THREE PEIASE AC SUPPLIES

Double Subscript Notation

AC voltages are written using double subscript notation and as complex numbers in polar form

Voltage $E_{A B}=$ voltage at point A with reference to point B
Voltage $E_{B A}=$ voltage at point B with reference to point A.
The second mentioned letter is always the reference point
Example:

$$
E_{A B}=200 / 0^{\circ} \text { volts }
$$

$$
E_{B A}=200 \angle \pm 180^{\circ} \text { volts (opposite to } E_{A 3} \text {) }
$$

Generation of a Three Phase set of EMFs

A machine with a single rotating coil in a magnetic field generates one cycle of sinusoidal emf for each revolution of the coil. This is called

If three coils are spaced equally, 120° apart, around the machine, then the generated emfs in each coil will pass zero and reach peaks at different times. The three emfs generated are three single phase emfs.

Refer to FIG 1 which shows three coils displaced by, 120." from each other, rotating between two magnetic poles, and the electrical connections to the coils through sliprings and brushes.

(a) Three-phase aneration

(b) Oucput cunnectians of generator

FIG 1
The coils are labelled A, B and C, and the emfs will reach peaks in the order A, B, C, if the coil system is rotated anticlockwise.

The coils are electrically separate and the emfs measured across the ends of each coil are identified as ens, esb and ece, in accordance with double subscript notation

The three sepacate generator winding votrages, are aqual in magnitude hut displaced from each other in phase. by ± 1200

FIG 2 below shows the waveforms of the three separate phase voltages in each coil, eam, esp and eco.

FIG 2
The three voltages can be expressed in either time domain or complex form.

$$
\begin{aligned}
& \text { ono }=\text { Emaxsinwt }=E \angle 0^{\circ} \text { volts } \\
& \text { ext }=E_{\text {waxsin }}\left(w t-120^{\circ}\right)=E /-120^{\circ} \text { volts } \\
& \text { ce }=E_{M a x \sin }\left(w t-240^{\circ}\right)=E /+120^{\circ} \text { volts } \\
& \text { or } E_{\text {Massing }}\left(w t+120^{\circ}\right)
\end{aligned}
$$

Refer to FIG 3 which shows the phase relationships of $\pm 120^{*}$ and the sequence A, B and C of the three emfs on a phasor diagram

Three Phase Notation

The three phase windings in a generator can be labelled in any way however, standard identification has been adopted.

Phases in a three phase supply system can be identified as
a) $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or
b) $1,2,3$ or
c) Red, Yellow, Blue (R, Y, B) old system or
d) Red, White, Blue (R, W, B) new international standard.

The use of colours to identify equipment and wiring is an industrial
$R-W-B$ is the more recent standard adopted, however, $R-Y-B$ labelled equipment is still quite common in industrial installations.

Phase Sequence (Phase Rotation)

Phase sequence or phase rotation is defined as the order in which the phase voltages reach their peak values

If the coils on the machine in FIG 1 are rotated anticlockwise, the phase rotation is in the order $A-B-C$.
This is called "Positive Phase sequence"
If the coils on the machine in FIG I are rotated clockwise, the phase rotation is in the order A-C-B
This is called "Hegative Phase sequence"

Effect of Incorrect Phase Sequence on Rotating Machinery

The direction of rotation of a three phase motor, will depend on the phase sequence of the supply voltage.

If the phase sequence is reversed, then the machine will rotate in the reverse direction.

Connection of Three Phase Generators

The three windings of the machine could be kept electrically separate, and supple separate single phase loads.

This would require six separate wires to the ends of each of the three windings, in which case the connections would be as shown in FIG 4 ,

Three Phase Notation

The three phase windings in a generator can be labelled in any way however, standard identification has been adopted.

Phases in a three phase supply system can be identified as:
a) $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or
b) $1,2,3$ or
c) Red, Yellow, Blue (R, Y, B) old system or
d) Red, White, Blue ($\mathrm{R}, \mathrm{W}, \mathrm{B}$) new international standard.

```
The use of colours to identify equipment and wiring is an industrial
R-W-B is the more recent standard adopted, however, R-Y-B labelled
eguipment is still quite common in industrial installations
```


Phase Sequence (Phase Rotation)

 phase voltages reach their peak valuesIf the coils on the machine in FIG 1 are rotated anticlockwise, the phase rotation is in the order $A-B-C$.
This is called "Positive Phase Sequence"
If the coils on the machine in FIG 1 are rotated clockwise, the phase rotation is in the order A-C-B.
This is called "Hegative Phase sequence"

Effect of Incorrect Phase Sequence on Rotating Machinery

The direction of rotation of a three phase motor, will depend on the phase sequence of the supply voltage
reverse direction.

Connection of Three Phase Generators

The three windings of the machine could be kept electrically separate, single phase loads.

This would require six separate wires to the ends of each of the three windings, in which case the connections would be as shown in FIG 4 .

Voltages in a Balanced Star Connected Generator

Line voltages ($E_{1 \pm n-1 I a d}$) are measured between any two line terminals. There are three line voltages in the circuit of FIG 5 ., EAB, EBC, ECA.

Phase Voltages (Eliabetween any line terminal and the neutral terminal.

There are threa phase voltages in the circuit of fig 5., EAn, Eny, ECr.
The three generator winding voltages (phase voltages), are equal in magnitude (balanced) but displaced from each other in phase, by $\pm 120^{\circ}$.

Each inne voltage is the vector sum of two phase voltages
Refer to the phasor diagrams in FIG 6, which show three phase voltages and the vector addition of the phase voltages to give the three line voltages.

(a) Relationship of phuse voluages

(b) Line voliage $E_{A a}$ is the phasor difference $\mathrm{E}_{\mathrm{AN}}=\mathrm{E}_{\mathrm{BN}}$

PIG 6


```
Notes:
To carry out these vector additions, one of the phase voltage
must be reversed
Line voltages are all equal in magnitude.
Line voltages are \sqrt{}{3}\mathrm{ times the phase voltages]}
Line voltages lead the phase voltages by 30%
```


Currents in a Balanced Star Connected Generator

From the circuit diagram in FIG 5 it can be seen that the current flowing in a line conductor is the same as the current flowing in a phase winding.

Summary:

```
In a star connected system Elia* = \3xEpa&me
    I_10* = Ipha=*
```


Delta Connection of Generator Windinge

Refer to pIG 7 which shows three generator windings connected in delta to provide a three wire supply.
The ends of the windings are connected together from the start of one winding to the finish of the next winding to form a delta.

FIG 7

Voltages in a Balanced Delta Connected Generator

Line voltages ($E_{1 i a-1 i n *}$) are measured between any two line terminals. There are threes line voltages in the circuit of FIG $7 ., E_{A B}, E_{B C}, E_{c a}$.

Phase Voltages ($E_{p h o s e}$) are measured across any winding and are the same as the line voltages in the delta circuit.

There are three phase voltages in the circuit of FIG 7., $\mathrm{E}_{\mathbf{A B}}, \mathrm{E}_{\mathrm{B}} \mathrm{C}, \mathrm{E}_{\mathrm{CA}}$.
Refer to the phasor diagram in PIG 8. which shows the phase voltages and line voltages in a delta system.

FIG 8

Currents in a Balanced Delta Connected Generator

From the circuit diagram in FIG 7 it can be seen that the current flowing in a line conductor is vector sum of two currents flowing in the

Applying Kirchhoff's Current Law at each line terminal:

Refer to the phasor diagram in FIG 9. Which shows the vector addition of the phase currents to give the three line currents.

EIG 9

Notes:
 To carry out these vector additions, one of the phase currents must be reversed,
 line currents are all equal in magnitude.
 Line currents are $\frac{r 3}{}$ times the phase currents.
 Line currents laq the phase currents by 30°.

Summary:

$$
\text { In a delta connected system } \quad \begin{aligned}
& \mathrm{E}_{1 \text { ine }}=\mathrm{E}_{p h a n} \\
& \mathrm{I}_{1 \text { ine }}=\sqrt{3 I_{p h n * e}}
\end{aligned}
$$

Comparison of Three Phase and Single Phase Supplies

Power Supplied:
Power delivered to a load from a single phase supply is in two pulses per cycle of the supply voltage.
Power delivered to a load by a three phase supply, comes fren, each phase in turn, which results in a smoother application power to the load. (3 phase motors run smoother than 1 phase motors and are physically smaller for the same power rating)

Voltages:
A three phase supply allows flexibility of two different voltage levels and a choice of 1,2 or 3 phase supply.

Currents:
As power is supplied from three sources, the current necessary to deliver the same power as a single phase supply, is less. This means that the conductor size can be smaller. Smaller current is an advantage for motor starting.

Number of Conductors:
Three separate single phase supplies would require six conductors joining the supply to the load.
A three phase supply requires only three or four conductors of smaller cross sectional area.

CONNECTION OF BALANCED THREE PHASE LOADS

Three phase supplies can be either three wire or four wire.
Three phase loads however, can be connected to the supply in a number of ways.
Three phase loads can be either Star or Delta connected, and may be cither balanced or unbalanced.
A balanced three phase load is defined as having equal impedances in all phases.
An unbalanced three phasc load is defined as having unequal impedances in all phases.

Four Wire Supply with a Balanced Star Connected Load

Refer to FIG 1 which shows a star connected load connected to a four wire three phase supply.

FIG: 1

Notes: The impedances in the three phases are equal in magnitude and angle.

$$
\text { Line current } \mathrm{I}_{\text {line }}=\text { Phase current } I_{\text {passe }}
$$

All line currents are equal.
Phase voltage $\mathrm{E}_{\text {pase }}=\mathrm{E}_{\text {line }} / / 3$
The connection of the neutral (fourth wirc), ensures that all phase voltages are equal at the load
Neutral current is cqual to the vector sum of the line currents.
$\mathrm{I}_{\text {NEUTRAL }}=\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}=0$ (for a balanced load)

Page 2 of 5

Example: A balanced three phase star connected load, consists of three 100Ω resistors connected via a four wire balanced supply system, to an alternator, having a line-neutral voltage of 100 V rms.
Assume voltage E_{AN} as reference quantity.
Calculate:
a) the line voltages in polar form,
b) the line currents in polar form,
c) the neutral current in polar form

Solution:
Refer to the circuit diagram in FIG 2.

$$
E C A=13.2 L \times 50^{\circ}
$$

FIG 2
a) Since the supply is balanced,
$E_{A N}=100 / 0^{\circ}$ volts

$$
\begin{aligned}
z & =R+j x \\
& =100+j 0 \\
& =100 \angle 0^{0} \Omega
\end{aligned}
$$

$\mathrm{E}_{\mathrm{BN}}=100 /-120^{\circ}$ volts
$\mathrm{E}_{\mathrm{CN}}=100+120^{\circ}$ volts
All Line voltages $\Rightarrow \sqrt{3} \times E_{\text {phase }} \Rightarrow \sqrt{3} \times 100 \Rightarrow 173.2 \mathrm{~V}$ ms.

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{AB}}=173.2 /+30^{\circ} \text { volts } \\
& \mathrm{E}_{\mathrm{BC}}=173.2 /-90^{\circ} \text { volts } \\
& \mathrm{E}_{\mathrm{CA}}=173.2 /+150^{\circ} \text { volts }
\end{aligned}
$$

b)

Line current $I_{A}=$	$\frac{E_{A N}}{}=\frac{100 / 0^{\circ}}{100 / 0^{\circ}}$
$Z_{A N}$	$=1 / 0^{\circ} \mathrm{amps} \mathrm{ms}$
Line current $I_{B}=$	$\underline{E}_{B N}=\frac{100 /-120^{\circ}}{100 / 0^{\circ}}=1 /-120^{\circ} \mathrm{amps} \mathrm{ms}$

Line current $\mathrm{I}_{\mathrm{C}}=$\begin{tabular}{l}
E_{CN}

Z_{CN}

$=\frac{$

Pagc 3 of

$100 /+120^{\circ}$
\end{tabular}}{$100 / 0^{\circ}$}$=1 \underline{1 / 120^{\circ} \mathrm{amps} \mathrm{ms}}$

All line currents are equal in magnitude and displaced by 120°.
c)

$$
\begin{aligned}
\mathbf{I}_{\text {NEUTRAL }} & =\mathbf{I}_{\mathrm{A}}+\mathbf{I}_{\mathrm{B}}+\mathbf{I}_{\mathrm{C}} \\
& =1 /\left(0^{\circ}+1 / \overline{l-120^{\circ}}+1 /+120^{\circ}\right. \\
& =(1+\mathrm{j} 0)+(-0.5-\mathrm{j} 0.866)+(-0.5+\mathrm{j} 0.866) \\
& =0
\end{aligned}
$$

Balanced Delta Connected Loads

Refer to FIG 3 which shows a balanced delta load connected to a three wire balanced supply.

FIG 3

Notes: $\begin{aligned} & \text { All phase currents are equal and symmetrical in phase. } \\ & \text { All line currents are equal and symmetrical in phase. } \\ & \text { Line currents are equal to } \sqrt{3} \text { times the phase currents. }\end{aligned}$ 年
The vector sum of the three line currents is zero.

Phase current I_{Al}	$\begin{aligned} & E_{A B} \\ & Z_{A B} \end{aligned}$		
Phase current I_{HC}	$\begin{aligned} & \mathrm{E}_{\mathrm{BC}} \\ & \mathrm{Z}_{\mathrm{DC}} \end{aligned}$		
Phase current I_{CA}	$\begin{aligned} & \mathrm{E}_{\mathrm{cA}} \\ & \mathrm{Z}_{\mathrm{CA}} \end{aligned}$		
Line current I_{8}	$=\mathrm{I}_{\mathrm{AB}}-\mathrm{I}_{\mathrm{C}} \mathrm{d}$	$=$	$\sqrt{3} \mathrm{xI}_{\text {Phase }}$

Line current I_{B}	$=I_{B C}-I_{A B}=\sqrt{ } 3 \times I_{\text {PHASE }}$
Line current I_{C}	$=I_{C A}-I_{B C}=\sqrt{3} \times I_{\text {PHASE }}$

Example: A balanced delta load of $\mathrm{R}=50 \Omega$ per phase is connected across a three phase balanced supply of 400 V rms line-line.
Using voltage E_{AB} as reference, calculate:
a) all phase currents in polar form
b) all line currents in polar form.

Draw the complete phasor diagram.
Solution:
Refer to the circuit diagram in FIG 4.

FIG 4
a) Phase current $I_{A B}=\mathrm{E}_{A B}=400 / 0^{\circ}=8 / 0^{\circ} \mathrm{amps} \mathrm{ms}$

Phase current $\mathrm{I}_{\mathrm{BC}}=$| E_{BC} |
| :--- |
| Z_{DC} |$=\frac{400 /-120^{\circ}}{50 / 0^{\circ}}=8 / \underline{120^{\circ}}$ amps rms

Phase current $\mathrm{I}_{\mathrm{CA}}=\frac{\mathrm{E}_{\mathrm{CA}}}{\mathrm{Z}_{\mathrm{CA}}}=\frac{400 /+120^{\circ}}{50 / \underline{0^{\circ}}}=8 \underline{8} \underline{+120^{\circ}} \mathrm{amps} \mathrm{mms}$
b) Line Current $I_{A}=I_{A B}-I_{C A}$
$=8 i 0^{\circ}-8 i+120^{\circ}$

The sum of the line currents is:

$$
\begin{aligned}
\left(I_{A}+I_{B}+I_{C}\right) & =(12-j 6.9)+(-12-j 6.9)+(0+j 13.8) \\
& =0
\end{aligned}
$$

Notes: With a balanced load, we can calculate one line current and then displace the other two by $\pm 120^{\circ}$ since they are equal and symmetrical.
The sum of the three line currents in a three wire system is always equal to zero, since there is no path for unbalance current to flow.

Refer to FIG 5 which is the complete phasor diagram.

$I B C=8 \angle 20^{\circ}$

$$
\pi B C=4 \infty 0 /-120^{\circ}
$$

FIG 5
rage - 1

DELTA-STAR AND STAR-DELTA CONVERSIONS

Star Connected Impedances

Three impedances are connected in the "Star" or "Wye" connection when they are connected as shown in FIG 1.

FIG 1

This connection is used in three phase circuits where the three phase supply is available either as a three or four wire system.

Impedances may also be connected in this configuration in either DC or single phase AC circuits that may need to be simplified and solved.

Delta Connected Impedances

Three impedances are connected in the "Delta" connection when they are connected as shown in FIG 2.

FIG 2
This connection is used in three phase circuits where the three phase supply is available as a three wire system.

Impedances may also be connected in this configuration in either DC or single phase AC circuits that may need to be simplified and solved.

Delta-Star Transformation

A delta connected set of impedances can be replaced by an equivalent star connected set of impedance that will appear to be the same impedance between each two line terminals.

Refer to FIG 3 which shows a star connected set of impedances $\mathrm{Z}_{\mathrm{A}}, \mathrm{Z}_{\mathrm{B}}$ and Z_{C}, and also a delta connected set of impedances $\mathrm{Z}_{\mathrm{AB}}, \mathrm{Z}_{\mathrm{BC}}$ and Z_{CA}.

FIG 3
For the two sets of impedances to be equivalent, the total impedance between any two line terminals must be the same.

