G049 Online Test

Ref425

$R=100 \Omega$ each, $\mathrm{Eph}=173.2 \mathrm{~V}$

The neutral current flow in the given circuit is

A	In = OA	B	In $=8.66-\mathrm{j} 0.5 \mathrm{~A}$		
C	In $=-0.5+\mathrm{j} 0.866 \mathrm{~A}$	D	$\mathrm{In}=8.66+\mathrm{j} 0.5 \mathrm{~A}$		
Answer					

Ref426

$Z=50$ (Angle 0) $\Omega \quad E=400 \mathrm{~V}$. The currents in A, B, C lines are

Ref427

Three phase power and power factor angle measured by 2 watts meters method can be calculated by

A	Wt $=\mathrm{W} 1=\mathrm{W} 2$ $\Phi=\tan ^{-1}(\mathrm{~W} 1-\mathrm{W} 2) /(\mathrm{W} 1+\mathrm{W} 2)$	B	$\mathrm{Wt}=\mathrm{W} 1=\mathrm{W} 2$
	$\mathrm{Wt}=\mathrm{W} 1-\mathrm{W} 2$ $\Phi=\tan ^{-1} \mathrm{~V} 3(\mathrm{~W} 1-\mathrm{W} 2) /(\mathrm{W} 1+\mathrm{W} 2)$	D	$\mathrm{Wt}=\mathrm{W} 1+\mathrm{W} 2$
C			
Answer			$\Phi=\tan ^{-1} \mathrm{~V} 3(\mathrm{~W} 1-\mathrm{W} 2) /(\mathrm{W} 1+\mathrm{W} 2)$

Ref 428

B $\mathrm{Ib} \longrightarrow$
$E p h=100 \mathrm{~V}, \mathrm{Za}=100 \Omega, \mathrm{Zb}=100 \Omega$ in series with $66.3 \mu \mathrm{~F}, \mathrm{Zc}=100 \Omega$ in series with $139.2 \mathrm{mH} f=50 \mathrm{HZ}$.
Calculate the current in neutral wire (In)

A	In- $0.878 \backslash 0$ A	B	$\operatorname{In}-0.878 / 0.978 \mathrm{~A}$
C	In- $0.878 / 30 \mathrm{~A}$	D	$\operatorname{In}-0 \mathrm{~A}$
Answer			

Ref429

If the above star connection is converted to delta, Zab is equal to

A	$($ ZaZb+ZbZc+ZcZa)/Zc	B	$(Z a+Z b+Z c) / Z a Z b Z c$
C	$(Z a+Z b+Z c) / Z a$	D	$(Z a+Z b+Z c) / Z c$
Answer			
Ref430			

A three phase 415V system's neutral wire is broken. The following line currents are flowing.
$Z a=50 / 0 \Omega, \quad l a=1.55 /-8.5 \quad \mathrm{~A}$
$\mathrm{Zb}=50 / \underline{0} \Omega, \mathrm{lb}=2.47 /-170 \mathrm{~A}$
$\mathrm{Zc}=158\lfloor 0 \Omega, \mathrm{Ic}=1.03 /-30 \mathrm{~A}$
(a) What is the voltage between new star point and original star point
(b) Which phase got over voltage?

Ref431

For one line to ground fault

A	$\mathrm{I} a=\mathrm{lb}=\mathrm{V} 3$ I1	B	$\mathrm{I} a=\mathrm{Ib}=2 \mathrm{I} 1$
C	$\mathrm{I} a=\mathrm{Ib}=3 \mathrm{II}$	D	$\mathrm{I} \mathrm{I}=\mathrm{Ib}=\mathrm{I} 1$
Answer			

Ref432
$\mathrm{Z1}=65 \% \quad \mathrm{Z2}=69 \% \quad \mathrm{Zo}=40 \%$ Base MVA $=100 \mathrm{MVA} \quad \mathrm{E}=132 \mathrm{KV} 2$ Line to ground fault. Calculate fault current.

A	1830 (Angle 0 Degree)Amp	B	918 (Angle 0 Degree)Amp
C	918 (Angle -60Degree)Amp	D	456 (Angle -60Degree)Amp
Answer			

Ref433
$\mathrm{la}=100 \angle 0$ Amp $\quad \mathrm{lb}=100 \angle 180$ Amp $\quad \mathrm{a}=0 \mathrm{Amp}$
Find la1, Ib1 and Ic1

Calculate the positive, negative and zero sequence equivalent diagram for the given power system.
TxA 20\%
TxC 30\%

A	$10 \%, 10 \%, 10 \%$	B	$25.5 \% .25 .5 \%, 25.5 \%$
C	$50 \%, 50 \%, 50 \%$	D	$25.5 \% .25 .5 \%, 15.1 \%$
Answer			

