G001 Online Test

Ref137

The flux is equal to

A	Φ = Fm x Rm	В	Φ = Fm / Rm
С	Φ = Rm / Fm	D	ϕ = Fm + Rm
	Answer		

Ref 138

Rm is equal to

A	Ιμ / Α	В	Lμ A
С	L/μ A	D	μ Α/Ι
	Answer		

Ref139

Flux density is equal to

A	ф/А	В	Α/ φ
С	φA	D	Ф+А
	Answer		

Ref140

The torque produced in electric motor is equal to

A	T = Br/ L	В	T = BL r
С	T = BL/r	D	T + Br + L
	Answer		

Ref141

A plunger brake electro-magnetic operates at a flux density of 12 tesla. If the CSA of the magnetic circuit is 0.04 sq-m and reluctance is 12000 amp-turn / wb, what current is required to operate the magnet if the coil has 1000 turns.

А	0.576A	В	0.288A
С	1.3A	D	2.8A
	Answer		

Ref142

The induced voltage in conductor moving in magnetic field is

A	E = BI sinO	В	$E = BLV \cos \Theta$
С	E = BLV	D	E = BLV sinO
	Answer		

Ref143

The voltage induced in coil of N turns is

А	$V = N \times d \phi / dt$	В	V = NI
С	V = N φ	D	$V = N^2 \phi$
	Answer		

Ref144

What is the velocity of a conductor 150 mm long and moving at right angle to magnetic field having a flux density of 0.4 tesla? The induced voltage is 4V.

A	6 m/s	В	3.3 m/s
С	12 m/s	D	1.5 m/s
	Answer		

Ref145

The force between two current carrying conductors is

A	$F = 10^{-7} I / d$	В	$F = 2 \times 10^{-7} I / d$
С	F = NI / d	D	$F = 4 \Pi 10^{-7} I / d$
	Answer		

Ref146

A transformer has 50 turns on the primary and 600 turns on secondary . If a flux of 0.25 wb is induced to zero in 10 ms, calculate the induced emf in each coil.

A	E1 = 2500V, E2 = 30000V	В	E1 = 250V, E2 = 3000V
С	E1 = 300V, E2 = 25000V	D	E1 = E2 = 3000V
	Answer		

Ref147

If a conductor is being rotated at 2000 RPM in magnetic field and induces 400V . If it is rotated at 1000 RPM.. Find the induced emf.

A	400V	В	200V
С	100V	D	50V
	Answer		

Ref148

A 240 V coil 5000T produces magnetizing force 4000AT/ m . The magnetic circuit is 200 mm long. CSA 500 sq-mm. Find the resistance of the coil.

A	3000Ω	В	1500Ω
C	750Ω	D	150Ω
	Answer		