Impedance between line terminals A and B is:
In star connection: $\quad \mathrm{Z}_{\mathrm{A}-\mathrm{B}} \quad=\quad \mathrm{Z}_{\mathrm{A}}+\mathrm{Z}_{\mathrm{B}}$
In delta connection: $\mathrm{Z}_{\mathrm{A}-\mathrm{B}}$
$=\quad \mathrm{Z}_{\mathrm{AB}} / /\left(\mathrm{Z}_{\mathrm{BC}}+\mathrm{Z}_{\mathrm{CA}}\right)$
$=Z_{A B}\left(Z_{B C} \pm Z_{C A}\right)=$ product
$\mathrm{Z}_{\mathrm{AB}}+\mathrm{Z}_{\mathrm{BC}}+\mathrm{Z}_{\mathrm{CA}}$
$=Z_{A B} Z_{B C}+Z_{B C} z_{C A}$
$\mathrm{Z}_{\mathrm{AB}}+\mathrm{Z}_{\mathrm{BC}}+\mathrm{Z}_{\mathrm{CA}}$
$7 A B$
Equate the star and delta impedances:

$$
\mathrm{Z}_{\mathrm{A}}+\mathrm{Z}_{\mathrm{B}}=\frac{\mathrm{Z}_{\mathrm{AB}} \mathrm{Z}_{\mathrm{BC}}+\mathrm{Z}_{\mathrm{BC}} \mathrm{Z}_{\mathrm{CA}}}{\mathrm{Z}_{\mathrm{AB}}+\mathrm{Z}_{\mathrm{BC}}+\mathrm{Z}_{\mathrm{CA}}} \quad \text { Equation 1. }
$$

CONNECTION OF BALANCED THREE PHASE LOADS

Three phase supplies can be either three wire or four wire.
Three phase loads however, can be connected to the supply in a number of ways.
Three phase loads can be either Star or Delta connected, and may be cither balanced or unbalanced.
A balanced three phase load is defined as having equal impedances in all phases.
An unbalanced three phasc load is defined as having unequal impedances in all phases.

Four Wire Supply with a Balanced Star Connected Load

Refer to FIG 1 which shows a star connected load connected to a four wire three phase supply.

FIG: 1

Notes: The impedances in the three phases are equal in magnitude and angle.

$$
\text { Line current } \mathrm{I}_{\text {line }}=\text { Phase current } I_{\text {passe }}
$$

All line currents are equal.
Phase voltage $\mathrm{E}_{\text {pase }}=\mathrm{E}_{\text {line }} / / 3$
The connection of the neutral (fourth wirc), ensures that all phase voltages are equal at the load
Neutral current is cqual to the vector sum of the line currents.
$\mathrm{I}_{\text {NEUTRAL }}=\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}=0$ (for a balanced load)

Page 2 of 5

Example: A balanced three phase star connected load, consists of three 100Ω resistors connected via a four wire balanced supply system, to an alternator, having a line-neutral voltage of 100 V rms.
Assume voltage E_{AN} as reference quantity.
Calculate:
a) the line voltages in polar form,
b) the line currents in polar form,
c) the neutral current in polar form

Solution:
Refer to the circuit diagram in FIG 2.

$$
E C A=13.2 L \times 50^{\circ}
$$

FIG 2
a) Since the supply is balanced,
$E_{A N}=100 / 0^{\circ}$ volts

$$
\begin{aligned}
z & =R+j x \\
& =100+j 0 \\
& =100 \angle 0^{0} \Omega
\end{aligned}
$$

$\mathrm{E}_{\mathrm{BN}}=100 /-120^{\circ}$ volts
$\mathrm{E}_{\mathrm{CN}}=100+120^{\circ}$ volts
All Line voltages $\Rightarrow \sqrt{3} \times E_{\text {phase }} \Rightarrow \sqrt{3} \times 100 \Rightarrow 173.2 \mathrm{~V}$ ms.

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{AB}}=173.2 /+30^{\circ} \text { volts } \\
& \mathrm{E}_{\mathrm{BC}}=173.2 /-90^{\circ} \text { volts } \\
& \mathrm{E}_{\mathrm{CA}}=173.2 /+150^{\circ} \text { volts }
\end{aligned}
$$

b)

Line current $I_{A}=$	$\frac{E_{A N}}{}=\frac{100 / 0^{\circ}}{100 / 0^{\circ}}$
$Z_{A N}$	$=1 / 0^{\circ} \mathrm{amps} \mathrm{ms}$
Line current $I_{B}=$	$\underline{E}_{B N}=\frac{100 /-120^{\circ}}{100 / 0^{\circ}}=1 /-120^{\circ} \mathrm{amps} \mathrm{ms}$

Line current $\mathrm{I}_{\mathrm{C}}=$\begin{tabular}{l}
E_{CN}

Z_{CN}

$=\frac{$

Pagc 3 of

$100 /+120^{\circ}$
\end{tabular}}{$100 / 0^{\circ}$}$=1 \underline{1 / 120^{\circ} \mathrm{amps} \mathrm{ms}}$

All line currents are equal in magnitude and displaced by 120°.
c)

$$
\begin{aligned}
\mathbf{I}_{\text {NEUTRAL }} & =\mathbf{I}_{\mathrm{A}}+\mathbf{I}_{\mathrm{B}}+\mathbf{I}_{\mathrm{C}} \\
& =1 /\left(0^{\circ}+1 / \overline{l-120^{\circ}}+1 /+120^{\circ}\right. \\
& =(1+\mathrm{j} 0)+(-0.5-\mathrm{j} 0.866)+(-0.5+\mathrm{j} 0.866) \\
& =0
\end{aligned}
$$

Balanced Delta Connected Loads

Refer to FIG 3 which shows a balanced delta load connected to a three wire balanced supply.

FIG 3

Notes: $\begin{aligned} & \text { All phase currents are equal and symmetrical in phase. } \\ & \text { All line currents are equal and symmetrical in phase. } \\ & \text { Line currents are equal to } \sqrt{3} \text { times the phase currents. }\end{aligned}$ 年
The vector sum of the three line currents is zero.

Phase current I_{Al}	$\begin{aligned} & E_{A B} \\ & Z_{A B} \end{aligned}$		
Phase current I_{HC}	$\begin{aligned} & \mathrm{E}_{\mathrm{BC}} \\ & \mathrm{Z}_{\mathrm{DC}} \end{aligned}$		
Phase current I_{CA}	$\begin{aligned} & \mathrm{E}_{\mathrm{cA}} \\ & \mathrm{Z}_{\mathrm{CA}} \end{aligned}$		
Line current I_{8}	$=\mathrm{I}_{\mathrm{AB}}-\mathrm{I}_{\mathrm{C}} \mathrm{d}$	$=$	$\sqrt{3} \mathrm{xI}_{\text {Phase }}$

Line current I_{B}	$=I_{B C}-I_{A B}=\sqrt{ } 3 \times I_{\text {PHASE }}$
Line current I_{C}	$=I_{C A}-I_{B C}=\sqrt{3} \times I_{\text {PHASE }}$

Example: A balanced delta load of $\mathrm{R}=50 \Omega$ per phase is connected across a three phase balanced supply of 400 V rms line-line.
Using voltage E_{AB} as reference, calculate:
a) all phase currents in polar form
b) all line currents in polar form.

Draw the complete phasor diagram.
Solution:
Refer to the circuit diagram in FIG 4.

FIG 4
a) Phase current $I_{A B}=\mathrm{E}_{A B}=400 / 0^{\circ}=8 / 0^{\circ} \mathrm{amps} \mathrm{ms}$

Phase current $\mathrm{I}_{\mathrm{BC}}=$| E_{BC} |
| :--- |
| Z_{DC} |$=\frac{400 /-120^{\circ}}{50 / 0^{\circ}}=8 / \underline{120^{\circ}}$ amps rms

Phase current $\mathrm{I}_{\mathrm{CA}}=\frac{\mathrm{E}_{\mathrm{CA}}}{\mathrm{Z}_{\mathrm{CA}}}=\frac{400 /+120^{\circ}}{50 / \underline{0^{\circ}}}=8 \underline{8} \underline{+120^{\circ}} \mathrm{amps} \mathrm{mms}$
b) Line Current $I_{A}=I_{A B}-I_{C A}$
$=8 i 0^{\circ}-8 i+120^{\circ}$

The sum of the line currents is:

$$
\begin{aligned}
\left(I_{A}+I_{B}+I_{C}\right) & =(12-j 6.9)+(-12-j 6.9)+(0+j 13.8) \\
& =0
\end{aligned}
$$

Notes: With a balanced load, we can calculate one line current and then displace the other two by $\pm 120^{\circ}$ since they are equal and symmetrical.
The sum of the three line currents in a three wire system is always equal to zero, since there is no path for unbalance current to flow.

Refer to FIG 5 which is the complete phasor diagram.

$I B C=8 \angle 20^{\circ}$

$$
\pi B C=4 \infty 0 /-120^{\circ}
$$

FIG 5

POWER AND ENERGY IN AC CIRCUITS

Definition of Power

Power is the rate of doing work. (Power $=$ work/time $)$

The SI unit of "real or true" power is the "WATT"

Revision of Real Power in DC circuits

In a purely resistive dc circuit, real power in watts, can be calculated by any of the following expressions:

$$
P=E I \quad P=I^{2} R \quad P=E^{2} / R
$$

The power is called "real" power because the energy is consumed by the resistor and converted to another form, such as light, heat or mechanical energy, and cannot return to the source.

Remember, "real" power in watts can only be consumed by resistors or the resistive part of a circuit.

Energy stored in Magnetic or Electric Fields

In dc circuit transient analysis, using R-L or R-C circuits, it is revealed that some energy is consumed oy the resistor, and some energy is supplied from the source, to establish a magnetic field in an inductor, or an electric field in a capacitor during the "charging" transient time.

This field energy is not consumed and lost, but is stored in the field until released by providing a "discharge" path for current to flow.

When the discharge current flows through a discharge resistor, during the "discharge" transient time, the energy is then consumed by the resistor, converted to heat and lost.

The energy does not become "real" power in watts until consumed by a resistor or the resistive part

Power in AC Circuits

When a sinusoidal voltage is applied to a circuit, the current will also be sinusoidal.
There will be a phase relationship between current and voltage depending on the circuit component (R, L, C or combinations of these).

Summary of Phase Relationshipa

Purely resistive circuit:	E and I in phase
Purely capacitive circuit:	I leads E by 90°
Purely inductive circuit:	I lags E by 90°
R-C circuit:	I leads E by an angle between 0° and 90°
R-L circuit:	I lags E by an angle between 0° and 90°
R-L-C circuit:	I may lead or lag E by an angle between 0° and 90° depending on overall impedance.

F42

Summary
The voltage and current waveforms are in phase (purely resistive circuit)
there are two pulses of power for every cycy of the supply voltage, indicating that
The power waveform is alwer for every cycle of the supply voltage.
The power waveform is always positive, indicating that power always flows from the The ayerage value of power back the other way
waveform, and is equal to the constant component.
Average Power
Power in a Purely Inductive AC Circuit
In a purely inductive ac circuit:

If	e
then	i
$=E_{M A X}^{\sin \omega t}$	

$\left.\mathrm{I}_{\mathrm{MAX}^{\sin }(\omega \mathrm{t}}-90^{\circ}\right)$
then instantaneous power $2 \sin \omega t \cos \omega t$ p $\quad-\mathrm{E}_{\text {MAX }}{ }^{\mathrm{M}}$ MAX $^{(1 / 3 \sin 2 \omega t)}=-1 / 2 \mathrm{E}_{\text {MAX }}{ }^{\mathrm{I}}$ MAX $^{\sin 2 \omega t}$
Power is a double frequency sine wave with maximum value of $1 / 2 \mathrm{E}_{\mathrm{MAX}} \mathrm{I}_{\mathrm{MAX}}$
FIG 2 shows the voltage, current and resulting power waveform for the purely

EIG 2

F43 Page-4

Summary: The current waveform lags the voltage waveform by 90° (purely inductive circuit) The power waveform is twice the frequency of the supply voltage, indicating that there are two pulses of power for every cycle of the supply voitage.
The power waveform has equal positive and negative half cycles, indicating that power flows from the supply to the inductor and then back the other way.
This energy between the source and the inductor, is used to produce the magnetic field surrounding the inductor and when the field collapses, the energy is returned to the source.
The ayerage value of "real" power supplied to the inductor, is the average value of the power waveform, and is equal to zere
The pure inductor consumes no "real" power in watts since there is no resistive component in the circuit
The power that flows back and forth is called "reactive" power or "yolt-amperes reactive" (VARS), sometimes called "inductive" or "lagging" VARS.

Power in a Purely Capacitive AC Circuit

In a purely capacitive ac circuit:
If $\quad e \quad=E_{M A X}$ sin ωt
then $\quad i \quad=\mathrm{I}_{\mathrm{MAX}} \operatorname{Min}^{\sin }\left(\omega \mathrm{t}+90^{\circ}\right)=\mathrm{I}_{\mathrm{MAX}} \cos \omega t$ (leading e by 90°)
then instantaneous power $p=\mathrm{E}_{\mathrm{MAX}^{\sin \omega t} \times \mathrm{I}_{\mathrm{MAX}} \cos \omega t}=\mathrm{E}_{\mathrm{MAX}^{\mathrm{I}}} \mathrm{MAX}^{\sin \omega t \cos \omega t}$
becomes: $\quad \mathrm{p}=\mathrm{E}_{\mathrm{MAX}^{\mathrm{I}} \mathrm{MAX}^{(1 / 2 \sin 2 \omega t)}=1 / \mathrm{E}_{\mathrm{MAX}^{\mathrm{I}}} \mathrm{MAX}^{\sin 2 \omega t}}$
Power is a double frequency sine wave with maximum value of $1 / 2 \mathrm{E}_{\mathrm{MAX}} \mathrm{I}_{\mathrm{MAX}}$
FIG 3 shows the voltage, current and resulting power waveform for the purely capacitive circuit.

Summary: The current waveform leads the voltage waveform by 90° (purely capacitive circuit) The power waveform is twice the frequency of the supply voltage, indicating that
there are two pulses of power for there are two pulses of power for every cycle of the supply voltage power flows from thas equal positive and negative half cycles, indicating that This energy between the source and thacitor and then back the other way. This energy between the source and the capacitor, is used to produce the electric field in the capacitor and when the field collapses, the energy is returned to the source. The ayerage value of "real" power supplied to the capacitor, is the average value of the power waveform, and is zere
The pure capacitor consumes no "real" power in watts since there is no resistive component in the circuit.
The power that flows back and forth is called "reactive" power or "volt-amperes reactive" (VARS), sometimes called "capacitive" or "leading" VARS

Inductive and Capacitive YARS

Only inductors and capacitors can generate or consume reactive power in vars and do not consume
real power in watts. real power in watts.

When comparing the power waveforms in FIG 2 and FIG 3, it can be seen, that when the inductor requires energy for its magnetic field, the capacitor is giving back its energy and when the capacito requires energy for its electric field, the inductor is giving back its energy.
This means that the inductor satisfies the needs of the capacitor and vice versa for their reactive power requirements, and so inductance tends to cancel the effect of capacitance and vice versa in a

This effect has already been noted in the study of series and parallel R-L-C circuits.

Powerin a Series R-L AC Circuit

In a series R-L ac circuit:
If $\quad e \quad=E_{M A X} \sin \omega t$ $=I_{M_{M A X}} \sin \left(\omega t-\theta^{\circ}\right)$
then instantaneous power $\quad \mathrm{p} \quad=\mathrm{ei}=\mathrm{E}_{\mathrm{MAXI}} \mathrm{MAX}^{\sin \omega t \sin \left(\omega \mathrm{t}-\theta^{\circ}\right)}$
using trig identity $\sin A \sin B=1 / 2(\cos (A-B) \cdot \cos (A+B)$
becomes: $\quad=1 / \mathrm{E}_{\mathrm{MAX}^{\mathrm{I}}} \mathrm{MAX}^{\left[\cos \theta^{\circ}-\cos \left(2 \omega t-\theta^{\circ}\right)\right]}$
expanding brackets gives:
p $\left.\quad=1 / 2 \mathrm{E}_{\text {MAX }} \mathrm{MAX}^{\cos \theta^{\circ}-1 / 2 \mathrm{E}_{\text {MAX }}} \mathrm{MAXX}^{\cos (2 \omega t}-\theta^{\circ}\right)$
$=E_{R M S} I_{R M S}{ }^{\cos \theta^{\circ}}-\mathrm{E}_{\text {RMS }} \mathrm{I}_{\text {RMS }} \cos \left(2 \omega t-\theta^{\circ}\right)$
p = constant - double frequency cosine wave shifted by $-\theta^{\circ}$

F45 Page-6

FIG 4 shows the voltage, current and resulting power waveform for the series R-L circuit.

EIG 4
Summary: The current waveform lags the voltage waveform by θ° (inductive circuit) The power waveform is twice the frequency of the supply voltage, indicating that there are two pulses of power for every cycle of the supply voltage
The power waveform has a larger positive than negative value, indicating that more power flows from the supply to the circuit than flows back to the supply.
This energy between the source and the circuit, is used to supply real power to the resistor and reactive power to produce the magnetic field in the inductor, and when the field collapses, the reactive power is returned to the source
The ayerage value of "real" power supplied to the R-L circuit, is the average value of the power waveform.

Real Power in Watts $=E_{\text {RMS }}{ }^{I}$ RMS $^{\cos \theta^{\circ}}$
where θ° is the angle of lag between the supply voltage and the circuit current and is also the impedance angle of the circuit.
The inductor consumes no "real" power in watts.
The negative part of the power waveform, represents the inductive VARS moving
back and forth between the source and the inductor.

Power in a Series R-C AC Circuit
In a series R-C ac circuit:

FIG 5 shows the voltage, current and resulting power waveform for the series R-C circuit.

EIG5

```
F47 Page.8
```

Summary: The current waveform leads the voltage waveform by θ° (capacitive circuit).
The power waveform is twice the frequency of the supply voltage, indicating that there are two pulses of power for every cycle of the supply voltage
The power waveform has a larger positive than negative value, indicating that more power flows from the supply to the circuit than flows back to the supply.
This energy between the source and the circuit, is used to supply real power to the resistor and reactive power to produce the electric field in the capacitor, and when the field collapses, the reactive power is returned to the source,
The average value of "real" power supplied to the R-C circuit, is the average value of the power waveform

Real Power in Watts $=\mathrm{E}_{\mathrm{RMS}}{ }^{\mathrm{I}} \mathrm{RMS}^{\cos \theta^{\circ}}$

where θ° is the angle of lead between the supply voltage and the circuit current and is also the impedance angle of the circuit.
The capacitor consumes no "real" power in watts
The negative part of the power waveform, represents the capacitive VARS moving back and forth between the source and the capacitor.

