) —

= 2a(x—xy) =/2(4.38x107 m/s?)(1.0 m) =|9.4x10°> /s

6. For a body on the equator, the net motion is circular. Consider the free-body
diagram as shown. Fy is the normal force, which is the apparent weight. The
net force must point to the center of the circle for the object to be moving in a

circular path at constant speed. Write Newton’s second law with the inward
direction as positive.
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2

ZFR = ngupiter _FN =m
Jupiter

2 2
_ (4 _ G M Jupiter D
Fy=m gJupiter_R =m P _R
Jupiter RJupiter Jupiter

Use the fact that for a rotating object, v =27zr/T.

2
M Jupiter 4n RJupiter
FN =m| G > - 5
Jupiter TJupiter

Thus the perceived acceleration of the object on the surface of Jupiter is

2
MJupiter _ 4r RJupiter _ (6 67)(10_1] N~m2 /kg2 (1.9X1027 kg) _ 47[2 (7.1><107 m)
2 .

2 7 2 2
R.lupiter TJupiter (7~1X10 m) |:(595 min)( 60 s ji|

1 min
_ 2 lg _ .
=22.94 m/s (9 20 S2J— 23¢g's

Thus you would not be crushed at all. You would certainly feel “heavy” and quite uncomfortable, but
not at all crushed.

7. (a) See the free-body diagram for the plumb bob. The attractive gravitational L
'\ F
force on the plumb bob is Fy; = Gmm—zM. Since the bob is not accelerating, Q\T F
D T

M
M
the net force in any direction will be zero. Write the net force for both
. . oy M g
vertical and horizontal directions. Use g = G;—a“h. mg
REanh
m
ZFvenical = FT CcOos H—mg = O — FT = g
cos 4

ZFhorizontal =Fy—Frsinf=0 — Fy=F;sin@=mgtand

2
mm _ m m R

G 2M=mgtan9 = O=tan"'G 1\/2[ —|tan~! M Eart}21
D gDy Mgain Dm

(b) We estimate the mass of Mt. Everest by taking its volume times its mass density. If we
approximate Mt. Everest as a cone with the same size diameter as height, then its volume is

V =Lzr*h =1 7(2000 m)* (4000 m) =1.7x10'" m’. The density is p =3x10’ kg/m®. Find the
mass by multiplying the volume times the density.
M = pV = (3x10° kg/m*)(1.7x10'° m?) =
(¢) With Dy =5000m, use the relationship derived in part (a).

M R2 13 _ 6 \2
6 =tan"! M—M‘gl =tan"! (5x10 k§2(6 38x10 m)2 =(8x107* degrees
Mg Dyt (5.97%x10°" kg)(5000 m)
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8. (a) The Moon is Full when the Sun and Moon are on opposite sides of the Earth. In this position, a
person on the Earth will only be able to see either the Sun or the Moon in the sky at any given
time. Therefore, as the Sun sets, the Moon rises and as the Moon sets, the Sun rises.

(b)  As the Moon orbits the Earth it moves toward the east 1/29.53 of a synodic orbit, or about 12°
every day. Therefore, if the Moon was just rising at 6 PM on the day of the Full Moon, it would
be about 12° below the horizon at 6 PM the next day, and therefore would not be visible.

(¢) The red dot represents the location of a person on the Earth who sees the Full Moon rise at 6 PM
on the day shown as figure (a). A day later (b) the Earth has completed one full rotation and for
the person at that location it is again 6 PM. When the next Full Moon arrives, 29.53 days have
elapsed. That means the red dot has revolved around the Earth about 29 and a half times.
Because of the half revolution, the dot is on the other side of the Earth. To the observer it is now
about 6 AM and the Full Moon is setting as the Sun rises. In part (d) the Earth will have
completed about 27 and a third revolutions, so the red dot should be about one-third of a counter-
clockwise rotation from 6 PM, or about 2 AM.

7

\ ,
_ :@ Earth (27.32 d)

7

(d) The Earth completes one full revolution, or 360°, around the Sun every year, or 365.25 days. The
angle of the Moon in Fig. 5-31e relative to the “horizontal” (the dashed line in part (a)) is equal
to the angle that the Earth moves between consecutive Full Moons:

0= 29.53 days
365.25 days

So in 29.53 days the Moon has orbited 360° + 29.11° = 389.11°. The angular speed of the Moon
is constant and can be written as the ratio of the orbital angle to orbital period for either sidereal
or synodic orbits. Setting the ratios equal, solve for the sidereal period.

j360° =29.11°

— esidereal — HSynoptic N
Tsidereal TSynoptic
esidereal 360°
Tidereat = Tsynoptic I =(29.53 days) 389.11° =(27.32 days
synoptic .
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WORK AND ENERGY

Responses to Questions

1. “Work” as used in everyday language generally means “energy expended,” which is similar to the way
“work” is defined in physics. However, in everyday language, “work” can involve mental or physical
energy expended and is not necessarily connected with displacement, as it is in physics. So a student
could say she “worked” hard carrying boxes up the stairs to her dorm room (similar in meaning to the
physics usage), or that she “worked” hard on a problem set (different in meaning from the physics
usage).

(]

No, not if the object is moving in a circle. Work is the product of force and the displacement in the
direction of the force. Therefore, a centripetal force, which is perpendicular to the direction of motion,
cannot do work on an object moving in a circle.

3. No work is done on the wall (since the wall does not undergo displacement), but internally your
muscles are converting chemical energy to other forms of energy, which makes you tired.

4. Yes. The normal force is the force perpendicular to the surface an object is resting on. If the object
moves with a component of its displacement perpendicular to this surface, the normal force will do
work. For instance, when you jump, the normal force does work on you in accelerating you vertically.
And it is the normal force of the elevator floor on you that accelerates you in an elevator.

(2]

(a) Ifthe force is the same, then F =k x; = k,x,, so x, = kyx;/k,. The work done on spring 1 will
be W, = %klxlz. The work done on spring 2 will be W, = %kzxg = %kz (k12x12 /k22) =W (ky/ky).
Since & > k,, work W, >W,, so more work is done on spring 2.

(b) If the displacement is the same, then ] =%k1x2 and W, =%k2x2 . Since k; > k,, work

W, > W,, and more work is done on spring 1.

6. The kinetic energy increases by a factor of 9, since the kinetic energy is proportional to the square of
the speed.

7. Friction is not conservative; it dissipates energy in the form of heat, sound, and light. Air resistance is
not conservative; it dissipates energy in the form of heat and the kinetic energy of fluids. “Human”
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forces, for example, the forces produced by your muscles, such as pushing a box across the floor, are
also not conservative. They dissipate energy in the form of heat and also through chemical processes.

8. The speed at point C will be less than twice the speed at point B. The force is constant and the
displacements are the same, so the same work is done on the block from A to B as from B to C. Since
there is no friction, the same work results in the same change in kinetic energy. But kinetic energy
depends on the square of the speed, so the speed at point C will be greater than the speed at point B by

a factor of ~/2 , not a factor of 2.

9. The two forces on the book are the applied force upward (nonconservative) and the downward force of
gravity (conservative). If air resistance is not negligible, it is nonconservative.

10. (a) The speed at the bottom of the hill does not depend on the angle of the hill if there is no friction.
If there is no friction, then gravity is the only force doing work on the sled, and the system is
conservative. All of the gravitational potential energy of the sled at the top of the hill will be
converted into kinetic energy. The speed at the bottom of the hill depends on only the initial

1mv® =mgh, and v=(2gh)"*.

(b) The speed at the bottom of the hill does depend on the angle of the hill if there is friction. If

friction is present, then the net force doing work on the sled is not conservative. Only part of the
gravitational potential energy of the sled at the top of the hill will be converted into kinetic
energy; the rest will be dissipated by the frictional force. The frictional force is proportional to

the normal force on the sled, which will depend on the angle 8 of the hill. KE; = %mv2

height £, not on the angle of the hill. KE; =

=mgh— fx =mgh— tmghcos 8/ sin @ = mgh(1— 1/ tan @), so v=[2gh(1 —,u/tan@)]l/z, which
does depend on the angle of the hill and will be smaller for smaller angles.

11. At the top of the pendulum’s swing, all of its energy is gravitational potential energy; at the bottom of
the swing, all of the energy is kinetic.

(a) If we can ignore friction, then energy is transformed back and forth between potential energy and
kinetic energy as the pendulum swings.

(b) If friction is present, then during each swing energy is lost to friction at the pivot point and also
to air resistance. During each swing, the kinetic energy and the potential energy decrease, and
the pendulum’s amplitude decreases. When a grandfather clock is “wound up,” the amount of
energy that will eventually be lost to friction and air resistance is stored as potential energy
(either elastic or gravitational, depending on the clock mechanism), and part of the workings of
the clock is to put that stored energy back into the pendulum at the same rate that friction is
dissipating the energy.

-
5

For each of the balloons, the initial energy (kinetic plus potential) equals the final energy (all kinetic).
Since the initial energy depends on only the speed and not on the direction of the initial velocity, and
all balloons have the same initial speed and height, the final speeds are all the same.

13.  The initial potential energy of the water is converted first into the kinetic energy of the water as it falls.
When the falling water hits the pool, it does work on the water already in the pool, creating splashes
and waves. Additionally, some energy is converted into heat and sound.

14.  Stepping on top of a log and jumping down the other side requires you to raise your center of mass
farther than just stepping over a log does. Raising your center of mass farther requires you to do more
work and thereby use more energy.
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15.

16.

17.

=
*

19.

20.

21.

(a) The golfer raises the club, giving the club potential energy. In swinging, the golfer does work on
the club. This work and the change in potential energy increase the kinetic energy of the club. At
the lowest point in the swing (when the club’s kinetic energy is a maximum), the club hits the
ball, converting some of the kinetic energy of the club into kinetic energy of the ball.

(b) The tennis player throws the ball upward, giving the ball some initial kinetic energy. As the ball
rises to its highest point, the kinetic energy is converted to potential energy. The player then does
work on the racket to increase the racket’s kinetic energy. When the racket collides with the ball,
the racket does work on the ball. The racket loses kinetic energy, and the ball gains kinetic
energy, accelerating the ball forward.

(c) The player pushes the ball upward, doing work on the ball, which gives the ball an initial kinetic
energy. As the ball rises, it slows down as its kinetic energy is converted to potential energy. At
the highest point the potential energy is a maximum and the kinetic energy is a minimum. As the
ball descends the kinetic energy increases.

The drawing shows water falling over a waterfall and then flowing back to the top of the waterfall. The
top of the waterfall is above the bottom, with greater gravitational potential energy. The optical illusion
of the diagram implies that water is flowing freely from the bottom of the waterfall back to the top.
Since water won’t move uphill unless work is done on it to increase its gravitational potential energy
(for example, work done by a pump), the water from the bottom of the waterfall would NOT be able to
make it back to the top.

The faster arrow has the same mass and twice the speed of the slower arrow, so the faster arrow will

have four times the kinetic energy (KE = %mv2 ) Therefore, four times as much work must be done

on the faster arrow to bring it to rest. If the force on the arrows is constant, the faster arrow will travel
four times the distance of the slower arrow into the hay.

When the ball is released, its potential energy will be converted into kinetic energy and then back into
potential energy as the ball swings. If the ball is not pushed, it will lose a little energy to friction and
air resistance. It will return almost to the initial position but will not hit the instructor. If the ball is
pushed, it will have an initial kinetic energy, and will, when it returns, still have some kinetic energy
when it reaches the initial position, so it will hit the instructor on the chin. (Ouch!)

When a child hops around on a pogo stick, gravitational potential energy (at the top of the hop) is
transformed into kinetic energy as the child moves downward, and then stored as spring potential
energy as the spring in the pogo stick compresses. As the spring begins to expand, the energy is
converted back to kinetic and gravitational potential energy, and the cycle repeats. Since energy is lost
due to friction, the child must add energy to the system by pushing down on the pogo stick while it is
on the ground to get more spring compression.

At the top of the hill, the skier has gravitational potential energy. If the friction between her skis and
the snow is negligible, the gravitational potential energy is changed into kinetic energy as she glides
down the hill, and she gains speed as she loses elevation. When she runs into the snowdrift, work is
done by the contact force between her and the snow. The energy changes from kinetic energy of the
skier to kinetic energy of the snow as it moves and to thermal energy from the friction between the
skier and the snow.

The work done on the suitcase depends on only (c) the height of the table and (d) the weight of the
suitcase.
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22.

23.

Power is the rate of doing work. Both (c) and (d) will affect the total amount of work needed, and
hence the power. The time the lifting takes, (b), will also affect the power. The length of the path (a)
will affect only the power if different paths take different times to traverse.

When you climb a mountain by going straight up, the force needed is large (and the distance traveled is
small), and the power needed (work per unit time) is also large. If you take a zigzag trail, you will use
a smaller force (over a longer distance, so that the work done is the same) and less power, since the
time to climb the mountain will be longer. A smaller force and smaller power output make the climb
seem easier.

Responses to MisConceptual Questions

1.

(b) A common misconception is that all forces do work. However, work requires that the object on
which the force is acting has a component of motion in the direction of the force.

(c) Work is done when the force acting on the object has a component in the direction of motion.
Gravity, which provides the centripetal force, is not zero but is always perpendicular to the
motion. A common error is the notion that an object moving in a circle has no work done on it.
This is true only if the object is moving at constant speed.

(c) The kinetic energy is proportional to the square of the speed. Therefore, doubling the speed
quadruples the kinetic energy.

(d) A common misconception is that the stopping distance is proportional to the speed. However, for
a constant stopping force, the stopping distance is proportional to the initial kinetic energy,
which is proportional to the square of the speed. Doubling the initial speed will quadruple the
initial kinetic energy and therefore quadruple the stopping distance.

(c) As the ball falls, gravitational potential energy is converted to kinetic energy. As the ball hits the
trampoline, kinetic energy is converted to elastic potential energy. This energy is then transferred
back to kinetic energy of the ball and finally gravitational potential energy. No energy is added
to the ball during the motion, so it can’t rise higher than it started. Some energy may be lost to
heat during the motion, so the ball may not rise as high as it initially started.

(e) The term “energy” is commonly misunderstood. In this problem energy refers to the sum of the
kinetic and potential energies. Initially the kinetic energy is a maximum. During the flight kinetic
energy is converted to potential energy, with the potential energy a maximum at the highest
point. As the ball falls back down the potential energy is converted back into kinetic energy.
Since no nonconservative forces act on the ball (there is no air resistance), the total energy
remains constant throughout the flight.

(b) Since the changes in speed are equal, many students think that the change in energy will also be
equal. However, the energy is proportional to the square of the speed. It takes four times as much
energy to accelerate the car from rest to 60 km/h as it takes to accelerate the car from rest to
30 km/h. Therefore, it takes three times the energy to accelerate the car from 30 km/h to 60 km/h
as it takes to accelerate it from rest to 30 km/h.

(d) Horsepower is not a unit of energy nor of force but a measure of the rate at which work is done.

() The two balls have the same initial kinetic energy and the same initial potential energy. When
they hit the ground they will have the same final potential energy, so their final kinetic energies,
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and therefore speeds, will be the same. Even though they have the same initial and final speeds,
it is a misconception to think they will spend the same time in the air. The ball thrown directly
upward travels to a higher point, as all of the kinetic energy can be converted into potential
energy, and therefore will spend a longer time in the air.

10. (e) A common misconception is that the steeper the slope, the faster the skier will be traveling at the
bottom. Without friction, all of the skier’s initial gravitational potential energy is converted into
kinetic energy. The skier starting from a higher initial position will have the greater speed at the
bottom. On the steeper slope, the skier accelerates faster but over a shorter time period. On the
flatter slope, the skier accelerates slower but over more time.

11. (¢) Friction is a nonconservative force, which removes energy from the system. The work done by
friction is related to the product of the force of friction and the distance traveled. For a given
coefficient of friction, the force of friction on the steeper slope is smaller than on the flatter
slope, as it has a smaller normal force. Also, on the steeper slope, the skier travels a shorter
distance.

12.  (¢) The kinetic energy depends on the speed and not the position of the block. Since the block
moves with constant speed, the kinetic energy remains constant. As the block moves up the
incline its elevation increases, so its potential energy also increases.

13. (a) The speed of the crate is constant, so the net (total) work done on the crate is zero. The normal
force is perpendicular to the direction of motion, so it does no work. Your applied force and a
component of gravity are in the direction of motion, so both do positive work. The force of
friction opposes the direction of motion and does negative work. For the total work to be zero,
the work done by friction must equal the sum of the work done by gravity and by you.

14. (a) The kinetic energy is proportional to the square of the ball’s speed, and the potential energy is
proportional to the height of the ball. As the ball rises, the speed and kinetic energy decrease
while the potential energy increases. As the ball falls, the speed and kinetic energy increase
while the potential energy decreases.

Solutions to Problems

1. The minimum force required to lift the firefighter is equal to his weight. The force and the
displacement are both upward, so the angle between them is 0°. Use Eq. 6—1.

Wit = Fupmpd €080 = mgd cos @ = (75.0 kg)(9.80 m/s*)(28.0 m)cos 0° = 2.06x10* J

2. The maximum amount of work would be the work done by gravity. Both the force and the
displacement are downward, so the angle between them is 0°. Use Eq. 6-1.

We =mgd cos 8 = (1.2 kg)(9.80 m/s>)(0.50 m) cos 0° =[5.9 |

This is a small amount of energy. If the person adds a larger force to the hammer during the fall, then
the hammer will have a larger amount of energy to give to the nail.

_ AX
3. Draw a free-body diagram for the crate as it is being pushed across the floor. F,
Since it is not accelerating vertically, Fy =mg. Since it is not accelerating Fﬁ :
horizontally, Fp = F; = 4y Fy = t4mg. The work done to move it across - -
the floor is the work done by the pushing force. The angle between the F, I lmg
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pushing force and the direction of motion is 0°.

Wosh = Fyusnd €08 0° = 11, mgd (1) = (0.50)(46.0 kg)(9.80 m/s>)(10.3 m) =[2300 J

1

(a) See the free-body diagram for the crate as it is being pulled. Since the
crate is not accelerating horizontally, Fp = Fy; =230 N. The work done F,

to move it across the floor is the work done by the pulling force. The
angle between the pulling force and the direction of motion is 0°. Use - I =
N

Eq. 6-1. F
Wiy = Fpd cos 0° = (230 N)(5.0 m)(1) =1150 J =[1200 J

(b)  See the free-body diagram for the crate as it is being lifted. Since the crate Ay F
is not accelerating vertically, the pulling force is the same magnitude as the }

weight. The angle between the pulling force and the direction of motion is 0°.

Wp = Fpd cos 0° = mgd = (1200 N)(5.0 m) = |6.0x10° J mg

Draw a free-body diagram of the car on the incline. The minimum work
will occur when the car is moved at a constant velocity. Write Newton’s
second law in the x direction, noting that the car is not accelerated. Only
the forces parallel to the plane do work.

> F,=Fp,—-mgsind=0 — F,=mgsin®

The work done by Fp in moving the car a distance d along the plane

(parallel to FP) is given by Eq. 6-1.
Wp = Fpd cos 0° = mgd sin @ = (950 kg)(9.80 m/s?)(710 m)sin9.0° = [1.0x10° J

The distance over which the force acts is the area to be mowed divided by the width of the mower. The
force is parallel to the displacement, so the angle between them is 0°. Use Eq. 6—1.

2
W= Fdcos®=F 2 coso=015N)22"" _60007
w 0.50 m
rd
The minimum work required to shelve a book is equal to the n 3" shelf
weight of the book times the vertical distance the book is A
moved. See the diagram. Each book that is placed on the ond (half
lowest shelf has its center of mass moved upward by M
15.0 cm+11.0 cm =26.0 cm. So the work done to move A 64.0 cm
28 books to the lowest shelfis | =28mg(0.260 m). Each 76.0 om 1% shelf
book that is placed on the second shelf has its center of mass Y—— v floor

moved upward by 15.0cm+38.0cm +11.0 cm =64.0 cm,

so the work done to move 28 books to the second shelfis #, = 28mg(0.640 m). Similarly,

W; =28mg(1.020 m), W, =28mg(1.400 m), and W5 =28mg(1.780 m). The total work done is the
sum of the five work expressions.

W =28mg(0.260 m+0.640 m+1.020 m+1.400 m+1.780 m)
=28(1.40 kg)(9.80 m/s>)(5.100 m) = 1959 J =[1960 J
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8. Consider the diagram shown. If we assume that the man pushes
straight down on the end of the lever, then the work done by
the man (the “input” work) is given by W; = Fji;. The object
moves a shorter distance, as seen from the diagram, so
Wqo = Fohg. Equate the two amounts of work.

Fy R
Wo=MW — Foho=Fh <=1
B ho
- . h / Fy 0
But by similar triangles, we see that —- = —L 5o [ =—L|
o ‘o Bl

9. Since the acceleration of the box is constant, use Eq. 2—11b to find the distance moved. Assume that
the box starts from rest.

d=x—xy=vpt+1ar® =0+12.0m/s*)(7.05)* =49 m

Then the work done in moving the crate is found using Eq. 6—1.

W = Fd cos0° = mad = (4.0 kg)(2.0 /s’ )(49 m)=1{390J

10.  The piano is moving with a constant velocity down the plane. F is the force
of the man pushing on the piano.

(a)  Write Newton’s second law on each direction for the piano, with an
acceleration of 0.

ZFy=FN—mgcoso9=O — Fy =mgcosf
ZFx:mgsine—Fp =0 —
Fp =mgsin@ =mgsin@

= (380 kg)(9.80 m/s?)(sin 25°) =1574 N =[1600 N

()  The work done by the man is the work done by Fp. The angle between Fp and the direction of
motion is 180°. Use Eq. 6-1.

Wy = Fpd cos180° = —(1574 N)(2.9 m) = —4565 J =[-4600 J

(c) The angle between the force of gravity and the direction of motion is 65°. Calculate the work
done by gravity.

Wg = Fgd cos 63° = mgd cos 63° = (380 kg)(9.80 m/sz)(2.9 m)cos 65°

=4564 N =|4600J

(d) Since the piano is not accelerating, the net force on the piano is 0, so the net work done on the
piano is also 0. This can also be seen by adding the two work amounts calculated.

W, = Wp +Wg =—4600 T +4600 ] = [0]

11.  If the person pulls 2 m of rope through his hands, the rope holding the piano will get shorter by 2 m.
But that means the rope on the right side of the pulley will get shorter by 1 m, and the rope on the left

side will also get shorter by 1 m. Thus for each meter the load is raised, of rope must be pulled up.
In terms of energy (assuming that no work is lost to friction), the work done by the man pulling on the

rope must be equal to the work done on the piano. If the piano has weight mg, and it moves upward a
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12.

13.

14.

15.

distance d, then the work done on the piano is mgd. The person pulls the rope a distance 2d, and
therefore must exert a force of 2mg to do the same amount of work.

Wdonc by = Wdone on Fpull (Zd) = mgd - Fpull = %mg

man piano

Consider a free-body diagram for the grocery cart being pushed up
the ramp. If the cart is not accelerating, then the net force is 0 in all
directions. This can be used to find the size of the pushing force. The
angles are ¢ =17°and 6 =12°. The displacement is in the x
direction. The work done by the normal force is 0 since the normal
force is perpendicular to the displacement. The angle between the X
force of gravity and the displacement is 90°+ 8 =102°. The angle l s
between the normal force and the displacement is 90°. The angle mg
between the pushing force and the displacement is ¢+ 6 =29°.

mg sin 6
cos (¢p+6)

W =mgd cos 112° = (16 kg)(9.80 m/s’ )(7.5 m) cos 102°=-244.5] = |-240 ]
W ormal = Fnd €os 90° = @

D> F,=Fpcos (¢p+6)-mgsin@=0 — Fp=

mg sin 12°

Wp = Fpd cos 29° = ( jd cos 29° = mgd sin 12°

cos 29

= (16 kg)(9.80 m/s>)(7.5 m) sin 12° = 244.5 ] =

The work done will be the area under the F, vs.x graph.

(a) From x=0.0 to x=10.0 m, the shape under the graph is trapezoidal. The area is

W = (400 N)%(IO m+4 m) =|2800 J
(b) From x=10.0m to x=15.0 m, the force is in the opposite direction from the direction of
motion, so the work will be negative. Again, since the shape is trapezoidal, we find

W = (=200 N)$ (5 m+2 m)=-700J

Thus the total work from x=0.0 to x=15.0m is 2800 J—700 J ={21001J|.

(a) The gases exert a force on the jet in the same direction as the displacement of the jet. From the
graph we see the displacement of the jet during launch is 85 m. Use Eq. 61 to find the work.

Wias = Fyasd c050° = (130x10° N)(85 m) = [1.1x107 J

(b) The work done by catapult is the area underneath the graph in Fig. 6-39b. That area is a
trapezoid.

W eatapuit =5 (1100x10° N+65x10° N)(85 m) = |5.0x107 J

Find the velocity from the kinetic energy, using Eq. 6-3.

KE _ 26211072 ))
wetm? > o= 20 - [s84m

C531x10°2°
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16. (a) Since KE = %mv2, v =+/2kE/m and v e ~/KE. Thus if the kinetic energy is tripled, the speed

will be multiplied by a factor of [/3].

(b) Since KE = %mvz, KE o< 0°. Thus if the speed is halved, the kinetic energy will be multiplied by

a factor of .

17.  The work done on the electron is equal to the change in its kinetic energy, Eq. 6—4.

W= Ake =Ldmv; —Lmif =0-1911x107" kg)(1.10x10° m/s)* =|-5.51x107" ]

Note that the work is negative since the electron is slowing down.

18. The work done on the car is equal to the change in its kinetic energy, Eq. 6-3.
2
1 m/s
W = AKE = Lmvs —Lmof =0-1(925 kg)| (95 km/h)| ——— || =|-32x10°J
2 22 U 2( g) ( ) 3.6 km/h

Note that the work is negative since the car is slowing down.

19. The kinetic energies of both bullets are the same. Bullet 1 is the heavier bullet.

1

2_1, ,2 2 _ 2 2 _ 5,2 _
SMUy =5 my; = myUy =2myyp - vy =200 o 1)2—1)1\/5

m = 2m2

The lighter bullet has the higher speed, by a factor of the square root of 2. Both bullets can do the|
same amount of work |

20. The force of the ball on the glove will be the opposite of the force of the glove on the ball, by
Newton’s third law. The objects have the same displacement, so the work done on the glove is
opposite the work done on the ball. The work done on the ball is equal to the change in the kinetic
energy of the ball, Eq. 64.

Wonbatl = (KEg —KE| )y = 2m3 —Lmuf =0-1(0145 kg)(32 m/s)* =—74.24 ]

So W

on glove

=7424]. But I,

on glove

=F

on gloved €08 0°, because the force on the glove is in the same

direction as the motion of the glove.
74.241] . N
7424) = Fyp giove (025 m) = F o0 = Bm 3.0x10% N|, in the direction of the
25m

original velocity of the ball.

21. The force exerted by the bow on the arrow is in the same direction as the displacement of the arrow.
Thus W = Fd cos 0° = Fd = (105 N)(0.75 m) = 78.75 J. But that work changes the kinetic energy of the

arrow, by the work-energy theorem. Thus

2Fd 207875 1)
Fd =W =KE, —KE, =+mv? -1m? — v, =/—+0v> = [~ 10=[43m/s
2 172 22 Ui 2 m 1 0085kg

22. The work needed to stop the car is equal to the change in d = stopping distance
the car’s kinetic energy. That work comes from the force D >
of friction on the car. Assume the maximum possible
frictional force, which results in the minimum braking
distance. Thus F};, = g Fy. The normal force is equal to
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=]
bnad

24.

25.

the car’s weight if it is on a level surface, so Fy. = y,mg. In the diagram, the car is traveling to the
right.
v

2gug

W=AKE — Fydcos180°=1mv] —imy} — -umgd=-1mp} — d=

Since d o< 1)12, if v increases by 50%, or is multiplied by 1.5, then d will be multiplied by a factor of

(15), or .

The work needed to stop the car is equal to the change in
the car’s kinetic energy. That work comes from the force
of friction on the car, which is assumed to be kinetic
(sliding) since the driver locked the brakes. Thus

Fy = i Fy. Since the car is on a level surface, the

_d = stopping distance

normal force is equal to the car’s weight, so Fy. = 14 mg
if it is on a level surface. See the diagram for the car. The car is traveling to the right.

W=AKE — Ffrd005180°=%mv§—%mvl2 - —,ukmgd=0—%mvl2 -

v =24t gd =+/2(0.30)(9.80 m/s>)(78 m) =

The mass does not affect the problem, since both the change in kinetic energy and the work done by
friction are proportional to the mass. The mass cancels out of the equation.

The first car mentioned will be called car 1. So we have these statements:

1 1 2 _1(1 2 .
KEI _EKEZ 4 Emlul —E(Emzvz) )

- 1 2_1 2
KEl,fast = KE2,fast - Eml(l)l +80) —77’}’!2(1}2 +80)
Now use the mass information, that m; =2m,.

Lomyp} =4 (L3 ) Lomy (0 +8.0)* = Lmy(v,+8.0)° -

20, =0,; 21 +8.0)2 = (1, +8.0)> — 2(v,+8.0)> =(2v, +8.0)> —

V2(10,+80)= 20y +80) — =2 =565Tmls; v, =20 =11.314m/s

NG

[ =5.7m/s; v, =11.3ms|

(a) From the free-body diagram for the load being lifted, write Newton’s second law for
the vertical direction, with up being positive. | O

ZF=FT—mg=ma=0.l60 mg —

Fr =1.160 mg =1160(265 kg)(9.80 m/s*) =

(b) The net work done on the load is found from the net force.
Weet = Fperd €05 0° = (0.160 mg)d = 0.160(265 kg)(9.80 m/s%)(18.0 m) = [7480 J

(c) The work done by the cable on the load is as follows:

W,pte = Frd cos0° = (1160 mg)d =1160(265 kg)(9.80 m/s>)(18.0 m) = |5.42x10* J

Ci
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(d) The work done by gravity on the load is as follows:

W, = mgd cos180° = —mgd = —(265 kg)(9.80 m/s*)(18.0 m) = |-4.67x10* J

(e) Use the work-energy theorem to find the final speed, with an initial speed of 0.
/4

net

2 : }
v, = et +0} :\/—2(7 4810 J)+0 =|7.51m/s
m 265 kg

=KE, —KE =1mvj —Imi} —

26. Subtract the initial gravitational PE from the final gravitational PE.

APEg = mgy, —mgy, = mg(y, — ;) = (54 kg)(9.80 m/s>)(4.0 m) =[2100 J

27. The potential energy of the spring is given by PE, = %kxz, where x is the distance of stretching or

compressing of the spring from its natural length.

2 .
x:\/ PE :\/2(450J) Mol

k 88.0 N/m

28.  The initial stretching is from the equilibrium position, x = 0. Use that to find the spring constant.

PE; 1 - 607=1k20em)’ — k=30Jem’

initial =

PEfing = 2k =2(3)(6)* =541; PEgy, — Py = |48

29. (a) The change in gravitational potential energy is given by the following:

APEG = mg(y, — y;) = (66.5 kg)(9.80 m/s?)(2660 m—1270 m) ={9.06x10° J

(b) The minimum work required by the hiker would equal the change in potential energy, which is

|

(o) . The actual work may be more than this, because the hiker almost certainly had to

overcome some dissipative forces such as air friction. Also, while stepping up and down, the
hiker does not get the full amount of work back from each up-down event. For example, there
will be friction in the joints and muscles.

30. (a) Relative to the ground, the potential energy is given by the following:

PEG = MZ(Vbook — Veround) = (1.65 kg)(9.80 m/s*)(2.20 m) =
(b) Relative to the top of the person’s head, the potential energy is given by the following:

PEG = MZ(Vbook — Vhead) = (1.65 kg)(9.80 m/s?)(2.20 m —1.60 m) =
(c) The work done by the person in lifting the book from the ground to the final height is the same
as the answer to part (a), |35.6 J|. In part (a), the potential energy is calculated relative to the

starting location of the application of the force on the book. The work done by the person is not
related to the answer to part (), because the potential energy is not calculated relative to the
starting location of the application of the force on the book.
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31. The forces on the skier are gravity and the normal force. The normal force
is perpendicular to the direction of motion, so she does no work. Thus the
skier’s mechanical energy is conserved. Subscript 1 represents the skier at the
top of the hill, and subscript 2 represents the skier at the bottom of the hill.
The ground is the zero location for gravitational potential energy (y =0).

We have v, =0, y; =285m, and y, =0 (bottom of the hill). Solve for v,,
the speed at the bottom, using Eq. 6-13.

%mv]2+mgyl=%m1)22+mgyz - 0+mgy1=%m1)22+0 -
vy =229, =1/2(9.80 m/s>)(105 m) =

32. The only forces acting on Jane are gravity and the vine tension. The tension N
pulls in a centripetal direction, so can do no work—the tension force is
perpendicular at all times to her motion. So Jane’s mechanical energy is
conserved. Subscript 1 represents Jane at the point where she grabs the vine,
and subscript 2 represents Jane at the highest point of her swing. The ground
is the zero location for gravitational potential energy (y =0). We have v, , ¥,

v =50m/s, y; =0, and v, =0 (top of swing). Solve for y,, the height of
her swing. Use Eq. 6-13. RS

1 2 1 2 1 2 _
MUy +mgyy =5mvy +mgy, — Fmyp +0=0+mgy, —

2 2
yz_v_lzmzl.zmmz

T 2g 2(9.80 m/s?)

@, the length of the vine does not enter into the calculation, unless the vine is less than 0.65 m long.
If that were the case, she could not rise 1.3 m high.

33. The forces on the sled are gravity and the normal force. The normal force is
perpendicular to the direction of motion, so that force does no work. Thus the
sled’s mechanical energy is conserved. Subscript 1 represents the sled at the
bottom of the hill, and subscript 2 represents the sled at the top of the hill. The
ground is the zero location for gravitational potential energy (y =0). We have

v =0, v, =0, and y, =112 m. Solve for v, the speed at the bottom, using
Eq. 6-13. Note that the angle is not used.

%mvlz +mgy, =%ml)22 +mgy, — %mvlz +0=0+mgy, —
v =220, =200.80 m/s?)(1.22 m) =

34.  We assume that all the forces on the jumper are conservative, so that the mechanical energy of the
jumper is conserved. Subscript 1 represents the jumper at the bottom of the jump, and subscript 2
represents the jumper at the top of the jump. Call the ground the zero location for gravitational
potential energy (y =0). We have y; =0, v, =0.70 /s, and y, =2.10 m. Solve for v;, the speed at

the bottom. Use Eq. 6—13.

1 2 _1 2 1 2 1 2
MUy +mgyy =5mvy +mgy, — Fmyy +0=mv; +mgy, —

v =12 +2gy, =1/(0.50 m/s)? +2(9.80 m/s>)(2.10 m) = 6.435 ms = [6.4 s
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35. The mass is allowed to fall rather than “easing” it down with the hand (which introduces another force
into the problem). Under these conditions, mechanical energy is conserved. The unstretched spring,
corresponding to the initial position, is the location of zero elastic potential energy. There is no kinetic
energy to consider since the mass is at rest at both positions. The change in height is the same as the
amount of stretch of the spring. Mechanical energy is conserved.

E,=E, — PE,  +PE, =PE,  +PE, - mgy, +0=mgy, +%k(yz—yl)2 -
gravity elastic gravity elastic

O=w)° __2mg _2(25kg)(9.80 m/s®)

=0.59m
0 -y, LTk 83 N/m

mg(yy = y;) =%k(y2 _)’1)2 -

The final position is 59 cm lower than the initial position. If we assume that the ruler is oriented so that
higher numbers are nearer the floor than the lower numbers, then we add 59 cm to the original 15 cm

and get .

36. (a) See the diagram for the thrown ball. The speed at the top of the path
will be the horizontal component of the original velocity.

Vyop = U cos 6 = (8.8 m/s)cos36° =

(b) Since there are no dissipative forces in the problem, the mechanical energy of the ball is
conserved. Subscript 1 represents the ball at the release point, and subscript 2 represents the ball
at the top of the path. The ball’s release point is the zero location for gravitational potential
energy (¥ =0). We have v, =8.8 m/s, y; =0, and v, =, cosé. Solve for y,.

E=E - %mvl2+mgyl=%m1)22+mgyz - %mvl2+0=%mvlzcoszt9+mgyz -

201 2 201 nn2ago
:1)1(1 cos 0):(8.8m/s) (1—-cos 36):1.365mz

y
? 2g 2(9.80 m/s?)

This is the height above its throwing level.

37. Assume that all of the kinetic energy of the car becomes potential energy of the compressed spring.

, (1200kg){(85km/h)[ I m/s

2
36 krmhﬂ
Imf =Lk - k=220 =(1.4x10° N/m

Xfinal (22 m)2

3]
*x

(a) Since there are no dissipative forces present, the mechanical energy of the person—trampoline—
Earth combination will be conserved. We take the level of the unstretched trampoline as the zero
level for both elastic and gravitational potential energy. Call up the positive direction. Subscript
1 represents the jumper at the start of the jump, and subscript 2 represents the jumper upon
arriving at the trampoline. There is no elastic potential energy involved in this part of the
problem. We have v, =4.5m/s, y; =2.0m, and y, =0. Solve for v,, the jumper’s speed when

he arrives at the trampoline.

— 1 2 _1 2 1 2 _1 2
Ei=E, — Smy+mgy=5mv, +mgy, — Fmy +mgy =5mgv; +0 —

vy = V7 +2gy = /(4.5 m/s)’ +2(9.80 m/s?)(2.0 m) =+ 7.710 s =[7.7 mis|
The speed is the absolute value of v,.

(b) Now let subscript 3 represent the jumper at the maximum stretch of the trampoline and x
represent the amount of stretch of the trampoline. We have v, =-7.710 m/s, y, =0, x, =0,
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v; =0, and x3 = y;. There is no elastic energy at position 2, but there is elastic energy at
position 3. Also, the gravitational potential energy at position 3 is negative, so y; <0. A
quadratic relationship results from the conservation of energy condition.

— 1 2 17,2 _ 1 2 17..2
Ey=E; — Smv) +mgy, +5k =5muy +mgyy +5kxy —
Lmv? +0+0=0+ +—1 R e ~Lm?=0 -
L) =0+mgy; +ky; 2ky3 mgys —>mv; =

1,2
—mg+\/m (_5””)2) _—mgi\1m2g2+km1)22

0 ;

—(62 kg)(9.80 m/s*)+ \/(62 kg)?(9.80 m/s?)? + (5.8x10* N/m)(62 kg)(7.71 m/s)*
(5.8x10* N/m)

=-0.263m, 0.242 m

Since y; <0, y3 =—0.26 m. So he depresses the trampoline .

The second term under the quadratic is almost 600 times larger than the first term, indicating
that the problem could have been approximated by not including gravitational potential

energy for the final position. If that approximation were made, the result would have been found
by taking the negative result from the following solution:

39. Use conservation of energy. The level of the ball on the uncompressed O
spring is taken as the zero location for both gravitational potential energy
(y =0) and elastic potential energy (x =0). It is diagram 2 in the figure.
Take “up” to be positive for both x and y.
(a) Subscript 1 represents the ball at the launch point, and subscript 2
represents the ball at the location where it just leaves the spring, at the
uncompressed length. We have v, =0, x =y, =-0.160 m, and

Xy =y, =0. Solve for v,.

2
El :E2 - Emvl +mgy1+ ]OCI ——ml)2 +mgy2+ k.xZ -

{kx +2
0+mgy1+ ]OC] =—ml)2 +O+O — 1)2— ]—’ngyl
m

2 2y
) = \/(875 N/m)(0.160 m) +(2(§(;§§1 k;g)(9.80 ws’)(0160m) _ -
380 kg

(b) Subscript 3 represents the ball at its highest point. We have v, =0, x =y, =-0.160m, 15 =0,

and x3 =0. Solve for y;.
— 1,02 17,2 _1,.2 17,2
El = E3 e Em'l)l +mgy1 +5kxl —5m1)3 +mgy3 +—kx3 —

2mg 2(0380 kg)(9 S0ms2)

0+mgyl+%kx12=0+mgyz+0 = Y=y =

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Work and Energy 6-15

=
o

Since there are no dissipative forces present, the mechanical energy of the roller coaster will be
conserved. Subscript 1 represents the coaster at point 1, etc. The height of point 2 is the zero location
for gravitational potential energy. We have v =0 and y; =32 m.

Point 2: —mvl +mgy, = —mv2 +mgyy; ¥, =0 — mgy = m1)2 —

v, =22 =+/2(980 m/s)(32 m) =25 ms]

Point 3: —mvl +mgy = —mv3 +mgy;; y3;=26m — mgy = —m1)3 +mgy; —

vy = \2¢01 —73) = /20980 m/s>)(6 m) =[ 11 m/s]

Point 4: —m1)12+mgyl —mvf+mgy4; y4=l4m - mgylz%mvf+mgy4 —
Vs = 2201 — ) =/2(980 m/s>)(18 m) =[19 ms]

41. The only forces acting on the bungee jumper are gravity and the elastic force from the bungee cord, so
the jumper’s mechanical energy is conserved. Subscript 1 represents the jumper at the bridge, and
subscript 2 represents the jumper at the bottom of the jump. Let the lowest point of the jumper’s
motion be the zero location for gravitational potential energy (y =0). The zero location for elastic

potential energy is the point at which the bungee cord begins to stretch. See the diagram in the
textbook. We have v, =v, =0, y; =d, y, =0, and the amount of stretch of the cord x, =d —15.

Solve for d. Note that we ignore Chris’s height, since his center of mass falls farther than d.
E=E, - %mvlz +mgy, ++ /cxl ——m1)2 +mgy, ++ kx2 — mgd =%k(a’—15)2 -

d2—(30+2%]d+225:0 - d*-567d+225=0 —

56.7++/56.7% —4(225
= ( ):52.4m,4.29m N d=

2

The larger answer must be taken because d >15 m.

42. The spring must be compressed a distance such that the work done by the spring is equal to the change
in kinetic energy of the car. The distance of compression can then be used to find the spring constant.
Note that the work done by the spring will be negative, since the force exerted by the spring is in the
opposite direction to the displacement of the spring. The maximum acceleration occurs at the point of
maximum force by the spring, or at maximum compression.

= - 172 _ 1 2 /m
VVspring =AKE= — kxmax - _E my, Xmax = Yo k

Fmax =MAyax = _kxmax — m(-4.0g)= _kvo\/7 -

2
k= m(ﬂj — (1200 kg)(16)— -80S Dl —=2648 N/m = 2600 N/m

%)
3.6 km/h

43. The maximum acceleration of 5.0 g occurs where the force is at a maximum. The
maximum force occurs at the bottom of the motion, where the spring is at its

maximum compression. Write Newton’s second law for the elevator at the bottom Mgl =
of the motion, with up as the positive direction. spring
Fret = Fapring —Mg =Ma =50Mg  —  Fp, =6.0Mg
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Now consider the diagram for the elevator at various
points in its motion. If there are no nonconservative I I Start of fall
forces, then mechanical energy is conserved. Sub-

script 1 represents the elevator at the start of its fall, h
and subscript 2 represents the elevator at the bottom
of'its fall. The bottom of the fall is the zero location for
gravitational potential energy (y =0). There is also a

Contact with spring,
Siniaiieiaie 0 for elastic PE

D Bottom of fall, (0 for
" E= 7 gravitational PE

|

"

point at the top of the spring that is the zero location -
for elastic potential energy (x =0). We have v, =0,

RN

yy=x+h, =0, v,=0, y, =0, and x, =x. Apply
conservation of energy.
E=E, - 1Mo +Mgy +Lif =1Mvi+Mgy, +1ig —
0+Mg(x+h)+0=0+0+1k® — Mg(x+h) =Lk’

6Mg

2
Fipring =0.0Mg =hkx  — = = Mg(TJrh):lk(%J o | =12Me

h

2

44. At the release point the mass has both kinetic energy and elastic potential energy. The total energy is

%mvg +%kx§ . If friction is to be ignored, then that total energy is constant.

(a) The mass has its maximum speed at a displacement of 0, so it has only kinetic energy at that
point.

_ 2+k 2
max 7 Vmax = [4/%0 ;xo

1 2,172 _ 1 2
szO +2]OC0 —zmv

(b) The mass has a speed of 0 at its maximum stretch from equilibrium, so it has only potential
energy at that point.

1,2 172 172 | [,2.m 2
Emvo +Ekx0 —Elocmax - Xmax — X0 +;‘UO

45. (a) The work done against gravity is the change in potential energy.

Wogainst = APE = mg (v, — y1) = (75.0 kg)(9.80 m/s*)(125 m) =|9.19x10* J

gravity

(b) The work done by the force on the pedals in one revolution is equal to the average tangential
force times the circumference of the circular path of the pedals. That work is also equal to the
potential energy change of the bicycle during that revolution, assuming that the speed of the
bicycle is constant. Note that a vertical rise on the incline is related to the distance along the
incline by rise = distance X (sin 8).

Wpedal = Fgn27r = APEgrav =mg(AV)) roy =Mgd) ey SIN O —
force 1rev

F,

tan

mgd; ., sin @  (75.0 kg)(9.80 m/sz)(S.IO m)sin 7.50°
— = =|433 N
2rr 27(0.180 m)
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46. Use conservation of energy, where all of the kinetic energy is transformed to thermal energy.

2
1 m/s
Einitial = Efinal — %mvz = Epermal = 3 (2)(66,000 kg){(85 km/h){%—] " H =[3.7x107 1

47.  Apply the conservation of energy to the child, considering work done by gravity and thermal energy.
Subscript 1 represents the child at the top of the slide, and subscript 2 represents the child at the bottom
of the slide. The ground is the zero location for potential energy (y =0). We have v, =0, »; =22m,

v, =1.25m/s, and y, =0. Solve for the work changed into thermal energy.

48. (a)
(b)
49. (a)
(b)

1
2

Etpermal = Mgy —+mv3 = (160 kg)(9.80 m/s*)(2.20 m) -1 (16.0 kg)(1.25 m/s)* =[332)

See the free-body diagram for the ski. Write Newton’s second law [/
for forces perpendicular to the direction of motion, noting that Fﬁ -
there is no acceleration perpendicular to the plane. ™~ w4 Fx

ZFL:FN—mgcosﬁ — Fy=mgcosd —

_ L2 _ 2
Ey=E, — Smyy +mgy =5mvy +mgyy + Egerng —

mg 6

Fy = iy F\ = tymg cos €

Now use conservation of energy, including the nonconservative friction force. Subscript 1
represents the ski at the top of the slope, and subscript 2 represents the ski at the bottom of the
slope. The location of the ski at the bottom of the incline is the zero location for gravitational
potential energy (y =0). We have v, =0, y, =/¢siné, and y, =0. Write the conservation of

energy condition, and solve for the final speed. Note that Fy, = g Fy = iy mg cos 6.

