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Preface

Directed energy weapons are nothing new to mankind; historically the origination

of such weapons began centuries ago when the famous Greek mathematician,

physicist, engineer, inventor, and astronomer; Archimedes of Syracuse used differ-

ent mirrors to collect sunbeams and focused them on the Roman fleet in order to

destroy enemy ships with fire. This is known as the Archimedes Heat Ray. Archi-

medes may have used mirrors acting collectively as a parabolic reflector to burn

ships attacking Syracuse. The device was used to focus sunlight onto approaching

ships, causing them to catch fire. Of course the myth or reality of the Archimedes

Heat Ray still is questionable, but with the help of a group of students from

Massachusetts Institute of Technology certain experiments were carried out with

127 one-foot (30 cm) square mirror tiles in October of 2005 that were focused on a

mockup wooden ship at a range of about 100 feet (30 m). The flames broke out on a

patch of the ship, but only after the sky had been cloudless and the ship had

remained stationary for around 10 min. It was concluded the device was a feasible

weapon under these conditions.

The battles of tomorrow will be fought with different weapons that have

more lethal effects and faster delivery systems. One of mankind’s greatest achieve-

ments in the twentieth century is the ability to destroy the entire human race

several times over. At this time of intensive arms more money is invested in the

next generation of weapons. It is in the best interest of every citizen to be aware and

able to make an informed judgment on the best possible direction for the arms race.

Offensive or defensive weapons are a cruel reality that nevertheless must be

addressed.

The scientific work during the 1950s that led to the invention of the laser was

followed closely by work in military research institutes and organizations all over

the world and this opened a new door to the Archimedes Heat Ray. Lasers have

found many military applications, not as new weapons, but rather as the supporting

technology to enhance the performance of other weapons such as laser-guided

bombs and so on. Our fascination and appreciation of modern weaponry is at an

all-time high. It was not until the 1970s that the possibility of laser weapons again
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captured the imagination of military planners. High-energy and other directed

energy weapons finally became a reality, and the possibility of using them in the

battlefields of tomorrow has been investigated vigorously ever since.

The development of laser weaponry and other directed energy weapons

technology conjures up the Heat Ray of Archimedes and Flash Gordon-like

images of vaporizing enemies, demolishing buildings, and burning through metal.

In this book introduces such weaponry to readers of different technical backgrounds

as well as to introduce a certain technical approach to such research and to help

better understanding of such weapons utilizing various technical and research

resources.

The next 10 years will see the emergence of high-energy lasers as an operational

capability in US service. These weapons will have the unique capability to attack

targets at the speed of light and are likely to impair the effectiveness of many

weapon types significantly, especially ballistic weapons. Constrained by propaga-

tion physics, these weapons will not provide all-weather capabilities, and will

perform best in clear sky–dry air conditions.

The book in its laser technology section talks about the interaction between high-

power laser beams and matters whereas other aspects of directed energy weapons,

such as particle and high-power radar beams as a weapons of tomorrow can be

found in the literature provided by other authors. Laser-beam interactions with

materials, treat, from a physicist’s point of view, the wide variety of processes that

lasers can induce in materials. Physical phenomena ranging from optics to shock

waves are discussed. The approach that is taken emphasizes the fundamental ideas

both from a newcomer’s or research worker’s point of view to provide important

background for material science, mathematics, optics, and the like, or a most

critical up-to-date review of the field.

A directed energy weapon (DEW) such as a high-energy laser emits energy in an

aimed direction without the means of a projectile. It transfers energy to a target for a

desired effect. Some such weapons are real or in development; others are at present

only in science fiction.

The energy can come in various forms:

• Electromagnetic radiation (typically lasers or masers)

• Particles with mass (particle beam weapons)

• Sound (sonic weaponry)

• Fire (flamethrowers)

• High-power laser weapons

Some lethal directed energy weapons are under active research and develop-

ment, but most examples appear in science fiction, nonfunctional toys, film props,

or animation.

In science fiction, these weapons are sometimes known as death rays or ray-guns

and are usually portrayed as projecting energy at a person or object to kill or

destroy. Many modern examples of science fiction have more specific names for

directed energy weapons, due to research advances.
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For those readers who need to dive deep into the technologies behind such

research a short course in various topics of mathematics and physics has been

offered in the appendices in order for them to brush up on these topics and be able to

understand different solutions and mathematical modeling that are offered for the

solution, for example, of the heat diffusion equation for different boundary and

initial conditions. In the case of application of lasers as weapons, the book has

attempted to serve both scientists interested in the physical phenomena of laser

effects and engineers interested in practical applications of laser effects in industry.

Thus, several sections are devoted to reviewing and dealing with the solution of the

diffusion equation utilizing the aid of integral transform techniques. Among the

several different approaches to solve the boundary value problems for heat con-

duction; the integral transform technique offers the most straightforward and

elegant solution, provided that the transforms, the inversions, and the kernels are

readily available.

Some appendices at the end of the book are devoted to systematic mathematics

and physics of the heat conduction solution and its boundary value problems. As a

result of the transforms, the inversions, complex variables, and their examples are

presented and the kernels are tabulated, and the Laplace and Fourier transforms are

also introduced. The appendix on introduction to ordinary and partial differentials is

also presented to help the reader understand the solution techniques used to solve

the heat conduction problem for various boundary values. Appendices on optics and

the electromagnetic field also help better understanding of the behavior of the

physics and mathematics of these weapons.

Note: In most of the appendices of different topics either the references mentioned

at the end of each appendix have been used and quoted directly or indirectly or it is

up to each reader to refer to them separately for more knowledge and information. I

have also decided to shift these appendices around by eliminating some of their

content that I believe is no longer necessary, as well as converting some content into

part of the main chapters of different subjects of Volume II here and finally keeping

the rest as appendices as originally planned.

Those left as an appendix of their own for those readers needing some refresher

and review on the topics that are presented by these appendices are:

Appendix A: Short Course in Taylor Series

Appendix B: Short Course in Vector Analysis

Appendix C: Short Course in Ordinary and Partial Differential Equations

Appendix D: Short Course in Complex Variables

Appendix E: Short Course in Fourier and Laplace Transforms

Appendix F: Short Course in Electromagnetics

Appendix G: Short Course in Optics

Appendix H: Short Course in Heat Conduction Equation

Appendix I: Data and Plots of Thermal Parameters of Different Materials

Appendix H: Acronyms and Definitions
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In this book, I have also taken under consideration to show the solutions and

present the heat conduction complex problem and those boundary values that are

very much related to problems of high- power laser interaction with materials. Most

cases have looked at one-dimensional heat conduction with semi-infinite slab

configuration with a heat resource as part of heat conduction equations making

dealing with it a more difficult and complex problem. Wherever was needed the

best possible references were given for further investigations by readers interested

in doing their own research beyond what is given here.

Albuquerque, NM Bahman Zohuri
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Chapter 1

Directed Energy Weapons

Will the United States develop laser and beam weaponry for a strong nuclear

defense to replace the policy of mutually assured destruction. Has the Soviet

Union violated treaties by using “yellow rain” in Afghanistan and Indochina?

What future lies in store for the clean neutron bomb? What kinds of super missiles

are being tested for the future? What new biological and chemical weapons has the

United States been cooking up?

1.1 Introduction

The idea of using an omnipotent “death ray ” on the battlefield is not a new concept.

Ancient literature credits the Greek mathematician Archimedes as the first to

conceive the idea of using light as a defensive weapon. Hippocrates, commander

of the Greek force, applied Archimedes’ concept by focusing the energy of sunlight

through a series of mirrors to produce a beam that set fire to the sails of the Roman

fleet under Consul Marcus Claudius Marcellus during the siege of Syracuse in

212 BC. [1]

Laser weapon projects have been shrouded by very tight security. In spite of this,

it is possible to follow the general lines, at least, of the high-energy laser (HEL)

weapon research field through the open literature.

Our fascination and appreciation of modern weaponry is at an all-time high.

With the wonders and horrors of the Persian Gulf war and event of 9/11 fresh in our

minds, the development of laser weapon technology conjures up Flash Gordon-like

images of vaporizing enemies, demolishing building, and burning through

metals [2].

Armed forces in many countries are already using a great number of laser

devices, and the inexorable pace of progress in developing special laser weapons

indicates that they will ultimately revolutionize the modern battlefield. Practically

invisible when fired, silent, capable of pinpoint accuracy, and traveling at the speed
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of light, laser weapons would seem to offer unparalleled advantages over conven-

tional weapons.

This paper examines the effects of lasers—one of the first exotic directed energy

weapons (DEWs) to capture public attention—and our focus in particular is on

airborne laser (ABL).

While this may be true, once unleashed, this awesome power can trigger other

devastating consequences as well. Anti-eye laser weapons are currently being

developed that can result in the mass blinding of soldiers, pilots, and tank crews.

Laser experts Anderberg and Wolbarsht [2] describe the staggering medical,

social, and psychological ramifications that the use of laser weapons will entail and

becomes as part of our study for laser range safety tool (LRST), which is the subject

of this project. Furthermore, we explore the historical development of these

weapons and briefly touch the fact that how far other countries, including France,

England, and Russia, have progressed in their technology. We also try to serve the

purpose of an introduction to the language of directed energy weapon (DEW) for

military planners and nontechnical persons who need them to understand the

fundamental of what the engineers and scientists involved in their development

are talking about by basically touching some physics and mathematics involved in

this field. Describe all the difficulties these folks are dealing with and how to

overcome these obstacles in order to produce the right tool and technologies that

will induce the proper DEW for our defense of our country. A better weapon in

hands of our arm force to carry on such defensive task. Any employee found to have

violated these policies and procedures may be subject to disciplinary action, up to

and including termination of employment.

We have put a collection of software and computer codes that are developed by

our engineers and scientist around the nation within national laboratories and

defense companies under one umbrella and developed the Windows/PC version

of these codes as a source of repository of such capabilities. Most of these codes

were developed on main- and macro-frame computing system, and under this

project, we managed to migrate them to micro-frame environment for simplicity

of running these codes for the purpose of further enhancement and development of

LRST and DEW in ABL area. In some cases, we further enhanced the technical

capability of these legacy codes in order to serve the purpose of today’s technology

toward development of the directed energy weapons. Table 1.1 is a good represen-

tation of these codes.

Folks who are interested to obtain these codes for the purpose of their work

toward the field of DEW should contact either principal of this report or original

source that is mentioned in Tables 1.1 and 1.2 in this chapter. Although we tried to

gather all existing unclassified computer code together, they are still considered

critical military information that requires proper paper work to obtain these com-

puter codes from our data bank, and in some cases it might require licensing query

of third-party software.

To obtain most of these codes, you are required to have some direct and related

US government contract from appropriate office or agency with the government.
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Then the offices that are in charge of these codes will arrange for the release of these

codes.

For example, most of codes that are released from Sandia National Laboratory

such as CHT or codes such as DYNA3D and other related codes from Lawrence

Livermore National Laboratory fall in these categories.

Although the author of this book has most of these codes, in most cases we have

to follow the federal government guidelines for the release of these codes as well

minus few exceptions. Please get in touch with the author for further discussion of

these codes as well as consult his web site at www.gaeinc.com for availability of

some of these codes through his company.

We welcome any comment and correction by expert in this field to correct and

enhance our assumption on these codes or recommend better computational anal-

ysis and software tools.

In the next few sections of this chapter, we introduce unclassified computer

codes that may be obtained from the source that is known to this author. Some of

these codes although not classified but restricted and are available to US govern-

ment agencies or their contractors.

Table 1.1 ABL code relationships for AFSC analysis

1.1 Introduction 3
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1.2 PUFF74: A Material Response Computer Code

The PUFF74 code is a computer code, which calculates stress wave formation and

propagation by numerical integration of the conservation equations in a

one-dimensional Lagrangian coordinate system. The code has been under develop-

ment since 1961 and has evolved from a simple hydrodynamics code to a flexible

material response code, which includes the effects of material strength, porosity,

and fracture for both homogeneous and composite materials.

The code at present version (Version 4.0) is capable of handling the following

physical models:

1. A framework for calculating the material response in composite materials

2. A pressure-volume-energy equation of state model for homogeneous materials

or constituents of a composite material

3. A pore-compaction model for porous homogeneous materials or constituents of

a composite materials

4. A one-dimensional viscoplastic model for geometric dispersion effects in com-

posite materials

Table 1.2 Comments on ABL code relationships for AFSC analysis
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The latest model development for the PUFF74 code has been accomplished

under the CADRE program. As part of this program, studies have been made to

determine the dynamic material properties, which govern the response of composite

materials to rapid energy deposition.

To facilitate the input procedures for radiation deposition calculations, an

automatic initial zoning model was added to the PUFF 66 code in extensive use

of the code. Reference [3] presents the description of the automatic zoning model

1969 by Cooper. The guidelines used to develop this model evolved through.

The next addition to the PUFF code was the framework for introducing a free

surface into the sample mesh at a location where material fracture is detected. The

logic for introducing free surfaces, calculating the response of free surfaces as a

function of time, and recombining fractured segments was a developed model in the

original coding. Since the coding was written in a modular form, more sophisticated

fracture models could be substituted with a minimum of effort.

As model development and calculations of experimental tests continued, a

graphics package was added to the PUFF code to allow the user to produce online

plots and externally produced plots and data storage (Calcomp or microfilm).

