E046 Online Test

Ref 69

A living room has the floor dimension and height of $3.5 \mathrm{~m} \times 4.2 \mathrm{~m}$. A height of 2.4 m (a) What does the air in the room weigh when the air pressure is 1 atm? (b) What is the magnitude of the atmosphere downward force on the top of your head which we take to have an area of $0.04 \mathrm{~m}^{2}$

A	$420 \mathrm{~N}, 4 \times 10^{3} \mathrm{~N}$	B	$840 \mathrm{~N}, 8 \times 10^{3} \mathrm{~N}$
C	$210 \mathrm{~N}, 2 \times 10^{3} \mathrm{~N}$	D	$1640 \mathrm{~N}, 6 \times 10^{3} \mathrm{~N}$
Answer			

Ref72

A copper slug whose mass m_{c} is 75 g is heated in a laboratory oven to a temperature T of 312 deg C . The slug is then dropped into a glass beaker containing mass $m_{w}=220 \mathrm{~g}$ of water. The heat capacity C_{b} of the beaker is $450 \mathrm{cal} / \mathrm{deg} \mathrm{K}$. The initial temperature T_{i} of the water and the beaker is 12 deg c. Assuming that the slug and the water does not vaporize. Find the final temperature T_{f} of the system at thermal equilibrium.

A	60 Deg C	B	30 Deg C			
C	90 Deg C	D	15 Deg C			
Answer						

Ref75

The molar mass M of oxygen is $0.072 \mathrm{Kg} / \mathrm{mol}$ (a) What is the average speed V avg of oxygen gas molecules at $\mathrm{T}=300$ deg K . What is the most probable Vp at 300 deg K .

A	$745 \mathrm{~m} / \mathrm{s}$	B	$1500 \mathrm{~m} / \mathrm{s}$
C	$600 \mathrm{~m} / \mathrm{s}$	D	$300 \mathrm{~m} / \mathrm{s}$
Answer			

Ref78
32. The block whose mass " m " is 680 g is fastened to spring whose spring constant K is $65 \mathrm{~N} / \mathrm{m}$. the block is pulled a distance $X=11 \mathrm{~cm}$ from it's equilibrium position at $X=0$ on a fractionless surface and released from rest at $\mathrm{t}=0$.
(a) What are angular frequency, the frequency and period of resulting motion?
(b) What is the amplitude of oscillation?
(c) What is the maximum speed Vm of the oscillating block and where is the block when it has this period?
(d) What is magnitude of oscillation?
(e) What is the phase constant ϕ for the motion?
(f) What is the displacement function?

A	$9.78 \mathrm{rad} / \mathrm{s}, 1.6 \mathrm{HZ}, 0.64 \mathrm{sec}, 11 \mathrm{~cm}$, $1.1 \mathrm{~m} / \mathrm{s}, 11 \mathrm{~m} / \mathrm{s}^{2}, 0.11 \cos 9.78 \mathrm{t}$	B	$18 \mathrm{rad} / \mathrm{s}, 3 \mathrm{HZ}, 1 \mathrm{sec}, 11 \mathrm{~cm}, \quad 3 \mathrm{~m} / \mathrm{s}$, $22 \mathrm{~m} / \mathrm{s}^{2}, 0.7 \cos 18 \mathrm{t}$
C	$36 \mathrm{rad} / \mathrm{s}, 5 \mathrm{HZ}, 7 \mathrm{sec}, 40 \mathrm{~cm}, \quad 10 \mathrm{~m} / \mathrm{s}$, $30 \mathrm{~m} / \mathrm{s}^{2}, 10 \cos 7.98 \mathrm{t}$	D	
Answer			

Ref81

The following equations give the position $X(t)$ of a particle in four situation.
(a) $X=8 t-2$
(b) $X=-9 t^{2}-2$
(c) $x=1 / 2 t^{2}$ (d) $x=-3$

In which situation, the velocity V is constant

A	a	B	b
C	c	D	d
Answer			

Ref84

The magnitude of a is 3 Km due East and $b=5 \mathrm{Km}$ North of East. $\mathrm{c}=1 \mathrm{Km}$ due West. What is the greatest distance at third displacement?

