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This paper discusses the use of Computer Algebra Systems (CAS) in engineering education. A
brief overview of the challenges and problems of computer and network-based lecturing and dis-
tance learning is given. From this general point of view, the power and limitations of CAS as sys-
tems for doing mathematics and simulations; calculators with infinite precision; teaching-tools for
non-trivial examples; and learning-tools for experimental mathematics are shown. Examples tracing
the use of CAS from the very first lectures to dissertations are then provided. New skills are
necessary in order for students to manipulate algebra systems and to judge the results; the new
skills are discussed and it is argued that the fear that students will forget their basic mathematical
knowledge is unjustified.

INTRODUCTION

Computer Algebra Systems (CAS) are programs de-
signed for the symbolic manipulation of mathematical
objects such as polynomials, triangles, integrals and
equations. Typical actions are simplification or expan-
sion of expressions, solving (systems of) differential
or algebraic equations, and the computation of prime
numbers. Most CAS allow the user at least to write
sequential programs for complex tasks, and have all
features of high-level programming languages avail-
able. As well as such features, CAS also have most
of the features of numerical systems for visualisation
(2D-plots, 3D-plots, animations) and numerical com-
putations (numerical equation solving, numerical inte-
gration). However, numerical systems are typically
faster in regard to the numerical handling of floats
with fixed precision. Some CAS solve this problem by
offering embedded links to such numerical software
as MATLAB™ (ie Maple V Release 5™).

Besides being a tool for the manipulation of formu-
lae, CAS should be expert systems knowing all of
the mathematics in a good mathematical handbook.
This has not really been achieved yet, but some
progress has been made, ie CAS should know all inte-
grals found in, for example, Gradshteyn, Ryzhik and
all differential equations from Kamke’s famous book
[1][2].

There are many commercial and non-commercial
products available. The most popular are Mathematica™

[3] and Maple™ [4] which will, in a (hopefully) ever-
lasting contest, continue to evolve. Other systems are
AXIOM™ [5], MuPAD™ [6] or REDUCE™ [7]. All
systems can be used for high-school to university math-
ematics, but they differ in comfort and complexity and
each has a different look and feel.

Throughout this paper, Maple V Release 5™ is
used as an exemplary CAS, although for most points
discussed it is simply a matter of taste as to which
program is used. But Maple has some features (espe-
cially the handling of some partial differential equa-
tions) that others do not have and, from the author’s
very personal point of view, the user interface is easier
to handle than that of the competitors [8].

There are also some hybrid programs that allow
symbolic computations as a feature of numeric sys-
tems (Symbolic Toolbox for Matlab™ [9], Mathcad™
[10][11], PV Wave™ [12]), and  text processors (Sci-
entific Workplace™ [13]) that  have embed a full CAS.
All these programs contain a kernel of the Maple CAS.
Other programs merely link to existing CAS using the
OLE concept. The problem of such hybrids is that
they are fixed to a certain release of the underlying
kernel or linked CAS and that normally they could not
be used across platforms.

MATHEMATICS GOES MULTIMEDIA

Computer Algebra Systems can have a significant im-
pact on the way mathematics is taught and applied.
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The situation can in some sense be compared to the
advent of the pocket calculator. Today, even in schools,
these are simply a tool and it has not meant the decline
of mathematics. It is however no longer necessary to
memorise the multiplication table up to twenty-five. In
teaching mathematics now, it is possible to concentrate
on mathematical content and not on counting numbers.

Using CAS it is possible to go one step further.
Instead of training integration rules on exotic cases
over and over again, for example, it is possible to con-
centrate on the meaning of integration and its approxi-
mation by numbers. We are not limited to trivial ex-
amples that work. Students are invited to play with
mathematics. They learn that real life examples nor-
mally do not lead to closed formulae. But they can
even play with and visualise different approximations
and learn to judge the results. They also learn that
there are a lot a mathematical tools, each with their
own rights and applicability.

Computer programs alone do not make up multime-
dia education, and we are a long way from having a
full integration of tools such as CAS for network-based
teaching and learning environments. Distance learning
has the advantage that students can learn where and
when they like. First steps have been taken: plug-ins
for web-browsers, such as Netscape, are available, and
allow students to look at and manipulate mathematical
content across the web (eg MathView™ [14]). Others
for Maple or Mathematica will probably follow. One
big step will be made when the standards (XML,
MathML) for mathematical typesetting will be avail-
able for all browsers and platforms; compare for ex-
ample IBM’s techexplorer [15].