Apparent Power, Real Power and Reactive Power in AC Circuits

Apparent Power (Symbol S)

In a do circuit, the product ExI is equal to real power in watts.
In an ac circuit, the product of $E_{R M S}{ }^{I} R M S$ is called "APPARENT POWER" because the phase angle between E and I has not been considered

The units of "apparent" power are volt amperes (volts x amps) (VA)
Apparent power is an SI unit and can be written as VA, kVA or MVA, depending on the size, and is used to measure the rating of electrical equipment such as transformers and generators where it is likely that reactive loads will be connected.

Apparent power can also be calculated from the expressions:

$$
\mathrm{S}=\mathrm{I}^{2} \mathrm{RMS}^{Z} \text { volt amperes or } \mathrm{S}=\mathrm{V}^{2} \mathrm{RMS}^{2} / Z \text { volt amperes }
$$

Real Power (Symbol P)

In an ac circuit, the power consumed by the resistance of the circuit, is called "REAL POWER" and can be calculated from the expression:

Real Power in Watts $\mathrm{P}=\mathrm{E}_{\text {RMS }} \mathrm{I}_{\mathrm{RMS}}{ }^{\cos \theta}$

where θ° is the angle of lead or lag between the supply voltage and the circuit current and is also the impedance angle of the circuit.

Real power can also be calculated from the expressions:

$$
\begin{align*}
& \text { Page -9 } \\
& P=I^{2} R_{M S} R \text { watts or } \quad P=E^{2} R_{M S} / R \text { watts } \tag{48}
\end{align*}
$$

where $I_{R M S}$ is the current passing through the resistor and $\mathrm{E}_{\mathrm{RMS}}$ is the voltage across the resistor.
Real power is an SI unit and can be written as $\mu \mathrm{W}, \mathrm{mW}, \mathrm{kW}, \mathrm{MW}$ etc depending on the size.

Reactive Power (Symbol 0)

In an ac circuit, the temporary energy requirement of reactive clements such as inductors or capacitors is called "REACTIVE POWER" and can be calculated from the expression:

$$
\text { Reactive Power in Vars } \mathrm{Q}=\mathrm{E}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}} \sin \theta
$$

where θ° is the angle of lead or lag between the supply voltage and the circuit current and is also the impedance angle of the circuit

Reactive power can also be calculated from the expressions:

$$
\mathrm{Q}=\mathrm{I}^{2} \mathrm{RMS} X \text { vars or } \quad \mathrm{Q}=\mathrm{E}_{\mathrm{RMS}}^{2} / \mathrm{X} \text { vars }
$$

where ${ }^{\mathrm{I} M S}$ is the current passing through the reactance and $\mathrm{E}_{\mathrm{RMS}}$ is the voltage across the reactance and X can be either $+\mathrm{j} \mathrm{X}_{\mathrm{L}}$ or $-\mathrm{j} \mathrm{X}_{\mathrm{C}}$.

There is a convention to identify the types of reactive power
Inductive (lagging) Vars are consumed by inductors (+ sign)
Capacitive (leading) Vars are generated by capacitors (-sign).
Reactive power is an SI unit and can be written as kVar , Mvar ete depending on the size.

The Power Triangle

The Power Triangle shows the relationship between apparent, real and reactive power in an ac
FIG 6 shows the power triangles for capacitive and inductive circuits.

EGG 6

> F49 Page -10

The angle θ° in the triangle, is the angle of lead or lag between the supply voltage and the circuit current and is also the impedance angle of the circuit

This means that the shape of the power triangle and the impedance triangle are the same
The sides of the triangle represent the apparent power S, the real power P, and the reactive power Q in the ac circuit

In a purely resistive circuit, $\theta=0^{\circ}$ and so real power $P=$ apparent power S and reactive power Q is zero.

In a purely inductive or purely capacitive circuit, $\theta=90^{\circ}$ and so reactive power $Q=$ apparent power S and real power P is zero.

Power Factor

The ratio of real power/apparent power in an ac circuit is called "POWER EACTOR"
Power Factor is the factor used to multiply the apparent power to obtain the real power.
Power Factor (pf) = real power/apparent power

$$
\begin{aligned}
& =E_{\text {RMS }^{I} \mathrm{RMS}^{\cos \theta} \theta \mathrm{E}_{\text {RMS }}{ }^{\mathrm{R}} \mathrm{RMS}} \\
& =\cos \theta
\end{aligned}
$$

Note: When writing a value for power factor, it must be specified whether the circuit is inductive or capacitive.
This is done by adding the word "leading" for capacitive circuit, or "lagging" for inductive circuit after the numerical value of power factor.

Example! A circuit consists of a 20 volt rms source connected to a series combination of a 60Ω resistor and an inductor with a reactance of 80Ω Calculate for the circuit:
a) the apparent power
b) the true power
c) the reactive power d) the power factor.

Solution
$\mathrm{Z}_{\text {TOTAL }}=\mathrm{R}+\mathrm{jX} \mathrm{L}_{\mathrm{L}}=60+\mathrm{j} 80=100 /+53.1^{\circ} \Omega$
$\mathrm{I}_{\mathrm{RMS}}=\mathrm{E}_{\mathrm{RMS}} / \mathrm{Z}_{\mathrm{TOTAL}}=20 / 0^{\circ} / 100 / 453.1^{\circ}=0.2 /-53.1^{\circ} \mathrm{amps}$
a) Apparent Power $S=\mathrm{E}_{\text {RMS }}{ }^{\mathrm{I} R M S}=20 \times 0.2=4 \mathrm{VA}$
b) True Power P $=E_{\text {RMS }^{I} \mathrm{RMS}^{\cos } \theta}=20 \times 0.2 \times \cos 53.1^{\circ}$
$=2.4 \mathrm{Watts}$

	Page-11
OR	$=I^{2} R_{R M S} R$

Calculation of Power using Complex Number

Voltages and currents are written in complex form (rectangular or polar) to make calculations easier
Power can also be written in complex form because it is the product of a voltage and a current.
Apparent Power $(S)=$ Real Power $(P) \pm j$ Reactive Power (Q) volt amperes

$$
\mathbf{S}=\mathbf{P} \pm j \mathbf{Q} \text { volt amperes }
$$

Note: Reactive power component can have either a positive or negative sign in front of " j " term depending on whether the reactive power (vars) are inductive or capacitive.
Convention: Inductive vars have a positive " j " term.
Complex power can be calculated from the equation:

$$
\mathrm{S}=\mathrm{E}_{\text {RMS }}{ }^{\mathrm{I} R M S}{ }^{*} \text { volt amperes }
$$

where $\mathrm{I}_{\mathrm{RMS}}{ }^{*}=$ conjugate of $\mathrm{I}_{\mathrm{RMS}}$

Note on Conjugate of a Complex Number

(then $I=a-j b=\underline{L}-\theta^{\circ}$ (opposite sign for ${ }^{\prime \prime}{ }^{\prime \prime}$)
Example: In an AC circuit, the supply voltage $\mathrm{E}_{\mathrm{RMS}}=240 / 0^{\circ}$ volts and the resulting current is RMS $=10-10^{\circ} \mathrm{amps}$.
calculate for the circuit
a) apparent power S in polar form,
b) real power P in watts,
d) reactive power Q in vars (state whether inductive or capacitive),
d) power factor (state whether leading or lagging).

Solution:

The first observation that can be made from the given information, is that the circuit is inductive, since current lags the applied voltage (by 10°).
a) Complex Power $S=E_{R M S} I_{R M S}{ }^{*}$
$=240 / 0^{\circ} \times 10 /+10^{\circ} \mathrm{VA}$

Page - 12

F乌l	$=2400+10^{\circ}$
	$=2363+j 416.7 \mathrm{VA}$
b) Real power in watts	$=P=2363$ watts
c) Reactive power in vars	$=Q-416.7$ vars (inductive)
d) Power Factor pf -	$\cos \theta=\cos 10^{\circ}=0.98$ (lagging)

Example: An impedance of $\mathrm{Z}=30+\mathrm{j} 40 \Omega$ is connected to a 250 volt ms supply.
Calculate:
a) apparent power in VA
b) real power in WATTS
c) reactive power in VARS (state whether inductive or capacitive)
d) circuit power factor (state whether leading or lagging).

Solution:
a) Total Circuit Impedance $Z=30+j 40=50 / 53.1^{\circ} \Omega$ (inductive)

Now Current $I_{\text {RMS }}=E_{R M S} / Z$

- $25000^{\circ} / 50 / 53.1^{\circ}$
$=5 / 53.1^{\circ} \mathrm{amps}$
Apparent Power S = P+jQ VA
$=E_{\text {RMS }}{ }^{I}{ }^{R M S}{ }^{*}$
- $250 / 0^{\circ} \times 5 / 453.1^{\circ}$
$=1250\left(+53.1^{\circ} \mathrm{VA}\right.$ or $(1.25 \mathrm{kVA})$
b) Apparent Power $\mathrm{S}=1250\left(+53.1^{\circ} \mathrm{VA}\right.$
$=750+\mathrm{j} 1000 \mathrm{VA}$
$=\quad P+j Q$
So Real Pówer $=P \quad=\quad 750$ watts or 0.75 kW
c) Reactive Power $=\mathrm{Q}-\quad 1000 \mathrm{VARS}$ or 1 kVAR (inductive)
d) Power Factor $\mathrm{pf}=\cos \theta=\cos 53.1^{\circ}=0.6$ lagging


```capacitor.
            Calculate
            a) apparent power in VA
            b) real power in WATTS
            c) reactive power in VARS (state whether inductive or capacitive)
            e) circuit power factor (state whether leading or lagging).
    Solution:
First draw the circuit diagram
```



```
Capacitive reactance \(\mathrm{X}_{\mathrm{C}}-1 / \omega \mathrm{C}=1 /\left(2000 \times 2 \times 10^{-6}\right)=-j 250 \Omega\)
Total Impedance \(\mathrm{Z}_{\text {TOTAL }}=\mathrm{R} \cdot \mathrm{j} \mathrm{X}_{\mathrm{C}}\)
- \(\quad 166-\mathrm{j} 250\)
\(=300<-56.4^{\circ} \Omega\)
\(\mathrm{E}_{\mathrm{RMS}}=\mathrm{E}_{\mathrm{MAX}^{\mathrm{x}} 0,707}\)
\(=150 \times 0.707\)
\(=106 / 0^{\circ}\) volts
\(\mathrm{I}_{\text {RMS }}=\mathrm{E}_{\text {RMS }} /\) TOTAL
\(=106 / Q^{\circ} / 300 /-56.4^{\circ}\)
\(=0.35 \angle+56.4^{\circ} \mathrm{A}\)
a) Apparent Power \(S=P+j Q\)
\(=E_{R M S} I_{\mathrm{RMS}}{ }^{*}\)
- \(106 / 0^{\circ} \times 0.35 / \mathscr{\mathscr { C } 5 . 4 ^ { \circ } \mathrm { VA }}\)
\(=37.45 / \overline{\operatorname{Cos}} 6.4^{\circ} \mathrm{VA}\)
\(=20.7 \overline{\mathrm{j}} 31.2 \mathrm{VA}\)
```

```
Page-14 FS3
```


a) Branch 1 :

Current $I_{1} \quad$ - E / Z_{1}
$=20 / 60^{\circ} / 4 / 30^{\circ} \mathrm{A}$
$=5 / 30^{\circ} \mathrm{A}$
Apparent Power $\mathrm{S}_{1}=\mathrm{E}_{\text {RMS }} \mathrm{I}_{\text {IRMS }}{ }^{*}$
$=20 / 60^{\circ} \times 5 /-30^{\circ} \mathrm{VA}$

```
Page-16 F-SS
```

$=100 / 30^{\circ}$
$=86,6+j 50 \mathrm{VA}$
Draw power triangle for branch 1 .
b) Branch 2: Current $I_{2}-E / Z_{2}$
$=20 / 60^{\circ} / 5660^{\circ} \mathrm{A}$
$=410^{\circ} \mathrm{A}$
Apparent Power S_{2}

- $E_{R M S}{ }^{1} 2 R M S{ }^{*}$
- $20 / 60^{\circ} \times 4 / 20^{\circ} \mathrm{VA}$
- $80 / 60^{\circ}$
$=\quad 40+\mathrm{j} 69.2 \mathrm{VA}$
Draw power triangle for branch 2 .
c) Total Apparent Power $\mathrm{S}_{\mathrm{T}}=\mathrm{S}_{1}+\mathrm{S}_{2}$
$=(86.6+\mathrm{j} 50)+(40+\mathrm{j} 69.2) \mathrm{VA}$
$=\quad 126.6+\mathrm{j} 119.2 \mathrm{VA}$
$=\quad 173.9433 .3^{\circ} \mathrm{VA}$

Draw power triangle for total circuit.
d) Overall power factor $=$
$\cos \theta=\cos 43.3^{\circ}$
0.7 lagging.

Note: Total circuit values could have been determined
a) by adding the two power triangles together graphically or
b) by calculating the total circuit impedance first and then calculating power for

F57

6

Power in a Purely Resistive AC Circuit

Using the trigonometrical identity $\sin ^{2} \omega t=(1 / 2-1 / 2 \cos 2 \omega t)$ to simplify:

	$p=\mathrm{E}_{\mathrm{MAX}^{\mathrm{I}} \mathrm{MAX}^{(1 / 2-1 / 2 \cos 2 \omega t)}}$
expanding brackets gives	$\mathrm{p}=1 / 2 \mathrm{E}_{\mathrm{MAX}}{ }^{\mathrm{I}} \mathrm{MAX}^{-1 / 2} \mathrm{E}_{\mathrm{MAX}} \mathrm{I}_{\mathrm{MAX}}$
$\cos 2 \omega t$	
	$\mathrm{p}=$ a constant + a double frequency cosine wave

FIG 1 shows the voltage, current and resulting power waveform for the purely resistive circuit.

EIG1

WATTMETERS

ELECTRODYNAMIC INSTRUMENTS (Dynamometer)

The electrodynamic instrument is similar to a PMMC instrument except that the permanent magnet is replaced by two field coils. If a current is passed through these coils, it will produce a magnetic field.
FIG I shows the basic construction of a dynamometer instrument.

PIG 1
In a PMMC meter, the deflection is proportional to current in the moving coil and the field strength.

In a dynamometer instrument, the deflection is proportional to the curxent in the moving coil and the current in the field coils.
Deflection is proportional to
Imain x Tmovina cosi
When the instrument is connected in a DCl circuit as shown in FIG 2, it Will measure circuit current and voltage and deflect proportional to power (EXI) in watts, consumed by the load.

The instrument is now called a dynamometer wattmeter,

FIG 2

Notes: The moving coil is measuring voltage, and the resistor R connected in series with the coil is a multiplier resistor similar to that used with voltmeters to extend their range. There are polarity markings on both coils to ensure that correct readings are obtained.

The dynamometer instrument can also be used to measure voltage alone or current alone by connection of field coils and moving coil in series (voltmeter), or field coils and moving coil in parallel (ammeter)

Advantages of Dynamometer Instruments

1. Can be used to measure both AC and DC quantities.
2. Measure true RMS of an AC quantity.

Disadvantage of Dynamometer Instruments

1. Require more energy to drive the movement, and are therefore lesr sensitive than PMMC meters.

Dynamometer Instrument measuring AC voltages and currents
The deflection of a dynamometer instrument is caused by the repulaion of two magnetic poles which must be instantaneously the same. These two poles are produced by the field coils and the moving coil.
Refer to FIG 3.
If we apply alternating quantities to the coils, and the coils are in series (for a voltmeter or ammeter), then the magnetic poles will all change polarity when the measured quantity reverses, thus maintaining upscale deflection.
(a) Currens flowing from left tor rixht produces positive deflection

FIG 3

(b) Curremf flowing from right wo kfit proulares pesitive defection

Dynamometer Instrument measuring AC Power

When the dynamometer instrument is connected as a wattmeter, the
because these caused by the voltage and in phase component of cur
components will produce instantaneous like poles.
Deflection is proportional to ExIcose $=$ True power in WATTS
However, the connections are important, because the reversal
is equivalent to a phase reversal of current or the reversal of one coil
the meter to read in error.
Fig 4 shows the connection of a wattmeter and correct polarity markings
to ensure accurate reading.

Precautions to be taken when using Wattmeters.

When wattmeter
and voltage applied to the meter may st $\frac{10 w}{i 11}$ power factors, the current
the wattmeter may br ammeter, where an overscale reading is obvious, excessive current in the current small deflection on scale but have voltage coll which will burn out the meter excessive voltage on the

1. Never exceed current or voltage rating
voltage ratings of cols
2. Always connect an ammeter in series with the current coil, ta
3. Always connect an volt

Always connect an voltmeter in parallel with the voltage coil, to
4. Always observe correct polarity
and current ranges
Using Wattmeter in high voltage and high current circuits
Where the currents and voltages to be measured by a wattmeter
maximum ratingsiof the wattmeter coils down to a safe value before being applied to quantities l must be stepped
The step-down is done the or
transformer (CT) steps down instrument transformers. A current down voltage. steps down current. A voltage transformer (VT) steps

Refer to FIG 5 which shows a wattmeter connected to a circuit through a CT with ratio $100 / 1 \mathrm{amps}$ and a VT with a ratio $3300 / 110$ volts.

Calculation of Wattmeter Reading
To ensure accurate readings and measurements when using wattmeters, the following points should be observed:
a) correct polarity connections/
b) which voltage range is selected,
c) Which current range is selected,
d) power factor (pf) of wattmeter (see note below),
e) CT ratio if used,
f) VT ratio if used,
g) total number of divisions on scale,
h) the reading on scale.