Lmvf +mgy, —Fl =1mvs +mgy, — mglsin6—mglcos®=Lmv; —

Dy = \/Zgﬁ( sin@ — y cos @) = \/2(9.80 /s’ )(85 m)(sin 28°—0.090 cos 28°)

=25.49 m/s ~ m

Now, on the level ground, Fy; = g4 mg, and there is no change in potential energy. We again use
conservation of energy, including the nonconservative friction force, to relate position 2 with
position 3. Subscript 3 represents the ski at the end of the travel on the level, having traveled a
distance /5 on the level. We have v, =2549m/s, y, =0, 13 =0, and y; =0.

1
2

2 2
0= vy (25.49 m/s) :368.3m:

" 2guh 2(9.80 m/s?)(0.090)

1

2
P mvz = ﬂkmgé‘g -

2 _1 2
mvz +mgy2 _Ffr£3 —5"’11)3 +mgy3 4

Apply energy conservation with no nonconservative work. Subscript 1 represents the ball as it is
dropped, and subscript 2 the ball as it reaches the ground. The ground is the zero location for
gravitational potential energy. We have v; =0, y; =12.0 m, and y, =0. Solve for v,.

E=E - %mvlz—kmgyl:%mvzz—kmgyz - mgylzémvzz -

vy =22 =+/29.80 m/s?)(12.0 m) =

Apply energy conservation, but with nonconservative work due to friction included. The energy
dissipated will be given by Fy.d. The distance d over which the frictional force acts will be the
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12.0-m distance of fall. With the same parameters as above, and v, =8.00 m/s, solve for the

force of friction.
Lmv? + —Fpd =L1mv? + —Fd=im? -
2m1)1 mgy fr _2m1)2 mgy, — mgy fr _2m02

_ (8.00 m/s)®

2(12.0 m)

2
DY) 2
F.=m| g———={=(0.145kg)| 9.80 m/s
fr {gd 2d} ( g)(

] =(1.03 N, upward

50. Since there is a nonconservative force, apply energy conservation with the dissipative friction term.
Subscript 1 represents the roller coaster at point 1, and subscript 2 represents the roller coaster at point 2.
Point 2 is taken as the zero location for gravitational potential energy. We have
v =130nvs, y; =32m, and y, =0. Solve for v,. Note that the dissipated energy is given by

Fyd =0.23mgd.

%mvlz +mgy, —0.23mgd =%m1)22 +mgy, — U, = \/—0.46ga’+1)12 +2gn

= \/—0.46(9.80 m/s?)(45.0 m)+(1.70 m/s)* +2(9.80 m/s>)(32 m) = 20.67 m/s =

51.  Consider the free-body diagram for the skier in the midst of the motion.
Write Newton’s second law for the direction perpendicular to the plane,
with an acceleration of 0.

ZFL=FN—mgcoso9=O — Fy=mgcosfd —
Fiy = iy Fx = pyemg cos @

Apply conservation of energy to the skier, including the dissipative
friction force. Subscript 1 represents the skier at the bottom of the slope,
and subscript 2 represents the skier at the point farthest up the slope. The location of the skier at the
bottom of the incline is the zero location for gravitational potential energy (y =0). We have

Yy =90m/s, =0, v, =0, and y, =dsin6.
Lmvf +mgy, =1mvs +mgy, +Fpd  —  Lmof +0=0+mgd sin 0+ umgd cos 0 —

192 _gd sin @ 2 2
_2U -8 - U ne= (10 m") —tan 19°=[0.091
gdcos®  2gd cos O 2(9.80 m/s)(15 m) cos 19°

Hy

52. (a) Calculate the energy of the ball at the two maximum heights, and subtract to find the amount of
energy lost. The energy at the two heights is all gravitational potential energy, since the ball has
no kinetic energy at those maximum heights.

Ejost = Einitial — Efinal = M initial ~M&V final
Elost _ M&initial ~M&Vfinal _ Vinitial ~Vinal _ 20m—-1.6m _ o
Einitial MY initial Vinitial 20m
() The ball’s speed just before the bounce is found from the initial gravitational potential energy,

and the ball’s speed just after the bounce is found from the ball’s final gravitational potential
energy.

— _1 2
PEinitial = KEpefore > M&Vinitial = Emvbefore -

Unetore = 2 @imiial = 2980 m/s?)(2.0 m) =

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Work and Energy 6-19

53.

54.

55.

56.

— _1 2
PEfinal = KEafter —  M&Vfinal = Emvafter -

Uyter = 28V = /20980 m/s>)(1.6 m) =

(c) The energy “lost” was changed [primarily into heat energy{ —the temperature of the ball and the
ground would have increased slightly after the bounce. Some of the energy may have been
changed into acoustic energy (sound waves).

Since there is friction in this problem, there will be energy dissipated by friction.

2 2
Efiction TAKE+APE=0  —  Eg;ion = —AKE — APE = %m(vl —0y)+mg(y —»2)

= L(66 kg)[0—-(11.0 m/s)? ]+ (66 kg)(9.80 m/s)(230 m) =

Since there are no nonconservative forces, the mechanical energy of the projectile will be conserved.
Subscript 1 represents the projectile at launch and subscript 2 represents the projectile as it strikes the
ground. The ground is the zero location for potential energy (v =0). We have v, =165 m/s,

¥ =135m, and y, =0. Solve for v,.

— 1 2 _1 2 1 2 _1 2
E\=E, — Smyf +mgy=5mvy +mgy, — Smu +mgy=5mv;, —>

vy =07 +2gy, =+/(165 m/s)? +2(9.80 m/s2)(135 m) =

Notice that the launch angle does not enter the problem, so it does not influence the final speed.

We apply conservation of mechanical energy. We take the surface of the Moon to be the 0 level for
gravitational potential energy. Subscript 1 refers to the location where the engine is shut off, and
subscript 2 refers to the surface of the Moon. Up is the positive y direction.

(@) Wehave v, =0, y,=h, v, =30mnVs, and y, =0.

1

E=E - %mvlz+mgy1=%mv22+mgy2 - mgh=5m1)§ -

2 2
h=0_2= (3.0 m/s) _

2¢ 20162 m/s?)
(b) We have the same conditions except v; =—2.0 m/s.

- 1.2 1,02 1,2 _1,.,2
E\=E, — Smy+mgy =5mv; +mgy, — Smy +mgh=5mv; —

2 2 2 2
Uy -y (B0m/s)” —(=2.0m/s)”
he -
2g 2(1.62 m/s*)

(¢) We have the same conditions except v; = 2.0 m/s. And since the speeds, not the velocities, are
used in the energy conservation calculation, this is the same as part (b), so 4 = .

- 1002 — 102 1,02 _1,.2
Ey=E, — Smuf+mgy =5mvy+mgy, — Smuj+mgh=-mv; —

2 2 2 2
vy -v  (30m/s)” —(=2.0m/s)”
2g 2(1.62 m/s*)

(a) Ifthere is no air resistance, then conservation of mechanical energy can be used. Subscript 1
represents the glider when at launch, and subscript 2 represents the glider at landing.
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The landing location is the zero location for elastic potential energy (y =0). We have

1 m/s

=3500m, y, =0, and v =480 km/h| 5
g 2 " (3.6km/h

J =133.3 m/s. Solve for v,.

— 1 2 _1 2

v, =07 +2gy; =+(1333 m/s)* +2(9.80 m/s>)(3500 m) =293 8 m/s[

=1058 km/h :

(b) Now include the work done by the
nonconservative frictional force. Consider the 12°
diagram of the glider. The distance over which 3500 m

[
3500
ril. Use the

36 km/hj
S

the friction acts is given by / =

sin 12
same subscript representations as above, with y;, v, and y, as before, and
1 m/s
3.6 km/h

the frictional force.

v, =210 km/h[ J =58.33 m/s. Write the energy conservation equation and solve for

m(vlz _022 +2g01)
2/

(980 kg)[(133.3 m/s)* — (5833 m/s)? +2(9.80 m/s> (3500 m)]
= =2415N =[2400 N
N a0
sin 12°

57.  The work necessary to lift the piano is the work done by an upward force, equal in magnitude to the
weight of the piano. Thus W = Fd cos0° = mgh. The average power output required to lift the piano is

the work done divided by the time to lift the piano.

W mgh mgh (385 kg)(9.80 m/s%)(16.0 m)
rt P 2750 W

1
2

E] = E2 +Ffr€ i %m‘l)lz +mgy1 = ml)22 +mgy2 +Ffr€ 4 Ff =

550 ft-Ib/s \( 445N )( 1m
s8. Ihp=(lh =746 N-m/s =[746 W
(@) 1hp=( p)( Thp J[ Il J[a.zgﬁ] ;

1 hp
by TSW=(15W =|010h
o Tsw=osw| )

59. (@) xe=1m?=1(85kg)(5.0m/s)’ =106251~[1100]

(b) The power required to stop him is the change in energy of the player, divided by the time to
carry out the energy change.

106257
P= =1062.5 W = 1100 W
Tos

60. The 18 hp is the power generated by the engine in creating a force on the ground to propel the car
forward. The relationship between the power and the force is Eq. 6-18, P = Fv. Thus, the force to
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propel the car forward is found by F = P/v. If the car has a constant velocity, then the total resistive
force must be of the same magnitude as the engine force, so that the net force is zero. Thus, the total
resistive force is also found by F' = P/v.

P (18 hp)(746 W/1 hp)
i ]

(95 kny/h)| LS
3.6 km/h

61. The power is the force that the motor can provide times the velocity, as given in Eq. 6—18. The force
provided by the motor is parallel to the velocity of the boat. The force resisting the boat will be the
same magnitude as the force provided by the motor, since the boat is not accelerating, but in the
opposite direction to the velocity.

P (35hp)(746 W/1 hp)

p=Fv —» F=L -
(35 km/h)| — LTS
3.6 kmh

=2686 N =2700 N

So the force resisting the boat is |2700 N, opposing the velocity|.

62. The work done in accelerating the shot put is given by its change in kinetic energy: The power is the
energy change per unit time.

1 2 _ 42 1 2

W KEy—kE _,m(Vy —v) 5 (73kg)[(14 m/s)” -0]

P=—= = = =476.9Wz-480W
t t t 15s

63. The energy transfer from the engine must replace the lost kinetic energy. From the two speeds,
calculate the average rate of loss in kinetic energy while in neutral.

u =95 km/h _lmis _1mis
3.6 km/h 3.6 km/h

AKE =1 mvi —Imof =1(1080 kg)[(18.06 m/s)* —(26.39 m/s)*] = —1.999x10° J

J=26.39 m/s v, =65 km/h[ ]=18.06 m/s

5
W _199XI07T _ 5 56510 W, or (2856x10% W)—2
‘ 70's 746 W

So [29x10* W/, or |38 hp|, is needed from the engine.
. w 746 W 3600 s 3
64. Since P=—, wehave W =Pt=2.0h 1h =15.4x10° J|.
t p[lhp} >( lh)

65. The average power is the energy transformed per unit time. The energy transformed is the change in

kinetic energy of the car.
2
(975 kg)[(95 km/h)( L m/s H

=38.29 hp

p - cnergy transformed AKE %m(vzz ~0f) _ 3.6 km/h

time t t 2(6.45s)

=|5.3%10* W|=71hp
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66. The minimum force needed to lift the football player vertically is equal to his weight, mg. The distance
over which that force would do work would be the change in height, Ay = (78 m)sin33°. So the work

done in raising the player is W =mgAy and the power output required is the work done per unit time.
W mghAy (82 kg)(9.80 m/s?)(83 m)sin33°
t t 75s

P

=484.4 W =[480 W] = 0.65 hp

67. The force to lift the water is equal to its weight, so the work to lift the water is equal to the weight
times the vertical displacement. The power is the work done per unit time.

W mgh (27.0 kg)(9.80 m/s>)(3.50 m)

68. The force to lift a person is equal to the person’s weight, so the work to lift a person up a vertical
distance 7 is equal to mgh. The work needed to lift N people is Nmgh, so the power needed is the total
work divided by the total time. We assume the mass of the average person to be 70 kg.

W Nmgh 47,000(70 kg)(9.80 m/s>)(200 m) 6 g
pP="= = =1.79%10° W = [2x10° W| = 2400 h
— = - p

69. We represent all 30 skiers as one person on the free-body diagram. The
engine must supply the pulling force. The skiers are moving with constant
velocity, so their net force must be 0.

ZFy =Fy—-mgcos@=0 — Fy=mgcosl
> F,=F-mgsinf—F; =0 —
Fp = mgsin 0+ F;, = mg sin @+ fy mg cos &

The work done by Fp in pulling the skiers a distance d is Fpd since the force is parallel to the
displacement. Finally, the power needed is the work done divided by the time to move the skiers up the

incline.
pe w_ Fpd  mg(sin@+ u cos@)d
t t t
2 : o o
_ 30(65 kg)(9.80 m/s”)(sin 23°+0.10c0s23°)(320 m) — 24600 W Lhp —[33hp
120s
70. Draw a free-body diagram for the box being dragged along the floor. The F N F ,
—

box has a constant speed, so the acceleration is 0 in all directions. Write
Newton’s second law for both the x (horizontal) and y (vertical) directions.

D F,=Fy-mg=0 — Fy=mg P, I lmg
zFx:FP_FfrZO = [p =Fy = Fy = iyemg

The work done by Fp in moving the crate a distance Ax is given by W = FpAx cos 0° = 1, mgAx.
The power required is the work done per unit time.

W uemghAx
==t

_ lhp | _
=1958 W(746W)_

P = ﬂkmg% = 1, mgv, = (0.45)(370 kg)(9.80 m/s)(1.20 m/s) = 1958 W
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71.

72.

73.

74,

First, consider a free-body diagram for the cyclist going downhill. Write
Newton’s second law for the x direction, with an acceleration of 0 since the
cyclist has a constant speed.

ZFX =mgsin@—-F, =0 — F; =mgsind

Now consider the diagram for the cyclist going up the hill. Again, write
Newton’s second law for the x direction, with an acceleration of 0. The
coordinate axes are the same, but not shown in the second diagram.

> F,=Fy—Fp+mgsin€=0 — Fp=Fj +mgsin6

Assume that the friction force is the same when the speed is the same, so
the friction force when going uphill is the same magnitude as when going
downbhill.

Fp =Fy +mgsin@ =2mgsin @

The power output due to this force is given by Eq. 6-18.
P =Fv=2mgvsin 8 = 2(75 kg)(9.80 m/sz)(4.0 m/s) sin 6.0° =610 W|= 0.82 hp

First find the kinetic energy of the train, and then find out how much work the web must do to stop the
train. Note that the web does negative work, since the force is in the OPPOSITE direction of the
displacement.

2
1m/s
Wey sion = AKE = 2 mv? —Lmo? =0-L10* kg){60 km/h(—ﬂ =-139x10°%J
train 2 2 2 3.6 km/h
6
Wy ==Lk =-139x10°T - k=20 D N =

(500 m)?

Note that this is not a very stiff “spring,” but it does stretch a long distance.

We apply the work-energy theorem. There is no need to use potential energy F o F

since the crate moves along the level floor, and there are no springs in the

problem. There are two forces doing work in this problem—the pulling force

and friction. The starting speed is v, = 0. Note that the two forces do work F I lmg
N

over different distances.

Woet =Wp + Wy = Fpdp cos 0°+ Fydy, cos180° = AKE =1m(vi —07) —

2
Fpdp = pymgdy, =fmvy  — g = \/Z(FPdP — tymgdy;)

= \/ (360kg) [(225 N)(21.0 m) - (0.20)(36.0 kg)(9.80 m/s”)(10.0 m)] = [14.9 mys]

The rock will rise until gravity does —80.0 J of work on the rock. The displacement is upward, but the
force is downward, so the angle between them is 180°. Use Eq. 6—1.

W ~80.07

_ ——=[441m
mg cos & (1.85kg)(9.80 m/s”)(=1)

Wg=mgdcos@ — d=
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75. (a) The spring constant is found by the magnitudes of the initial force and displacement, so k = F'/x.
As the spring compresses, it will do the same amount of work on the block as was done on the
spring to stretch it. The work done is positive because the force of the spring is parallel to the
displacement of the block. Use the work-energy theorem to determine the speed of the block.

- - 12 _ 1,2 _1F 2 _| [
Won block - AKEblock - Won spring - Emvf - Ekx =5 X = V=K
during during X m
compression stretching

() Use conservation of energy, equating the energy at the original extension with the energy at half
the original extension. Let position 1 be the original extension, and position 2 be at half the
original extension.

2 2 2 2 2 2 2
E=E, — +h’=imv +%k(%x) - mv” =kx —k(%x) =3k’ -
2 3ke?*  3Fx ool [PEx
4m 4m 4m

76. (a) The work done by gravity as the elevator falls is the weight times the displacement. They are in
the same direction.

W = mgd cos 0° = (925 kg)(9.80 m/s*)(28.5 m) = 2.5835x10° J =(2.58x10° J

(b) The work done by gravity on the elevator is the net work done on the elevator while falling, so
the work done by gravity is equal to the change in kinetic energy.

[2m, /2(2.5835><105 1)
- 1,2 _ G _ -
W =AKE=Smv" -0 — v= = 925 kg) =123.6 m/s

(¢) The elevator starts and ends at rest. Therefore, by the work-energy theorem, the net work done
must be 0. Gravity does positive work as it falls a distance of (28.5+ x) m (assuming that x > 0),

and the spring will do negative work at the spring is compressed. The work done on the spring is

%kxz, so the work done by the spring is —%kxz.

W =W +Weping =mg(d +x)—1k> =0 - L —mgr—mgd =0 —
mgi\/ng2 —4(%k)(—mgd)
X =
1
2(5k)
925 kg)? (9.80 m/s>)? +
(925 kg)(9.80 mis2)z |02 K& 5
~ 2(8.0x10* N/m)(925 kg)(9.80 m/s>)(28.5 m)
8.0x10* N/m
=2.65m,—-2.43m

The positive root must be taken since we have assumed x > 0 in calculating the work done by gravity.
Using the values given in the problem gives x = .

77. (@ xke=lmp* =1(3.0x107 kg)(3.0m/s)* =135%x107 T =[14x107 J
KE 135x1072 J _
(b)  KEgerua =03 5Erequired - Erequired = Oa;tlslal = 035 =[39%x107%J
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See the free-body diagram for the patient on the treadmill. We assume that
there are no dissipative forces. Since the patient has a constant velocity, the
net force parallel to the plane must be 0. Write Newton’s second law for

forces parallel to the plane, and then calculate the power output of force FP.

szarallel =Fp—mgsinf@=0 — Fp=mgsinf

P = Fpv =mgusin 6 = (75 kg)(9.8 m/s?)(3.1 knﬂh)(%)sinl?

1
36
=131.6Wz

This is about 2 times the wattage of typical household lightbulbs (60-75 W).

3
o

(a) The pilot’s initial speed when he hit the snow was 45 m/s. The work done on him as he fell the
1.1 m into the snow changed his kinetic energy. Both gravity and the snow did work on the pilot
during that 1.1-m motion. Gravity did positive work (the force was in the same direction as the
displacement), and the snow did negative work (the force was in the opposite direction as the

displacement).
Wgravity + I/Vsnow =AKE — mgd + I/Vsnow = _%mvg -
Woow =—Lmf —mgd =—m (Lo} +gd) =—(38 ke) [%(45 m/s)% +(9.80 m/s2)(1.1 m)}

=-9.005x10°* J:

(b) The work done by the snow is done by an upward force, while the pilot moves down.

I/Vsnow = anowd cos180° = _anowd -
W, 9. N
Foow == S;‘l"w =- 90?51“0 ! _g186x10* N =[82x10* N
Jm

(¢) During the pilot’s fall in the air, positive work was done by gravity and negative work by air
resistance. The net work was equal to his change in kinetic energy while he fell. We assume he
started from rest when he jumped from the aircraft.

W,

gravity +W,

— _1 2
ir = AKE — mgh+Wair—5mvf -0 -

Weie = Smvf —mgh =m(Lof - gh) = (88 kg)B(45 m/s)? —(9.80 m/s2)(370 m)}

RErTE

80. The (negative) work done by the bumper on the rest of the car must equal the change in the car’s
kinetic energy. The work is negative because the force on the car is in the opposite direction to the
car’s displacement.

Wbumper =AKE= — _%ka =O—%mvg -
) {(8 )(3 érli/j/hﬂ
k=m=2=(1050 kg) - =[2x107 N/m
5 Corsmr 210 Nim)

81. The minimum vertical force needed to raise the athlete is equal to the athlete’s weight. If the athlete
moves upward a distance Ay, then the work done by the lifting force is W = Fd cos0° = mgAy, the
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change in PE. The power output needed to accomplish this work in a certain time ¢ is the work divided
by the time.

W mgAy (62 kg)(9.80 m/s?)(5.0 m)
t t 9.0s P
82. The power output for either scenario is given by the change in kinetic energy, divided by the time
required to change the kinetic energy. Subscripts of “f” and “i”” are used for final and initial values of
speed and kinetic energy. Subscript 1 represents the acceleration from 35 km/h to 65 km/h, and
subscript 2 represents the acceleration from 55 km/h to 95 km/h.

1 2 2 1 2 2
p - KEip —KEy; _ o m(viy ~ V) p = KBap —KEy; 7 m(Vy —03;)
1= = > = =

b b 2 2

Equate the two expressions for power, and solve for ¢,.

1 2 2 1 2 2
3 V) _ am(W —03) t_t(v22f_v2zi)

2 1 2 2
gl 5] (vir — ;)

Since the velocities are included as a ratio, any consistent set of units may be used for the velocities.
Thus no conversion from km/h to some other units is needed.

2 .2 2_ 2
_ W) _ g OSkm) -GS kmiy” 7

t .
Pk -od) (65 km/h) — (35 km/h)?

83. (@) The work done by gravity is given by Eq. 6-1.
Wg = mgd cos (90—-6) = (85 kg)(9.80 m/s’ )(180 m) cos 86.0°

=1.046x10% J =|1.0x10% J

() The work is the change in kinetic energy. The initial kinetic
energy is 0.

- - — 1.2
WG = AKE = KEf —KE; = 5mv;  —

2(1.046x10* J)
=15.69 m/s = |16 m/s
% ke

84.  Assume that there are no nonconservative forces doing work, so the mechanical energy of the jumper
will be conserved. Subscript 1 represents the jumper at the launch point of the jump, and subscript 2
represents the jumper at the highest point. The starting height of the jump is the zero location for
potential energy (y =0). We have y; =0, y, =11m, and v, = 6.5 m/s. Solve for v,.

E=E - %mvlz +mgy, =%m1)22 +mgy, —
v = V2 +2gy, =1/(6.5 m/s)* +2(9.80 m/s>)(1.1 m) =

85. (a) Use conservation of mechanical energy, assuming there are no nonconservative forces. Subscript
1 represents the water at the top of the dam, and subscript 2 represents the water as it strikes the
turbine blades. The level of the turbine blades is the zero location for potential energy (v = 0).

Assume that the water goes over the dam with an approximate speed of 0. We have v =0,

¥, =80m, and y, =0. Solve for v,.
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E=E - %mvl2+mgyl:%m1)22+mgyz - mgylz%mvzz —

v, =4/2gy = \/2(9.80 m/s?)(88 m) = 4153 m/s ~ [42 m/s
(b) The energy of the water at the level of the turbine blades is all kinetic energy and is given by

1
2

energy transfer to the turbine blades is the power developed by the water.
2
B m o) (0.55)(680 kg/s)(41.53 m/s)” 3
P_0'55[5702j_ 3 =(3.2x10" W

86. (a) The speed vg can be found from conservation of mechanical energy. Subscript A represents the

mvz2 . We know that 55% of that energy gets transferred to the turbine blades. The rate of

skier at the top of the jump, and subscript B represents the skier at the end of the ramp. Point B is
taken as the zero location for potential energy (y =0). We have y; =0, y; =40.6 m, and

¥, =0. Solve for v,.

- 102 — 1,02 _ 1.2
Ex=Eg — SmUy+mgyy =5mvg+mgyg — mgyy =5mvg —

Vg =22V =+/2(9.80 m/s*)(40.6 m) = 28.209 m/s = [282 m/s

(b) Now we use projectile motion. We take the origin of coordinates to be the point on the ground
directly under the end of the ramp. Then an equation to describe the slope is ygjope = —x tan30°.

The equations of projectile motion can be used to find an expression for the parabolic path that
the skier follows after leaving the ramp. We take up to be the positive vertical direction. The
initial y velocity is 0, and the x velocity is vy as found above.

2 2
X=Uply Yooy = Vo~ 8" = ¥y —58(x/vp)

The skier lands at the intersection of the two paths, S0 Vgope = Vproj-

2
Vslope = Yproj —xtan30° =y, —%g[iJ - gx2 —x(21)§ tan30°)—2yov§ =0 -
U

(203 tan30°) /(203 tan 30°) +8gyoVE (03 tan30°) /(3 tan30°)% +2gy v
X = =

2g g
Solving this with the given values gives x =—7.09 m, 100.8 m. The positive root is taken.
Finally, s cos 30.0°=x — s= ol _1008m _ 116 m|.

cos 30.0° cos 30.0°

1000 W ) 36005 |( 1J/s 6
87. 1kW-h=1kW-h =13.6x10"J
@ 2 )

(b) (580 W)(1 month) = (580 W)(1 month)( 1kw j( 30d j(24hJ:417.6 kW -h

1000 W ){ 1 month 1d
=~[420kW -h

3.6x10°J 9 5
¢) 4176kW-h=4176kW -h| 22— |=1503%x10° J =[1.5x10° J
0 [2eac )
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88.

89.

$0.12
1kW-h

(d) (4176 kW- h)[ J =$5011= (2 significant figures)

Kilowatt-hours is a measure of energy, not power, so @, the actual rates at which the energy is
being used at various times does not figure into the bill. They could use the energy at a constant
rate, or at widely varying rates; as long as the total used is about 420 kilowatt-hours, the price
would be about $50. If the family’s average rate of energy usage increased, then their bill would
increase. And there are some power companies that do charge more per kWh for using energy
during certain times of the day, which might be seen as a rate-dependent fee.

The spring constant for the scale can be found from the 0.60-mm compression due to the 760-N force.

F
(o __ T60N

=————=127x10° N/m
X, 60x10* m

Next, use conservation of energy for the jump. Subscript 1 represents the initial location, and subscript
2 represents the location at maximum compression of the scale spring. Assume that the location of the
uncompressed scale spring is the 0 location for gravitational potential energy. We have v, =v, =0

and y; =1.0 m. Solve for y,, which must be negative.
2 2 2 2
E=E, — Lmvj +mgy =5mvy +mgy, +3hkyy — mgy =mgy, +Tky; -

y24228 —2%)}1 =3 +2x,y, = 2x,y; = y3 120107y, ~1.20x107> =0

k

Use the quadratic formula to solve for y,.

1201072 +4/(1.20x107)% —4(=1.20x107>
yy = \/( > ) 4 ) =-352%102m,3.40x10™> m

Figaie = k|| = (1.27x10° N/m)(3.52x107* m) = |4.5x10* N

(a) The work done by the hiker against gravity is the change in gravitational potential energy.
W, = mgAy = (65 kg)(9.80 m/s>)(4200 m — 2800 m) =8.918x10° J = [8.9x10° J

(b) The average power output is found by dividing the work by the time taken.

W, 8918x10° J 54 W]
p _ Merav _ =5385W =54 W
output T T (4.6 h)(3600 s/1 h)

1 hp )
5385W =[7.2x10"" h

(¢) The output power is the efficiency times the input power.

Poutput 5385W
= B =005 = 01

P

output

=0.15P,

nput

=[360 W|={0.48 hp|

(a) The tension in the cord is perpendicular to the path at all times, so the tension in the cord doesn’t

do work on the ball. Only gravity does work on the ball, so the mechanical energy of the ball is
conserved. Subscript 1 represents the ball when it is horizontal, and subscript 2 represents the
ball at the lowest point on its path. The lowest point on the path is the zero location for potential
energy (y=0). We have v, =0, y; =/, and y, =0. Solve for v,.
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E=E, - —mvl +mgy, = m1)2 +mgy, — mgl= —mvz2 - v, =|y2g!

(b) Use conservation of energy to relate points 2 and 3. Point 2 is as described above. Subscript 3
represents the ball at the top of its circular path around the peg. The lowest point on the path is
the zero location for potential energy (y =0). We have v, =+/2g¢, y, =0, and
Y3 =2({—h)=2({-0.80¢) = 0.40¢. Solve for v;.

E,=FE5 — %mvg +mgy, =%mv32 +mgy; — %m(2g€) =%mv32 +mg(0.400) —

vy =f12g¢

91. A free-body diagram for the sled is shown as it moves up the hill. From this
we get an expression for the friction force.

ZF =Fy—-mgcos@=0 — Fy=mgcosd — F, = mgcosl \/

(a) We apply conservation of energy with a frictional force as given in LAY
Eq. 6-16b. Subscript 1 refers to the sled at the start of its motion, and mgl \
subscript 2 refers to the sled at the top of its motion. Take the starting
position of the sled to be the 0 for gravitational potential energy. We have
v =24 m/s, y =0, and v, =0. The relationship between the distance traveled along the

incline (d) and the height the sled rises is y, =d sin 8. Solve for d.
E,=E,+F,d — %mvlz +mgy, :%mvzz +mgy, + Frd —
%mvlz =mgd sin 6+ yymgd cos 8 —

2

2
Y _ (23 m's) =03910m =

" 2g(sin @+ g cos 6)  2(9.80 m/s)(sin 28°+0.25 cos 28°)

(b) For the sled to slide back down, the friction force will now point UP the hill in the free-body
diagram. In order for the sled to slide down, the component of gravity along the hill must be
larger than the maximum force of static friction.

mgsin@>F, — mgsin@>pumgcosd — py, <tan28 — | <053

(c) We again apply conservation of energy including work done by friction. Subscript 1 refers to the
sled at the top of the incline, and subscript 2 refers to the sled at the bottom of the incline. We
have v =0, y; =d sin 8, and y, =0.

E=E,+F,d — —mvl +mgy, ——mvz +mgy, + Frd —

mgd sin @ = —m1)2 +ymgd cos 8 —

vy = \/2gd(sin 60—y cos 0) = \/2(9.80 m/s’ )(0.3910 m)(sin 28°—0.25 cos 28°)

=1.381m/Sz

92. (a) Use conservation of energy for the swinging motion. Subscript 1
represents the student initially grabbing the rope, and subscript2 5
represents the student at the top of the swing. The location where
the student initially grabs the rope is the zero location for potential
energy (¥ =0). We have v, =5.0mv/s, »; =0, and v, =0. Solve

for Vo Vo = h
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93.

94.

E=E - %ml}l2 +mgy Z%mvzz +mgy, —
2
Fmvl =mgy; = yy=-b=h
2g
Calculate the angle from the relationship in the diagram.
(—h h v

cosf=——=1-—=1-— —
l 1 2g¢

2 2
0 =cos”! (1 —U—IJ =cos ! {1 (6.0 mfs) ] =3528°=

20 "~ 2(9.80 m/s2)(10.0 m)

(b) At the release point, the speed is 0, so there is no radial acceleration, since
2

ag = Y Thus the centripetal force must be 0. Use the free-body diagram
r

to write Newton’s second law for the radial direction.
ZFR =Fr—-mgcosf=0 —
Fr =mgcos@ = (56 kg)(9.80 m/sz)cos 3528°=448 N=|450 N

(¢) Write Newton’s second law for the radial direction for any angle, and solve for the tension.

v? v?
ZFR =Ir —mgcos@zmT - Iy =mgcos¢9+m7

As the angle decreases, the tension increases, and as the speed increases, the tension increases.
Both effects are greatest at the bottom of the swing, so that is where the tension will be at its
maximum.

2 2

ke)(6.0 m/

Fr = mg cos 0+mY = (56 kg)(9.80 mys?) + OO KOO MY _ 5epg
max r 100 m

The energy to be stored is the power multiplied by the time: £ = Pt. The energy will be stored as the
gravitational potential energy increase in the water: E = APE = mgAy = pVgAy, where p is the

density of the water and V' is the volume of the water.

6
Pt=prghy — v=_H (180x10° W)(3600 s) I R

pgAy  (1.00x10° kg/m>)(9.80 m/s?)(380 m)

1 m/s
3.6 km/h

this, or 30 m/s. The work done by air friction causes a change in the kinetic energy of the ball, and thus
the speed change. In calculating the work, notice that the direction of the force of friction is opposite to
the direction of motion of the ball.

The original speed of the softball is (120 km/h)( j =33.33 m/s. The final speed is 90% of

W;. = Fy,d cos180° = KE, —KE, :%m(vz2 ) -

2 2 2 2 2 2
m(v? —v?) mvf(09°—1) (0.25kg)(33.33 m/s)2(09% - 1)
Fp = = = =1759 N =[I8N
fr ~2d -2d —2(15 m)
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Solutions to Search and Learn Problems

1. (a)

(b)

(c)

(@)

()

(©

(d)

(b)

(1) When using energy, the actual path followed is not important—only the initial and final
positions are needed. (2) The energy terms are scalars, not vectors, so the math of adding the
terms is simpler. (3) Forces perpendicular to the motion do no work and therefore can be ignored
in the energy equations.

It is never absolutely necessary that energy be used to solve a problem. Force equations can
always be used to determine the motion of an object. However, if the path is curved or the forces
vary with position, the force equations become too complex to solve algebraically. In those cases
it is easier to use energy equations.

The force equations must be used if you need to know the directions of motion, such as the
components of the velocity or the horizontal and vertical displacements. Also, the energy
equations are not able to provide the time elapsed during motion or calculate acceleration.

The energy equations do not provide any information on the direction of motion, the components
of the velocity or centripetal motion, the time elapsed, or the acceleration.

To maintain a constant speed as the truck goes down the hill, the brakes must convert the change
in gravitational potential energy into thermal energy. On a steep hill, the rate of energy
conversion (power) is high. The energy is dissipated over time by air passing over the brakes. If
the brakes absorb more thermal power than they can dissipate to the air, the brakes heat up and
can spontaneously catch fire.

It takes the truck longer to go down a gradual hill. The total amount of energy that is converted
to heat is the same, but since it takes longer the power absorbed by the brakes is smaller, so more
of the energy can be dissipated to the air. As such, the brakes do not heat up as much.

Shifting to a lower gear makes the engine work to dissipate some of the energy (it forces many
of the moving parts of the engine to increase their kinetic energy). The engine has the radiator
and cooling system to help dissipate the heat more efficiently.

The heat dissipated is the change in mechanical energy between the initial (indicated by 1) and
final (indicated by 2) positions. We set the gravitational potential energy equal to zero at the
second position. The initial vertical height is then the product of the distance traveled and the
sine of the angle of incline. We use Eq. 615, and we treat the mass as if it had 2 significant
figures.

2 2
Wne = (KEy +PEy) — (KE; + PE;) =(%ml)2 +mgy2)—(%mvl +mgyl)
22
=%m(l)2 —U;)—mgy,

2
1m/s 1m/s
=1(8000 kg)| (35 km/h)? | ——— |- (95 km/h)? | ———
2 &)\ ( "\ 36kmm )" "\ 356 kv

— (8000 kg)(9.8 m/s*)(360 m) sin 12°
=-828x10°J

The heat dissipated is the opposite of this: [83x10° J|.

The two conservative forces are the force of gravity and the elastic force of a spring. The force
of gravity is accounted for in the gravitational potential energy. The spring force is accounted for
in the elastic potential energy.

The force of water on a swimmer is a nonconservative, or dissipative, force. As with friction, the
force is always against the motion of the swimmer relative to the water.
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4. Asacar accelerates forward, the engine causes the tires to rotate. The force of static friction between
the tires and the road accelerates the car forward. Since the force on the car and the car’s motion are
in the same direction, the force of friction does positive work on the car. A second example would
be the positive work done on a crate sitting in the bed of an accelerating truck. As the truck accelerates
forward, the force of friction between the crate and the bed accelerates the box forward.

5. Consider the free-body diagram for the coaster at the bottom of the loop. The net
force must be an upward centripetal force.

v v

_ _ ottom _ ottom

zFbottom_FN —mg=m - FN =mg+m
bottom R bottom R

Now consider the force diagram at the top of the loop. Again, the net force must be

centripetal and must be downward.
2 2
Utop Utop
thop:FN +mg =m - Iy =m——-mg
top R top

Assume that the speed at the top is large enough that Fy >0, so vy, > JRg.
top

Now apply the conservation of mechanical energy. Subscript 1 represents the coaster at the bottom of
the loop, and subscript 2 represents the coaster at the top of the loop. The level of the bottom of the
loop is the zero location for potential energy (y =0). We have y; =0 and y, =2R.

2 2 2 2
El = E2 - %mvl +mgy = %mUZ +mgy, —  Vpottom = vtop +4gR
The difference in apparent weights is the difference in the normal forces.

2 2 2
vtop _ (vbottom - vtop)

2
N  —-F =[mg+m%}— m mg |=2mg+m

bottom top
=2mg +m(4gR)/R =

Notice that the result does not depend on either v or R.

6. (a) As the roller coaster moves between the initial and final positions, three forces act on the coaster:
gravity, the normal force, and the force of friction. The work done by gravity is accounted for in
the change in potential energy. The normal force is perpendicular to the track and therefore does
no work. Since friction is the only other force acting on the coaster, the work done by friction
can be calculated as the change in mechanical energy between the initial and final positions.

() The average force of friction is the work done by friction divided by the distance traveled. In this
problem we would need to know the total distance traveled to calculate the average force of
friction.
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LINEAR MOMENTUM

Responses to Questions

1. For momentum to be conserved, the system under analysis must be “closed”—not have any forces on
it from outside the system. A coasting car has air friction and road friction on it, for example, which
are “outside” or “external” forces and thus reduce the momentum of the car. If the ground and the air
were considered part of the system and their velocities analyzed, then the momentum of the entire
system would be conserved, but not necessarily the momentum of any single component, like the car.

2. The momentum of an object can be expressed in terms of its kinetic energy, as follows:

p=mv=\/m21}2 =\/m(m1)2) =\/2m(%mvz) =/2mKE

Thus if two objects have the same kinetic energy, then the one with more mass has the greater
momentum.

3. Consider this problem as a very light object hitting and sticking to a very heavy object. The large
object—small object combination (Earth + jumper) would have some momentum after the collision,
but due to the very large mass of the Earth, the velocity of the combination is so small that it is not
measurable. Thus the jumper lands on the Earth, and nothing more happens.

@ When you release an inflated but untied balloon at rest, the gas inside the balloon (at high pressure) rushes
out the open end of the balloon. That escaping gas and the balloon form a closed system, so the momentum
of the system is conserved. The balloon and remaining gas acquire a momentum equal and opposite to the
momentum of the escaping gas, so they move in the opposite direction to the escaping gas.

5. As the fish swishes its tail back and forth, it moves some water backward, away from the fish. If we
consider the system to be the fish and the water, then, from conservation of momentum, the fish must
move forward.

6. (d) The girl moves in the opposite direction at 2.0 m/s. Since there are no external forces on the pair,
momentum is conserved. The initial momentum of the system (boy and girl) is zero. The final
momentum of the girl must be the same in magnitude and opposite in direction to the final momentum
of the boy so that the net final momentum is also zero.
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7. The air bag greatly increases the amount of time over which the stopping force acts on the driver. If a
hard object like a steering wheel or windshield is what stops the driver, then a large force is exerted
over a very short time. If a soft object like an air bag stops the driver, then a much smaller force is
exerted over a much longer time. For instance, if the air bag is able to increase the time of stopping by
a factor of 10, then the average force on the person will be decreased by a factor of 10. This greatly
reduces the possibility of serious injury or death.

8. Yes. In a perfectly elastic collision, kinetic energy is conserved. In the Earth—ball system, the kinetic
energy of the Earth after the collision is negligible, so the ball has the same kinetic energy leaving the
floor as it had hitting the floor. The height from which the ball is released determines its potential
energy, which is converted to kinetic energy as the ball falls. If it leaves the floor with this same
amount of kinetic energy and a velocity upward, it will rise to the same height as it originally had as
the kinetic energy is converted back into potential energy.

9. In order to conserve momentum, when the boy dives off the back of the rowboat the boat will move
forward.

He could have thrown the coins in the direction opposite the shore he was trying to reach. Since the
lake is frictionless, momentum would be conserved and he would “recoil” from the throw with a
momentum equal in magnitude and opposite in direction to the coins. Since his mass is greater than
the mass of the coins, his speed would be less than the speed of the coins, but, since there is no
friction, he would maintain this small speed until he hit the shore.

11.  When the tennis ball rebounds from a stationary racket, it reverses its component of velocity
perpendicular to the racket with very little energy loss. If the ball is hit straight on, and the racket is
actually moving forward, the ball can be returned with an energy (and a speed) equal to (or even
greater than) the energy it had when it was served.

12.  Yes. Impulse is the product of the force and the time over which it acts. A small force acting over a
longer time could impart a greater impulse than a large force acting over a shorter time.

13.  The collision in which the two cars rebound would probably be more damaging. In the case of the
cars rebounding, the change in momentum of each car is greater than in the case in which they stick
together, because each car is not only brought to rest but also sent back in the direction from which it
came. A greater impulse results from a greater force, so most likely more damage would occur.

14. (a) The momentum of the ball is not conserved during any part of the process, because there is an
external force acting on the ball at all times—the force of gravity. And there is an upward force
on the ball during the collision. So considering the ball as the system, there are always external
forces on it, so its momentum is not conserved.

(b) With this definition of the system, all of the forces are internal, so the momentum of the
Earth—ball system is conserved during the entire process.

(c) For a piece of putty falling and sticking to a steel plate, if the system is the putty and the Earth,
momentum is conserved for the entire path.

—
el

“Crumple zones” are similar to air bags in that they increase the time of interaction during a collision,
and therefore lower the average force required for the change in momentum that the car undergoes in
the collision.
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16. For maximum power, the turbine blades should be designed so that the water rebounds. The water has
a greater change in momentum if it rebounds than if it just stops at the turbine blade. If the water
has a greater change in momentum, then, by conservation of momentum, the turbine blades also have a
greater change in momentum and will therefore spin faster.

17. (a) The direction of the change in momentum of the ball is perpendicular to the wall and away from
it, or to the left in the figure.

(b) Since the force on the wall is opposite that on the ball, the force on the wall is to the right.

18.  From Eq. 7-7 for a 1-D elastic collision, v, —vg = U — V)4 . Let A represent the bat, and let B

represent the ball. The positive direction will be the (assumed horizontal) direction that the bat is
moving when the ball is hit. We assume that the batter can swing the bat with equal strength in either
case, so that v, is the same in both pitching situations. Because the bat is so much heavier than the

ball, we assume that v}, = v, —the speed of the bat doesn’t change significantly during the collision.
Then the velocity of the baseball after being hit is v = V) + vy —Ug =20, — . If vy =0, the ball
tossed up into the air by the batter, then vj; = 2v, —the ball moves away with twice the speed of the
bat. But if vz <0, the pitched ball situation, we see that the magnitude of v > 2v,, so the ball
moves away with greater speed. If, for example, the pitching speed of the ball was about twice the
speed at which the batter could swing the bat, then we would have vj = 4v,. Thus the ball has greater
speed after being struck, so the ball will travel farther after being hit. This is similar to the
“gravitational slingshot” effect discussed in Search and Learn 4.

-
i

A perfectly inelastic collision between two objects that initially had momenta equal in magnitude but
opposite in direction would result in all the kinetic energy being lost. For instance, imagine sliding two
clay balls with equal masses and speeds toward each other across a frictionless surface. Since the
initial momentum of the system is zero, the final momentum must be zero as well. The balls stick
together, so the only way the final momentum can be zero is if they are brought to rest. In this case, all
the kinetic energy would be lost. A simpler situation is dropping a ball of clay onto the floor. The clay
doesn’t rebound after the collision with the floor, and all of the kinetic energy is lost.

20. Passengers may be told to sit in certain seats in order to balance the plane. If they move during the
flight, they could change the position of the center of mass of the plane and affect its stability in flight.

21. In order to maintain balance, your CM must be located directly above your feet. If you have a heavy
load in your arms, your CM will be out in front of your body and not above your feet. So you lean
backward to get your CM directly above your feet. Otherwise, you might fall over forward.

22.  The 1-m length of pipe is uniform—it has the same density throughout, so its CM is at its geometric
center, which is its midpoint. The arm and leg are not uniform—they are more dense where there is
muscle, primarily in the parts that are closest to the body. Thus the CM of the arm or leg is closer to the
body than the geometric center. The CM is located closer to the more massive part of the arm or leg.

23.  When a rocket expels gas in a given direction, it puts a force on that gas. The momentum of the
gas-rocket system stays constant, so if the gas is pushed to the left, the rocket will be pushed to the
right due to Newton’s third law. So the rocket must carry some kind of material to be ejected (it could
be exhaust from some kind of engine, or it could be compressed gas) in order to change direction.

24. Consider Bob, Jim, and the rope as a system. The center of mass of the system is closer to Bob,
because he has more mass. Because there is no net external force on the system, the center of mass will
stay stationary. As the two men pull hand-over-hand on the rope they will move toward each other,
eventually colliding at the center of mass. Since the CM is on Bob’s side of the midline, Jim will cross
the midline and lose.
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25.

26.

27.

28.

If there were only two particles as decay products, then by conservation of momentum, the momenta
of the two decay products would have to be equal in magnitude and opposite in direction, so that the
momenta would be required to lie along a line. If the momenta of the recoil nucleus and the electron do
not lie along a line, then some other particle (the neutrino) must have some of the momentum.

When you are lying flat on the floor, your CM is inside of the M cM
volume of your body. When you sit up on the floor with your

legs extended, your CM is outside of the volume of your body. R
The cM is higher when you sit up, and is slightly in front of

your midsection.

The engine does not directly accelerate the car. The engine puts a force on the driving wheels, making
them rotate. The wheels then push backward on the roadway as they spin. The Newton’s third law
reaction to this force is the forward pushing of the roadway on the wheels, which accelerates the car.
So it is the (external) road surface that accelerates the car.

