
G047 Online Test

Ref407

V= 500V, Ra=0.1 Ω , Rb=0.2 Ω , Rc= 0.2 Ω Rd = 0.1 Ω

 I_b = 5A, I_c = 10A, I_d = 20A, I_e = 10A, Calculate line efficiency

Α	96.8%	В	90%
С	80%	D	75%
	Answer		

Ref408

Three towns A, B, C are located as follows. Determine the most suitable place to locate the electric power station to supply those towns.

A = 1000MW (10,20) km

B= 600MW (5, 7) km

C= 500MW (10, 15) km

Α	7 km, 10 km	В	3.57 km, 15.09 km
С	4 km, 8 km	D	12 km, 20 km
	Answer		

Ref409

$$\sqrt{a^2 + b^2}$$
 /180 – tan⁻¹ b / a is the answer of

А	a+jb	В	a-jb
С	-a+jb	D	-a-jb
	Answer		

Ref410

Copper requirement for dc 2 wires than AC three phase 3 wire is

А	3 cos ² ⊖	В	1/3 cos ² θ
С	cosθ	D	cos² θ
	Answer		

Ref411

$$\frac{71}{----}$$
 $\frac{\Theta1-\Theta2}{C}$ is answer of

Α	Z1 <u>/ \text{\theta1}</u> + Z2 <u>/ \theta2</u>	В	Z1 <u>/ \text{\ti}\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\tilititt{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\tilit{\text{\text{\text{\text{\text{\ti}\tilitht{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\tilit{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tilit{\tilit{\text{\texi}\tilit{\text{\text{\text{\text{\text{\tilit{\tii}\tilit{\text{\tii}\tilit{\tiitht{\text{\tii}\tii}\tiith{\tiit}\tiltit{\text{\tilit{\tilit{\tiitil\tiit}\tiitt{\tii}\tit</u>
С	Z1 <u>Θ1</u> / Z2 <u>Θ2</u>	D	Z2 <u> \Theta2</u> / Z1 <u> Θ1</u>
	Answer		

Ref412

Z1 Z2
$$\sqrt{\Theta1 + \Theta2}$$
 is answer of

А	Z1 <u>/ Θ1</u> + Z2 <u>/ Θ2</u>	В	Z1 <u>/ \text{\ti}\text{\ti}\text{\tex{\tex</u>
С	Z1 <u> Θ1</u> / Z2 <u>Θ2</u>	D	Z2 <u> \Theta2</u> / Z1 <u> Θ1</u>
	Answer		

Ref413

A transmission line has 200 m span between supports. The conductor weight is 20 N/ m and tension in conductor is 20 KN. Calculate sag.

А	7 m	В	3.5 m
С	4 m	D	5 m
	Answer		

Ref414

A 15V dc source with an internal resistance of 30Ω is connected to a transmission line of length " L " having an impedance of 200Ω by switch. The transmission line is terminated with a 1000Ω resistor. T = amount of time required for signal to travel the length of the line.

Calculate third reflection at load.

Α	7.488V	В	15V
С	10V	D	20V
	Answer		

Ref415

Determine the A, B, C, D constants of the network in which the following test results have been observed.

Receiver open circuit

$$Vs = 100 \ 0 \ V$$

$$Vr = 70.7 -45 V$$

$$Ir = 0$$

Receiver short circuit

$$Vs = 100 / 0 V$$

$$Ir = 2 / -90$$

Α	1.41 (Angle – 45 deg),	В	1.41 (Angle 45 deg),
	0.0141 (Angle 45 deg) , 50 (Angle 0 deg)		0.0141(Angle -45 deg) ,50(Angle 90 deg)
	1		1
С	1.41 (Angle 90 deg),	D	1.41 (Angle – 90deg),
	0.0141 (Angle -90 deg) , 50(Angle 0 deg)		0.0141 (Angle 90 deg) , 50 (Angle 0 deg)
	1		1
	Answer		

Find the frequency

А	10HZ	В	!000HZ
С	100HZ	D	10000HZ
	Answer		

Ref417

A voltage is given by $e=30 \sin wt + 60 \sin (3wt+45) + 10 \sin (5wt - 60)$ volt is applied to a circuit & the resulting current is given by

 $I = 0.8 \sin (wt-20) + 0.15 \sin (3wt-25) + 0.09 \sin (5wt-120)$

Find total power applied and overall power factor.

А	12.18W, 0.43	В	20W, 0.5
С	30W, 0.6	D	6W, 0.4
	Answer		