Galaxy Advanced Engineering, Inc. (GAE) has used the Universal Graphics prod-

ucts known as UGL to replace the CA-DISSPLA and produce all the following

graphics out and show the power of UGL for its CA-DISSPLA compatibilities. The

plot package added to the code made extensive use of the general graphics data

display programs developed at the Air Force Weapons Laboratory (AFWL) display

program existing at ARIL at the time the plot package was added to PUFF.

Modifications to the AFWL data display program and to the graphics package in

the PUFF code have been made on a continuing basis to improve the efficiency of

the plotting procedures.

The following is a random selection of graphics output of PUFF74/UGL com-

bined (Fig. 1.1).

1.2.1 Availability of PUFF74 Computer Code

The Windows/PC version of this code is available from Galaxy Advanced Engi-

neering, Inc. for purchase price. This version has been modified from its original

version that used to run on VAX/VMS computer, and users need to obtain their own

copy from this company. Contact the Galaxy Advanced Engineering, Inc. for its

Windows/PC version. To our knowledge the code is no longer available from

government agencies or its contractors. You can find more detail on how to obtain

and purchase by referring to the following URL: https://www.gaeinc.com.
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1.3 PUFF-TFT: A Material Response Computer Code

The PUFF-TFT code has now been updated (version 5.0) to allow modeling of

sample responses to sudden energy loading (e.g., X-rays or lasers) for arbitrary

starting temperatures. Problems can be run for any initial temperature, both

Fig 1.1 Sample output of PUFF74 using Universal Graphics Library from GAE
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elevated and, most importantly, for cryogenic conditions. Updates have also been

made in the stress response for the “thermal-only” mode, especially for the cool-

down stresses after plastic flow. Likewise, the code tracks material properties

(yielding, shear module, spall strengths) for cryogenic conditions.

Fig 1.1 (continued)
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The code amendments have been done in a “transparent” manner for the user,

requiring the minimum of input parameter changes. To activate this, the code

maintains the existing convention of:

Fig 1.1 (continued)

8 1 Directed Energy Weapons



Enthalpy ¼ 0:0 cal=g at temperature ¼ 25 �C

and temperature continues to be in degrees centigrade. Consequently, for that equal

to 25 �C, the code will start with a nonzero enthalpy. For T > 25 �C, this initial
enthalpy will be positive, whereas for T < 25 �C, the enthalpy is negative.

The previous code version did not distinguish between “dose” (the added energy

due to X-rays, thermal flow, etc.) and “enthalpy.” This was appropriate, since both

terms initialized with a common value of zero. The new code makes the distinction,

since dose still starts from zero enthalpy.

The “transparent” amendments are such that the user continues to use the

existing database for such parameters as melt energy, vapor energy, and latent

heats. Likewise, for T > 25 �C, the existing polynomial coefficients to describe

specific heats, enthalpies, and conductivities are maintained.

The code was written for the Air Force Weapon Laboratory (AFWL) primarily

to allow evaluation of thin-layer stack response to X-ray deposition resulting in

one-dimensional (1-D) strain stress response. The code takes into account the X-ray

generation of secondary cascade particles (photoelectrons, Auger electrons, and

fluorescent photons) using a cascade routine and incorporates a thermal condition

routine allowing the effects of rapid thermal diffusivity to be included.

The output of the X-ray/cascade/thermal routine is used as input to an updated

version of the PUFF74 hydrodynamic code, which includes hydrodynamic,

elastoplastic, porous, and dispersive material responses in a fully coupled manner,

and also accounts for simple phase changes.

The formulation of differential equations follows either Eulerian or Lagrangian

descriptions. The Eulerian description is a spatial description; while the Lagrangian

is a material description. In an Eulerian framework, all grid points, and conse-

quently cell boundaries, remain fixed with time. Mass, momentum, and energy flow

across cell boundaries. In a Lagrangian description, the grid points are attached to

the material and move with the material. In this formulation, mass within a cell is

invariant, but the volume of the cell may change with time because of expansion or

compression, of the materials.

The PUFF-TFT code calculates stress wave formation and propagation by

numerical integration of the conservation equations in a one-dimensional Lagrang-

ian coordinate system. The TFT package accounts for the effects of dose enhance-

ment due to the transport of secondary particles with ranges comparable to the

thickness of the thin material layers and thermal conduction between thin material

layers. These two modifications (among others) more accurately portray the degree

of energy sharing between thin layers, thereby modifying the expected energy

depositions based on normal X-ray interactions and possibly altering the anticipated

thermomechanical response of the medium.

The PUFF74 code, originally developed in the mid-1960s, has undergone a

number of revisions to become a flexible material response code that includes the

effects of material strength, porosity, and fracture for both homogeneous and

composite materials. The code calculates stress wave formation and propagation
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by numerical integration of the conservation equations in a one-dimensional

Lagrangian coordinate system. In addition to the hydrodynamic equation of state,

which is required for all materials, the code contains an elastic–plastic model for

strength effects, a P-Alpha porosity model for treating irreversible compaction, and

four models for treating strain rate-dependent or dispersive effects.

Below you can see some graphics output sample of PUFF-TFT code (Fig. 1.2).

1.3.1 Availability of PUFF-TFT Computer Code

The Windows/PC version of this code is available from Galaxy Advanced Engi-

neering, Inc. for purchase price. This version has been modified from its original

version that used to run on CDC computer, and users need to obtain their own copy

by applying to Oak Ridge National Laboratory technology transfer office or contact

the Galaxy Advanced Engineering, Inc. for its Windows/PC version. You can find

more detail how to obtain and purchase by referring to the following URL: https://

www.gaeinc.com.

1.4 SANDYL: A Monte Carlo Three-Dimensional
Computer Code

SANDYL is a FORTRAN code for computing, photon–electron transport, and

deposition in complex systems by the Monte Carlo method. In this computation,

a large number of possible particle trajectories are generated one at a time, and, as

the particle proceeds through the material of the system, contributions to the

quantities making up the desired information are tallied. After a number of trajec-

tories, the averages of these quantities are statistical approximations, to the solu-

tion. All histories of source Andy secondary particles with energies in the 1-keV to

1000-MeV ranges are followed through the system.

The problem geometry is divided into zones, of homogeneous atomic composi-

tion bounded, by sections of planes and quadrics. Thus, the material of each zone is

a specified element or combination of elements.

For a photon history, the trajectory is generated by following the photon from

scattering to scattering using then various probability distributions to find distances

between collisions, types of collisions, types of secondary, and their energies and

scattering angles. The photon interactions are photoelectric absorption (atomic

ionization), coherent scattering, incoherent scattering, and pair production. The

secondary photons include bremsstrahlung, fluorescence photons, and eþ � e�

annihilation radiation.

The condensed-history Monte Carlo method is used for the electron transport. In

a history, the spatial steps taken by an electron are precomputed and may include
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the effects of a number of collisions. The corresponding scattering angle and energy

loss in the step are found from the multiple scattering distributions for these

quantities. Atomic ionization and secondary particles are generated within the

step according to the probabilities for their occurrence.

Fig. 1.2 Sample output of PUFF-TFT using Universal Graphics Library from GAE
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Electron energy loss is through inelastic electron–electron collisions, brems-

strahlung generation, and polarization of the medium (density effect). Included in

the loss is the fluctuation due to the variation in the number of energy loss collisions

in a given Monte Carlo step (straggling). Scattering angular distributions are

determined from elastic nuclear-collision cross sections corrected for electron–

electron interactions. The secondary electrons include knock-on, pair, Auger

(through atomic ionizations), Compton, and photoelectric electrons.

SANDYL is a Monte Carlo three-dimensional code for calculating combined

photon–electron transport in complex systems. SANDYL incorporates material

from the SORS photon and ETRAN photon–electron codes. Major additions and

modifications occur in the atomic ionization and relaxation routines and in the

general geometry multiple-material aspects of the electron transport.

SANDYL uses the Monte Carlo method. In its computations, a large number of

possible particle trajectories are generated one at a time, and, as the particle

proceeds through the material of the system, contributions to the quantities making

up the desired information are tallied. After a number of trajectories, the averages of

these quantities are statistical approximations to the solution.

The problem geometry is divided into zones of homogeneous atomic composi-

tion bounded by sections of planes and quadrics. Thus, the material of each zone is a

specified element or combination of elements. For a photon history, the trajectory is

generated by following the photon from scattering to scattering using the various

probability distributions to find distances between collisions, types of collisions,

Fig. 1.2 (continued)
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types of secondary, and their energies and scattering angles. The condensed-history

Monte Carlo method is used for the electron transport.

The code does time- and space-dependent transport calculations of the photon–

electron cascade in complex systems. All generations of particles in the 1-keV to

1000-MeV energy range are followed.

1.4.1 Availability of SANDYL Computer Code

The Windows/PC version of this code is available from Galaxy Advanced Engi-

neering, Inc. for purchase price. This version has been modified from its original

version that used to run on CDC computer, and users need to obtain their own copy

by applying to Oak Ridge National Laboratory technology transfer office or contact

the Galaxy Advanced Engineering, Inc. for its Windows/PC version. You can find

more detail on how to obtain and purchase by referring to the following URL:

https://www.gaeinc.com.

1.5 ASTHMA88 (Axisymmetric Transient Heating
and Material Ablation) Code

The ASTHMA88 program has been developed for computing the 2-D symmetric

transient thermochemical response of decomposing materials subject to hyper-

thermal convective and radiative environments. The ASTHMA88 code employs

an implicit/explicit, finite difference computational procedure with a fixed

two-dimensional grid whose layout is independent of the physical axes. The

numerical modeling includes equations for mass and energy conservation and

material decomposition; the flow of pyrolysis gas through the porous, decomposing

solid; the calculation of material properties as a function of temperature and

material state; general ablating surface and back wall/side wall boundary condi-

tions; and a comprehensive surface energy balance which accounts for convection

and radiation absorption, reradiation, in-depth condition, surface ablation, pyrolysis

gas flow, transpiration effects, and thin-layer mechanical removal or surface

melting.

Validation studies demonstrate excellent agreement with other standard thermo-

chemical analysis codes, i.e., CMA (1-D, decomposing) and ASTHMA81 (2-D,

non-decomposing).

The ASTHMA88 code can handle multiple decomposing and

non-decomposing, anisotropic materials in simple or complex two-dimensional

axisymmetric configurations. Surface boundary conditions may be described in

three options:
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1. Simple specified temperature and recession

2. Specified heat flux with no recession

General thermochemical model is incorporating both equilibrium and

nonequilibrium computations, for any material exposed to any convective and/or

radiative environment.

1.5.1 Availability of ASTHMA88 Computer Code

The Windows/PC version of this code is available from Galaxy Advanced Engi-

neering, Inc. for purchase price. This version has been modified from its original

version that used to run on VAX/VMS computer, and users need to obtain their own

copy from this company. Contact the Galaxy Advanced Engineering, Inc. for its

Windows/PC version. To our knowledge the code is no longer available from

government agencies or its contractors. You can find more detail on how to obtain

and purchase by referring to the following URL: https://www.gaeinc.com.

1.6 ALE3D (Arbitrary Lagrangian/Eulerian Multi-Physics
3D) Computer Code

Composite materials are used in many advanced application systems and structures

at Lawrence Livermore National Laboratory (LLNL). We have previously

enhanced our ability to simulate structural response and progressive failure of

composite systems in ALE3D (an arbitrary Lagrangian/Eulerian multi-physics

code developed at LLNL) by porting an existing composite constitutive model

(Model 22, the fiber composite with damage model) from DYNA3D (a nonlinear,

explicit, 3-D FEM code for solid and structural mechanics). This year, a more

advanced model (DYNA3D Model 62, the unidirectional elastoplastic composite

model) has been implemented. Experiments were conducted to validate the elastic

response of the model and to give insights and data needed for the addition of a

failure algorithm into the model.

They implemented the unidirectional elastoplastic composite model into

ALE3D. This included implementing the ability to input orthotropic orientation

data into prescribed local volume elements. Another modeling goal was to enhance

the model by incorporating a failure algorithm that includes matrix delaminating,

fiber tensile, and fiber compressive failure. Several experiments were conducted to

provide data for the verification and validation of the model’s implementation in

ALE3D.

The improved fiber composite material models can be used in simulations

(to failure) in the many LLNL programs, such as those for composite munitions,

armor penetration, pressure vessels, and rocket motors. This project has been

beneficial in supporting the composite modeling efforts within the DOD Joint
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Munitions Program and the Focused Lethality Munitions Program. This study

supports LLNL’s engineering core competency in high-rate mechanical deforma-

tion simulations of large complex structures by providing an enhanced capability to

model composite structures with ALE3D.

The implementation of the fiber composite with damage model into ALE3D,

which was completed in the first year of this project, was verified with several code-

to-code comparisons. The hoop stresses in pressurized cylinders from simulations

run with DYNA3D, with the new fiber composite model in ALE3D, and with an

existing anisotropic ALE3D model, all agreed within 1%. This included both

explicit and implicit ALE3D runs.

The unidirectional elastoplastic composite model was implemented into

ALE3D. An important part of this task was creating an algorithm to initialize and

update material directions at the ply and element levels. The model was validated

using the same pressurized-cylinder simulations described above, and the results

were found to closely match the DYNA3D predictions.

Composite failure mechanisms can be divided into two types: intra-ply failure

mechanisms, such as fiber breakage, matrix failure (cracking/crushing), and fiber

buckling and inter-ply failure mechanisms involving ply delaminating.

