E046 Online Test

Ref 69

A living room has the floor dimension and height of $3.5 \text{ m} \times 4.2 \text{ m}$. A height of 2.4 m (a) What does the air in the room weigh when the air pressure is 1 atm? (b) What is the magnitude of the atmosphere downward force on the top of your head which we take to have an area of 0.04 m^2

А	420 N, 4 x 10 ³ N	В	840 N, 8 x 10 ³ N
С	210 N, 2 x 10 ³ N	D	1640 N, 6 x 10 ³ N
	Answer		

Ref72

A copper slug whose mass m_c is 75 g is heated in a laboratory oven to a temperature T of 312 deg C . The slug is then dropped into a glass beaker containing mass m_w = 220 g of water. The heat capacity C_b of the beaker is 450 cal / deg K . The initial temperature T_i of the water and the beaker is 12 deg c. Assuming that the slug and the water does not vaporize. Find the final temperature T_f of the system at thermal equilibrium.

А	60 Deg C	В	30 Deg C
С	90 Deg C	D	15 Deg c
	Answer		

Ref75

The molar mass M of oxygen is 0.072 Kg/mol (a) What is the average speed V avg of oxygen gas molecules at T = 300 deg K. What is the most probable Vp at 300 deg K.

А	745 m/ s	В	1500 m/s
С	600 m/s	D	300 m/s
	Answer		

- 32. The block whose mass "m" is 680 g is fastened to spring whose spring constant K is 65 N/m . the block is pulled a distance X=11 cm from it's equilibrium position at X=0 on a fractionless surface and released from rest at t=0.
 - (a) What are angular frequency, the frequency and period of resulting motion?
 - (b) What is the amplitude of oscillation?
 - (c) What is the maximum speed Vm of the oscillating block and where is the block when it has this period?
 - (d) What is magnitude of oscillation?
 - (e) What is the phase constant ϕ for the motion?
 - (f) What is the displacement function?

A	9.78 rad/s, 1.6 HZ, 0.64 sec, 11 cm, 1.1 m/s, 11 m/ s ² , 0.11 cos 9.78 t	В	18 rad/s, 3 HZ, 1 sec, 11 cm, 3 m, 22 m/ s ² , 0.7 cos 18 t	/s,
С	36 rad/s, 5 HZ, 7 sec, 40 cm, 10 m/s, 30 m/ s ² , 10cos 7.98 t	D		
	Answer			

Ref81

The following equations give the position X(t) of a particle in four situation. (a) (a)X = 8t - 2 (b) $X = -9t^2 - 2$ (c) $x = 1/2t^2$ (d) x = -3

In which situation, the velocity V is constant

Α	а	В	b
С	С	D	d
	Answer		

Ref84

The magnitude of a is 3 Km due East and b = 5 Km North of East. c = 1 Km due West. What is the greatest distance at third displacement?

Α	4.8 km	В	9.6 km
С	112 km	D	20 km
	Answer		

$$a = 4I + 5j + 7k$$
 $b = 3I + j + 4k$ Find $a \times b$

А	-2i+8j-5k	В	2i-8j+5k
С	2i+8j+5k	D	
	Answer		

Ref90

The circus performer is riding a bicycle in the loop with radius R = 2.7 m. What is the least speed at the top of the loop and the force. Mass = 20 kg.

Α	3 m/s	В	2 m/s
С	5.1 m/s	D	10 m/s
	Answer		

Ref93

A locomotive is moving at 0.25 m/ s^2 acceleration and it is weighed 1.2×10^6 N. What is kinetic energy? It moves for 3.2 Km.

А	2 MJ	В	1MJ
С	ЗМЈ	D	4MJ
	Answer		

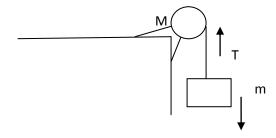
Three particles of masses m = 1,2 Kg, $m^2 = 2.5 \text{ Kg}$ and $m^3 = 3.4 \text{ kg}$ form an equilateral triangle of edge length a = 140 cm. Where is the centre of mass of this system?

Α	116 cm	В	29 cm
С	14.5 cm	D	58 cm
	Answer		

Ref99

A grind stone rotates at a constant angular acceleration $\alpha = 0.85 \text{ rad/s}^2$. At time t = 0, it has angular velocity w0 = -4.6 rad/s and a reference line on it is horizontal at the angular position w = 0

- (a) At what time after t= 0 is the reference line at angular position $\Theta = 5$ rev
- (b) Describe the rotation between t = 0 and t = 32 sec.
- (c) At what time t, does the grind stone momentarily stop?

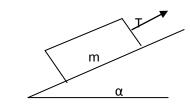

Α	16 sec, 0.1 rad/s ² , 13 sec	В	32 sec, -0.35 rad/s ² , 13 sec
С	48 sec, -0.7 rad/s ² , 20 sec	D	16 sec, Orad/s ² , 13 sec
	Answer		

Ref100

A coach roach rides the rim of a rotating merry go around. If the angular speed is constant, does the coach roach have (a) Radial acceleration? (b) Tangential acceleration? What angle Θ_p should the arc subtend so that a 15. 4 kg at the point "P".

А	50 Deg	В	30 Deg
С	111 Deg	D	200 Deg
	Answer		

Figure shows a uniform disk with mass M = 2.5 kg, R = 20 cm. A block of m = 1.2 kg hangs from a massless cord. Find acceleration of falling block.



Α	9.3 m / s ²	В	4 m / s ²
С	18 m / s ²	D	3.8 m / s ²
Answer			

Ref89

m= 5 kg α = 30 deg

Cord A cord pulls on a box up along a frictionless plane

inclined at α = 30 degree. The box has mass m = 5 kg

The speed from the cord has magnitude T = 30N. What is

acceleration of the box?

Α	0.1 m/ s ²	В	1 m/ s ²
С	0.01 m/ s ²	D	2 m/ s ²
	Answer		

Ref81

The following equations give the position X(t) of a particle in four situation. (a)
$$(a)X = 8t - 2$$
 (b) $X = -9t^2 - 2$ (c) $x = 1/2t^2$ (d) $x = -3$

In which situation, the velocity V is constant

Α	а	В	b
С	С	D	d
	Answer		