Note: There are high and low power factor wat meters available. The low pf meter is more accurate when used to measure in low pf circuits which are highly inductive or capacitive.

Full Scale Deflection of Wattmeter

The power required for full scale deflection on a wattmeter can be
determined from:
Full Scale Deflection in Watts $=$ Grange x Irange x Meter power Factor

Wattmeter Constant

```
Meter Constant = CT ratio x VT ratio/
```

```
Example: A unity power factor ( }\textrm{Pf}=1\mathrm{ ) wattmeter is scaled 0-100 and
The meter is used to measure power in a high voltage circuit,
    by connecting it via a CT with ratio of 150/1 amp and a VT
    with ratio 660/110 volts.
    The lA current range and the llov voltage range are used on
    the meter.
    Calculate the true power consumed by the circuit under test.
Solution:
```

Full Scale Deflection in Watts $=$ Vrange x Irange x Meter power Factor
$=110 \times 1 \times 1$
$=110$ watts
Reading on scale $\quad=65$ divisions
Wattmeter reading $\begin{aligned} & =110 \times(65 / 100) 65 \% \frac{\text { recoding scale }}{\text { total scale }} \\ & =71.5 \text { watts }\end{aligned}$
Actual power in circuit $=$ Meter constant x Wattmeter reading
$=$ cTratio x VTratio $\times 71.5$ watts
$=(150 / 1) \times(660 / 110) \times 71.5$
$=64.35 \mathrm{~kW}$

Calculation of Power Factor from Wattmeter/Voltmeter_Readings

If a wattmeter, voltmeter and ammeter are measuring quantities in an AC circuit, the readings can be used to determine the circuit power factor
True Power $P \quad=E_{R M a} I_{R M a} \cos \theta$

Power Factor $\cos \theta \quad=P /(E I)$
= wattmeter/(voltmeter x ammeter)
Example: A wattmeter measures AC power in a load as 100 watts, an ammeter measures circuit current as 1.5 A and a voltmeter measures circuit voltage as 100 V .
Calculate:
a) power factor of the load
b) phase angle between circuit current and voltage.

Solution:

a) Power
$=$ ERMSIRMS $\cos \theta$
Power factor $\cos \theta=P /(E x I)$
$=100 /(100 \times 1.5)$
$=0.667$ (leading or lagging ??)
b) phase angle $\left.\theta=\cos ^{-1}\right) 0.667$
$=48,2^{\circ}$ (leading or lagging ??)
Note: From the information given, we do not know whether the circuit

Page 1 of 10
 THREE PHASE POWER

The total power consumed by a three phase load is:
Ptotal $=$ Sum of individual phase powers.
$=\mathrm{P}_{\text {Aplase }}+\mathrm{P}_{\text {Bphaso }}+\mathrm{P}_{\text {Cphse }}$
Single phase power $=$ ExIxcos θ
where $\mathrm{E}=$ applied mms voltage (load voltage)
$\mathrm{I}=\mathrm{mms}$ load current
$\theta=$ angle of phase difference between E and I .
The power consumed by individual phases of a three phase load are:

$$
\mathrm{P}_{\text {ptaso }} \quad=\mathrm{E}_{\text {phase }} \times \mathrm{I}_{\text {phase }} x \cos \theta
$$

Total Power in Balanced Three Phase Loads

The power in each phase of a balanced load will be the same.
$P_{\text {TOTAL }}=3 x$ (Power in one phase)
$=3 \times E_{\text {phase }} I_{\text {phase }} \cos \theta$
but in a three phase system:
Balanced Star connected load: $\quad \mathrm{E}_{\text {phase }}=\quad \underset{\sqrt{3}}{\mathrm{E}_{\text {line }}}$ and $\mathrm{I}_{\text {phase }}=$ Ilius
Replacing the phase values with line values in the equation above:

$$
\text { ProtAL }=\sqrt{3} \mathrm{E}_{\text {line }} l_{\text {line }} \cos 0 \quad \text { watts }
$$

Balanced Delta connected load:

$$
\mathrm{E}_{\text {plase }}=\mathrm{E}_{\text {line }} \quad \text { and } \quad \mathrm{I}_{\text {plase }}=\frac{\mathrm{I}_{\text {lues }}}{\sqrt{3}}
$$

PTOTAL $=\sqrt{3} E_{\text {lipo }} l_{\text {line }} \cos \theta \quad$ watts
This is the same equation for both balanced star and delta connected loads.

Apparent and Reactive Power in Balanced Loads

Equations for apparent and reactive power, are derived from the single phase equations.
Three phase Apparent Power $=\sqrt{3} \mathrm{E}_{\text {liwe }} \mathrm{I}_{\text {line }}$ VA
Three phase Reactive Power $=\sqrt{3} \mathrm{E}_{\text {linoo }} \mathrm{I}_{\text {lino }} \sin \theta$ Vars

Calculate the apparent power, real power and reactive power consumed by a balanced three phase delta connected load with an impedance of $10+j 0 \Omega$ in each phase and supplied by a 200 V ms line-line source.

Solution:

Current in each phased $=\frac{E_{\text {phab }}}{Z_{\text {pasaed }}}$

Since load is purely resistive there will be no vars generated or consumed in the load.
Reactive Power ; $=0 \mathrm{~s}$ Vars

Power in Unbalanced Three Phase Loads

Total power in an unbalanced three phase load can be determined by calculating each individual phase power, and adding the three phase powers to obtain total three phase power.

Example:

An unbalanced three phase star connected load has impedances of $Z_{A}=10+j 0 \Omega$, $Z_{B}=3+j 4 \Omega$ and $Z_{C}=0-j 5 \Omega$.
The load is supplied by a three phase, four wire source with line-line voltages of 346 V rms.
Calculate the total apparent power, real power and reactive power consumed by the load.

Solution:

$E_{\text {phase }}=\frac{\mathrm{E}_{\text {line }}}{\sqrt{3}}=\frac{346}{\sqrt{3}}=200 \mathrm{~V}$ rms

Assume E_{AN} is reference quantity $\quad\left(\mathrm{E}_{\mathrm{AN}}=200 / 0^{\circ} \mathrm{V}\right)$
Phase A

Line Current I_{A}	$=\frac{E_{\mathcal{A N}} \text { Arms }}{Z_{A}}$
	$=\frac{200 / 0^{\circ}}{10 / 0^{\circ}}$
	$=20 / 0^{\circ}$ Arms

Complex Apparent Power S_{A}	$=\mathrm{ExI}^{*}$	VA		
	$=$	$200 / 0^{\circ} \times 20 / \underline{0^{\circ}} \mathrm{VA}$		
	$=4000 / 0^{\circ}$	VA		
	$=4000+\mathrm{j} 0$	VA		
Real power		4000	W	
Reactive power	$=$	0	Vars	

Phase B

Line Current I_{B}	$=\frac{E_{B y}}{Z_{B}}$ Arms
	$=\frac{200 /-120^{\circ}}{5 / 53.1^{\circ}}$
	$=40 /-173.1^{\circ}$ Arms
Complex Apparent Power S_{B}	$=$ ExI * VA
	$=200 /\left(-120^{\circ} \times 40 /+173.1^{\circ}\right.$

VA

F66		Page 4 of 10				
		*	$4800+$	j6400	VA	
Real power		$=$	4800	W		
Reactive power		$=$	6400	Vars (indu	tive)	
Phase C Line Current $\mathrm{I}_{C}=-\frac{\mathrm{E}_{C N}}{\mathrm{ZCC}_{C}}$ Arms						
	$=\frac{200 /+120^{\circ}}{5\left(-90^{\circ}\right.}$					
	$=$	$40 \underline{+210^{\circ}}$		Arms		
Complex Apparent Power	S_{c}	ExI* VA				
		$=200+120^{\circ} \times 40-210^{\circ} \mathrm{VA}$				
		$=$	8000/-9		VA	
		\#	0-j80		VA	
Real power		0 W				
Reactive power		$=8000$ Vars (capacitive)				
Total Three Phase Apparent Power		$\mathrm{S}_{\mathrm{A}}+\mathrm{S}_{\mathrm{B}}+\mathrm{S}_{\mathrm{C}} \quad \mathrm{VA}$				
		$(4000+j 0)+(4800+j 6400)+(0-j 8000)$				
		8800-j1600 VA				
		$=$	8944/-	-10.30 VA		(8.94kVA)
Total Three Phase Real Power ${ }^{\text {' }}$		$=$	$\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}$		Watts	
		$=4000+4800+0$				
		$=$	8800W	$W \quad(8.8 \mathrm{k}$		
Total Three Phase Reactive Power		$=$	$\mathrm{Q}_{\mathrm{A}}+\mathrm{Q}_{\mathrm{B}}+\mathrm{Q}_{\mathrm{C}}$, Vars			
		$=0+j 6400-\mathrm{j} 8000$				
		$=$	1600 V	Vars (cap	citive)	(1.6kVar)

Measurement of Three Phase Power using Wattmeter

Using One Wattmeter

Power in balanced three phase loads can be measured using only one wattmeter.
Refer to FIG 1 which shows one wattmeter connected to measure power in a balanced three phase star connected load.

FIG 1
Notes: The wattmeter current coil is a measuring line current, and the voltage coil is measuring a line-ncutral voltage.
The wattmeter reads $\mathrm{E}_{\text {phase }} \mathrm{I}_{\text {phase }} \cos \theta$ which is the real power in one phase only. Total three phase power is $3 \times$ (Wattmeter reading)

Refer to FIG 2 which shows one wattmeter connected to measure power in a balanced three phase delta connected load.

$$
\begin{aligned}
& \text { Artificial } \\
& \text { stor point }
\end{aligned}
$$

$$
F 60
$$

Notes: The three resistors produce an artificial neutral point.
The watmeter current coil is measuring a line current, and the voltage coil is measuring a line-neutral voltage.
The wattmeter reads $\mathrm{E}_{\text {ptas }} \mathrm{I}_{\mathrm{inmx}} \cos \theta$ which is equivalent to $\sqrt{3}$ times the real power in one phase only.
Total three phase power is $\sqrt{ } 3 x$ (Wattmeter reading)

Two Wattmeter Method of Measuring Three Phase Power

Refer to FIG 3 which shows the standard arrangement of two wattmeters connected in a three phase circuit.

BOCIR35

FIG 3

Example:

Refer to the phasor diagram of FIG 4 which shows the conditions in a balanced three phase load, having an impedance angle of 30° lagging.

3PHASPWR.docuvol2

Notes:

Wattmeter 1 where $\varphi_{1}=(30$	measures $E_{A B} I_{A} \cos \varphi_{1}$ and $\theta=$ angle of lag of I_{A} wrt $\mathrm{EAN}_{\mathrm{AN}}$
	and $\theta=$ angle of lag of I_{C} wrt E_{CN}.

In this example, $\theta=30^{\circ}$, and $\varphi_{1}=60^{\circ}$ and $\varphi_{2}=0^{\circ}$.

Sum of Wattmeter Readings

Reading on $\mathrm{W}_{\mathrm{t}}=\mathrm{E}_{\text {linve }} \mathrm{l}_{\text {line }} \cos (30+\theta)$

Reading on $W_{2}=E_{\text {lise }} l_{\text {line }} \cos (30-\theta)$
$=\mathrm{E}_{\text {lisex }} \mathrm{I}_{\text {linut }}(\cos 30 \cos \theta+\sin 30 \sin \theta)$
$\mathrm{W}_{1}+\mathrm{W}_{2}=\mathrm{E}_{\text {line }} \mathrm{I}_{\text {line }}(\cos 30 \cos \theta-\sin 30 \sin \theta)+\mathrm{E}_{\text {line }} \mathrm{I}_{\text {lino }}(\cos 30 \cos \theta+\sin 30 \sin \theta)$
$=\mathrm{E}_{\text {linct }} \mathrm{I}$ 位 $(2 \cos 30 \cos \theta)$
but $\cos 30^{\circ}=\sqrt{3} / 2$
$W_{1}+W_{2}=\sqrt{3} E_{\text {lino }}$ Inine $\cos \theta$ (three phase power in balanced load)
Therefore the sum of the two wattmeter readings is equal to the total three phase power.
Notes: As the phase angle of the line currents changes, the readings on the two wattmeters will also change.
If the load power factor angle is greater than $60^{\circ} \mathrm{lag}$, then the reading on W_{1} will become negative, since the angle between E_{AB} and I_{A} is $>90^{\circ}$.
If the load power factor angle is greater than 60° lead, then the reading on W_{2} will become negative, since the angle between $E_{C B}$ and I_{C} is $>90^{\circ}$.
If the load power factor angle is equal to 60° lag, then the reading on $W_{1}=0$.
If the load power factor angle is equal to 60° lead, then the reading on $W_{2}=0$.
If the load power factor angle is equal to 0° (purely resistive load), then $\mathrm{W}_{1}=\mathrm{W}_{2}$.
It can be shown that the sum of the two wattmeter readings will be equal to the total three phase power consumed by either star or delta connected three phase loads whether they are balanced or unbalanced,

Page 8 of 10
Difference of Two Wattmeter Readings in a Balanced Load $\left(\mathbf{W}_{2}-\mathbf{W}_{1}\right)$
$\mathrm{W}_{2}-\mathrm{W}_{1} \quad=\mathrm{E}_{\text {line }} \mathrm{I}_{\text {line }}(\cos 30 \cos \theta+\sin 30 \sin \theta) \quad-\mathrm{E}_{\text {line }} \mathrm{I}_{\text {line }}(\cos 30 \cos \theta-\sin 30 \sin \theta)$

$$
=2 \mathrm{E}_{\text {lirex }} \mathrm{l}_{\mathrm{linx}} \sin 30 \sin \theta
$$

$$
=\mathrm{E}_{\text {line }} \mathrm{I}_{\mathrm{linx}} \sin \theta
$$

If $W_{2}-W_{1}$ is multiplied by $\sqrt{ } 3$:
$\sqrt{ } 3\left(W_{2}-W_{1}\right)=\sqrt{3} E_{\text {lines }} \mathrm{I}_{\text {line }} \sin \theta \quad$ (Three phase reactive power)

Calculation of Power Factor from Wattmeter Readings

Note: Method only valid for balanced loads.

Since Watts	$=W_{1}+W_{2}$
and Vars	$=\sqrt{3}\left(W_{2}-W_{1}\right)$
Then Tane	$=\frac{\text { Vars }}{\text { Watts }}$
	$=\frac{\sqrt{3}\left(W_{2}-W_{1}\right)}{}$
	$\left(W_{1}+W_{2}\right)$

Power Factor $=\cos 0$.
Note: The solution to this calculation does not indicate whether the load power factor is leading or lagging.
Inspection of the sign and relative values of W_{1} and W_{2} may show whether the load is leading or lagging.

Effect of Reverse Phase Sequence on Wattmeter Readings)

If the phase sequence of the supply voltages is reversed, then the two wattmeter readings W_{1} and W_{2} will change, but the total apparent power, real power and reactive power in the load will not change.

Example: Refer to FIG 5 which shows an unbalanced delta connected load supplied by a three phase 200 Vrms line-line set of voltages, with phase sequence A-B-C.
Calculate:
a) all line currents in polar form,
b) the readings on two wattmeters connected in standard way (W_{1} reads I_{A} and $\mathrm{E}_{\mathrm{AB}}, \mathrm{W}_{2}$ reads I_{C} and E_{CB}),
c) total real power consumed by the load using the wattmeter readings,
d) check the answer in c) using another method,
e) total reactive power in the load.

FIG 5

Solution:
a) Use voltage E_{AB} as reference

$$
\begin{aligned}
\text { Phase current } \mathrm{I}_{\mathrm{AB}} & =\frac{E_{A B}}{Z_{A B}} \\
& =\frac{200 / 0^{\circ}}{70.7 / 45^{\circ}} \\
& =2.83 /-45^{\circ} \text { Arms } \\
& =2-\mathrm{j} 2 \mathrm{Arms}
\end{aligned}
$$

Phase current $I_{B C}=\frac{E_{B C}}{Z_{B C}} \quad$ Giattmeter $1=\left|E_{A B}\right||\operatorname{Ac}| \cos 19.9^{\circ}$
$=200 /-120^{\circ}$ 30/ 0°
$=6.67 /-120^{\circ} \mathrm{Arms}$
$=\quad \quad-3.34-\mathrm{j} 5.78$ Arms
Phase current $\mathrm{I}_{\mathrm{CA}}=\frac{\mathrm{E}_{C A}}{\mathrm{Z}_{\mathrm{CA}}}$
$=\frac{200 /+120^{\circ}}{14.14 /-45^{\circ}}$
$=14.14 / 165^{\circ} \mathrm{Arms}$
$=\quad-13.66+\mathrm{j} 3.66 \mathrm{Arms}$
Line Current $I_{A}=I_{A B}-I_{C A}($
$=(2-\mathrm{j} 2)-(-13.66+\mathrm{j} 3.66)$
$=\quad 15.66-\mathrm{j} 5.66 \mathrm{Arms}$

	$=$	16.65/-19.9* Arms
Line Current $\mathrm{I}_{\text {B }}$	$=$	$\mathrm{I}_{\mathrm{BC}}-\mathrm{I}_{\mathrm{AB}}$
	$=$	$(-3.34-\mathrm{j} 5.78)-(2-\mathrm{j} 2)$
	$=$	-5.34-j3.78
	$=$	6.54-144.7* Arms
Line Current $\mathrm{IC}_{\text {c }}$	-	
	$=$	$(-13.66+\mathrm{j} 3.66)-(-3.34-\mathrm{j} 5.78)$
	=	$-10.32+j 9.44$
	=	14/137.6 ${ }^{\circ}$ Arms
Wattmeter 1 reads	$=$	$\mathrm{E}_{A B} \times \mathrm{I}_{A} \times \cos \varphi_{1}$
	=	200/0 $0^{\circ} \times 16.65 /-19.9{ }^{*} \times \cos 19.9{ }^{*}$
	$=$	+3131 Watts
Wattmeter 2 reads	=	$\mathrm{E}_{\mathrm{CH}} \mathrm{II}_{\mathrm{C}} \mathrm{xcos} \varphi_{2}$
	$=$	$200 / 60^{\circ} \times 14 / 137.6^{\circ} \times \cos 77.6^{\circ}$
	-	+601 Watts
Total Real Power	$=$	$\mathrm{W}_{1}+\mathrm{W}_{2}$
	$=$	$3131+601$
	$=$	3732 Watts
Total Real power		$\mathrm{I}_{A B}{ }^{2} \mathrm{R}_{A B}+\mathrm{I}_{B C}{ }^{2} \mathrm{R}_{B C}+\mathrm{I}_{C A}{ }^{2} \mathrm{R}_{C A}$
		$2.83^{2} \times 50+6.67^{2} \times 30+14.14^{2} \times 10$
		$400+1335+2000$
		3735 Watts check OK
Total Reactive Power		$\mathrm{I}_{A B}{ }^{2} \mathrm{X}_{A B}+\mathrm{I}_{\mathrm{BC}}{ }^{2} \mathrm{X}_{B C}+\mathrm{I}_{C A}{ }^{2} \mathrm{X}_{C A}$
	$=$	$2.83^{2} \times j 50+6.67^{2} \times 0+14.14^{2} \mathrm{x}-\mathrm{j} 10$
	$=$	$400+0-2000$
	$=$	-1600 Vars (capacitive)

POWER FACTOR CORRECTION

Most industrial loads consist of inductive loads (motors, induction heating etc), which result in lagging supply currents and lagging power factors.

