G049 Online Test

Ref425

R= 100 Ω each, Eph= 173.2V

The neutral current flow in the given circuit is

А	In = -0.5 + j 0.866 A	В	In = 8.66 – j0.5A
С	In = 0A	D	In = 8.66 + j0.5A
	Answer		

Ref426

Z = 50 (Angle 0) Ω $\,$ E = 400V. The currents in A,B, C lines are

А	la= 13.9/ -30 A, lb=13.9/ -150A	В	la= 13.9/ 30 A, lb=13.9/ 150A
	lc=13.9 <u>/-90</u> A		Ic=13.9 <u>/90</u> A
С	la= 13.9/ 0 A, lb=13.9/120A	D	la= 13.9/0 A, lb=13.9/ -120A
	lc=13.9 <u>/-12</u> 0 A		Ic=13.9 <u>/12</u> 0 A
	Answer		

Ref427

Three phase power and power factor angle measured by 2 watts meters method can be calculated by

А	Wt = W1=W2	В	Wt = W1=W2
	$\Phi = \tan^{-1}(W1 - W2) / (W1 + W2)$		$\Phi = \tan^{-1}(W1 + W2) / (W1 - W2)$
С	Wt = W1+W2	D	Wt = W1-W2
	$\Phi = \tan^{-1} V3 (W1 - W2) / (W1 + W2)$		$\Phi = \tan^{-1} V3 (W1 - W2) / (W1 + W2)$
	Answer		

Ref 428

Eph= 100V, Za= 100Ω , Zb = 100Ω in series with 66.3μ F, Zc= 100Ω in series with 139.2mH f= 50HZ. Calculate the current in neutral wire (In)

A	In- 0.878 <u>/ 0.9</u> 78 A	В	In- 0.878 <u>/ 0</u> A
С	In- 0.878 <u>/ 30</u> A	D	In- 0 A
	Answer		

Ref429

If the above star connection is converted to delta, Zab is equal to

А	(Za+Zb+Zc)/ Zc	В	(Za+Zb+Zc)/ ZaZbZc
C	(Za+Zb+Zc)/ Za	D	(ZaZb+ZbZc+ZcZa)/ Zc
	Answer		

Ref430

A three phase 415V system's neutral wire is broken. The following line currents are flowing.

Za= 50
$$/0$$
 Ω, Ia= 1.55 $/-8.5$ A

Zb= 50<u>/0</u> Ω, Ib= 2.47<u>/-17</u>0 A

 $Zc=158 \ 0 \ \Omega, \ Ic=1.03 \ -30 \ A$

(a) What is the voltage between new star point and original star point

(b) Which phase got over voltage?

A	A , 20 <u>/ 90</u> V	В	C , 40/16.59 V
С	B , 40 <u>/ 0</u> V	D	No line, OV
	Answer		

Ref431

For one line to ground fault

A	la=lb=2 l1	В	la=lb=v3 l1
С	la=lb= 3l1	D	la=lb=l1
	Answer		

Ref432

Z1 = 65% Z2 = 69% Zo = 40% Base MVA = 100 MVA E = 132KV 2 Line to ground fault. Calculate fault current.

A	918 (Angle -60Degree)Amp	В	918 (Angle 0 Degree)Amp
С	1830 (Angle 0 Degree)Amp	D	456 (Angle -60Degree)Amp
	Answer		

Ref433

la= 100 <u>0</u> Amp lb= 100 <u>180</u> Amp la= 0 Amp

Find Ia1, Ib1 and Ic1

А	la1 = 57.7 <u>/0</u> A,lb1=57.7 <u>0</u> A,	В	la1 = 57.7 <u>/-30</u> A, lb1=57.7 <u>/-15</u> 0 A,
	lc1=57.7 <u>/0</u> A		lc1=57.7 <u>/9</u> 0 A
С	la1 = 57.7 <u>/0</u> A, lb1=57.7 <u>-12</u> 0 A,	D	la1 = 57.7/120A, lb1=57.7 [120 A,
	lc1=57.7 <u>/1</u> 20 A		lc1=57.7 <u>/12</u> 0 A
	Answer		

Ref434

Calculate the positive, negative and zero sequence equivalent diagram for the given power system.

А	25.5%. 25.5%, 15.1%	В	25.5%. 25.5%, 25.5%
С	50%,50%,50%	D	10%,10%,10%
	Answer		