The motion of the center of mass of the rocket will follow the original parabolic path, both before

and after explosion. Each individual piece of the rocket will follow a separate path after the explosion,
but since the explosion was internal to the system (consisting of the rocket), the center of mass of all
the exploded pieces will follow the original path.

Responses to MisConceptual Questions

1.

(d) Students frequently have one of two common misconceptions. One idea is that since the truck
has more mass, it has more momentum and will have a greater momentum change. Alternatively,
some students think that since the smaller object has a greater change in speed, it will have the
greater change in momentum. In the absence of external net forces, momentum is a conserved
quantity. Therefore, momentum lost by one of the vehicles is gained by the other, and the
magnitude of the change in momentum is the same for both vehicles.

(b) A common misconception in this problem is the belief that since the sand is dropped onto the
boat, it does not exert a force on the boat and therefore does not accelerate the boat. However,
when dropped, the sand has no initial horizontal velocity. For the sand to be at rest on the deck
of the boat it must be accelerated from rest to the final speed of the boat. This acceleration is
provided by the force of friction between the boat and sand. By Newton’s third law, the sand
exerts an equal but opposite force on the boat, which will cause the boat to slow down.

(¢) Students may have the misconception that by doubling the mass the final speed will decrease.
However, the momentum and kinetic energy are proportional to the mass. So, if each mass is
doubled, then every term in the conservation of momentum and conservation of kinetic energy
equations is doubled. This factor of two can be divided out to return to the initial equation.
Therefore, doubling the masses will have no effect on the final motion.

(a) Since the net momentum of the astronaut and wrench is zero, the only way for the astronaut to
move toward the space station is for the wrench to move away from the station. If the astronaut
throws the wrench in any other direction, the astronaut will move away from the wrench but not
toward the station. If the astronaut throws the wrench toward the station but does not let go of it,
neither the wrench nor the astronaut will move.

(a) Since the asteroid ends up in the shuttle storage bay, the asteroid and shuttle have the same final
speed. This is a completely inelastic collision, so only momentum is conserved.
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6. (a) A common error is to ignore the vector nature of momentum and impulse. The bean bag and golf
ball have the same momentum just before they hit the ground. The bean bag comes to rest when
it hits the ground, so the ground has exerted an upward impulse equal to the magnitude of bean
bag’s momentum. The golf ball rebounds upward with the same magnitude momentum, but in
the opposite direction. The ground therefore exerted an upward impulse equal to twice the
magnitude of the momentum.

7. (a) Students may consider that the superball and clay have the same momentum and as such would
be equally effective. However, since the clay and superball interact with the door differently, this
is incorrect. The clay sticks to the door, exerting an impulse on the door equal to its momentum.
The superball bounces off of the door, exerting an impulse about equal to twice its momentum.
Since the superball imparts a greater impulse to the door, it will be more effective.

8. (c¢) This problem requires the student to understand the vector nature of momentum. The ball
initially has a momentum toward the batter. If the ball is stopped by the catcher, the change in
momentum has the same magnitude as the initial momentum. If the ball is hit straight back to the
pitcher, the magnitude of the change in momentum is equal to twice the initial momentum. If the
ball is hit straight up at the same speed, the change in momentum has a horizontal and a vertical
vector component with the magnitude of each component equal to the initial momentum. Since
the two components are perpendicular to each other, the magnitude of the change in momentum
will be less than the sum of their magnitudes. As such, the greatest change in momentum occurs
when the ball is hit straight back toward the pitcher.

9. (d) To solve this question a student should understand the relationships between force, time,
momentum, work, and kinetic energy. Impulse is the product of the force and the time over
which the force acts. For an object starting at rest, the impulse is also equal to the final
momentum. Since the same force acts over the same time on both vehicles, they will have the
same momentum. The lighter vehicle will have the greater speed and will therefore have traveled
a greater distance in the same time. Since both vehicles start from rest with the same force acting
on them, the work-energy theorem shows that the vehicle that travels the greater distance will
have the greater final kinetic energy.

10. (e) Since the same force acts on both vehicles over the same distance, the work done on both
vehicles is the same. From the work-energy theorem both vehicles will have the same final
kinetic energy. The lighter vehicle will travel the distance in a shorter amount of time and will
therefore experience a smaller impulse and have a smaller final momentum.

11. (¢) A common misconception is that as the milk drains from the tank car and its mass decreases, the
tank car’s speed increases. For the tank car’s speed to change, a horizontal force would have to
act on the car. As the milk drains, it falls vertically, so no horizontal force exits, and the tank car
travels at constant speed. As the mass of the tank car decreases, the momentum decreases
proportionately, as the milk carries its momentum with it.

12.  (¢) The height to which the bowling ball rises depends upon the impulse exerted on it by the putty
and by the rubber ball. The putty sticks to the bowling ball and therefore continues to move
forward at the new speed of the bowling ball (Av < 5.0 m/s). The rubber bounces backward and
therefore has a greater change in velocity (Av =10.0 m/s). Since the putty and rubber have the
same mass, the rubber exerts a greater impulse onto the bowling ball, causing the bowling ball to
travel higher than when it is hit by the putty.

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



7-6 Chapter 7

Solutions to Problems

1. Momentum is defined in Eq. 7-1. We use the magnitude.

p=mv=(0.028 kg) (8.4 m/s) =|0.24 kg-m/s

2. From Eq. 7-2 for a single force, Ap = FAz. For an object of constant mass, Ap =mAv. Equate the two
expressions for Ap.

FAr=mAv — Av=TA
m

If the skier moves to the right, then the speed will decrease, because the friction force is to the left.

AU=—FAI=—(25N)(ISS)=
g

m 65k

The skier loses 7.7 m/s of speed.

]

Consider the horizontal motion of the objects. The momentum in the horizontal direction will be
conserved. Let A represent the car and B represent the load. The positive direction is the direction
of the original motion of the car.

_ _ ,
Dinitial = Pfinal  — MaUA +mplp =(my +mp)V’ —

= MU +mpty _ (7150 kg)(15.0 m/s) +0 _ oo
My +mg 7150 kg +3350 kg

4. The tackle will be analyzed as a one-dimensional momentum-conserving situation. Let A represent the
halfback and B represent the tackler. We take the direction of the halfback to be the positive direction,
so v, >0 and vy <0.

Pinitial = Pfinal  —> MaUa +mplp = (my +mg)V —
Jy_ Mas + 50, _ (82 kg)(S5.0 m/s) + (110 keg)(-2.5 mis)
ey +mg 82 kg +110 kg

=0.703 m/s ={0.70 m/s

They will be moving it the direction that the halfback was running before the tackle.

5. The force on the gas can be found from its change in momentum. The speed of 1300 kg of the gas

changes from rest to 4.5%x10% m/s, over the course of one second. Use Eq. 7-2.

_ A_p _mAv
A At
=5.9x10" N, in the direction of the velocity of the gas

AvAﬂt = (4.5x10* m/s)(1300 kg/s)

The force on the rocket is the Newton’s third law pair (equal and opposite) to the force on the gas, so

the force on the rocket is |5.9%107 N in the opposite direction of the velocity of the gas|.
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6. Consider the motion in one dimension, with the positive direction being the direction of motion of the
first car. Let A represent the first car and B represent the second car. Momentum will be conserved in
the collision. Note that vy =0. Use Eq. 7-3.

7
Pinitial = Pfinal —> MAUA +mplg =(my +mg)V" —

my (Vs —V) (7700 kg)(14 m/s —5.0 m/s)
my = = =13,860 kg ~[14,000 k
B , o e

v

=]

The throwing of the package is a momentum-conserving action, if the water resistance is ignored. Let
A represent the boat and child together, and let B represent the package. Choose the direction that the
package is thrown as the positive direction. Apply conservation of momentum, with the initial velocity
of both objects being 0. Use Eq. 7-3 in one dimension.

’ 4
Pinitial = Pfinal  —> (mp +mp)V=mpUy +mgtg =0 —

Yy =— MgV _ (530 kg)(10.0 m/s) — 20393 /s

my (24.0 kg +35.0 kg)

The boat and child move in the opposite direction as the thrown package, as indicated by the negative
velocity.

8. Consider the motion in one dimension, with the positive direction being the direction of motion of
the alpha particle. Let A represent the alpha particle, with a mass of m,, and let B represent the

daughter nucleus, with a mass of 57m, . The total momentum must be 0 since the nucleus decayed at
rest. Use Eq. 7-3, in one dimension.

4 /
Pinitial = Pfinal = 0=mpUp +mgly  —

f 2.8x10° ,
v],?’:_mAvA :_mA( SX 0 m/S) N I’UB|: 4900m/s

mg S5Tmy

Note that the masses do not have to be converted to kg, since all masses are in the same units, and a
ratio of masses is what is significant.

9. Consider the motion in one dimension, with the positive direction being the direction of motion of
the original nucleus. Let A represent the alpha particle, with a mass of 4 u, and let B represent the
new nucleus, with a mass of 218 u. Use Eq. 7-3 for momentum conservation.

’ 4
Pinitial = Pfinal  — (mp +mp)V=mpUy +mgly  —

v, = (mp +mp)V—mpoy _ (222 u)(320 m/s)— (218 u)(280 m/s) —[2500 m/s

ma 40u

Note that the masses do not have to be converted to kg, since all masses are in the same units, and a
ratio of masses is what is significant.

10. Momentum will be conserved in one dimension in the explosion. Let A represent the fragment with
the larger kinetic energy. Use Eq. 7-3.

7
_ _ , , o MAUA
Dinitial = Pfinal —> 0=mpUp +mgty — Vg =——"—>
mg
, \2 1
my0U m
KEA =2KEB —> %mAUAZ =2(%va]/_3’2)=mB - AA — _A =
mB mB 2

The fragment with the larger kinetic energy has half the mass of the other fragment.
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11.

12.

13.

14.

Consider the motion in one dimension with the positive direction being the direction of motion of the
bullet. Let A represent the bullet and B represent the block. Since there is no net force outside of the
block—bullet system (like friction with the table), the momentum of the block and bullet combination is
conserved. Use Eq. 7-3, and note that vg =0.

4 /7
Pinitial = Pfinal —> MAUp Tl =MAUp +mgly  —

MAUA —MAUp _ (0.022 kg)(240 m/zs)o—k(o.()22 kg)(150 m/s) —10.99 m/s
mg . g

I)é:

To find the average force, we use Eq. 7-2 and divide the change in

momentum by the time over which the momentum changes. Choose the o
x direction to be the opposite of the baseball’s incoming direction, so to the

left in the diagram. The velocity with which the ball is moving after hitting <_yT
the bat can be found from conservation of energy and from knowing the X
height to which the ball rises.

<1l
<

— 1 2 _ A
(KEinitial = PEfinal Jafter - SmvT =mgAy —
collision

V' =2gAy = \/2(9.80 m/s?)(31.5 m) = 24.85 m/s
The average force can be calculated from the change in momentum and the time of contact.
At At 25107 s

Ap,  m(v;-v,)  (0.145 kg)(24.85 m/s —0)
At At 2.5%107 s

Fz\/Fx%Fyz =\/(1566 N)? +(1441 N)? =2128 N = [2100 N

F, 1441
O=tan' L =tan' — =42.6°=
F. 1566

CAp, m(vL-v,)  (0.145 kg)(0—-27.0 m/s)

F, —1566 N

F,= =1441 N

1 m/s
3.6 km/h
volume of air measuring 45 mx75 mx33.33 m will have been brought to rest. By Newton’s third law,
the average force on the building will be equal in magnitude to the force causing the change in
momentum of the air. The mass of the stopped air is its volume times its density.

The air is moving with an initial speed of 120 km/h( j =33.33 m/s. Thus, in one second, a

F _g_ mAvy o= VpAv (45 m)(75 m)(33.33 m)(1.3 kg/m3)(33.33 m/s—0)
At At At 1s

S TR

(a) Consider the motion in one dimension with the positive direction being the direction of motion
before the separation. Let A represent the upper stage (that moves away faster) and B represent
the lower stage. It is given that m, =mg, vV, =0 =0, and V; =V, —,y. Use Eq. 7-3 for

momentum conservation.
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15.

16.

17.

18.

_ _ /7 ’ _ /7 4
Pinitial = Ppinal = (Mp +mp)V=myVy +mpUp =m, Vs +mp(Vp —Vry) —

, (my Amp)0+mguy  (725ke)(6.60x10° mis)+1(725 kg)(2.80%10° m/s)
UV, = =
A my +my 725 kg

= |8.00><103 m/s, away from Earth|

Vf = V) — U,y =8.007x10° m/s —2.80x10° m/s = |5.20><103 m/s, away from Earth

() The change in kinetic energy was supplied by the explosion.

Lo 2

— — 1 2 1 2
AKE = KEfing1 = KEjpitial = ( SMAVN +5 Mgl )‘3(’”}\ +mp)v

=11(725 kg)][(8.00x10° m/s)* +(5.20x10° m/s)*]-1 (725 kg)(6.60x10° m/s)
=|7.11x10% J

Choose the direction from the batter to the pitcher to be the positive direction. Calculate the average
force from the change in momentum of the ball.

Ap=FAt=mAv —

F=mAY— (0,145 k| 400 ME =310 ms
At 5.00x107 s

J = |2230 N, toward the pitcher

(a) The impulse is the change in momentum. The direction of travel of the struck ball is the positive
direction.

Ap =mAv = (4.5x107% kg)(38 m/s—0)=1.71 kg - m/s = [1.7 kg - m/s

(b) The average force is the impulse divided by the interaction time.

Z_Ap_171kg-m/s _

3.5x107 s

(a) The impulse given to the nail is the opposite of the impulse given to the hammer. This is the
change in momentum. Call the direction of the initial velocity of the hammer the positive
direction.

APnail = ~APhammer = [MVinitial = MVfinat lhammer = (12 kg)(7.5 m/s) -0 = 9-0X101 kg-m/s

() The average force is the impulse divided by the time of contact.

1
Fog =%=—9'0X10 Ke-mls I x10% N

8.0x107 s

The impulse given the ball is the change in the ball’s momentum. From the symmetry of the problem,
the vertical momentum of the ball does not change, so there is no vertical impulse. Call the direction
AWAY from the wall the positive direction for momentum perpendicular to the wall.

A, =mv; —mv;  =m(vsin 45°—vsin 45°) = 2mv sin 45°
L
final initial

= 2(6.O><10_2 km)(28 m/s) sin 45° = |2.4 kg-m/s, to the left
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19. (a) The momentum of the astronaut—space capsule combination will be conserved since the only
forces are “internal” to that system. Let A represent the astronaut and B represent the space
capsule, and let the direction the astronaut moves be the positive direction. Due to the choice of
reference frame, v, =vg =0. We also have v} =2.50 m/s.

Pinitial = Pfinal  —> MaUA T/l =0=mpV) +mpvp  —
’ , Mp 125 kg
Vg =—Up —=—(2.50 m/s) ————=—=-0.1645 m/s = |-0.16 mV/s
mg 1900 kg
The negative sign indicates that the space capsule is moving in the opposite direction to the
astronaut.
(b) The average force on the astronaut is the astronaut’s change in momentum, divided by the time
of interaction.

Ap m() -vy) (125 kg)(2.50 m/s—0) B
YA At 0.600 s

(©)  KEqgronaut =5 (125 kg)(2.50 m/s)* =[391J], KEq,pqe =3 (1900 kg)(-0.1645 m/s)* =

20. If the rain does not rebound, then the final speed of the rain is 0. By Newton’s third law, the force on
the pan due to the rain is equal in magnitude to the force on the rain due to the pan. The force on the
rain can be found from the change in momentum of the rain. The mass striking the pan is calculated as
volume times density.

F =—t=>"1 A (v —-vy)=—0v, =1, =— pAv,
WE T A At At(f 0) Ar 0T A TR PN

(2.5x107 m) ; X ,
=00 oy (100107 kg/m™)(1.0 m)(8.0 m/s) =[0.056 N
lh
)
Call east the positive direction.

(@ Poriginal = MVoriginal = (95 kg)(3.0 m/s) = 285 kg-m/s =~ 290 kg - m/s, to the east|
fullback fullback

=]
Ll

(b) The impulse on the fullback is the change in the fullback’s momentum.

Apfiiback = M(Vinat — Vgt ) = (95 kg)(0—3.0 m/s) =285 kg - m/s = |-290 kg - m/s

fullback fullback
The negative sign indicates the impulse is to the west.

(¢) The impulse on the tackler is the opposite of the impulse on the fullback.
|29O kg - m/s, to the east|

(d) The average force on the tackler is the impulse on the tackler divided by the time of interaction.
F_&_ 285 kg-m/s
At 0.85s

= |340 N, to the east|

22. Impulse is the change of momentum, Eq. 7-5. This is a one-dimensional configuration.

A, = m(Vgny — ) = (0.50 kg)(3.0 nvs) = [1.5 kg - m/s

23. (a) The impulse given the ball is the area under the F vs. ¢ graph. Approximate the area as a triangle
of “height” 250 N, and “width” 0.04 s.

Ap =1(250 N)(0.045) =
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We could also count “boxes” under the graph, where each “box” has an “area” of
(50 N)(0.01 s) =0.5 N-s. There are almost seven whole boxes and the equivalent of about three

whole boxes in the partial boxes. Ten boxes would be about .

(b) The velocity can be found from the change in momentum. Call the positive direction the
direction of the ball’s travel after being served.

—mAv=m(v 1) — v =0+ =0+—N5 30 mis
f 1 T 1

6.0x107% kg

24. (a) The impulse is the change in momentum. Take upward to be the positive direction. The velocity
just before reaching the ground is found from conservation of mechanical energy.

_ 1.2
Eiitial = Efinn = — mgh=5mv;, —

v, =+2gh = 2(9.80 m/s2)(2.8 m) = 7.408 m/s, down

J=Ap=m(; —Vy) = (55kg)(0——7.408 m/s) = 407 kg - m/s = [410 kg - m/s, upward

(b) The net force on the person is the sum of the upward force from the ground, plus the downward
force of gravity.

F F

net = f'ground ~Mg =Ma

2 2
Firoung =m(g +a) = m(g +%} =(55 kg)[(9.80 m/s?) +

0—(~7.408 m/s)?
2(=0.010m)

:|1.5><105 N, upward|

This is about 280 times the jumper’s weight.
(c) We do this the same as part (b), but for the longer distance.

(F —v3) 2
F, =m| g+———|=(55kg)| (9.80 m/s”) +
ground {g Ax ( g) ( )

0—(—7.408 m/s)*
2(-0.5m)

=3557 N = (4000 N, upward

This is about 6.5 times the jumper’s weight.

25.  Let A represent the 0.440-kg ball and B represent the 0.220-kg ball. We have v, =3.80 m/s and
vg =0. Use Eq. 7-7 to obtain a relationship between the velocities.

Up—Ug =—(Up —Up) — Vg =Ux+U4
Substitute this relationship into the momentum conservation equation for the collision.

MV, + Mgy = MUy +MgUy  —> M0, =M, Uy +My(Vp +0y) —

= ma=my),,  0230Ke 3 06 06y —1.267 mis < [T27 ms (easD)

C(m +my) " 0.660 kg
v, =0, +0, =3.80 m/s+1.27 m/s =|5.07 m/s (east)
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26.

27.

28.

29.

Let A represent the 0.450-kg puck, and let B represent the 0.900-kg puck. The initial direction of puck
A is the positive direction. We have v, =5.80 m/s and vg =0. Use Eq. 7-7 to obtain a relationship

between the velocities.
Up—Ug =—(Up —Ug) — Vg =Ux+U4
Substitute this relationship into the momentum conservation equation for the collision.
MAVN +mplg =mpV) +mgly  —  MpUp =mpUL(MAUL) —
v, =mams) _1(.).3455001<kgg (5.80 m/s) =—1.933 m/s =

(my +mg)

U = Uy + Uy =5.80 m/s —1.93 m/s =|3.87 m/s (east)

Let A represent the 0.060-kg tennis ball, and let B represent the 0.090-kg ball. The initial direction of
the balls is the positive direction. We have v, =5.50 m/s and vy =3.00 m/s. Use Eq. 7-7 to obtain a

relationship between the velocities.

vy —Ug =—(V) —v3) — v =2.50m/s+0vy
Substitute this relationship into the momentum conservation equation for the collision.

MA\Up + Mgl =m U +mglp =  muUp +mplg =m, Uy +mg(2.50 m/s+vy) —

o - myV, +mg (Vg —2.50 m/s)  (0.060 kg)(5.50 m/s) +(0.090 kg)(3.00 m/s —2.50 m/s)
= -

my +mg 0.150 kg
=12.50 m/s

Up = 2.50 m/s + U =[5.00 m/s

Both balls move in the direction of the tennis ball’s initial motion.

Let A represent the ball moving at 2.00 m/s, and call that direction the positive direction. Let B
represent the ball moving at 3.60 m/s in the opposite direction. Thus, v, =2.00 m/s and

vg =-3.60 m/s. Use Eq. 77 to obtain a relationship between the velocities.
Uy —Ug =—(V) —U3) — Ui =5.60 m/s+ v}
Substitute this relationship into the momentum conservation equation for the collision, noting that
mpa =mg.
MAVN + Ml =MAVN +Mply  — Uy +Ug =V) +05 —
-1.60 m/s =v) + (V) +5.60 m/s) — 20, =-720m/s — v, =|-3.60 m/s
vg =5.60 m/s+ v} =[2.00 m/s

The two balls have exchanged velocities. This will always be true for 1-D elastic collisions of objects
of equal mass.

(a) Momentum will be conserved in one dimension. Call the direction of the first ball the positive
direction. Let A represent the first ball and B represent the second ball. We have vz =0 and
=1

Ug =5V, Use Eq. 7-7 to obtain a relationship between the velocities.

_ / / ’ 1
Uy —Ug =—(Vy —Ug) — V) =—30y
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Substitute this relationship into the momentum conservation equation for the collision.

/ /7
Pinitial = Pfinal —> MAUp T Mgl =MAUp +mgly  —

MAVN = —FMAUy +mp 30y —  mp =3m, =3(0.280 kg) =|0.840 kg

(b) The fraction of the kinetic energy given to the second ball is as follows:

o Tmg 3ma (L)
KE'g Mgl MA\ VA
- 2 2
KEy  Tmavy UONON

=10.75

30. Let A represent the incoming ball and B represent the target ball. We have vg =0 and
vy, =-0.4500, . Use Eq. 7-7 to obtain a relationship between the velocities.

Uy —Vg =—(V) —Ug) — Vg =04 +0) =0.5500,

Substitute this relationship into the momentum conservation equation for the collision.

7 7
Pinitial = Pfinal > MAUA =MpAVp +mglg

= my (~0.4500, ) +mp (0.5500,) —

31. Let A represent the moving ball, and let B represent the ball initially at rest. The initial direction of the
ball is the positive direction. We have v, =5.5m/s, vz =0, and vy =-3.8 m/s.

(a) Use Eq.7-7 to obtain a relationship between the velocities.
Uy —Ug =—(V) —UR) — Vh =0y —Vg+0) =5.5m/s—0—3.8 m/s =[1.7 m/s]
(b) Use momentum conservation to solve for the mass of the target ball.

mAUA +vaB ZmAl)/; +va;3 -

(Vp — V) (5.5 m/s—-3.8 m/s)
=m, ——22=(0.220 k =[1.2 k
g ma (v]’3 _UB) ( g) 1.7 m/s

32. The one-dimensional stationary target elastic collision is analyzed in Search and Learn 5.
The algebraic details can be found there, and also in Example 7-8. The kinetic energy lost by the
neutron is equal to the kinetic energy gained by the target particle. The fraction of kinetic energy
lost is found as follows:

2
v ( 2mA
KE —KE KE mg|UA| —— —
A A B 1 72 mas +m
initial final _ final _ 5 /"BUB ATTB) | Amymg
- - 2 2 - 2
KEA KEA — SmpUR mAUA (my +mg)
initial initial

@ mams - 4(1.01)(1.013 _
(my +mg)®  (1.01+1.01)

All of the initial kinetic energy is lost by the neutron, as expected for the target mass equal to the
incoming mass.

o) mams - 4(1.01)(2.013 _ 1589
(my +mg)*>  (1.01+2.01)
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dmymy  4(1.01)(12.00)

() 3 3
(my +mg)®  (1.01+12.00)

0.286

Amymg  4(1.01)(208
(d) ( AP = (LOIX ;=0.0192
ma +mg)? (1.01+208)

Since the target is quite heavy, almost no kinetic energy is lost. The incoming particle
“bounces off” the heavy target, much as a rubber ball bounces off a wall with approximately no
loss in speed.

MJZ h.

33.  From the analysis in Example 7-9, the initial projectile speed is given by v = m

Compare the two speeds with the same masses.

m+M
v P i

Y _ | 52 _
1)1_m+M\/@_\/E_\/Z\/;\/§—>
m

34. (a) InExample7-9, KE; = %mv2 and KE; = %(m +M )z)'z. The speeds are related by

v=—""
m+M

L.

2
m 2

, +M V| —mv

AKE _ KEp—KE, S (m+M)? —1m)? _(m )[ M ) "

m+
KE; KE; %mv2 mv?
m21)2 2
—muv
mv? m+M m+M
-M  -380¢g

(b) For the given values,

= =-0.95. Thus 95% of the energy is lost.
m+M 398 ¢g

From the analysis in the Example 7-9, we know the following:

L L [ mv Jz_ 1 (0.028 kg)(190 m/s) )
2g\m+M 2(9.80 m/s?)\ 0.028 kg+3.1kg

=0.1476 m ~[0.15 m]

From the diagram we see the following:

~
|
Byl

S 4--------->

2 =-h)?+x*

x = = (1= h)* =+(2.8 m)* — (2.8 m—0.1476 m)* =[0.90 m]

[]
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36.

37.

38.

Use conservation of momentum in one dimension, since the particles will separate and travel in
opposite directions. Call the direction of the heavier particle’s motion the positive direction. Let A
represent the heavier particle and B represent the lighter particle. We have m, =1.5mp, and
Vp =0 =0.
4
_ _ / ’ ’ mBUB _ 2.7
Pinitial = Pfinal  — O0=mpUy +mply — Uy = T, 3
A

The negative sign indicates direction. Since there was no mechanical energy before the explosion, the
kinetic energy of the particles after the explosion must equal the energy released.

Ereleased = KE:‘\ + KE;S = %mAUIAZ +%vaE,}2 = %(lsmB )(%D,B)Z +%va£;2 = %(%va{?’z) = %KE’B
KEp =2 Epglensed = 2(5500 1) = 33001 KE), = Eygjeqgeq — KEy = 5500 J—3300 J =2200J

Thus [KE}, =2200J; KEg =3300J],

Use conservation of momentum in one dimension. Call the direction of the sports car’s velocity the
positive x direction. Let A represent the sports car and B represent the SUV. We have vz =0 and
V) = . Solve for v,.
, ma + mg
Pinitial = Pinal = MpAUA +0=(mpy +mp)vy  — V) = o U
A

The kinetic energy that the cars have immediately after the collision is lost due to negative work done
by friction. The work done by friction can also be calculated using the definition of work. We assume
the cars are on a level surface, so that the normal force is equal to the weight. The distance the cars

slide forward is Ax. Equate the two expressions for the work done by friction, solve for v}, and use

that to find v, .

— _ 1 7?2
Wi = (KEfinal ~KEinitial Jafier = 05 (ma +mp)Ux
collision

Wﬁ = Fﬁ.Ax cos 180° = _ﬂk (mA + mg )gAx
—1(my +my)Vy =—th (my +mp)gAx - U) =[2p,gAx

vy =AM _TIAETE A =w\/2(0.80)(9.80 m/s)(2.6 m)
iy _ 980 kg

=21.37 m/s =~ [21 nvs|

The impulse on the ball is its change in momentum. Call upward the positive direction, so that the final
velocity is positive and the initial velocity is negative. The speeds immediately before and immediately
after the collision can be found from conservation of energy. Take the floor to be the zero level for
gravitational potential energy.

Falling: KE,om =PE,, — %mvﬁown =mghiown > Vdown = —M

Rising: KEpouom =PErop = SMUpy =mighy, — Uy = \/%

Impulse = Ap = mAV = m(Vy, — Vgown ) = m(\/Zghup ——\/2ghdown ) = m@(%+%)
=(0.014 kg)M(er 1.5m)=0.13 kg-m/s

The direction of the impulse is upwards, so the complete specification of the impulse is
|0.13 kg-m/s, upward|.
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1 21 2 2 ” 2 2
. KE: ....1 —KE SMA VA —5 M — —
39.  Fraction KE lost = ——nitial final _ 2 A 22 BYS A 2DB = (38 ms) (152rn/s) =10.84
KEjnitial Imyvy vk (38 m/s)

40. Let A represent the more massive piece and B the less massive piece. Thus m, =3mg. In the
explosion, momentum is conserved. We have v, =vg =0.

_ _ / /7 _ / / ’ — 1 ’
Pinitial = Pfinal  —> 0=mpUp +mplp =3mgUp +mply  — V) =—3p

For each block, the kinetic energy gained during the explosion is lost to negative work done by friction
on the block.

Lw?

Wi = KEfinal = KEjnitial = 3

But work is also calculated in terms of the force doing the work and the distance traveled.
Wfr = FfrAX cos 180° = —/lkFNAX = —,ukmgAx

Equate the two work expressions, solve for the distance traveled, and find the ratio of distances.

NI T i Y
gy (A)g v igu,  vF v 9

—%mvzz—,ukmgAx - Ax=

So |(Ax)heavy /(Ax)light = l/9|'

41. (a) Momentum is conserved in the one-dimensional collision. Let A represent the baseball and let B
represent the brick.

mAUA =mAU‘,A+va]/3 —

. = Mala —mgup _ (0.144 kg)(28.0 m/s)—(5.25 kg)(1.10 m/s) _
A my 0.144 kg

So the baseball’s speed in the reverse direction is |12.1 m/s|.

(B)  KEpegye =1muv; =1(0.144 kg)(28.0 m/s)” =[56.4 ]

KEfier = 2 mp 0% +Imyvg =1(0.144 kg)(1.21 m/s)” +1(5.25 kg)(1.10 m/s)* = [13.7]

—12.10 m/s

42. The swinging motion will conserve mechanical energy. Take the zero level for gravitational potential
energy to be at the bottom of the arc. For the pendulum to swing exactly to the top of the arc, the
potential energy at the top of the arc must be equal to the kinetic energy at the bottom.

2
KEpottom = FEtop %(m + M)V om =M +M)E(2L) = Vygyom = 2+/8L

Momentum will be conserved in the totally inelastic collision at the bottom of the arc. We assume that
the pendulum does not move during the collision process.

m+M m+M
Pinitial = Pfinal — MU= (m +M)Ubott0m - U= Upottom = 2 m \/gL

m
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43. (a) The collision is assumed to happen fast enough that the bullet-block system does not move
during the collision. So the totally inelastic collision is described by momentum conservation.
The conservation of energy (including the nonconservative work done by friction) can be used to
relate the initial kinetic energy of the bullet-block system to the spring compression and the
dissipated energy. Let m represent the mass of the bullet, M represent the mass of the block, and
x represent the distance the combination moves after the collision

. , +M
Collision: mv=m+M)" — v= m )
m
2
After collision: %(m +MW? = %kx2 +um+M)gxe — V= v; +2pgx
+

m+M | ke
v= 1’ +2ugx
m m+M

2
—_1.000 I;g \/ (140 N'm)(©-050 m)” » ) 50)(9.80 m/s2)(0.050 m) =
1.0x107 kg 1.000 kg

KEinitial ~ KEfinal
KE

(b) The fraction of kinetic energy dissipated in the collision is , where the kinetic
initial
energies are calculated immediately before and after the collision.

1o -1 72 2 2
KEinjtial ~KEfinal _ 50" =5 (m+ M)V _q_(mA MO (et M)V

KEipitial Lmv? mv? (m M 'jz
m v
m
m 0.0010 kg
=1- =1- = -0.999
m+M 1.00 kg
-7
44. (a) See the diagram. Va

Dy: MADp =mp Uy cos G5 +mpUg cos 6 v,
;. ’ , . ’ —>
Py 0=muv, sin ) —mgUg sin 6 @
(b)  Solve the x equation for cos 85 and the y equation for sin 65, and then
find the angle from the tangent function.

ma Uy sin 63

,  sin6j mg Uy V), sin 6}
tan 9]3 = S = 7 N ’ ’
cos By Mp(Uy —Up COS ) (v, — V4 cos by)
mg U
, _ ', sin &, _ . in 30.0°
HB=t3n1 vAs,ln ’ : — tan”! (2.10 m/s) sin 30.0 _[46.9°]
vy —Vy cos 8 2.80 m/s—(2.10 m/s) cos 30.0°

With the value of the angle, solve the y equation for the velocity.

, _mpU, sin @y (0.120 kg)(2.10 m/s) sin 30.0° 153 s
my sin 6 (0.140 kg) sin 46.9° '

45.  Use this diagram for the momenta after the decay. Since there was no P Poucien
momentum before the decay, the three momenta shown must add to 0 in both ewne /9
the x and y directions. R
pelectron
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(p nucleus )x = Pneutrino (p nucleus ) y = Pelectron

2 2 2 2
Phucleus = \/(pnucleus )x + (pnucleus )y = \/(pneutrino ) + (pelectron )

=J(62x107 kg-m/s)? +(9.6x1072 kg-m/s)* =|1.14x102 kg-m/s|

-t Pructens)y _ 1 (Peteeron) _ -1 (9:6X10™ kg-mis)

0 = tan = 3
(pnucleus )x (pneutrino ) (6~2 x10 kg : m/s)

=57°

The momentum of the second nucleus is directed |147° from the electron’s momentum| and is directed
|123° from the neutrino’s momentum|.

46. Write momentum conservation in the x and y directions and KE conservation. Note that both masses
are the same. We allow v, to have both x and y components.

Dyl mUg =mUp, — U =Uj,
Pyl MUy =mMUL, +mMUg = Up = Uy, +Up

1

KE: Emvi+%mvé=%mvf+%mv§ — Ui +0f =0 +0f

Substitute the results from the momentum equations into the KE equation.

7.

’ 7 \2 7 N2 2 7”2 ,2 2 72 .2 72
(vAy+vB) +(Vay) =Vx tU5 — vAy+21)Ava+vB +Us, =VUp +05 —
2 2 2 _ 2 72 2 ’ ,’
Ux +204,U +Ug =Us 05 — 204,08 =0 — vy, =00rvz =0

Since we are given that v # 0, we must have v}, =0. This means that the final direction of A is the
. Put this result into the momentum equations to find the final speeds.

Vh=Vh =vp =[7ms] vy =0, =[20mp]

4

1
47. (a) Let A represent the incoming nucleus and B represent the target particle. _ i B
Take the x direction to be in the direction of the initial velocity of mass Va o ===
A (to the right in the diagram) and the y direction to be up in the @_' |
diagram. Momentum is conserved in two dimensions and gives the @ i g-
following relationships: ' *;3

Dy MAU) =mglg cos@ — =205 cos @
py: 0=muv) —mpvpsin @ — v} =2v5sin @
The collision is elastic, so kinetic energy is also conserved.
.1 2 _1
KE: EmAUA = 3
Square the two momentum equations and add them together.

V=204 cos B; V) =205 sin @ — v° =4v7 cos® 6;

mavR +imgf - V=0 420 - 0P v =20

v =4vf sin? 0 — v +0l =40f
Add these two results together and use them in the x momentum expression to find the angle.

v
vz—v/’f:ZU]’Bz; 1)2+vg2:4vl'32 - 21)2:61)1'32 - vp=—f0

B

cosf= U oV B
2ug v 2
5
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b) From above, we already have = . Use that in the y momentum equation.
NG

V) =204 sin9=2isin30°: v/;:%

3

(¢) The fraction transferred is the final energy of the target particle divided by the original kinetic
energy.

KEfarget %mBUZgZ _ %(2mA)(1)2/3) 2

2 2
KE griginal %I’I’IAZ)A %mAl) 3

A momentum diagram of the collision looks like the first figure.

| 0=55.6°
. . Vi o @f_{ _
48. Let A represent the incoming neon atom and B represent the target atom. @ !

E ; )

The figure can be redrawn as a triangle, the second figure, since
mpV A =maV 5 +mgV'g. Write the law of sines for this triangle, relating
each final momentum magnitude to the initial momentum magnitude.

myvVy sin g sin ¢
AR 5 v =u—
mAUA Sin o Sin &

/7 . .
m sin @ my, sin @
Ml _SING =y, A
MmpV, Sino mg sin &

The collision is elastic, so write the KE conservation equation, and substitute the results from above.
Also note that & =180.0—55.6°—50.0° = 74.4°.

1 2 _1 21 2 2 _ sin ¢ my sin 6
EmAvA —EmAUA +EmBUB 4 mAUA =ma (‘UA sin a +mB UA_

.2 .2
o 20. .6°
g = .rrzzAsm. - .(ZOOu)sm. 256 —[99u
sin“—sin” ¢ sin” 74.4°—sin” 50.0°

49. Choose the carbon atom as the origin of coordinates. Use Eq. 7-9a.

-10
mexe +moxg  (12u)(0)+ (16 u)(1.13x107"" m) 11
= = -6.5><10 m| from the C atom
mC +m0 12 u+16 u

XcMm =

50. Use Eq. 7-9a, extended to three particles.
_mpxp +mgxg +mexe  (1.00 kg)(0)+(1.50 kg)(0.50 m) +(1.10 kg)(0.75 m)
mp +mg +mc 1.00 kg+1.50 kg+1.10 kg

=[0.438 m|

51. Find the M relative to the front of the car. Use Eq. 7-9a.

Xcm

MearXcar T MerontXront T Mhack Xback
Mear + Megone + Mpack

(1250 kg)(2.40 m) +2(65.0 kg)(2.80 m) +3(65.0 kg)(3.90 m)
= = -2.62 m
1250 kg +5(65.0 kg)

Xcm =
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52. By the symmetry of the problem, since the centers of the cubes are along a straight line, the vertical
CM coordinate will be 0, and the depth CM coordinate will be 0. The only CM coordinate to calculate is
the one along the straight line joining the centers. The mass of each cube will be the volume times the

density, so m; = ,0((0)3 ,my = p(20 0)3 , My = p(3€0)3. Measuring from the left edge of the smallest
block, the locations of the CMs of the individual cubes are x; = %K 0> % =20y, x3 =4.50,.

Use Eq. 7-9a to calculate the cM of the system.

3 3 3
myx, +myx, +myxy  PLo(300)+8PL0(200) +2Tpl5(4.500) 138 23

XeM = =—Vlg=—/
o my +my +my pLy+8ply +27pl} 36 6 °
=13.8¢, from the left edge of the smallest cube|
53. Let each case have a mass M. A top view of the pallet is shown, with the total mass of —
each stack listed. Take the origin to be the back left corner of the pallet. Use Eqs. 7-9a
and 7-9b. l 3M|2M 2M
(SM)(L/2)+(BM)(3L/2)+(2M)(5¢/2) y M| M
+ +
Xy = =[1.2¢
M o 124 M
TM)(L/2)+(2M)3L/2)+ (M )(5¢/2
ey =MD+ ( &)(M )M s

54. Because the brace is uniform, the mass of each “leg” is proportional to its area. Since each “leg” has
the same width of 0.20 m, each leg’s mass is proportional to its length. We calculate the center of mass
relative to the origin of coordinates as given in the diagram. Let the total mass be M.

2.06 M =0.5819M; m 1.48

m . - . =
{Lognzontal 2.06+1.48 ;:grtlcal 2.06+1.48

M =04181M

_ MhorizXhoriz + Mvert¥vert _ (0.5819M)(1.03 m)+(0.4181M)(1.96 m) _

M oriz T Myert M

_ MhorizPhoriz + MyerVvere _ (0.5819M)(0.10m) +(0.4181M )(=0.74 m) _
Mporiz + Myert M

Xcm

Yem

55.  Consider the following: We start with a full circle of radius 2R, with its CM
at the origin. Then we draw a circle of radius R, with its CM at the
coordinates (0.80R,0). The full circle can now be labeled as a “shaded” f : '

—u, I |

part and a “white” part. The y coordinate of the CM of the entire circle, the '-\‘ (},gog\ﬁ | |
CM of the shaded part, and the CM of the white part are all at y =0 by the ":::::_k b ) j

symmetry of the system. The x coordinate of the entire circle is at xqy; =0, \
///

_ Mshaded¥shaded T MwhiteXwhite p—

and can be calculated by xc . Solve this

Miotal
equation to solve for the CM of the shaded part.

_ Mghaded*shaded + Myhite Xwhite
XeM = —>

Miptal

Xghaded = MiotalXcM ~ Mwhite Xwhite — Miotal*cM_~ Mwhite Xwhite — ~MyhiteXwhite
shade

Mshaded Miotal — Mywhite Miotal ~ Myyhite
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This is functionally the same as treating the white part of the figure as a hole of negative mass. The mass
of each part can be found by multiplying the area of the part times the uniform density of the plate.

2
Moo —pTR*(0.80R)  —0.80R
Xshaded = - ie = 1.te = 2 7= 3 =[-0.27R
Miotal ~ Myhite  PT(2R)" — p7R

The negative sign indicates that the CM of the shaded part is to the left of the center of the circle of
radius 2R.

56. Take the upper leg and lower leg together. Note that Table 7—1 gives the relative mass of BOTH legs,
so a factor of 1/2 is needed. Assume a person of mass 70 kg.

(21.5+9.6) ,
70 kg)———— - =10.885kg = |11k

57.  With the shoulder as the origin of coordinates for measuring the center of mass, we have the following
relative locations from Table 7—1 for the arm components, as percentages of the height. Down is positive.

Xupper =812=71.7=9.5  Xjgyer =81.2-553=25.9 g =81.2-43.1=38.1

arm arm

To find the CM, we can also use relative mass percentages. Since the expression includes the total mass
in the denominator, there is no need to divide all masses by 2 to find single component masses. Simply
use the relative mass percentages given in the table.

xupper mupper * XowerMower T *hand ™hand

o o _&m am arm  arm _(9.5)(6.6) +(25.9)(4.2) + (38.1)(1.7)
CM — =
mupper + Mygwer + Mpand 6.6+42+1.7

=[19% of the person’s height along the line from the shoulder to the hand|

58. Take the shoulder to be the origin of coordinates. We assume that the arm is held :

with the upper arm parallel to the floor and the lower arm and hand extended 0 :
upward. Measure x horizontally from the shoulder and y vertically. Since the °
expression includes the total mass in the denominator, there is no need to divide all ~ ~ e => -

masses by 2 to find single component masses. Use the relative mass percentages
given in the table.

XupperMupper *+ XowerMlower T *hand™hand

X _ arm arm arm arm
CM —
Mypper + Miower T Mhand
arm arm
_ BL2-7L7)(6.6)+(812-622)42+1.7) _ o
6.6+42+1.7 '
YupperMupper * YViower™ower T VhandMhand
Yeu = arm  arm arm  arm
mupper + Migwer T Mhand
arm arm
_ (0)(6:6)+(622-55.3)(4.2) +(622-43.0(1.7) _, o,
6.6+4.2+1.7 '
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7-22 Chapter 7

Convert the distance percentages to actual distance by using the person’s height.

Xy = (14.0%)(155 cm) = Yo = (4.92%)(155 cm) =[7.6 cm]

upper legs

trunk & neck

59. See the diagram of the person. The head, trunk, neck, and
thighs are all lined up so that their CMs are on the torso’s
median line. Call down the positive y direction. The y
displacements of the CM of each body part from the
median line, in terms of percentage of full height, are
shown below, followed by the percentage each body part
is of the full body mass.

On median line: head (h): 0 6.9% body mass
trunk & neck (t n): 0 46.1% body mass
upper legs (u l): 0 21.5% body mass

From shoulder hinge point: upper arms (u a): 812-717=95 6.6% body mass
lower arms (1 a): 81.2-553=259 4.2% body mass
hands (ha): 81.2-43.1=38.1 1.7% body mass

From knee hinge point: lower legs (11): 28.5-18.2=10.3 9.6% body mass
feet (f): 28.5-1.8=26.7 3.4% body mass

Using this data, calculate the vertical location of the CM.

0 F Vi F Vit Y Yuaua Y Via™a t Vhaha T V1M Y VENY

Mgy
body

_ 0+0+0+(9.5)(6.6) +(25.9)(4.2) +(38.1)(1.7) + (10.3)(9.6) + (26.7)(3.4)
100

Ycm

=4.2591=43

So the center of mass is 4.3% of the full body height below the torso’s median line|. For a person of
height 1.7 m, this is about 7.2 cm, which is less than 3 inches. That is most likely [inside the bodﬂ.

60. Based on Fig. 7-27, we place the upper legs parallel
to the bar, the lower legs and feet hanging vertically,
and the trunk and neck, head, arms, and hands all
tilted down by 15°. Call down the positive y direction.

trunk & neck

upper legs

The y distances of the CM of each body part from the lower legs head
median line, in terms of percentage of full height, are feet ° upper arms
shown below, followed by the percentage each body lower arms

part is of the full body mass. The calculations for the
lower legs and feet are the same as for Problem 59.
Here are the calculations for the angled parts of the body.

Trunk & neck:  Hip joint: 52.1% from the floor, center of trunk at 71.1%, difference = 19.0%. CM of
trunk & neck =19.0(sin 15.0°) =4.92

Head: Hip joint: 52.1%, center of head at 93.5%, difference = 41.4% CM of head
=41.4(sin 15.0°) =10.72

Shoulder: Hip joint: 52.1%, shoulder at 81.2%, difference = 29.1%

=29.1(sin 15.0°) = 7.53
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Upper arms: Shoulder: 81.2%, center of upper arms at 71.7%, difference = 9.5% CM of upper
arms = 7.53 (due to shoulder) + 9.5(cos 15.0°) =16.71

Lower arms: Shoulder: 81.2%, center of lower arms at 55.3%, difference = 25.9% cM of lower
arms = 7.53 (due to shoulder) + 25.9(cos 15.0°) =32.55

Hands: Shoulder: 81.2%, center of hands at 43.1%, difference = 38.1% CM of hands = 7.53
(due to shoulder) + 38.1(cos 15.0°) = 44.33

On horizontal line: upper legs (u 1): 0 21.5% body mass
From waist hinge point: trunk & neck (t n): 4.92 46.1% body mass
head (h): 10.72 6.9% body mass
From shoulder hinge point:  upper arms (u a): 16.71 6.6% body mass
lower arms (1 a): 32.55 4.2% body mass
hands (ha): 4433 1.7% body mass
From knee hinge point: lower legs (11): 10.3 9.6% body mass
feet (f): 26.7 3.4% body mass

Using this data, calculate the vertical location of the CM.