Intra-ply failure can be applied at the ply level and so fits in well with this

model’s “unit cell” approach. Inter-ply failure that includes crack opening between

plies and plies sliding relative to each other affects all layers simultaneously and so

is more difficult to implement. All the relevant mathematical expressions necessary

for these functionalities have been derived, and the corresponding changes to the

existing code have outlined. Implementation will be undertaken next year.

A series of compression tests to failure were conducted on eight different

composite cylinder specimens with different fiber, fiber orientations, and resins.

The data collected on the stiffness, Poisson’s ratio, and ultimate strength of each

specimen provide model validation data for the newly implemented Models 22 and

62. The data also provide an expanded source of failure data for upcoming failure

model validation in ALE3D (Fig. 1.3).

Fig. 1.3 Fiber composite compression cylinder with 1.0-in.-diameter pin

1.6 ALE3D (Arbitrary Lagrangian/Eulerian Multi-Physics 3D) Computer Code 15



Strain concentration factors in fiber composite cylinders with holes and bonded

pins were measured using the Aramis video strain measurement system. The basic

fiber composite cylinder with pin configuration is shown in Fig. 3.62. Figure 3.63

shows a comparison for the case of no pin (open hole) between the measured

experimental data and the simulated response from ALE3D. The results appear to

be very similar.

Strain concentration factors due to focused shear in composites were measured

using the specimen shown in Fig. 1.4. This sample was loaded in compression to

produce a concentrated shear band in the composite sample. The Aramis load strain

curve is shown in Fig. 3.65 (Fig. 1.5).

In a proposed follow-on project, we will continue to improve fiber composite

modeling in ALE3D, with an emphasis on local bending response and progressive

damage. We plan to implement ply-level capabilities and damage algorithms taken

from a specialized LLNL ply-level composite code known as ORTHO3D and

verify their implementation experimentally (Fig. 1.6).
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Fig. 1.4 (a) Aramis axial stain results for fiber composite compression cylinder with no pin at

300,000 lbs of load. (b) The ALE3D simulation
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1.6.1 ALE3D Program Availability

This code is available from Lawrence Livermore National Laboratory, and users

need to obtain their own copy by applying to LLNL technology transfer office or

contact the author of the code Andrew Anderson (925) 423-9634 or refer to the site

of this code at the following URL: https://www-eng.llnl.gov/mod_sim/

mod_sim_tools.html.

1.7 CTH Computer Code

CTH is a multi-material, large deformation, strong shock wave, solid mechanics

code that runs on most UNIX workstations and MPP supercomputers. CTH is one

of the most heavily used computational structural mechanics codes on DOD high-

performance computing (HPC) platforms. While CTH includes some internal

graphics capabilities, it is preferable to take advantage of widely used scientific

visualization packages like EnSight and ParaView to analyze the results of calcu-

lations. A new method has been devised that extends the capabilities of CTH to

allow three-dimensional polygonal models to be written directly from a running

calculation in a format compatible to both EnSight and ParaView. Additionally, an

interpreter for the scripting language Python has been embedded into CTH and its

post-processor Spymaster. Embedded Python allows for almost limitless, parallel
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Fig. 1.6 Shear strain concentration in composite Mk82 shear specimen
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capabilities to be added that do not require a recompilation or relinking of the CTH

executable. Examples of these capabilities include one- and two-way code coupling

and behind armor debris (BAD) applications.

The latest version of the widely used shock wave physics computer code, CTH,

developed by Sandia National Laboratories, will soon be available to customers

nationwide. The code simulates high-speed impact and penetration phenomena

involving a variety of materials.

Interest in the new version of the software is particularly high among customers

like the Department of Energy (DOE) and Department of Defense (DOD), which

use the software for studying weapon effects, armor/anti-armor interactions, war-

head design, high-explosive initiation physics, and weapon safety issues. Major

users include the national laboratories; the army, navy, and air force laboratories;

and their subcontractors. At Sandia, a DOE laboratory, the code is used in national

missile defense, hazardous material dispersal by explosive detonation, weapon

components design, and reactive materials research (Fig. 1.7).

For armor/anti-armor design—of interest to DOD—the software allows users to

determine which types of bullets or projectiles can best penetrate armor. It also

provides information about how to design an improved penetration protection

mechanism.

“This new version is really exciting because it offers a computational capability

never before available in this type of code, an adaptive mesh refinement model

[AMR],” says Paul Taylor, head of the CTH project at Sandia. “AMR gives the

software the ability to increase resolution and accuracy in those regions of a

simulation where it is needed and reduce resolution in those regions where it is

not. For example, in the simulation of a projectile penetrating a target material,

greater resolution can be achieved in the region surrounding the impact interface

between the two materials where large distortions and high strain rates are

occurring.”

The medical community is also paying attention to Sandia’s CTH software.

Taylor currently has a small collaborative research effort underway with the

University of New Mexico School of Medicine, which is interested in using the

shock physics code to better understand brain injury caused by physical trauma,

such as a person’s head hitting a car windshield. Using the magnetic resonance

imaging (MRI) of an individual’s head to construct a CTH model, simulations can

be performed showing how shock waves travel through the head and cause brain

damage.

The software breaks down the penetration simulation into millions of grid-like

“cells.” As the modeled projectile (such as a copper ball impacting a steel plate)

impacts and penetrates the target, progressively smaller blocks of cells are placed

around the projectile, each showing in detail the deformation and breakup of the

ball and target plate.

CTH with the AMR enhancement also offers the ability to analyze problems

involving sophisticated materials with greater accuracy. With the addition of new

material models, it can simulate a wider variety of materials, including metals,

ceramics, plastics, composites, high explosives, rocket propellants, and gases.
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Sandia developed the early precursor to CTH in the 1970s for one-dimensional

problems, expanding it to simulate problems in two and three dimensions in the

1980s.

The labs began licensing the shockwave physics code in the early 1990s to DOE,

DOD, their contractors, and some private US companies with interests in shock

physics.

An updated version of the software, which is export controlled, is distributed to

customers about every 18 months. Currently 259 licenses have been issued.

DOD, DOE, and their contractors receive use licenses for a small distribution

fee. Commercial companies can purchase licenses for $25,000. The updated soft-

ware will be distributed on CDs at a cost of $400 for each noncommercial, licensed

customer.
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One of the most appealing aspects of CTH for users is that it can run on almost

any computer platform. Taylor offers CTH classes at Sandia several times a year to

users from all over the country.

1.7.1 Availability of CTH Computer Code

This code is available from Sandia National Laboratory. Sandia is a multiprogram

laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the

US Department of Energy under contract DE-AC04-94AL85000. With main facil-

ities in Albuquerque, NM, and Livermore, CA, Sandia has major research and

development responsibilities in national security, energy and environmental tech-

nologies, and economic competitiveness.

Media contact:
Chris Burroughs, coburro@sandia.gov, (505) 844-0948

Technical contact:
Paul Taylor, pataylo@sandia.gov (505) 844-1960

1.8 HYPUF, Stress Wave Response Computer Code

HYPUF is a stress wave response code that has the ability to calculate ionization

effects in high-temperature, high-density plasmas. As such, HYPUF/PC is a deriv-

ative of the PUFF-66 code. HYPUF is also a code for any defense contractor having

a need to calculate the response of materials to radiation induced stress waves.

The modification to present HYPUF code available in PC program is part of a

continuing program to provide a code suitable for analysis of material interaction

with X-ray lasers and other high-intensity radiation sources. Previous version of

this code included automatic zoning, rezoning, and spall (fracture) capabilities. The

modifications in the present code include elastic–viscoplastic.

Maxwell dispersion and Bade geometric dispersion material response models

are implemented, restructuring of the code to facilitate future modifications and

numerous minor corrections to the equation of state and ionization equation of state

subroutines. All the above three models are incorporated as closely as possible to

the way they were implemented in PUFF74 code. The only differences between the

implementation in the two codes were that imposed by the fact that HYPUF/PC is a

temperature-based rather than energy-based code and that HYPUF/PC has its

equation of state package completely separate from the HYDRO routine.

The elastic–viscoplastic model is an extension of the elastic–plastic model,

which is used to calculate stress deviators in solid materials. In the elastic–

viscoplastic model, the stress deviator can overshoot the yield surface value. The

stress deviator is computed incrementally from the differential equation.
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1.8.1 Availability of HYPUF, Stress Wave Response
Computer Code

The Windows/PC version of this code is available from Galaxy Advanced Engi-

neering, Inc. for purchase price. This version has been modified from its original

version that used to run on VAX/VMS computer, and users need to obtain their own

copy from this company. Contact the Galaxy Advanced Engineering, Inc. for its

Windows/PC version. To our knowledge the code is no longer available from

government agencies or its contractors. You can find more detail on how to obtain

and purchase by referring to the following URL: https://www.gaeinc.com.

1.9 DYNA2D and DYNA3D Computer Codes Series

There is a series of computer codes that were released by Lawrence Livermore

National Laboratory such as DYNA2D and DYNA3D, as Lagrangian finite element

methods of analysis. DYNA2D and DYNA3D are an explicit finite element code

for analyzing the transient dynamic response of three-dimensional solids and

structures. The element formulations available include one-dimensional truss and

beam elements, two-dimensional quadrilateral and triangular shell elements,

two-dimensional delamination and cohesive interface elements, and three-

dimensional continuum elements.

Many material models are available to represent a wide range of material

behavior, including elasticity, plasticity, composites, thermal effects, and rate

dependence. In addition, DYNA2D and DYNA3D have a sophisticated contact

interface capability, including frictional sliding and single-surface contact, to

handle arbitrary mechanical interactions between independent bodies or between

two portions of one body. Also, all element types support rigid materials for

modeling rigid body dynamics or for accurately representing the geometry and

mass distribution of a complex body at minimum cost. A material model driver with

interactive graphics display is integrated into DYNA2D and DYNA3D to allow

computation of the stress response to any prescribed strain history without inertial

effects. This feature allows accurate assessment of the representation of complex

material behavior by the numerical constitutive model in DYNA2D and DYNA3D.

The 3-D version of these codes, DYNA3D, is an explicit, three-dimensional,

finite element program for analyzing the large deformation dynamic response of

inelastic solids and structures. DYNA3D contains 30 material models and 10 equa-

tions of state (EOS) to cover a wide range of material behavior. The material

models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity,

thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz–Ko rubber,

high-explosive burn, hydrodynamic without deviatory stresses, elastoplastic hydro-

dynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic

elastoplastic with failure, soil and crushable foam with failure, Johnson–Cook
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plasticity model, pseudo TENSOR geological model, elastoplastic with fracture,

power law isotropic plasticity, strain rate-dependent plasticity, rigid, thermal

orthotropic, composite damage model, thermal orthotropic with 12 curves, piece-

wise linear isotropic plasticity, inviscid two-invariant geologic cap, orthotropic

crushable model, Mooney–Rivlin rubber, resultant plasticity, closed form update

shell plasticity, and Frazer–Nash rubber model. The IBM 3090 version does not

contain the last two models mentioned.

The hydrodynamic material models determine only the deviatoric stresses.

Pressure is determined by one of ten equations of state including linear polynomial,

JWL high explosive, Sack “Tuesday” high explosive, Gruneisen, ratio of poly-

nomials, linear polynomial with energy deposition, ignition and growth of reaction

in HE, tabulated compaction, and tabulated and TENSOR pore collapse. DYNA3D

generates three binary output databases. One contains information for complete

states at infrequent intervals; 50–100 states are typical. The second contains

information for a subset of nodes and elements at frequent intervals; 1000–10,000

states are typical. The last contains interface data for contact surfaces.

The method of solution is based on a contact–impact algorithm permit gaps

sliding along material interfaces with friction. All versions except for the IBM3090

include an interface type defining one-way treatment of sliding with voids and

friction. By a specialization of this algorithm, such interfaces can be rigidly tied to

admit variable zoning with no need for transition regions. Spatial discretization is

achieved by implementation of Hughes–Liu rectangular beams and shells,

Belytschko–Tsay shells and beams, triangular shell elements based on work by

Belytschko and colleagues, and 8-node solid-shell elements. All element classes

can be included as parts of a rigid body. Three-dimensional plane-stress constitutive

subroutines update the stress tensor for the shell elements such that the stress

component normal to the shell mid-surface is zero. One constitutive evaluation is

made for each integration point through the shell thickness. The 8-node solid

element uses either one-point integration or the Flanagan and Belytschko constant

stress formulation with exact volume integration. Zero energy modes in the shell

and solid elements are controlled by either an hourglass viscosity of stiffness. The

equations of motion are integrated in time by the central difference method. A

Jaumann stress rate formulation is used with the exception of the orthotropic elastic

and the rubber material subroutines which use Green–St. Venant strains to compute

second Piola–Kirchhoff stresses which transform to Cauchy stresses.

1.9.1 Availability of DYNA2D and DYNA3D Computer
Codes

Both these codes are available from the following site but have no technical support

nor are up-to-date with any present computing operating system, and codes have a

lot of logical errors that need to be fixed, and based on this author’s experience
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working with these codes for a long time, they are not easy to fix unless you are

willing to spend hours and hours of debugging.

This package is distributed by:

Energy Science and Technology Software Center

P.O. Box 62

1 Science.Gov Way

Oak Ridge, TN 37831

(865) 576-2606 TEL

(865) 576-6436 FAX

E-mail: ESTSC@osti.gov

The Windows/PC versions of these codes are available from Galaxy Advanced

Engineering, Inc. [1] Just refer to www.gaeinc.com.

