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INTRODUCTION

Mechatronics is an interdisciplinary body of

…knowledge that was developed, to a
great extent, in mechanical engineering
departments and other non-electrical
departments, as well as in the more non-
electromagnetic university specialisations.
It is considered as especially essential for
the engineering environment of the next
millennium [1].

In a paper by Rizzo et al., the definition adopted by
the International Federation for the Theory of
Machines and Mechanism (IFTMM) is presented. It
states that

…Mechatronics is the synergistic combi-
nation of precision mechanical engineering,
electronic control and systems thinking in
the design of products and manufacturing
processes [2].

As presented in Figure1a, this is not sufficient to
describe the full development of this emerging disci-
pline and specialisation. This approach does not take
into account the inside of the structure of motors and
many new electromechanical apparatus and devices.
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Electromagnetic theory is usually regarded as the most difficult subject in electrical engineering.
Because of its wide application in electrical and mechanical systems, it has become an important
subject. Therefore, special attention is given to the teaching of electromagnetic theory and application in
mechatronics, a relatively new speciality in engineering. A special subject, dealing with the concepts,
ideas and principles of electromagnetism has been designed and implemented. The paper presents a new
approach to teaching electromagnetism, and the way in which the Reluctance Network Method (RNM)
can be successfully used for the analysis of electromagnetic circuits and structures. Also, some compari-
sons between different methods of analysis are presented and discussed in the paper.

It is not possible to establish whether magnetic and
electric circuits of such devices are optimal for a given
job and a power supply without a thorough electro-
magnetic analysis. There are many examples that
demonstrate that not only electronics and computers,
but also the internal electromagnetic structure play a
significant role in the assurance of optimal
mechatronics system design and performance.

Electromechanical components of mechatronics are
especially sensitive to their internal electromagnetic
structures. Most impressive and popular examples of
such structures are stepping, linear, switched reluc-
tance and brushless motors of a large variety. Such
mechatronics components can not exist separately
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Figure 1: Two approaches to the definition of mecha-
tronics: a) Formal mechanical, b) Considering the
component design [2].
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without any internal, inherent feedback of magnetic
and electronic circuits.

Modern electrical machines are mostly tailor-
made by manufacturers of components for aircraft,
automobile, robotics and other modern mechatronic
systems. Also, the modernisation of traditional
components of automatics, like synchros, resolvers,
magnesyns, microsyns, inductosyns, reductosyns,
synchrotels, electromagnetic sensors, etc, is not
possible without an electromagnetic analysis. From this
point of view, the strictly mechanical definition
(Figure 1a), indicated above, should be extended by
saying that engineering electromagnetics is an
inseparable element of education in Mechatronics
(Figure 1b).

In light, it is necessary to look for an appropriate
method for teaching electromagnetism, one that would
be as easy and simple as possible, but without losing
its accuracy, and which would be most user-friendly
for non-electrical specialisations. This is the main
objective of this work.

The most difficult problem for modern mechatronics
is that for most engineers, electromagnetism is
mistakenly thought to be too difficult. Also, they do
not accept the fact that it is an effective and indispen-
sable engineering tool. The solution is simple: it
requires the selection of the proper method of analysis.
The Reluctance Network Method (RNM) is extremely
easy and user-friendly in this sense.

CHOOSING EASY AND USER-FRIENDLY
METHODS OF ELECTROMAGNETIC
DESIGN

At the beginning of 1980s, it was very popular to
compare different methods of approximate numerical
calculations of electromagnetic fields [3]. Such a
comparison was too general as it was carried out on
rather simple models. The contemporary approach to
this problem involves carrying out such a comparison
from the point of view of the usefulness of a particu-
lar method for the solution to a given problem or class
of jobs, or for groups of users, rather than from a
general point of view without strictly defined criteria.

For instance, the most popular Finite Element
Method (FEM) is nowadays used widely to determine
solutions to many problems, especially with 2-D and
quasi 2-D configurations. Although the FEM method
is by no means absolutely universal, it has been found
that not every method is the best for any job. For
example, in external, open boundary problems, the
Boundary Element Method (BEM) is much better than
the FEM. On the other hand, in cover-plates and bush-
ing systems in transformers, the Analytically-Numerical

(ANM) Biot-Savart approach is much better than all
of the mesh methods mentioned above [4].

In many practical applications, the determination
of an equivalent reluctance has proved to be the most
simple and user-friendly method. It is the most under-
standable method for non-specialists because they can
very easily accept the analogy between the water flow
in pipes, the current flow in electric circuits, the
magnetic flux flow in magnetic structures, etc. In this
analogy, the pipes can be represented by resistances
in an electric circuit and by magnetic reluctances in a
magnetic circuit.

Fundamental circuit theory laws such as Ohm’s and
Kirchhoff ’s laws, as well as their magnetic analo-
gies, can easily be used to analyse such circuits, as
they are well taught in secondary school physics.
Nevertheless, it is necessary to compare main numeri-
cal methods used for the numerical calculation of elec-
tromagnetic fields from various practical points of view.