The supply current must transmit both real power (WATTS) and reactive power (VARS) for the inductive load.

However, electrical energy is sold as kilowatt-hours (real power component).
To make the power supply system more efficient, we would like to supply only the real power in watts.

Why??

$\overline{\text { Refer to the phasor diagram in FIG 1, showing the phase relationship between voltage and current }}$ in an inductive load.

A lagging inductive load will require current I to transmit the WATTS and the VARS to the load.
However, only the in-phase component Icoseys required to transmit the WATTS component, and I $\cos \theta$ is less than the value of I .

If we could avoid having to supply the VARS from the source, then the total load current would be less.

Power losses occur in the power supply lines and equipment caused by $I^{2} R$.
The power system losses would be lower if we reduced the level of current flowing through the supply system and this would increase the efficiency of power transmission.

Power factor is cosine of the angle θ between V and I, so if θ could be reduced to 0°, then the power factor would be $\cos 0^{\circ}=1$ (UNITY), which is the maximum value.

Power factor correction is the connection of a suitable reactance in parallel with a reactive load, so that the reactive power (VARS) requirement of the load will be satisfied locally and a minimum of reactive power (VARS) will have to be supplied by the source.

PFTRCORR.docuvol2

Normally power factor correction is carried out on inductive loads by connecting suitable capacitors in parallel with inductive loads.

However, it is possible to correct power factor of a highly capacitive load by connecting in parallel, a suitable inductor.

Beside static capacitors, synchronous motors are very useful for power factor correction, as their excitation can be varied so that they can be made to look cither inductive or capacitive.

The power factor correction is best applied at the location of the load.
Industrial consumers are encouraged to correct the power factor of their installation themselves or else pay a penalty with their power charges.

Penalties for having Low (Peer) Power Factor

Power supply authorities charge industrial consumers two rates for power consumption.
In addition to energy consumed in kilowatt-hours, an extra charge is made for maximum demand in kVA (apparent power).

This means that if the installation has highly inductive loads which draw excessive reactive power then the total apparent power value will be high and an extra charge will be made.

However, if the consumer corrects the power factor, then the total apparent power taken from the supply will be less and the power bill will be less.

FIG 2 shows how a power factor correcting component is connected in parallel with the load.

PFTRCORR.docuvol2

Notes: When the power factor correcting component is added to the circuit, the real power (WATTS) supplied by the source will remain the same, but the reactive power (VARS) supplied by the source will be reduced to the required value for the new value of power factor.

Power factor is not always corrected exactly to unity, as this will only satisfy one value of load impedance and usually loads are varying continually as plant and equipment is switched on and off, so power factor is usually corrected to just slightly lagging. (0.95-1)

Example: A load of 5 kVA at 0.6 power factor lagging, is connected to a 250 V rms 50 Hz supply.
Calculate the value of the additional component that must be connected in parallel with the load, to increase the total power factor to unity.

Solution:

Firstly draw a circuit diagram as shown in FIG 3.

As the load is inductive, a capacitor must be used as a power factor correction component.
We must first solve the power triangle for the load.

$$
\begin{aligned}
\text { Apparent power ExI } & =5 \mathrm{kVA} . \\
\text { Power factor } \cos \theta & =0.6 \\
\theta & =\cos ^{-1} 0.6=53.1^{\circ} \text { lagging } \\
\text { Real power watts } & =\text { EIcos } \theta=5 \times 10^{-3} \times 0.6=3 \mathrm{~kW} \\
X_{C} \text { Reactive Power } & =\text { EIsin } \theta=5 \times 10^{-3} \times 0.8=4 \mathrm{kVAR} \text { (inductive) }
\end{aligned}
$$

To correct the power factor to unity $\left(\theta=0^{\circ}\right)$, we must connect a capacitor in parallel with the load so that it will supply 4 kVAR of capacitive reactive power.

Reactive power from Capacitor $\mathrm{E}^{2} / \mathrm{X}_{\mathrm{C}}$

$$
=E^{2} / Q_{C}
$$

$$
=\quad(250 \times 250) /\left(4 \times 10^{3}\right)
$$

$$
=15.63 \Omega
$$

Capacitance C

$$
=1 /\left(\omega x_{c}\right)
$$

$=\quad 1 /(2 \pi \times 50 \times 15.63)$
$=\quad 203.6 \mu \mathrm{~F}$
Example: The current taken by a load connected to a 220 V rms 100 Hz supply, is measured as 4 A rms with a power factor of 0.69 lagging. Calculate the parallel capacitance required to correct the total power factor to 0.97 lagging.
Draw the new power triangle for the circuit if the power factor is corrected to 0.97 lagging.

Solution:
Firstly, draw a circuit diagram as shown in FIG 4.

PFTRCORR.docuvol2

Apparent Power S	$=\mathrm{E}_{\text {RMS }} \mathrm{I}_{\text {RMS }}$ VA
	$=220 \times 4$
	$=880 \mathrm{VA}$
Reactive Power Q	$=\mathrm{E}_{\text {RMS }} \mathrm{I}_{\text {RMS }} \sin \theta$ VARS
	$=220 \times 4 \times 0.72$
	$=636.9$ VARS

Draw power triangle as shown in FIG 5 .

FIG5
When the power factor is corrected, the real power in WATTS will remain the same (607.2 watts) but the reactive power (VARS) will be reluced.

If the power factor is corrected to 0.97 lagging then:

θ	$=\cos ^{-1} 0.97$
	$=14.1^{\circ}$ lagging
Tan θ	$=$ VARS/WATTS
VARS	$=$ WATTS \times Tan14.1 ${ }^{\circ}$
	$=607.2 \times 0.251$
	$=152.5$ VARS

The old requirement for vars was 636.9 VARS and the new requirement for VARS is 152.5
VARS.
PFTRCORR docuvol2

The parallel connected capacitor must produce:

$\mathrm{Q}_{\mathrm{CAP}}$	$=636.9-152.5 \mathrm{VARS}$
	$=484.4 \mathrm{VARS}$
Q_{C}	$=\mathrm{E}_{\mathrm{RMS}}{ }^{2} / \mathrm{X}_{\mathrm{C}}$
X_{C}	$=\mathrm{E}_{\mathrm{RMS}^{2}}{ }^{2} / \mathrm{Q}_{\mathrm{C}}$
	$=220 \times 220 / 484.4$
	$=100 \Omega$
	$=1 / 0 \mathrm{X}_{\mathrm{C}}$
	$=1 / 2 \pi \times 100 \times 100$
Capacitance C	$=15.92 \mu \mathrm{~F}$
	$=\mathrm{E}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}}$
	$=\sqrt{\left(\mathrm{P}^{2}+\mathrm{Q}^{2}\right)}$
Apparent Power S	
Also Apparent Power S	$=\sqrt{\left(607.2^{2}+152.5^{2}\right)}$
	$=626.1 / 14.1^{\circ} \mathrm{VA}$

Overall power triangle is as shown in FIG 6.

$$
\begin{aligned}
& I=\frac{V A}{V} \\
& =\frac{626.1}{220} \\
& =2.85 \mathrm{~A}
\end{aligned}
$$

FIG 6

HIGH VOLTAGE TRANSMISSION LINE LOSSES

If the electrical parameters (resistance, inductance, capacitance) of a transmission line are known, then the performance of the line under various operating conditions can be determined.

To determine such things as receiving end voltage under load or no load, voltage drop along the line or line charging current, a Transmission Line Equivalent Circuit must be drawn.

Short Line Equivalent Circuit
Any line less than $80-100 \mathrm{kM}$ in length, is usually described as a "Short" line.
The capacitive effect of the short line can be neglected except when the line is unloaded.
Refer to FIG 1 which shows the single phase equivalent circuit of a short line with a source voltage and load impedance connected.

$\frac{\text { FIG 1 }}{5}$
The equivalent circuit is a single phase representation, and all calculations use phase values.
Refer to FIG 2 which shows the phasor diagram for the equivalent circuit of FIG 1.

Tlinloss/udrivevol7

$$
\begin{equation*}
2-12 \tag{21}
\end{equation*}
$$

Quantities shown in the phasor diagram are:
$\mathrm{I}=$ load current
$\mathrm{E}_{\mathrm{K}} \quad$ load or receiving end voltage
$\mathrm{E}_{\mathrm{S}}=$ supply or sending end voltage
IR $=\quad$ voltage drop across line resistance R
$\mathrm{IX}=$ voltage drop across line inductive reactance X_{L}.
$I Z=$ voltage drop across line impedance
$\theta=$ load power factor angle
$\varphi \quad=\quad$ line impedance angle
$\delta=$ "load" angle (phase shift along the line)
Depending on the magnitude of the voltage drop along the line, there will be a difference between E_{s} and E_{R} in both magnitude and angle.

Example: A transmission line is 100 kM long and has the following parameters.

Calculate the sending end voltage, current and power factor when the line is delivering 15 MW at a power factor of 0.8 pf lagging.

Solution: Perform calculations on a per phase basis, and neglect the effect of line capacitance.

Load Voltage \quad| E_{R} | $=\frac{66}{\sqrt{3}} \mathrm{kV}$ |
| ---: | :--- |
| | $=38.1 / 0^{\circ} \mathrm{kV}$ (reference phase voltage) |
| | $=38100+\mathrm{j} 0$ volts |
| Line Current $\quad \mathrm{I}_{\mathrm{L}}$ | $=\frac{3 \text { phase power }}{\sqrt{3} \times \mathrm{E}_{\text {L.NE }} \times \cos \theta}$ |
| | $=\frac{15 \times 10^{6}}{\sqrt{3} \times 66 \times 10^{3} \times 0.8}$ |
| | $=164 /-36.8^{\circ} \mathrm{A}$ |

$$
\begin{aligned}
& \text { 3-12 } \\
& \text { Line Impedance } \quad Z_{L}=100(0.25+j 0.8) \\
& =\quad 25+j 80 \Omega \\
& =83.8 / 72.6^{\circ} \Omega
\end{aligned}
$$

Draw single phase equivalent circuit as shown in FIG 3

FIG 3

Voltage Drop along the line	$=I_{L} \times Z_{L}$
	$=164 / \underline{36.8^{\circ}} \times 83.8 / 72.6^{\circ}$ volts
	$=13743 / 35.8^{\circ}$ volts
	$=11146+j 8039$ volts
	$=E_{R}+\mathrm{E}_{\mathrm{LINE}}$
	$=(38100+\mathrm{j} 0)+(11146+\mathrm{j} 8039)$
Sending End Voltage E_{S}	$=49426+\mathrm{j} 8039$
	$=49898 / 9.3^{\circ}$ volts
Sending End power factor	$=\cos \left(36.8^{\circ}+9.3^{\circ}\right)$
	$=\cos 46.1^{\circ}$ lag
	$=0.69$ lagging

Notes: \quad There is a phase shift of 9.3° between E_{s} and E_{R} along the line.
The sending end power factor is worse than the load power factor due to the line impedance.

$$
4-12
$$

Locus Diagram of E_{2} for the Short Line

A locus diagram shows how a phasor quantity of voltage or current will vary when other conditions in the circuit are changed.

On a high voltage power system transmission line, the variable conditions are usually load current and load power factor.
The load voltage must be kept within strict limits, so that any voltage drop along the line must be compensated for by increasing the sending end voltage.

Sending end conditions will also vary, if power factor correcting components are installed at the load end of the line.

Refer to FIG 4 which shows the locus of sending end voltage E_{s} with constant load voltage E_{R}, constant load current and variable load power factor.

FIG 4
Note: As load power factor changes, sending end voltage ES will change, and so too will the load angle 8 .

Long Line Equivalent Circuit

For long line analysis, the capacitance of the line must be included in calculations.
The line capacitance is connected across the line.

$$
\begin{equation*}
5-12 \tag{84}
\end{equation*}
$$

There are several ways that the equivalent circuit may be drawn.
a) Nominal π Method half of the total line capacitance at each end of the line, with total line impedance between,
b) Nominal T Method half of the total line impedance at each end with all the line capacitance in between.
c) Lumped Capacitance Method lump the total line capacitance at the load end of the line,

Nominal π Method

Refer to FIG 5 which shows the equivalent circuit where line capacitance is divided between the load and the supply end of the line.

FIG 5

Note: \quad The total capacitive susceptance $\mathrm{Y}_{\text {TOTAL }}$ is split into two components $\left(\mathrm{Y}_{\mathrm{T}} / 2\right)$, one connected at each end of the line.
Re-calculating the previous example using the Nominal π Method.
Draw the Nominal π equivalent circuit as shown in FIG 6 .

FIG 6

Tlinloss'udrivevol?

$$
\begin{equation*}
6-12 \tag{185}
\end{equation*}
$$

‘asc -
Load Voltage E
$=66 \mathrm{kV}$ $\sqrt{3}$
$=\quad 38.1 / 0^{\circ} \mathrm{kV}$ (reference phase voltage)
$=38100+j 0$ volts
Load Current $\mathrm{I}_{\text {LOAD }}$
$=3$ phase power
$\sqrt{3} \mathrm{xE}_{\text {LINE }} \mathrm{x} \cos \theta$
$=\frac{15 \times 10^{6}}{\sqrt{3} \times 66 \times 10^{3} \times 0.8}$
$=164 / 36.8^{\circ} \mathrm{A}$

Capacitor Current $\mathrm{I}_{\mathrm{Cl}}=\mathrm{E}_{\mathrm{S}} \times \mathrm{Y} / 2$
$=48900 / 9.8^{\circ} \times 350 \times 10^{-6} / 90^{\circ}$
$=\quad 17.12 / 99.8^{\circ}$
$=\quad-2.9+\mathrm{j} 16.87 \mathrm{~A}$
Sending End Current $\mathrm{I}_{\mathrm{s}}=\mathrm{I}_{\mathrm{Cl}}+\mathrm{I}_{\text {LINE }}$
$=\quad(-2.9+\mathrm{j} 16.87)+(131.3-\mathrm{j} 84.9)$
128.4 - j68
$=\quad 145.3 /-27.9^{\circ} \mathrm{A}$
Sending End Power Factor $=\cos (27.9+9.8)$
$=\quad \cos 37.7^{\circ}$
$=0.791$ lagging

Notes: These results are more accurate than the first method used, where line capacitance was not considered.
The sending end current is less than the load current due to the small power factor correction effect of the line capacitance.

Nominal T Method

Refer to FIG 7 which shows the equivalent circuit where line impedance is divided between the load and the supply end of the line, and the line capacitance is lumped between the two impedances.

FIG 7

Tlinloss/udrivevol7

$$
\begin{equation*}
8-12 \tag{87}
\end{equation*}
$$

Note: \quad The total line impedance $\mathrm{Z}_{\text {Totat }}$ is split into two components $\left(\mathrm{Z}_{\mathrm{T}} / 2\right)$, one connected at each end of the line.

In a similar way to the Nominal π method, line current and sending end voltage can be calculated.

Lumped Capacitance. Method

Refer to FIG 8 which shows the equivalent circuit where the line capacitance is lumped at the receiving end of the line.

FIG 8

In a similar way to the Nominal π method and the Nominal T method, line current and sending end voltage can be calculated.

Effect of Power Factor Correction on Line Conditions

If a power factor correction capacitor is connected across the load, the load VARS will be supplied locally and will not need to be transmitted along the line from the source.

Example: A transmission line is delivering 15MW at a power factor of 0.8pf lagging and line voltage of 66 kV .
The line impedance is $25+\mathrm{j} 80 \Omega$ and the effect of line capacitance is neglected. Power factor correcting capacitors are connected across the load so that the overall power factor is corrected to unity.
Calculate the value of the power factor correcting capacitor, the resulting sending end voltage and current.

