G001 Online Test

Ref137

The flux is equal to

A	$\phi=R m / F m$	B	$\phi=F m \times R m$
C	$\phi=\mathrm{Fm} / \mathrm{Rm}$	D	$\phi=\mathrm{Fm}+\mathrm{Rm}$
	Answer		

Ref 138

Rm is equal to

A	$\mathrm{l} \mu / \mathrm{A}$	B	$\mathrm{L} \mu \mathrm{A}$		
C	$\mathrm{L} / \mu \mathrm{A}$	D	$\mu \mathrm{A} / \mathrm{I}$		
Answer					

Ref139

Flux density is equal to

A	ϕ A	B	ϕ / A
C	A/ ϕ	D	$\Phi+A$
Answer			
Ref140			

The torque produced in electric motor is equal to

A	$\mathrm{T}+\mathrm{Br}+\mathrm{L}$	B	$\mathrm{T}=\mathrm{Br} / \mathrm{L}$
C	$\mathrm{T}=\mathrm{BL} / \mathrm{r}$	D	$\mathrm{T}=\mathrm{BL} \mathrm{r}$
Answer			
Ref141			

A plunger brake electro-magnetic operates at a flux density of 12 tesla. If the CSA of the magnetic circuit is 0.04 sq-m and reluctance is 12000 amp -turn / wb, what current is required to operate the magnet if the coil has 1000 turns.

A	0.288 A	B	1.3 A
C	0.576 A	D	2.8 A
Answer			
Ref142			

The induced voltage in conductor moving in magnetic field is

A	$E=B L V \cos \Theta$	B	$E=B L V \sin \Theta$
C	$E=B L V$	D	$E=B I \sin \Theta$
Answer			

Ref143

The voltage induced in coil of N turns is

A	$\mathrm{V}=\mathrm{N} \phi$	B	$\mathrm{V}=\mathrm{N} \times \mathrm{x} \phi / \mathrm{dt}$		
C	$\mathrm{V}=\mathrm{NI}$	D	$\mathrm{V}=\mathrm{N}^{2} \phi$		
Answer					
Ref144					

What is the velocity of a conductor 150 mm long and moving at right angle to magnetic field having a flux density of 0.4 tesla? The induced voltage is 4 V .

A	$3.3 \mathrm{~m} / \mathrm{s}$	B	$1.5 \mathrm{~m} / \mathrm{s}$
C	$12 \mathrm{~m} / \mathrm{s}$	D	$6 \mathrm{~m} / \mathrm{s}$
Answer			

Ref145

The force between two current carrying conductors is

A	$\mathrm{F}=10^{-7} \mathrm{I} / \mathrm{d}$	B	$\mathrm{F}=\mathrm{NI} / \mathrm{d}$
C	$\mathrm{F}=4 \Pi 10^{-7} \mathrm{I} / \mathrm{d}$	D	$\mathrm{F}=2 \times 10^{-7} \mathrm{I} / \mathrm{d}$
Answer			

Ref146

A transformer has 50 turns on the primary and 600 turns on secondary. If a flux of 0.25 wb is induced to zero in 10 ms , calculate the induced emf in each coil.

A	$E 1=250 \mathrm{~V}, \mathrm{E} 2=3000 \mathrm{~V}$	B	$\mathrm{E} 1=300 \mathrm{~V}, \mathrm{E} 2=25000 \mathrm{~V}$	
C	$\mathrm{E} 1=2500 \mathrm{~V}, \mathrm{E} 2=30000 \mathrm{~V}$	D	$\mathrm{E} 1=\mathrm{E} 2=3000 \mathrm{~V}$	
Answer				
Ref147				

If a conductor is being rotated at 2000 RPM in magnetic field and induces 400 V . If it is rotated at 1000 RPM.. Find the induced emf.

A	50 V	B	200 V
C	400 V	D	100 V
Answer			
Ref148			

A 240 V coil 5000T produces magnetizing force 4000AT/ m . The magnetic circuit is 200 mm long. CSA $500 \mathrm{sq}-\mathrm{mm}$. Find the resistance of the coil.

A	150Ω	B	3000Ω
C	750Ω	D	1500Ω
Answer			