But there should be no illusion about the amount of
work that must be done to convert a mathematical ex-
ample from the blackboard to an interactive, living web-
based document as computer-based training (CBT).
CBTs should then be embedded in a learning environ-
ment that manages access to different levels of mas-
tered lectures, collects the credits etc. It would be an
advantage if students could work in a similar way (look
and feel) with all the CBTs offered by a site.

EXAMPLES

Without going into details, some examples that should
provide an idea of the possibilities of CAS, especially
in contrast to numerical systems, are presented in this
section. Throughout this document the formatted
Maple output is emulated using ordinary postscript
symbols, although CAS normally have the possibility
to export formulae in a more sophisticated manner.
The Maple input is denoted by a preceding angle
bracket (>).

Infinite precision

Contrary to most numeric systems, CAS have the abil-
ity to perform computations with real numbers sym-
bolically without loss of precision. Additionally, CAS
are able to represent the results with arbitrary preci-
sion. However, it should be noted that results that are
achieved symbolically can sometimes turn out to be
less accurate than approximations if they are trans-
lated to numbers; for example, if the final solution for-
mula contains a lot of (exact, rational or real) terms
each producing little rounding errors if turned to floats.
Invoking a numerical solver could then actually do a
better job.

Real numbers

Often the symbolic representation is more intuitive than
the numerical representation, eg the value of an infi-
nite sum could be tackled symbolically:

>Sum(1/(1-2*n)*(-1)^n,n=1..infinity): %=values(%);
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Floats with arbitrary digits

Shanks calculated the value of p to 707 places and
published this result in 1873. Unfortunately, he made
a little mistake calculating the 528th digit (detected 71
years later by Ferguson) and so spent some years
absolutely in vain [16]. CAS are able to compute num-
bers with precision limited only by memory and com-
puting time. Using Maple we quickly find Shanks’ (cor-
rected) result:

> evalf(Pi,527);

3.1415926535897932384626433832795028841971693
9937510582097494459230781640628620899862803
4825342117067982148086513282306647093844609
55058223172535940812848111745028410270193852
1105559644622948954930381964428810975665933
4461284756482337867831652712019091456485669
2346034861045432664821339360726024914127372
4587006606315588174881520920962829254091715
3643678925903600113305305488204665213841469
5194151160943305727036575959195309218611738
1932611793105118548074462379962749567351885
7527248912279381830119491298336733624406566
430860214

Even on small computer systems the computing
time for Shanks’ total (corrected) work of years is
hardly measurable:
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> restart:time(evalf(Pi,707));
.013

A nontrivial example with Maple V Release 5:
geometric optics for irregular & gravitational
lensing

The optics of the foot of a wineglass or a black-hole
in a galaxy can be described in the geometrical op-
tics limit by a very simple two-parameter mapping
from the lens-plane (x,y) to the observer/screen-plane
(u,v). As is typical for irregular lenses, very bright
caustics appear. Below, it is shown how resultant
theory is used to classify the occurring morphologies
uniquely:

> restart: with(linalg):with(plots):with(plottools):

The lens mapping connects the plane (x,y) of the lens
with the plane (u,v) where the light rays (coming from
a distant light source) are observed. The two func-
tions are defined as:

> u :=(x, y, a)-> a*x-x/(x^2+y^2):
> v :=(x, y, b)-> b*y-y/(x^2+y^2):
> alias(U = u(x,y,a),V = v(x,y,b)):

Then the Jacobian of the mapping reads (as a Maple-
function):

> j:=unapply((det(jacobian([U,V],[y,x]))),x,y,a,b);
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> alias(J=j(x,y,a,b)):

The Jacobian J=0 of the mapping (also called criti-
cal curve) and the corresponding caustic (bifurcation
set), which are the image of the J=0 under the map-
ping, are plotted using the transform-function of the
plottools, one for each quadrant of the parameter plane
(a,b) (ie a=±0.1, b=±1).