A	4.8 km	B	9.6 km
C	112 km	D	20 km
Answer			

Ref87
$a=4 I+5 j+7 k \quad b=3 I+j+4 k$ Find $a X b$

A	$-2 i+8 j-5 k$	B	$2 i-8 j+5 k$
C	$2 i+8 j+5 k$	D	
Answer			

Ref90

The circus performer is riding a bicycle in the loop with radius $\mathrm{R}=2.7 \mathrm{~m}$. What is the least speed at the top of the loop and the force. Mass = 20 kg .

A	$3 \mathrm{~m} / \mathrm{s}$	B	$2 \mathrm{~m} / \mathrm{s}$
C	$5.1 \mathrm{~m} / \mathrm{s}$	D	$10 \mathrm{~m} / \mathrm{s}$
Answer			

Ref93

A locomotive is moving at $0.25 \mathrm{~m} / \mathrm{s}^{2}$ acceleration and it is weighed $1.2 \times 10^{6} \mathrm{~N}$. What is kinetic energy? It moves for 3.2 Km .

A	2 MJ	B	1 MJ
C	3 MJ	D	4 MJ
Answer			

Ref96

Three particles of masses $m 1=1,2 \mathrm{Kg}, \mathrm{m} 2=2.5 \mathrm{Kg}$ and $\mathrm{m} 3=3.4 \mathrm{~kg}$ form an equilateral triangle of edge length $a=140 \mathrm{~cm}$. Where is the centre of mass of this system?

A	116 cm	B	29 cm
C	14.5 cm	D	58 cm
Answer			

Ref99
A grind stone rotates at a constant angular acceleration $\alpha=0.85 \mathrm{rad} / \mathrm{s}^{2}$. At time $\mathrm{t}=0$, it has angular velocity $w 0=-4.6 \mathrm{rad} / \mathrm{s}$ and a reference line on it is horizontal at the angular position $\quad \mathrm{w}=0$
(a) At what time after $t=0$ is the reference line at angular position $\Theta=5 \mathrm{rev}$
(b) Describe the rotation between $t=0$ and $t=32 \mathrm{sec}$.
(c) At what time t , does the grind stone momentarily stop?

A	$16 \mathrm{sec}, 0.1 \mathrm{rad} / \mathrm{s}^{2}, 13 \mathrm{sec}$	B	$32 \mathrm{sec},-0.35 \mathrm{rad} / \mathrm{s}^{2}, 13 \mathrm{sec}$
C	$48 \mathrm{sec},-0.7 \mathrm{rad} / \mathrm{s}^{2}, 20 \mathrm{sec}$	D	$16 \mathrm{sec}, 0 \mathrm{rad} / \mathrm{s}^{2}, 13 \mathrm{sec}$
Answer			

Ref100

A coach roach rides the rim of a rotating merry go around. If the angular speed is constant, does the coach roach have (a) Radial acceleration ? (b) Tangential acceleration ? What angle Θ_{p} should the arc subtend so that a 15.4 kg at the point " P ".

A	50 Deg	B	30 Deg
C	111 Deg	D	200 Deg
Answer			

Ref101

Figure shows a uniform disk with mass $M=2.5 \mathrm{~kg}, \mathrm{R}=20 \mathrm{~cm}$. A block of $\mathrm{m}=1.2 \mathrm{~kg}$ hangs from a massless cord. Find acceleration of falling block.

A	$9.3 \mathrm{~m} / \mathrm{s}^{2}$	B	$4 \mathrm{~m} / \mathrm{s}^{2}$		
C	$18 \mathrm{~m} / \mathrm{s}^{2}$	D	$3.8 \mathrm{~m} / \mathrm{s}^{2}$		
Answer					

Ref89

$m=5 \mathrm{~kg} \quad \alpha=30 \mathrm{deg}$
Cord A cord pulls on a box up along a frictionless plane

inclined at $\alpha=30$ degree. The box has mass $m=5 \mathrm{~kg}$
The speed from the cord has magnitude $T=30 \mathrm{~N}$. What is
acceleration of the box?

A	$0.1 \mathrm{~m} / \mathrm{s}^{2}$	B	$1 \mathrm{~m} / \mathrm{s}^{2}$
C	$0.01 \mathrm{~m} / \mathrm{s}^{2}$	D	$2 \mathrm{~m} / \mathrm{s}^{2}$
Answer			

Ref81

The following equations give the position $X(t)$ of a particle in four situation.
(a) $X=8 t-2$
(b) $X=-9 t^{2}-2$
(c) $x=1 / 2 t^{2}$ (d) $x=-3$

In which situation, the velocity V is constant

A	a	B	b
C	c	D	d
Answer			

