G043+G045 Online Test

Ref375

Which is correct formula?

A	J= mr ² /2 , Δn = 9.55 T Δt / J	В	J= mr/2 , Δn = 9.55 T Δt / J
С	J= m2/r , Δn = 9.55 T Δt / J	D	
	Answer		

Ref377

Temperature rise by resistance method is

A	T2 =(R2/R1)t1 - 234	В	T2 =(R1/R2)t1 + 234
С	T2 =(R2/R1)(t1 +234)	D	T2 =(R2/R1)(234+t1) - 234
	Answer		

Ref379

A 440V 4 poles three phase 50 HZ induction motor has its winding delta connected & its rotor winding star connected. The standstill voltage measured between slip ring with the rotor open circuit 218V. The stator resistance / phase is 0.6 ohm and the stator reactance / phase is 3 ohm. The rotor resistance per phase is 0.05 ohm and rotor reactance per phase is 0.25 ohm. Calculate the stator 60Acurrent when slip rings are short circuited to start the motor.

A	160A	В	200A
С	300A	D	71.42A
	Answer		

Ref381

No load test is performed to determine.

A	Core parameter	В	Winding parameter
С	Load parameter	D	35%
	Answer		

Ref383

 $\mathsf{R}=1.5\Omega,\,\mathsf{X}=j\,6\,\Omega\quad\mathsf{Rc}=900\,\Omega\quad\mathsf{Xc}=j\,110\,\Omega\quad\mathsf{RI}=48\,\Omega$

Calculate shaft torque.

A	12 N-m	В	24 N-m
С	18 N-m	D	6.04 N-m
	Answer		

Ref385

Which one is not a reduced voltage starting method?

А	Star/Delta	В	Auto transformer
С	Primary resistance starter	D	Direct online starter
	Answer		

Ref387

Both AC & DC supply are needed to be provided to

A	Synchronous motor	В	Induction motor
С	Wound rotor motor	D	DC motor
	Answer		

Ref389

A three phase 6000 KW 4 KV 180 rpm 60 HP synchronous motor has $Xs = 1.2 \Omega$. Machine angle is 1 degree. Ef = 2.4 KV. Calculate mechanical power.

A	6300 HP	В	3150 HP
С	1000 HP	D	2000 HP
	Answer		

Ref391

Over excitation makes the power factor of a synchronous machine to become

A	Unity	В	Leading
С	Lagging	D	
	Answer		

Ref393

A synchronous condenser is rated at 160MVAR 16 KV 1200 rpm, 60HZ. It has a synchronous reactance of 0.8 pu and is connected to 26KV line. Calculate the value of Ef so that the machine (a) absorb 160MVAR (b) deliver 120 MVAR

A	1850V, 1148V	В	900 V, 600 V
С	500V, 1200 V	D	1200V, 1800 V
	Answer		