E046 Online Test

Ref67

A rolling object has linear velocity $342.5 \mathrm{~m} / \mathrm{s}$ radius $=3 \mathrm{~m}$ mass $=170 \mathrm{~kg}$ Calculate total kinetic energy.

A	$1.5 \times 10^{7} \mathrm{~J}$	B	$3 \times 10^{7} \mathrm{~J}$
C	$4.5 \times 10^{7} \mathrm{~J}$	D	$6 \times 10^{7} \mathrm{~J}$
Answer			

Ref70

On a hot day in Las Vegas, an oil tanker loaded 37000 L of diesel fuel. It encounters cold weather on Utah where temperature was 23 Degree K lower than in Las Vegas. How many litres did it deliver? Volume expansion for diesel fuel is $9.5 \times 10^{-4} /$ Deg C coefficient of linear expansion is $11 \times 10^{-6} / \mathrm{deg} \mathrm{c}$

A	18380 L	B	36190 L
C	20000 L	D	10000 L
Answer			

Ref73

A cylinder contains 12 L of oxygen at 20 deg C and 15 atm . The temperature is raised to 35 deg C and the volume is reduced to 8.5 L . What is the final pressure of the gas in atmosphere.?

A	22 atm	B	33 atm
C	11 atm	D	44 atm
Answer			

Ref76

Three Carnot engines operate between reservoir temperatures of (a) 400 deg K and 500 deg K (b) 600 and 800 deg K (c) 400 and 600 deg K. rank the engineers according to thermal efficiencies. Greatest first.

A	c, b, a	B	a, b, c
C	b, c, a	D	Equal
Answer			

Ref80

A wave travelling along a string is described by $Y(x, t)=0.00328 \operatorname{Sin}(97.1 X-2.92 t)$
(a) What is the amplitude of this wave?
(b) What are the wave length, period and frequency of this wave?
(c) What is the velocity of this wave?
(d) What is the displacement Y at $X=22.5 \mathrm{~cm}$ and $t=18.9 \mathrm{sec}$?

A	$7 \mathrm{~mm}, 0.01 \mathrm{~m}, 7 \mathrm{rad} / \mathrm{s}, 4 \mathrm{sec}, 0.5 \mathrm{HZ}$, $0.04 \mathrm{~m} / \mathrm{s}$	B	$2.27 \mathrm{~mm}, 0.0871 \mathrm{~m}, 2.72 \mathrm{rad} / \mathrm{s}, 2.31 \mathrm{sec}$, $0.432 \mathrm{HZ}, 0.0377 \mathrm{~m} / \mathrm{s}$
C	$1 \mathrm{~mm}, 0.015 \mathrm{~m}, 10 \mathrm{rad} / \mathrm{s}, 7 \mathrm{sec}, 0.7 \mathrm{HZ}$, $0.02 \mathrm{~m} / \mathrm{s}$	D	
Answer			

Ref83

A pitcher tosses a base ball up along Y axis with initial velocity $14 \mathrm{~m} / \mathrm{s}$. (a) How long does the ball take to reach it's maximum height? (b) What is the maximum height above it's release point? (c) How long does the ball take to reach a point 5 m above it's release point?

A	$4 \mathrm{sec}, 10 \mathrm{~m}, 3 \mathrm{sec}, 1.5 \mathrm{sec}$	B	$8 \mathrm{sec}, 20 \mathrm{~m}, 4 \mathrm{sec}, 2 \mathrm{sec}$
C	$1.2 \mathrm{sec}, 10 \mathrm{~m}, 1.9 \mathrm{sec}, 0.5 \mathrm{sec}$	D	$1.2 \mathrm{sec}, 7.3 \mathrm{~m}, 1.9 \mathrm{sec}, 0.53 \mathrm{sec}$
Answer			

Ref86
$a=4 I+5 j+7 k \quad b=3 I+j+4 k$ Find $a \quad b$

A	75	B	25
C	15	D	5
Answer			

Ref89
$m=5 \mathrm{~kg} \quad \alpha=30 \mathrm{deg}$
Cord A cord pulls on a box up along a frictionless plane

inclined at $\alpha=30$ degree. The box has mass $m=5 \mathrm{~kg}$
The speed from the cord has magnitude $T=30 \mathrm{~N}$. What is acceleration of the box?