Yen = Iy F Vi YV iMar T VaaMua T VaMa T VnaMha 000 Vel
oM =

Mg
body

10.72(6.9) + 4.92(46.1) + 0 + (16.71)(6.6) + (32.55)(4.2)
+(44.33)(1.7) + (10.3)(9.6) + (26.7)(3.4)
100

=8.128 = 8.1

Thus the center of mass is |8. 1% of the full body height below the torso’s median 1ine|. For a person of
height 1.7 m, this is about 14 cm. That is about 5.5 inches, and it is most likely slightly loutside thgl

body

(a) Find the cM™ relative to the center of the Earth.

2
—

reyg = MEE Y (5.98x10%* kg)(0)+(7.35x10% kg)(3.84x10% m)
mg, + my 5.98x10%* kg+7.35x10% kg

=4.66x10° m from the center of the Earth|

This is actually inside the volume of the Earth, since R = 6.38x10° m.

(b) Itis this Earth-Moon CM location that actually traces out the orbit, as discussed in Chapter 5.
The Earth and Moon will orbit about this location in (approximately) circular orbits. The motion
of the Moon, for example, around the Sun would then be a sum of two motions: (i) the motion of
the Moon about the Earth—Moon CM and (ii) the motion of the Earth—Moon CM about the Sun.
To an external observer, the Moon’s motion would appear to be a small radius, higher frequency
circular motion (motion about the Earth—-Moon €M) combined with a large radius, lower
frequency circular motion (motion about the Sun).
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7-24 Chapter 7

62. The point that will follow a parabolic trajectory is the center of mass of the mallet. Find the CM relative
to the bottom of the mallet. Each part of the hammer (handle and head) can be treated as a point mass
located at the cM of the respective piece. So the CM of the handle is 12.0 cm from the bottom of the
handle, and the cM of the head is 28.0 cm from the bottom of the handle.

— Mpandle*handle + "head Yhead — (0'500 kg)(12~0 Cm) +(2-3O kg)(28-0 Cm) —
Mhandle T Mhead 2.80 kg

Xcm

Note that this is inside the head of the mallet. The mallet will rotate about this point as it flies through
the air, giving it a wobbling kind of motion.

63. (a) Measure all distances from the original position of the woman.

my Xy +myxy (52 kg)(0)+(72 kg)(10.0 m)
My + myy 124 kg

XeM = =5.806 m

= |5.8 m from the Woman|

(b) Since there is no force external to the man—woman system, the CM will not move, relative to the
original position of the woman. The woman’s distance will no longer be 0, and the man’s
distance has changed to 7.5 m.

My Xy + My Xy _ (52 kg)xyw +(72 kg)(7.5 m) —5806m —

X, =
M gy +myy 124 kg

_ (5.806 m)(124 kg)— (72 kg)(7.5 m)
W 52 kg

Xy — Xy =7.5m—3.460 m=4.040 m ~[4.0 m|

=3.460 m

(c) When the man collides with the woman, he will be at the original location of the center of mass.
Xy —xy =5.806m-10.0 m=-4.194 m

final initial

He has moved from his original position.

64. The cM of the system will follow the same path regardless of the way the mass splits and will still be
2d from the launch point when the parts land. Assume that the explosion is designed so that my still

is stopped in midair and falls straight down.

_omyd +3mpxy  d+3xy

myXy + My Xy 7
( ) ™ my + my 4mI 4 1 3
+ 3myd + 3d +
(B)  xey = ke SO B G0 | N W | L 1)\ | N Xy =
my + my; 4my 4
155k 58k 85k
65. Calculate the CM relative to the 55-kg person’s seat, at one end of the ® £ ) £ ®| &

boat. See the first diagram. Be sure to include the boat’s mass.

MpA XA + mgXg + mcXxc

XcMm =

(55 kg)(0)+ (58 kg)(1.5 m) + (85 kg)(3.0 m)
- 198 kg

=1.727 m

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Linear Momentum 7-25

Now, when the passengers exchange positions, the boat will move
some distance d as shown, but the cM will not move. We measure
the location of the CM from the same place as before, but now the

boat has moved relative to that origin.

85kg S8kg 55 kg
%) ® &)

_ mAxA +meB +mCxC
XcMm =

mA +mB +mc
= B5ke)d)+(58 kg)(1.5 m+d) + (55 kg)3.0 m+d) _ 1984 kg m+252 kg -m
218 kg 198 kg
_ (1727 m)(198 kg)—252 kg-m
- 198 kg

d =0.4543 m

Thus the boat will move |0.45 m toward the initial position of the 85-kg person|.

66. Call the origin of coordinates the CM of the balloon, gondola, and passenger at rest. Since the CM is at
rest, the total momentum of the system relative to the ground is 0. The passenger sliding down the rope
cannot change the total momentum of the system, so the CM must stay at rest. Call the upward
direction positive. Then the velocity of the passenger with respect to the balloon is —v. Call the

velocity of the balloon with respect to the ground vgg. Then the velocity of the passenger with respect
to the ground is vy =—V+vpg. Apply Eq. 7-10.

m

0=moyg +Mogg =m(-V+vgg)+Mvgg — |Ugg =V , upward

m+

If the passenger stops, the balloon also stops|, and the CM of the system remains at rest.

67. The only forces on the astronauts are internal to the two-astronaut system, so their CM will not change.
Call the CM location the origin of coordinates. That is also the initial location of the astronauts.

_ mpXp +mpgXp 0= (55 kg)(12 m) + (85 kg)xg

my +mp 140 kg
Their distance apart is x5, —xg =12 m—(-7.76 m) = 2.0x10' m|

68. This is a totally inelastic collision in one dimension. Call the direction of asteroid A the positive
direction, and use conservation of momentum.

x=-7.76 m

Xcm

Pinitial = Pfinal  —> MAVUA +mglg =(my +mg)V" —
o = MAVA Mgl _ (7.5%10'% kg)(3.3 km/s) +(1.45x10" kg)(~1.4 km/s)
my +mg 7.5x10'% kg+1.45x10" kg
=0.0203 km/s = |0.2 km/s, in the original direction of asteroid A|

69. Consider conservation of energy during the rising and falling of the ball, between contacts with the
floor. The gravitational potential energy at the top of a path will be equal to the kinetic energy at the

start and the end of each rising-falling cycle. Thus mgh = %mv2 for any particular bounce cycle. Thus

for an interaction with the floor, the ratio of the energies before and after the bounce is
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70.

71.

72.

KEufer _ mgh’  1.20m

=0.75. We assume that each bounce will further reduce the energy to 75%

KEbefore mgh a 1.60 m

of its pre-bounce amount. The number of bounces to lose 90% of the energy can be expressed as
follows:

_log0.1

(075" =0.1 —» n= =8.004
log 0.75

Thus after , 90% of the energy is lost.

As an alternate method, after each bounce, 75% of the available energy is left. So after 1 bounce, 75%
of the original energy is left. After the second bounce, only 75% of 75%, or 56%, is left. After the third
bounce, 42%. After the fourth bounce, 32%. After the fifth bounce, 24%. After the sixth bounce, 18%.
After the seventh bounce, 13%. After the eight bounce, 10%. So it takes 8 bounces.

Momentum will be conserved in the horizontal direction. Let A represent the railroad car and B
represent the snow. For the horizontal motion, vy =0 and vy = v). Momentum conservation in the

horizontal direction gives the following.

4
Dinitial = Pfinal  —>  MaAUA = (my +mg)Up

o Ml _ (4800 kg)(7.60 m/s) 7255 s =
A s 4 g 3.80 kg ‘ ' '
4800 kg +| ———={(60.0 min)
min

Let the original direction of the cars be the positive direction. We have v, =4.50 m/s and
vg =3.70 m/s.
(a) Use Eq. 7-7 to obtain a relationship between the velocities.
Uy —Ug =—(V) —U3) — Ug =0y -0+, =0.80 m/s+0vj
Substitute this relationship into the momentum conservation equation for the collision.
m,v, +myy =MV, +mgvy — m, 0, +myv, =m0y +my(0.80 m/s+vy) —

o = MAUA+mp (U ~0.80 ms) _ (435 kg)(4.50 m/s) +(495 kg)(2.90 m/s)
A my +myg 930 kg

~[3.65 m/s|; vp =0.80 m/s+v; =4.448 m/s = |4.45 m/s

(b) Calculate Ap = p’— p for each car.

=3.648 m/s

Apa =mpV) —mavs = (435 kg)(3.648 m/s —4.50 m/s) = —370.62 kg - m/s

-k my

Apg = mgug —mgug = (495 kg)(4.448 m/s —3.70 m/s) =370.26 kg - m/s
=|370 kg-m/s

The two changes are equal and opposite because momentum was conserved. The slight
difference is due to round-off error on the calculations.

This is a ballistic “pendulum” of sorts, similar to Example 7-9. The only difference is that the block
and bullet are moving vertically instead of horizontally. The collision is still totally inelastic and
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conserves momentum, and the energy is still conserved in the rising of the block and embedded bullet
after the collision. So we simply quote the equation from that example.

U=m+M\/@ N
m
2 2
ao L ( mo ) 1 [(o.ozso kg)(230 m/s)] —0.8307 m=[083 m]

2g\m+M ) " 29.80 mis?)| 0.0250 kg+1.40 kg

73.  We assume that all motion is along a single direction. The distance of sliding can be related to the
change in the kinetic energy of a car, as follows:

Wy =AKE=L1mf —0v}) Wy =FyAx cos 180°0 =~y FyAx = —mgAx  —
~peghe =% (v —v)

For post-collision sliding, vy =0 and v; is the speed immediately after the collision, v’. Use this
relationship to find the speed of each car immediately after the collision.

Car A: —p gAxy =—10 - v} =2 gAx) = 2(0.60)(9.80 m/s?)(18 m) =14.55 m/s

Car B: —u gAvy =—1ug = v =2, gA = \/2(0.60)(9.80 m/s?)(30 m) =18.78 m/s
During the collision, momentum is conserved in one dimension. Note that vg =0.
Pinitial = Pinal  —> MAVA =MAV) +mpUp

_ mpU) +mpt _ (1500 kg)(14.55 m/s)+ (1100 kg)(18.78 m/s)
- 1500 kg

=28.32 m/s

Up

For pre-collision sliding, again apply the friction—energy relationship, with vy =v, and v; the speed
when the brakes were first applied.

gy =L (W] —0P) = v =0} + 24, 8Ax, =+/(28.32 m/s)? +2(0.60)(9.80 m/s?)(15 m)

=3128 ms[ﬂj =[70 mi/h

0.447 m/s

Car A was definitely over the speed limit.

74. (a) The meteor striking and coming to rest in the Earth is a totally inelastic collision. Let A represent
the Earth and B represent the meteor. Use the frame of reference in which the Earth is at rest
before the collision, so v, =0. Write momentum conservation for the collision.

mpUg = (mp +mp)) —

8
V=05 —B = (2.5x10* m/s) 1.5x10" ke =6.25%107% mys

ma +mpg 6.0x10%* kg+1.5x10® kg

~[6.3x1071 m/s
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() The fraction of the meteor’s KE transferred to the Earth is the final KE of the Earth divided by the
initial KE of the meteor.

KE final 1

Bah  3mal” 1(6.0x10% kg)(6.25%x107" m/s)? T
KE:. .. T 2 1 8 ka)(2 1 4 m/ 2 = X
initial 2vaB 2(1.5)(10 g)(2.5x10 s)

meteor

(¢) The Earth’s change in KE can be calculated directly.

AKE gy = KEipal —KEinigiat =3 AV 0= %(6.0><1024 kg)(6.25x1071% m/s)? =
Earth Earth

75. This is a ballistic “pendulum” of sorts, similar to Example 7-9. The mass of the bullet is m, and the
mass of the block of wood is M. The speed of the bullet before the collision is v, and the speed of the

combination after the collision is . Momentum is conserved in the totally inelastic collision, so
mv = (m+ M)V'. The kinetic energy present immediately after the collision is lost due to negative

work being done by friction.

W = AKE =2 m(Vf =07 s Wy, = FAx cos 180°0 = — iy FyAx = — g mgAx  —

collision
My gAx = %(Uf2 -v})= _%0,2 - V=2 gAx
Use this expression for v in the momentum equation in order to solve for v.
mv=(m+MV =m+M) 2 ghx —
v= (’" +M}/2,ukgAx - [0'028 kg+1.35 kgj\/z(o.zs)@.go m/s?)(8.5 m) =
m

0.028 kg

76. (a) The average force is the momentum change divided by the elapsed time.

Ny mny (1500 kg)0—4s mh)(&j
Fpg =2 ="20 - : =-1.25x10° N =|-1.3x10° N
At At 0.15s

The negative sign indicates direction—that the force is in the opposite direction to the original
direction of motion.

(b) Use Newton’s second law. We use the absolute value of the force because the problem asked for
the deceleration.

Fhe  125x10° N ( 1g .
Favg =matng = ayg == B = =8I M -85

m

77.  The original horizontal distance can be found from the level horizontal range formula in Chapter 3.

R =} sin 26,/g = (25 m/s)*(sin 56°)/(9.80 m/s*) = 52.88 m

The height at which the objects collide can be found from Eq. 2—11c¢ for the vertical motion, with
v, =0 at the top of the path. Take up to be positive.

vy —0yy  0—[(25 ms) sin 28°]

- =7.028m
2a 2(-9.80 m/s)

2_ .02 _
v, =Vyg+2ah — h=
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Let m represent the bullet and M the skeet. When the objects collide, the skeet is moving horizontally
at v cos @ = (25 m/s) cos 28° =22.07 m/s = v, and the bullet is moving vertically at v, =230 m/s.

X
Write momentum conservation in both directions to find the velocities after the totally inelastic
collision.

MV, (0.25 kg)(22.07 m/s)
M+m  (0.25+0.015) kg

) , _ MU, (0.015 kg)(230 m/s)
. B _ Y _
py: mu, =(M+mp, — Y e (0.25+0.015) kg

Py Mo, =(M+my, — v, = =20.82 m/s

=13.02 m/s

(a) The speed v)', can be used as the starting vertical speed in Eq. 2—11c to find the height that the

skeet—bullet combination rises above the point of collision.

2 2

v — — 2
V=0 +2ak - K= _0-03.00 m/i) =8.649 m ~[8.6 m|
2a 2(-9.80 m/s?)

(b) From Eq. 2-11Db applied to the vertical motion after the collision, we can find the time for the
skeet—bullet combination to reach the ground.

y=yy+vjt+ar’ - 0=7.028 m+(13.02 m/s)t+1(-9.80 m/s”)*
4.9 -13.02t-7.028=0 —

1302 +1/(13.02)% +4(4.9)(7.028)

9.80
The positive result is used to find the horizontal distance traveled by the combination after the
collision.

Xyfier = Vst = (20.82 m/s)(3.117 ) = 64.90 m

=3.117s,-0.460 s

If the collision had not happened, the skeet would have gone %R horizontally.
AY = Xy —E R =64.90 m—1(52.88 m) =38.46 m =

78.  For the swinging balls, their velocity at the bottom of the swing and the
height to which they rise are related by conservation of energy. If the zero of
gravitational potential energy is taken to be the lowest point of the swing,
then the kinetic energy at the low point is equal to the potential energy at the
highest point of the swing, where the speed is zero. Thus we have

fcos@

%mv ﬁottom: mgh for any swinging ball, so the relationship between speed

and height is D3om=2gh. From the diagram we see that & =/ (1—cos 6).
(a) Calculate the speed of the lighter ball at the bottom of its swing.

v =2ghy =12(9.80 m/s2)(0.35 m)(1—cos 66°) = 2.017 m/s = [2.0 m/s

(b) Assume that the collision is elastic, and use the results of Search and Learn 5. Take the direction
that ball A is moving just before the collision as the positive direction.

vy =amp) ) (0045 kg =0.065Ke) () 17 1) = 03667 mis = [2037 ms
(ma+mpg) "~ (0.045 kg+0.065 kg)

, 2m, 2(0.045 kg)
= Vp = 2.017 m/s) =1.650 m/s z-1.7 m/s
B e ) N (0,045 kg +0.065 kg)( )

Notice that ball A has rebounded backward.
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(¢)  After each collision, use the conservation of energy relationship again.
2

,2 . 2 2
iy =Y 03667 T 107 m| py =2 = QOO [ 0T

2¢  2(9.80 m/s?) 2g  2(9.80 m/s?)

79. (a) Use conservation of energy to find the speed of mass m before the collision. The potential energy
at the starting point is all transformed into kinetic energy just before the collision.

mghy =Imv} > vy =28k, =2(9.80 m/s>)(3.60 m) =8.40 m/s
Use Eq. 7-7 to obtain a relationship between the velocities, noting that vg = 0.
Up—Ug =Up—U)y > Vg =Uj+U,
Apply momentum conservation for the collision, and substitute the result from Eq. 7-7.

mu, =mvy + Mug =mvy + M (Vs +0y) —

. m—M 2.50 kg —7.00 k
vy =2 UA:( 50 kg =7.00 g](8.40m/s)=—3.98m/s

m+M 9.50 kg
Vg =Up +0, =—3.98 m/s+8.40 m/s =|4.42 m/s

() Again use energy conservation to find the height to which mass m rises after the collision. The
kinetic energy of m immediately after the collision is all transformed into potential energy. Use
the angle of the plane to change the final height into a distance along the incline.

2

%mvg2 =mghy, — hy= Ua
2g
h, v} (-3.98 m/s)*
dy=—34 - A _ =1.62m

A7 sin30 2gsin30  2(9.80 m/s?)sin 30.0°

80. (@) Momentum is conserved in the x direction. The initial x momentum is 0.

Px = Px - 0= Mgatellite Vs satellite + Mshuttle U shuttle
before after
/RN )) ; 850 k -
) — _ satellite “x satellite _ __ g (0.30 m/s) = —2.8x10 3 m/s
x shuttle 92.000 k
Mghuttle > g

So the component in the minus x direction is 2.8x107° mys|.

() The average force is the change in momentum per unit time. The force on the satellite is in the
positive x direction.

Ap  mAv (850 kg)(0.30 m/s)
M OAr At 48s

81. (a) Inthereference frame of the Earth, the final speed of the Earth—asteroid system is essentially 0,
because the mass of the Earth is so much greater than the mass of the asteroid. It is like throwing
a ball of mud at the wall of a large building—the smaller mass stops, and the larger mass doesn’t
move appreciably. Thus all of the asteroid’s original kinetic energy can be released as
destructive energy.

KEorig =205 =1[(3200 kg/m®) 2 7(1.0x10° m)*](1.5x10* m/s)* =1.507x10*" J

orig — o

~[1.5%x10%" J
(b)  1.507x10! J(mJ: 38,000 bombs

4.0%x10'° J
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82.  The initial momentum of the astronaut and the gas in the jet pack is 0, so the final momentum of the
astronaut and the gas ejected from his jet pack must also be 0. We let A refer to the astronaut and B
refer to the gas. The velocity of the astronaut is taken to be the positive direction. We also assume that
gas is ejected very quickly, so that the 35 m/s is relative to the astronaut’s rest frame.

0=myvp +mgvg = (210 kg—mp)(2.0 m/s) + mg(-35 m/s) —

210 kg(2.0 m/s)
my == W) 1135 kg <[1Tk
B g

83. (a) @l, there is no net external force on the system. In particular, the spring force is internal to the
system.

(b) Use conservation of momentum to determine the ratio of speeds. Note that the two masses will
be moving in opposite directions. The initial momentum, when the masses are released, is 0.

Pinitial = Plater — 0=mpaUy —mgg  — UA/UB:
102 2 2
o Kaimd_m(n) m(m) g
KEg 1 Ug mg \ My

(d) The center of mass was initially at rest. Since there is no net external force on the system, the
center of mass does not move, and the system .

o0
H

Because all of the collisions are perfectly elastic, no energy is lost in the collisions. With each
collision, the horizontal velocity is constant, and the vertical velocity reverses direction. So, after each
collision, the ball rises again to the same height from which it dropped. Thus, after five bounces, the
bounce height will be , the same as the starting height.

85. In this interaction, energy is conserved (initial potential energy of mass—compressed spring system =
final kinetic energy of moving blocks) and momentum is conserved, since the net external force is 0.
Use these two relationships to find the final speeds.

pinitial = pﬁnal - O = mvm - 3mv3m - Um = 303,,,
E E

initial — “final

—>  PEgpring = KEg,,  —

initial

2 2 2 2 2 2
kD™ =+mv, +53mv,, =+m(3v,,)” +53mv;, =6muv;,

3m

, k ’ k
%kDZ = 6m1)32m — U3m =D ?, Um =3D F
m m

86. In an elastic collision between two objects of equal mass, with the target
object initially stationary, the angle between the final velocities of the objects
is 90°. Here is a proof of that fact. Momentum conservation as a vector
relationship says mv =mv/, +mvy — V=V, +Vp. Kinetic energy

21 2 1 72 2
—EmUA +5m1)B — U

conservation says %mv =0 +vf. The vector

equation resulting from momentum conservation can be illustrated by the
second diagram. Apply the law of cosines to that triangle of vectors, and then

equate the two expressions for V2.

v? =0 + v — 20,05 cos @
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Equating the two expressions for v? gives

V2 + 0 - 2040 cos 0=V +0fF — cosf=0 — 6=90°

For this specific circumstance, see the third diagram. We assume that the
target ball is hit “correctly” so that it goes in the pocket. Find 6, from the

geometry of the “left” triangle: 6, = tan™! 10 =30°. Find 6, from the

V3.0
geometry of the “right” triangle: 8, = tan™! 30 =60°. Since the balls will separate at a 90° angle, if

3.0

the target ball goes in the pocket, this does appear to be a | good possibility of a scratch shot |

Solutions to Search and Learn Problems

1. Ttis best to use Ziext =0 and Zf)i = Zf)f when the system can be broken up into two or more
objects for which only the forces between the objects are significant. The principle of impulse,
ZfextAt = Ap, is useful in cases where the time over which the force acts is known and when

examining the change in momentum of a single object due to external forces.

2. In each case, use momentum conservation. Let A represent the 6.0-kg object, and let B represent the
8.0-kg object. Then we have m, =6.0 kg, v, =6.5 m/s,mg =8.0 kg, and vy =—4.0 m/s.
(a) In this case, the objects stick together, so v} = V.

,
mAUA +mBUB = (mA +mB)UA -

;o Uy + .0 kg)(6. +(8.0 kg)(—4.
v = v, = alat Ml _ (6.0 kg)(6.5 m/s) +(8.0 kg)( Om/S):
my +mpg 14.0 kg
(b) In this case, use Eq. 7-7 to find a relationship between the velocities.
Uy Vg =—(Va —VB) = Up =0, ~Up+U,
MoV, + Ml = MoV + Mgl =mpUy +mg(Vy —Vg +V,) —
- (my —my)v, +2mpvy _ (2.0 kg)(6.5 m/s) +2(8.0 kg)(—4.0 m/s) _
my +mg 14.0 kg

Vf =V, — Vg + V) = 6.5 m/s —(—4.0 m/s)—5.5 m/s =

(¢) Inthis case, vy =0.

’

+ . . . —4.

vl = MAUp + 1BV _ (6.0 kg)(6.5 m/s)+ (8.0 kg)(—4.0 m/s) — 0.875 m/s ~ m
mg 8.0 kg

To check for “reasonableness,” first note the final directions of motion. A has stopped, and B has

reversed direction. This is reasonable. Secondly, calculate the change in kinetic energy.

1

— 2 1 2 1 2

=1 (8.0 kg)(0.875 m/s)? —[%(6.0 kg)(6.5 m/s) +1(8.0 kg)(—4.0 m/s)z} - 188

Since the system has lost kinetic energy and the directions are possible, this interaction is

easonable,.
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(d) Inthis case, v =0.

mAUA +vaB =mAUA —
Vi = MAUN +mpUp _ (6.0 kg)(6.5 m/s)+ (8.0 kg)(—4.0 m/s) 1167 m/s = m
This answer is , because A continues to move in its original direction while B has

stopped. Thus A has somehow “passed through” B. If B has stopped, A should have rebounded
and would have had a negative velocity.

(e) Inthis case, vy =—4.0 m/s.

MAUA +mplp = mp Vs +mgly  —
= (60 KRGS s __4§onZS)+ BOKDA0WS) 3 eoo ]
U Kg

The directions are reasonable, in that each object rebounds. Since the speed of both objects is
smaller than in the perfectly elastic case (b), the system has lost kinetic energy. This interaction

is [reasonablel.

() As quoted above,

the results for (¢) and (e) are reasonable, but () is not reasonable|.

3. Let A represent the cube of mass M and B represent the cube of mass m. Thus m, =M =2m and

mp = m. Find the speed of A immediately before the collision, v,, by using energy conservation.

Mgh=1Mvi — vy =\2gh= J2(9.8 m/s?)(0.35 m) = 2.619 m/s

Use Eq. 7-7 for elastic collisions to obtain a relationship between the velocities in the collision. We
have vg =0.

/ / / /
Up—Ug =—(Vp —Ug) — Ug =Up+Ux
Substitute this relationship into the momentum conservation equation for the collision.
mAUA +mBUB ZmAl)/; +va],3 e mA‘UA :mA‘UAJFmB(UA +‘UA) -

J2eh  +J2(9.80 m/s?)(0.35

Up =Up +U) =30, =3.492 m/s

Each mass is moving horizontally initially after the collision, so each has a vertical velocity of 0 as
they start to fall. Use constant acceleration Eq. 2—11b with down as positive and the table top as the
vertical origin to find the time of fall.

y=y0+vot+%at2 - H=0+O-i-%gt2 — t=./2H/g

Each cube then travels a horizontal distance found by Ax = v At.

J2gh
Axyy = VyAt = 3g il =2JhH =2.,J(035 m)(0.95 m) = 0.3844 m =
g
4.[2gh
Ax,, = VRAL =Tg 28 =3JhH =8.J(0.35 m)(0.95 m) =1.538 m =
g
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4. The interaction between the planet and the spacecraft is elastic, because the force of gravity is
conservative. Thus kinetic energy is conserved in the interaction. Consider the problem a one-
dimensional collision, with A representing the spacecraft and B representing Saturn. Because the mass
of Saturn is so much bigger than the mass of the spacecraft, Saturn’s speed is not changed appreciably
during the interaction. Use Eq. 7-7, with v, =10.4 km/s and vg = vg =—-9.6 km/s.

Vs —Ug =—Ur +U5 — Uy =205 —Us =2(-9.6 km/s)—10.4 km/s =|-29.6 km/s

Thus there is almost a threefold increase in the spacecraft’s speed.

5. (a) UseEq.7-7,along with vz =0, to obtain a relationship between the velocities.
VA=V =—(Up V) — Ug=Ux+0V)
Substitute this relationship into the momentum conservation equation for the collision.
MAVA +mpUg = My U + Mgl = maUx +mp (Vg + V) ) =mpUp + MU +mpgly  —

My —m
MAVN =Ml =mpV) +mpUy  —  (my —mp)Up =(my +mp)vy  — Uy _ma=mg) (N
(mp +mpg)

Substitute this result into the result of Eq. 7-7.

, , msy —m my +m my —m 2m
UB:vA"_vA:UA‘*'MUA:UA( A B)+( A B)v = A—A
(mp +mg) (mp +mp)  (mp +mg) (mp +mg)
my —m 2m
Thus we have |V} =MUA and |vf = v, ——2—|
(mp +mpg) (mp +mpg)

(b) If my < mp, then approximate m, =0 when added to or subtracted from my.
Vi = (mp —mg) VA = (=mg) U =05 ro__2mAUN
(ma +mg) (+mg) (ma +mpg)

The result is |UA =—V,; U= 0|. An example of this is a ball bouncing off of the floor. The

massive floor has no speed after the collision, and the velocity of the ball is reversed (if
dissipative forces are not present).

(¢) 1If my > mp, then approximate mg =0 when added to or subtracted from m, .

’ - ’ 2 2
v = (mp —mp) Uy = (mp) Up =0 __“MAUA  _ZMAVA _ 5
(mp +mg) (my) (mp +mg)  (my)

The result is |z)'A =Vp; Up =20, | An example of this would be a golf club hitting a golf ball.

Up

The speed of the club immediately after the collision is essentially the same as its speed before
the collision, and the golf ball takes off with twice the speed of the club.

(d) If my =mg, thenset my =mpg =m.

’ - ’ 2mv 2mv
UA=MUA= UB=&=H=UA
(m+m) (m+m) 2m

The result is |v;\ =0; Vg =0V, | An example of this is one billiard ball making a head-on

collision with another. The first ball stops, and the second ball takes off with the same speed that
the first one had.
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Responses to Questions

1. The reading on an odometer designed for 27-inch wheels increases by the circumference of a 27-inch
wheel (27x”) for every revolution of the wheel. If a 24-inch wheel is used, the odometer will still

register (27x”) for every revolution, but only 247z” of linear distance will have been traveled. Thus

the odometer will read a distance that is farther than you actually traveled, by a factor of
27/24 =1.125. The odometer will read 12.5% too high.

2. (a) A pointon the rim of a disk rotating with constant angular velocity has no tangential acceleration
since the tangential speed is constant. It does have radial acceleration. Although the point’s
speed is not changing, its velocity is, since the velocity vector is changing direction. The point
has a centripetal acceleration, which is directed radially inward.

(b) If'the disk’s angular velocity increases uniformly, the point on the rim will have both radial and
tangential acceleration, since it is both moving in a circle and speeding up.

(c) The magnitude of the radial component of acceleration will increase in case (b), but the tangential
component will be constant. In case (a), neither component of linear acceleration will change.

]

Since the torque involves the product of a force times its lever arm, a small force can exert a greater
torque than a larger force if the small force has a large enough lever arm.

4. When you do a sit-up from a laying-down position, torque from your abdominal muscles must rotate
the upper half of the body. The larger the moment of inertia of the upper half of the body, the more
torque is needed, and thus the harder the sit-up is to do. With the hands behind the head, the moment
of inertia of the upper half of the body is larger than with the hands out in front.

5. If the net force on a system is zero, the net torque need not be zero. Consider a
uniform object with two equal forces on it, as shown in the first diagram. The net
force on the object is zero (it would not start to translate under the action of these
forces), but there is a net counterclockwise torque about the center of the rod (it
would start to rotate under the action of these forces).

If the net torque on a system is zero, the net force need not be zero. Consider an

object with two equal forces on it, as shown in the second diagram. The net torque

on the object is zero (it would not start to rotate under the action of these forces),

but there is a net downward force on the rod (it would start to translate under the °
action of these forces).
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6. Running involves rotating the leg about the point where it is attached to the rest of the body. Therefore,
running fast requires the ability to change the leg’s rotation easily. The smaller the moment of inertia
of an object, the smaller the resistance to a change in its rotational motion. The closer the mass is to the
axis of rotation, the smaller the moment of inertia. Concentrating flesh and muscle high and close to
the body minimizes the moment of inertia and increases the angular acceleration possible for a given
torque, improving the ability to run fast.

7. Refer to the diagram of the book laying on a table. The moment of
inertia about the “starred” axis (the axis parallel to the longest
dimension of the book) will be the smallest. Relative to this axis, more
of the mass is concentrated close to the axis.

8. No, the mass cannot be considered as concentrated at the CM when
considering rotational motion. If all of the mass were at the CM, then the
object would have a rotational inertia of 0. That means it could not have any rotational kinetic energy
or angular momentum, for example. The distribution of the mass is fundamental when describing
rotational motion.

9. The moment of inertia will be larger when considering an axis through a point on the edge of the disk,
because most the mass of the disk will be farther from the axis of rotation than it was with the original
axis position.

10.  Applying conservation of energy at the top and bottom of the incline, assuming that there is no work
done by friction, gives Ey,, = Epgyom — Mgh= %MU2 +%Ia)2. For a solid ball, / = %MRZ. If the

ball rolls without slipping (no work done by friction) then w=v/R, so
Mgh=1Mv* +12MR*V*IR* - v=.[10gh/7

This speed is independent of the angle of the incline, so both balls will have the same speed at the
bottom. The ball on the incline with the smaller angle will take more time to reach the bottom than the
ball on the incline with the larger angle.

11. The two spheres have different rotational inertias. The sphere that is hollow will have a larger
rotational inertia than the solid sphere. If the two spheres are allowed to roll down an incline without
slipping, the sphere with the smaller moment of inertia (the solid one) will reach the bottom of the
ramp first. See Question 12 below for a detailed explanation of why this happens.

(a) The sphere will reach the bottom first because it has a smaller rotational inertial. A detailed
analysis of that is given below.

(b) The sphere will have the greater speed at the bottom, so it will have more translational kinetic
energy than the cylinder.

(c) Both will have the same energy at the bottom, because they both started with the same potential
energy at the top of the incline.

(d) The cylinder will have the greater rotational kinetic energy at the bottom, because it has less
translational kinetic energy than the sphere.

Here is a detailed analysis of the motion:

Applying conservation of energy at the top and bottom of the incline, assuming that there is no work

done by friction, gives Ey,, = Epgiom  —  Mgh=1Mv* + 110", If the objects roll without
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slipping, then @ = v/R, so Mgh = %MU2 +%I(1)/R)2 - v= ,Lg/hz For a solid ball,
M +1/R

1 :%MRZ, and for a cylinder, / :%MRZ. Thus Vgppere =+/10gA/7 and v, 4gh/3. Since

D,

S

yl =
phere > Ugyl» the sphere has the greater speed at the bottom. That is true for any amount of height

change, so the sphere is always moving faster than the cylinder after they start to move. Thus the
sphere will reach the bottom first. Since both objects started with the same potential energy, both have
the same total kinetic energy at the bottom. But since both objects have the same mass and the cylinder
is moving slower, the cylinder has the smaller translational KE and thus the greater rotational KE. Since

. . . . _ 1 2 _ 2
rotational kinetic energy is KE,, =5 /@", then KE,,  =2mgh and KE

sphere cylinder

=1
=3 mgh.

—
W

The long rod increases the rotational inertia of the walkers. If a walker gets off-center from the
tightrope, gravity will exert a torque on the walker, causing the walker to rotate with their feet as a
pivot point. With a larger rotational inertia, the angular acceleration caused by that gravitational torque
will be smaller, and the walker will therefore have more time to compensate.

The long rod also allows the walkers to make small shifts in their center of mass to bring themselves
back to being centered on the tightrope. It is much easier for a walker to move a long, narrow object
with the precision needed for small adjustments than a short, heavy object like a barbell.

14.  Momentum and angular momentum are conserved for closed systems—systems in which there are no
external forces or torques applied to the system. Probably no macroscopic systems on Earth are truly
closed, so external forces and torques (like those applied by air friction, for example) affect the
systems over time.

15. In order to do a somersault, the diver needs some initial angular momentum when she leaves the diving
board, because angular momentum will be conserved during the free-fall motion of the dive. She
cannot exert a torque about her CM on herself in isolation, so if there is no angular momentum initially,
there will be no rotation during the rest of the dive.

16.  Once the motorcycle leaves the ground, there is no net torque on it and angular momentum must be
conserved. If the throttle is on, the rear wheel will spin faster as it leaves the ground because there is
no torque from the ground acting on it. The front of the motorcycle must rise up, or rotate in the
direction opposite the rear wheel, in order to conserve angular momentum.

17.  While in mid-air, the shortstop cannot exert a torque on himself, so his angular momentum will be
conserved. If the upper half of his body (including his hips) rotates in a certain direction during the
throwing motion, then to conserve angular momentum, the lower half of his body (including his legs)
will rotate in the opposite direction.

18.  See the diagram. To the left is west, the direction of the angular velocity. The direction
of the linear velocity of a point on the top of the wheel would be north, into the page.
If the angular acceleration is east, which is opposite the angular velocity, the wheel is
slowing down—its angular speed is decreasing. The tangential linear acceleration of
the point on top will be opposite to its linear velocity—it will point south.

_
i

Using the right-hand rule, point the fingers in the direction of the Earth’s rotation, from west to east.
Then the thumb points north. Thus the Earth’s angular velocity points along its axis of rotation, toward
the North Star.
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)
e

Consider a helicopter in the air with the rotor spinning. To change the rotor’s angular speed, a torque
must be applied to the rotor. That torque has to come from the helicopter. By Newton’s third law, an
equal and opposite torque will be applied by the rotor to the helicopter. Any change in rotor speed
would therefore cause the body of the helicopter to spin in a direction opposite to the change in the
rotor’s angular velocity.

Some large helicopters have two rotor systems, spinning in opposite directions. That makes any
change in the speed of the rotor pair require a net torque of zero, so the helicopter body would not tend
to spin. Smaller helicopters have a tail rotor that rotates in a vertical plane, causing a sideways force
(thrust) on the tail of the helicopter in the opposite direction of the tendency of the tail to spin.

Responses to MisConceptual Questions

1.

(©)

()

()

(c)

A common misconception is that if the riders complete the revolution at the same time, they
must have the same linear velocities. The time for a rotation is the same for both riders, but
Bonnie, at the outer edge, travels in a larger circle than Jill. Bonnie therefore has a greater linear
velocity.

Students may think that the rider would travel half the distance in half the time. This would be
true if the object had constant angular speed. However, it is accelerating, so it will travel a

shorter distance, %0, in the first half of the time.

A common error is to think that increasing the radius of the tires would increase the speed
measured by the speedometer. This is actually backward. Increasing the size of the tires will
cause the car to travel faster than it would with smaller tires, when the wheels have the same
angular speed. Therefore, the speed of the car will be greater than the speed measured by the
speedometer.

Torque is the product of the lever arm and the component of the force perpendicular to the arm.
Although the 1000-N force has the greatest magnitude, it acts at the pivot. Thus, the lever arm is zero,
and the torque is also zero. The 800-N force is parallel to the lever arm and also exerts no torque. Of
the three 500-N forces, (c) is both perpendicular to the lever arm and farthest from the pivot.

(c, e, f) Equations 8—10 show that there are three ways in which the torque can be written. It can be

(b)

(b)

the product of the force, the lever arm, and the sine of the angle between them as in answer (c). It
can be the product of the force and the component of the lever arm perpendicular to the force, as
in answer (e). It can also be written as the product of the lever arm and the force perpendicular to
the lever arm, as in answer (f'). Doing the calculations shows that all three torques are equal.

The location of the mass is very important. Imagine taking the material from the solid sphere and
compressing it outward to turn the solid sphere into a hollow sphere of the same mass and radius.
As you do this, you would be moving mass farther from the axis of rotation, which would
increase the moment of inertia. Therefore, the hollow sphere has a greater moment of inertia than
the solid sphere.

If you don’t consider how the location of the mass affects the moment of inertia, you might think
that the two kinetic energies are nearly the same. However, a hollow cylinder has twice the
moment of inertia as a solid cylinder of the same mass and radius. The kinetic energy is
proportional to the moment of inertia, so at the same angular speed the wheel with the spokes
will have nearly double the kinetic energy of the solid cylinder. It is only “nearly double”
because some of the mass is in the spokes, so the moment of inertia is not exactly double.
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10.

11.

12.

13.

(b)

(b)

(a)

(a)

(a)

(©)

It takes energy to rotate the ball. If some of the 1000 J goes into rotation, less is available for
linear kinetic energy, so the rotating ball will travel slower.

If you do not take into account the energy of rotation, you would answer that the two objects
would rise to the same height. Another common misconception is that the mass and/or diameter
of the objects will affect how high they travel. When using conservation of energy to relate the
total initial kinetic energy (translational and rotational) to the final potential energy, the mass and
radius of the objects cancel out. The thin hoop has a larger moment of inertia (for a given mass
and radius) than the solid sphere. It will therefore have a greater total initial kinetic energy and
will travel to a greater height on the ramp.

Because there is no external torque, students might think that the angular speed would remain
constant. But with no external torque, the angular momentum must remain constant. The angular
momentum is the product of the moment of inertia and the angular speed. As the string is
shortened, the moment of inertia of the block decreases. Thus, the angular speed increases.

Work is done on the object, so its kinetic energy increases. Thus the tangential velocity has to

increase. Another way to consider the problem is that KE = VI?/21. As in Question 10, the
angular momentum is constant and the rotation inertial decreases. Thus the kinetic energy (and
the speed) has to increase.

No net torque acts on the Earth, so the angular momentum is conserved. As people move toward
the equator their distance from the Earth’s axis increases. This increases the moment of inertia of
the Earth. For angular momentum to be conserved, the angular speed must decrease, and it will
take longer for the Earth to complete a full rotation.

Students might mistakenly reason that since no net torque acts on you and your moment of
inertia decreases as the masses are released, your angular speed should increase. This reasoning
is erroneous because the angular momentum of the system of you and the masses is conserved.
As the masses fall, they carry angular momentum with them. If you consider you and the masses
as two separate systems, each with angular momentum from their moments of inertia and
angular speed, it is easy to see that by dropping the masses, no net external torque acts on you
and your moment of inertia does not change, so your angular speed will not change. The angular
momentum of the masses also does not change until they hit the ground and friction (external
torque) stops their motion.

Solutions to Problems

(a)
(b)
(©)
(@)
(e)

(45.0°)(27 1ad/360°) = |7/4 rad|=[0.785 rad|

(60.0°)(27 rad/360°) = | 7/3 rad| =|1.05 rad|

(90.0°)(27 rad/360°) =|7/2 rad|=|1.57 rad|

(360.0°)(27 rad/360°) =| 27 rad| =|6.283 rad|

(445°)(27 1ad/360°) = |8977/36 rad| = |7.77 rad|
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2. The subtended angle (in radians) is the diameter of the Sun divided by the Earth—Sun distance.

0= diameter of Sun

"Earth—Sun

radius of Sun =16 rgaup_sun = %(0.5%[%3?) (1.5x10'" m) =6.545x10° m ~

3. We find the diameter of the spot from the definition of radian angle measure.

diameter

0=———"" — diameter = 6 7t voon = (1.4x107° rad)(3.8x10° m) =

TEarth—Moon

4. The initial angular velocity is ay =| 6500 re—,v 27 rad | 1 min =681 rad/s. Use the definition of
min )| lrev 60 s

angular acceleration.

o= Ao _0-681radls ~170 rad/s*

At 40s

5. (a) We convert rpm to rad/s.

7200 rev | 27 rad | 1 min
w= =75398 rad/s = -750 rad/s

1 min 1rev

() To find the speed, we use the radius of the reading head location along with Eq. 8—4.
v=ro=(3.00x10"> m)(753.98 rad/s) = 22.62 m/s = m

(c) We convert the speed of the point on the platter from m/s to bits/s, using the distance per bit.

(22.62 m/s)[“;‘tJ —[4.5%107 bits/s
0

50x107° m

6. The ball rolls 277 = #d of linear distance with each revolution.

12.0rev[71rd mj=3.5m N d:fj—omz 93%102 m
RVy/a

rev

7. (a) We convert rpm to rad/s.

2200 rev | 2z rad | 1 min
= =230.4 rad/s = -230 rad/s

1 min 1rev

(b) To find the speed and acceleration, we use the full radius of the wheel, along with Eqs. 8—4 and
8-6.

035 m 1
v=wr =(230.4 rad/s =14.0x10" m/s
( (5 )~s0x10
035m
ag = @*r =(230.4 rad/s)’ (T) =(9300 m/s?

8. In each revolution, the wheel moves forward a distance equal to its circumference, 7zd.

Ax 9200 m
Ax=N,, (md) — N=—=—""—"_=4300rev
rev () xd  7(0.68 m)
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9. The angular velocity is expressed in radians per second. The second hand makes 1 revolution every
60 seconds, the minute hand makes 1 revolution every 60 minutes, and the hour hand makes
1 revolution every 12 hours.

(@) Second hand: = lrev \(2zrad | _| 7 rad| 1.05><10_1E
60s 1 rev 30 s s

(b) Minute hand: a):( L rev j(brrad]{lmmJ: Z_rad) 1 751072 124

60min | lrev )| 60s | [1800 s s
(¢) Hourhand: w= Irev | 27 rad Lh ==z rad ~[1.45%107* rad
12 h 1rev 3600 s 21,600 s S

(d) The angular acceleration in each case is @, since the angular velocity is constant.

10. The angular speed of the merry-go-round is 2z rad/4.0 s =1.57 rad/s.

(@) v=ar=(57rad/s)(12m)=

(b) The acceleration is radial. There is no tangential acceleration.

ag = @*r = (1.57 md/s)2 (12m)= |3.0 m/s? toward the center|

11.  Each location will have the same angular velocity (1 revolution per day), but the

radius of the circular path varies with the location. From the diagram, we see g

7 = Rcos @, where R is the radius of the Earth, and 7 is the radius at latitude 6. 7
2r 27 rad 1 day 6

a) v=or=—r= 6.38x10”° m) =|464 m/s

@ T [ 1 day j[86,4005 ( )
2r 27 rad 1 day 6

by v=wr=—r= 6.38x10° m) cos 66.5° =[185 m/s

®) T [ 1 day j(86,4005 ( ) -

2 27 rad 1 day 6
c V=wr=—r= 6.38%x10” m) cos 42.0° = (345 m/s
© Tt ( 1 day J(86,400s ( ) [345 miy

12.  (a) The Earth makes one orbit around the Sun in one year.

Dorbit :%‘9 = [Zﬂ- rad}[ 1 year Jz 1.99%107 rad/s

¢t \ lyear ){ 316x107 s

() The Earth makes one revolution about its axis in one day.

Ootion =2 =| ZERA N[ 11559107 radss
At 1day )\ 86,400s
13.  The centripetal acceleration is given by ap = @*r. Solve for the angular velocity.

ag (100,000)(9.80 m/sz) rad( lrev 60s 2
w=,—= =3500—| ——— || —— |=[3.3x10" rpm
J D050 m

r s | 2z rad J\ 1 min

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



8-8 Chapter 8

14. Convert the rpm values to angular velocities.

@ = (120&}(”—“][““—1“] =12.57 rad/s

min 1rev 60s
w=[ 280XV |[ 2ZZrad [ 1min | o5 35 radss
min 1 rev 60s

(a) The angular acceleration is found from Eq. 89a.

w—ay 2932rad/s—12.57 rad/s P B
o= = =4188 rad/s” =|4.2 rad/s
—

t

() To find the components of the acceleration, the instantaneous angular velocity is needed.

w=ay+ot=12.57 rad/s+(4.188 rad/s’ )(2.0 8) =20.95 rad/s

The instantaneous radial acceleration is given by ag = o’r.