Solution:
Draw simplified single phase equivalent circuit as shown in FIG 9.
131.3-j98:2A

$$
\begin{aligned}
\text { Load Voltage } E_{R} & =\frac{66}{\sqrt{3}} \mathrm{kV} \\
& =38.1 / 0^{\circ} \mathrm{kV} \text { (reference phase voltage) } \\
& =38100+j 0 \text { volts } \\
\text { Line Impedance } Z_{L} & =25+j 80 \Omega \\
& =\frac{83.8 / 72.6^{\circ} \Omega}{\sqrt{3} \times E_{\text {LINE }} \times \cos \theta} \\
\text { Load Current } I_{\text {LOAD }} & =\frac{3 \text { phase power }}{\sqrt{3} \times 10^{6}} \\
& =164 /-36.8^{\circ} \mathrm{A} \\
& =131.3-j 98.2 \mathrm{~A}
\end{aligned}
$$

To correct the power factor of the load to unity, the power factor correcting capacitor must supply $(0+j 98.2 \mathrm{~A})$ of capacitive current
Line Current $I_{\text {LIE }}$
$=\quad 131.3+\mathrm{j} 0 \mathrm{~A}$
(after correction)
$=131.3 / 0^{\circ} \mathrm{A}$

$$
\begin{aligned}
& 10-12 \\
& \text { Reactance of Capacitor } \quad X_{C}=E_{R} / I_{C} \\
& =\quad 38.1 \times 10^{3} \\
& 98.2 \\
& =-j 388 \Omega \\
& \text { Capacitance } \mathrm{C}=1 / \omega \mathrm{X}_{\mathrm{C}} \\
& =\quad 1 \\
& 2 \pi \times 50 \times 388 \\
& =\quad 8.2 \mu \mathrm{~F} \text { per phase } \\
& \text { Voltage Drop along the line }=\mathrm{I}_{\mathrm{L}} \times \mathrm{Z}_{\mathrm{L}} \\
& =131.3 / 0^{\circ} \times 83.8 / 72.6^{\circ} \text { volts } \\
& =11003 / 72.6^{\circ} \text { volts } \\
& =3290+\mathrm{j} 10500 \text { volts } \\
& \text { Sending End Voltage } \quad \mathrm{E}_{\mathrm{S}}=\mathrm{E}_{\mathrm{R}}+\mathrm{E}_{\mathrm{LNI}} \\
& =(38100+\mathrm{j} 0)+(3290+\mathrm{j} 10500) \\
& =\quad 41390+\mathrm{j} 10500 \\
& =42701 / 14.2^{\circ} \text { volts } \\
& \text { Sending End power factor } \\
& =\quad \cos \left(0^{\circ}+14.2^{\circ}\right) \\
& =\quad \cos 14.2^{\circ} \text { lag } \\
& =0.97 \text { lagging } \\
& \text { Notes: } \quad \text { There is a phase shift of } 14.2^{\circ} \text { between } \mathrm{E}_{\mathrm{s}} \text { and } \mathrm{E}_{\mathrm{R}} \text { along the line. } \\
& \text { The sending end power factor is better than the load power factor due to the power } \\
& \text { factor correction. } \\
& \text { The line current has been decreased by power factor correction. }
\end{aligned}
$$

$$
11-12
$$

Voltage Rise Along an Unloaded Transmission Line

An energised but unloadel transmission line draws capacitive "charging" current through its line capacitance, and a long line may draw several hundred amps of charging current.

The leading capacitive currents passing through the series inductive reactance of the line, may cause a voltage rise along the line, so that the receiving end voltage is larger than the sending end voltage.

This "negative voltage regulation" is known as the "Ferranti Effect", and in some cases the receiving end voltage may exceed the sending end voltage by as much as 50%.

The overvoltage is undesirable, as it places excessive stress on the insulation of HV equipment.
The Ferranti Effect is also seen on lightly loaded transmission lines and cables, whose capacitance is even greater than that of overhead lincs.

The overvoltage eflect is minimised by connecting in circuit, shunt reactors, which consume some of the excessive capacitive VARS generated by the line or cable.

Example: A 132 kV 50 Hz three phase transmission line, is encrgised at the sending end but is not loaded, has phase impedance of $10+\mathrm{j} 120 \Omega 2$ and the line charging current is 90 A . Calculate the receiving end voltage if the sending end voltage is fixed at 132 kV .
Solution:
Use the simplified single phase equivalent eircuit where the capacitance is lumped at the receiving end of the line.
Neglect the line resistance because it is less than 0.1 of the value of X_{L}.
Draw the equivalent circuit as shown in FIG 10 .

Tlinloss/udrivevol7

Linc Voltage Drop	$=I_{L} \times X_{L}$
	$=(0+j 90)(0+j 120)$
$V_{\text {LNE }}$	$=108004180^{\circ} \mathrm{V}$
Recciving End Voltage E_{R}	$=\mathrm{E}_{\text {SFND }}-\mathrm{V}_{\mathrm{LNE}}$
	$=76100 / 0^{\circ}-10800 / 180^{\circ}$
	$=86700 / 0^{\circ} \mathrm{V}$

Thus there has been a voltage rise along the unloaded line, so that the receiving end voltage is a 14% higher than the sending end voltage.

SYMMETRICAL COMPONENTS

Balanced Three Phase System

Voltages: \quad All voltages (line and phase) are equal and are displaced by 120°.
Currents: \quad All line currents are equal and displaced by 120°.

Unbalanced (Assymetrical) Three Phase System

A three Phase system is unbalanced when the three phase currents and/or voltages are not equal in magnitude or not displaced by 120°

Unbalance can occur due to:
a) unbalanced loading of phases,
b) short circuit (fault) conditions,
c) partial short circuit (fault) conditions, not a zero ohm fault, e.g. arching faults hove she
form of resistance.
d) open circuit phase or windings.

FIG 1 shows examples of unbalanced three phase voltages.

FIG 1

Vector Operators

The "j" Operator
The " j " operator is a vector operator which rotates a vector (phasor) by 90° anti-clockwise, and is equal to $1 / 90^{\circ}$ (-1).
It is used to represent complex numbers and each successive multiplication by " j " will rotate the vector by 90° anti-clockwise.

$$
j=1 / 90^{\circ} \quad j^{2}=1 / 180^{\circ} \quad j^{3}=1 / 270^{\circ} \quad j^{4}=1 / 360^{\circ}=1 / 0^{\circ}
$$

Symmcomp1.wpsuvol1

The "a" Operator

The "a" operator is a vector operator which rotates a vector (phasor) by 120° anti-clockwise, and is equal to $1 / 120^{\circ}$.
It is used specifically for manipulating three phase vectors.
FIG 2 shows $1, \mathrm{a}$ and a^{2} as a symmetrical balanced set of vectors

FIG 2

If the three vectors are added together:

$$
\begin{aligned}
1+a+a^{2}=1 \angle 0^{\circ} & +1 \angle+120^{\circ}+1 /+240^{\circ} \\
& =(1+j 0)+(-0.5+j 0.866)+(-0.5-j 0.866) \\
& =0
\end{aligned}
$$

Therefore the sum of a symmetrical balanced set of vectors is zero.

Examples of the use of " a " Operator

If $\quad E_{A B}=200+30^{\circ}$ volts
then $\mathrm{aE}_{\mathrm{AB}}=1 / 120^{\circ} \times 200 / 30^{\circ}$ $=200 / 150^{\circ}$ volts
then $\begin{aligned} \mathrm{a}^{2} \mathrm{E}_{\mathrm{AB}}= & 1 / 240^{\circ} \times 200 / 30^{\circ} \\ & =200 / 270^{\circ} \\ \mathrm{OR} & =200 /-90^{\circ} \text { volts }\end{aligned}$
Thus voltages or current phasors can be manipulated by " $a^{\prime \prime}$ or " $a^{2 "}$.

The Theorem of Symmetrical Components

In a three phase system, any set of unbalanced phasors (voltage or current) can be represented by the sum of two or three sets of balanced phasors (Superposition Theorem) called Symmetrical Components.

The three possible sets of balanced or symmetrical components are known as:
a) the positive sequence set (subscript 1).
b) the negative sequence set (subscript 2)
c) the zero sequence set (subscript 0).

Symmcompl.wpsuvoll

Note: A zero sequence set of phasors has no sequence and all three phasors are equal and in phase.
FIG 3 shows a zero sequence set of phasors.

EIG 3

Representing the unbalanced phasors as a sum of Symmetrical Components

Each phasor in the original unbalanced set can be represented as follows:

$\mathrm{I}_{\mathrm{A}}=\mathrm{I}_{\mathrm{A} 1}+\mathrm{I}_{\mathrm{A} 2}+\mathrm{I}_{\mathrm{A} 0}$
$\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{B} 1}+\mathrm{I}_{\mathrm{B} 2}+\mathrm{I}_{\mathrm{B} 0}$
$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{Cl}}+\mathrm{I}_{\mathrm{C} 2}+\mathrm{I}_{\mathrm{C} 0}$

Depending on the type of unbalance, not all of the components will exist.

Possible Combinations of Components

The possible combinations of symmetrical components that represent an unbalanced set of phasors are:
a) positive and negative sequence only, which exist when sum of the original three phasors is equal to zero. $\left(\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}=0\right)$
b) positive, negative and zero sequence, which exist when sum of the original three phasors is not equal to cro. $\left(\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}\right.$ not $\left.=0\right)$

Rules for Separating Components

The unbalanced phasors must be manipulated in the following way to determine the value of each of the symmetrical components.

Positive Sequence Components

The positive sequence component of A phase is:

$$
\mathrm{I}_{\mathrm{AI}}=1 / 3\left(\mathrm{I}_{\mathrm{A}}+\mathrm{aI}_{\mathrm{B}}+\mathrm{a}^{2} \mathrm{I}_{\mathrm{C}}\right)
$$

The balanced positive sequence set of components can now be drawn by positioning $\mathrm{I}_{\mathrm{A} 1}$ and drawing $\mathrm{I}_{\mathrm{B} 1}$ and ${ }^{\mathrm{I}} \mathrm{Cl}{ }^{\text {at }} \pm 120^{\circ}$ from I_{Al} in positive sequence.

Symmcomp1.wpsuvoll

FIG 4 shows a positive sequence set of components.

FIG

Negative Sequence Components

The negative sequence component of A phase is:

$$
\mathrm{I}_{\mathrm{A} 2}=1 / 3\left(\mathrm{I}_{\mathrm{A}}+\mathrm{a}^{2} \mathrm{I}_{\mathrm{B}}+\mathrm{aI}_{\mathrm{C}}\right)
$$

The balanced negative sequence set of components can now be drawn by positioning $\mathrm{I}_{\mathrm{A} 2}$ and drawing $\mathrm{I}_{\mathrm{B} 2}$ ${ }^{\mathrm{I}} \mathrm{C} 2{ }^{\text {at }} \pm 120^{\circ}$ from $\mathrm{I}_{\mathrm{A} 2}$ in negative sequence.

FIG 5 shows a negative sequence set of components.

FIG

Zero Sequence Components

The zero sequence component of A phase is:

$$
\mathrm{I}_{\mathrm{A} 0}=1 / 3\left(\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}\right)
$$

The balanced zero sequence set of components can now be drawn by positioning $\mathrm{I}_{\mathrm{A} 0}$ and drawing $\mathrm{I}_{\mathrm{B} 0}{ }^{\text {and }}{ }^{\mathrm{I}} \mathrm{C} 0$ in phase with $\mathrm{I}_{\mathrm{A} 0}$.

FIG 6 shows a zero sequence set of components.

FIG 6

Symmcompl.wpsuvol1

Notes: The neutral current in a four wire unbalanced three phase system is equal to the sum of the zero sequenk components.
Earth fault currents consist of zero sequence components.
Example: Resolve the following unbalanced currents into their symmetrical components.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{A}}=100 / 0^{\circ} \mathrm{amps} \\
& \mathrm{I}_{\mathrm{B}}=100 / 180^{\circ} \mathrm{amps} \\
& \mathrm{I}_{\mathrm{C}}=0
\end{aligned}
$$

Solution:

Zero sequence components

$$
\begin{aligned}
\mathrm{I}_{\mathrm{AO}} & =1 / 3\left(\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}} .\right. \\
& =1 / 3\left(100 / 0^{\circ}+100 / 180^{\circ}+0\right) \\
& =1 / 3((100+\mathrm{j} 0)+(-100+\mathrm{j} 0)) \\
& =0
\end{aligned}
$$

There is no zero sequence component.
Positive sequence Components

$$
\begin{aligned}
\mathrm{I}_{\mathrm{AI}}= & 1 / 3\left(\mathrm{I}_{\mathrm{A}}+\mathrm{aI}_{\mathrm{B}}+\mathrm{a}^{2} \mathrm{I}_{\mathrm{C}}\right) \\
& =1 / 3\left(1000 / 0^{\circ}+\left(1 / 120^{\circ} \times 100 / 180^{\circ}\right)+\left(1 / 240^{\circ} \times 0\right)\right) \\
& =1 / 3\left(100+j 0+100 / 300^{\circ}+0\right) \\
& =1 / 3((100+j 0)+(50-j 86.6)) \\
& =1 / 3(150-j 86.6) \\
& =1 / 3\left(173.2 /-30^{\circ}\right) \\
& =57.7 /-30^{\circ} \mathrm{amps} \\
\mathrm{I}_{\mathrm{B} 1}= & 57.7 /-150^{\circ} \mathrm{amps} \\
& \\
\mathrm{I}_{\mathrm{C} 1}= & 57.7 /+90^{\circ} \mathrm{amps}
\end{aligned}
$$

FIG 7 shows the phasor diagram of the positive sequence components.

EIG 7

Symmcompl.wpsuvol1

Negative sequence Components

$$
\begin{aligned}
\begin{aligned}
& \mathrm{I}_{\mathrm{A} 2}= \\
& 1 / 3\left(\mathrm{I}_{\mathrm{A}}+\mathrm{a}^{2} \mathrm{I}_{\mathrm{B}}+\mathrm{aI}_{\mathrm{C}}\right) \\
&=1 / 3\left(100 / 0^{\circ}+\left(1 / 240^{\circ} \times 100 / 180^{\circ}\right)+\left(1 / 120^{\circ} \times 0\right)\right) \\
&=1 / 3\left(100+\mathrm{j0}+100 / 420^{\circ}+0\right) \\
&=1 / 3((100+\mathrm{j})+(50+\mathrm{j} 86.6)) \\
&=1 / 3(150+\mathrm{j} 86.6) \\
&=1 / 3\left(173.2 / 30^{\circ}\right) \\
&=57.7 / 30^{\circ} \mathrm{amps} \\
& \begin{aligned}
\mathrm{I}_{\mathrm{B} 2} & =
\end{aligned} \\
& \begin{aligned}
\mathrm{I}_{\mathrm{C}} & =
\end{aligned} \\
& 57.7 / 4 / 90^{\circ} \mathrm{amps}
\end{aligned}
\end{aligned}
$$

FIG 8 shows the phasor diagram of the negative sequence components.

Check sum of components.

$$
\begin{aligned}
& \begin{aligned}
& \mathrm{I}_{\mathrm{A}}=\mathrm{I}_{\mathrm{A} 1}+\mathrm{I}_{\mathrm{A} 2}+\mathrm{I}_{\mathrm{A} 0} \\
&=57.7 \angle-30^{\circ}+57
\end{aligned} \\
& =57.7-30^{\circ}+57.7 /+30^{\circ}+0 \\
& =(50-\mathrm{j} 28.8)+(50+\mathrm{j} 28.8) \\
& =100+\mathrm{j} 0 \\
& =100 / 0^{\circ} \mathrm{amps} \quad \text { OK. } \\
& \begin{aligned}
\mathrm{I}_{\mathrm{B}} & =\mathrm{I}_{\mathrm{B} 1}+\mathrm{I}_{\mathrm{B} 2}+\mathrm{I}_{\mathrm{B}} \\
& =57.7 /-150^{\circ}+
\end{aligned} \\
& =57.7 /-150^{\circ}+57.7 /+150^{\circ}+0 \\
& =(-50-\mathrm{j} 28.8)+(-50+\mathrm{j} 28.8) \\
& =-100+\mathrm{j} 0 \\
& =100 / 180^{\circ} \mathrm{amps} \quad \mathrm{OK} \\
& { }^{\mathrm{I}_{\mathrm{C}}}=\mathrm{I}_{\mathrm{C}}{ }^{2}+\mathrm{I}_{\mathrm{C} 2}+\mathrm{I}_{\mathrm{I}} \mathrm{C} 0 \\
& \begin{array}{l}
=57.7 /+90^{\circ}+57.7 /-90^{\circ}+0 \\
=(0+\mathrm{j} 57.7)+(0-\mathrm{j} 57.7) \quad \text { OK } \\
=0 \mathrm{amps}
\end{array}
\end{aligned}
$$

Notes: These unbalanced currents have only positivaland negative sequence components. They are the currents that would represent a phase-phase fault on a three phase system, The current in the third unfaulted phase is zero or negligibly small, There are no zero sequence components as the fault does not involve earth,

[^0]FIG 9 is a phasor diagram showing the positive and negative sequence components added to give the original currents.

$$
I_{c}=57.7 / 490
$$

DISTRIBUTION OF FAULT CURRENTS THROUGH POWER SYSTEMS

Fault currents can be calculated at points in the power system other than at the fault.
The impedance diagrams must be used to determine the distribution of current through each branch of the network.

Example:

Refer to Tutorial 5.
Depending on the type of fault, there may exist the following components of fault current:

Transmission line:
positive, negative and zero sequence.
Transformer secondary windings (132 kV earthed star): positive, negative and zero sequence.

Transformer primary winding (33 kV unearthed star): positive and negative sequence only.

Transformer tertiary windings (1 lkV delta): zero sequence only.

Generator winding (33 kV unearthed star):
positive and negative sequence only.
Consider the distribution of current through the transformer for the single phase to earth fault on A phase.

Refer to FIG 1 which shows the phase sequence components that exist in each set of windings for the single phase to earth fault.

U:AVOL7FAULTDISTSHORT.doc

The ampere turns of MMF in the transformer core must balance.
Use the previously calculated fault currents on the 132 kV transmission line which will be the same in the 132 kV windings of the transformer.