Table 1 presents the comparison of different
approximate numerical methods used for 3-D model-
ling and computation of electromagnetic fields. This
comparison was carried out in order to illustrate the
strengths and weaknesses of these methods from the
most important practical points of view (criteria).

Some impressions in Table 1 can be considered to
be more or less subjective, but they are based on long
and numerous observations of publications, confer-
ences as well as industry and personal experience.

From the analysis in Table 1, it follows that for the
most popular and easy application, the equivalent
reluctance method three-dimensional (RNM-3D) is
the most recommended for non-electrical specialists.
This has been confirmed by many practical applica-
tions [2][4-13]. More detailed description of the RNM
teaching approach is given in papers [14] to [16].
After a student gains experience in RNM, it is possi-
ble to try to use a more sophisticated commercial pack-
age or FEM in 2-D and Quasi 2-D systems. Real
FEM-3D is too complicated.

TRAINING OF MECHATRONICS STUDENTS
IN ENGINEERING ELECTROMAGNETICS

A special subject dealing with the fundamental
concepts of electromagnetic fields and electromagnetic
circuit design has been developed and implemented.

The subject consists of fundamentals of the theory
of electromagnetic fields, analytical exercises and
calculation of definite engineering problems encoun-
tered in everyday practice (eg touch and step
voltage), earthing resistance, capacitors, radiolocation
fields, power losses in a round bar made of solid steel,
induction dryers or heaters, solid steel elements of
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electrical machines and power transformers, screening
(in power transformers, stealth aircraft technology,
tanks, ships, etc), wave-guides, etc.

The practical part of the subject is enriched by labo-
ratory demonstrations of applied computer methods,
including the Reluctance Network Method (RNM),
Tubes and Slices Method (TSM), Boundary Element
Method (BEM) and Finite Element Method (FEM).
All the methods use the same practical example and
the same magnetic structure (electromagnet). It should
be mentioned at this point that the use of the RNM-
3D method by students in the laboratory experiments
has been found to be the most efficient and easy.

EXERCISES IN COMPUTER LABORATORY

The subject was offered in the International Faculty
of Engineering (IFE) at the Technical University of
Lodz (TUL), Lodz, Poland, as EDT-LAB between
11 May and 5 June 1998, that is in the fourth semester
of academic year 1997/98. The study speciality
was Mechatronics and the subject name was Engi-
neering Electrodynamics. Prof. J. Turowski super-
vised the subject, and there were several packages,
dealing with modelling and computation of electro-
magnetic fields, power losses and forces used in the
subject.
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Table 1: The comparison of cost, usefulness and simplicity of different approximate numerical methods for fast,
3-D interactive modelling, computation and design of electromagnetic fields, forces and losses in electromechani-
cal converters.
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These included:

1. Zwolinski, G., Exercises on FINITE DIFFER-
ENCE METHOD - FDM
[a] Wiak, S. and Zwolinski, G., Selected compu-
tation problems of technological electrodynamics
(in Polish). Politechnika Lodzka, Lodz (1997).
FDM Suppl.No. 1, 2: Service Manual Program
MRS-ed.

2 1. Sykulski, J., Exercises on METHOD OF
TUBES AND SLICES - TaS
[b] Hammond, P. and Sykulski, J.K.: Engineering
Electromagnetism: Physical Processes and
Computation. Oxford, New York, Toronto:
Oxford University Press (1994), with program disk.

3. Turowski, J., RELUCTANCE NETWORK
METHOD THREE-DIMENSIONAL RNM-3D
[c] Turowski, J.: Computational Magnetics. Chapter
4. Reluctance Networks. New York, London:
Chapman & Hall (1995), including files:
c.1. rekl-rnm. doc - Information about the
advantages and possibilities of the RNM-3D
Program at the dedicated calculation of stray field
and losses in power transformers.
c.2. uvw1.pcx - Figure 3-D. To run, press: NC
Enter; F3 Enter; Reduce/enlarge grey-/+; Esc
c.3. rnmdemo.exe - To demonstrate calculation
with the help Program RNM-3D of the stray field
component and loss distribution in three-phase
power transformer. To run: press: Enter ... Q - to
quit.
c.4. rnmquest.doc - The Questionnaire. To
prepare data for three-dimensional (3-D) simula-
tion and computation of leakage field, eddy
current losses in tank wall and selection of
electromagnetic and/or magnetic screens in three-
phase power transformers on an IBM PC

compatible computer, on below than 1 second
CPU time for each structural variant.

4. Integrated Engineering Software, Canada. Bound-
ary Element Method - BEM
[d] BEM I, ELECTRO + MAGNETO and BEM
II, ELECTRO + COULOMB demonstration
diskettes. Hardware required: a) IBM PC/AT, PS/
2 or compatible, b) DOS 3.3 or higher, c) IBM
VGA or compatible, d) (1.44 MB) Floppy Drive,
e) Fixed Disk.
Vector Fields UK. Finite Element Method - FEM.
PC-OPERA (demo disk).