2 2 0.61 m _ 2
ag = o"r =(20.95 rad/s) (Tj_ 130 m/s

The tangential acceleration is given by a,,, = or.
0.61
Gy = O = (4.188 rad/sz)( ; mj =

15. (a) The angular acceleration can be found from Eq. 8—3a. The initial angular frequency is 0 and the
final frequency is 1 rpm.

(1 0.1V )(275 radj[l.o minj_0
—  mi 1
g=@% L min A Trev A 005 ) ) 454x107* radss? =[15x107 radss?
t . 60s
(12 min) -
1.0 min

(b) After 6.0 min (360 s), the angular speed is as follows:
=y + ot =0+(1.454x107* rad/s*)(360 s) = 5.234x102 rad/s

Find the components of the acceleration of a point on the outer skin from the angular speed and
the radius.

iy = OR = (1454107 rad/s®)(4.25 m) =|6.2x10~* m/s?
ag = @°R = (5.234x107% rad/s)*(4.25 m) =|1.2x107% m/s”

16. The tangential speed of the turntable must be equal to the tangential speed of the roller, if there is no
slippage.

v=v, — a)lRl = (02R2 - 0)1/0)2 = RZ/RI

17. (a) For constant angular acceleration:

_@W—ay 1200 rev/min—3500 rev/min _ —2300 rev/min | 27 rad |( 1 min
t 25s 25s 60 s

=-96.34 rad/s’ = |-96 rad/s’

o
1 rev
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Rotational Motion 8-9

(b) For the angular displacement, we assume constant angular acceleration.

6 =L (ay + )t =1 (3500 rev/min +1200 rev/min)(2.5 s)(lgnij =
S

18.  The angular displacement can be found from Eq. 8-9d.
6 = ot =% (ay + W)t =1(0+15,000 rev/min)(240 s)(1 min/60 s) = 3.0%x10% rev

19. (a) The angular acceleration can be found from Eq. 8-9b with @, =0.

B3I pra—"

2 (1.0 min)

(b) The final angular speed can be found from € = %(a)o +w)t, with @y =0.

t 1.0 min

20. (a) The angular acceleration can be found from Eq. 8-9c.

2 2 _ .2 . N\2
o= W -y _ 0— (850 rev/min) _ (—289 rev j 27z rad | I min _ _0‘50@
20 2(1250 rev) minZ )l lrev 60s 2

(b) The time to come to a stop can be found from 8 = %(a)0 +w)t.

20 2(1250rev)[ 60's J=17655:

- Wy + @ ~ 850 rev/min | 1 min

21.  Use Eq. 8-9d combined with Eq. 82a.
w+ @y 240 rpm+360 rpm

= =300 rpm
2 2 P
9=m=(3ooﬂj Tmin 16 8s) =34 rev
min /{ 60s

Each revolution corresponds to a circumference of travel distance.

34 m{M} _

v

Bl

(a) The angular acceleration can be found from o’ = wg + 206, with the angular velocities being

found from w = v/r.

2
1m/s
55 km/h)® — (95 km/h)? || ————
a_a)z—a)g_(vz—vg)_[( ) =( ) J[3.6km/hj
- - =
20 2r°6 2(0.40 m)(75 rev)(z” radj
Iev

—-3.070 rad/s” =
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23.

24,

i
bl

(b) The time to stop can be found from @ = @y, + ¢, with a final angular velocity of 0.

(55 km/h)(3 é fnj/hj
t:w_a)ozv_voz - 2 =1244s =125
o ro (0.40 m)(—3.070 rad/s”)

(c) We first find the total angular displacement of the tires as they slow from 55 km/h to rest, and
then convert the angular displacement to a linear displacement, assuming that the tires are rolling
without slipping.

= wg +20A0 —
2
. (Uo T {(55 km/h)( 1 m/s H
S 040m | 3.6 km/h
Ag=2L "% ___\rJ) __ - =2376rad
2a 2a 2(-3.070 rad/s”)

Ax = rA8 = (0.40 m)(237.6 rad) =

For the total distance, add the distance moved during the time the car slows from 95 km/h to
55 km/h. The tires made 75 revolutions, so that distance is as follows:

2r rad):188rn
%

Ax =rAf = (0.40 m)(75 rev)[
The total distance would be the sum of the two distances, 283 m.
Since there is no slipping between the wheels, the tangential component of the linear acceleration of

each wheel must be the same.

(@)  aun =dg = Osmall’small = Xargelarge
small large

Olarge = Osmall Tsmall _ (7.2 rad/sz)(zzioocm j =0.5333 rad/s® = 0.53 rad/s’

large cm

(b) Assume the pottery wheel starts from rest. Convert the speed to an angular speed, and then use
Eq. 8-9a.

w:[ésﬂj 2zrad |\ Imin ) _ o0 s
min 1rev 60s

w=wgy+tat — t= w-@ __6807 rad/32 =1276s=
o 0.5333 rad/s

(a) The maximum torque will be exerted by the force of her weight, pushing tangential to the circle
in which the pedal moves.

T=r F =r mg=(017 m)(52 kg)(9.80 m/s*) =86.6 m-N ~

(b)  She could exert more torque by pushing down harder with her legs, raising her center of mass.
She could also pull upward on the handle bars as she pedals, which will increase the downward
force of her legs.

Each force is oriented so that it is perpendicular to its lever arm. Call counterclockwise torques
positive. The torque due to the three applied forces is given by the following:

7. g = (28 N)(0.24 m) — (18 N)(0.24 m)— (35 N)(0.12 m) =—18m-N

applied
forces
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26.

27.

28.

29.

30.

Since this torque is clockwise, we assume the wheel is rotating clockwise, so the frictional torque is
counterclockwise. Thus the net torque is as follows:

T = (28 N)(0.24 m) — (18 N)(0.24 m)— (35 N)(0.12 m)+0.60 m-N=-12m-N

= |1 2m-N, clockwise|

The torque is calculated by 7 =rF'siné. See the diagram, from the top view. - >

(a) For the first case, 8 =90°.
[
T=rF sin 8 =(0.96 m)(42 N) sin 90°=4032m-N = 40x10' m-N %

(b) For the second case, 8 =60.0°.

7=rF sin 6 =(0.96 m)(42 N) sin 60.0° =3492 m-N =

There is a counterclockwise torque due to the force of gravity on the left block and a clockwise torque
due to the force of gravity on the right block. Call clockwise the positive direction.

> T=mgl,—mgl; =|mg({, —1,), clockwise

The force required to produce the torque can be found from 7 = rF'sin 8. The force is applied
perpendicularly to the wrench, so 8 =90°.

7T 95m-N
F=—= =3393N=|340 N
T

r

The net torque still must be 95 m- N. This is produced by six forces, one at y
each of the six points. We assume for our estimate that those forces are also

perpendicular to their lever arms. From the diagram, we estimate the lever

arm as follows, and then calculate the force at each point:

X

Leverarm=r=%h+x=% J + y tan 30°
cos 30°

=yl —— +tan 30° | = (7.5x107> m)(1.15
y[2cos30° j ( )(A15)

T 95 m-N
Tnet = (0Fpoing)r = Fpoine = o =1835.7 N = (1800 N

r o 6(7.5%107 m)(1.15)

For each torque, use Eq. 8-10c. Take counterclockwise torques to be positive.

(a) Each force has a lever arm of 1.0 m.

Tobout = —(1.0 M)(56 N)sin 32°+(1.0 m)(52 N)sin 58°=14.42m-N =

C

(b) The force at C has a lever arm of 1.0 m, and the force at the top has a lever arm of 2.0 m.

Tavout = —(2.0 m)(56 N) sin 32°+ (1.0 m)(65 N) sin 45°=-1339 m-N =

P
The negative sign indicates a clockwise torque.

For a sphere rotating about an axis through its center, the moment of inertia is as follows:

_2 2 _2 2 _ 2
I=2MR* =2(108kg)(0.648 m)* =|1.81 kg-m
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31. Since all of the significant mass is located at the same distance from the axis of rotation, the moment

of inertia is given by [ = MR?.
2
I=MR* =(1.1kg)(1(0.67m))" =|012 kg-m®

The hub mass can be ignored because its distance from the axis of rotation is very small, so it has a
very small rotational inertia.

32. The torque required is equal to the angular acceleration times the moment of inertia. The angular
acceleration is found using Eq. 8-9a. Use the moment of inertia of a solid cylinder.

w=ay+tot = oa=alt

MR? .0 m)%(0.
rzla:(%MRg)(sz 0 _ (31,000 kg)(7.0 m)* (068 rad/s) [ 3
t 2t 2(345s)

33. The oxygen molecule has a “dumbbell” geometry, as though it rotates about the !
dashed line shown in the diagram. If the total mass is M, then each atom has a O—:—O
mass of M/2. If the distance between them is d, then the distance from the axis of |
rotation to each atom is d/2. Treat each atom as a particle for calculating the '
moment of inertia.

1=(M/2)(d/2)" +(M/2)(d/2)” =2M/2)(d/2)* =+ Md* -

d =~JAIIM =+/4(1.9x107™ kg-m2)/(53x107 kg) =(1.2x107 m

34. (a) The moment of inertia of a cylinder is %MR2 .

1=1MR* =1(0380 kg)(0.0850 m)* =1373x10™ kg-m* = |1.37><10‘3 kg-m’

(b) The wheel slows down “on its own” from 1500 rpm to rest in 55.0 s. This is used to calculate the
frictional torque.

(0—-1500 rev/min)(27z rad/rev)(1 min/60 s)
550s

7, = log, =1%=(1.373><10‘3 kg m?)

=-3921x10° m-N
The net torque causing the angular acceleration is the applied torque plus the (negative) frictional
torque.
Aw
ZT = Tapplied Ty = laa — Tapplied = Ia_Tfr = [E_Tfr
(1750 rev/min)(27 rad/rev)(1 min/60 s)

—(=3921x107° m-N)
5005

=(1373%107 kg-m?)

=[542x102 m-N

35. (a) The torque gives angular acceleration to the ball only, since the arm is considered massless. The
angular acceleration of the ball is found from the given tangential acceleration.

7=10=MR*a = MR? “t% = MRa,,, = (3.6 kg)(0.31 m)(7.0 m/s*)

=7.812m.Nz
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(b)

36. (a)

(b)

The triceps muscle must produce the torque required, but with a lever arm of only 2.5 cm,
perpendicular to the triceps muscle force.

T=Fr, — F=t/r, =7812m-N/(2.5x10~ m)=|310 N|

The angular acceleration can be found from the following:

Aw @ vlr (85m/5)(031m) s 5
a="2=20 =7216 rad/s® = |72 rad/
. o

t t

The force required can be found from the torque, since 7= Frsin@. In this situation the force is
perpendicular to the lever arm, so € =90°. The torque is also given by 7 = I, where [ is the

moment of inertia of the arm—ball combination. Equate the two expressions for the torque, and
solve for the force.

Frsinf=1x
2 2
la _ Miati@iall + 5 Marm Lam
rsin@ 7sin90°
(1.00 kg)(031 m)* +1 (3.7 kg)(0.31 m)?

7216 rad/s*) = 6195 N =[620 N
(0.025 m) ( )

F=

37. The torque is calculated from 7 = /¢or. The rotational inertia of a rod about its end is 7 = %M 2

38. ()
(b)
39. (a)
(b)
(©)
40. (a)

r=lo=1M0 % = 1(0.90 kg)(095 my? 201V (S))g)” drey) _ 12 m N =
AVE)

The small ball can be treated as a particle for calculating its moment of inertia.

I =MR? = (0350 kg)(1.2 m)* = 0.504 kg-m? =|0.50 kg-m?

To keep a constant angular velocity, the net torque must be zero, so the torque needed is the
same magnitude as the torque caused by friction.

ZT = Tapplied — Ty = 0 - Tapplied =T = Ffrl" = (0020 N)(l 2 m) = 2.4)(10_2 m-N

To calculate the moment of inertia about the y axis (vertical), use the following:

I=> MR: =m(0.50 m)* + M (0.50 m)* +m(1.00 m)® + M (1.00 m)*

= (m+ )| (050 m)? +(1.00 m)? | = (5.6 ke)[ (050 m)? +(1.00 m)? | =

To calculate the moment of inertia about the x axis (horizontal), use the following:

1=7 MR} =(2m+2M)(025m)” =2(5.6 kg)(0.25m)* =|0.70 kg-m’

Because of the larger / value, it is ten times harder to accelerate the array about the .

The torque exerted by the frictional force is 7 = rF}; sin 6. The force direction of

of friction is assumed to be tangential to the clay, so 8 =90°. rotation
Tiota = Fpr 5in 6 = (£(0.090 m)) (1.5 N) sin 90° = 0.0675 m- N K

Ry

Sl
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(b) The time to stop is found from @ = @, + ¢, with a final angular velocity of 0. The angular
acceleration can be found from 7, = /. The net torque (and angular acceleration) is negative
since the object is slowing.

_0-0, 0-0, _ 0—(1.6 rev/s)(2x rad/rev) 1638 s ~

t
P T/l (=0.0675 m-N)/(011kg-m?)

41. The torque needed is the moment of inertia of the system (merry-go-round and children) times the
angular acceleration of the system. Let the subscript “mgr” represent the merry-go-round.

Aw 2 2, -y
T=10= g +Ichi1dren)E:(%MmgrR +2mepgR)

5 (15 rev/min)(27 rad/rev)(1 min/60 s)
10.0s

=[1(560 kg)+2(25 kg) | (2.5 m)

=323.98m-Nz

The force needed is calculated from the torque and the radius. We are told that the force is directed
perpendicularly to the radius (force is applied “tangentially”).

T=F Rsin@ — F| =7/R=3239842215m-N/25m=|130N

42. The torque supplied is equal to the angular acceleration times the moment of inertia. The angular
acceleration is found by using Eq. 8-9b, with @, = 0. Use the moment of inertia of a sphere.

5 20 (26
O=ay+sar” — a:t_z; Tzlaz(%MrO) =

2 2

10.8 m- N)(15.

ZST; :5(08m2N)(SOS) —2331ke ~[23 ke
41568 4(0.36 m)“ (3207 rad)

43. (a) The moment of inertia of a thin rod, rotating about its end, is %M ¢%. There are three blades to

add together.

1y

otal =

3(LM2) = M1? = (135 kg)3.75 m)” = 1898 kg-m” = 1190x10° kg -m’ |

(b) The torque required is the rotational inertia times the angular acceleration, assumed constant.

@

-y (6.0 rev/s)(2x rad/rev)
T:Itotala:]totalf:(1898kg'm2) 805 =18900 m- N

44. The torque on the rotor causes an angular acceleration, & = 7/I. The torque and angular acceleration
have the opposite sign as the initial angular velocity because the rotor is being brought to rest. The
rotational inertia is that of a solid cylinder. Substitute the expressions for angular acceleration and

rotational inertia into @* = a)g + 20, and solve for the angular displacement.
- _0-a _ -& _-MR'&
2a 2(z/l) 2(2’/%MR2) 4t

. 2
_(3.10 kg)(0.0710 m)z |:(9200@j(2ﬂ rad)(l min J:|

min 1rev 60s
= 30218 rad| 22
4(-1.20N-m) 27 rad

= 4809 rev =

w2=w§+2a9 - 6=
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The time can be found from 8 = %(a)o + w)t.

20 _2(480.9rev)[60sj=

- w,+o ~ 9200 rev/min | 1 min

45. The firing force of the rockets will create a net torque but no net force. Since each rocket fires
tangentially, each force has a lever arm equal to the radius of the satellite, and each force is

perpendicular to the lever arm. Thus, 7, = 4FR. This torque will cause an angular acceleration

et
according to 7=/, where [ = %MR2 +4mR?, combining a cylinder of mass M and radius R with
four point masses of mass m and lever arm R each. The angular acceleration can be found from the
kinematics by & =——. Equating the two expressions for the torque and substituting enables us to

solve for the force.

LM +4m)RA®
4FR =1a=(lM+4m)R2ﬂ = F =u
2 At 4At
(% (3600 kg)+4(250 kg)) (4.0 m)(32 rev/min)(27 rad/rev)(1 min/60 s) 3198 N
B 4(5.0 min)(60 s/min) T

SEy

46. (a) The free-body diagrams are shown. Note that only the forces
producing torque are shown on the pulley. There would also be a
gravity force on the pulley (since it has mass) and a normal force
from the pulley’s suspension, but they are not shown since they do
not enter into the solution.

() Write Newton’s second law for the two blocks, taking the positive
x direction as shown in the free-body diagrams.

My ZFx:FTA—mAgSineA:mAa -

= (8.0 kg)[(9.80 m/s?) sin 32°+1.00 m/sz] = 4955 N

= (2 significant figures)

Frg =mg(g sin 6 —a)

= (10.0 kg)[(9.80 m/s2) sin 61°—1.00 m/sﬂ =7571N E@\EB

-
(¢)  The net torque on the pulley is caused by the two tensions. We take clockwise torques as positive.

D 7=(Frg—Fra) R=(7571N-4955N)(015m) =3924 m-N =

Use Newton’s second law to find the rotational inertia of the pulley. The tangential acceleration
of the pulley’s rim is the same as the linear acceleration of the blocks, assuming that the string
doesn’t slip.

ZTzla:I%:(FTB —F R -

= (Frg —Fra)R _ (75.71 N—49.55 N)(0.15 m) —l059 kg-m2

a 1.00 m/s?
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47. (a) Since mg >m,, mg will accelerate down, m, will accelerate up,

and the pulley will accelerate clockwise. Call the direction of +6 //'\

acceleration the positive direction for each object. The masses will ] —R)

have the same acceleration since they are connected by a cord. The i U _

rim of the pulley has that same acceleration since the cord makes it TA Frp

rotate, SO ¢fpey = a/R. From the free-body diagrams, we have the

following: FTA F,,
Y. Fp=mpg—Frg=mga — Frg=mgg—mga S Il I A

a
ET=F r—Frar=Iloa=1—
TB TA R !

We have to assume that the tensions are unequal in order to have a
net torque to accelerate the pulley. Substitute the expressions for the tensions into the torque
equation, and solve for the acceleration.

FTBR—FTAR=I% - (mBg—mBa)R—(mAg-i-mAa)R:I% -

(mg —my) _ (mg —my)

a=
(mp+mg +1IR*)” (my +my +LmpR*IR?)

- (Pke=63kg) ] (9.80 m/s?) = 0.6853 mys? = [0.69 m/s2

[75 kg+65 kg +1 (6.0 kg)

(b) If the moment of inertia is ignored, then from the torque equation we see that Fpg = Fr,, and

the acceleration will be a,_g = "B ="a) . _ (15ke=65K8) 445 2y 7000 mys?. e
(my +mg) 75kg+65kg

calculate the percent difference, which is small because of the relatively small mass of the

pulley.

2_ 2
% error = (0'7000 (I)n;sg 3 2'58253 s JxlOO =2145% =
6853 m/s

48. A top view diagram of the hammer is shown, just at the instant of release,
along with the acceleration vectors.

(a) The angular acceleration is found from Eq. 89c.

o’ —ay  (vir)* -0
) 200

[(26.5 m/s)/(1.20 m)]? 2 -2
= =9.702 rad/s” =|9.70 rad/s
2(87 rad)

() The tangential acceleration is found from the angular acceleration and the radius.

dyyy = 0r = (9.702 rad/s?)(1.20 m) = 11.64 m/s* ~ [11.6 m/s*

(c) The centripetal acceleration is found from the speed and the radius.

drq = V% /r = (265 m/s)? /(1.20 m) = 585.2 m/s” =~|585 m/s’

o’ =w§+2aA6 - o=
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(d) The net force is the mass times the net acceleration. It is in the same direction as the net
acceleration.

Fo = mayy = myjaz, +a’g =(730 kg)\/(l 1.64 m/s?)% + (5852 m/s®)? =[4270 N

(e) Find the angle from the two acceleration vectors.

_ 1 11.64 my/s?
6 = tan latﬂztan 1—52=
Aragd 585.2 m/s

49.  Work can be expressed in rotational quantities as W =7 A, so power can be expressed in rotational

.. w A6
quantities as P=—=7—=1Tw.
At At
P=1w=(265m N)| 3350 % |[ 2Zrad | Imin | 1hp | _rmey
min /{ 1rev 60s )\ 746 W

50. The energy required to bring the rotor up to speed from rest is equal to the final rotational kinetic
energy of the rotor.

2
3 2 1 mi
KE,o = 1107 =1(325%1072 kg-mz){8750re—v[ ’”adj( 6‘3‘:]} =[136x10* J

min{ 1rev

51.  Apply conservation of mechanical energy. Take the bottom of the incline to be the zero location for
gravitational potential energy. The energy at the top of the incline is then all gravitational potential
energy, and at the bottom of the incline, there is both rotational and translational kinetic energy. Since
the cylinder rolls without slipping, the angular velocity is given by @ = v/R.

2
2 2 2 2V 2
Ewp = Epotom = Mgh=IMv* +11 0" =L Mv° +LIMR® — =3 M0 —

R2 =4
v=\[tgh = [4(980 m/s?)(7.20 m) =

52. The total kinetic energy is the sum of the translational and rotational kinetic energies. Since the ball is
rolling without slipping, the angular velocity is given by @ = v/R. The rotational inertia of a sphere

about an axis through its center is / = %mRz.

2
_ 1,2 17,2 _1_.2 1(2 p2\V 7 02
KEotal = KErans + KE ot —Em‘U +5[60 = Eml) +5(§mR ) —mv

F =10
=0.7(7.25 kg)(3.10 m/s)* = [48.8 ]

53. (a) For the daily rotation about its axis, treat the Earth as a uniform sphere, with an angular
frequency of one revolution per day.

12 _1(21m2 >
KE gaity = 5 { @faity = 5(§ MR 41 )a)daily

2
1 24 6 2|27 rad 1 day _ 29
= (6.0x10°" kg)(6.4x10° m) K J{86,400 5 =[2.6x10"" J

1 day
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(b) For the yearly revolution about the Sun, treat the Earth as a particle, with an angular frequency
of one revolution per year.

—1 2 _1 2 2
KEyearly -7 I a)yearly - E{MRSun— jwyearly
Earth

2
27 rad 1 day
— 1(6.0x10%* kg)(15x10'" m) ~[27x107 1]
2 el ) 365 day J\ 86,400 s -
Thus the total kinetic energy is KE gy, + KEyqqy =2.6x10% J+2.7x10” J=|2.7x10 J|. The

kinetic energy due to the daily motion is about 10,000 times smaller than that due to the yearly

motion.
54.  Maintaining a constant angular speed @yc,qy, Will require a torque 7, to oppose the frictional
torque. The power required by the motor is P = 7,0, Dsteady = ~Tfriction Poteady -

- _ 1R Pi—
Tfriction = I Offriction _EMR ( P j -

2
{(3.8 rev/s)(z” rad ﬂ
rev

16s

P =1.186x10° W

motor

-
=3 MR? (% — jwsteady =1(220 kg)(5.5 m)’

1h
_ 5 P |_ ~
=1.186x10 W[746 j—158.9hp~ 160 hp

55. The work required is the change in rotational kinetic energy. The initial angular velocity is 0.
2
W = Ay =L I0f-L Io5=1 (L MR® ) 0f= 1 (1440 kg)(7.50 m)? [27”0—;3‘1} =[1.63x10* J
.00s

Apply conservation of energy to the sphere, as done in Example 8—12.

92
o

(a) The work of Example 812 is exactly applicable here. The symbol d represents the distance the
sphere rolls along the plane. The sphere is rolling without slipping, so v, = @R.

o = 2 &H =2 gd sin 6 = \/%9.80 m/s?)(10.0 m)(sin 30.0) = 8.367

%
=18.37 m/s
w="10,,/R=8.367m/s/(0.345 m) =|24.3 rad/s

1 2 1 2
b KEtrans _ 2MDCM _ ZMUCM — é
UCM

= > =
KErOt %ICMO) l(;MR2)

2\5 2

R

(o) |Only the angular speed depends on the radius. None of the results depend on the mass.|

. . . A
57.  Use conservation of mechanical energy to equate the energy at points A
and B. Call the zero level for gravitational potential energy the lowest \
point on which the ball rolls. Since the ball rolls without slipping, N P

w="vlr. S— -~/ C
y:O - M.-

Bl
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mgR =mgr+%mv§ +%1a)§

2
et (] o

7

58.  The only force doing work in this system is gravity, so mechanical energy is _
conserved. The initial state of the system is the configuration with m, on the ,f -n\_\'
ground and all objects at rest. The final state of the system has mp just Y |
reaching the ground and all objects in motion. Call the zero level of '\\ X
gravitational potential energy the ground level. Both masses will have the same .__/
speed since they are connected by the rope. Assuming that the rope does not
slip on the pulley, the angular speed of the pulley is related to the speed of the i
masses by @=v/r. All objects have an initial speed of 0.

-
-

E=E — My

1 2 1 2 1 2 _1 2 1 2 .1 2
FMAV +mgU +5 1@ +mpg yi; +mpg o =5 mAVr +5mpU; +5 1k

+mag V¢ t Mg Vor

2
2 2 2\| Y
mthz%mAvf +%vaf +%(%MR )[R—fz]+mAgh

_ [20mg—mp)gh_ 2380 kg ~32.0ke)(980 m/sH)(25 m) _ o
N \/(mA+mB+£M) (38.0kg+320 kg +(1)31 ke

59.  Since the lower end of the pole does not slip on the ground, the friction does no work, and mechanical
energy is conserved. The initial energy is the potential energy, treating all the mass as though it were at
the cM. The final energy is rotational kinetic energy, for rotation about the point of contact with the
ground. The linear velocity of the falling tip of the rod is its angular velocity divided by the length.

2 2 2
Eintial = Efnal - = PEinitial = KEgngg  — mgh=310" — mg€/2=%(%m5 )(vend/g) -

1
Vend =387 =J3(9.80 m/s?)(1.80 m) =

60. The angular momentum is given by Eq. 8—18.

L=I1w=MR*»=(0.270 kg)(135 m)*>(10.4 rad/s) =|5.12 kg - m*/s

61. (a) The angular momentum is given by Eq. 8—18.

L=Ilo=LMR*®=1(28kg)(0.28 m)’ {(1300 revj(Zﬂ rad}[l mmﬂ

1 min 1rev 60s
=1494 kg-m?/s =|15 kg-m?/s

() The torque required is the change in angular momentum per unit time. The final angular
momentum is zero.

L-L, 0-1494kg-m?
r= 0:() 1494kgm/s:

At 6.0s

The negative sign indicates that the torque is used to oppose the initial angular momentum.
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62.

63.

64.

65.

66.

67.

(a) Consider the person and platform a system for angular momentum analysis. Since the force and
torque to raise and/or lower the arms are internal to the system, the raising or lowering of the
arms will cause no change in the total angular momentum of the system. However, the rotational
inertia increases when the arms are raised. |Since angular momentum is conserved, an increase in|
rotational inertia must be accompanied by a decrease in angular velocity

) L=l - ho=he - L=2%=[ 20
Wy 0.60 rev/s

The rotational inertia has increased by a factor of .

1517

1

Since there are no external torques on the system, the angular momentum of the two-disk system is
conserved. The two disks have the same final angular velocity.

L=L — lo+I0)=2Ie; — |ox=10

There is no net torque on the diver, because the only external force (gravity) passes through the center
of mass of the diver. Thus the angular momentum of the diver is conserved. Subscript 1 refers to the
tuck position, and subscript 2 refers to the straight position.

I 2 rev 1
L=L - Lo=I N =L === || — |=]038rev/s
= =k~ e=a=( (5]

The skater’s angular momentum is constant, since no external torques are applied to her.

), D IeV/S

f

She accomplishes this by starting with her arms extended (initial angular velocity) and then

|pu11ing her arms in to the center of her body| (final angular velocity).

(a) The angular momentum is the moment of inertia (modeling the skater as a cylinder) times the
angular velocity.

L=Io=1MR*®="1(48 kg)(0.15 m)’ (3.ore—vj(2” radj =10.18 kg-m>/s
S 1rev

~[1.0x10" kg-m’/s

(b) If the rotational inertia does not change, then the change in angular momentum is strictly due to a
change in angular velocity.

L AL _ 1w —1ay _0-1018 kg-m%/s
At At 40s

-25m-N

The negative sign indicates that the torque is in the opposite direction as the initial angular
momentum.

Since the person is walking radially, no torques will be exerted on the person—platform system, and
angular momentum will be conserved. The person is treated as a point mass. Since the person is
initially at the center, they have no initial rotational inertia.

(a) Li = Lf - I platforma)l = (1 platform +1 person )wf

I ‘m?2
@ = —paom 820 kg-m (0.95 rad/s) = 0.5211 rad/s = [0.52 rad/s

I +mR2 " 820 kg-m? +(75 kg)(3.0 m)?

platform
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() KE; =11 m@ =1(820 kg-m*)(095 rad/s)” =[370]

2 2 2
KEf = %(l platform +1 person )wf = %(l platform + mperson i person )a)f
_1 2 2 2 _ _ 2
= 1[820 kg-m” +(75 kg)(3.0 m)*](0.5211 rad/s)* = 203 J = |2.0x10 J

68. Because there is no external torque applied to the wheel—clay system, the angular momentum will be
conserved. We assume that the clay is thrown with no angular momentum, so its initial angular
momentum is 0. This situation is a totally inelastic collision, in which the final angular velocity is the
same for both the clay and the wheel. Subscript 1 represents before the clay is thrown, and subscript 2
represents after the clay is thrown.

Li=L, - ho=ho, —

1 2 2
]_1 _ Iiheel _ 7 M yhee Rishee _ M el Rishee
M M

2 1 2 - 2
12 [wheel + Iclay wheel Rwheel + 2 M Rclay wheelRwheel +M

2
clay clay Rclay

(5.0 kg)(0.20 m)? + (2.6 kg)(7.0x107% m)?

2
=(1.5 rev/s){ (5.0 kg)(020 m) } =1.410 rev/s =

69. (a) The angular momentum of the combination of merry-go-round (abbreviate mgr) and people will
be conserved, because there are no external torques on the combination. This situation is a totally
inelastic collision in which the final angular velocity is the same for both the merry-go-round
and the people. Subscript 1 represents before the collision, and subscript 2 represents after the
collision. The people have no initial angular momentum.

we=aliogIm 4 s
I 2 I mgr +1 people I mgr +4M personR2

a2
= (0.80 rad/s){ 1360 kg-m }=0.4341rad/sz 0.43 rad/s

1360 kg-m? +4(65 kg)(2.1 m)?

(b) If'the people jump off the merry-go-round radially, then they exert no torque on the merry-go-
round and thus cannot change the angular momentum of the merry-go-round. The merry-go-

round would continue to rotate at |0.80 rad/s|.

70.  All parts of the object have the same angular velocity. The moment of inertia is the sum of the rod’s
moment of inertia and the mass’s moment of inertia.

| g2 LV |, =1 2
71.  (a) Since the lost mass carries away no angular momentum, the angular momentum of the remaining
mass will be the same as the initial angular momentum.
2 2 2
o _ I _ SMiRT _ MiR;

L=L — lLo=Ly —>—=—= =
1 Y @ Iy ZM(RE (0.5 M;)(0.01R;)

o =2.0x10* o =2.0x104(§(’)’zj)(861 2328}4.84&10‘2 rad/s =|5x1072 rad/s

The period would be a factor of 20,000 smaller, which would make it about 130 seconds.

=2.0x10*
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() The ratio of angular kinetic energies of the spinning mass would be as follows:

2 4 2
KEf_%Ifm%_%[%(O.SMi)(O.OlRi) }(2.0><10 @) ottt Do
PN S = = 4. f = i
KEi %110)1 %(%MiRiz)a)lz

72.  The angular momentum of the disk—rod combination will be conserved, because there are no external
torques on the combination. This situation is a totally inelastic collision, in which the final angular
velocity is the same for both the disk and the rod. Subscript 1 represents before the collision, and
subscript 2 represents after the collision. The rod has no initial angular momentum.

L=L, - Lo=hLo —

1 P2
1 Lgisk 2 MR 3
=@ L= = =(3.3rev/s)| = |= -2.0 rev/s
@A I “ Lgisk +1rod “ LMR? +.L M(2R)? 5

73.  Angular momentum will be conserved in the Earth—asteroid system, since all forces and torques are
internal to the system. The initial angular velocity of the satellite, just before collision, can be found
from @ygieroid = Vasteroid /REarth - Assuming the asteroid becomes imbedded in the Earth at the surface,
the Earth and the asteroid will have the same angular velocity after the collision. We model the Earth
as a uniform sphere and the asteroid as a point mass.

Li = Lf - I Earth @Earth T 1 asteroid @asteroid = (1 Earth T 1 asteroid )a)f

The moment of inertia of the satellite can be ignored relative to that of the Earth on the right side of the
above equation, so the percent change in Earth’s angular velocity is found as follows:
(wf - a)Earth) — 1 asteroid @asteroid

Darth I Barth  @EBarth

Uasteroid

I Earth @Earth T 1 asteroid Pasteroid = 1 Earth®@f —

2
% change — (a)f — a)Earth) (100) — masteroidREarth REarth — Masteroid Uasteroid (l 00)

2 2
arth % M Earth REarth Drarth 5 M Earth @Earth REarth

5 4
_ (1.0x10” kg)(3.5%10™ m/s) (100) = (3.2><10_16)%

(0.4)(5.97x10% kg)(mj(éssnoé m)

86,400 s

74. The angular momentum of the person—turntable system will be conserved. Call the direction of the
person’s motion the positive rotation direction. Relative to the ground, the person’s speed will be
v+vr, where v is the person’s speed relative to the turntable, and vy is the speed of the rim of the

turntable with respect to the ground. The turntable’s angular speed is @ = vy /R, and the person’s

. . v+ . . .
angular speed relative to the ground is @wp = TUT = %+ wr. The person is treated as a point particle

for calculation of the moment of inertia.

L=L — O:ITa)r+IPa)P:ITa)r+mR2(a)r+%j =

wp =——"RY____ (OSke)@TSmEOMS) 5064 s ~ [0 31 radss

CIo+mRE 1850 kg-m? +(65 kg)(2.75 m)>
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75.  Angular momentum is conserved in the interaction between the child and the merry-go-round.

_ _ _ _ 2
Linitial - Lﬁnal - LO - Lf + Lf - Imgrw() - (Imgr + Ichild )w - (Imgr + mchildngr )(l) -
mgr child mgr

I - .m2
Mg = mgr(;)o ) _ (1260 kg 1;1 )(035radls) _ o ke ~[52 kg
Ry @ (2.5m)~(1.35 rad/s)

76.  The torque is found from 7 = /¢. The angular acceleration can be found from @ = @, + af, and the
initial angular velocity is 0. The rotational inertia is that of a cylinder.

D— @y > (24 rev/s)(2x rad/rev)
r=Ila=1MR*| =—=2 | =0.5(1.6 kg)(0.20 =10.80m-N
[ 2] 05006 k020 my? AT

77. The linear speed is related to the angular velocity by v = @R, and the angular velocity (rad/s) is
related to the frequency (rev/s) by w =27z f. Combine these relationships to find values for the

frequency.
v v v 1.25 m/s 60 s
O=2nf=— - = ; = = =1480 rpm
s R 4 27R / 2zR,  2m(0.025 m) (1 minj
v 1.25m/s 60s
/2 27R,  27(0.058 m) {1 minJ

without slipping at the point of contact of the string, the

velocity of the CM is simply related to the angular velocity of

the yo-yo: vy = r@, where r is the radius of the inner hub. Let m be the mass of the inner hub
and M and R be the mass and radius of each outer disk. Calculate the rotational inertia of the yo-

yo about its CM, and then use conservation of energy to find the linear speed of the CM. We take
the 0 of gravitational PE to be at the bottom of its fall.

78. (a) There are two forces on the yo-yo: gravity and the string
tension. If we assume that the top of the string is held in a
fixed position, then the tension does no work and mechanical
energy is conserved. The initial gravitational PE is converted
into rotational and translational KE. Since the yo-yo rolls
mg

Loy =Lmr? +2(L MR ) = Lmr? + MR
_1 -3 -3 2 -2 2 \2 _ -5 2
=1(5.0x107 kg)(6.5x107> m)* +(5.0x107 kg)(3.75x107> m)* =7.042x10™ kg-m

Myggal =M +2M =5.0x107 kg +2(5.0x107 kg) = 0.105 kg

PEI' =KEf —

_1 2 1 2 _ 1 2 1 lem 2 _1 [RYRI:
Mg 8h =5 Mg Vom +5 Lem @™ =5 Mg Vom +5 5 VYoM = E(mtotal T— |(bem
r r

(6.5x107° m)*

2
[ mewsh [ (0.105kg)(9.80 mis?)(1.0 m) }:1'078 s = [T T3]

D,
il e 1 (7.042x107° kg-m?)
2| "total }"2 5 (0.105 kg) +
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(b) Calculate the ratio KE,; /KE;.

rot

1 , 1dew 2 ,
1 oM
KErot _ KEpot _ 2 lem® 2,2 _ LemUcm

- - T 52
KE{ot  PEgot My Sh Myoia18h 2r mygi 8h

~ (7.042x107° kg-m?)(1.078 m/s)>
2(6.5%x107° m)*(0.105 kg)(9.80 m/s*)(1.0 m)

=0.9412 =

79. As discussed in Section 83 of the textbook, from the reference frame of the axle of the wheel, the
points on the wheel are all moving with the same speed of v =rw®, where v is the speed of the axle of

the wheel relative to the ground. The top of the tire has a velocity of v to the right relative to the axle,
so it has a velocity of 2v to the right relative to the ground.

Vioprel = Vioprel T Veenter rel = (U to the right) + (v to the right) = 2v to the right

ground center ground
Vioprel = 20=2(0y +at) = 2ar = 2(1.00 m/s*)(2.25 5) = [4.50 m/s
ground

80. Assume that the angular acceleration is uniform. Then the torque required to whirl the rock is the
moment of inertia of the rock (treated as a particle) times the angular acceleration.

el (Wz)(w—two J _ (0.60 kg)(1.5 m)* {(75ﬂ)(mj[1 minﬂ T

50s min rev 60s

That torque comes from the arm swinging the sling and is generated by the arm muscles.

81. (a) The linear speed of the chain must be the same as it passes over both sprockets. The linear speed
is related to the angular speed by v = wR, so wg Ry = wpRr. If the spacing of the teeth on the

sprockets is a distance d, then the number of teeth on a sprocket times the spacing distance must
give the circumference of the sprocket.

Ngd _ Ngd

- R _
2 wF2fr - Wp

Nd =27R so szzv—d. Thus wy
V4

NF
Ng |

() |og/op =52/13=4.0|

(©) |og/op=42/28=15]

82. The mass of a hydrogen atom is 1.01 atomic mass units. The atomic mass unit is
1.66x107%7 kg. Since the axis passes through the oxygen atom, the oxygen atom
will have no rotational inertia.

(a) If'the axis is perpendicular to the plane of the molecule, then each hydrogen
atom is a distance ¢ from the axis of rotation.

Lerp = 2myg 0% =2(1.01)(1.66x107>7 kg)(0.096x10™ m)>

=[3.1x10*7 kg - m?|
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(b) If the axis is in the plane of the molecule, bisecting the H—O—H bonds, each hydrogen atom is
a distance of £, ={sin O = (9.6><10_11 m) sin 52° = 7.564x107'" m. Thus the moment of inertia

is as follows:

=2my 03, = 2(1.0D)(1.66x107>7 kg)(7.564x10~"" m)? —|1 9x107* kg-m?

plane

83. (a) Assuming that there are no dissipative forces doing work,
conservation of mechanical energy may be used to find the final
height / of the hoop. Take the bottom of the incline to be the zero
level of gravitational potential energy. We assume that the hoop is O

«-----»

rolling without sliding, so that @ =v/R. Relate the conditions at
the bottom of the incline to the conditions at the top by conservation of energy. The hoop has
both translational and rotational kinetic energy at the bottom, and the rotational inertia of the

hoop is given by I = mR>.

2
Ebottom:Etop 4 %mv +%1w =mgh — %my +%mR F:mgh BN
2 2
p=2 OO 65184 m
g 9.80m/s

The distance along the plane is given by d = .h P = % =3.548m=
sin sin

(b) The time can be found from the constant acceleration of the linear motion.

2Ax  2(3.548 m)
v+y,  0+3.0m/s
This is the time to go up the plane. The time to come back down the plane is the same, so the

total time is .

84. (a) For the daily rotation about its axis, treat the Earth as a uniform sphere, with an angular
frequency of one revolution per day.

=2365s

Ax=L@+y) — 1=

_ _(2 2
Laaity = 1 Oggity = (EMREarth )a)daily

— 2(5.98x10* kg)(6.38x10° m)? || 2Zrad |(_1day =[7.08x10% kg-m?/s
E 1 day )\ 86,400 s

(b) For the yearly revolution about the Sun, treat the Earth as a particle, with an angular frequency
of one revolution per year.

_ _ 2
Lgaity = 1 Ogaity = [MRSun- jwdaily
Earth

— (5.98x10% kg)(1.496x10'! m)?|[ 2Z1ad |[_1day =[2.67x10% kg-m/s
365 day )| 86,400 s
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85. The wheel is rolling about the point of contact with the step, so all
torques are to be taken about that point. As soon as the wheel is off
the floor, there will be only two forces that can exert torques on the
wheel: the pulling force and the force of gravity. There will not be a
normal force of contact between the wheel and the floor once the
wheel is off the floor, and any force on the wheel from the point of the
step cannot exert a torque about that very point. Calculate the net
torque on the wheel, with clockwise torques positive. The minimum
force occurs when the net torque is 0.

> 7= F(R—h)—mgyR* —(R—h)* =0
. Mg\[R* =(R-h)* | MgN2Rh—h?

R—h R—h

86. Each wheel supports 4 of the weight of the car. For rolling without slipping,
there will be static friction between the wheel and the pavement. For the wheel to
be on the verge of slipping, there must be an applied torque that is equal to the
torque supplied by the static frictional force. We take counterclockwise torques to
the right in the diagram. The bottom wheel would be moving to the left relative to
the pavement if it started to slip, so the frictional force is to the right. See the
free-body diagram.

— _ _ _ 1
Tapplied = Tstatic = RFf = RUsFy = Rtg ymg
min friction

= 1(0.33 m)(0.65)(1080 kg)(9.80 m/s*) =

87. (a) The kinetic energy of the system is the kinetic energy of the two masses, since the rod is treated
as massless. Let A represent the heavier mass and B the lighter mass.

1 2.2 _1

FMBIBWA =75

2
2 2
=1(0.210 m)*(5.60 rad/s)*(7.00 kg) = |4.84 ]

_1 2 1 2 _ 1 2 2 2 2
KE—EIA(UA +313wB—3mA”A(UA+ r @ (my +mg)

(b) The net force on each object produces centripetal motion so can be expressed as mra’.
Fy =mpra@; =(4.00 kg)(0.210 m)(5.60 rad/s)* =[26.3 N

Fy = mgrgop = (3.00 kg)(0.210 m)(5.60 rad/s)* =[19.8 N

These forces are exerted by the rod. Since they are unequal, there would be a net horizontal force
on the rod (and hence the axle) due to the masses. This horizontal force would have to be
counteracted by the mounting for the rod and axle in order for the rod not to move horizontally.
There is also a gravity force on each mass, balanced by a vertical force from the rod so that there
is no net vertical force on either mass.

88.  Note the similarity between this problem and MisConceptual Questions 10 and 11. There is no torque
applied to the block, so its angular momentum would remain constant. The angular velocity is the

speed of the block divided by the radius of the string. The moment of inertia of the block about the

center of its motion is %mrz.

1,20 _1. 20

Lo =hLo, — Smy 7:5””2 - L, =nYy o
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89. (a) The force of gravity acting through the cM will cause a clockwise torque, which produces an
angular acceleration. At the moment of release, the force of gravity is perpendicular to the lever
arm from the hinge to the cM.

r=la — a= Tgravity _ Mg€/2 _ 3_g
Irod about end %MZZ 20

(b) Atthe end of the rod, there is a tangential acceleration equal to the angular acceleration times the
distance from the hinge. There is no radial acceleration, because at the moment of release, the
speed of the end of the rod is 0. Thus, the tangential acceleration is the entire linear acceleration.

— — )
Yinear = %an = al =

Note that this is bigger than the free-fall acceleration of g.

90. (a) We assume that no angular momentum is in the thrown-off mass, so the final angular momentum
of the neutron star is equal to the angular momentum before collapse.

Ly=Ly — Iyoy=Ilaoy — [%(S-OMSun)Rszun]wo =[%(%8~OMSun)Rf2wa -
2
~ [%(8.0M5un )Rstm} ARG, 4(6.96x10° m)? ( 1.0 rev j
[%(%8,01\/[3“ )sz] R? (12x10% m)> (9.0 days

1 day 4
= (1.495%10° rev/day)| ———=— | =1.730x10* rev/s = 17,000 rev/s
( D g

(b) Now we assume that the final angular momentum of the neutron star is only % of the angular

momentum before collapse. Since the rotation speed is directly proportional to angular
momentum, the final rotation speed will be % of that found in part (a).

wp = %(1.730><104 rev/s) = (4300 rev/s

91. Since the spool rolls without slipping, each point on the edge of the spool moves with a speed of
V=rw=1U, relative to the center of the spool, where v, is the speed of the center of the spool

relative to the ground. Since the spool is moving to the right relative to the ground, and the top of the
spool is moving to the right relative to the center of the spool, the top of the spool is moving with a
speed of 2v,, relative to the ground. This is the speed of the rope, assuming it is unrolling without

slipping and is at the outer edge of the spool. The speed of the rope is the same as the speed of the
person, since the person is holding the rope. So the person is walking with a speed of twice that of the
center of the spool. Thus if the person moves forward a distance ¢, in the same time the center of the

spool, traveling with half the speed, moves forward a distance ¢/2]. The rope, to stay connected both
to the person and to the spool, must therefore unwind by an amount also.

92.  The spin angular momentum of the Moon can be calculated by Ly, = Igyin @ypin = %MRI%/IOOH Oy, -

The orbital angular momentum can be calculated by L = 1 it Doric = MR(frbit Wi Because the

same side of the Moon always faces the Earth, @i, = G-

2 2 2
Lin _ 2 MRjjo0n @i :;(RMOOHJ :04(1.74><106 m] a0
2 4 20 M .