1.10 NIKE2D and NIKE3D Computer Codes Series

NIKE2D is an implicit finite element code for analyzing the finite deformation,

quasistatic, and dynamic response of two-dimensional, axisymmetric, plane-strain,

and plane-stress solids. The finite element formulation accounts for both material

and geometric nonlinearities. A number of material models are incorporated to

simulate a wide range of material behavior including elastoplasticity, anisotropy,

creep, thermal effects, and rate dependence. Arbitrary contact between independent

bodies is handled by a variety of slide-line algorithms. These algorithms model

gaps and sliding along material interfaces, including interface friction and single-

surface contact. Interactive graphics and rezoning are included for analyses with

large mesh distortions. NIKE2D is no longer funded for active development by

LLNL or direct user support and is made available on an “as-is” basis. Select

hardware projects have chosen to fund limited development or maintenance

activities.

NIKE3D is a fully implicit, three-dimensional finite element code for analyzing

the finite strain static and dynamic response of inelastic solids, shells, and beams.

Spatial discretization is achieved by the use of eight-node solid elements, two-node

truss and beam elements, and four-node membrane and shell elements. Over

20 constitutive models are available for representing a wide range of elastic, plastic,

viscous, and thermally dependent material behavior. Contact–impact algorithms

permit gaps, frictional sliding, and mesh discontinuities along material interfaces.

Several nonlinear solution strategies are available, including full-, modified-, and

quasi-Newton methods. The resulting system of simultaneous linear equations is

either solved iteratively by an element-by-element method or directly by a factor-

ization method, for which case bandwidth minimization is optional. Data may be

stored either in or out of core memory to allow for large analyses.

1.10 NIKE2D and NIKE3D Computer Codes Series 23

http://www.gaeinc.com/


1.10.1 Availability NIKE2D and NIKE3D Computer Codes
Series

Both these codes are available from the following site but have no technical support

nor are up-to-date with any present computing operating system, and codes have a

lot of logical errors that need to be fixed, and based on this author’s experience

working with these codes for a long time, they are not easy to fix unless you are

willing to spend hours and hours of debugging.

This package is distributed by:

Energy Science and Technology Software Center

P.O. Box 62

1 Science.Gov Way

Oak Ridge, TN 37831

(865) 576-2606 TEL

(865) 576-6436 FAX

E-mail: ESTSC@osti.gov

The Windows/PC versions of these codes are available from Galaxy Advanced

Engineering, Inc. Just refer to www.gaeinc.com.

1.11 TOPAZ2D and TOPAZ3D Computer Codes Series

TOPAZ2D is a two-dimensional, implicit, finite element computer code for heat

transfer analysis. It can be used to solve for the steady-state or transient temperature

field on two-dimensional geometries. TOPAZ2D is no longer funded for active

development or direct user support and is made available on an “as-is” basis. Select

hardware projects have chosen to fund limited development or maintenance

activities.

TOPAZ3D is a three-dimensional, implicit, finite element computer code for

heat transfer analysis. It can be used to solve for the steady-state or transient

temperature field on three-dimensional geometries. Material properties may be

temperature dependent and either isotropic or orthotropic. A variety of time- and

temperature-dependent boundary conditions can be specified, including tempera-

ture, flux, convection, and radiation. By implementing the user subroutine feature,

users can model chemical reaction kinetics and allow for any type of functional

representation of boundary conditions and internal heat generation. TOPAZ3D can

solve problems of diffuse and specular band radiation in an enclosure coupled with

conduction in the material surrounding the enclosure. Additional features include

thermal contact resistance across an interface, bulk fluids, phase change, and energy

balances. Thermal stresses can be calculated using the solid mechanics code

NIKE3D, which reads the temperature state data calculated by TOPAZ3D

(Fig. 1.8).
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The TOPAZ3D and NIKE3D codes are used to analyze the expansion of the

National Ignition Facility’s laser target chamber resulting from the heat of a laser

shot and its contraction to equilibrium in the cool-down period

1.11.1 Availability TOPAZ2D and TOPAZ3D Computer
Codes Series

Both these codes are available from the following site but have no technical support

nor are up to date with any present computing operating system, and codes have a

lot of logical errors that need to be fixed, and based on this author’s experience

working with these codes for a long time, they are not easy to fix unless you are

willing to spend hours and hours of debugging.

This package is distributed by:

Energy Science and Technology Software Center

P.O. Box 62

1 Science.Gov Way

Oak Ridge, TN 37831

(865) 576-2606 TEL

(865) 576-6436 FAX

E-mail: ESTSC@osti.gov

The Windows/PC versions of these codes are available from Galaxy Advanced

Engineering, Inc. Just refer to www.gaeinc.com.

Fig. 1.8 TOPAZ3D and

NIKE3D output
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Chapter 2

Laser Technology

The development of lasers has been an exciting chapter in the history of science and

engineering. It has produced a new device with potential for applications in an

extraordinary variety of fields. Einstein developed the concept of stimulated emis-

sion on theoretical grounds. Stimulated emission is the phenomenon that is utilized

in lasers. Stimulated emission produces amplification of light so that buildup of

high-intensity light in the laser can occur. Einstein described the fundamental

nature of the stimulated emission process theoretically.

This characterization of stimulated emission did not lead immediately to the

laser. Additional preliminary work on optical spectroscopy was done in the 1930s.

Most of the atomic and molecular energy levels that are used in lasers were studied

and investigated during those decades.

2.1 Basic Principles

The word laser is an acronym for light amplification by stimulated emission of

radiation, although common usage today is to use the word as a noun—laser—

rather than as an acronym—LASER.

A laser is a device that creates and amplifies a narrow, intense beam of coherent

light.

Atoms emit radiation. We see it every day when the “excited” neon atoms in a

neon sign emit light. Normally, they radiate their light in random directions at

random times. The result is incoherent light—a technical term for what you would

consider a jumble of photons going in all directions.

The trick in generating coherent light—of a single or just a few frequencies

going in one precise direction—is to find the right atoms with the right internal

storage mechanisms and create an environment in which they can all cooperate—to

give up their light at the right time and all in the same direction.
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In a laser, the atoms or molecules of a crystal, such as ruby or garnet—or of a

gas, liquid, or other substance—are excited in what is called the laser cavity so that
more of them are at higher energy levels than are at lower energy levels. Reflective

surfaces at both ends of the cavity permit energy to reflect back and forth, building

up in each passage.

Only three basic components are necessary for laser action: a lasing medium, a

pumping system that supplies energy to the lasing medium, and a resonant optional

cavity. Lenses, mirrors, shutters, saturable absorbers, and other accessories may be

added to the system to obtain more power, shorter pulses, or special beam shapes.

2.2 Overall Theme

This report deals with the effects of directed energy weapons, treating such diverse

types of weaponry in particular laser and in our case airborne laser (ABL).

Although when we talk about directed energy weapon, we can consider such

weapon as particle beams, microwaves [1], and even bullets as part of directed

energy weapon (DEW) system. In order to understand these weapons and their

effects, it is necessary first to develop a common framework for their analysis, and

in our particular case, we expand our concentration on just laser as DEW in

particular ABL under the scope of this project and related issues of laser range

safety tool (LRST).

It is a thesis of this report that all laser weapons (continuous or pulse) may be

understood as devices which deposit energy in targets and that the energy which

must be deposited to achieve a given level of damage is relatively intensive to the

type of laser weapon employed, type of engagement environment, dual time on

target, and type of targets these weapons are engaged.

Of course, energy cannot be deposited in a target unless it has first delivered

there. Therefore, an important element in understanding laser weapons is

knowledge of how they deliver (or “propagate”) their energy. Some loss of energy

is invariably associated with this propagation, whether it is the atmospheric effect

such as a known phenomenon as thermal blooming [1] or delivery system as well as

other related technical and obstacle issues. A laser weapon must therefore produce

more energy than needed to damage a target, since some of its energy will be lost in

propagation. As a result, weapon design depends upon two factors: first, the

anticipated target, which determines the energy required for damage, and, second,

the anticipated scenario (range, engagement time, etc.) which determines how

much energy should be produced to insure that an adequate amount is delivered

in the time available and dual time on target.
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2.3 A Word About Units

Since our goal is to reduce the jargon associated with different types of laser

weaponry to common units, the choice for these common units is obviously of

interest. For the most part, we will use metric units of MKS, where length is in

meter, mass is in kilograms, and time is in seconds. In these units, energy is

expressed as joules.

2.4 Developing Damage Criteria

If we are to determine howmuch energy a weapon must produce to damage a target,

we need to know two things:

1. How much energy it takes to damage a target.

2. What fraction of the energy generated will be lost in propagation to it.

These will be developed in detail for different weapon types in subsequent

sections. For the moment, we will consider some of the fundamental issues,

which affect damage, and propagation of laser weapon independent of its type

(CW or pulse).

2.5 The Energy Required for Damage

In order to be quantitative about the amount of energy necessary for damage, we

must first define what we mean by damage. For a military system, this could be

anything from an upset in a target’s computer (in case of microwave weapon) and

preventing it from operating or to total vaporization (in the case of laser weapon).

These two extremes are usually referred to as “soft” and “hard” damage or kill,

respectively. The study of soft damage clearly is beyond the scope of this project

and is much more sensitive to specific details of the target system and its shielding

as well as related countermeasure under attack than hard damage. Few good

references are published and are available for soft kill or damage study [2].

Without knowing the details of a computer, its circuitry designs, and the

hardness of its chips and electronic components, we will not know if it has been

upset until we see it in operation, whereas vaporizing it produces immediate

feedback on the effectiveness of an attack, and it is the subject of this project. On

the other hand, vaporizing a target will require more energy than degrading its

performance. We will concentrate in this book on hard or catastrophic damage for

two reasons: it avoids target-specific details, which are often classified, and it

provides a useful first cut at separating weapon parameters, which will almost
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certainly result in damage from those for which the likelihood of damage is

questionable or for which more detailed analysis is required.

As a simple example of the kind of energies necessary to achieve damage, let us

first consider what it takes to vaporize a given target using laser techniques

employed in effects of high-power laser radiation [3] or effect of laser radiation

on absorbing condensed matter [4].

2.6 The Laser Beam

The laser beam has many unique qualities, which can be manipulated in many ways

by the use of different accessories that are added to the basic laser. The beam is

characterized by its collimation, coherence, monochromaticity, speed, and intensity

[5]. The laser beam is the source of light that can have all the above properties,

while the other source of light may possess these properties but not all at the

same time.

Collimation in a laser can be very high, which means that the radiation emitted

by most lasers is confined to a very narrow beam, which slowly diverges as the

beam moves away from the laser source, a phenomena that is known as diffraction.

Diffraction refers to the spreading, or divergence, of light which emerges from

an aperture of given diameter, as shown in Fig. 2.1 [6].

In this figure, a beam of light of essentially infinite beam width is passed through

an aperture of diameter D. Calculating the beam divergence or diffraction is a

matter of elementary geometry analysis, and it can be shown that the angle

of divergence θ is related to D and the wavelength, λ, of the beam by relationship

θ � λ=D. The divergence of the beam is normally a small enough angle so that the

approximation holds that the sine and tangent of the divergence angle have the same

value, with the angle itself expressed in milliradians (a milliradian divergence

would mean that a beam would be 1 yard wide at 1000 yards range, 2 yards wide

at 2000 yards, and so forth) [5]. Due to nature of wave light, it is impossible to make

a laser weapon that is 100% collimated beam and has no divergence at all (see

Converging Lens

θ1

θ2

θ1

θ2

Diverging Lens

Fig. 2.1 Converging and diverging lenses (Figure has been adapted from Figure 3.13 in Eugene

Hecht and Alfred Zajac, Optics, Addison-Wesley, 1976)
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Fig. 2.2). However, the angle of divergence of a laser beam can be forced to be as

small as possible by usage of a converging lens that is placed in path of the beam.

Such approach reduces the effect of divergence to achieve a longer effective beam

as illustrated in Fig. 2.3.

These lenses serve as an apparatus to bend the laser beam inward, focusing it to a

spot of radius W. The width of the focal spot depends upon the focal length, f, of
lens. For shorter length of f, the beam focuses to smaller spot and will diverge

rapidly beyond that spot, and for longer, f, the light diverges as it leaves the source
of the light at the aperture.

The best optimum focal length at which beam has the best optimum collimation

for greatest distance is known as the Rayleigh range, Zr. The beam radius at the

D
θ

Fig. 2.2 Diffraction of light passing through an aperture

f < Zr

f = Zr

W <
D

3 2

W =
D

3 2

W >
D

3 2

θ >λ/D

θ ≈λ/D

θ ≈λ/D

f > Zr

D

D

D

Fig. 2.3 Focusing of a beam of light and the Rayleigh range
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Rayleigh range is W ¼ D=3
ffiffiffi
2

p
, and the Rayleigh range is given by Zr ¼ πW2=λ.

Therefore, in practical application, laser light can be used as a collimated beam over

a distance of about twice the Rayleigh range or about D2/λ, where D is the aperture

from which the light emerges from the weapon and λ the wavelength of the light. If
the laser designer wants this laser beam to be focused as much as possible on small

spot at long distances, the reciprocal relationship between divergence and the size

of the output optics is used (see Fig. 2.4). When a beam with a very small

divergence is required, large lenses must be used on the output of laser aperture.