> j1:=implicitplot(j(x,y, .1, 1),x=-1.3..1.3,y=-3.2..3.2,
axes=none, labels=[“”,””]):

> j2:=implicitplot(j(x,y, .1,-1),x=-1.3..1.3,y=-3.2..3.2,
axes=none,labels=[“”,””]):

> j3:=implicitplot(j(x,y,-.1,-1),x=-3.2..3.2,y=-1.3..1.3,
axes=none, labels=[“”,””]):

> j4:=implicitplot(j(x,y,-.1, 1),x=-3.2..3.2,y=-1.3..1.3,
axes=none, labels=[“”,””]):

Note, that the following transformations act on
plots:

> M1 := transform((x, y)-> [u(x,y,.1), v(x,y, 1.)]):
> M2 := transform((x, y)-> [u(x,y,.1), v(x,y,-1.)]):

> M3 := transform((x, y)-> [u(x,y,-.1),v(x,y,-1.)]):
> M4 := transform((x, y)-> [u(x,y,-.1),v(x,y, 1.)]):

Show all plots together (See Figure 1):

> display(array(1..2,1..4,[[j1,j2,j3,j4],[M1(j1),M2(j2),
M3(j3),M4(j4)]]));

Are these shapes (up to scalings) complete? The next
step is to try to find areas in the parameter plane
where the number of cusps of the caustics are con-
stant. Cusps are given by the vanishing directional
derivative of the mapping in the direction of the tan-
gent of the vanishing Jacobian (ie vanishing tangent
at the caustic). Up to some non-vanishing factors
(we are not interested in the cusps on the axes) the
components of the directional derivatives are given
by the following two polynomials. (Additionally, the
variable x² was replaced by X and some term order-
ing was applied.)

> P1 := subs(x = sqrt(X),collect(numer(normal((-diff
(J,y)*diff(U,x)+diff(J,x)*diff(U,y))/(2*y))),
x,factor));
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> P2 := subs(x = sqrt(X),collect(numer(normal((-diff
(J ,y)*d i ff (V,x)+di f f (J ,x)*d i ff (V,y) ) /
(2*x))),x,factor));
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The resultant of P1 and P2 wrt X is a fourth order
polynomial in y which has to vanish for simultaneous
solutions of P1 and P2. For convenience, an unimpor-

Figure 1: The first row shows the graph of implicit
equation J=0 (critical curves) for the values a=±0.1,
b=±1 in the plane (x,y). The second row shows the
corresponding caustics (images of J=0) in the (u,v)
plane.
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tant factor 4(b-a)², has been eliminated:

> R:=collect(resultant(P1,P2,X)/(4*(b-a)^2),y,factor);
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The number of solutions (cusps) changes if the dis-
criminant DIS (resultant of R and diff(R,y) wrt y)
vanishes:

> DIS:=factor(discrim(R,y));
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Result

As one could check only the first factor in the third
quadrant leads to real solutions for the cusps. (b² -
14ab + a²)² cuts the third quadrant into three parts.
Values near the axes (eg a=-10, b=0.1) lead to new
types of caustics:

> plot({solve(a^2-14*b*a+b^2,b)},a=-10..0,b=-10..0);
(See Figure 2)

> j5:=implicitplot(j(x,y,-10,-.1),x=-1.2..1.2,y=-3.2..3.2,
axes=none, labels=[“”,””]):

> M5 := transform((x, y)-> [u(x,y,-10), v(x,y,-.1)]):
> display(array(1..2,[j5,M5(j5)]));
(See Figure 3).

It would have been difficult to find all possible
shapes of caustics if a pure numerical scheme had
been used. However, without a CAS it would be even
difficult to build up the appropriate resultants. This is
maybe a reason why, before the advent of CAS, elimi-

nation- and resultant-theory was rarely taught at high-
schools or universities.

However, it should be noted that the complete clas-
sification of a general two-lens system is an outstand-
ing problem far beyond the scope of today’s CAS.

FROM A-LEVEL TO PHD

This section provides examples of the use of CAS at
the University of Technology of Hamburg-Harburg.

First steps

As the mathematical skills of freshmen can vary con-
siderably, preparatory training in mathematics and in
the use of computers is offered in order to equalise
starting conditions. In terms of computing knowledge,
students are introduced to UNIX and/or Windows,
some standard wordprocessing software, such as
MSWord (to prepare documents), Netscape (to find
more information), mathematical software, such as
Maple and Matlab, and a programming language, such
as Pascal or C (just up to hello world).