Lot MR24: 0y Roic 3.84x10° m
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93.

94.

The force applied by the spaceship puts a torque on the asteroid, changes the asteroid’s
angular momentum. We assume that the spaceship’s direction is adjusted to always be
tangential to the surface. Thus the torque is always perpendicular to the angular
momentum and will not change the magnitude of the angular momentum Only the
direction of the angular momentum will change, similar to the action of a centripetal
force on an object in circular motion. From the diagram, we make an approximation.

AL LA LAO A 2mrPoN®  2mrang
Tm=—=—" — Af= = = =
At At T Fr Fr 5F
2(225%10'0 kg)(123 my| [ 216V |[ 27 rad | _Lday 5 of 27 rad
lday J{ lrev ) 86,4005 360°
) 5(285N)

1h
=(9.860x10% s =[27h
( )36005

Note that in the diagram in the book, the original angular momentum is “up” and the torque is into the

page. Thus the planet’s axis would tilt backward into the page, not rotate clockwise as it would if it

were not rotating.

We calculate spin angular momentum for the Sun and orbital angular momentum for the planets,

treating them as particles relative to the size of their orbits. The angular velocities are calculated from

_2z
T
2r 2r 1 day
=1 =2 Mgy R3un —— =2(1.99x10* kg)(6.96x10% m)*
LSun Sun @un 5 " Sun"*Sun TSun 5( g)( ) (25 days) 86,400 s

=1.1217x10% kg-m/s

27 (190x10% ke)(778x10° m)? — 2 1yr -
3.156%107 s

2
Lyyiver = Myoicor R2s s
Jupiter Jupiter “*Jupiter

orbit ]}upiter (119 yr)

=1.9240x10* kg-m/s

In a similar fashion, we calculate the other planetary orbital angular momenta.

Iﬁaturn = MSatum Rszaturn 2—11: = 7'8O6X1O42 kg -m/s

orbit Saturn

2z
2 42
LUranus = MUranus RUranus =1.695x10 kg -m/s

orbit Uranus

2 2z )
LNeptune =M Neptune RNeptune =2.492x10 kg -m/s

orbit T Neptune

Lonets ~_ (19.240+7.806+1.695+2.492)x10** kg-m/s 0963

f = =
Lotanets * Lsun ~ (19.240+7.806 +1.695+2.492 +1.122)x10** kg - m/s
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95. (a) The angular momentum delivered to the waterwheel is that lost by the water.
ALwheel = _ALwater = Linitial - Lﬁnal = mle - vaR —
water water
AL R— R R
Xheel = Atm”2 - 'Z—(vl ) = (85 kg/s)(3.0 m)(3.2 m/s) = 816 kg - m? /5
! !

=820 kg~m2/s2

(b) The torque is the rate of change of angular momentum, from Eq. 8-19.

AL
Ton =$=816kg-m2/52 =816m-N=[820m-N

wheel

(c) Power is given by P =7w. See the text immediately after Eq. 8—17.

P=10=(816 m~N)[2ZSrer= 930 W
DS

96. (a) See the free-body diagram. Take clockwise torques as positive. Write Newton’s
second law for the rotational motion. The angular acceleration is constant, so
constant acceleration relationships can be used. We also use the definition of

radian angles, A@ = E
R
Y r=FR-17, =Ioy; AG =yt +Laytf =Leyh: As = RAG,
Combine the relationships to find the length unrolled, As;.
Ri}
As; =RA, = R(Leyt} )| ==L (FR-1,
1 1 (2 111 ) 27 ( fr)

(0.076 m)(1.3 s)*
2(3.3x107 kg-m?)

[(3.5 N)(0.076 m)—(0.11 m-N)]=3.036 m ~

(b) Now the external force is removed, but the frictional torque is still present. The analysis is very
similar to that in part (a), except that the initial angular velocity is needed. That angular velocity
is the final angular velocity from the motion in part (a).

FR-1; )t _[3:5N)(0.076 m)—(0.11m-N)]
1) (3.3x107 kg-m?)

(01=a)0+0{1t1=( (1.3s)=61.45rad/s

Zr:—rﬁ =lw,; a)zz —col2 =20,A0, :—a)f; As, = RAG,

Combine the relationships to find the length unrolled, As,.

2 ) 2 30 2
Asy = RAG, = R o | _ R w1 _ (0.076 m)(61.45 rad/s)"(3.3x107° kg-m"~)
2 274 2(0.11m-N)

@,

=4.30mz
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Solutions to Search and Learn Problems

1. The radian is defined as the ratio of the distance traveled along an arc divided by the radius of the arc.
When an angle in radians is multiplied by the radius the result is a distance. Therefore, when angular
speed (which is angular displacement divided by time) is multiplied by the radius the result is the
displacement along the arc divided by time, which is a linear speed. Degrees and revolutions are not
defined in terms of arc lengths and cannot be used in the same way.

2. The angle in radians is the diameter of the object divided by the distance to the object.

2R . > =
Ay, ——Rsm _ 206.96x107km) g 3501073 o

Tearth—Sun  149.6x10° km

2R 2(1.74x10° k -
A9Moon = Moon _ ( 74x10 m) =19.06%x10 3 rad

TEarth—Moon 384x1 03 km

Since these angles are practically the same (only a 2.6% difference), solar eclipses can occur. Based on
these values, the Sun would never be completely obscured. But since the orbits are not perfect circles
but are ellipses, the above values are just averages. Full (total) solar eclipses do occur.

3. (a) Weuse conservation of energy to determine the speed of each sphere as a function of position on
the incline. The sphere with the greater speed would reach the bottom of the incline first.
Potential energy will be zero at the base of the incline (y = 0) and the initial height will be H. We
take position 1 to be at the top of the incline and position 2 to be at a generic location along the
incline.

KE| +PE =KEy +PEy — 0+mgH =1mv’ +110’ +mgy

2

v
mg(H—y)z%(mvz—k%mrza)z):% mvz+%mr2— zl(lmvz)—>

7'2 2\5

v=\Tg(H-y)

The velocity along the incline does not depend upon either the mass or the radius of the sphere.
Therefore, both spheres have the same speed at each point along the incline, and
lthe bottom of the incline at the same time)

(b)  As shown in part (a), both spheres will have the same speed at each point along the incline, so
Iboth will have the same speed at the bottom of the incline]

(c) By conservation of energy, the total kinetic energy at the bottom of the incline will equal the

potential energy at the top of the incline. The initial potential energy is proportional to the mass
of each sphere, |so the more massive sphere will have the greater kinetic energy|. The total kinetic

energy is independent of the spheres’ radii.

4. (a) Inordernot to fall over, the net torque on the cyclist about an axis through R '
the CM and parallel to the ground must be zero. Consider the free-body N
diagram shown. Sum torques about the CM, with counterclockwise as N
positive, and set the sum equal to zero. i

F F
ZT=FNx—Fﬁy=O - =" —tanf|tang=—"1

X
N oy N

€ - p

L -

F.‘fr

4---xX--->
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(b) The cyclist is not accelerating vertically, so Fy = mg. The cyclist is accelerating horizontally
due to traveling in a circle. Thus the frictional force must be supplying the centripetal force, so

Fyo= mv? Ir.
Fy  mv*/r 0 s o (82m/s)?
tmnf=—"r=——=— — f=tan” —=tan > =27.82° ~[28°]
N mg g rg (13 m)(9.80 m/s*)

(¢) From Fj = mv? /r, the smallest turning radius results in the maximum force. The maximum

static frictional force is Fy, = (Fy. Use this to calculate the radius.

2 2
2 v (8.2 m/s)
MU Vi, = UFy = UG — Ty =—— = :10.56mz-11m
min AN T M g (0.65)(9.80 ms?)

5. Assume a mass of 50 kg, corresponding to a weight of about 110 Ib. From Table 71, we find that the
total arm and hand mass is about 12.5% of the total mass, so the rest of the body is about 87.5% of the
total mass. Model the skater as a cylinder of mass 44 kg, and model each arm as ,

a thin rod of mass 3 kg. Estimate the body as 150 cm tall with a radius of
15 cm. Estimate the arm dimension as 70 cm long. o

-—»

150)cm

|

E
With the arms held tightly, we approximate that the arms are part of the body H
cylinder. A sketch of the skater in this configuration is then as shown in the first
diagram (not to scale). In this configuration, the rotational inertia is

1 in = 1 cylinder = %M total Rgody
body
70 cm

With the skater’s arms extended, the second diagram
applies. In this configuration, the rotational inertia is

— 1 2 1 2
[out - [body +Iarms - EMbodbeody +2(§Marm )Larm

-+
T
LA
]

150 cm

k===
1

1

i

L2

The forces and torques involved in changing the
configuration of the skater are internal to the skater, so the
skater’s angular momentum is conserved during a
configuration change. Thus,

1
1
1
!
1

¥

;
B

{

Lin = Lout - I in®@n = Lout@out —

Lar R2
1 fbod
I, 27 ody ¥ 1(50 kg)(0.15 m)*

out __ _ —

B ot L Myogy Roay +2(3 My ) Lo 3 (44 kg)(0.15 m) +2(1) (3 kg)(0.70 m)°

mn
=0.381=[04]

S

Alternatively, we would have that @, /@, = (0.381)™' = 2.6, so the skater spins about 2.6 x faster
with the arms pulled in.
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6.

(a) The initial energy of the flywheel is used for two purposes: to give the car translational kinetic
energy 30 times, and to replace the energy lost due to friction, from air resistance and from
braking. The statement of the problem leads us to ignore any gravitational potential energy
changes.

—  FAxcos 180° = %Mcarvfar —KEfywheel

Wi = KEfinal — KEinitial

— 1 2
KEﬂywheel = FfrAX‘f‘EM D,

car ~car

2
= (450 N)(?>.5><105 m)+(30)%(1 100 kg) {(95 km/h)( 1 m/s ﬂ

3.6 km/h
=1.690x10% J =|1.7x10% J

2
(b) KEﬂywheel =%Iw , SO

2 KE 2 KE 2(1.690x10% J)
o= = = =2110rad/s ={2100 rad/s
e | o0

%MﬂywheelRf%ywheel %(270 kg)(0-75 m)2

. . . k
(¢) To find the time, use the relationship that power = g, where the work done by the motor

will be equal to the kinetic energy of the flywheel.

8 . Lp=0
Pz? o =W (1690x107)) =1.510x103s(l£mjz
S

P (150 hp)(746 W/hp)

A

When the person and the platform rotate, they do so about the vertical axis. Initially Ly i
there is no angular momentum pointing along the vertical axis, so any change that the
person—wheel—platform undergoes must result in no net angular momentum along the
vertical axis. The first diagram shows this condition.

(a) Now consider the next diagram. If the wheel is moved so that its angular Ly
momentum points upward, then the person and platform must get an equal but
opposite angular momentum, which will point downward. Write the angular <)
momentum conservation condition for the vertical direction to solve for the .
angular velocity of the platform. Lp

L=L — O0=lyoy+hoy — |op=——""0y

The negative sign means that the platform is rotating in the opposite direction of
the wheel. If the wheel is spinning counterclockwise when viewed from above,
the platform is spinning clockwise. Ly

(b) Now consider the next diagram. If the wheel is pointing at a 60° angle to the
vertical, then the component of its angular momentum that is along the vertical
direction is Iy, @y cos60°. Also see the simple vector diagram below the adjacent

diagram. Write the angular momentum conservation condition for the vertical Le
direction to solve for the angular velocity of the platform.

1 |

Ll'=Lf 4 0=IW(0WCOS60°+IP(0P - a)p=__wa)vv :
2[1) ! o
L 60

Again, the negative sign means that the platform is rotating in the opposite >4 I
direction of the wheel. ! w = tw D
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(©)

@)

Consider the final diagram. If the wheel is moved so that its angular momentum
points downward, then the person and platform must get an equal but opposite /»
angular momentum, which will point upward. Write the angular momentum 2.
conservation condition for the vertical direction to solve for the angular velocity of Ly
the platform. fp

The platform is again rotating in the opposite direction of the wheel. If the wheel is
now spinning clockwise when viewed from above, the platform is spinning
counterclockwise.

Since the total angular momentum is 0, if the wheel is stopped from rotating, the platform will
also stop. Thus |wp =0|.
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STATIC EQUILIBRIUM; ELASTICITY AND FRACTURE

Responses to Questions

1. If the object has a net force on it of zero, then its center of mass does not accelerate. But since it is not
in equilibrium, it must have a net torque and therefore an angular acceleration. Some examples are:

* A compact disk in a player as it comes up to speed, after it has just been inserted.
* A hard drive on a computer when the computer is first turned on.

* A window fan immediately after the power to it has been shut off.

*  The drum of a washing machine while it is speeding up or slowing down.

2. The bungee jumper is not in equilibrium, because the net force on the jumper is not zero. If the jumper
were at rest and the net force were zero, then the jumper would stay at rest by Newton’s first law. The
jumper has a net upward force when at the bottom of the dive, and that is why the jumper is then
pulled back upward.

3. The meter stick is originally supported by both fingers. As you start to slide your fingers together,
more of the weight of the meter stick is supported by the finger that is closest to the center of gravity,
so the torques produced by the fingers are equal and the stick is in equilibrium. The other finger feels a
smaller normal force, and therefore a smaller frictional force, so the stick slides more easily and moves
closer to the center of gravity. The roles switch back and forth between the fingers as they alternately
move closer to the center of gravity. Your fingers will eventually meet at the center of gravity.

4. Like almost any beam balance, the movable weights are connected to the fulcrum point by relatively
long lever arms, while the platform on which you stand is connected to the fulcrum point by a very
short lever arm. The scale “balances” when the torque provided by your weight (large mass, small
lever arm) is equal to that provided by the sliding weights (small mass, large lever arm).

5. (a) If we assume that the pivot point of rotation is the lower left corner of the wall in the picture,
then the gravity force acting through the CM provides the torque to keep the wall upright. Note
that the gravity force would have a relatively small lever arm (about half the width of the wall).
Thus, the sideways force would not have to be particularly large to start to move the wall.

() With the horizontal extension, there are factors that make the wall less likely to overturn:
» The mass of the second wall is larger, so the torque caused by gravity (helping to keep
the wall upright) will be larger for the second wall.
» The center of gravity of the second wall is farther to the right of the pivot point, so
gravity exerts a larger torque to counteract the torque due to F.
» The weight of the ground above the new part of the wall provides a large clockwise
torque that helps counteract the torque due to F.
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6. If the sum of the forces on an object is not zero, then the CM of the object will accelerate in the
direction of the net force. If the sum of the torques on the object is zero, then the object has no angular
acceleration. Some examples are:

* A satellite in a circular orbit around the Earth.

* A block sliding down an inclined plane.

*  An object that is in projectile motion but not rotating.

*  The startup motion of an elevator, changing from rest to having a nonzero velocity.

7. When the person stands near the top, the ladder is more likely to
slip. In the accompanying diagram, the force of the person pushing
down on the ladder (M g) causes a clockwise torque about the

contact point with the ground, with lever arm d,. The only force
causing a counterclockwise torque about that same point is the
reaction force of the wall on the ladder, Fy,. While the ladder is in

Ry

equilibrium, Fy, will be the same magnitude as the frictional force

at the ground, Fg,. Since Fg, has a maximum value, Fy, will

D T

have the same maximum value, and Fy, will have a maximum

counterclockwise torque that it can exert. As the person climbs the d,
ladder, his lever arm gets longer, so the torque due to his weight
gets larger. Eventually, if the torque caused by the person is larger than the maximum torque caused by

FW , the ladder will start to slip—it will not stay in equilibrium.

8. The mass of the meter stick is equal to the mass of the rock. Since the meter stick is uniform, its center
of mass is at the 50-cm mark. In terms of rotational motion about a pivot at the 25-cm mark, we can
treat the stick as though its entire mass is concentrated at the center of mass. The meter stick’s mass at
the 50-cm mark (25 cm from the pivot) balances the rock at the 0 mark (also 25 cm from the pivot), so
the masses must be equal.

9. You lean backward in order to keep your center of mass over your feet. If, due to the heavy load, your
center of mass is in front of your feet, you will fall forward.

10. (a) The cone will be in stable equilibrium if it is placed flat on its base. If it is tilted slightly from
this position and then released, it will return to the original position.
(b) The cone will be in unstable equilibrium if it is balanced on its tip. A slight displacement in this
case will cause the cone to topple over.
(¢) Ifthe cone is placed on its side, it will be in neutral equilibrium. If the cone is displaced slightly
while on its side, it will remain in its new position.

stable unstable neutral
equilib. equilib. equilib.
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11.  When you rise on your tiptoes, your CM shifts forward. Since you are already standing with your nose
and abdomen against the door, your CM cannot shift forward. Thus gravity exerts a torque on you and
you are unable to stay on your tiptoes—you will return to being flat-footed on the floor.

-
5

When you start to stand up from a normal sitting position, your CM is not over your point of support
(your feet), so gravity will exert a torque about your feet that rotates you back down into the chair. You
must lean forward in order that your CM is over your feet so that you can stand up.

13.  While you are doing a sit-up, your abdomen muscles provide a torque to rotate you up away from the
floor. The force of gravity on your upper half-body tends to pull you back down to the floor, which
makes doing sit-ups difficult. The force of gravity on your lower half-body provides a torque that opposes
the torque caused by the force of gravity on your upper half-body, making the sit-up a little easier. When
your legs are bent, the lever arm for the lower half-body is shorter, so less counter-torque is available.

14.  For rotating the upper half-body, the pivot point is near the waist and hips. In that
position, the arms have a relatively small torque, even when extended, due to their
smaller mass. The more massive trunk—head combination has a very short lever arm,
so it also has a relatively small torque. Thus, the force of gravity on the upper body
causes relatively little torque about the hips, tending to rotate you forward, and the
back muscles need to produce little torque to keep you from rotating forward. The
force on the upper half-body due to the back muscles is small, so the (partially rightward) force at the
base of the spinal column (not shown in the diagram), to keep the spine in equilibrium, will be small.

When you stand and bend over, the lever arm for the upper body is much larger

than while you are sitting, which causes a much larger torque. The CM of the arms

is also farther from the support point and causes more torque. The back muscles,

assumed to act at the center of the back, do not have a very long lever arm. Thus the

back muscles will have to exert a large force to cause a counter-torque that keeps

you from falling over. Accordingly, there will have to be a large force (mostly to

the right, and not drawn in the diagram) at the base of the spine to keep the spine in equilibrium.

15.  Configuration (b) is more likely to be stable. In configuration (a), the CG of the bottom brick is at the
edge of the table, and the CG of the top brick is to the right of the edge of the table. Thus the CG of the
two-brick system is not above the base of support, and gravity will exert a torque to roll the bricks
clockwise off the table. Another way to see this is that more than 50% of the brick mass is not above
the base of support—50% of the bottom brick and 75% of the top brick are to the right of the edge of
the table. It is not in equilibrium.

In configuration (b), exactly half of the mass (75% of the top brick and 25% of the bottom brick) is over
the edge of the table. Thus the CG of the pair is at the edge of the table—it is in unstable equilibrium.

-
=

A is a point of unstable equilibrium, B is a point of stable equilibrium, and C is a point of neutral
equilibrium.

17.  The Young’s modulus for a bungee cord is much smaller than that for ordinary rope. We know that a
Fi4

0
of Young’s modulus is inversely proportional to the change in length of a material under a tension.
Since the change in length of a bungee cord is much larger than that of an ordinary rope if other
conditions are identical (stressing force, unstretched length, cross-sectional area of rope or cord), it
must have a smaller Young’s modulus.

bungee cord stretches more easily than ordinary rope. From Eq. 94, we have E = . The value
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18.

19.

An object under shear stress has equal and opposite forces applied across its opposite faces. This is
exactly what happens with a pair of scissors. One blade of the scissors pushes down on the cardboard,
while the other blade pushes up with an equal and opposite force, at a slight displacement. This
produces a shear stress in the cardboard, which causes it to fail.

Concrete or stone should definitely not be used for the support on the left. The left-hand support pulls
downward on the beam, so the beam must pull upward on the support. Therefore, the support will be
under tension and should not be made of ordinary concrete or stone, since these materials are weak
under tension. The right-hand support pushes up on the beam, so the beam pushes down on it; it will
therefore be under a compression force. Making this support of concrete or stone would be acceptable.

Responses to MisConceptual Questions

1.

(d)

@)

(a)

(©

(a)

(©

(©

In attempting to solve this problem, students frequently try to divide the beam into multiple parts
to calculate the torque due to the weight of the beam. The beam should be considered as a single

object with its weight acting at its center of mass (%Z from the pivot). Since the woman is on the

opposite side of the pivot and at the same distance as the beam’s center of mass, their forces of
gravity and masses must be equal.

A common misconception is that a nonrotating object has an axis of rotation. If an object is not
rotating, it is not rotating about any arbitrary point. When solving an equilibrium problem with
no rotation, the student can select any axis for the torques that facilitates solving the problem.

Students might think that for the net force on the beam to be zero, the tension would equal the
weight of the beam. However, this does not take into account the force that the wall exerts on the
hinged end. Students might assume that the tension is equal to half of the beam’s weight.
However, this does not take into account the vector nature of the tension. The vertical
component of the tension is equal to half of the weight, but there is also a horizontal component.
Adding these two components yields a tension at least half of the weight of the beam.

Drawing a free-body diagram for this problem will resolve student misconceptions. When the
ball is pulled to the side, there are three forces acting on the ball: the vertical weight, the
horizontal applied force, and the tension along the direction of the cable. Resolving the tension
into horizontal and vertical parts and applying Newton’s second law in equilibrium, we can see
that the applied force is equal to the horizontal component of the tension.

As the child leans forward, her center of mass moves closer to the pivot point, which decreases
her lever arm. The seesaw is no longer in equilibrium. Since the torque on her side has
decreased, she will rise.

A common misconception is that each cord will support one-half of the weight regardless of the
angle. An analysis of the forces using Newton’s second law in equilibrium shows that the
horizontal components of the tension are equal. Since cord A makes a larger angle with the
horizontal, it has a greater total tension and therefore supports more than half the suspended
weight.

The applied force is proportional to the stress, so increasing the force will affect the stress. The
strain is how the rope responds to the stress. Increasing the force will then affect the strain.
Young’s modulus is the constant of proportionality between the stress and strain. It is determined
by the properties of the material, so it is not affected by pulling on the rope.
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8. (e) Students may consider the tension equal to the woman’s weight, or half of the woman’s weight,
if they do not consider the vector nature of the forces. A free-body diagram for the point at the
bottom of the woman’s foot shows three forces acting: the weight of the woman and the diagonal
tensions in the wire on each side of her foot. Applying Newton’s second law in equilibrium in
the vertical direction shows that the vertical component of the tension must equal half of her
weight. Since vertical displacement is small compared to the horizontal length of the wire, the
total tension is much greater than the vertical component of the tension.

9. (d) When the length, width, and number of floors are doubled, the weight of the garage increases by
a factor of eight. To keep the stress on the columns unchanged, the area of the columns should

also increase by a factor of eight.

10. (d) The stress (applied force) is proportional to the strain (change in length). Doubling the stress will
cause the strain to double also.

Solutions to Problems

— o
1. Ifthe tree is not accelerating, then the net force in all directions is 0. F, \— 105
> F,=Fy +F3c0s105°+ Fe =0 — F,
Fo, =—Fj —Fgc0s105°=-385N—(475N) cos 105°=-262.1 N 0
> F, =Fysin105°+Fp, =0 — ¢
F, =—Fg sin105°=—(475 N) sin 105° =-458.8 N FC

Fo =[R2+ F3, =\[(-262.1N)? + (-458.8 N)? =5284 N =[528N
R _
(Foy _ 1 -458.8N

=60.3°, ¢ =180°—60.3° = [120°]
Fe, —262.1N 9

6 =tan"

So FC is 528 N, at an angle of 120° clockwise from FA. The angle has 3 significant figures.

2. Because the mass m is stationary, the tension in the rope e e Xy mmmmmme ,' mg
pulling up on the sling must be mg, and the force of the !
sling on the leg must be mg, upward. Calculate torques | g / |

about the hip joint, with counterclockwise torque taken as :__ N
positive. See the free-body diagram for the leg. Note that ! ! g
the forces on the leg exerted by the hip joint are not drawn,

because they do not exert a torque about the hip joint.

X 35.0cm
> t=mgr,—Mgx =0 — m=Mx—1=(15.0kg)W= 6.73 kg
2 .

3. (a) See the free-body diagram. Calculate torques about the P\ F,

pivot point P labeled in the diagram. The upward force at .
the pivot will not have any torque. The total torque is zero, l* R | et d----- >
since the crane is in equilibrium.

ZTzng—mgdzO - Mg mg

md (2800 kg)(7.7 m)
xX=—="——22""-=123m
M (9500 kg)
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() Again, we sum torques about the pivot point. Mass m is the unknown in this case, and the
counterweight is at its maximum distance from the pivot.

Mx, 9500 kg)(3.4 m
ZT = ngmax —mmaxgd =0 - Moy = dmax = ( (7 7gz((g) ) =(4200 kg

4. Her torque is her weight times the distance x between the diver and the left support post.
T 1800 m- N

T=mgx —> m=—-= 3 =46 kg
gx  (9.80 m/s”)(4.0 m)
(a) Let m=0. Calculate the net torque about the left end of the Iﬂs
diving board, with counterclockwise torques positive. Since :
the board is in equilibrium, the net torque is zero. F, [ LOm mg Mg
D r=F(1.0m)-Mg(4.0m)=0 — 20 m- o) !
F =4Mg =4(52 kg)(9.80 m/s?) =2038 N R 40m------- »E

~[2.0x10° N, up

Use Newton’s second law in the vertical direction to find F).
D F,=Fg—-Mg-F,=0 —

F, = Fy — Mg = 4Mg — Mg = 3Mg = 3(52 kg)(9.80 m/s?) =1529 N = [1500 N, down

() Repeat the basic process, but with m = 28 kg. The weight of the board will add more clockwise
torque.

D r=F(1.0m)-mg(2.0 m)-Mg(4.0m)=0 —

Fy = 4Mg +2mg =[4(52 kg) + 2(28 kg)](9.80 m/s?) = 2587 N =~ [2600 N, up
D F, =Fg—-Mg-mg—F, —
Fy = Fg —Mg—mg =4Mg +2mg — Mg —mg =3Mg + mg

=[3(52 kg) + 28 kg](9.80 m/s?) = 1803 N =[1800 N, down

6. Since each half of the forceps is in equilibrium, the net torque on each
half of the forceps is zero. Calculate torques with respect to an axis
perpendicular to the plane of the forceps, through point
P, counterclockwise being positive. Consider a force diagram for one-
half of the forceps. Fl is the force on the half-forceps due to the
plastic rod, and force FP is the force on the half-forceps from the pin
joint. FP exerts no torque about point P.

> 7= Frdpcos 0-Fdycos6=0 — F L SR SO LALLL SEVRIN
d 2.70 cm

1
The force that the forceps exerts on the rod is the opposite of Fl, so it is also [34.6 N|.

7. Write Newton’s second law for the junction, in both the x and y directions.
D F, =Fg—Fjcos45°=0
From this, we see that F, > F. Thus set F, =1660 N.
D F, =F)sin45°—mg =0

mg =F, sin 45° = (1660 N)sin45°=1174 N = |1200 N
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8.  Since the backpack is midway between the two trees, the angles in the
diagram are equal. Write Newton’s second law for the vertical direction
for the point at which the backpack is attached to the cord, with the
weight of the backpack being the downward vertical force. The angle is
determined by the distance between the trees and the amount of sag at the
midpoint, as illustrated in the second diagram.

- L
(a) 6@=tan 'Y _tan lﬂz24.4o
0/2 33m

sz =2Frsing-mg=0 —

2
mg =(l9kg)(9.80rrﬂs )=225.4Nz 230N

Fr=— ]
2sin 6, 2 sin 24.4°
) O=tan~' L =tan~t LM 5 600
02 33m
mg (19 kg)(9.80 m/s?)
Fr = = =2052 N =|2100 N
T 2sing, 2 sin 2.60°
9. Let m be the mass of the beam, and M be the mass of the piano. <-------m--- 0 ---------
Calculate torques about the left end of the beam, with <A [»
counterclockwise torques positive. The conditions of equilibrium for
the beam are used to find the forces that the support exerts on the ﬁ l
beam. =

> r=Frl-mg(10)-Mg(Le)=0
Fp=(im+iM)g =B(110 ke)+1(320 kg)](9.80 m/s?) =1320 N
D F,=F +F—mg—-Mg=0
F =(m+M)g—Fp = (430 kg)(9.80 m/s?)—1.32x10°> N = 2890 N

The forces on the supports are equal in magnitude and opposite in direction to the above two results.

|Fr =1300 N down| | =2900 N down
10.  Calculate torques about the left end of the beam, with counterclockwise
torques positive. The conditions of equilibrium for the beam are used to | g I F
find the forces that the support exerts on the beam. 4 2 |
3 7= F(20.0 m)-mg(25.0m)=0 — 1 200m l
- ---- > =
25.0 mmm e m g
Fa=255m8= (1.25)(1200 kg)(9.80 m/s?) =|1.5x10* N o

D F,=Fy+Fg-mg=0
Fy =mg —Fy =mg—1.25mg =—0.25mg = —(0.25)(1200 kg)(9.80 m/s*) = [-2900 N

Notice that F, points down.
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11.  The pivot should be placed so that the net torque on the board <«-------___ /A >
is zero. We calculate torques about the pivot point, with

| - . i e el St -
counterclockwise torques positive. The upward force Fp at
the pivot point is shown, but it exerts no torque about the Mg F m,g mg
pivot point. The mass of the child is m, the mass of the adult P B
is M, the mass of the board is mg, and the center of gravity €72- >

—x

is at the middle of the board.

(a) Ignore the force mpg.

ZT=ng—mg(€—x) =0 —

w= o 25K (9 0m)=225m~[2.3 m from adult
m+M (25 kg+75 kg)

(b) Include the force mgg.

ZT=ng—mg(f—x)—mBg(£/2—x) =0

p=ntmp’d) , 25ke+75Ke) g2 54 m ~[2.5 m from adult
(M +m+mg)  (75kg+25kg+15kg)

12.  Using the free-body diagram, write Newton’s second law for both
the horizontal and vertical directions, with net forces of zero.

ZFX :FT2 _FTI cos@=0 — FT2 :FTI cos @

mg
sin @

sz =Fpsin@-mg=0 — Fp =

2
M2 s =8 (190ke)OB0mMIST) _ecr 000 N

sin @ tan @ tan 33°

2
Fp, = s?:lga _ (1% kiﬁi‘j W/ST) _ 3418 N = [3400 N

FT2 :FTI Ccos 0: m

Draw a free-body diagram of the junction of the three wires.
The tensions can be found from the conditions for force
equilibrium.

cos 37°

Z:FY =Fp cos37°=Fryc0853°=0 — Fpy=———F
’ cos 53°

ZFy = Fr sin 37°+ Fp, sin 53°-mg =0

Frysin 3724523 B Gin530-mg=0 —
cos 53°

kg)(9. 2
Fy =—33 g)c((?583072n/s) =194.6 N =[190 N

sin 37°+ in 53°
cos 53
o _cos 370F _ cos 370(1 946102 N)=2583N =260 N
27 cos53° 1 cos 530 .
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14.  The table is symmetric, so the person can sit near either edge 0.60m x
and the same distance will result. We assume that the person i i |
(mass M) is on the right side of the table and that the table a -
(mass m) is on the verge of tipping, so that the left leg is on the 'mg IM g
verge of lifting off the floor. There will then be no normal force

between the left leg of the table and the floor. Calculate torques
about the right leg of the table such that the normal force F,
between the table and the floor causes no torque.

Counterclockwise torques are taken to be positive. The conditions of equilibrium for the table are used
to find the person’s location.

> 7=mg(0.60m)~Mgx=0 — x=(0.60 m)% —0.60m) 220K _ 518 m
g

66.0 k
Thus the distance from the edge of the table is 0.50 m—0.218 m = .

15.  The bottle opener will pull upward on the cork with a force of magnitude F,, , so thereisa
downward force on the opener of magnitude £, . We assume that there is no net torque on the
opener, so it has no angular acceleration. Calculate torques about the rim of the bottle where the

opener is resting on the rim.
> r=F(79mm)-Fou (9 mm)=0 —

F =2 Fp = —(200N) to — (400 N) = 22.8 N 0 45.6 N =
70 79 79
16. The beam is in equilibrium, so both the net torque and net F, F, F,
force on it must be zero. From the free-body diagram, P T‘ I P + o l‘ L ,1 F
calculate the net torque about the center of the left support, b M b Y- B
with counterclockwise torques as positive. Calculate the j_ cem X, - _,1 mg L
net force, with upward as positive. Use those two

equations to find F, and Fg.

Fo= Fix + 5 (xq +xy) + F5 (0 + x5 +X3) + mgxs
5=

(xl +x2 +X3 +X4)

_ (4300 N)(2.0 m) + (3100 N)(6.0 m) + (2200 N)(9.0 m) + (280 kg)(9.80 m/s”)(5.0 m)

10.0 m
=6072 N :

D F=F\+Fg-F-F-F-mg=0
Fy = F +F, + F; +mg — Fz = 9600 N + (280 kg)(9.80 m/s*) 6072 N = 6272 N =[6300 N

17.  From the free-body diagram, the conditions of equilibrium - f rmmmmmmmmmm- >
are used to find the location of the girl (mass mc ). The T
45-kg boy is represented by m, and the 35-kg boy by 1” X - ’l

mg. Calculate torques about the center of the seesaw, and ;g - -
take counterclockwise torques to be positive. The upward
force of the fulcrum on the seesaw (F) causes no torque about the center.

Zrz mAg(%f)—mch—mBg(%é) =0

(mp —mg) (45kg-35kg)
= ()= G2 =[oeam]

mc
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The beam is in equilibrium. Use the conditions of equilibrium to calculate
the tension in the wire and the forces at the hinge. Calculate torques about
the hinge, and take counterclockwise torques to be positive.

D r=(Frsin@)l, —mgl/2—mygl; =0 —
_ Tmgt, +mygt, _ 1 (155 N)(1.70 m) +(215 N)(1.70 m)
T {,sin@ (1.35 m)(sin 35.0°)

=0422N=|642 N

> Fo=Fy,~Frcos0=0 — Fy, =F;cos §=(642.2 N)cos 35.0°=526.1 N =[526 N

sz =y, +Frsinf-mg-mg=0 —
Fyy, =mg+myg—Frsin® =155 N+215 N—(642.2 N)sin 35.0°=1.649 N =

19. (a) The pole is in equilibrium, so the net torque on it must be
zero. From the free-body diagram, calculate the net torque

A
about the lower end of the pole, with counterclockwise |
torques as positive. Use that calculation to find the tension 1
in the cable. The length of the pole is /. }Il

ZTzFTh—mg(f/Z) cos 80— Mgl cos@=0 E
(m/2+M) gl cos 6 v
FT =
h
(6.0 kg+21.5kg)(9.80 m/s> )(7.20 m) cos 37°
= =407.8 N=[410 N
3.80 m

() The net force on the pole is also zero since it is in equilibrium. Write Newton’s second law in
both the x and y directions to solve for the forces at the pivot.

D F.=Fp,-F=0 - Fp,=F=[410N
Y F,=F,-mg-Mg=0 — Fp, =(m+M)g=(335kg)(9.80 m/s*)=[328 N|

20. The center of gravity of each beam is at its geometric center. Calculate torques about the left end of the
beam, and take counterclockwise torques to be positive. The P 1L Mg ~
conditions of equilibrium for the beam are used to find the forces A

that the support exerts on the beam. /4 | e .
= —_ _l — '4-4-->| |

D 7= Fl—Mg(t/2)-L Mg(t/4)=0 — E*-——-z/z--J i

Fy =3 Mg =3(940 kg)(9.80 m/s?) =5758 N =[5800 N [ — frmmmmmmm - >

D, =F\+Fy-Mg-1Mg=0 —

Fp =3 Mg —Fy =1 Mg =Z(940 kg)(9.80 m/s?) =8061 N = (8100 N

21.  To find the normal force exerted on the road by the trailer tires, take the
torques about point B, with counterclockwise torques as positive. . |

> r=mg(5.5m)~F,8.0m)=0 — " Ti
5.5 55 kJ : B
Fy =mg| 22 | = (2500 kg)(9.80 m/s2)| 22 | = 16,844 N i T‘--m---»:
8.0m 80m A : !
25m 55m

NPT
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The net force in the vertical direction must be zero.
D F,=Fg+F\-mg=0 —

Fy =mg — Fy = (2500 kg)(9.80 m/s*)—16,844 N = 7656 N = |7.7x10°> N

22. (a) For the extreme case of the beam being ready to

tip, there would be no normal force at point A ? A - B D
from the support. Use the free-body diagram to 3.0 m I 7.0 m 1 5.0 m I 5.0 m
write the equation of rotational equilibrium under ~ ! M
that condition to find the weight of the person, F N mygg F, w

with F, =0. Take torques about the location of

support B, and call counterclockwise torques positive. W is the weight of the person, and mg is
the mass of the beam.
> r=mgg(5.0m)-W(5.0m)=0 —

W=mBg=

(b)  With the person standing at point D, we have already assumed that . The net force in the

vertical direction must also be zero.

Y F,=Fy+Fy-mgg-W=0 — Fy=myg+W =650N+650 N =1.30x10° N

(¢) The person moves to a different spot, so the free-
body diagram changes again as shown. Again use . = -
the net torque about support B and then use the net 30m 1 l 50m l 50m 1 P
B
F -

A2 .IO m B D

vertical force.

A W mBg
D 7=mgg(5.0 M)+ (10.0 m)— F, (120 m)=0
£y =8 g(.0m)+ W (10.0m) _ (650 N)(5.0 m)+(650 N)(10.0 m) _ reos
12.0 m 12.0 m
D F,=Fy+Fg—mgg—W=0 — Fg=mgg+W —F,=1300 N-810N=|490 N

23. Draw the free-body diagram for the sheet, and write = F
Newton’s second law for the vertical direction. Note that 353 - 3.5°
the tension is the same in both parts of the clothesline. ~ ~ """~ 71 [ 777

> F, =Fpsin3.5°+F; sin3.5°-mg=0 — "8

po__ mg _(0.75kg)(9.80 m/s?)
T 2(sin 3.5%) 2 (sin 3.5°)
= (2 significant figures)

The 60-N tension is much higher than the ~7.5-N weight of the sheet because of the small angle. Only
the vertical components of the tension are supporting the sheet. Since the angle is small, the tension
has to be large to have a large enough vertical component to hold up the sheet.

=]
.y

must be zero. From the free-body diagram, calculate the nettorque ~ F, [[7" "~ "1~~~ 7~
about the center of gravity, with counterclockwise torques as positive. P

Use that calculation to find the location of the center of gravity, a
distance x from the feet.

The person is in equilibrium, so both the net torque and net force 7 .
B
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> T=Fgx—Fy({—-x)=0

Fa MAE ™A 35.1ke (1.72 m) =[9.05x10~" m

:FA+FB :mAg+mBg _mA+mB :31.6kg+35.1kg

The center of gravity is about 90.5 cm from the feet.

25. (a) The man is in equilibrium, so the net force and the net torque on him must
be zero. We use half of his weight and then consider the force just on one
hand and one foot, assuming that he is symmetrical. Take torques about the
point where the foot touches the ground, with counterclockwise as positive.

ZT:%mgdz _Fh(dl +d2) =0

F Id L d I K
2 1«2 f
= mgd, _ (68 kg)(9.80 m/s)(0.95 m) — 231N =230N !
2(d, +d,) 2(1.37 m)
(b) Use Newton’s second law for vertical forces to find the force on the feet.
D F,=2F, +2F;—mg=0
Fy =Smg—F, =3(68kg)(9.80 m/s>)—231 N =103 N =[100 N
The value of 100 N has 2 significant figures.
26. First consider the triangle made by the pole and one of the wires (first
diagram). It has a vertical leg of 2.6 m and a horizontal leg of 2.0 m. The angle P

that the tension (along the wire) makes with the vertical is

6 =tan"! % =37.6°. The part of the tension that is parallel to the ground is 26m

therefore Fry, = Fr sin 6.

Now consider a top view of the pole, showing only force parallel to the 2.0m
ground (second diagram). The horizontal parts of the tension lie as the sides of
an equilateral triangle, so each makes a 30° angle with the tension force of the net. Write the
equilibrium equation for the forces along the direction of the tension in the net.

> F=Fy—2Fp,c0830°=0 —
Flo =2F7 sin 6 cos 30°=2(115 N) sin 37.6° cos 30°=121.5 N = {120 N

27. (a) Choose the coordinates as shown in the free-body diagram.

()  Write the equilibrium conditions for the horizontal and vertical forces.

zFx :Frope Sin¢_Fhinge =0 -

horiz

Fhinge = Frope sin ¢ = (85 N) sin 37° =

horiz

D F, = Frope €08 @+ Fipge —mg =W =0 —

vert

Fhinge = Mg +W = Frop, cos ¢ = (3.8 kg)(9.80 m/s”)

vert
+22 N—(85N)cos37°=—-8.6 N = horts
So the vertical hinge force actually points downward.
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(¢) We take torques about the hinge point, with clockwise torques as positive.

Y r=Wd sin 0+mg(10)sin 6-F . (sin (0-9)=0 —

rope

_ Fpelsin (0—¢)—mg(%€) sin @

W sin 6
(85 N)(5.0 m) sin 16°— (3.8 kg)(9.80 m/s’ )(2.5 m) sin 53°
_ —2436m~[24m
(22 N) sin 53°
: | | .
28.  See the free-body diagram. Take torques about the pivot :< 0.75m»<0.75m ><—1.50m %:

point, with clockwise torques as positive. The plank is in ' '

equilibrium. Let m represent the mass of the plank and M
represent the mass of the person. The minimum nail force
would occur if there was no normal force pushing up on the
left end of the board.

> 7=mg(0.75 m) cos 6+ Mg(2.25 m) cos 6 —
Flis(0.75m)cos =0 —
mg(0.75 m)+ Mg(2.25 m)
Fnails = =
(0.75 m)
= (45 kg +3 (65 kg))(9.80 m/s?) = 2352 N = [2400 N

mg +3Mg

29.  The forces on the door are due to gravity and the hinges. Since the door is
in equilibrium, the net torque and net force must be zero. Write the three
equations of equilibrium. Calculate torques about the bottom hinge, with
counterclockwise torques as positive. From the statement of the problem,

> -————

«—— ——-

Zrzmg%—FAx(h—Zd) =0

mgw  (13.0 kg)(9.80 m/s>)(1.30 m)
F,. = = =[552N]
AT o (h-2d) 2(2.30 m—0.80 m)

ZFx=FAx_FBx=O - FBx=FAx=

Y F,=Fy, +Fy,-mg=0 — Fy, =Fy, =1mg=1(13.0kg)(9.80 m/s*)=[63.7N

30. Write the conditions of equilibrium for the ladder, with torques taken about
the bottom of the ladder and counterclockwise torques as positive.

ZT:wasin H—mg(%ﬂcos 6):0 — Fy :%tmge
an

mg
ZFx:FGx_FW =0 - 5, =Fy :%tanﬁ

ZFyzFGy—mgzo - Fg, =mg

“-""fcos@ ~~*
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9-14 Chapter 9

For the ladder not to slip, the force at the ground F{; , must be less than or equal to the maximum
force of static friction.
1 Mg

Fox S N = Uk, — 2tn @

S umg  — ZLStanH - HZtan_l[ij
S

S

Thus the minimum angle is |6 .. = tan~'(1/2 )|

31. The arm is in equilibrium. Take torques about the elbow joint F,
(the dot in the free-body diagram), so that the force at the elbow
joint does not enter the calculation. Counterclockwise torques are FJ i lmg Mg
positive. The mass of the lower arm is m =2.0 kg, and the mass T _ail _J
of the load is M. e, , |
It is given that Fy =450 N. oo d, ===

ZT:FMdl—mgdz —Mgd3 =0 -

Fyd; —mgd, (450 N)(0.060 m)—(2.0 kg)(9.80 m/s*)(0.15 m)
M =M% 2 _ =-7.0kg
gd; (9.80 m/s?)(0.35 m)

32. Calculate the torques about the elbow joint (the dot in the free-body diagram). The arm is in

equilibrium. Counterclockwise torques are positive. .
- i mg Mg
> 7=Fyd-mgD-Mgl=0 F, |
FM:Mg f__‘_i_’i‘_D_’: :
d *------- f —————— gl
_ [(2.3 kg)(0.12 12)1)04273 kg)(0.300 m)}(9.80 m/s?) =
.025m

33.  We redraw Figs. 9-14b and 9-14c with the person 45° from the horizontal, instead
of the original 30°. All distances are as in the original problem. We still assume that
the back muscles pull at a 12° angle to the spine. The 18° angle from the original
problem becomes 33°. Torques are taken about the same point at the base of the
spine, with counterclockwise torques as positive.

D 7=(0.48 m) Fy sin 12°—(0.72 m)(wy) sin 45°
—(0.48 m)(w, ) sin 45°—(0.36 m)(wy) sin 45° =0 v

As in the original problem, wy =0.07w, w, =0.12w, wp =0.46w. The
torque equation then gives the following result:

_ [(0.72 m)(0.07) +(0.48 m)(0.12) +(0.36 m)(0.46)]
B (0.48 m) sin 12°

M wsin 45° =1.94w

Take the sum of the forces in the vertical direction, set equal to zero.

sz =Fy, —Fy sin33°-0.07w-0.12w-0.46w=0 — Fy, =17lw
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Take the sum of the forces in the horizontal direction, set equal to zero.
D F =Fy,—Fycos33°=0 — Fy, =1.63w
The final result is

Fy=\Fj +F}, =[24w

This compares with 2.5w for the more bent position.

=

<

34, (a) Calculate the torques about the elbow joint (the dot in the
free-body diagram). The arm is in equilibrium. Take
counterclockwise torques as positive.

