E046 Online Test

Ref66

The car is driven along a straight road for 8.4 Km at $70 \mathrm{Km} / \mathrm{hr}$. At which point the truck runs off the gasoline \& stops. The next 30 minutes, the driver walks along the road for another 3 Km .
(a) What is over all displacement?
(b)What is time interval from the beginning of the drive to arrival at the station?
(c)What is average velocity?

A	$20 \mathrm{~km}, 1 \mathrm{HR}, 20 \mathrm{~km} / \mathrm{hr}$	B	$30 \mathrm{~km}, 2 \mathrm{HR}, 30 \mathrm{~km} / \mathrm{hr}$
C	$10.4 \mathrm{~km}, 0.62 \mathrm{HR}, 16.8 \mathrm{~km} / \mathrm{hr}$	D	$50 \mathrm{~km}, 5 \mathrm{HR}, 70 \mathrm{~km} / \mathrm{hr}$
Answer			

Ref70

On a hot day in Las Vegas, an oil tanker loaded 37000 L of diesel fuel. It encounters cold weather on Utah where temperature was 23 Degree K lower than in Las Vegas. How many litres did it deliver?

Volume expansion for diesel fuel is $9.5 \times 10^{-4} /$ Deg C coefficient of linear expansion is $11 \times 10^{-6} / \mathrm{deg} \mathrm{c}$

A	18380 L	B	36190 L
C	20000 L	D	10000 L
Answer			

Ref73

A cylinder contains 12 L of oxygen at 20 deg C and 15 atm . The temperature is raised to 35 deg C and the volume is reduced to 8.5 L . What is the final pressure of the gas in atmosphere.?

A	22 atm	B	33 atm		
C	11 atm	D	44 atm		
Answer					

Ref76

Three Carnot engines operate between reservoir temperatures of (a) 400 deg K and 500 deg K (b) 600 and 800 deg K (c) 400 and 600 deg K. rank the engineers according to thermal efficiencies. Greatest first.

A	c, b, a	B	a, b, c		
C	b, c, a	D	Equal		
Answer					

Ref79

At $t=0$, the displacement $X(0)$ of the block is -8.5 cm . The block's velocity $V(0)$ is $-0.92 \mathrm{~m} / \mathrm{s}$ and it's acceleration a (0) is $47 \mathrm{~m} / \mathrm{s}^{2}$.
(a) What is the angular velocity w of this system?
(b) What are the phase constant ϕ and amplitude Xm ?

A	$22.5 \mathrm{rad} / \mathrm{s}, 155 \mathrm{deg}, 9.4 \mathrm{~cm}$	B	$50 \mathrm{rad} / \mathrm{s}, 30 \mathrm{deg}, 18 \mathrm{~cm}$
C	$100 \mathrm{rad} / \mathrm{s}, 45 \mathrm{deg}, 10 \mathrm{~m}$	D	$15 \mathrm{rad} / \mathrm{s}, 75 \mathrm{deg}, 4 \mathrm{~cm}$
Answer			

Ref82

The following equations give the position $X(t)$ of a particle in four situations
(a) $X=8 t-4$ (b) $x=-6 t^{3}+9 t^{2}+6$ (c) $X=3 / t^{2}-9 / t$ (d) $X=7 t^{2}-4$ To which of these situations? Do the constant acceleration formulae apply?

A	a	B	b
C	c	D	d
Answer			

Ref85

$a=3 I-8 j \quad b=-2 I+4 j$
$c=-4 j$

Find the resultant vector for $a+b+c$

A	$10 \mathrm{i}+2 \mathrm{j}$	B	$7 \mathrm{i}+5 \mathrm{j}$
C	$2.5 \mathrm{i}-2.3 \mathrm{j}$	D	0
Answer			

Ref88
2 kg Tin is accelerated at $3 \mathrm{~m} / \mathrm{s}^{2}$ in the direction shown by a over a frictionless horizontal surface. The acceleration is caused by three forces. What is the third force?

A	20 N	B	10 N
C	1 N	D	12.5 N
Answer			

Ref91

Suppose that the coefficient of static friction μ between the rider's clothing and the canvas is 0.4 and the cylinder radius " R " is 2.1 m.
(a) What minimum speed (V) must the cylinder and the rider have if the rider is not to fall when the floor drops? (b) If the rider's mass is 49 Kg , what is the magnitude of centrifugal force on rider?

A	$7.2 \mathrm{~m} / \mathrm{s}, 1200 \mathrm{~N}$	B	$3.6 \mathrm{~m} / \mathrm{s}, 600 \mathrm{~N}$
C	$21 \mathrm{~m} / \mathrm{s}, 2000 \mathrm{~N}$	D	$30 \mathrm{~m} / \mathrm{s}, 3000 \mathrm{~N}$
Answer			

Ref94

A	306J	B	153J			
C	469J	D	73J			
Answer						

Ref97
The figure shows a uniform metal plate " P " of radius " $2 R$ " from which a disk of radius " R " has been stamped out. Using the $X-Y$ co-ordinate system shown, locate the centre of mass of the plate.

A	$X t=R / 4, Y t=R$	B	$X t=R, Y t=R$
C	$X t=R / 2, Y t=R / 2$	D	$X t=R / 3, Y t=0$
Answer			

Ref100
A coach roach rides the rim of a rotating merry go around. If the angular speed is constant, does the coach roach have (a) Radial acceleration ? (b) Tangential acceleration ? What angle θ_{p} should the arc subtend so that a 15.4 kg at the point " P ".

A	50 Deg	B	30 Deg
C	111 Deg	D	200 Deg
Answer			

Ref67

A rolling object has linear velocity $342.5 \mathrm{~m} / \mathrm{s}$ radius $=3 \mathrm{~m}$ mass $=170 \mathrm{~kg}$ Calculate total kinetic energy.

A	$1.5 \times 10^{7} \mathrm{~J}$	B	$3 \times 10^{7} \mathrm{~J}$		
C	$4.5 \times 10^{7} \mathrm{~J}$	D	$6 \times 10^{7} \mathrm{~J}$		
Answer					

Ref68

The figure gives over view at a uniform rod in static equilibrium , the magnitude of the forces F1 \& F2 are

$$
\mathrm{X} 1=4 \mathrm{~m}, \mathrm{X} 2=2 \mathrm{~m}, \mathrm{X} 3=1 \mathrm{~m}, \mathrm{X} 4=1 \mathrm{~m}, \mathrm{Fa}=10 \mathrm{~N}, \mathrm{Fb}=30 \mathrm{~N}
$$

A	$90 \mathrm{~N}, 130 \mathrm{~N}$	B	$22.5 \mathrm{~N}, 32.5 \mathrm{~N}$
C	$45 \mathrm{~N}, 65 \mathrm{~N}$	D	$100 \mathrm{~N}, 200 \mathrm{~N}$
Answer			

Ref 69

A living room has the floor dimension and height of $3.5 \mathrm{~m} \times 4.2 \mathrm{~m}$. A height of 2.4 m (a) What does the air in the room weigh when the air pressure is 1 atm? (b) What is the magnitude of the atmosphere downward force on the top of your head which we take to have an area of $0.04 \mathrm{~m}^{2}$

A	$420 \mathrm{~N}, 4 \times 10^{3} \mathrm{~N}$	B	$840 \mathrm{~N}, 8 \times 10^{3} \mathrm{~N}$
C	$210 \mathrm{~N}, 2 \times 10^{3} \mathrm{~N}$	D	$1640 \mathrm{~N}, 6 \times 10^{3} \mathrm{~N}$
Answer			