The preparatory course in mathematics was, in
the past, delivered through lectures and exercises.
Through collaboration between the Mathematics
Research Department and the Computing Centre, it
was possible to have students attempt to solve some
of the exercises using Maple; solutions were pro-
vided. Typically, students are quite impressed and
have fun using Maple for the first time. Curiously, in
preparing the solutions it was found that the (applied)
mathematicians proposed different examples (com-
puting numbers) to those that would have been se-
lected by our local Maple-experts (applied calculus,
visualisation).

Figure 2: Simultaneous solving and plotting of the im-
portant discriminant factor  (b² - 14ab + a²)  in the
parameter plane (a,b).

Figure 3: Critical curve (left) and corresponding caus-
tic (right) for the parameters a=-10, b=-0.1.
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Playing with differential equations

Students at a university of technology frequently en-
counter differential equations in their subjects, in sev-
eral practical exercises and finally in their diploma or
PhD theses.

Several ordinary differential equations or systems
of them can be solved symbolically or numerically by
most CAS. In Maple V Release 5 it is now possible to
analytically solve all equations given in Kamke’s book
[2]. In addition, Lie-symmetry, Laplace transform or
series methods are implemented and the solver can
switch to several numerical methods if nothing else
helps.

Also new, and perhaps unique, is an implementa-
tion of some methods to solve partial differential
equations (pde). Although boundary value problems
are not treated in this release, a first step is made
towards finding general solutions for several pdes
using separation of variables. The following exam-
ple shows the solution by separation for the wave
equation (somewhat uncommon in terms of hyper-
bolic functions containing arbitrary constants _C1 ..
_C4 and separation constant _c [17]). A fit of the
solution to boundary conditions must then be done
by hand:

> pde:=diff(f(x,t),x,x)-1/c^2*diff(f(x,t),t,t)=0;
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> pdsolve(pde,f(x,t),HINT=‘*‘,INTEGRATE,build);
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Publishing results: statistics, plots, html and ps

Students should learn very early on to present or pub-
lish their results. Maple has several possibilities to
export or print entire worksheets or parts as plots in
several formats, including postscript and jpg or LATeX
for formulae. In Release 5 the feature to export as
HTML is added, which is very important if the
worksheets are to be published on the web. Plots and
formulae are then generated in GIF-format and
animations as animated GIFs. (Some examples can
be found at our Maple web-page [18].)

Probability paper with Maple

The following is an example that stems from the the-
sis of Axel Vötter, who investigated the stability of
bikes [19]. He required a special kind of plot that was
not found in the available numerical or statistical pro-
grams, so it was decided to use a feature of Maple to
program the basic plot structures to redefine the tick-
marks of the plots.

If a normally distributed set of values is plotted in a
co-ordinate system that is scaled with the inverse nor-
mal distribution, the data will lie on a straight line.
Normally this is done by hand using the paper version
of the co-ordinate system, similar to the use of loga-
rithmic paper for exponential distributed data. Since
these kinds of plots are not foreseen in Maple, it is
necessary to do some work to simulate this probabil-
ity paper. For this sake, the inverse cumulative distri-
bution function (icdf) of the normal distribution func-
tion (from Maple’s statistic package) is used:

> with(stats[statevalf]):
> invF:=icdf[normald]:

First we create the tick-marks of the plot for the
values of the cumulative distribution function from
0.1% to 99.0% and glue them together with a list of
some additional tick-marks without numbers:

> YTicks1:=[seq(evalf(invF(i/100))=convert(i,string),
> i=[.1,.5,1.0,5.0,10.0,50.0,90.0,95.0,99.0])]:
> YTicks2:=[seq(evalf(invF(i/100))=²² ,
> i=[.2,.3,.4,2,3,4,20,30,40,60,70,80,96,97,98])]:
> YTicks:=[op(YTicks1),op(YTicks2)]:

Now a test example from Bronstein et al can be
filled in [17]. The upper class limits (XTest) and the
related cumulated frequencies in percent (YTest1) are
taken from the table, and then the inverse distribution
function is applied and the values are zipped together
to get a list of co-ordinate pairs (L):

> XTest:=[70,90,110,130,150,170,190,210,230,250]:
> YTest1:=[.8,1.6,3.2,10.4,22.4,40.0,64.0,85.6,92.8,97.6]:
> YTest:=map(invF,YTest1/100.):
> L:=zip((x,y)->[x,y],XTest,YTest)[];

L  :=  [70, -2.408915546], [90, -2.144410621], [110, -
1.852179859], [130, -1.259083980], [150, -.7587
535445], [170, -.2533471031], [190, .35845879
33], [210, 1.062519302], [230, 1.461056269],
[250, 1.977368428]