A	$0.1 \mathrm{~m} / \mathrm{s}^{2}$	B	$1 \mathrm{~m} / \mathrm{s}^{2}$
C	$0.01 \mathrm{~m} / \mathrm{s}^{2}$	D	$2 \mathrm{~m} / \mathrm{s}^{2}$
Answer			

Ref92

If a falling cat reaches a first terminal speed of $97 \mathrm{Km} / \mathrm{hr}$ while it is tucked in and then stretches out, doubling A, how fast is it falling when it reaches a new terminal speed?

A	$3.4 \mathrm{~m} / \mathrm{s}$	B	$1.7 \mathrm{~m} / \mathrm{s}$
C	$13.6 \mathrm{~m} / \mathrm{s}$	D	$6.8 \mathrm{~m} / \mathrm{s}$
Answer			

Ref95

A mass 0.4 Kg slides across a horizontal frictionless counter with speed $\mathrm{V}=0.5 \mathrm{~m} / \mathrm{s}$. It then runs and compresses a spring of spring constant $\mathrm{K}=750 \mathrm{~N} / \mathrm{m}$. Calculate the distance the spring compressed.

A	1.2 cm	B	2.4 cm
C	3.6 cm	D	4.8 cm
Answer			

Ref98

The angular position $\Theta(t)$ of a reference line on the disk is given by $\theta=-1-0.6 t+0.25 t^{2}$
(a)Graph the angular position of the disk versus time (-3 to 5.4 sec)
(b)At what time does $\Theta(t)$ reach minimum value? What is the minimum value?

A	1.2 sec, 77 Deg	B	$2.4 \mathrm{sec}, 97 \mathrm{Deg}$
C	$1.2 \mathrm{sec}, 30 \mathrm{Deg}$	D	$3 \mathrm{sec}, 45 \mathrm{Deg}$
Answer			

Ref101

Figure shows a uniform disk with mass $\mathrm{M}=2.5 \mathrm{~kg}, \mathrm{R}=20 \mathrm{~cm}$. A block of $\mathrm{m}=1.2 \mathrm{~kg}$ hangs from a massless cord. Find acceleration of falling block.

A	$9.3 \mathrm{~m} / \mathrm{s}^{2}$	B	$4 \mathrm{~m} / \mathrm{s}^{2}$
C	$18 \mathrm{~m} / \mathrm{s}^{2}$	D	$3.8 \mathrm{~m} / \mathrm{s}^{2}$
Answer			

Ref97

The figure shows a uniform metal plate " P " of radius " $2 R$ " from which a disk of radius " R " has been stamped out. Using the $X-Y$ co-ordinate system shown, locate the centre of mass of the plate.

A	$X t=R / 4, Y t=R$	B	$X t=R, Y t=R$
C	$X t=R / 2, Y t=R / 2$	D	$X t=R / 3, Y t=0$
Answer			

Ref99

A grind stone rotates at a constant angular acceleration $\alpha=0.85 \mathrm{rad} / \mathrm{s}^{2}$. At time $\mathrm{t}=0$, it has angular velocity $w 0=-4.6 \mathrm{rad} / \mathrm{s}$ and a reference line on it is horizontal at the angular position $\mathrm{w}=0$
(a) At what time after $t=0$ is the reference line at angular position $\Theta=5 \mathrm{rev}$
(b) Describe the rotation between $t=0$ and $t=32 \mathrm{sec}$.
(c) At what time t, does the grind stone momentarily stop?

A	$16 \mathrm{sec}, 0.1 \mathrm{rad} / \mathrm{s}^{2}, 13 \mathrm{sec}$	B	$32 \mathrm{sec},-0.35 \mathrm{rad} / \mathrm{s}^{2}, 13 \mathrm{sec}$			
C	$48 \mathrm{sec},-0.7 \mathrm{rad} / \mathrm{s}^{2}, 20 \mathrm{sec}$	D	$16 \mathrm{sec}, 0 \mathrm{rad} / \mathrm{s}^{2}, 13 \mathrm{sec}$			
Answer						

Ref94

A	306J	B	153 J		
C	469J	D	73J		
Answer					