D r=(Fysin@)d—-mgD=0 —

_ mgD _ (3.3kg)(9.80 m/s?)(0.24 m)
M ™ dsing (0.12 m)sin 15°

SE

(b) To find the components of Fj, write Newton’s second law for both the x and y directions. Then

Mo

j/
___—<_

N

(1))

—

1
oo

=2499 N

L
1

combine them to find the magnitude.
ZFX =F,—Fycosf=0 — Fj, =Fycos8=(2499 N)cos15°=241.4 N
ZFy =Fysin@-mg—-F;, =0 —
Fy, = Fy sin6—mg =(249.9 N)sin15°—(3.3 kg)(9.80 m/s?)=32.3N

Fy=F +F2, ={(241.4 N) +(32.3 N)? =243.6 N =[240 N

FM
35. Calculate the torques about the shoulder joint, which is at the left end of ‘e\

the free-body diagram of the arm. Since the arm is in equilibrium, the sum of N+ N

the torques will be zero. Take counterclockwise torques to be positive. The :\ 1mg Mg
force due to the shoulder joint is drawn, but it exerts no torque about the E ; ! !

shoulder joint. E:_:_"_ 2 o —e- R

D r=Fydsin@-mgD-Mgl=0

mD+ML  (3.3kg)(0.24 cm)+ (8.5 kg)(0.52m) ,
Fy = _ 9.80 m/s?) =[1600 N
MTT sng © (0.12 m)sin 15° ( )

36. There will be a normal force upward at the ball of the foot, equal

to the person’s weight (Fy =mg). Calculate torques about a point F '\

on the floor directly below the leg bone (and in line with the leg
bone force, FB ). Since the foot is in equilibrium, the sum of the

torques will be zero. Take counterclockwise torques as positive.
D r=FQd)-Fyd=0 —

Fy =2Fy =2mg = 2(72 kg)(9.80 m/s>) = [1400 N

The net force in the y direction must be zero. Use that to find Fg.

D F,=Fy+F\—Fg=0 — Fy=Fy+F,=2mg+mg=3mg=|2100N
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37. Take torques about the elbow joint. Let clockwise torques be positive. Since the arm is in equilibrium,
the total torque will be 0.

> 7= (2.0 kg)g(0.15 m)+(25 kg)g(0.35 m) — Fpyy (0.050 m) sin 105°=0 —

(2.0 kg)g(0.15 m)+ (25 kg)g(0.35 m)
F_ = =1836 N = (1800 N
nax (0.050 m) sin 105°

38.  From Section 9—4: “An object whose CG is above its base of support will be stable Yertical _ Ready to fall
if a vertical line projected downward from the CG falls within the base of
support.” For the tower, the base of support is a circle of radius 7.7 m. If the top is
4.5 m off center, then the CG will be 2.25 m off center, and a vertical line
downward from the CG will be 2.25 m from the center of the base. As long as that
vertical line is less than 7.7 m from the center of the base, the tower will be in q

stable equilibrium|. To be unstable, the CG has to be more than 7.7 m off center,

so the top must be more than 2 x (7.7 m) = 15.4 m off center. Thus the top will
have to lean 15.4 m—4.5 m = farther to reach the verge of instability.

39. (@) The maximum distance for brick #1 to remain on brick #2 will be reached
when the CM of brick #1 is directly over the edge of brick #2.
Thus brick #1 will overhang brick #2 by x; = ¢/2.

The maximum distance for the top two bricks to remain on #2
brick #3 will be reached when the center of mass of the top
two bricks is directly over the edge of brick #3. The cM of the

top two bricks is (obviously) at the point labeled X on brick #2, | |.#1 < T =
a distance of //4 from the right edge of brick #2. Thus #2 !
ETC P
Xy =1/4.
The maximum distance for the top three bricks to remain on brick #4 will be reached when the
center of mass of the top three bricks is directly over the ——
edge of brick #4. The cM of the top three bricks is at the [41 ° |
point labeled X on brick #3 and is found relative to the [#2 ° | X,
. ~ m(0)+2m(0/2) [#3 o X | x,
center of brick # 3 by cM = B — £/3, or /6 [#4 o X,
from the right edge of brick #3. Thus x; = (/6.
The maximum distance for the four bricks to remain on —(—
a tabletop will be reached when the center of mass of the #1 o
four bricks is directly over the edge of the table. The cM [#2 ° | X
of all four bricks is at the point labeled X on brick #4 [#3 ° Xy
and is found relative to the center of brick #4 by | [ #4 ° )I(xl Y3
4

M= m(0)+3m({/2)
4m
of brick #4. Thus x, = (/8.

=3/¢/8, or ¢/8 from the right edge

(b) From the last diagram, the distance from the edge of the tabletop to the right edge of brick #1 is
Xg+X3+xy +x; = (0/8)+(0/6)+(0/4)+ (£/2) =250/24 > ¢
Since this distance is greater than ¢, the answer is , the first brick is completely beyond the
edge of the table.
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(¢) From the work in part (a), we see that the general formula for the total distance spanned by n
bricks is

X+, = (02)+ (A (06) 4+ (2m) =Y~

(d) The arch is to span 1.0 m, so the span from one side will be 0.50 m. Thus, we must solve

n
z 0'39 ™ >0.50 m. Evaluation of this expression for various values of #n shows that 15 bricks

o 2

will span a distance of 0.498 m and that 16 bricks will span a distance of 0.507 m. Thus, it takes
16 bricks for each half-span, plus 1 brick on top and 1 brick as the base on each side (as in

Fig. 9-67b), for a total of |35 bricks|.

40. The amount of stretch can be found using the elastic modulus in Eq. 9-4.

1 F 1 2 =
Al=——1 SN (0.300 m) = 3.50x107> m

" 3x10° N/m? 7(5.00x1074)>2

2
41. (@) stress =%=’"—Ag= (25,000 ke)O-80m/s™) _ 175 000 N/m? = [1.8x10° N/m?

1.4m?

() strain = stress _ 175,000%10° N/m?> 106
Young’s modulus 50x10° N/m?

42. The change in length is found from the strain.

strain = % — Al =/{y(strain) = (8.6 m)(3.5><10_6) =[3.0x10° m

0
2
(@) stress =1 =& _ (1700 kg)(9'8(;m/s ) —1.388x10° N/m? =|1.4x10° N/m?
4 4 0.012m
6 2
(b)  strain=— S0 138X NmMT o0 1076 ~[6.9x1070

Young’s modulus 200x10° N/m?

(c) Al =(strain)(/y) = (6.94x1070)(9.50m) = 6.593x10™> m =|6.6x10™> m

44. The change in volume is given by Eq. 9-7. We assume the original pressure is atmospheric pressure,
1.0x10° N/m?,

AP

6 2 5 2
AV:_VO?:_(1000Cm3)(2.6><1o N/m? —1.0x10° N/m?)

1.0x10° N/m?

V =V, +AV =1000 cm® —2.5 cm® =997.5 cm®

45. The relationship between pressure change and volume change is given by Eq. 9-7.

AV=—VO% - AP=—AV—VB=—(O.10><10_2)(90><109 N/m?)=[9.0x10" N/m?

0

7 2
AP _9.0x10° N/m =[9.0x10%|, or 900 atmospheres

Pin  1.0x10° N/m>

=-25cm’
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46. The Young’s modulus is the stress divided by the strain.

2
13.4 N)/| 1 x8.5x1073
stress _ F/A _( ) [n(z m) }

strain~ Al/0y  (3.7x107° m)/(15x107% m)

=19.6x10° N/m?

47. The mass can be calculated from the equation for the relationship between stress and strain. The force
causing the strain is the weight of the mass suspended from the wire. Use Eq. 9-4.

-3 2
AL_1FE _mg o CEAAL  000x10° Nim2)ZLIXI0 7 m)7 0.030 e
ty EA4 E4 gl (9.80 m/s*) 100

Young’s modulus =

48. The percentage change in volume is found by multiplying the relative change in volume by 100. The
change in pressure is 199 times atmospheric pressure, since it increases from atmospheric pressure to
200 times atmospheric pressure. Use Eq. 9-7.

5 2
1002 _ _100AP _ _1019901.0x10° N/m?) - S

"o B 90x10° N/m?

The negative sign indicates that the interior space got smaller.

49. Elastic potential energy is given by PE = %k(Ax)2 = %F Ax. The force is found from Eq. 94,

elastic

using A/ as Ax.

(2.0x10° N/m?)(0.50x10™* m?)
(3.0x107> m)

EA
PE ysiic = 5 FAx = %[T M]M =2

0
Tl

50.  Set the compressive strength of the bone equal to the stress of the bone.

(1.0x107 m)?

. F, _
compressive strength =% - F= (170x10® N/m?)(3.0x10™* m?) =|5.1x10* N

51. (a) The maximum tension can be found from the ultimate tensile strength of the material.

ax

. F
tensile strength = mT —

F,x = (tensile strength) 4 = (500x10° N/m?)z(5.00x10™* m)* =[393 N

(b) To prevent breakage, should be used, which will increase the cross-sectional area
of the strings and thus increase the maximum force. Breakage occurs because when the strings
are hit by the ball, they stretch, increasing the tension. The strings are reasonably tight in the
normal racket configuration, so when the tension is increased by a particularly hard hit, the
tension may exceed the maximum force.

52. (a) Compare the stress on the bone with the compressive strength to see whether the bone breaks.

F  33x10*N
Stress=—=ﬁ
3.6x107" m

=9.167x10" N/m? < 1.7x10® N/m? (compressive strength of bone)

|The bone will not break.|

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Static Equilibrium; Elasticity and Fracture 9-19

() The change in length is calculated from Eq. 9—4.

/ : -
Al = Oﬁ—ﬁﬂ}mmmw N/m?) =[1.3x107 m

E A (15x10° N/m?

53. (a) The area can be found from the ultimate tensile strength of the material.

tensile strength _ F 4= F( safety factor j

safety factor A tensile strength

A=(270 kg)(9.80 m/sz)L=3.704x10_5 m? =[3.7x107° m?

500%x10% N/m?

() The change in length can be found from the stress-strain relationship, Eq. 9—4.

2
F_pA o GF _ (15mG0kg)©080mish) P s

41 "~ AE T (3.704x1075 m*)(200x10° N/m?)

54.  For each support, to find the minimum cross-sectional area with a

F strength . . = =
safety factor means that — = —g’ where either the tensile or F, I F,
A safety factor !

compressive strength is used, as appropriate for each force. To find the | %Q.p_r{l_i mg
force on each support, use the conditions of equilibrium for the beam. - 250m
Take torques about the left end of the beam, calling counterclockwise - STil oo >
torques positive, and also sum the vertical forces, taking upward forces as positive.

25.0

D r=F3(20.0m)-mg(25.0m)=0 — Fy =mmg =1.25mg
ZFy:FA+FB—mg:0 — F) =mg—-Fg=mg—-125mg =-0.25mg

Notice that the forces on the supports are the opposite of FA and FB. So the force on support A is

directed upward, which means that support A is in tension. The force on support B is directed
downward, so support B is in compression.

F, _ tensile strength

Ap 9.0
3 2
A, =90 (9.25mg) ~9.0 (0.25)(2.9x10° kg)(9.80 m/s”) _ L6x10= m?
tensile strength 40%10% N/m?
Fg _ compressive strength
Ag 9.0
3 2
4y =9.0 (1.2.5mg) ~9.0 (1.25)(2.9x10” kg)(9.80 m/s”) _ 9.1x10= m?
compressive strength 35%10° N/m?

55. The maximum shear stress is to be 1/7th of the shear strength for iron. The maximum stress will occur
for the minimum area and thus the minimum diameter.

F shear strength

Avin 7.0
d:\/ 4(1.0)F _\/ 28(3300 N) ~13x107 m =[[3 om]

mr(shear strength) B m(170x1 0° N/m? )

)2 B 70 F
shear strength

4 =x(Ld

Stressx = 3
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56.

57.

58.

From the free-body diagram, write Newton’s second law for the vertical direction. Solve
for the maximum tension required in the cable, which will occur for an upward F
acceleration.

ZFy =Fr-mg=ma — Fr=m(g+a)

The maximum stress is to be 1/8th of the tensile strength for steel. The maximum stress
will occur for the minimum area and thus the minimum diameter.

Fr _ tensile strength
8.0

_ 8.0F
tensile strength

Stress .y =
min

2
Je 4(8.Q)m(g+a) _ 32(3100 kg)(11.6 m/s”) =9 71x10°2 mz
7(tensile strength) 7(500x10° N/m?)

Draw free-body diagrams similar to Figs. 9-31a and 9-31b for the
forces on the right half of a round arch and a pointed arch. The load
force is placed at the same horizontal position on each arch. For each
half-arch, take torques about the lower right-hand corner, with
counterclockwise as positive.

For the round arch:

R—x
D r=Foa(R-x)-Fy R=0 - Fy =Fgq——
round round R
For the pointed arch:
R—x
ZT:FLoad(R_x)_FH y=0 — Fy =Froad ——
pointed pointed y
Solve fory, given that Fy =1 Fy
pointed round
R—x R—x
FH :lFH - FLoad _%FLoad -
pointed round
y=3R=3({80m)=[12m
Write Newton’s second law for the horizontal direction.
ZFX =F,cos0-Fcos8=0 — F,=F Fouress

Thus the two forces are the same size. Now write Newton’s second law
for the vertical direction.

F, 42%10° N
F,=F sin@+F sin0-F =0 — [ = DButtress _ =12.4x10° N
z y 1 1 Buttress 1 2 in 8 2 (sin 5°) -

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Static Equilibrium; Elasticity and Fracture 9-21

59. (a) The pole will exert a downward force and a T ~
clockwise torque about the woman’s right hand. | Fien
Thus there must be an upward force exerted by . [ 030 m-» | I
the left hand to cause a counterclockwise torque ~ Fign ' 1 mg
for the pole to have a net torque of zero about «----1.0m---+

the right hand. The force exerted by the right
hand is then of such a magnitude and direction for the net vertical force on the pole to be zero.

D 7=F4(0.32m)-mg(1.0m)=0 —

2
1.0 10.0 kg)(9.80 m/
Fip = mg( o j _ (0.0 keX %) _306.25 N =[310 N, upward

0.32m 0.32
ZFy = Flen — Frigne —mg =0 —
Fright = Fren —mg =306.25 N —(10.0 kg)(9.80 m/s®) = 208.25 N =[210 N, downward

(b) We see that the force due to the left hand is larger
than the force due to the right hand, since both the I
right hand and gravity are downward. Set the left '
hand force equal to 150 N and calculate the F. ) ¢ X l ~
location of the left hand by setting the net torque Raeht mg
equal to zero.

> 7= Feqx-mg(lO0m)=0 — x=—% (1.0m)= 9BON | 0 m)=
Fleq 150 N
As a check, calculate the force due to the right hand.
Fright = Fren —mg =150 N-98.0 N=52N OK

F,

Left

“«----10m---»

(¢) Follow the same procedure, setting the left-hand force equal to 85 N:
> 7= Feqx-mg(l.0m)=0 — x=—5(1.0m)= 9ON (1 om)=1.153 m =[12m]
Left 85N
Fight = Fleg —mg =85 N-98.0N=-13N OK

Note that now the force due to the right hand must be pulling upward, because the left hand is on the
opposite side of the center of the pole.

60. Ifthe block is on the verge of tipping, the normal force will be acting at the
lower right-hand corner of the block, as shown in the free-body diagram.
The block will begin to rotate when the torque caused by the pulling force — F
is larger than the torque caused by gravity. For the block to be able to
slide, the pulling force must be as large as the maximum static frictional
force. Write the equations of equilibrium for forces in the x and y
directions and for torque with the conditions as stated above. m

(2

/=)
—t—
|
=

D F,=Fy-mg=0 — Fy=mg
zFx:F_FfrZO - F=Ffr=:usFN=:usmg
Zszgé—thO - %ﬂthzﬂsmgh

Solve for the coefficient of friction in this limiting case, to find g, = %
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(a) If |ug < 0/2h|, then sliding will happen before tipping.
(b) If |u, > ¢/2h|, then tipping will happen before sliding.

61. Assume that the building has just begun to tip, so that it is essentially
vertical, but that all of the force on the building due to contact with the
Earth is at the lower left-hand corner, as shown in the figure. Take -

torques about that corner, with counterclockwise torques as positive. 23.0m A L
D 7= F,(90.0 m)—mg(23.0 m) e 90.0|hl
=[(950 N/m?)(180.0 m)(76.0 m)] (90.0 m) F,, i
—(1.8x107 kg)(9.80 m/s2)(23.0 m) = E

Since this is a negative torque, the building will tend to rotate

clockwise, which means it will rotate back down to the ground. Thus |the building will not topple|.

62. The truck will not tip as long as a vertical line down from the CG is
between the wheels. When that vertical line is at the wheel, it is in
unstable equilibrium and will tip if the road is inclined any more. See the
diagram for the truck at the tipping angle, showing the truck’s weight
vector.

63. (a) The meter stick is in equilibrium, so both the net torque and
the net force are zero. From the force diagram, write an
expression for the net torque about the 90-cm mark, with Tle------ 090 m-----
counterclockwise torques as positive. ]

|
.
o
(=}

3 7= mg(0.40 m)— Fro(0.90 m)=0 — *"°~50m"’jmg
Fro = mg% =(0.180 kg)(9.80 m/sz)w =]0.78 N
0.90 0.90
(b) Write Newton’s second law for the vertical direction with a net force of 0 to find the other

tension.

ZFy=FTO+FT90_mg=O 4
Frog = mg — Fro = (0.180 kg)(9.80 m/s2)—0.78 N =[0.98 N

64. The maximum compressive force in a column will occur at the bottom. The bottom layer supports the
entire weight of the column, so the compressive force on that layer is mg. For the column to be on
the verge of buckling, the weight divided by the area of the column will be the compressive strength
of the material. The mass of the column is its volume (area X height) times its density.

m .
7g = compressive strength =

hApg o ope compressive strength

Prg
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Note that the area of the column cancels out of the expression, so the height does not depend on the
cross-sectional area of the column.

compressive strength 500x10° N/m?
@) Iy = = N —=[6500 m
Prg (7.8x10” kg/m”)(9.80 m/s“)
compressive strength 170x10° N/m?
B)  hgrapite = = =16400 m
grantte pg (2.7x10° kg/m>)(9.80 m/s?)

65. The radius of the wire can be determined from the
relationship between stress and strain, expressed by Eq. 9-5.

F
F_gal | A=ﬁ=ﬂ'r2 - 7 LE L
4 1, EA! T E Al

Use the free-body diagram for the attachment point of the mass and wire to get the wire’s tension.

mg (25 kg)(9.80 m/s®)

F,=2Fsin0-mg=0 — Fp= =589.2 N
z 7 T g T 2sing 2sin 12°
The fractional change in the length of the wire can be found from the geometry 002 '
of the problem, as seen in the second diagram. \:
) 0o +AL |
coso=t0Z AL L ))34x10 - .
Lo+AL ly cos@ cos 12° |
2 ]
Thus, the radius is
0 . Z
}"=\/l—T—O = l( 58992N 2) ! 3 =(3.5%10 4 m
T E Al 77\ 70x10” N/m~ /(2.234x1077)
66. The limiting condition for the painter’s safety is the
tension in the ropes. The ropes can exert only an upward F =0 F. o
tension on the scaffold. The tension will be least in the et 3
rope that is farther from the painter. The mass of the pail 1.0 m
is m,, the mass of the scaffold is m, and the mass of the ¢ T T " . 1
. 1.0m:1.0ml1.0ml 20m ! xl
painter is M. ) '

Find the distance to the right that the painter can walk m,g mg Mg
before the tension in the left rope becomes zero. Take
torques about the point where the right-side rope is attached to the scaffold, so that its value need not
be known. Take counterclockwise torques as positive.

D 7=mg(20m)+m,g(3.0m)-Mgx=0 —

e m(2.0 m)+m,(3.0m) (25kg)(2.0 m)+(4.0 kg)(3.0 m)
- M - 65.0 kg

=0.9538m=0.95m

The painter can walk to |within 5 cm of the right edge| of the scaffold.

© Copyright 2014 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



9-24 Chapter 9

Now find the distance to the left that the painter can walk F F..=0
. . . left right
before the tension in the right rope becomes zero. Take
torques about the point where the left-side tension is 1.0 ml
attached to the scaffold, so that its value need not be ' o | [ X '
known. Take counterclockwise torques as positive. 1 1 1.0 ml 1.0m 20m  }1.0m
ZTzng—mpg(l.O m)-mg(2.0m)=0 — Mg m,g meg

. m(2.0 m)+m,(1.0m) (25 kg)(2.0 m)+ (4.0 kg)(1.0 m)
B M B 65.0 kg

=0.8308 m = 0.83 m

The painter can walk to |within 17 cm of the left edge| of the scaffold. Both ends are dangerous.

67. See the free-body diagram. The ball is at rest, so it is in equilibrium. Write Newton’s
second law for the horizontal and vertical directions, and solve for the forces.

|
. . in 6 |
ZFhoriz =Fgsin@g—F,sinf, =0 — Fg=F, "2 i

sin HB

ZFvertZFACOS@A—FBCOSHB—ngO — Fjycos60) =Fgcosbg+mg —

in 6, in 6
Fy cosHAzFASI.n A cos @y +mg — Fj COSHA—SI.H A cosOy |[=mg — mg
sin 6y sin 6y
S o . emo
Fy =mg SN —mg— 0 _ (15,0 kg)(9.80 mys?) SI3
(cos @, sin G —sin 6, cos 6y) sin (g —6,) sin 31°

:228Nz

o o
FBzFAsmeAz(zng)smzi =107 N=[110N

sin 6y sin 53°

68. The number of supports can be found from the compressive strength of the wood. Since the wood will
be oriented longitudinally, the stress will be parallel to the grain.

compressive strength _ load force on supports weight of roof
safety factor area of supports (number of supports)(area per support)
ight of roof fety fact
(number of supports) = weight of roo safety factor

(area per support) compressive strength
_ (1.36x10" kg)(9.80 m/s?) 12
(0.040 m)(0.090 m)  (35x10° N/m?)

=12.69 supports

Since there are to be more than 12 supports, and to have the same number of supports on each side,
there will be 14 supports, or |7 supports on each side | That means there will be 6 support-to-support

10.0 m
spans, each of which would be given by spacing = =1(1.66 m/gap|.

aps

69. The tension in the string when it breaks is found from the ultimate strength of nylon under tension,
from Table 9-2.

F
7T = Tensile strength —

2
Fp = A(Tensile strength) = n[%(1.15x10‘3 m)] (500x10° N/m2)=519.3 N
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From the force diagram for the box, we calculate the +
angle of the rope relative to the horizontal from 3=h i
Newton’s second law in the vertical direction. Note 4
that since the tension is the same throughout the string, h E
the angles must be the same so that the object does not ;

accelerate horizontally.
D F,=2F sinf-mg=0 —

1 mg _ o1 (25 kg)(9.80 m/s?)
2F; 2(519.3N)

0 =sin" =13.64°

To find the height above the ground, consider the second diagram.

tan@=""——— — 7 =3.00m—2.00 m(tan 6) =3.00 m—2.00 m(tan 13.64°) =

70.  Since the backpack is midway between the two trees, the angles in the
free-body diagram are equal. Write Newton’s second law for the vertical
direction for the point at which the backpack is attached to the cord, with
the weight of the backpack being the original downward vertical force.

. mg
F, =2F,sinf,—-mg=0 — Fry=
z y TO 0 g TO 2sin 6,

Now assume the bear pulls down with an additional force, F,,.. The force equation would be
modified as follows:

sz =2F g 8IN Oy —mg —Fipe =0 —

Fbear = 2FT final sin aﬁnal —mg = 2(Q’FTO) sin gﬁnal —mg = 4( j sin Hfmal —mg

2 sin 6,
2 sin G, 2.[ 2sin 27°
=mg| — -1 [=(23.0 kg)(9.80 m/s")] ————-1|=5653N =570 N
g( sin g, ] ( &)X )( sin 15° j
Fbeam

71. Draw a free-body diagram for one of the beams. By Newton’s third law, if
the right beam pushes down on the left beam, then the left beam pushes up
on the right beam. But the geometry is symmetric for the two beams, so the
beam contact force must be horizontal. For the beam to be in equilibrium,
Fy =mg, and Fy =y Fy = umg is the maximum friction force. Take

R Er

/sin@

[}

torques about the top of the beam, so that F,,,, exerts no torque. Let
clockwise torques be positive.

Y 7="Fy lcos O—mg(Lr)cos O F; tsino=0 —

¢ ---=-=-=--=

1 1
0=tan_l—=tan_1—=-45° «---{cos@---»
241, 2(0.5)

72. (a) The fractional decrease in the rod’s length is the strain. Use Eq. 9—4. The force applied is the
weight of the man.

Al F kg)(9. 2 _ =
AL_F - (65 2g)(9 80 njs ) —=4.506x107" =|(4.5x10°)%
ly AE  grPE  1(0.15)*(200x10° N/m?)
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() The fractional change is the same for the atoms as for the macroscopic material. Let d represent
the interatomic spacing.
M AL s06x10%
dy Ly

Ad = (4.506x107%)d,, = (4.506x1078)(2.0x1071" m)=[9.0x107"* m

73. (a) See the free-body diagram for the system, showing forces on the engine
and the forces at the point on the rope where the mechanic is pulling
(the point of analysis). Let m represent the mass of the engine. The fact
that the engine was raised a half-meter means that the part of the rope
from the tree branch to the mechanic is 3.25 m, as well as the part from
the mechanic to the bumper. From the free-body diagram for the engine,
we know that the tension in the rope is equal to the weight of the engine.
Use this, along with the equations of equilibrium at the point where the
mechanic is pulling, to find the pulling force by the mechanic.

Angle: 6 =cos
m

Engine: ZFy:FT—mg:O - I =mg
Point: ) F,=F-2F;sinf=0 —

F =2mg sin 6 = 2(280 kg)(9.80 m/s?) sin 22.62°=2111 N =[2100 N

load force _ mg _ (280 kg)(9.80 m/s*) _
applied force F 2111N )

(b)  mechanical advantage =

74. Consider the free-body diagram for the box. The box is assumed to be in ~——10m -

equilibrium, but just on the verge of both sliding and tipping. Since it is
on the verge of sliding, the static frictional force is at its maximum value.
Use the equations of equilibrium. Take torques about the lower right-hand
corner where the box touches the floor, and take clockwise torques as
positive. We assume that the box is just barely tipped up on its corner, so % F
that the forces are still parallel and perpendicular to the edges of the box. N

DFE,=FN-W=0 - F=W | =

-l

2.0m

Y F, =F-F=0 — F=F,=ulW=(0.60)(250N)=

D r=Fh-W(05m)=0 — h=(05 m)%z(O.S m)%z

75.  From the free-body diagram (not to scale), write the
force equilibrium condition for the vertical direction.

ZFy =2F;sin@-mg=0

_ mg  mg _(60.0kg)(9.80m/52)
2sin @ 2tan @ 2(2.1mj

18 m
-[0%]

Fr
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Note that the angle is small enough (about 7°) that we have made the substitution sin & = tan 6.

It is not possible to increase the tension so that there is no sag.| There must always be a vertical

component of the tension to balance the gravity force. The larger the tension gets, the smaller the sag
angle will be, however.

76. Assume a constant acceleration as the person is brought to rest, with up as the positive
direction. Use Eq. 2—11c to find the acceleration. From the acceleration, find the average
force of the snow on the person, and compare the force per area with the strength of body snow

1

. . Y
tissue. From the free-body diagram, we have F, ,, —mg =ma — F_ ., =m(a+ g).
2_ .2 _ 2
vzzvg—2a(x—xo) - g=2 "% _0=GSmiy) =1513 m/s’ -
2(x-xy)  2(-1.0m) mg
2 2
Fnow _ ma+h) _ (75 kg)(1513 m/s 2+9.80 m/s”) —381x10° N/m>
A A 0.30m

F
% < tissue strength = 5x10° N/m?

Since |the average force on the person is less than the strength of body tissue|, the person may escape
serious injury. Certain parts of the body, such as the legs if landing feet first, may get more than the
average force, though, and still sustain injury.

77. The force in the left vertical support column is 44,100 N, in compression. We want a steel column that

can handle three times that, or 132,300 N. Steel has a compressive strength of 500%x10° N/m?. Use
this to find the area.

gzwzsoomoﬁ Nm? o A= B230N s 6x107 m2 <[2.6%10% m?

500x10° N/m?>

If the column were square, each side would be 1.6 cm. If the column were cylindrical, the radius would
be 9.2 mm.

78.  Each crossbar in the mobile is in equilibrium, so the net torque about the suspension point for each
crossbar must be 0. Counterclockwise torques will be taken as positive. The suspension point is used so
that the tension in the suspension string need not be known initially. The net vertical force must also be 0.

The bottom bar:
ZT =mpgxp —mcgrc =0 — IFCD
Xp 17.50 cm :
Mme = mp — = mp ———— =3.50m ey e -
¢ P Xc 75.00 cm D "% "r Y™
pS ¢
The middle bar:
X X -
ZT = FCDxCD —mngB = 0 —> FCD = mBg—B —> 450ng = mBg—B IFBCD
Xcp 276)) }

mpy =8 _ (0.748ke)3.00 em) _ 5541 _[5 5410 kg == X > x>
450 xcp  (4.50)(15.00 cm)
me =3.50mp, = (3.50)(0.05541 kg) =[0.194 kg i, my8

D F, =Fgep —Fepe—mpg =0 —  Fycp = Fep +mpg = (4.50mp, +mg)g
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The top bar: IF
ZT =MAZXA _FBCDXBCD =0 - | -
4.50mp, + I
ma :( mp mB)ngcD _ (4.50mD +mB)xBCD *___XA“-’:*;CI;C—D»
8XA o :
= [(4.50)(0.05541 kg)-+0.748 kgl o™
30.00 cm

79. (a) See the free-body diagram for the Tyrolean
traverse technique. We analyze the point on
the rope that is at the bottom of the “sag.” To
include the safety factor, the tension must be
no more than 2900 N.

Z:Fvert =2F.sinf@-mg=0 —
2
mg _ -l (75 kg)(9.80 m/s”)

6, =sin | —=— =7.280°

2Fy 2(2900 N)
max

tan 6, =1;me —  xy;, =(12.5m)tan (7.280°) =1.597 m =

Sm
() Now the sag amount is x = %xmin = %(1.597 m) =0.3992 m. Use that distance to find the
tension in the rope.
6 =tan”! = tan 1 0392 _ ) 8390

12.5m 12.5m

mg  (75kg)(9.80 m/s?)
F = = :11,512Nz-12,000N
T osing 2 sin 1.829°

The rope will not break, but the safety factor will be only about 4 instead of 10.

80. (a) The weight of the shelf exerts a downward forceanda  _.
clockwise torque about the point where the shelf Left i o 320em ”
touches the wall. Thus, there must be an upward force — E
and a counterclockwise torque exerted by the slot for :
the shelf to be in equilibrium. Since any force exerted ol 1 G
. . “ Right mg
by the slot will have a short lever arm relative to the !
point where the shelf touches the wall, the upward 2.0cm

force must be larger than the gravity force. Accordingly, there then must be a downward force
exerted by the slot at its left edge, exerting no torque, but balancing the vertical forces.

(b) Calculate the values of the three forces by first taking torques about the left end of the shelf, with
the net torque being zero, and then sum the vertical forces, with the sum being zero.

D 7=F,(0.020m)—mg(0.170m)=0 —

Fy = (6.6 kg)(9.80 m/s?) 0.170m 1 _ 549 ¢ N =<[550N
0.020 m

ZF = F;ight —Fyg—mg —

v

F, = F,, —mg =549.8 N—(6.6 kg)(9.80 m/s*) =[490 N

mg = (6.6 kg)(9.80 m/s*) =
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(¢) The torque exerted by the support about the left end of the rod is

7= Fign (2.0x107% m) = (549.8 N)(2.0x107 m) =

81. See the free-body diagram for the crate on the verge of tipping. From
Fig. 9-16 and the associated discussion, if a vertical line projected
downward from the center of gravity falls outside the base of support,
then the object will topple. So the limiting case is for the vertical line
to intersect the edge of the base of support. Any more tilting and the
gravity force would cause the block to tip over, with the axis of
rotation through the lower corner of the crate.

tan 6 = % — f=tan"! % = (2 significant figures)

The other forces on the block, the normal force and the frictional force, would act at the lower corner.
They would cause no torque about the lower corner. The gravity force causes the tipping.

Solutions to Search and Learn Problems

1. For you to remain balanced, your center of mass must be above your base of support on the floor.
When you are flat-footed on the floor, your center of mass is above your feet. When you go up onto
your tiptoes, your center of mass attempts to move forward so that it will be above your toes.
However, due to your finite width and the fact that you cannot move your body inside the wall, your
center of mass cannot move forward to be above your toes. You cannot balance on your tiptoes next to
the wall.

If you turn around and place your heels several inches away from the wall, you could lean back and
push your back against the wall. In this case your center of mass would be above a point between your
feet and the wall. Your feet would create a torque that would rotate your back toward the wall. To
prevent from falling over, you would need the normal force of the wall pushing against your back.
When your heels are placed against the wall, it is not possible for your center of mass to be between
your feet and the wall. Your back cannot therefore push against the wall in this position.

2. As the brick falls, its potential energy is converted into kinetic energy. When the brick hits the floor,
work is done on the brick to decelerate it to rest. The amount of work needed to decelerate the brick is
equal to the initial potential energy (mgh) and is also equal to the product of the average stopping force
(F) and the brick’s compression distance (Af). Use Eq. 9—4 to write the compression distance in terms

of the force.
1 F
mgh=FA =F| ——/
£ [E 4 0]

By replacing the strain (£/4) with the ultimate strength of brick, the resulting equation can be solved
for the minimum height (%) necessary to break the brick when dropped.

2 6 252
h:(ﬁj o4 _ (35x10° N/m?) (0.0402m)(0.15(9)m)(05060 m):
A4) mgE (1.2 kg)(9.80 m/s*)(14x10° N/m*)
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3. (a)

(b)

(©)

(@)

(e)

(b)

(c)

Use conservation of energy to determine the speed when the person reaches
the ground. Set the potential energy of the ground as zero (y =0). F
N

KE, +PE; =KE, +PE, — 0+mgy =1mv’+0
v=12g, =2(9.8 m/s*)(3.0 m) =7.668 m/s = [7.7 m/s]

When the person reaches the ground, two forces will act on him: the force of mg
gravity pulling down and the normal force of the ground pushing up. The

sum of these two forces provides the net decelerating force. The net work

done during deceleration is equal to the change in kinetic energy.

Y Fd=AKE - (mg-Fy)(d)=0-L1mv’

2

2
Fy =mg+"Y" = (65 kg)(9.8 mys?) + O KT8 WS _ s N 3500 N
2d 2(0.50 m)

Repeat the previous calculation for a stopping distance of d =0.010 m.

2 2
mo ). (65 kg)(7.668 ms) s ;
Fy = mg+7% (65 ke)(9.8 m/s?) + =1.917x10° N =[1.9x10° N|
n=mgte) =63 ke ) 50.010m)

The force is evenly spread between each leg, so divide half of the force by the area of the tibia to
determine the stress. Then compare this stress to the compressive strength of the tibia given in
Table 9-2.

1
F 1(4459N
F_ 50 _)2 =|7.4x10° N/m?|<170x10® N/m?

A 3.0x10% m

The stress is much less than the compressive strength, so it is unlikely that the tibia will break.

Repeating the calculation for the distance of 0.010 m:

11.917x10° N
F_ U710 N) 2x10% N/m?|>170x10° N/m?

A4 3.0x10% m?

The stress is greater than the compressive strength, so the tibia will likely break.

There are only two forces that produce torques when the axis is chosen about the point where the
cable is attached to the beam: the weight of the beam and the vertical component of the force due
to the hinge. Since the weight of the beam is downward, it produces a counterclockwise torque.
For the net torque to be zero, the vertical component of the force due to the hinge must produce a
clockwise torque and therefore must point upward.

Choosing the axis of rotation at the wall eliminates the hinge forces from the torque equation,
enabling you to solve the torque equation for the tension in the cable directly.

First, as in part (b), set the sum of the torques around the pivot equal to zero and solve for the
tension in the cable.

> 7=0=-mg(1.10 m)— Mg(2.20 m)+ Fy sin 6 (220 m) —

Img+Mg (12.5kg+28.0 kg)
Fp =2 = L2 28T 200 %8) 9.8 m/s?) =[794 N]
T sin @ sin 30° ( )
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Next, set the sum of the vertical forces and the sum of the horizontal forces equal to zero to determine
the components of the force on the hinge.

> F,=0=Fy —F, — Fy, =Fp, =Fcos8=(794N)cos30°=|687 N
D> F,=0=Fy, —-mg-Mg+F, —
Fyy = (m+M)g - Fy sin 6= (25 kg +28 kg)(9.8 m/s*) — (794 N) sin 30°=[123 N

(d)  You choose the axis of rotation to eliminate one or more unknown values from the torque
equation, enabling you to solve for one of the other unknowns.

5. The ladder is in equilibrium, so both the net force and net torque must
be zero. Because the ladder is on the verge of slipping, the static
frictional force at the ground, F¢, is at its maximum value. Thus,

Fe = UgFe,. Torques are taken about the point of contact of the

ladder with the ground, and counterclockwise torques are taken as
positive. The three conditions of equilibrium are as follows:

zFx =Fe,—Fy=0 — [, =Fy

D F,=Fo,-Mg-mg=0 —

Fe, = (M +m)g = (67.0 kg)(9.80 m/s*) = 656.6 N
> 7= Fy(40m)-mg($)(3.0m)-Mg(2.1m)=0

Solve the torque equation for Fy,.

_ %(12.0 kg)(3.0 m)+(55.0 kg)(2.1 m)
4.0m

W (9.80 m/s?) =327.1N

The coefficient of friction then is then found from the components of F(.

<o (P 32N 5

Fe, Fop 656.6N
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FLUIDS

Responses to Questions

1. Density is the ratio of mass to volume. A high density may mean that lighter molecules are packed
more closely together and thus a given amount of mass is occupying a smaller volume, making
a higher density. An atom of gold weighs less than an atom of lead, because gold has a lower atomic
mass, but the density of gold is higher than that of lead.

2. The sharp end of the pin (with a smaller area) will pierce the skin when pushed with a certain
minimum force, but the same force applied in pushing the blunt end of the pen (with a larger area)
into the skin does not pierce the skin. Thus, it is pressure (force per unit area) that determines whether
the skin is pierced.

=]

As the water boils, steam displaces some of the air in the can. With the lid off, the pressure inside is
the same as the outside pressure. When the lid is put on, and the water and the can cool, the steam that
is trapped in the can condenses back into liquid water. This reduces the pressure in the can to less than
atmospheric pressure, and the greater force from the outside air pressure crushes the can.

4. Since the ice floats, the density of ice must be less than that of the water. The mass of the ice displaces
a volume of water with the same weight as the ice, whether it is solid or liquid. Thus as the ice melts,
the level in the glass stays the same. The ice displaces its melted volume.

5. The density of ice (917 kg/m3 ) is greater than that of alcohol (790 kg/m3 ), so the ice cube will not
float in a glass of alcohol. The ice cube will sink in the alcohol.

6. Both products have gas dissolved in them (carbonation), making their density less than that of water.
The difference is in the sweetener in each product. The Coke® has a significant amount of sugar (or
some other sweetener, like high-fructose corn syrup) dissolved in it, increasing its density so that it is
greater than that of water. The Diet Coke” has a different, low-calorie sweetener that evidently has a
lower density than the Coke sweetener. The density of the Diet Coke (including the can) remains less
than that of water. Thus, the Coke sinks, and the Diet Coke floats.

7. Iron ships are not solid iron. If they were, then they would sink. But the ships have quite a bit of open
space in their volume (the volume between the deck and the hull, for instance), making their overall
density less than that of water. The total mass of iron divided by the total volume of the ship is less
than the density of water, so ships made of iron float.
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Sand must be added to the barge. If sand is removed, then the barge will not need to displace as much
water since its weight will be less, and it will rise up in the water, making it even less likely to fit under
the bridge. If sand is added, then the barge will sink lower into the water, making it more likely to fit
under the bridge. You would have to be careful to not pile the sand up so high that you lose the
advantage of adding more sand.

As the balloon rises, the air pressure outside the balloon will decrease, becoming lower than the
pressure inside the balloon. The excess inside air pressure will cause the balloon to expand, lowering
the pressure inside but stretching the balloon in the process. If, at launch, the material of the balloon
were already stretched to the limit, then the expansion of the balloon due to the decreasing outside air
pressure would cause the balloon to burst. Thus, the balloon is only filled to a fraction of its maximum
volume.

No. If the balloon is inflated, then the pressure inside the balloon is slightly greater than atmospheric
pressure. Thus the air inside the balloon is more dense than the air outside the balloon. Because of the
higher density, the weight of the air inside the balloon is greater than the weight of the outside air

that has been displaced. This is the same as saying that the buoyant force on the balloon is less than the
weight of the air inside the balloon. Therefore, the apparent weight of the filled balloon will be slightly
greater than that of the empty balloon.

In order to float, you must displace an amount of water equal to your own weight. Salt water is more
dense than fresh water, so the volume of salt water you must displace is less than the volume of fresh
water. You will float higher in the salt water because you are displacing less water. Less of your body
needs to be submerged in the water.

As the water falls, its vertical speed is larger when away from the faucet than when close to it, due to
gravity. Since the water is essentially incompressible, Eq. 10-4b applies, which says that a faster flow
has a smaller cross-sectional area. Thus, the faster moving water has a narrower stream.

It is possible. Due to viscosity, some of the air near the train will be pulled along at a speed
approximately that of the train. By Bernoulli’s principle, that air will be at a lower pressure than air
farther from the train. That difference in pressure results in a force toward the train, which could push
a lightweight child toward the train. The child would be pushed, not “sucked,” but the effect would be
the same—a net force toward the train.

Water will not flow from the holes when the cup and water are in free fall. The acceleration due to
gravity is the same for all falling objects (ignoring friction), so the cup and water would fall together.
For the water to flow out of the holes while falling, the water would have to have an acceleration larger
than the acceleration due to gravity. Another way to consider the situation is that there will no longer
be a pressure difference between the top and bottom of the cup of water, since the lower water
molecules don’t need to hold up the upper water molecules.

The lift generated by wind depends on the speed of the air relative to the wing. For example, an airplane
model in a wind tunnel will have lift forces on it even though the model isn’t moving relative to the
ground. By taking off into the wind, the speed of the air relative to the wing is the sum of the plane’s speed
and the wind speed. This allows the plane to take off at a lower ground speed, requiring a shorter runway.

As the ships move, they drag water with them. The moving water has a lower pressure than stationary
water, as shown by Bernoulli’s principle. If the ships are moving in parallel paths fairly close together,
then the water between them will have a lower pressure than the water on the outside of either one,
since it is being dragged by both ships. The ships are in danger of colliding because the higher pressure
of the water on the outsides will tend to push them toward each other.
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18.

19.

20.

21.

The papers move toward each other. Bernoulli’s principle says that as the speed of a gas increases, the
pressure decreases (when there is no appreciable change in height). As the air passes between the
papers, the air pressure between the papers is lowered. The air pressure on the outside of the papers is
then greater than that between the papers, so the papers are pushed together.

As the car drives through the air, the air inside the car is stationary with respect to the top, but the
outside air is moving with respect to the top. There is no appreciable change in height between the
two sides of the canvas top. By Bernoulli’s principle, the outside air pressure near the canvas top will
be less than the inside air pressure. That difference in pressure results in a force that makes the top
bulge outward.

The roofs are pushed off from the inside. By Bernoulli’s principle, the fast moving winds of the
storm causes the air pressure above the roof to be quite low, but the pressure inside the house is still
near normal levels. There is no appreciable change in height between the two sides of the roof. This
pressure difference, combined with the large surface area of the roof, gives a very large force that can
push the roof off the house. That is why it is advised to open some windows if a tornado is imminent,
so that the pressure inside the house can somewhat equalize with the outside pressure.

See the diagram in the textbook. The pressure at the surface of both containers is atmospheric pressure.
The pressure in each tube would thus also be atmospheric pressure, at the level of the surface of the
liquid in each container. The pressure in each tube will decrease with height by an amount pgh. Since

the portion of the tube going into the lower container is longer than the portion of the tube going into
the higher container, the pressure at the highest point on the right side is lower than the pressure at the
highest point on the left side. This pressure difference causes liquid to flow from the left side of the
tube to the right side of the tube. And as noted in the question, the tube must be filled with liquid
before this can occur.

“Blood pressure” should measure the pressure of the blood coming out of the heart. If the cuff is below
the level of the heart, then the measured pressure will be the pressure from the pumping of the heart
plus the pressure due to the height of blood above the cuff. This reading will be too high. Likewise, if
the cuff is above heart level, then the reported pressure measurement will be too low.

Responses to MisConceptual Questions

1.

(¢) Students frequently think that since the wood floats, it experiences a greater buoyancy force.
However, both objects experience the same buoyant force since they have the same volume and
are in the same fluid. The wood floats because its weight is less than the buoyant force, and the
iron sinks because its weight is greater than the buoyant force.

(d) A common misconception is that container B will have the greater force on the bottom since it
holds the greatest weight of water. The force of the water on the bottom of the container is equal
to the product of the area of the bottom and the pressure at the bottom. Since all three containers
have the same base areas and the same depth of water, the forces on the bottom of each will be
equal. The additional weight of the water in B is supported by the diagonal walls. The smaller
weight of C is countered by the additional pressure exerted by the diagonal walls on the water.

(c¢) Students may think that since part of the wood floats above the water, beaker B will weigh more.
Since the wood is in equilibrium, the weight of the water displaced by the wood is equal to the
weight of the wood. Therefore, the beakers will weigh the same.
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4. (d)
5. i(b)
6. ()
7. (@)
8. (o)
9. (@)
10.  (a)
1. (b)
12. (a)

A common misconception is to consider the ocean liner as a solid object. The ocean liner has an
outer shell of steel, which keeps the water out of the interior of the ship. However, most of the
volume occupied by the ocean liner is filled with air. This makes the average density of the
ocean liner less than the density of the seawater. If a hole were introduced into the outer shell,
then the interior would fill with water, increasing the density of the ship until it was greater than
that of seawater and then the ship would sink, as happened to the Titanic.

and ii (b)) When the rowboat is floating in the water, the boat will displace a volume of water
whose weight is equal to the weight of the boat. When the boat (or the anchor) is removed from
the swimming pool, the water is no longer being displaced, so the water level will drop back to
its initial level.