Beyond this distance, divergence and diffraction at an angle of about λ/D must be

taken into account in evaluating the energy density on target. With ordinary lenses,

the focal spot may not be smaller than a few times the wavelength of light. For most

military purpose, this is certainly more than sufficient. In some high-energy laser

(HEL) weapon systems, a concave mirror is used to focus as much energy on the

target as possible.

Note: Propagation within Rayleigh range is known as “near-field” propagation

and a greater distance as “far-field” propagation.

Laser can operate in the continuous-wave (CW) or the pulsed mode. The mode

of operation depends on whether the pump energy is CW or pulsed. A CW mode

laser emits light steadily as long as it is turned on. A pulsed mode laser can have

either one single pulse or repeated pulses, possibly on a regular basis in a train. The

pulse repetition frequency (PRF) is the number of pulses a laser produces in a given

time. The duration of the pulse (or pulse width) and the PRF may vary immensely

between different lasers. Lasers are available with a PRF as high as several

hundreds of thousands or millions of pulses per second. In a visible beam band,

the human eye will not see such a pulsation, and the beam will appear to be CW [5].
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One of the most important factors to a designer and user of laser weapons is the

energy level delivered by laser beam. Energy is the power emitted by a laser within

a given time. The following equation can be used to calculate the intensity of the

beam:

E ¼ P � t

where E is the energy in joules, P is power in watts, and t is time in seconds. The

energy of repetitively pulsed lasers is calculated using the average power level

emitted over a standard interval, which is usually 1 s.

A high-energy laser weapon designed to down aircraft, missile from several

miles away may have several megawatts of power, while a low-energy helium–

neon laser such as is used in a lecture hall pointer or a supermarket scanner usually

has only a milliwatt or less of average CW power, although the CW power of a

helium–neon laser can be as much as 50 mW [5].

2.7 Summary

Present-day laser technology is very extensive and diversified, and, within certain

limits, it allows for many civilian as well as military applications. Military staff,

defense researcher institutes, and defense industries are constantly looking for new

laser concept that are suitable for military application and that will fulfill the very

tough but realistic battlefield requirements. Many new military laser systems will

most certainly be designed to back up their military needs. Thus, if and when

realistic battlefield laser weapons concepts pass through the research and develop-

ment phase, there will be a strong laser industry already in existence to mass-

produce these weapons [5].
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Chapter 3

Laser Safety

It seems inevitable that the battlefield laser threat will markedly increase in the

coming years. This will be because of not only the development and implementa-

tion of laser weapons but also the increasing number of other helpful laser-powered

devices such as range finders and target designators. Therefore, it will be necessary

for armies to protect their sensors and personnel by introducing passive as well as

active countermeasures for laser technology. The primary laser threat will come

from laser weapons, although conventional weapons guided to their targets by

lasers will also constitute an indirect laser threat, as will be demonstrated later in

this chapter.

Protection and countermeasures against laser weapons are difficult problems,

which so far have remained unsolved despite years of research. A simple and cheap

eye protection against anti‐eye laser weapons still does not exist; consequently,

protection of personnel involves many complicated factors ranging from filters to

defensive battlefield behavior. This chapter will mainly deal with what we can do to

protect personnel, sensors, and combat units against the laser beams from

low-energy laser (LEL) weapons. Protective measure required to counter high-

energy laser (HEL) weapons will only be described briefly.

3.1 Laser Safety

The laser has become a common tool of civilian and soldiers all over the world.

Many lasers, perhaps most of them, are in some way dangerous to people. For

several reasons, it is our eyesight that is most threatened, but there are many other

dangers to deal with as well. Laser safety is very complex problem.
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3.2 Laser Hazards

The use of lasers almost always carries with it some kind of danger, either at the

laser site itself or wherever there is a direct, reflected, or scattered laser beam. At the

laser site, it is not only the actual laser beam, which can be dangerous, but electrical,

chemical, and other hazards exist as well. Most laser power supplies can cause

server electrical shocks, possibly even electrocution. Furthermore, many highly

explosive and toxic substances are used in solid, liquid, or gas from to power laser

cooling systems. For many reasons, it is useful to divide the hazards from laser

beam into two main groups: those to the eye and those to the skin. The eyes may be

severely damaged and even permanently blinded by rather low-energy laser beams,

while the skin is not nearly as sensitive. To get severe skin burns in the visible and

infrared part of the spectrum, it is normally necessary to use a very high-energy

laser beam, which delivers, at least, several watts per second square centimeter

(W/cm2) to the target. Safety threshold limits both for the skin and eyes are well

defined and have resulted in very strict safety regulation.

3.2.1 Laser Hazards to the Eye

To understand laser hazards to the eye fully, with their implications for laser safety

requirements and the possibilities of anti-eye laser weapons, it will be discussed in

this part briefly. It is necessary to understand the anatomy of the eye, which is

beyond the scope of this report, but detail aspect of such discussion can be found in

Ref. [1].

The hazardous effects of a laser beam that is transmitted through the eye are, in

the vast majority of cases, limited to the retina. The effect upon the retina may range

in severity from a temporary reaction without residual pathological changes to

permanent blindness. A soldier using magnifying optics may not only be much

easier to go blind but may also be a more valuable target than a soldier with a naked

eye. Tank gunners, artillery fire controller, forward observer, missile operators,

commanders, and others all use magnifying optics in critical moments on the

battlefield, and their optical systems may then be detected and identified by the

characteristic reflections and exposed to laser radiation. For example, at the micro-

scopic scale, light reflects off locally flat incremental areas of the target skin

according to a bidirectional reflectivity distribution function (BRDF) effects,

which must be measured and exist inside the materials’ database. The detail at

the scale of target components, the primitive shapes account for local variations of

the surface normal, surface areas, local material assignments, and self-shadowing

effects can be found. Within that, the reference author will resolve all geometry

effects at this scale through standard ray tracing techniques as part of laser range

safety tools (LRST) [2].
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The smallest observable reaction may be a whitening of the retina. However, as

the retinal irradiance is increased, lesions occur which progress in severity from

swelling (edema) to burning (coagulation) and then bleeding (hemorrhage) as well

as additional tissue reaction around the lesion. Very high retinal irradiance will

cause gas bubbles to form near the site of absorption.

The retina itself is not much more sensitive to laser damage than any other parts

of the body. The level of energy that may cause severe damage to any part of the

body is between 50 and 500 mJ/cm2 for a short pulse. It is only the optical

concentration of the energy by the optics of the eye that makes a low-powered

laser capable of damaging the retina specifically rather than the rest of the eye

or body.

The most important part of the eye for vision is the macular area and, in

particular, the fovea centralize, which is densely packed with cones. If the laser

beam causes a retinal burn of any size in this area, the result is permanent loss of

fine-detail vision sufficient to cause legal blindness, and no treatment is possible. Of

course, much vision is still present but not enough to read rapidly, drive an

automobile, or do any visually demanding task [2].

When discussing laser safety and the eye, it is necessary to differentiate between

the effects inside the eye within the retinal hazard region (400–1400 nm) and the

effects on the outside of the eye from those laser beams that do not reach the

retina [1].

The retinal hazard region covers the spectrum from 400 to 1400 nm and includes

the visible and near-infrared parts of the spectrum. The shorter wavelengths in the

near ultraviolet are absorbed mainly in the lens, and the even shorter far-ultraviolet

wavelengths are absorbed mainly in the cornea. Longer wavelengths in the

mid-infrared region are also absorbed in the cornea. Thus, there can be harmful

effects to the eye from laser exposures even in the parts of the optical spectrum

outside the retinal hazard region [1].

The excessive absorption of intermediate ultraviolet radiation by the cornea

causes ultraviolet photokeratitis. This is a very painful but temporary injury,

often called snow blindness or welder’s flash [1].

However, as most of these effects require that the eye be subjected to high levels

of laser radiation for a comparatively long time, half a minute or more, it seems

unlikely that these effects in the ultraviolet part of the spectrum could form the basis

for a laser weapon.

In the mid- and far-infrared region, the possibility for absorption in the cornea,

especially for wavelengths longer than 2000 nm, is very high. Therefore, the cornea

is very susceptible to damaging heat during exposure to mid-infrared radiation. If

the energy level of the beam is high enough to cause corneal heating, this will

produce immediate and severe pain and automatically trigger the blink reflex. The

cornea is quite sensitive, and an elevation of only 20 �F in temperature will cause a

pain response [2]. The question is whether sufficient thermal energy would be

absorbed in the cornea to cause injury in the short time before the blink reflex is

activated. The lids are much less sensitive to damage because the circulating blood

carries away the heat and a large amount of the laser beam is reflected (Fig. 3.1).
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The infrared lasers that may be used to injure the cornea are CO2, hydrogen

fluoride (HF), deuterium fluoride (DF), and CO. Such lasers with an output power

of more than 10 W/cm2 could deliver at least 0.5–10 J/cm2 to the cornea before the

blink reflex gives any protection, as shown in Fig. 3.2. Existing infrared lasers can

certainly damage the cornea before any head movement can occur. Research has

shown that thermal injury to the cornea produces a white spot or an opacification of

the surface. The injury is extremely painful and needs immediate and well-qualified

medical care. The severity of corneal burn injuries from laser exposure can be

compared to that of burns and injuries resulting from ignition or explosion of

flammable objects.

Ionization Thermal Photochemical

Thermoacoustic Thermally enhanced photochemistry

Fig. 3.1 Types of interaction of laser energy with the eye and other biological tissues. Only the

thermal and thermoacoustic modes of interaction are important with present-day antipersonnel

laser weapons [1]

Fig. 3.2 Threshold for corneal injury from CO2 laser radiation. The differences between data

points at the same exposure duration are largely to the use of different corneal image sizes. The

data points are from several laboratories and fit a thermal heat flow damage model quite well [1]
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3.2.2 Laser Hazards to the Skin

Laser can have several important effects on the skin. The thermal effect is the most

significant one. Burn injuries are divided into three basic groups. A first-degree

burn is a very superficial reddening of the skin, a second-degree burn produces

blistering, and a third-degree burn, the most severe kind, destroys the entire outer

layer of the skin. The irradiance necessary to cause a first-degree burn is 12 W/cm2;

for second- and third-degree burns, the necessary irradiation is 24 and 34 W/cm2,

respectively. If the exposure is shortened, the irradiance required to give a third-

degree burn is significantly increased. Laser injury threshold for the skin are

dependent on the wavelength of the laser as well as on the pigmentation of the

skin. Dark skins absorb more and thus get hotter for the same laser energy. For long

exposures, the energy levels necessary to produce injury are highly dependent upon

exposure duration. It is possible for high-energy lasers to produce significant burns

within an exposure period of less than 1 s [1].

A soldier on the battlefield, aware of the threat from laser exposure, will be

rather well protected as long as his uniform or the immediate environment is not set

on fire. However, it has to be recognized that, even in a protected state, burn injuries

to the eyes will probably still be a problem. In far-infrared and ultraviolet regions of

the spectrum, where the laser energy does not reach the retina, corneal injury

thresholds are approximately the same as for skin injury. Therefore, laser burns to

both the exterior of the eye and skin are possible, but these do not seem to be

important threats at the moment [1, 2].

3.3 Safety Regulations

There are a variety of laser safety standards including federal and state regulations

and nonregulatory standards. The most important and most often quoted is the

American National Standards Institute’s Z136 series of laser safety standards.

These standards are the foundation of laser safety programs in industry, medicine,

research, and government. The ANSI Z136 series of laser safety standards are

referenced by the Occupational Safety and Health Administration (OSHA) and

many US states as the basis of evaluating laser-related occupational safety issues.

ANSI Z136.1 Safe Use of Lasers, the parent document in the Z136 series,

provides information on how to classify lasers for safety, laser safety calculations

and measurements, laser hazard control measures, and recommendations for Laser

Safety Officers and Laser Safety Committees in all types of laser facilities. It is

designed to provide the laser user with the information needed to properly develop a

comprehensive laser safety program.

For manufacturers of laser products, the standard of principal importance is the

regulation of the Center for Devices and Radiological Health (CDRH) and Food

and Drug Administration (FDA), which regulates product performance. All laser
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products sold in the United States since August 1976 must be certified by the

manufacturer as meeting certain product performance (safety) standards, and each

laser must bear a label indicating compliance with the standard and denoting the

laser hazard classification.

The establishment of the threshold levels for different laser injuries is basic to

the whole question of laser safety. The threshold level is an exposure value below

which adverse changes have a low probability of occurrence and no significant risk

exists. There is always some question about what the actual value of the threshold

is, because it varies with the wavelength and exposure duration but also with the

individual.

The value of the threshold may be set by using a statistical analysis to determine

a certain damage probability (usually 50%) and then setting the safety level at a

selected level of probability below this, usually the 0.01 or 0.001% level. This

energy/power level is often a factor of 10 below that for the 50% damage point. In

order to calculate a correct threshold level, it is also necessary to try to simulate

some kind of worst-case scenario—when the eye is hit in its most sensitive part and

takes in as much laser light from the laser in question as is possible under the

circumstances.