On 132 kV side of transformer:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{A}}=777 / 0^{\circ} \mathrm{amps} \\
& \mathrm{I}_{\mathrm{B}}=0 \\
& \mathrm{I}_{\mathrm{C}}=0 .
\end{aligned}
$$

$$
\mathrm{I}_{\mathrm{A}}=\mathrm{I}_{A 2}=\mathrm{I}_{\mathrm{A} 0}=259 / 0^{\circ} \mathrm{amps}
$$

The positive and negative sequence components will be balanced by currents flowing in the 33 kV primary windings,

The zero sequence components will be balanced by currents flowing around the 11 kV delta tertiary windings.
The ratiogof transformation between primary and secondary is $\$ 32 / 33=4$
Positive sequence components in 33 kV windings are:

Negative sequence components in 33 kV windings are:

$$
\begin{aligned}
& \mathrm{I}_{a 2}=\frac{259 \times 132 / 0^{\circ}}{33}=1036 / 0^{\circ} \mathrm{amps} \\
& \mathrm{I}_{\mathrm{b} 1}=1036 /+120^{\circ} \mathrm{amps} \\
& \mathrm{I}_{\mathrm{o} / \mathrm{m}}=1036 /-120^{\circ} \mathrm{amps}
\end{aligned}
$$

Line currents on 33 kV side of transformer are:

$$
\begin{aligned}
& I_{a}=I_{a 1}+I_{a 2} \quad=1036 / 0^{\circ}+1036 / 0^{\circ} \\
& =\quad 2072 / 0^{\circ} \mathrm{amps} \\
& I_{b}=I_{b 1}+I_{b 2}=1036 /-120^{\circ}+1036 \frac{1+120^{\circ} \text { must }}{\text { convert }} \\
& =1036 \underline{1+180^{\circ}} \mathrm{amps} \Omega \text { to rectangular } \\
& \mathrm{I}_{\mathrm{c}}=\mathrm{I}_{\mathrm{el}}+\mathrm{I}_{\mathrm{c} 2} \quad=1036 /+120^{\circ}+1036 /-120^{\circ} \\
& =1036 i+180^{\circ} \mathrm{amps} /
\end{aligned}
$$

U:AVOLTFALLTDISTSHORT.doc

Ratio of transformation between secondary and tertiary windings $(132 / \sqrt{3}) / 11$.
Zero sequence currents flowing around the 11 kV delta winding are:

$$
\begin{aligned}
& I_{\mathrm{an}}=I_{b 0}=I_{c 0}=I_{\Delta 0} \times 132 \times 1 / 0^{\circ} \\
& \sqrt{3} \times 11 \\
&=\frac{250 \times 132 \times 1 / 0^{\circ}}{\sqrt{3} \times 11} \\
&=1795 / 0^{\circ} \mathrm{amps} .
\end{aligned}
$$

Refer to FIG 2 which shows the calculated current values flowing in the transformer windings.

FIG 2
Note: There are no positive or negative phase sequence components in the delta windings because the winding has no external connections.

Fault Current Distribution through Star Delta Transformers

Refer to FIG 3 which shows a Delta/Star transformer with turns ratio 1:1 and a single phase to earth fault on the star connected side.

$1: 1$ ratio

FIG 3

The single phase fault of 300 amps on A phase on the secondary side of the transformer produces the following symmetrical components.

$$
\mathrm{I}_{\mathrm{A} 1}=\mathrm{I}_{\mathrm{A} 2}=\mathrm{I}_{\mathrm{A} 0}=100 / 0^{\circ} \mathrm{amps}
$$

Calculate the balancing components of current in the delta winding.
The current components in each phase of the delta winding are as shown in FIG 4.
($I_{1}+I_{2}$ ONLC- ${ }^{-1}$)
$\rightarrow I A=300 A$

FIG 4

Notes: The zero sequence components are trapped in the delta winding and circulate in the windings.
The positive and negative sequence components exist in the delta windings and add vectorially to give positive and negative components in the line conductors.

PHASE SEQUENCE IMPEDANCE DIAGRAMS FOR POWER SYSTEMS

There are two classes of faults on power systems:
a) Balanced three phase short circuit
b) Unbalanced one phase to earth phase to phase phase to phase to earth.

Balanced Faults

A short circuit across three phases produces symmetrical and balanced three phase currents and voltages in the fault.

The currents and voltages are positive sequence components only. No negative or zero sequence components exist.

Unbalanced Faults
Unbalanced faults involving earth will produce positive, negative and zero sequence components.
Unbalanced faults not involving earth will produce only positive and negative sequence components.

To calculate the effects of faults, the impedance of the faulted system must be known.

Impedance of System Components

All high voltage equipment such as Generators, Transformers and Transmission Lines will have an impedance value for every phase sequence component.
$Z_{0}=$ zero sequence impedance
$z_{1}=$ positive sequence component
$Z_{2}=$ negative sequence component
These values may be different or the same, depending on the type of equipment and how it is connected.

We must draw an impedance diagram for each component before solving for fault currents.

Impedance of Static Devices

Static devices are such things as Transformers, Overhead lines, Cables and Reactors but not rotating machines such as Generators

Generally $Z_{1}=Z_{2}$ for static devices \bar{y}
However, z_{0} will depend on whether there is a path for zero sequence currents and is determined by how the device is connected (earthed or not).

Two Winding Transformer Equivalent Circuit
FIG 1 shows the equivalent circuit of a two winding transformer.

FIG 1
Z_{11} and Z_{22} are self impedances of the two windings.
Z_{12} is the mutual impedance between the two windings.
The equivalent circuit in FIG 1 can be redrawn as shown in FIG 2.

FIG 2
Z_{1} and Z_{2} are leakage impedances.
Z_{3} is the mutual impedance (very large compared to Z_{1} and Z_{2}) and can be ignored.

Positive Sequence Equivalent Circuit of Two Winding Transformer
Refer to FIG 3 which is the simplified circuit of FIG 2 and represents the Positive Sequence Equivalent Circuit.

Z1 déagram

Negative Sequence Equivalent Circuit of Two Winding Transformer
Since $Z_{1}=Z_{2}$ in static devices, then FIG 3 also represents the Negative Sequence Equivalent circuit of the two winding transformer.

Three Winding Transformer Equivalent Circuit
Refer to FIG 4 which shows the equivalent circuit of a three winding transformer.

Impedance diagram

FIG 4

The total impedance between each pair of terminals is determined as follows:
$Z_{P B}=Z_{P}+Z_{B}$
$Z_{B 7}=Z_{B}+Z_{7}$
$Z_{P Y}=Z_{P}+Z_{7}$

Similarly, the individual impedances of the windings can be represented by:

$$
\begin{aligned}
& Z_{F}=\frac{1}{2}\left(Z_{P B}+Z_{P T}-Z_{T B}\right) \\
& Z_{B}=\frac{1}{2}\left(Z_{P B}+Z_{T B}-Z_{P Y}\right) \\
& Z_{F}=\frac{1}{2}\left(Z_{P T}+Z_{Y B}-Z_{P B}\right)
\end{aligned}
$$

Positive Sequence Equivalent Circuit of Three Winding Trangformer

Refer to FIG 5 which is the circuit of FIG 4 re-drawn and includes links in each circuit which will be closed if the particular winding

Zero busbor

FIG 5

Negative Sequence Equivalent Circuit of Three Winding Trangformer

Since $Z_{1}=Z_{2}$ in static devices, then FIG 5 also represents the Negative Sequence Equivalent circuit of the three winding transformer.

Generator Equivalent Circuits

In rotating machinery, Positive sequence impedance Z_{1} is not equal to
Negative sequence impedance Z_{2}, due to the effects of Negative Sequence components on the rotor of the machine.

Refer to FIG 6 which is the equivalent circuit of a generator

FIG 6

The circuit is the same for both positive and negative sequence, except that the impedance value will be different.

Zero Sequence Equivalent Circuits of Transformers

Refer to FIG 7 which shows the equivalent zero sequence circuits for various transformer connections.

FIG 7

```
Page - 6 F/04
```

Zero sequence components of current can flow into and out of a transformer, when the transformer forms part of a closed loop to the unidirectional currents.
zero sequence components can flow in a star connected winding which has an earthed star point and is connected to an earthed source.
zero sequence can circulate around a delta connected winding but cannot flow into or out of the delta.

In the equivalent circuitg shown in FIG 7, link "a" is closed only when the winding is connected to an external circuit and the zero sequence components can flow (earthed star).

In the equivalent circuits shown in FIG 7, link "b" is closed only when the zero sequence components can circulate in the winding without flowing into or out of the winding (delta).

If these conditions are not met, then the links are left in the open position and that part of the transformer is an open circuit to zero
sequence components of current.

Drawing Impedance Diagrams for Power Systems

Example: Refer to FIG 8 which is a single line diagram of a power system having four generators, each with a step up transformer, connected to busbars, and interconnected by t 132 kV transmission lines. One of the transmission lines has an earth fault in the location shown which divides the line into two parts represented by line 2 and Line 3 . Draw the equivalent Positive, Negative and Zero Sequence Networks represented by single impedance values between the source and the point of fault.

Impedance Dotails of Electrical Plant

Page - 7

Transmission Line 2	$Z_{2}=Z_{2}=10.5 \Omega$
	$Z_{0}=36.6 \Omega$
Transmission Line 3	$Z_{1}=Z_{2}=27.8 \Omega$
	$Z_{0}=97.4 \Omega$

FIG 8

Solution:

Convert all impedance values to a common base (say loomva).
For the Generators and Transformers use the equation:
Z\% (new MVA base) $=Z$ \% (on old MVA base) x new base MVA
Generators A and B

$$
\begin{aligned}
z_{1}= & \frac{32.5 \times 100}{50} \\
& =65 \%
\end{aligned}
$$

Similarly all other Z values can be converted.

For the Transmission Lines use the equation:
z\% $=(Z 2 \times$ MVARAAE $\times 100)$ (kV) ${ }^{2}$

Transmission Line $1 \quad Z_{1}=Z_{2}$
$=\frac{38.3 \times 100 \times 100}{(132)^{2}}$
$=228$
Io $=134 \times 100 \times 100$
$=76.98^{(132)}$ say 778
Similarly for the other transmission lines:

Transmission Line 2	$Z_{1}=z_{2}=68$
	$z_{0}=218$
Transmission Line 3	$Z_{2}=z_{2}=168$
	$z_{0}=56 \%$.

Negative Sequence Impedance Diagram

Draw the Negative Sequence Diagram for the System as shown in FIG 13.

FIG 13
Note that the diagram does not include a voltage source.
The network shown in FIG 13 can be simplified by combining series and parallel impedances as shown in FIG 14.

To further simplify the network, a star-delta transformation must be carried out on the delta connected impedances of $22 \%, 6 \%$ and 16% in FIG 14.

This transformation is the same as previously calculated for the positive sequence diagram because the Z o values are the same.

Redraw FIG 14 with the star connected impedances replacing the delta connected impedances and reduce to a single impedance as shown in FIG 15.

PIG 15
The total Negative sequence impedance Z_{2} is 25.1%.

Positive Sequence Impedance Diagram
Draw the Positive Sequence Diagram for the System as shown in FIG 9.

Note that the diagram includes a positive sequence voltage source which is the system voltage supply.

The network shown in FIG 9 can be simplified by combining series and parallel impedances as shown in FIG 10.

To further simplify the network, a star-delta transformation must be
carried out on the delta connected impedances of 22%, 6% and 16% in FIG 10.

Star-Delta Transformation

Refer to FIG 11 where the delta connected impedances are X, Y and Z and the corresponding star connected impedances are A, B and C.

FIG 11
Using the equations:

Redraw FIG 10 with the star connected impedances replacing the delta connected impedances and reduce to a single impedance as shown in FIG 12.

PIG 12

The total Positive sequence impedance Z_{1} is 25.5\%.

Zero Sequence Impedance Diagram
Draw the zero Sequence Diagram for the system as shown in FIG 16.

Note that the diagram does not include voltage source.
The network shown in FIG 16 can be simplified by combining series and parallel impedances as shown in FIG 17.

FIG 17

To further simplify the network, a star-delta transformation must be carried out on the delta connected impedances of $77 \%, 21 \%$ and 56% in

Star-Delta Transformation

The equivalent values of Z_{A}, Z_{B} and Z_{c} are calculated.
$z_{\mathrm{K}}=10.5 \%$
$Z_{B}=28 \%$
$z_{c}=7.6 \%$
Redraw FIG 17 with the star connected impedances replacing the delta connected impedances and reduce to a single impedance as shown in FIG
18 .

The total zero sequence impedance Z_{0} is 28.7%.
The equivalent impedance values for Z_{1}, Z_{2} and Z_{0} can now be used to current. positive, negative and zero sequence components of the fault

PHASE SEOUENCE DETECTORS

Detection of Zero Sequence Currents/Voltages

Zero sequence currents flow in the neutral wire when unbalanced loads are connected to a four wire system.
Zero sequence currents also flow in a three wire system under earth fault conditions,
The conditions are:
a) a system connection to earth at two or more points,
b) a potential difference between the points resulting in a current flow.

Residual Current Detection

Refer to FIG 1 which shows three current transformers connected in star, supplying an ammeter or relay.

FIG 1

The ammeter or relay measures the vector sum of the three line currents, which is proportional to the zero sequence current since:

$$
\mathrm{I}_{0}=\mathrm{I} / 3\left(\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}\right)
$$

Residual Voltage Detection

Refer to FIG 2 which shows a three phase voltage transformer with the secondary winding connected in open delta and supplying a voltmeter or relay. The voltmeter or relay measures the vector sum of the secondary voltages which is proportional to the zero sequence component.

$$
\mathrm{E}_{0}=\mathrm{E}_{\mathrm{A}}+\mathrm{E}_{\mathrm{B}}+\mathrm{E}_{\mathrm{C}}
$$

Detection of Negative Sequence Components

Negative sequence components exist when unbalanced loads or fault conditions occur. They can be measured or detected using a phase shifting circuit as shown in FIG 3. The circuit is supplied from a delta connected set of CTs which eliminate the zero sequence components from the circuit.

FIG 3

1-13

FAULT CALCULATIONS ON POWER SYSTEMS

There are two classes of faults on power systems:
a) Balanced
three phase short circuit
b) Unbalanced
one phase to earth
phase to phase phase to phase to earth.

Each of these fault conditions can be described by voltage and current equations.

Single Phase to Earth Fault

Consider a single phase to carth fault on "A" phase as shown in FIG 1.

FIG 1

Assumptions:
 a) All load currents are zero.

b) Fault is through zero impedance.

Current Equations for the circuit are:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{A}}=\mathrm{I}_{\text {FAULT }} \\
& \mathrm{I}_{\mathrm{B}}=0 \\
& \mathrm{I}_{\mathrm{C}}=0
\end{aligned}
$$

Voltage Equations for the circuit are:

$$
\begin{array}{ll}
\mathrm{V}_{\text {A-EARTH }} & =0 \quad \text { (short circuit to earth) } \\
\mathrm{V}_{\mathrm{B}} & =\text { Normal voltage } \\
\mathrm{V}_{\mathrm{C}} & =\text { Normal voltage } .
\end{array}
$$

The phasor diagram for the system line currents is shown in FIG 2.
U:\AVOL2:FAULTCLK1.doc

$$
2-13 \cdots \cdots \quad \text { Fll } 16
$$

$I A=I_{\text {FAVLT }}$

FIG 2

A single phase to earth fault current will contain positive, negative and zero sequence components.

Using symmetrical component analysis, the unbalanced current phasor shown in FIG 2 can be replaced by the positive, negative and zero sequence components shown in FIG 3.

$$
3-13 \ldots
$$

Connection of Phase Sequence Impedance Diagrams

The single phase to earth fault contains positive, negative and zero sequence components of current.

This means that to determine the total fault impedance between the source and the fault, the positive, negative and zero sequence impedance diagrams for the system must all be connected together as shown in FIG 4.

FIG 4

Note: As all sequence components are equal and in phase, the sequence impedance Z_{1}, Z_{2} and Z_{0} are connected in series.

The voltage equation for this circuit is:

$$
\begin{aligned}
V & =I_{1} Z_{1}+I_{2} Z_{2}+I_{0} Z_{0} \\
& =I_{1}\left(Z_{1}+Z_{2}+Z_{0}\right)=I_{1} \times Z_{\text {ToTAL }}
\end{aligned}
$$

where V is the phase to neutral value.

Calculation of Fault Current using Sequence Impedance Diagram

$$
\mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{0}=\frac{100 \times \text { Current at Base MVA }}{Z \%_{\text {TotaL }}}
$$

$$
\begin{aligned}
3 Q \sqrt{ } & =\sqrt{3} E C \times I L \\
I & =\frac{3 Q \sqrt{ }}{\sqrt{3} E L}
\end{aligned}
$$

Example:

4-15

A 132 kV power system has a positive sequence impedance Z_{1} of 6%, a negative sequence impedance Z_{2} of 7% and a zero sequence impedance Z_{0} of 10%, all calculated on a base of 100 MVA .
Calculate the current flowing into a single phase to earth fault at 132 kV on " A " phase.

$$
\begin{aligned}
Z_{\text {TOTAL }} & =Z_{1}+Z_{2}+Z_{0} \\
& =6+7+10 \\
& =23 \% \text { on base of } 100 \mathrm{MVA} .
\end{aligned}
$$

$$
\mathrm{I}_{\mathrm{A} 1}=\mathrm{I}_{\mathrm{A} 2}=\mathrm{I}_{\mathrm{A} 0} \quad=\frac{100}{22} \text { pu of current at } 100 \mathrm{MVA}
$$

$$
23
$$

$=100 \times \mathrm{VA}_{\text {HASE }}$
$23 \times \sqrt{3} \times V_{\text {LINE }}$
$=\frac{100 \times 100 \times 10^{6}}{23 \times \sqrt{3} \times 132 \times 10^{3}}$
$=\quad 1902 \mathrm{amps}$
Fault Current $I_{A} \quad=\quad I_{A 1}+I_{A 2}+I_{A 0}$
$=3 \times I_{A 1}$
$=\quad 5706 \mathrm{amps}$

Phase to Phase Fault

$5-13$

Consider a phase to phase fault on "A to B" phases as shown in FIG 5.