Students may think that since part of the ice floats above the water, the water will overflow as
the ice melts. The ice, however, displaces a mass of water equal to the mass of the ice. As the ice
melts, its volume decreases until it occupies the same volume as the water that the ice initially
displaced.

A common misconception is that the hot air causes the balloon to rise, so it would rise on the
Moon just as it would on Earth. What actually happens on the Earth is the denser cold air around
the balloon on Earth is heavier than the hot air in the balloon. This denser air then moves
downward, displacing the hot air balloon upward. On the Moon there is no atmosphere to move
downward around the balloon, so the balloon would not rise.

Students may reason that since water is denser than oil, the object would experience a greater
buoyant force in water. This would be true if the object was completely submerged in either
fluid. Since the object is floating at the surface of the liquid, the buoyant force on the object will
be equal to its weight and will therefore be the same in both fluids. The object floats with less
volume submerged in the water than is submerged when it floats in the oil.

The velocity of the water in the pipe depends upon its diameter, as shown by the continuity
equation. The pressure depends upon both the change in elevation and the velocity of the water.
Therefore, information about how the diameter changes is required to determine how the
pressure changes.

A common misconception is that the pressure would be higher in the faster moving water. The
continuity equation requires that the water in the wider pipe travel slower than in the narrow
pipe. Bernoulli’s equation shows that the pressure will be higher in the region where the water
travels slower (the wider pipe). As water travels from a region of low pressure to one of high
pressure, it experiences a retarding force, which decreases the velocity of the water.

The ball accelerates to the right because the pressure on the left side of the ball is greater than the
pressure on the right side. From Bernoulli’s equation, the air on the right side must then be
traveling faster than the air on the left side. This difference in air speed is produced by spinning
the ball when it is thrown.

Students may believe that wind above the chimney will blow the smoke back down the chimney.
Actually, the wind blowing across the top of the chimney causes the air pressure above the
chimney to be lower than the air pressure inside. The greater inside pressure pushes the smoke
up the chimney.
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Solutions to Problems

1. The mass is found from the density of granite (found in Table 10—1) and the volume of granite
m=pV =(2.7x10° kg/m>)(10® m*) =2.7x10'"! kg =[3x10'! kg
2.

The mass is found from the density of air (found in Table 10—1) and the volume of air

m=pV =(1.29 kg/m*)(5.6 m)(3.6 m)(2.4 m) =

3. The mass is found from the density of gold (found in Table 10-1) and the volume of gold
m=pV =(19.3x10° kg/m®)(0.54 m)(0.31 m)(0.22 m) = (=1600 Ib)
4. Assume that your density is that of water, and that your mass is 75 kg
V= ﬂ = A = =75L
P 1.00x10° kg/m®
5.

To find the specific gravity of the fluid, take the ratio of the density of the fluid to that of water, noting
that the same volume is used for both liquids.

G Pid  (M/V)gyiq _ Maa _ 8922 g-35.00 g m
fluid = = =
v P water (m/ V)water Myater 98 44 g- 35. OO

6. The specific gravity of the mixture is the ratio of the density of the mixture to that of water. To find the
density of the mixture, the mass of antifreeze and the mass of water must be known
Mantifreeze = Pantifreeze Vantifreeze = SGantifreezep water Vantifreeze Myyater = Pwater Vwater
SG... _ Prmixture _ mmlxture/ mixture _ Mantifreeze + Myater _ SGantifreezepwaterVantifreeze +pwaterVwater
mixture - - -
water P water P water Vmixture P water Vmixture
_ SGantifreezeVantifreeze T Vwater (0 80)4.0L)+5.0L _ -
Vmixture 9.0L
7. (a)

The density from the three-part model is found from the total mass divided by the total volume
Let subscript 1 represent the inner core, subscript 2 represent the outer core, and subscript 3
represent the mantle. The radii are then the outer boundaries of the labeled region

43 403 3 403 3
o _mtmy+my  pim+pymy +psmy P3P S =)+ py 375 —13)
three — = 3 3 3 3 3
layers N+n+h V1+V2+V3 %ﬂ'rl +%”(V2 —-n )+%ﬂ'(l”3 —}”2)
3 33 33 3 3 3
_P AP —i) A5 =) (P =P+ (P = P3) + 15 P
3 3
K] 3

(1220 km)? (1900 kg/m?) + (3480 km)® (6700 kg/m?) + (6380 km)* (4400 kg/m?)

(6380 km)®
=5500.6 kg/m> ={5500 kg/m>
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24
B Pone =%= M __SO8XI0TKE 54973 ke/m® = [5.50x10° kg/m’

density S7R> 47(6380x10° m)’

Pone TP e 5497 kg/m® — 5501 ke/m’
% difference = 100| —&mSY___1yers |50 £ . g\ 0.073~[-0.07%
pth_ree 5501 kg/m

layers

8. The pressure is given by Eq. 10-3a.
P = pgh=(1.00x10" kg/m>)(9.80 m/s?*)(46 m) = |4.5x10°> N/m?

The pressure exerted by the heel is caused by the heel pushing down on the floor. That downward
push is the reaction to the normal force of the floor on the shoe heel. The normal force on one heel is
assumed to be half the weight of the person.

ly 1(56 kg)(9.80 m/s>
(@ P _2Mperon _ 5 (50 ke ) =16.1x10° N/m?

=
PO Ained  (0.45 cm®)(0.01 m/em)?

1y 1(56 kg)(9.80 m/s>
() Pyige =222 = 3 (06 ke ) _[7x10° N/m?

Agige (16 cm?)(0.01 m/cm)?

10. Use Eq. 10-3Db to find the pressure difference. The density is found in Table 10-1.
AP = pgAh =(1.05x10° kg/m>)(9.80 m/s>)(1.75 m)

=1.801x10* N/m? (lmm—'ng: 135 mm-Hg

133 N/m?

11. (a) The total force of the atmosphere on the table will be the air pressure times the area of the table.

F = PA4=(1.013x10> N/m?)(1.7 m)(2.6 m) = |4.5x10° N

(b) Since the atmospheric pressure is the same on the underside of the table (the height difference is
minimal), the upward force of air pressure is the same as the downward force of air on the top of

the table, .

12.  The height is found from Eq. 10-3a, using normal atmospheric pressure. The density is found in
Table 10-1.

5 2
Pepgh - h=t - 1.013x10° N/m

= =|13m
Pg  (0.79x10° kg/m>)(9.80 m/s?)

That is so tall as to be impractical in many cases.

13.  The pressure difference on the lungs is the pressure change from the depth of water. The pressure unit
conversion comes from Table 10-2.

2
. mm_Hg)(133 N/m
AP 1 mm-Hg

AP =pgAh — Ah=—""= J =-1.154m=[-1.2 m]

pg  (1.00x10° kg/m®)(9.80 m/s?)

He could have been 1.2 m below the surface.
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14. The force exerted by the gauge pressure will be equal to the weight of the vehicle.

mg = PA=P(mr*) —

5 2
(17.0 atm)| LO3XLOE NI 711 2535 my 2
2 1 atm

g (9.80 m/s?)

15. The sum of the force exerted by the pressure in each tire is equal to the weight of the car.

1 m?
4

!
0 em = 1861 kg =[1900 kg]

4(2.40x10° N/m?)(190 cm?)
4PA

mg=4PA — m= = 5
g (9.80 m/s”)

—
&

(a) The absolute pressure can be found from Eq. 10-3c, and the total force is the absolute pressure
times the area of the bottom of the pool.

P = PRy +pgh=1.013x10> N/m? +(1.00x10> kg/m*)(9.80 m/s*)(1.8 m)

=1.189%10° N/m? =[1.19x10° N/m>
F =PA4=(1.189x10° N/m?)(28.0 m)(8.5 m) =|2.8x10" N

() The pressure against the side of the pool, near the bottom, will be the same as the pressure at the

bottom. Pressure is not directional. P =|1.19x10° N/m?|.

17. (a) The gauge pressure is given by Eq. 10-3a. The height is the height from the bottom of the hill to
the top of the water tank.

P; = pgh=(1.00x10° kg/m*)(9.80 m/s*)[6.0 m + (75 m) sin 61°]={7.0x10° N/m?

() The water would be able to shoot up to the top of the tank (ignoring any friction).

h=6.0 m+(75 m)sin 61° =72 m|

18.  The pressures at points a and b are equal since they are at the same height in the same fluid. If the
pressures were unequal, then the fluid would flow. Calculate the pressure at both a and b, starting with
atmospheric pressure at the top surface of each liquid, and then equate those pressures.

Pa = Pb - PO + poilghoil = PO + pwaterghwater - poilhoil = :qzvaterhwater -

3 3 _
= pwat;rhwater _ (1.00x10 kg/I?O)z(;).z272) m=0.0862m) _[ <o
. m

oil

19.  If the atmosphere were of uniform density, then the pressure at any height 4 would be P = Ry — pgh.

At the top of the uniform atmosphere, the pressure would be 0. Thus solve for the height at which the
pressure becomes 0, using a density of half of the atmospheric density at sea level.

P . > N/m?
P=P—pgh=0 — p=tb__ QOB NmMT) [ 6 50

pg 1129 kg/m?)(9.80 m/s?)
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20. The minimum gauge pressure would cause the water to come out of the faucet with very little
speed. This means that the gauge pressure needed must be enough to hold the water at this elevation.
Use Eq. 10-3a.

B; = pgh=(1.00x10° kg/m*)(9.80 m/s*)(44 m) = |4.3x10° N/m*

21.  Consider the lever (handle) of the press. The net torque on .
that handle is 0. Use that to find the force exerted by the %pe

hydraulic fluid upward on the small cylinder (and the lever).
Then Pascal’s principle can be used to find the upward force

on the large cylinder, which is the same as the force on the

sample.

> r=FQ0)-F[{=0—F =2F Fz[ N

F F e K
R=P - l—=-—21_— !

(ba)  x(idy)

Fy = F(dy/dy)* = 2F(d,/d,)* = F, -

ample

F 2 2
P =—omvte _ 2F(a/d)” _ 260N [0 07

Asample Asample 4.0x107* m?

22.  The pressure in the tank is atmospheric pressure plus the pressure difference due to the column of
mercury, as given in Eq. 10-3c.

(@) P=E+pgh=104bar+py,gh

5 2
=(1.04 bar)(MJ+(l3.6x103 kg/m*)(9.80 m/s?)(0.185 m) = [1.29x10° N/m?

1 bar

5 2
(b) P =(1.04 bar) [M}L(B.ﬁxw kg/m*)(9.80 m/s%)(=0.056 m) =|9.7x10* N/m>
ar

23. If'the iron is floating, then the net force on it is zero. The buoyant force on the iron must be equal to its
weight. The buoyant force is equal to the weight of the mercury displaced by the submerged iron.

Fbuoyant =mMp.g — pHgngubmerged = pFethotal -

Vsubmerged :&:M =57%

Vit Pug  13.6x10° kg/m®

24. The difference between the actual mass and the apparent mass is the mass of the water displaced by the
rock. The mass of the water displaced is the volume of the rock times the density of water, and the
volume of the rock is the mass of the rock divided by its density. Combining these relationships yields
an expression for the density of the rock.

Myock

Mactual ~ Mapparent = Am = PyaierVrock = Puvater -

Tock

m 9.28 k
Lrock = Povater Af‘;;k = (1.00x10° kg/m3)m =12990 kg/m®
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25. (a) When the hull is submerged, both the buoyant force and the tension force act upward on the hull,
so their sum is equal to the weight of the hull. The buoyant force is the weight of the water

displaced.
T+ K buoyant = Mg =
Mhull Pwater
T =mg- Fbuoyant = Mpul1€ ~ PwaterVsub& = Mhull€ ~ Pwater & = My & (1 - J
Phull Phull

3 3
— (1.8x10* kg)(9.80 msz)(l_M] —1.538x10° N =

7.8x10° kg/m’

(b) When the hull is completely out of the water, the tension in the crane’s cable must be equal to
the weight of the hull.

T =mg = (1.8x10* kg)(9.80 m/s?) =1.764x10° N =[1.8x10° N

26. The buoyant force of the balloon must equal the weight of the balloon plus the weight of the helium in
the balloon plus the weight of the load. For calculating the weight of the helium, we assume it is at 0°C
and 1 atm pressure. The buoyant force is the weight of the air displaced by the volume of the balloon.

F buoyant — Pair¥balloon& = Mye& + Mialioon & + Moargo8  —
Meargo = PairVballoon ~MHe ~ Mpalloon = PairVballoon ~ PHe balloon ~ Mballoon = (pair ~ PHe )Vballoon ~ Mpalloon
- 3_ 3y4 3_ - -
=(1.29 kg/m’ —0.179 kg/m )571(7.15 m)” —930 kg = |770 kg| = 7600 N

5]
~

The apparent weight is the actual weight minus the buoyant force, as shown in Example 10-8.The
buoyant force is the weight of a mass of water occupying the volume of the metal sample.

Mmetal

Mapparent€ = Mmetal€ ~ I3 = Mimetal & ~ VmetalpHZOg = Mmetal 8 ~ PH,08 —
metal
Mimetal
Mapparent = Mmetal = PH,0
metal
m 63.5
Prmctal = metal 0=——""5 (1000 kg/m’) = 7840 kg/m’

PH,0 =
(mmetal - mapparent) ? (63.5g-554g)

Based on the density, the metal is probably .

28. The difference between the actual mass and the apparent mass of the aluminum is the mass of the air
displaced by the aluminum. The mass of the air displaced is the volume of the aluminum times the
density of air, and the volume of the aluminum is the actual mass of the aluminum divided by the
density of aluminum. Combining these relationships yields an expression for the actual mass.

m
Mactual ~ Mapparent = FairV'Al = Pair —aoal
Al
m
Mg = et 40000 ke —=[4.0019 kg
1 Pi 129 kg
Pal 2.70x10° kg/m>
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29. The buoyant force on the drum must be equal to the weight of the steel plus the weight of the gasoline.
The weight of each component is its respective volume times the density. The buoyant force is the
weight of total volume of displaced water. We assume that the drum just barely floats—in other words,
the volume of water displaced is equal to the total volume of gasoline and steel.

Fg = Wteel + Wgasoline - (Vgasoline + Vsteel )pwaterg = Viteel Psteet & + Vgasolinepgasolineg -
Vgasolinepwater + Vsteelpwater = Vsteel Psteel T Vgasolinepgasoline -

_ . 3 3
Voot =Vasoine (MJ _ 210 L)( 1000 kg/m’ — 680 keg/m ]: 058 L 990107 o

steel — Pwater 7800 kg/m> —1000 kg/m*

30. (a) The buoyant force is the weight of the water displaced, using the density of seawater.

F buoyant = Mwater & = RvaterVdisplacedg
displaced

-3 3
=(1.025%10° kg/m®)(69.6 L){IXI?—L“‘J (9.80 m/s?) =[699 N

(b) The weight of the diver is myg; ;g = (72.8 kg)(9.80 m/sz) =713 N. Since the buoyant force is

not as large as her weight, [she will sink|, although she will do so very gradually since the two
forces are almost the same.

The buoyant force on the ice is equal to the weight of the ice, since it floats.

F buoyant = VVice = Mseawater & = Mice& ™ Mseawater = Mice pseawateereawater :piceVice -
submerged submerged

( SG)seawater P water Vsubmerged = (SG)ice P waterVice - (SG)seawater Vsubmerged = (SG)ice Vice -

ice ice
(SG)ice 0.917

Vsubmerged = Viee =
iséle e (SG)seawater h 1.025

Vice =0.895 Vice

=V

1ce

-V, =0.1057V;

submerged —

1ce or '

Thus, the fraction above the water is Ve

32. (a) The difference between the actual mass and the apparent mass of the aluminum ball is the mass
of the liquid displaced by the ball. The mass of the liquid displaced is the volume of the ball
times the density of the liquid, and the volume of the ball is the mass of the ball divided by its
density. Combining these relationships yields an expression for the density of the liquid.

m
Mactual ~Mapparent = A = Pliquial ball = Pliquid —hall
Pal
pliquid _ Am Pal = (380 kg_210 kg) (270)(103 kg/m3) =1210 kg/m3

.. . Mopject — M, t
(b)  Generalizing the relation from above, we have | pjiquiq = [w] Pobject |
m .
object
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33. The buoyancy force due to the submerged empty soda bottles must equal the weight of the child. To
find the minimum number of bottles (N), we assume that each bottle is completely submerged, so
displaces 1.0 L of water.

K buoyant — NVyottic Pwater & = Mehita€

Mehild 32 kg =32 bottles

= 3 3
bottle Pwater (1.0L) [ 10" m J (1000 kg/m3)

34. There are three forces on the chamber: the weight of the chamber, the tension in the
cable, and the buoyant force. See the free-body diagram.

(a) The buoyant force is the weight of water displaced by the chamber.

Fy buoyant = P waterVchamber& = P water %ﬂ- Rghamberg
= (1.025x10° kg/m*) 2 7(2.60 m) (9.80 m/s?)

=7.3953%x10° N =|7.40x10° N

(b) To find the tension, use Newton’s second law for the stationary chamber.

Fbuoyant =mg+Fr —

Fr = Fyyoyan; —mg =7.3953%10° N = (7.44x10* kg)(9.80 m/s*) =|1.0x10* N

35. The difference between the actual mass and the apparent mass is the mass of the alcohol displaced by
the wood. The mass of the alcohol displaced is the volume of the wood times the density of the
alcohol, the volume of the wood is the mass of the wood divided by the density of the wood, and the
density of the alcohol is its specific gravity times the density of water.

Mactual Mactual
Mactual ~ Mapparent = PaicVwood = Palc Al — SGicp H,0 el
wood wood
P wood Mactual 0.48 kg
Fwood —gG 4 =SGy, =(0.79) =10.88|
Y H,0 oo o (mactual - mapparent) (048 kg —0.047 kg)

36. Use the definition of density and specific gravity, and then solve for the fat fraction, f.
Mege =Mf =V Prags Mpye =M= 1) =V Prog

free free free
m My + mtff‘t m |
1 Tee
Phody = Xp ater o = = =
Y " Vtotal Vfat + Vfat m7f + M L + M
free Prtat Prtat Prtat Prtat
free free
Pt
‘- e pw (090 gem)(110 gem®)  (0.90 glem®)
C Xy (P Pr) (P —Pr)  X(1.0 gem’)(0.20 glem®) (020 glom’)
free free
495 4.95 495
=——-45 — % Bodyfat=100f = 100(——4.5) =|———450
X X X
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37. (a) The free-body diagram for the athlete shows three forces—the athlete’s weight, the buoyancy
force, and the upward force of the scale. Those forces must add to give 0, and that can be used to
find the volume of the athlete.

F e
B buoyant + Fscale -k weight — Pwater Vg + Mapparant 8 ~ Mactual 8 = 0 - ? I -
V= Mactual ~ Mapparant _ 70.2 kg~ 3-43kg ~16.68%1072 m3 .
P water 1000 kg/m l
(b) The specific gravity is the athlete’s density divided by the density of water. "8
_ 2 3 33
SG = Pathlete _ m/(V=Vg) _ (70.2 kg)/(6.68x10™" m - 1.3x107° m”) —1.072 ~
Pwater Pwater 1000 kg/ m

(c) We use the formula given with the problem.
495 495
% Body fat = ——— 450 = ——— 450 = [12%]
S Te 1.072 :

38.  The buoyant force must be equal to the combined weight of the helium balloons and the person. We
ignore the buoyant force due to the volume of the person, and we ignore the mass of the balloon material.

Myerson

(pair ~ PHe )

3m
N= person 3(72 kg) = 3444 =|3400 balloons

CAnr (P - pue)  4m(0.165 m)} (1,29 kg/m® —0.179 kg/m?)

3
FB = (mperson +mHe )g - pairVHeg = (mperson +pHeVHe )g - VHe = N%ﬂ'r =

39. There will be a downward gravity force and an upward buoyant force on the fully submerged tank. The
buoyant force is constant, but the gravity force will decrease as the air is removed. Take upward to be
positive.

Fan = Fg =M1 8 = PyaterViank & ~ (mtank + mair)g

=[(1025 kg/m>)(0.0157 m*)—17.0 kg] (9.80 m/s>) = —8.89 N = [9 N downward

Fempty = FB ~Miotal& = Puwater Vtankg - (mtank + My, )g

=[(1025 kg/m>)(0.0157 m*)—14.0 kg] (9.80 m/s?) = 20.51 N =

For the combination to just barely sink, the total weight of the wood and lead must be equal to the total
buoyant force on the wood and the lead.

3
o

Fweight = Fbuoyant = Myeod8 TMppg = Vwoodpwaterg + VPbp water

m m
_ "wood Pb Puvater _ Puwater
Myood t Mpp = Puwater T Pwater —  Mpp [1 - J = My00d [ - IJ -

Pwood Prb Ppb ood

(:Zwater _1j (SGI _1] ( 1 _1]
wood wood  J _ (365 kg)~000 /_[4 00k

Mpy, = m ——=<=m -—
1

1———

( 11.3)

wood ~— Mwood — 7/ N
1— P water [1 _ 1 j
Prb SGry
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41. We apply the equation of continuity at constant density, Eq. 10-4b. The flow rate out of the duct must
be equal to the flow rate into the room.

V., V 2 . .

Aductvduct = ﬂ-rzvduct = o Uduet = goom = (8 m)(5 0 m)(3 > m) =14.4 m/s
to fill 2 ho il 77(0.12 m)> (12 min)()
room room 1 mi

42. Use Eq. 10-4b, the equation of continuity for an incompressible fluid, to compare blood flow in the
aorta and in the major arteries.

(Av)aorta = (Av)arteries -

1.2 cm)?
Uarteries = A":aona Vaorta = %(40 Cm/S) =90.5 cm/s = m
rteries .

43.  We may apply Torricelli’s theorem, Eq. 10-6.
o =22(r =) =200.80 /s )47 m) =

44. Bernoulli’s equation is evaluated with v = v, =0. Let point 1 be the initial point and point 2 be the

final point.
R+Lpvl +pgy =P +1pv +pgy, — R+pgy=P+pg, -
B -R=pgn—-y) — AP=-pghy

But a change in the y coordinate is the opposite of the change in depth, which is what is represented in
Eq. 10-3b. So our final resultis AP = p,gAh, Eq. 10-3b.

45. The pressure head can be interpreted as an initial height for the water, with a speed of 0 and at
atmospheric pressure. Apply Bernoulli’s equation to the faucet location and the pressure head location
to find the speed of the water at the faucet, and then calculate the volume flow rate. Since the faucet is
open, the pressure there will be atmospheric as well.

1 2 — 1 2
Pfaucel + 2 PUtucet T P faucet = Rlead + Epvhead TP head ™

2
2 2
Vtaucet = ;(Phead - Pfaucet) * Uhead + 2g(yhead - yfaucet) = 2gyhead -

Vhaucet = Zgy head

2
Volume flow rate = Av = 7r° \[2gyy00g = nB(l.SSXw‘z m)} 20980 m/s?)(12.0m)
=]4.12x107° m’/s

46. The flow speed is the speed of the water in the input tube. The entire volume of the water in the tank is
to be processed in 4.0 h. The volume of water passing through the input tube per unit time is the
volume rate of flow, as expressed in the text in the paragraph following Eq. 10—4b.

At ANt 2
AL 0,015 m)2 (3.0 h)(36lok(1)s
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47.  Apply Bernoulli’s equation with point 1 being the water main and point 2 being the top of the spray.
The velocity of the water will be zero at both points. The pressure at point 2 will be atmospheric
pressure. Measure heights from the level of point 1.

2 2
R+5pU +pgy =P +5pv; +pgy; —

B — Py, = P, = (1.00x10° kg/m*)(9.80 m/s?)(16 m) ={1.6x10° N/m?

48. The volume flow rate of water from the hose, multiplied by the time of filling, must equal the volume
of the pool. The volume flow rate is given in the text immediately following Eq. 10—4b.

2
Vv Vv | L(6.1m) [ (1.4 m)
(Av)hose = poo! > 1= oot |:2 :|

t - A OSCDhOSC B 2
" ;{;(gin.){lmﬂ (0.40 m/s)

39.37 in.
1 day
5.168x10° s| ————— |=6.0 days|
£60><60><24 s] n

=5.168%10° s

49. We assume that there is no appreciable height difference between the two sides of the roof. Then the
net force on the roof due to the air is the difference in pressure on the two sides of the roof times the
area of the roof. The difference in pressure can be found from Bernoulli’s equation.

1 2 _ 1 2
Pinside + Ep Uinside T P&Vinside = Poutside + Ep Uoutside T P&V outside —

1 2 _ Foir
Pinside _R)utside - Epairvoutside - -
roof

1 m/s

2

Fair = %pairvgutsideAroof = %(1 29 kg/m3 ) |:(1 80 km/h)(

T

50. Use the equation of continuity (Eq. 10—4b) to relate the volume flow of water at the two locations, and
use Bernoulli’s equation (Eq. 10-5) to relate the pressure conditions at the two locations. The two
locations are at the same height. Express the pressures as atmospheric pressure plus gauge pressure.
We use subscript 1 for the larger diameter and subscript 2 for the smaller diameter.

4 _ow
AV =40, - VL =h—=p—=U—
2 Try r

1 2 1 2
B +R+5pu +pgy =K +hH+5p0; +pgy, —

2(P-P, 2(33.5%10° Pa—22.6x10° P
(R 2)=ﬂ'(3.0><10_2m)2’ (33.5x10° Pa 6x10° Pa)

4 2 4
p[r‘“—l \/(1.00x103 kg/m3){(3'0><10m)—lj
)

(2.25x107% m)*
=9.0x107 m? /s
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51. The air pressure inside the hurricane can be estimated by using Bernoulli’s equation, Eq. 10-5.
Assume that the pressure outside the hurricane is atmospheric pressure, the speed of the wind outside
the hurricane is 0, and the two pressure measurements are made at the same height.

1 2 _ 1 2
Biside T3 Plinside + P& inside = Fousside T35 PVoutside T P outside

P,

inside

= 1
= Rousside ~ 2 Pair Vinside

2
1000 1h
=1.013x10° Pa—1(1.29 kg/m3){(3oo km/h)( mj( ﬂ

km 3600 s
=19.7x10* Pa|=0.96 atm

52.  The lift force would be the difference in pressure between the two wing surfaces times the area of the
wing surface. The difference in pressure can be found from Bernoulli’s equation, Eq. 10-5. We
consider the two surfaces of the wing to be at the same height above the ground. Call the bottom
surface of the wing point 1 and the top surface point 2.

2 2 22
PlJF%PUl +P83’1:Pz+%/702 TPy — Pl_Pz:%p(Uz —u)

Fip = (B = Py)(Area of wing) =1 p(v5 — ]’ 4

_1 3 2 2 2N _ 6
=1(1.29 kg/m*)[(280 m/s)* — (150 m/s)*](88 m*) =|3.2x10° N

53.  Use the equation of continuity (Eq. 10—4b) to relate the volume flow of water at the two locations, and
use Bernoulli’s equation (Eq. 10-5) to relate the conditions at the street to those at the top floor.
Express the pressure as atmospheric pressure plus gauge pressure.

Agtreet Vstreet = Atopvtop -
2
JZB(S.OXIO_z m)}

- =2.487 m/s zm

1 2 _ 1 2
PO + Pgauge +Epvstreet + P street = PO + Pgauge + Epvtop + pgytop -
street top

Astroet _ (0.78 m/s)
top HB(Z.SXIO_Z m)]

vtop = vstreet

— 1 2 2
Pgauge - Pgauge + Ep (vstreet - vtop ) + 08y (y street — V) top)
top street

1.013x10° Pa

2
]+%(1.00><103 kg/m3)[(0.78 m/s)? — (2.487 m/sﬂ
atm

=(3.8 atm)(
+(1.00x10° kg/m>)(9.80 m/s?)(~16 m)

1 atm

=2.250x10° Pa(—s
1.013x10° Pa

jz 2.2 atm

54. Consider the volume of fluid in the pipe. At each end of the pipe there is a force toward the contained
fluid, given by F' = PA. Since the area of the pipe is constant, we have F,, = (A —F)A. Then, since

the power required is the force on the fluid times its velocity, and AV = Q = volume rate of flow, we

have power = F 0 = (A - P,)4v=[(A - ,)0]
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55.  Apply both Bernoulli’s equation and the equation of continuity between the two openings of the tank.
Note that the pressure at each opening will be atmospheric pressure.

A
szz = Alvl - UZ = 1)1 _1
4

2 2 22
R+5pU +pgn =P +5p0 +pgr, = U —0; =2g(y;— 1) =2gh

' Alj o, 4 2h
—lyLl=2gh - vi|1-L =20k - |py=|—22—
. [IAZ T M amaa)

56. (a) Apply the equation of continuity and Bernoulli’s equation at the same height to the wide and
narrow portions of the tube.

A 2P -P,
= an o v pedpdopedpd o MR g
2
4Y 5 2AR-P) (42 42 _2AR-PB)
V—| Y =———— o Y| |=——
4 P A4 A4 P
242(P -P) [2(R-P)
Y = 221 22 - u=4 12 22
pA; = Ay) pA —4y)
2(P-P,
) o=y |—HD)
Pl —4y)
2
XMmmHQF%BWIJ

- r[3000m] o 7T

(1000 kg/m3)(ﬂ'2 [1(0.035m) | —7°[ 1(0.010m) ]

57. There is a forward force on the exiting water, so by Newton’s third law there is an equal force pushing
backward on the hose. To keep the hose stationary, you push forward on the hose, so the hose pushes
backward on you. So the force on the exiting water is the same magnitude as the force on the person
holding the hose. Use Newton’s second law and the equation of continuity to find the force. Note that
the 450 L/min flow rate is the volume of water being accelerated per unit time. Also, the flow rate is
the product of the cross-sectional area of the moving fluid and the speed of the fluid, so
Vit= Ay = Av,.

AV v, - 4 V[ 40, A4y (ij 11
F = ——— — = J— — = i —< < - |= —_ -
AT (J(Uz w p[rj( 4, 4 J Pl )\ 4

2
_(1 00x103§j(420Lx1mmx Im’ ] 1 1 B 1
' r

3 in ~ 60s 1000 L 2 T 2 T
m° /| min 8 [%(0.75><10 2 m)} B(TOXIO ? m)]

:1103Nz
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58.  Apply Eq. 10-8 for the viscosity force. Use the average radius to calculate the plate area.

T
(I’ outer — 7 inner)
F=7]A2 N n=ﬂ= inner
14 Av (Zﬂ'ravgh)(a)rinner )

0024 m-N\  50%1072 m)
0.0510 m

=17.9x1072 Pa-s

27(0.0520 m)(0.120 m)| 57 T 5 2234 1MIN 6 0510 m)
min  rev 60s
59. Use Poiseuille’s equation (Eq. 10-9) to find the pressure difference.
zR* (P~ R 8OnL

0= (5 -R) S (P-PB)= Q’]4

8nL TR

. 33
8| 621073 L[ Imin \FTOme 46 5 b 60,102 m)
min| 60s L
(B-R)= 7 =18200 Pa
7ZB(1.8><10_3 m)}
60.

From Poiseuille’s equation, Eq. 10-9, the volume flow rate Q is proportional to R*if all other factors
are the same. Thus 2. ri

iy is constant. If the volume of water used to water the garden is to be
R R

same in both cases, then tR* is constant.

4 4
R 3/8
R, 5/8

Thus the Itime has been cut by 87%|.

61.  Use Poiseuille’s equation, Eq. 10-9, to find the radius, and then double the radius to find the diameter.
Q=% & d=2R =2{#{QP])TM .
8(1.8x107° Pa-s)(15.5 m)[(g'o m)(lg(-)(()) I:)(4.0 m)] !
=2 7[(0.710><10_3 atm)(1.013x10° Pa/atm) =
62.

Use Poiseuille’s equation, Eq. 10-9, to find the pressure difference.
0= ZR* (P~ R)
8n/
(P, —R)= 8Qn4f _ 8(650 cm*/5)(10~° m* /cm3)((z.20 Pa-s)(1600 m)
7R 7(0.145 m)

:1198Paz
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63. (a) We calculate the Reynolds number with the given formula.
_20rp _ 2(0.35 m/s)(0.80x107% m)(1.05x10° kg/m?)
n 4x107 Pa-s

The flow is at this speed.

(b) Doubling the velocity doubles the Reynolds number, to 2940. The flow is now .

Re =1470

64. From Poiseuille’s equation, Eq. 10-9, the volume flow rate Q is proportional to R*if all other factors

are the same. Thus, Q/R4 is constant.

1/4
Ofinal _ hnitial Ofinal 1/4
R‘;ile:& = Rina =| | Rinitir =(0.35)"" Rigigiar = 0.769 Ripjgial
final i

initial initial

The radius has been reduced by about .

65. The pressure drop per cm can be found from Poiseuille’s equation, Eq. 10-9, using a length of 1 cm.
The volume flow rate is the area of the aorta times the speed of the moving blood.

0= 7R (P, R)
8n/
(B, —-PB) 870 8naR*v 8nv  8(4x107° Pa-s)(0.4 m/s) [0:89 Pajom]
l zR*  7R* R? (1.2x1072 m)?

66. The fluid pressure must be 78 torr higher than air pressure as it exits the needle so that the blood will
enter the vein. The pressure at the entrance to the needle must be higher than 78 torr, due to the
viscosity of the blood. To produce that excess pressure, the blood reservoir is placed above the level of
the needle. Use Poiseuille’s equation to calculate the excess pressure needed due to the viscosity, and
then use Eq. 10-3c to find the height of the blood reservoir necessary to produce that excess pressure.

4
— SMlblood "€ ¢
Q:M P =P +877blooifQ g o Ah= 1 [Pl +877blooi Qj
871004 7R Pblood& 7R
2
RGN
1 mm-Hg
6 .3
8(4x10™ Pa-5)(0.025 m)[z.oxéng
S
Ah: k 1 -3 4 =1.04mz
(1050 %)(9-80 m/sz) 7(0.4%x10™° m)
m

67. InFig. 1034, we have y = F/2/. Use this to calculate the surface tension.

-3
F_3BA0TN ) 4107 N/m

Y= 20T 200070 m)
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68. Asin Fig. 10-34, there are two surfaces being increased, so y = F/2/¢. Use this to calculate the force.

y=F/20 — F=2y0=2(0.025N/m)0.215 m)=|L.1x10 N

69. (a) We assume that the weight of the platinum ring is negligible. Then the surface tension is the
force to lift the ring divided by the length of surface that is being pulled. Surface tension will act

F F

T 20Qar) dnr|

at both edges of the ring, as in Fig. 10-36 (b). Thus, |y

-3
by gyt 620XI0TN 175 162 Nm

T4z 47(2.9x107 m)

70. From Example 10-15, we have 27zry cos 6 = %mg. The maximum mass will occur at 8 = 0°.
_12zry _122(3.0x107° m)(0.072 N/m)

g 9.80 m/s’

27ry cos @ =%mg = Mpax =83x107° kg

This is much less than the insect’s mass, so hhe insect will not remain on top of the wateﬂ.

71.  As an estimate, we assume that the surface tension force acts vertically. We assume that the free-body
diagram for the cylinder is similar to Fig. 10—36a. The weight must equal the total surface tension
force. The needle is of length /.

2
mg =2Fr — pneedleﬂ'(%dneedle) lg=2yl —

dpeedic = \/ i = \/ 8(0.072 N/m) =1.55x10" m = m

Preedie®E  \ (7800 kg/m*)7(9.80 m/s?)

72.  The difference in pressure from the heart to the calf is given by Eq. 10-3b.

AP = pgAh = (1.05x10° kg/m?)(9.80 m/s?)(1 m) =1.029x10* Pa ~ [1x10* Pa

73.  (a) The fluid in the needle is confined, so Pascal’s principle may be applied.

F F, 4 wrk
plunger dl dl dl
Pplunger = Picedic = == 5 R needle = £ plunger neete = plunger rzlee <
lunger Aneedle lunger plunger
2 -3 2
7, 0.10x10 _
= Fplunger rzleedle =(.2N) (—72 m)2 =(7.6x107* N
Polunger (0.65x10™° m)
133 N/m? 5
(b) Fotunger = Fotunger Aplunger = (75 mm-Hg) (MJ 7(0.65x107" m)” =
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74. The pressures for parts () and (b) are gauge pressures, relative to atmospheric pressure. The pressure
change due to depth in a fluid is given by Eq. 10-3b, AP = pgAh.

133 N/mzj

(52 mm-Hg)(
AP 1 mm-Hg
(a) Ah=—2= =(0.71m

6 3
PE 1100 S x lkg 107em” 1960 mis?)
em® 1000g  1m’

2
(680 mm-H,0) 9.81 N/m”
1 mm-H,O

») Aan=2L_ =[0.68 m

6 3
PE 1100 8 x lkg 10 1 9.80 mys?)
ecm® 10002  1Im

(¢) For the fluid to just barely enter the vein, the fluid pressure must be the same as the blood

pressure.
133 N/m*
mm-
Mh=22 — ~[r0m)
P& {100 S x lkg 10 [ 9.80 mis?)
cm® 1000g  1m
75.  The ball has three vertical forces on it: string tension, buoyant force, and gravity. F; tuy
See the free-body diagram for the ball. The net force must be 0. )

Fnet:FT+Fbuoy_mg:O - -
4 .3 4.3 4.3 mg

Fr = mg_Fbuoy =37 Pou& —3 7 Pwater 8 = 3 8(Peu — Puater)

4 3 2 3 3\ _ -
=4 7(0.013 m)*(9.80 m/s?)(8900 kg/m® 1000 kg/m*) =0.7125 N = [0.71 N

Since the water pushes up on the ball via the buoyant force, there is a downward force on the water due
to the ball, equal in magnitude to the buoyant force. That mass equivalent of that force (indicated by
mp = Fy/g) will show up as an increase in the balance reading.

_4..3
FB_§ﬂ'r Pwater&

A
mg = ?B =371 Pyater = 27(0.013 m)* (1000 kg/m®) =9.203x10~ kg =9.203 g

Balance reading=975.0g+9.2g=|984.2 g

76. The change in pressure with height is given by Eq. 10-3b.

AP _ pgAh _ (1.29 kg/m®)(9.80 m/s*)(380 m)

5 =0.047 —
B PR 1.013x10° Pa

AP =pghh —

AP =0.047 atm
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77.

78.

79.

80.

(a) The input pressure is equal to the output pressure.

Pinput = Poutput - Finput /Ainput =F output /Aoutput -

— 2(9.0x1072 m)? SON
Fouput (960 kg)(9.80 m/s*)

~[1.0x107> m?

() The work is the force needed to lift the car (its weight) times the vertical distance lifted.

W =mgh = (960 kg)(9.80 m/s>)(0.42 m) =3951J = |4.0x10° J

(c) The work done by the input piston is equal to the work done in lifting the car.
W; W, d,

nput = output nput

F, .d
p= Doputiopu  B8ONYOI3mM) 55511073 1 = [53%10° m

mg (960 kg)(9.80 m/s?)

(d) The number of strokes is the full distance divided by the distance per stroke.

h .
heg = Nhgroe — N=—0ll = 042m __ _ 80 strokes

hgroe  5.251x107> m

Finput

=1.028x10~> m?

Ainput = Aoutput

- F

input =F output douptut = mgh -

(e) The work input is the input force times the total distance moved by the input piston.

imput . — 80(380 N)(0.13 m) =3952J = 4.0x10° J

d

Since the work input is equal to the work output, energy is conserved.

/4 = NFE;

input input

The pressure change due to a change in height is given by Eq. 10-3b. That pressure is the excess force
on the eardrum divided by the area of the eardrum.

AP = pgAh = r -
A
F = pgAhd = (1.29 kg/m>)(9.80 m/s?)(1250 m)(0.20x10~* m?)=0.3161 N =[0.32 N
The change in pressure with height is given by Eq. 10-3b.

AP _ pgAh _ (1.05x10° kg/m®)(9.80 m/s*)(6 m)

- =0.609 —
B B 1.013x10° Pa

AP =pgAh —

The pressure head can be interpreted as an initial height for the water, with a speed of 0 and at
atmospheric pressure. Apply Bernoulli’s equation to the faucet location and the pressure head location
to find the speed of the water at the faucet. Since the faucet is open, the pressure there will be
atmospheric as well.

1 2 _ 1 2
Pfaucet + Epvfaucet *+ P taucet = Phead + 9 PUpead T P&head

2 2
U, 9.2 m/s
Yhead = e = ( )2 =
2g  2(9.80 m/s”)
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81. The pressure difference due to the lungs is the pressure change in the column of water.

133 N/m?
AP

1 mm-H J
AP=pghh — Ah=—= — £ —=1.018 m =[1.0 m|
pg  (1.00x10° kg/m?)(9.80 m/s?)

(75 mm-Hg)[

82.  The force can be found by multiplying the pressure and the area of the pump cylinder.

F, = PA=(2.10x10° N/m*)7(0.0125 m)* =1.0x10* N
F; = P A=(3.10x10° N/m?)7(0.0125 m)* =1.5x10*> N

The range of forces is |100 N<F <150 N|.

83. The pressure would be the weight of the ice divided by the area covered by the ice. The volume of the
ice is represented by  and its thickness by d. The volume is also the mass of the ice divided by the
density of the ice.

_F _mg mgd mgd
A Vvid vV m/p

)

84. The buoyant force, equal to the weight of mantle displaced, must be equal to the weight of the
continent. Let / represent the full height of the continent and y represent the height of the continent
above the surrounding rock.

= gd p = (9.80 m/s?)(2000 m)(917 kg/m>) =1.80x10’ Pa

VVcontinent = Wdisplaced - Ahpcontinentg = A(h -y )pmantleg -

mantle
y= h(l_mj =(35 km) 1_M =[5.3 km|
Prnantle 3300 kg/m’

85.  The “extra” buoyant force on the ship, due to the loaded fresh water, is the weight of “extra” displaced
seawater, as indicated by the ship floating lower in the sea. This buoyant force is given by

Fiuoyant = Vdisplaced Reca & But this extra buoyant force is what holds up the fresh water, so that force
water

must also be equal to the weight of the fresh water.

Fbuoyant = Vdisplacedpsea 8 =Mpegn8 —> Mygeqy = (2240 mz)(8~25 m)(1025 kg/m3) =(1.89x10’ kg

water

This can also be expressed as a volume.

:
Vo = e _189X107 ke [ gq 104 3] [1.89x107 L

Presh  1.00x10° kg/m®

86. The buoyant force must be equal to the weight of the water displaced by the full volume of the logs
and must also be equal to the full weight of the raft plus the passengers. Let N represent the number of
passengers.
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Weight of water displaced by logs = Weight of people + Weight of logs

12(Vlogpwaterg) = Nmpersong + lz(l/logplogg) -

2 2
N= 12 Vlog (pwater - plog ) 127z'rlogllog (pwater - SGlogpwater) _ 127nﬂlogllogpwater (1 - SGlog )

Mperson Myerson Mperson

_1272(0.225 m)*(6.5 m)(1000 kg/m>)(1-0.60)
68 kg

=72.97

Thus [72] people can stand on the raft without getting wet. When the 73rd person gets on, the raft will
sink under the surface.

87. We assume that the air pressure is due to the weight of the atmosphere, with the area equal to the
surface area of the Earth.

P:% — F=PAd=mg —
2 6 . \2 5 2
m:ﬂ:4ﬂREth:4ﬂ'(6.38x10 m) (I.Oi3><10 N/m ): 520%10' ke
g g 9.80 m/s

88. The work done during each heartbeat is the force on the fluid times the distance that the fluid moves in
the direction of the force. That can be converted to pressure times volume.

W=FAl=PAAl =PV —

2
(105 mm-Hg)| 23N 170510 m?)
1 mm-Hg

w PV
Power = =LV _ =1.14W=[IW
W= (1 inj(ms]

70 min

89. (a) We assume that the water is launched at ground level. Since it also lands at ground level, the
level range formula from Chapter 3 may be used.

2 . 2

260 . .

R=0C Re _ |60m)OBOMST) _ 610 s = [7.9 mis
g sin 26 sin 70°

() The volume rate of flow is the area of the flow times the speed of the flow. Multiply by 4 for the
four sprinkler heads.

Volume flow rate = Av = 47720 = 4z(1 5%107° m)2 (7.910 m/s)
=2.236x107* m’/s (%J ~[0.22 Ljs
1.0x10™ m
(¢) Use the equation of continuity to calculate the flow rate in the supply pipe.
(AU s 2:236x107 mP/s

= =10.79 m/s

(Av)supply = (Av)heads - U
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90. The pressure at the top of each liquid will be atmospheric pressure, and the pressure
at the place where the two fluids meet must be the same if the fluid is to be
stationary. In the diagram, the darker color represents the water and the lighter color
represents the alcohol. Write the expression for the pressure at a depth for both
liquids, starting at the top of each liquid with atmospheric pressure.

Palcohol = PO * Piicohol & Ahalcohol =F water — P() + Pyater& Ahwater - I
palcoholAhalcohol = Puwater Ahwater -

Ahwater = Ahalcohol % =16.0 Cm(0'790) =

ater

91. The force is the pressure times the surface area.

133 N/m? 4
F=P4=(120mm-Hg)| ——— [(82%x107" m”)=1309 N =130 N
( g)[lmm_Hg} )

)
N

The upward force due to air pressure on the bottom of the wing must be equal to the weight of the
airplane plus the downward force due to air pressure on the top of the wing. Bernoulli’s equation can
be used to relate the forces due to air pressure. We assume that there is no appreciable height
difference between the top and the bottom of the wing.

mg
PtopA +mg = RbottomA - (Pbottom - Ptop) = 7

1 2 _ 1 2
PO + Pbotlom + 2 PVhottom T P& vottom = PO + Ptop + Epvtop + pgytop

2 2(330n0m B Rop ) 2 2(%0ttom B Rop ) 2 2mg 2
Utop = P + Ubottom - Utop = P + vbottom = P 4 + Ubottom

\/ 2(1.7%10° kg)(9.80 m/s°)

+(95 m/s)? =174.8 m/s = [170 m/s

Utop

(1.29 kg/m®)(1200 m?)

93. Since we are ignoring viscosity, this problem can be considered using Bernoulli’s equation. First, we
find the speed of the water as it exits the nozzle, using conservation of mechanical energy.

— —1 2
PEat - KEat - mghnozzle _Emvnozzle

top nozzle to top

Vnogale = [2€norste = \/2(9.80 m/s?)(0.12 m) =1.534 m/s
to top

Now use the equation of continuity, Eq. 10-4b, to find the speed of the water at