3.4 Laser Hazard Classification

Research studies, along with an understanding of the hazards of sunlight and

conventional, man-made light sources, have permitted scientists to establish safe

exposure limits for nearly all types of laser radiation. These limits are generally

referred to as maximum permissible exposures (MPEs) by laser safety profes-

sionals. In many cases, it is unnecessary to make use of MPEs directly. The

experience gained in millions of hours of laser use in the laboratory and industry

has permitted the development of a system of laser hazard categories or classifica-

tions. The manufacturer of lasers and laser products is required to certify that the

laser is designated as one of four general classes, or risk categories, and label it

accordingly. This allows the use of standardized safety measures to reduce or

eliminate accidents depending on the class of the laser or laser system being

used. The following is a brief description of the four primary categories of lasers:

Class 1
A Class 1 laser is considered safe based upon current medical knowledge. This

class includes all lasers or laser systems which cannot emit levels of optical

radiation above the exposure limits for the eye under any exposure conditions

inherent in the design of the laser product. There may be a more hazardous laser

embedded in the enclosure of a Class 1 product, but no harmful radiation can escape

the enclosure.
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Class 2
A Class 2 laser or laser system must emit a visible laser beam. Because of its

brightness, Class 2 laser light will be too dazzling to stare into for extended periods.

Momentary viewing is not considered hazardous since the upper radiant power

limit on this type of device is less than the MPE (maximum permissible exposure)

for momentary exposure of 0.25 s or less. Intentional extended viewing, however, is

considered hazardous.

Class 3
A Class 3 laser or laser system can emit any wavelength, but it cannot produce a

diffuse (not mirrorlike) reflection hazard unless focused or viewed for extended

periods at close range. It is also not considered a fire hazard or serious skin hazard.

Any continuous wave (CW) laser that is not Class 1 or Class 2 is a Class 3 device if

its output power is 0.5 W or less. Since the output beam of such a laser is definitely

hazardous for intra-beam viewing, control measures center on eliminating this

possibility.

Class 4
A Class 4 laser or laser system is any that exceeds the output limits (accessible

emission limits, AELs) of a Class 3 device. As would be expected, these lasers may

be either a fire or skin hazard or a diffuse reflection hazard. Very stringent control

measures are required for a Class 4 laser or laser system.

3.5 Laser Range Safety Tool (LRST) Physics

It may be of interest to consider what the safe distances are for current military laser

devices. This will give an indication of the size of the hazardous area around each

device. Each specific laser has a safety distance of its own based upon its output

properties. The acronym used to describe this distance, in the US regulations at

least, is NOHD that stands for nominal ocular hazard distance. The basic definition

of NOHD is the axial beam distance from the laser where the exposure or irradiance

falls below the applicable exposure limit. The NOHD is calculated to determine at

what distance an unprotected person can stand directly in the beam and be exposed

momentarily without being injured. The use of magnifying optics must be taken

into account, because they will markedly increase the NOHD. A 6-mile NOHDmay

be increased to 50 miles if an individual looks into the laser with optics that magnify

13 times. It should be remembered that the laser may be hazardous to the eye even

beyond the NOHD if the laser is viewed or stared at for a prolonged time. The

NOHD is calculated based on momentary viewing only. It is also necessary to take

into account the problem of accuracy in aiming the laser. Also, the possibility of

reflection is caused by mirrorlike surfaces such as windows, optical surfaces,

greenhouse, still ponds, or road signs covered with reflective coating.
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However, for some lasers, there may be a hazardous diffuse reflection area

(HDRA), which is typically less than 10 yards from the reflecting surface. An

example of a laser danger zone is shown in Fig. 3.3.

Nominal Ocular Hazard Distance and Area

1. Nominal Ocular Hazard Distance

Nominal ocular hazard distance (NOHD) is the distance from the source at

which the intensity or the energy per surface unit becomes lower than the

maximum permissible exposure (MPE) on the cornea and on the skin. The

laser beam can thus be considered as dangerous if the operator is closer from

the source than the NOHD.

Like the MPE, this distance depends on several parameters:

• The beam characteristics: output power, diameter, and divergence

• The MPE value on the cornea

• Eventually, the optical system inserted in the beam trajectory

For example, this distance can be extremely long for Class 3B and 4 laser

sources (see exercises). It is thus necessary to stop the beam at the end of the

optical system.
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Fig. 3.3 Laser range safety fans. Laser range safety fans are used by the US Army to indicate the

nominal ocular hazard distance (NOHD). The NOHD is normally terminated by a backstop. The

un-terminated NOHD depends on beam expansion and atmospheric attenuation. In case A, the
NOHD is a line-of-sight fan parallel to the ground and would only be used when there is no

backstop. Case B is the more usual situation where a backstop is established by a hill or tree line. In

case C, the fan is perpendicular to the ground and is applied to airspace hazards [1]
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When looking at the beam with an optical system, one has to consider the

possible higher intensity entering the eye and thus to expand the evaluated

NOHD (called afterward expanded NOHD).

As long as the beam propagates freely, this distance can be evaluated

according to the following expression:

NOHD ¼ 1

θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P0

π MPEð Þ � 2wð Þ2
s

In this formula, NOHD is the nominal ocular hazard distance (in meter), P0 the

power of the source (in watts) or eventually the total energy carried by one

pulse (in joules), MPE the maximum permissible exposure (in W/rad or J=m2),

w the waist of the Gaussian beam (m), and θ the divergence of the beam.

When using an optical system to look at the beam, one has to take into

account the beam focusing induced by the system. Defining f the focal length
f of the optical system and α the half-aperture angle of the beam, the

expression turns to:

NOHD ¼ f þ 1

tan α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

π MPEð Þ

s

2. Nominal Ocular Hazard Area (NOHA)

Inside this area, the intensity or the energy per surface unit is higher than

the MPE on the cornea. The size of this area is defined by the NOHD.

However, it is very difficult to define this area as it depends on the environ-

ment (dusty or not) and on the objects than can be on the beam trajectory—in

other words, one has to take into account the specular reflections.

The laser beam is decreased or attenuated by some atmospheric conditions, and

this is a factor that should be considered when the NOHD is longer than a few

kilometers. Atmospheric attenuation is mainly dependent on the sum of three

following different effects:

• Large particle scattering

• Molecular scattering

• Absorption by gas molecules (thermal blooming)

Each of these effects is defined briefly in the following paragraphs.

Large particle, or Mie, scattering is the dominant factor in the visible and the

near-infrared part of the spectrum, where the particle size of the atmospheric

contaminates larger than the wavelength of the laser light.
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Molecular or Rayleigh scattering by oxygen, nitrogen, and other molecular

constituent and, in these cases, the molecular size are much less than wavelength

of laser beams.

The contribution of absorption by gas molecules and other particles to attenua-

tion is most important in the infrared region of the spectrum.

The molecular scattering of the laser beam increases at shorter wavelengths.

However, this effect is not substantial over short distances. A normal and clean

atmosphere is relatively transparent to the argon laser beam (blue), the ruby laser

beam (red), and the Nd:YAG beam (near infrared). If NOHD calculated for vacuum

transmission is known and compared to the NOHD compensated for the ambient

atmosphere (see Fig. 3.4), it may be concluded that, for low-energy lasers, the

atmosphere even at battlefield distance up to 10 miles, at least, is not a big problem.

A ruby laser beam might be attenuated as little as 10% at 6 miles [2].

High-energy laser (HEL) beams are much more heavily dependent on the

weather conditions, especially rain, snow, dust, clouds, and smoke. This will be

discussed further in Sect. 3.4. However, what may be concluded from laser safety

calculations is that most military concluded from laser safety calculations is that

most military lasers are not very dependent on the atmosphere when the air is fairly

clean and the laser is used at battlefield distances.

Therefore, LRST of target reflectivity known as BRDF [3] (bidirectional reflec-

tivity distribution function) database should be reviewed and updated for the target

that laser weapon is engaging. Continuous testing for LRST should be conducted,
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Fig. 3.4 The effects of clear atmosphere on the nominal ocular hazard distance (NOHD). This

figure shows the theoretical distance in a vacuum and the actual distance in a clear atmosphere.

The straight line is for a laser beam at a wavelength (1064 nm) not absorbed heavily by the

atmosphere. The curved line shows effects of a normal atmosphere. Including that even in the

clearest atmosphere, there is a considerable attenuation. As the distances are large, this attenuation

will not affect the use of lasers within a typical battlefield but will modify the effects of lasers from

aircraft or in an antiaircraft situation [1]
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and desired results for each test condition must be studied considering the following

criteria:

• LRST vs. hand calculation radiometry

• Check of ANSI maximum permissible exposure (MPE)

• LRST hazard zone vs. hand calculation hazard zone

The American National Standards Institute (ANSI) initiated the first work on a

comprehensive standard for the safe use of lasers. Initial hypothetical scenario for

LRST should be assumed, and test results should be compared with those which are

hand calculated using various related computer codes, and we hope to be at least

within optimum design range or at least well within uncertainties built into ANSI

standard.

A safety analysis of the outdoor use of current military range finders and target

designators against the eye of the human being such as soldiers. However, so far as

it is publicly known, only one country has made such a use as part of its military

practice. This is the case of the use by the British of low-energy lasers to flash blind

Argentinean pilots in the Falklands conflict. At present, there are no known

unclassified tactical manuals which cover the deliberate use of lasers against the

eyes of soldiers as a weapon of warfare or reflection of a beam in term of BRDF

from a target engagement. What the military will do in future conflicts, which will

certainly involve a mass use of lasers, remain to be seen.

The underlying requirements of the laser range safety tool (LRST) and its

written code will be to generate an accurate time history of intensity at potential

positions where humans might be exposed to reflected laser beam light from a target

missile being irradiated in the case of airborne laser (ABL) [2].

Fig. 3.5 Eight basic algorithmic steps to evaluate hazards
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There are about eight basic algorithmic steps necessary to evaluate eye hazards

in LRST. Figure 3.5 shows a simple diagram of this process.

Certain conditions, preengagement, and dual on target time of laser beam

scenario and its geometry with target in battlefield must be calculated. In such

thing as the position and velocity of ABL, an incoming threat also should come

under consideration as well as environmental condition has to be part of the

parameter of engagement equation.

The incoming threat such as in flight missile position and velocity should be

derived from database table of pre-simulated position is imported into code as part

of solution to LRST consideration. All the vector position of missile in relative to

itself and ABL that is known and referred to as golden sphere has been considered

in the LRST code simulations [2].

Overall the LRST is a software tool for calculating reflected energy hazards

under the role of BRDF in the context of test range development of the airborne

laser (ABL) system. The LRST software package consists of a suite of programs

that provide facilities for describing and simulating test scenarios, including the

range, the ABL, the aircraft laser complement, the target, and the observers. What is

missing from this software is the effects of BRDF on friendly troops on the ground

and preengagement warning that ABL will be in tangle with the incoming missile

threat. The other missing link of the LRST is the consideration of falling debris due

to physical destructive ABL impact on target and dual time on target. But the LRST

software does an excellent job of providing a detailed description of physical basis

of the simulation and the computational algorithms utilized to calculate the radi-

ometry and hazards.
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Chapter 4

Laser Weapons

Laser technology is only 30 years old, but it is much diversified. There are already

varieties of military applications, although there are many limitations restricting the

use of lasers. Today, the armed forces in most countries routinely use a wide range

of laser devices such as laser range finders and designators. In some countries, work

is proceeding on more imaginative laser weapon concepts that will eventually fulfill

realistic, yet very precise, military requirements. The design of a specific laser

weapon is heavily influenced by the characteristics of the intended target. If the

desired effect of the weapon is to neutralize aircraft, helicopters, or missiles by

burning holes through them or tanks by putting many miniature cracks (crazing) in

the glass vision blocks to make them appear to be frosted, a very high-energy laser

has to be used with a power output on the order of several megawatts (MW). Such a

laser would be a true anti-material weapon. However, if the target is a sensitive

electro-optical system or some other type of sensor system, which has to be jammed

or destroyed by a laser operating in a countermeasure mode, the choice will be a

low-energy laser operating within the frequency bandwidth of the target sensor.

This use of a laser can also be considered anti-material. If the target is a soldier,

there is one part of his body that is extremely sensitive to laser radiation—his eyes.

It is sufficient to use a low-energy laser operating in the visible or near-infrared

(near-IR) part of the spectrum to damage the soldier’s eyes and, in effect, cause

blindness. If the laser is to cause burn injuries to the soldier’s skin or to set fire to his

uniform, a high-energy laser is required. In either case, if the purpose of the laser is

to blind or burn the soldier, it will obviously be antipersonnel.

4.1 Laser as a Weapon

Even before the laser was invented, science fiction writers told of incredible

weapons and machines that emitted a bright saber of light, a death ray that

disintegrated everything in its path. Even today, science fiction movies and books
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place high emphasis on weapons that use light instead of bullets. The laser beam is

popularly thought of as a very powerful death ray which can be fired from a

handheld laser gun to vaporize soldiers, demolish building, and burn-through target

armors. In reality, the laser is a suitable tool for many military applications and can

be turned into a deadly weapon, but there are definitely limitations to what a laser

can do. The laser really is a ray weapon, and its light rays can damage some targets

in a way that appeals to the most vivid imagination. It is important to take these

somewhat speculative factors into consideration when studying the psychological

effects of the use of laser weapons on the battlefield. Otherwise, it will not be

possible to get a complete and realistic picture of what using a laser really means to

the combatants.

4.2 Possible Targets

A discussion of laser weapon applications outlining what laser weapons can really

do must start with the destination of the laser beam—the target. The desired effect

on the target ultimately decides what is needed from the laser. To a large extent, the

interaction between the laser beam that is selected and the target also determines

which cost-effective weapons are developed, produced, and deployed into the

battlefield.