Assumptions:

a) All load currents are zero.
b) Fault is through zero impedance.

Current Equations for the circuit are:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=0 \\
& \mathrm{I}_{\mathrm{A}}=-\mathrm{I}_{\mathrm{B}}
\end{aligned}
$$

Voltage Equation for the circuit is:

$$
V_{A}=V_{B} \quad \text { (short circuit between } A \text { and } B \text {) }
$$

The phasor diagram for the system line currents is shown in FIG 6.

FIG 6
A phase to phase fault current will contain only positive and negative sequence components.

6-13

Using symmetrical component analysis, the unbalanced current phasor shown in FIG 6 can be replaced by the positive and negative sequence components shown in FIG 7.

Notes

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{Cl}}+\mathrm{I}_{\mathrm{C} 2}=0 \\
& \mathrm{I}_{\mathrm{Cl}}=-\mathrm{I}_{\mathrm{C} 2} \\
& \mathrm{I}_{\text {FAULT }}=\sqrt{3} \times \mathrm{I}_{1} /+30^{\circ}
\end{aligned}
$$

Connection of Phase Sequence Impedance Diagrams

The phase to phase fault contains only positive and negative sequence components of current.
This means that to determine the total fault impedance between the source and the fault, the positive and negative sequence impedance diagrams for the system must be connected together as shown in FIG 8.

FIG 8

The voltage equation for this circuit is:
U:AVOL2\FAULTCLK1.doc

$$
\begin{aligned}
& 7-13+\quad F(2) \quad F \mid 21 \\
v & =I_{1}\left(Z_{1}+Z_{2}\right) \text { or } \\
& =-I_{2}\left(Z_{1}+Z_{2}\right)
\end{aligned}
$$

where V is the phase to neutral value.

Example:

A power system has a positive sequence impedance Z_{1} of 10% and a negative sequence impedance Z_{2} of 12% calculated on a base of 100 MVA .
Calculate the current flowing into a phase to phase fault (A to B) at 66 kV .

$$
\begin{aligned}
Z \%_{\text {TOTAL }} & =\frac{Z_{1}+Z_{2}}{10+12} \\
& =\frac{22 \% \text { on base of } 100 \mathrm{MVA} .}{\mathrm{Z}_{1}} \\
& =\frac{100 \text { pu of Current at 100MVA }}{} \\
& =\frac{100 \times \mathrm{VA}_{\text {IUAL }}}{22 \times \sqrt{3} \times \mathrm{V}_{\text {IASE }}} \\
& =\frac{100 \times 100 \times 10^{6}}{22 \times \sqrt{3} \times 66 \times 10^{3}} \\
& =3976 \mathrm{amps}
\end{aligned}
$$

$$
\text { Fault Current } \sqrt{3} 3 I_{1}=\sqrt{ } 3 \times 3976
$$

$$
=6886 \mathrm{amps}
$$

$$
\mathrm{I}_{\mathrm{A}}=\mathrm{I}_{\mathrm{B}}=6886 \mathrm{amps}
$$

Phase to Phase to Earth Fault

Consider a phase to phase to earth fault on (A to B to E) as shown in FIG 9.

FIG 9

Assumptions:

a) All load currents are zero.
b) Fault is through zero impedance.

Current Equation for the circuit is:

$$
\mathrm{I}_{\mathrm{c}}=0
$$

Voltage Equations for the circuit are:

$$
\begin{aligned}
& V_{A}=0 \\
& V_{B}=0(\text { short circuit between } A \text { and } B)
\end{aligned}
$$

All symmetrical components exist since earth fault conditions are present.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{A} 0}=\mathrm{I}_{\mathrm{BD}}=\mathrm{I}_{\mathrm{C} 0}=\mathrm{I} / 3\left(\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}\right) \\
& \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{Cl}}+\mathrm{I}_{\mathrm{C} 2}+\mathrm{I}_{\mathrm{C} 0}=0 \\
& \mathrm{I}_{\mathrm{Cl}}=-\left(\mathrm{I}_{\mathrm{C} 2}+\mathrm{I}_{\mathrm{CD}}\right)
\end{aligned}
$$

From voltage equations:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{Cl}} & =1 / 3\left(\mathrm{~V}_{\mathrm{C}}+a \mathrm{~V}_{\mathrm{A}}+\mathrm{a}^{2} \mathrm{~V}_{\mathrm{B}}\right) \\
& =1 / 3\left(\mathrm{~V}_{\mathrm{c}}+0+0\right) \\
& =1 / 3 \mathrm{~V}_{\mathrm{C}} \\
\text { Similarly } \quad \mathrm{V}_{\mathrm{C} 2} & =1 / 3 \mathrm{~V}_{\mathrm{c}}
\end{aligned}
$$

AB TUTORIAL 1

Question (1)
Convert the following phasor in rectangular form to polar form (3+j2), (-1-j6)

Question (2)

A delta connected load has three impedances $\mathrm{Za}=\mathrm{a} 100 \mathrm{ohm}$ resistor in series with a 400 mH inductor, $\mathrm{Zb}=\mathrm{a} 120$ ohm resistor in series with a 10 micro farad capacitor and $\mathrm{Zc}=\mathrm{a} 250$ ohm resistor . The three wire supply, has a line voltage of 75 V , frequency 60 Hz and a phase sequence of ABC .

Using the voltage Eab as reference.
Calculate all line currents in polar form

Question (3)
A voltage $v=150 \operatorname{Sin} 2000 t$ ia applied to a resistance of 166 ohms in series with a 2 micro farad capacitor
Calculate
(a) Apparent power in VA
(b) Real power in Watts
(c) Reactive power in VAR (state whether inductive or capacitive)
(d) Circuit power factor (state whether leading or lagging)
(e) Draw power triangle

Question (4)
A 3 phase 415 v star connected load has the following loads
A phase- 30 ohm resistor
B phase -40 ohm resistor
C phase - 50 ohm resistor
Find (1) Line currents
(2) Voltage between new star point and neutral point (Phase sequence- ABC)

AB Tutorial 2

Problem (1)
Refer to FIG 5 which shows an unbalanced delta connected load supplied by a three phase 200 V rms line-line set of voltages, with phase sequence $\mathrm{A}-\mathrm{B}-\mathrm{C}$.
Calculate:
a) all line currents in polar form,
b) the readings on two wattmeters connected in standard way (W_{1} reads I_{A} and $E_{A B}, W_{2}$ reads I_{C} and $E_{C B}$),
c) total real power consumed by the load using the wattmeter readings,
total reactive power in the load.

Problem (2)

A three phase 110 kV 50 Hz overhead transmission line delivers 30 MW at 0.8 power factor lagging.
Each conductor has a resistance of 20Ω, an inductive reactance of 46Ω and a capacitive reactance to neutral of $-\mathrm{j} 2650 \Omega$.
a) Calculate the sending end voltage using the nominal π method,
b) Draw the phasor diagram,
c) Calculate the rise in the recciving end voltage when the load is switched off and the sending end voltage remains constant at the value calculated in part a) above.

AB Tutorial 6

Problem (1)

Resolve the following unbalanced phasors into their symmetrical components, draw phasor diagrams of the separate components and check that the sum of the components is equal to the original set of phasors.
a) $\quad \begin{array}{ll}\mathrm{I}_{\mathrm{A}}=120 / 0^{\circ} & \mathrm{amps} \\ \mathrm{I}_{\mathrm{B}}=0 & \mathrm{amps}\end{array}$ $\begin{array}{ll}{ }^{\mathrm{I}} \mathrm{B}=0 & \mathrm{amps} \\ { }^{\mathrm{I}} \mathrm{C}=0 & \mathrm{amps}\end{array}$

Problem (2)

Refer to the single line diagram below of the faulted power system

Plant Details:

Generator:
Transformer Tl $11 \mathrm{kV} / 33 \mathrm{kV}, 30 \mathrm{MVA}, \mathrm{Z}=12 \%$.
3
Transmission Lines L1 and L2
Length $5 \mathrm{kM}, \mathrm{Z}_{1}=\mathrm{Z}_{2}=+\mathrm{j} 1 \Omega / \mathrm{kM}, \mathrm{Z}_{0}=+\mathrm{j} 3 \Omega / \mathrm{kM}$.
Use a base for calculations of 100 MVA .
a) Draw positive, negative and zero sequence impedance diagrams for the system.

Problem (3)

The current taken by a load connected to a 220 V rms 100 Hz supply, is measured as 4 A rms with a power factor of 0.69 lagging.
Calculate the parallel capacitance required to correct the total power factor to 0.97 lagging.
Draw the new power triangle for the circuit if the power factor is corrected to 0.97 lagging.

Problem (4)

A three phase 110 kV 50 Hz overhead transmission line delivers 30 MW at 0.8 power factor lagging.
Each conductor has a resistance of 20Ω, an inductive reactance of 46Ω and a capacitive reactance to neutral of $-\mathrm{j} 2650 \Omega$.
a) Calculate the sending end voltage using the nominal π method,
b) Draw the phasor diagram,
c) Calculate the rise in the recciving end voltage when the load is switched off and the sending end voltage remains constant at the value calculated in part a) above.

POWER SYSTEMS ANALYSIS

QUESTION 1.

A balanced delta connected load has impedance of $30-60^{\circ} \Omega$ in each phase, and is connected to a three phase, three wire supply, having 120 V line-line and a phase sequence of $\mathrm{A}-\mathrm{B}-\mathrm{C}$. Use V_{AB} as reference.

Calculate:
a) all line currents in polar form,
b) the readings on two wattmeters in standard connection,
c) total load power,
d) draw the complete phasor diagram showing all voltages and currents.
(Ans: $\mathrm{I}_{\mathrm{A}}=6.94+30^{\circ} \mathrm{A}, \mathrm{I}_{\mathrm{B}}=6.9 /-90^{\circ} \mathrm{A}, \mathrm{I}_{\mathrm{C}}=6.9 L+150^{\circ} \mathrm{A}, \mathrm{W}_{1}=717 \mathrm{~W}, \mathrm{~W}_{2}=0 \mathrm{~W}$,
W $\left._{\text {TOTAL }}=717 \mathrm{~W}\right)$ $\mathrm{W}_{\text {TOTAL }}=717 \mathrm{~W}$)

QUESTION 2.

Refer to the circuit diagram below
The unbalanced delta connected load is supplied by a three phase, three wire, 240 V line-line supply having a phase sequence of $\mathrm{A}-\mathrm{C}-\mathrm{B}$. Use V_{AB} as reference. Calculate:
a) all line currents,
b) the two wattmeter readings,
c) the total load power using the wattmeter readings,
d) check answer c) by using another method.
(Ans: $\mathrm{I}_{\mathrm{A}}=6.05+7.6^{\circ} \mathrm{A}, \mathrm{I}_{\mathrm{B}}=25.6++90^{\circ} \mathrm{A}, \mathrm{I}_{\mathrm{C}}=27.1 \angle 103^{\circ} \mathrm{A}, \mathrm{W}_{1}=886 \mathrm{~W}, \mathrm{~W}_{2}=5321 \mathrm{~W}$,
W $\mathrm{W}_{\text {TOTAL }}=6207 \mathrm{~W}$)

FAULT CALCULATIONS

TUTORIAL WEEK 5

OUESTION 1.

Refer to Tutorial 4 using the same faulted power system and phase sequence diagrams determined, and assume all impedances to be inductive.

Calculate all line currents in the transmission line for each of the following fault conditions:
a) phase to earth fault on A phase at point X,
b) phase to phase fault $A-B$ phases at point X,
c) phase to phase to earth fault $A-B$ phases at point X.
d) three phase fault at point X .

EAULT CALCULATIONS
TUTORIAL WEEK 7

QUESTION 1.

Refer to the single line diagram below of the faulted power system.

Plant Details:

Generator:
Transformer T1

Transformer T2
Transmission Lines L1 and L2
$11 \mathrm{kV}, 30 \mathrm{MVA}, \mathrm{Z}_{1}=\mathrm{Z}_{2}=15 \%, \mathrm{Z}_{0}=20 \%$
$11 \mathrm{kV} / 33 \mathrm{kV}, 30 \mathrm{MVA}, \mathrm{Z}=12 \%$.
$33 \mathrm{kV} / 11 \mathrm{kV}, 30 \mathrm{MVA}, \mathrm{Z}=10 \%$.
Length $5 \mathrm{kM}, \mathrm{Z}_{1}=\mathrm{Z}_{2}=+\mathrm{j} 1 \Omega / \mathrm{kM}, \mathrm{Z}_{0}=+\mathrm{j} 3 \Omega / \mathrm{kM}$.

Use a base for calculations of 100 MVA .

a) Draw positive, negative and zero sequence impedance diagrams for the system.
b) For a phase to earth fault on A phase at point F , calculate:
i) all currents at the fault,
ii) all line currents in transmission line L1.
c) For a phase to phase fault on A-B phases at point F, calculate:
i) all currents in both windings of transformer T 2 ,
ii) all currents in generator windings.

QUESTION 1.

An impedance of $3+j 4 \Omega$ is connected across a 10 V 1000 Hz source.
Calculate:
a) load power factor,
b) source current,
c) complex power of the load,
d) type and magnitude of component to be connected in parallel with the load to correct power factor to 0.95 lagging,
e) source current after power factor correction.
(Ans: 0.6 lag, $2 /-53.1^{\circ} \Lambda, 12+\mathrm{j} 16 \mathrm{VA}, 19.15 \mu \mathrm{~F}, 1.26 /-18^{\circ}$)

QUESTION 2.

A 100 kVA 0.6 pf lagging motor is connected to a $10 \mathrm{kV}, 500 \mathrm{~Hz}$ supply.
Calculate the value of a parallel connected capacitor needed to correct power factor to unity,
(Ans: $0.25 \mu \mathrm{~F}$)

QUESTION 3.

A load of 30 kVA at 0.8 pf leading is supplied from a 250 V rms 50 Hz source.
Calculate the value of a parallel connected component needed to correct power factor to unity.
(Ans: 11.05 mH)

QUESTION 4.

A 250 V rms 50 Hz source supplies the following parallel loads:
Load $\mathrm{I}=3.2 \mathrm{~kW}$,
Load $2=5 \mathrm{kVA}$ at 0.5 pf lagging,
Load $3=1.33 \mathrm{kV}$ AR leading. purely capacitive
Calculate:
a) the total load,
b) the total power factor,
c) the value of an additional parallel connected component which will improve power factor to 95%.
(Ans: $6.44 / 27.7^{\circ} \mathrm{kVA}, 0.885 \mathrm{lag}, 57.04 \mu \mathrm{~F}$)

POWER SYSTEMS ANALYSIS

TUTORIAL WEEK 9

QUESTION 1.

A three phase 110 kV 50 Hz overhead transmission line delivers 30 MW at 0.8 power factor lagging.
Each conductor has a resistance of 20Ω, an inductive reactance of 46Ω and a capacitive reactance to neutral of $-\mathrm{j} 2650 \Omega$.
a) Calculate the sending end voltage using the nominal π method,
b) Draw the phasor diagram,
c) Calculate the rise in the receiving end voltage when the load is switched off and the sending end voltage remains constant at the value calculated in part a) above.
(Ans: 124.2 kV line, 15.1 kV line)

TOPIC: STAR CONNECTED LOADS ON THREE WIRE SUPPLIES

1. A Y connected load with a $220 \mathrm{~V}, 60 \mathrm{~Hz}$ three wire supply, has branch impedance of $\mathrm{Z}_{\mathrm{A}}=66 / 15^{\circ} \Omega, \mathrm{Z}_{\mathrm{B}}=85 /-30^{\circ} \Omega, \mathrm{Z}_{\mathrm{C}}=90 / 20^{\circ} \Omega$.
Using line voltage E_{AB} as reference:
Calculate:
a) all line currents in polar form Voltage across lead
b) voltage of star point of load wit neutral point of supply.
(Ans: $\left.\mathrm{I}_{\mathrm{A}}=1.24 /-34.7^{\circ} \mathrm{A}, \mathrm{I}_{\mathrm{B}}=1.72 /-139^{\circ} \mathrm{A}, \mathrm{I}_{\mathrm{C}}=1.85 / 81.5^{\circ} \mathrm{A}, \mathrm{V}_{\mathrm{sN}}=48.7 /-47.5^{\circ} \mathrm{V}\right)$
2. A Y connected load has three impedances, $\mathrm{Z}_{\mathrm{A}}=$ a 100Ω resistor in series with a 400 mH inductor, $Z_{B}=$ a 120Ω resistor in series with a $10 \mu \mathrm{~F}$ capacitor, and $\mathrm{Z}_{\mathrm{C}}=$ a 250Ω resistor. The three wire supply, has a line voltage of 75 V , frequency 60 Hz , and a phase sequence of ABC .
Using line voltage $\mathrm{E}_{A B}$ as reference:
Calculate:
a) all line currents in polar form
b) voltage of star point of load writ neutral point of supply.
(Ans: $\mathrm{I}_{\mathrm{A}}=0.165 /-52.2^{\circ} \mathrm{A}, \mathrm{I}_{\mathrm{B}}=0.155 /-117.1^{\circ} \mathrm{A}, \mathrm{I}_{\mathrm{C}}=0.27 / 96.4^{\circ} \mathrm{A}, \mathrm{V}_{\mathrm{SN}}=25.1 /-72.1^{\circ} \mathrm{V}$)
3. Re-calculate the line currents for question 2 , when the phase sequence is changed to ACB .

$$
\text { (Ans: } \left.\mathrm{I}_{\mathrm{A}}=0.358 / 16^{\circ} \mathrm{A}, \mathrm{I}_{\mathrm{B}}=0.285 /-162.4^{\circ} \mathrm{A}, \mathrm{I}_{\mathrm{C}}=0.073 /-170^{\circ} \mathrm{A}\right)
$$

[^0]: Symmcompl.wpsuvol1