It is possible to fit a straight line into the data to
find the mean and the standard deviation:

> with(stats):
> FIT:=unapply(
>      rhs(fit[leastsquare[[x,y]]]([XTest,YTest])),x);
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xxFIT 80256504104.0485794463.4: +-®=

> mu:=solve(FIT(x)=0): sigma:=solve(FIT(x)=1)-mu:

and put everything together in a plot structure. Note
that the essential scaling of the axis is achieved by the
highlighted part (See Figure 4):

> plots[display](
> plot(FIT,50..250),
> plot(-1,50..mu-sigma,color=blue),
> plot([mu-sigma,y,y=-4..-1],color=blue),
> plot( 0,50..mu,color=blue),
> plot([mu,y,y=-4..0],color=blue),
> plot( 1,50..mu+sigma,color=blue),
> plot([mu+sigma,y,y=-4..1],color=blue),
> PLOT(POINTS(L),AXESTICKS(DEFAULT,

YTicks),
> VIEW(50..250,-4..4),AXESSTYLE(BOX),
> TEXT([mu,-3],“m”,ALIGNBELOW,FONT

(SYMBOL)),
> TEXT([mu-sigma,-3],“m-s”,ALIGNBELOW,

FONT(SYMBOL)),
> TEXT([mu+sigma,-3],“m+s”,ALIGNBELOW,

FONT(SYMBOL)),
> TEXT([50,4],“Q%”,ALIGNLEFT))
>   );

NEW POSSIBILITIES - NEW DIFFICULTIES

Although CAS free the users from boring, standard

tasks, it is sometimes hard to bring mathematical ex-
pressions exactly to a desired form, even if the neces-
sary transformations are obvious. The reason is often
the internal representation of expressions, which is
quite different compared to representation on paper.
It is therefore quite helpful if a user knows something
about how CAS (ie the programmers) think. Another
problem is the simplification or expansion rules. It is
often hard to see what simple means; for example
what is simpler log(xy) or log(x)+log(y)?

One way to gain experience is to play around with
them after a short (and maybe online) introduction.
Another way is to analyse given examples. There is a
vast amount of literature about CAS. Often mathemati-
cal examples are used to demonstrate CAS features.
There are also some textbooks about mathematics that
use CAS to solve examples. But there are only a few
mathematical handbooks that show simultaneously
how the proposed formulae or algorithms are imple-
mented in CAS. One exception is Stöcker’s book,
which is also available on CD-ROM or online, called
Desktop Mathematik [20][21]. Here a lot of formu-
lae are translated to PASCAL, Mathematica or Ma-
ple. In the next release the Maple, and probably the
Matlab, content will be strongly enhanced by about
200 working examples. They are available as pure
HTML documents and also as executable worksheets.
A preliminary version can be found at the author’s
Desktop Evaluation Area [22].

Another example is the CRC Interactive, the CD-

Figure 4:  A plot scaled by the inverse cumulative distribution function showing all important information: the data
as points, a linear fit, the mean and the standard deviation.
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ROM version of the CRC Standard Mathematical Ta-
bles and Formulae (English, Windows only) [23]. In
this interactive CD-ROM application, the textual in-
formation is enriched by working formula using the
Maple kernel. Using the Windows’ interface, it is also
possible to use cut and paste methods to bring the
formulae to text processors or a full Maple environ-
ment.

CONCLUSION

In the near future CAS will be as standard a tool for
students and engineers for doing mathematics as the
pocket calculator is today. But CAS are not able to
perform miracles, since all the symbolic calculations
could in principle be done by hand. However, CAS
open up a field of computations that are often practi-
cally impossible to carry out manually.

Students will use CAS to solve their mathematical
everyday problems in exercises or theses. Teachers
can use the power of CAS to enrich their lectures
with more nontrivial mathematical content. Scientist
and engineers could save their work using CAS as a
4th-level computing/documentation environment.

GETTING MORE INFORMATION

A general CAS site is at [24]. Comparisons of differ-
ent CAS are found at [25][26]. Maple related material
can be found at [4][18][27][28]. To subscribe to the
worldwide Maple User Group click at [29]. Informa-
tion about other CAS is at: [3][5-7]. Finally, information
in and about this article and more can be found at [30].
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