The sensitivity of the target to laser light determines whether a low-energy or

high-energy laser is required. If the target is sufficiently sensitive to low levels of

energy within a comparatively broad band of the spectrum, a cheap and cost-

effective laser weapon can be designed and mass-produced. If high energy is

required, the possibility of designing a usable and affordable laser weapon

decreases drastically.

4.3 Energy Level at the Target

One of the basic questions facing the laser weapon designer is what energy level

must be absorbed by the target in order to get the desired result. The absorbed

energy (E) is some fraction (A) of the product of the power density or intensity (I)
present in the laser beam and the emission duration (t). E is measured in energy

units, joules (J) or watt seconds per area, usually expressed in square centimeters;

I in power units, watts (W) per square centimeter; and the time in seconds in the

following equation:

E ¼ A I � tð Þ

This means that if the emission duration is required to be short, as it would be in the

engagement of multiple targets, the power density has to be as high as possible. The
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power density is calculated as the beam power divided by the size of the “beamed”

area, which means that a high beam power and a small surface area will give a high

power density. How much of the laser power will finally be absorbed by the target

in the affected surface area will determine what destructive effect will be achieved.

The laser power goes from the laser to the target, suffers transmission losses in the

optical system and the atmosphere, and has a further loss when some of the power is

reflected from the target surface. The absorbed power is normally no more than

20–60% of the original emitted laser power.

One parameter that is useful in determining the effectiveness of a Gaussian laser

beam is the beam irradiance at the target. For a beam with output power P0 and

cross-sectional A at the target, the peak irradiance Ip at the target is

Ip ¼ P0τ

A

where τ is the atmospheric transmittance.

The effectiveness of a laser beam in causing mechanical damage is, thus,

dependent on beam power, pulse duration, wavelength, air pressure, the material,

and the finish of the target surface. For example, a painted area has considerably

increased energy absorption when compared to an unpainted aluminum plate. The

absorption varies widely between different materials and at different wavelengths.

The absorption of a ruby laser at 694 nm is 11% for aluminum, 35% for light-

colored human skin, and 20% for white paint. The corresponding figures for a CO2

laser at 10,600 nm are 1.9, 95, and 90%. This also indicates that one way to counter

a HEL weapon is to choose a very reflective material for the target surface. On the

other hand, longer wavelengths emitted by the laser can reduce the effects of highly

reflective materials and increase the absorption. Every factor in this very difficult

pattern combines to determine the degree of target destruction as well as the final

energy level that will be needed to produce the desired effect.

It is obvious that the level of energy required to destroy a target varies consid-

erably depending on the circumstances. Therefore, it is not surprising that the

required energy level figures quoted in the open literature also show rather large

variations. In spite of this, some numbers may be given which indicate the general

range of energy levels.

An aircraft, helicopter, or missile could be hit with an HEL weapon in many

different ways that in the end would nullify it. Fuel tanks could be ruptured, or the

fuel itself could be caused to explode. Windshields could be shattered, and parts of

the control surfaces such as elevators or rudders could be destroyed or disturbed

enough to make it impossible to continue fighting. The rotor head of a helicopter or

the wing of an airplane or missile could be made to fail, resulting in a crash.

Sensors, radars, and other navigation aids could be destroyed; if this destruction

occurs during a sensitive and crucial moment in the last phase of an attack, it could

result in a crash or an aborted mission. Also, in some situations, an HEL weapon

could even explode the ammunition carried by an airborne attacker.
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To punch through the metal skin of an airplane requires about 700 J/cm2,

although it should be noted that a hole burned in the skin of an airplane may not

be sufficient to destroy it in the air or even to make it crash. A more realistic energy

level to disable an aircraft may be five to ten times higher, which means that a

successful HEL weapon will have to be able to deliver at least 5000–10,000 J/cm2

on the target.

Optical sensors and radomes (plastic radar domes) are much easier to damage;

no more than 10 J/cm2 needs to be delivered directly on the target. Furthermore, if

the laser wavelength is within the sensitive wavelength region of the sensor in

question, the energy needed could be extremely low. If the HEL weapon is used as

an antipersonnel weapon, that is, as a long-range flamethrower, the energy neces-

sary to burn exposed skin is merely 15 J/cm2, and damage to the cornea, the clear

window into the eye, requires only 1 J/cm2.

4.4 Absorption and Scattering

The Earth’s atmosphere is acting like an absorbing medium. Absorption occurs

when a photon of radiation is absorbed by a gaseous molecule of the atmosphere

that converts the photon into the molecule’s kinetic energy. Hence, absorption is a

way and procedure by which the atmosphere is heated, and it is a strong function of

laser or radiation of wavelength. For example, propagation of radiation essentially

gets eliminated at a wavelength below 0.2 μm due to absorption by O2 and O3,

while there is very little absorption at the visible wavelengths (0.4–0.7 μm).

Scattering of electromagnetic waves in the visible and IR wavelengths occurs

when the radiation propagates through certain air molecules and particles. Light

scattering is strongly wavelength dependent, but there is no loss of energy like in

absorption. The physical size of the scatters determines the type of scattering:

• Rayleigh Scattering—This is named after Lord Rayleigh and caused by air

molecules and haze that are small in comparison with the wavelength λ of the

radiation (see Fig. 4.1 below). Rayleigh scattering, also called molecular scat-
tering, applies only to very clear atmosphere. The scattering coefficient is

proportional to λ�4, a relation known as the Rayleigh law. For these small air

molecules, scattering is eligible at wavelengths greater than roughly 3 μm. At

wavelengths below 1 μm, Rayleigh scattering produces the blue color of the sky

Fig. 4.1 Rayleigh

scattering
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as a consequence that blue light is scattered much more than other visible

wavelengths.

• Mie Scattering—(named after Gustav Mie) scattering by particles comparable in

size to the radiation wavelength (also called aerosol scattering). Unlike Ray-

leigh scattering, scattering by particles comparable in size to or greater than the

radiation wavelength is concentrated in the forward direction (see Fig. 4.2).

Scattering losses decrease rapidly with increasing wavelength, eventually

approaching the Rayleigh scattering case. Mie scattering is the reason why

sunset appears red.

A term that is sometimes used to describe atmospheric visibility is the visual

range, which corresponds to the range at which radiation at 0.55 μm is attenuated to

0.02 time that is a transmitted level. Rayleigh scattering by molecules implies a

visual range of approximately 340 km (or 213 miles) [2].

Absorption and scattering are often grouped together under the topic of extinc-
tion, defined as the reduction or attenuation in the amount of radiation passing

through the atmosphere. The transmittance (also called atmospheric transmission)
of laser radiation that has propagated a distance L is related to extinction as

described by Beer’s law, which can be written as [1, 2]

τ ¼ exp �α λð ÞL½ � unitless

where α(λ) is the extinction coefficient and the product α(λ)L is called the optical
depth. The extinction coefficient is composed of two parts:

α λð Þ ¼ Aa þ Sa m�1½ �

where Aa is the absorption coefficient and Sa is the scattering coefficient. Absorp-

tion and scattering are deterministic effects that are fairly well known.

Software packages like LOWTRAN, FASCODE, MODTRAN, HITRAN, and

PcLnWin (most of these codes are available from Galaxy Advanced Engineering)

are commonly used by both government and private industry to predict transmit-

tance (attenuation) effects as a function of wavelength λ, based on a variety of

conditions—meteorological range, latitude (tropical, mid, arctic), altitude, etc. A

typical output from MODTRAN for rural aerosols with meteorological range of

23 km is shown in Fig. 4.3 as a function of wavelength over 1–10 μm.

Fig. 4.2 Mie scattering
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4.5 Atmospheric Structure with Altitude

The atmosphere is a gaseous envelope that surrounds the Earth and extends to

several hundred kilometers above the surface. Over 98% of the atmosphere by

volume is comprised of the elements nitrogen and oxygen. The major constituents

of the atmosphere are water vapor, carbon dioxide, nitrous oxide, carbon monoxide,

and ozone. Based mostly on temperature variations, the Earth’s atmosphere is

divided into four primary layers (Fig. 4.4):

• Troposphere—extends up to 11 km and contains roughly 75% of the Earth’s

atmospheric mass. Maximum air temperature occurs near the surface of the

Earth, but decreases with altitude to �55 �C. The tropopause is an isothermal

layer extending 9 km above the troposphere where air temperature remains

constant at �55 �C. The tropopause and troposphere together are known as the

lower atmosphere.
• Stratosphere—the layer above the tropopause, which extends from 20-km up to

48-km altitude. The air temperature is roughly constant in the very lowest part of

the stratosphere but then increases with altitude because the ozone gas in this

layer absorbs ultraviolet sunlight, thereby creating heat energy. The ozone layer,

which protects life from harmful ultraviolet radiation, is concentrated between

10 and 50 km. Separating the stratosphere from the mesosphere is the

stratopause, another isothermal layer at approximately �3 �C.
• Mesosphere—extends from the stratopause to roughly 80 km. The temperature

here generally decreases at a constant rate down to �90 �C, which is the coldest

temperature in the atmosphere. The mesopause is the third isothermal layer,
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Fig. 4.3 Typical atmospheric transmittance for a horizontal 1-km path. The height above ground

is 3 m with no rain or clouds
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separating the mesosphere, along with the stratopause and mesopause, consti-

tuting what is commonly called the middle atmosphere.
• Thermosphere—extends from the mesopause to roughly 600 km. Air tempera-

ture in the thermosphere increases quite strongly above 90 km due to the sun’s

energy. Most of the ionosphere and the exosphere are included in the thermo-

sphere. The ionosphere starts around 70 or 80 km up to an indefinite height

(~1000 km) and is so named because it is sufficiently ionized by solar ultraviolet

radiation that the concentration of free electrons in this layer affects the propa-

gation of radio waves.

4.6 The Major Laser Weapon Concepts

There is generally more than one laser weapon alternative for each proposed laser

weapon mission on the battlefield. It is quite possible to vary the laser properties

and energy level, the tracking system, and the fire control equipment according to

the military requirements for each specific mission. Environmental influences will

also have a very strong impact on the final choice of laser weapon applications. For

example, hydrogen fluoride (HF) laser is not the best choice for long-range use

Fig. 4.4 Diagram depicting various atmospheric layers and air temperature
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within the atmosphere, because its wavelength is strongly absorbed by the atmo-

sphere. Every laser weapon that is designed to operate within the atmosphere over

any great range, whether ground-based laser (GBL), sea-based laser (SBL), or

air-based laser (ABL), must use wavelengths at which the atmosphere absorption

and scattering are as small as possible [2].

To be effective, the wavelength of a laser weapon must be short, at least in the

visible band, but preferably in the ultraviolet or X-ray band. The greatest difficulty

in designing short-wavelength lasers is power—the shorter the wavelength, the

more energy that is required. Optical (visible or ultraviolet) lasers work by heating

the skin of the target. The beam must remain at the same spot for several seconds

until the skin is hot enough to do internal damage to the target. This is tough

because the typical ballistic missile travels in excess of 6 miles per second. Imagine

focusing on the same 20 or 30 spot over a distance of 50,000 ft, and you have an idea
how accurate such a laser weapon must be.

In addition to the problems of accuracy, laser weapons of any power tend to be

monstrous, and there are many technical obstacles that the designer should over-

come. The SBL is using relay mirrors to direct the beam to the target. ABLs are

using turbine-powered chemical jets, and they are placed aboard of aircraft, but the

wavelength of the light is long—6–10 μm—far in the infrared region. This makes

laser relatively inefficient at destroying their targets unless certain atmospheric and

environmental condition met for target engagements.

X-ray lasers, still wrapped in secrecy, emit an extremely high-powered beam

that can literally destroy a missile in mid-flight. X-rays can’t be deflected by

mirrors, however, which means that the weapon must be easily aimed and in a

direct line of sight to the target. Fortunately, X-ray lasers can be built small, experts

say, making them suitable for space-based operation. The biggest disadvantage to

X-ray lasers is that they use an internal nuclear explosion to work, so they are

essentially one short device.

A relative newcomer to this laser weapon scene is the free-electron laser, which

is being developed at the several national laboratories and universities. The free-

electron laser (FEL) uses a stream of electrons that is made to emit photons of light

after being oscillated by giant electromagnetic. Free-electron lasers (FELs) have

been built and they do work. However, if put into production, an actual antiballistic

missile FEL would take up a huge field such as football field or more to function.

Obviously, such a device would be useful only as a stationary ground-based laser

(GBL) weapon with its present technology.

Laser weapons may be used within an army’s air defense against aircraft,

helicopters, and missiles. The desired effect on the target may either be to burn

holes or destroy key structures, to blind or trick the sensors, or to blind the crews

temporally or permanently. The high-energy air defense laser may use all three

effects at the same time if the target is within reach of the main effects of the laser.

At longer distances, only the anti-sensor and anti-eye capability will be possible.

The low-energy air defense laser will use enough energy to be effective against

sensors and eyes. It is also possible to field a laser with the main purpose of blinding
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or flash blinding the crews. Flash blinding will be most effective in the dark when

the eye is dark adapted and much more sensitive to overload by bright flashes [2].