Some practical exercises used in the subjects were as
follows:

Exercise 18: Engineering Electrodynamics

Calculate the force F = f(g) and the flux density B
max

= f (g) in a lifting electromagnet (Figure 2) with
respect to the gap g = 3 to 1 mm. Dimensions in mm:
a = 80, b = 20, c =10, d = 50, e = 30, f = 10, h = 10,
g = 1, 2, 3. The magnetic core is made of laminated
iron with an average relative magnetic permeability
µ

r
 = 700 = const.

Use the following approximate numerical methods:

1. Finite Difference FDM
2. Reluctance Network RNM
3. Tubes and Slices TAS

Check the results obtained with other methods.

Solution

The field is described by the Poisson’s Equation as
follows:
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Figure 2: Modelling of the lifting electromagnet (FDM).



Electromagnetism for Mechatronics 103

In order to solve any differential equation, boundary con-
ditions should be applied. In electromagnetic
problems they are usually: Dirichlet, including zero
condition (A=0 or H = 0), and Neumann, including zero

(
∂
∂

A

n  = 0 or H
t 
= 0).

The electromagnetic forces can be calculated using
the following three methods:

a) From the Ampere’s law:

dF = I (dl × B) = nI dl B sin ∠(dl, B),

F = ( )J B×∫∫∫ dV
V

= n B I l sin ∠(I , B)

b) From the principle of virtual works (see: J.
Turowski: Teoria maszyn elektrycznych
Theory of elcetrical machines. TUL, 1984, p.17),
we can see that:

F
g
 = - (∂ W

m
’/∂ g )

i=const
 , where F

g 
is the force

in direction of g of motion of the moving part,
W

m
’ magnetic co-energy = energy when

µ = const.

c) From the Maxwell’s stress tensor:

F = 1
2 µ

0
 n ( )H Hn t

s

2 2−∫∫ ds + µ
0
 t

s
∫∫ H

n
 H

t
 ds

= nF
n
 + tF

t

Please note that in the method of virtual works, we
use the total energy of the system, whereas in the
Maxwell’s stress tensor, we are looking only for the
field on the surface of the moving element.

Flux linkage: Definition:
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Φ = B s∫∫ • d  = 
N i

Rm
 ;

 R
mi

 = 
l

s
i

iµ ;  W
m
 = L i 2

2
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i
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=

=
∑

1
H

i
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i
 = Ni ;

i
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l
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 + 
i
∑ H
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i
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=
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1
H

Fe 
l
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 ≈ 0

and  B
0m

 = µ
0 
H

0m
 ≈ µ

0 

2 NI

gi∑  .

More detailed descriptions of the RNM-3D method
applied in teaching is given in [15][16].

INDUSTRIAL ASPECTS

In simple 2-D examples used by students, all the
methods (FDM, RNM, TSM, BEM and FEM) are
practically equivalent in their complexity and the use
of time.

However, when solving complex 3-D problems
(Figure 3) the RNM-3D solution takes a few seconds
on a PC, whereas the FEM-3D needs hundreds of
hours of the CPU’s time on an expensive computer
and requires the use to be highly qualified to be able
to use it.

CONCLUSION

It has been found that applied electromagnetics plays
an important role in the teaching of mechatronics. The
nature and complexity of electromagnetics require
an extensive use of modern numerical methods, espe-
cially for electromagnetic field computation. However,
many excellent numerical methods applied in electro-
magnetic field computation are too difficult when
used in design and application by non-electrical
specialists.

Practical experience shows that the RNM-3D
method is an extremely simple tool, which provides
the user with a user-friendly environment in electro-
magnetic field computation. Therefore, the use of this
method should be strongly recommended to staff and
students in mechatronics engineering education.

When using the RNM, students can even model
3-D fields, the process which is extremely difficult,
time consuming and expensive in the FEM-3D, FDM-
3D and BEM-3D.

After students become familiar with all the basic
ideas, notions and laws of electromagnetic fields, they
can endeavour to use much more sophisticated and
expensive methods like FEM, FDM, BEM and other
commercial programs. Since electromechanical
devices can often be modelled and calculated
with the help of 2-D fields, then the FEM is much
easier, as they can continue their analyses with
FEM-2D.

The most difficult problem for modern mechatronics
is that for most engineers, electromagnetism is
mistakenly thought to be too difficult. Often it is very
difficult to calculate certain electromagnetic struc-
tures. There is a simple solution by selecting the proper
method of analysis. The Reluctance Network Method
(RNM) is extremely easy and user-friendly in this
sense.

Furthermore, it is mostly engineers who do not
accept that it is an effective and indispensable engi-
neering tool.
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b) A model with screens (total stray 
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Figure 3: Transformer of 100 MVA, 220/132/11 kV, with results of calculations of stray loss with RNM-3D
method (G. Zwolinski [11]).
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d) Cross section of the transformer. 
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