4.7 Small-Scale Weapons Using Lab-Type Lasers

So far part of this report has covered high-energy weapons, designed to counter a

major military conflicts and attack. Laser guns in the movies are often handheld

devices or, at most, small enough to prop on a vehicle. Lasers powerful enough to

inflict damage, but small enough to be carried, have developed, but they are not

used in any current military application. It’s relatively easy, for example, to build a

handheld ruby laser that puts out bursts of large amounts of light energy. When

focused to a point, the light from a ruby laser can cut through the paper, cloth, skin,

or even thin metal.

Ruby crystals are poor conductors of heat, so ruby lasers emit only short pulses

of light to allow the crystal to cool between firings. Nd:YAG lasers operate in a

similar fashion as ruby lasers, but they can produce a continuous beam. Making a

handheld Nd:YAG laser is no easy feat either; however the Nd:YAG crystal must

be optically pumped by another high-powered laser or by an extremely bright flash

lamp or light source. Though the power output of an Nd:YAG laser is extremely

high, considering the current state of the art, a handheld model is impractical.

However, such a weapon could be built as a “laser canon,” transported on an

armored vehicle or on a towed trailer.

CO2 lasers are often used in industry as cutting tools. This type of laser is known

for its efficiency—30% or more compared to the 1–2% of most gas and crystal

lasers. A pistol-sized CO2 laser would probably be difficult to design and manu-

facture because the CO2 gas mixture (which includes helium and nitrogen) must be

constantly circulated through the tube. What’s more, the laser requires a hefty

electrical power supply. Still, such apron could be built in an enclosure about the

same size as a personal rocket launcher. These are designed to be slung over a

shoulder and fired when standing in an upright position [3].

4.8 High-Energy Lasers as Weapons

An air defense HEL weapon designed to shoot down airplanes, helicopters, and

missiles successfully must have the ability to keep a very powerful beam at one

point on the target for a long enough time to deliver at least 5000 J/cm2. This

requires a laser in the megawatt range. If the shot is to be successful, it must be

directed to a certain part of the target that is limited in size and very sensitive and

then kept there until the desired effect is reached. Thus, the laser beam must track

and follow a target if any great length of time is needed to achieve the desired

effect.

4.8 High-Energy Lasers as Weapons 55



Many parts of an aircraft or helicopter are highly resistant to an HEL weapon,

but there are still enough thin-skin parts and sensitive areas to produce a devastating

effect or destruction if hit precisely. On the other hand, it is obvious that at

battlefield ranges even an extremely high-energy laser weapon cannot penetrate

the heavy armor on a tank or other armored vehicles and thus an HEL weapon is of

no use for destroying resistant ground targets in the battlefield. However, sensors,

optics, and related devices are still valid targets wherever they appear on the

battlefield, even in a tank.

4.9 High-Energy Laser (HEL) Safety Program

As high-energy lasers move from the safe confines of the laboratory into the

outdoor domain, new problems arise in dealing with laser safety. The Tri-Service

Laser Bioeffects program at Brooks AFB will be examining the safety aspects of

the new technologies and weapon systems to be employed in the future. Several

new high-energy laser systems are now scheduled for deployment in the immediate

future.

The Tactical High-Energy Laser (THEL) will be a ground mobile system which

will use a chemical laser to destroy low-flying threats. Currently under development

in a cooperative program with Israel, the THEL conducted test firing in FY1998 and

continues several test phases at White Sands Missile Range today.
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The airborne laser (ABL), with its megawatt-class laser systems, will engage

tactical ballistic missiles during boost phase at altitudes over 40,000 ft. Its lasers

will be test fired in FY2003, with Engineering and Manufacturing Development

scheduled to begin soon after that. The high-power chemical oxygen iodine laser

will have nominal eye-safe distances in the order of thousands of miles and will

produce reflection patterns off targets that also have the potential for causing eye

damage at very large distances.

Combining these laser characteristics with the planned usage of these weapon

systems involving moving targets and possibly moving sources results in a complex

series of laser safety calculations to allow safe testing and usage of high-energy

lasers outdoors. The Air Force Research Laboratory, Optical Radiation Branch, is

developing new tools and techniques for calculating laser hazard areas which

include computer modeling of the interaction of high-energy lasers and moving

targets and the use of probabilistic methods to augment deterministic calculations.

One of the Missile Defense Agency’s highest priority programs involves putting

a weapon-class laser aboard a modified Boeing 747-400 series freighter aircraft and

using that laser to destroy ballistic missiles shortly after launch. The program is

called the airborne laser, and its development could forever change the way that

nations wage war.
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4.9.1 Airborne Laser (YAL-1A)

Destroying ballistic missiles is a complicated process, one that is confounded even

more by the revolutionary use of a directed energy device as a weapon rather than as

a targeting or range-finding apparatus. To be successful, ABL must:

• Be housed aboard a stable platform that can stay aloft for hours on the end above

weather systems whose clouds could refract its laser beams and nullify its

effectiveness.

• Be equipped with sensors able to locate a ballistic missile shortly after launch

and hold the track long enough for other system elements to swing into

operation.

• Be implemented with a sophisticated computer system capable of keeping track

of dozens of missiles and prioritizing them so that the most threatening is

targeted first.

• Have a highly developed optical system capable of measuring the amount of

thermal disturbance between the aircraft and the target; then be capable of

directing a beam of energy that self-compensates for the clear-air obstacles.

• Possess the ability to focus the killer beam on a rapidly rising target, which may

be traveling at a speed of Mach 6 or more; then keep the shaft of energy in place

long enough to burn a hole in the missile’s metal skin.

• And lastly, be provided with a laser powerful enough to prove lethal at a distance

of hundreds of kilometers.

Some of those requirements already have been tested:

• The first ABL aircraft—YAL-1A—made its virgin flight over the western

Kansas on July 18, 2002, staying aloft for 1 h and 22 min before returning to

the Boeing modification facility in Wichita. Between then and the time it

transitioned to its new temporary home at Edwards Air Force Base, California,

in December, YAL-1A made an additional 13 flights logging more than 60 flight

hours.

• As part of a Missile Defense Agency test over the Pacific Ocean in December

2002. ABL’s infrared trackers successfully detected a Minuteman booster rocket

as soon as it broke the clouds, holding a lock until the rocket’s engines burned

out 500 km downrange.

• Its battle management (computer) system was flight tested in late summer and

early fall of 2002 to verify internal crew communications and the V/UHF radios,

plus the data acquisition system and high-definition VHS.
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• The six infrared search and track sensors were successfully flight tested.

• The first COIL module that will be installed on YAL-1A tested at 118% of

anticipated power during a shakedown run at TRW’s facility in San Juan

Capistrano, Calif., in January 2002. Shortly afterward, it was disassembled and

shipped to Edwards Air Force Base.

In December 2002, YAL-1A was pulled into a hangar at Edwards’ Birk Flight

Test Facility where it will be grounded, while the lasers and optical components can

be tested and installed.

The goal of the Missile Defense Agency, which has overall management

responsibility for the program, and the Airborne Laser System Program Office at

Kirtland Air Force Base, N.M., is to have YAL-1A ready to shoot down a threat-

representative ballistic missile by December 2004. Currently, the missile is sched-

uled to be launched from Vandenberg Air Force Base, Calif., with the shootdown to

take place over the Pacific.

Construction and testing of YAL-1A (prototype attack laser, model 1A), the first

aircraft in a proposed fleet of so-far undetermined size, are the results of an effort by

MDA, the program office, the Air Force, and three major contractors—Boeing,

Lockheed Martin, and Northrop Grumman Space Technologies (formerly TRW). In

addition, the US Air Force’s Aeronautical Systems Center, headquartered at

Wright-Patterson Air Force Base, Ohio, has provided office personnel. The Air

Combat Command, headquartered at Langley Air Force Base, Va., will assume

control over the plane once it is declared operational and transferred back to the Air

Force.

The ABL program office was formed in 1993. Three years later, in November

1996, the Air Force awarded a $1.1 billion contract to the Boeing Defense Group of

Seattle, Wash.; TRW Space and Electronics Group of Redondo Beach, Calif.; and

Lockheed Martin Missiles & Space of Sunnyvale, California.

Boeing built the aircraft in Everett, Wash., and modified it in Wichita. The

company also developed the hardware/software used in the battle management

system and is managing the integration of the main components. TRW built the

megawatt-class COIL laser that produces the knockout punch to ballistic missiles,

and Lockheed Martin is responsible for the optical system.
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Another key organization is the Air Force Research Laboratory’s Directed

Energy Directorate, also at Kirtland Air Force Base, N.M., where the COIL was

invented in 1977. For a quarter of a century, the Laboratory has been conducting

research into a myriad of technologies needed to make a laser-carrying aircraft a

reality. Besides the COIL, the Laboratory also developed the technologies that will

increase the distance laser light can travel through the atmosphere to destroy

attacking missiles.

The Aircraft—The Air Force bought a 747-400F straight off the Boeing Commer-

cial Aircraft assembly line and flew it to Wichita, Kan., in January 2000. Boeing

workers virtually rebuilt the aircraft, installing miles of wiring, grafting huge sheets

of titanium to the plane’s underbelly to protect the exterior from the heat of the laser

exhaust, and, most importantly, adding a 12,000-lb bulbous turret on the front of the

aircraft to house the 1.5-m telescope through which the laser beams will be fired.

Company officials said it was the largest military modification to a commercial

aircraft that Boeing had ever attempted.

Acquisition, Tracking, and Pointing—In addition to a powerful laser, an airborne

laser system also must be able to find and hit its targets. Numerous tests have been

conducted at the White Sands Missile Range in southern New Mexico, both with

lab-type instruments and with the actual aircraft, to demonstrate the system’s ability

to identify and follow a potential target.

The Lasers—Central to this system is the COIL. As a laser that generates its energy

through chemical reaction, it has advantages over solid-state lasers, most notably in

the amount of energy it can produce. COIL energy is produced by chemical reaction

when oxygen and iodine molecules are mixed. A tremendous additional advantage

is that the laser propagates at 1.315 μm in the infrared (invisible) spectrum. This

wavelength travels easily through the atmosphere and has greater brightness—or

destructive potential—on the target. There are three other important lasers aboard

the aircraft: the Active Ranger System, which provides preliminary tracking data;

the Track Illuminator Laser, which produces more refined data; and the Beacon

Illuminator Laser, which measures the amount of atmospheric disturbance.
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Correcting For Atmospheric Turbulence—The ability to find and track a

boosting missile would be meaningless without a corresponding ability to lock

onto and destroy the intended target. Since air, like water, is made up of many

layers, scientists needed to find a way to compensate for these disturbances in the

atmosphere in order to focus a high-energy beam on the target and hold the beam in

place long enough for it to complete the destruction process. The system that will be

installed on YAL-1A is the result of more than 15 years of research conducted by

scientists at the Laboratory’s Directed Energy Directorate and the Massachusetts

Institute of Technology’s Lincoln Laboratory. Working out of astronomical facil-

ities at the Starfire Optical Range in the southeastern corner of Kirtland Air Force

Base, researchers made revolutionary breakthroughs using lasers, computers, and

deformable optics.

The ABL Integrated Test Force—Actually a complex of buildings located at the

historic Birk Flight Test Facility at Edwards Air Force Base, Calif. The gem of the

ITF is the System Integration Laboratory (SIL), an 18,000-square-foot building

housing a surplus 747-fuselage test stand that will serve as a laser template for the

ABL aircraft. The six modules that compose the COIL component initially will be

tested in the SIL. Once those tests have been completed, the modules will be

disassembled and then reassembled on YAL-1A. Other resources in the ITF com-

plex include a ground-pressure recovery assembly (GPRA), which will enable

simulation of ABL’s anticipated cruising height, and a mixing area for basic

hydrogen peroxide, a vital ingredient to the main laser’s chemical reaction process.
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History—Almost 20 years ago, the Air Force Research Laboratory and its prede-

cessor units completed a project that showed the potential for an airborne laser. A

KC-135A tanker airplane (a military version of the Boeing 707) was modified and

equipped with a gas dynamic laser. This aircraft shot down a low-flying drone and

five air-to-air missiles, proving the concept was possible. Later tests also were

conducted at White Sands Missile Range aimed at finding out how effective a laser

would be. For these tests, the nation’s most powerful laser, the Mid-Infrared

Advanced Chemical Laser, was used. In every case, scale models of typical targets

were easily destroyed.

The System—Computer simulations indicate that an airborne laser would be very

effective under battle conditions. Currently, the program will provide the United

States with its only near-term boost-phase missile defense, that is, the ability to find

and destroy a missile between the time it is launched and its booster rockets burn

out.

The laser range safety tool (LRST) is being developed to permit range safety

officers to properly assess hazards and configure test scenarios such that these

new weapon systems can be tested in a safe manner. For any given scenario, the
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tool assists in the evaluation of reflection patterns resulting from targeting various

types of moving targets and predicts hazard zones and appropriate “keep-out” areas.

The tool is based on the ANSI Z136.1 standard for eye safety calculations along

with new bioeffect data for the specific wavelengths associated with the new high-

powered laser systems. Moreover, new risk assessment techniques using probabil-

ities associated with the various aspects of exposure and injury will provide more

realistic predictions for use by the range safety officers, as well as the operational

users.

4.9.2 Tactical High-Energy Laser for Air Defense

The US Army Space and Strategic Defense Command (SSDC) is working on a new

active defense weapon system concept to combat the threat to our forces from

so-called dumb munitions. The command’s mobile Tactical High-Energy Laser or

THEL weapon system will provide an innovative solution for the acquisition and

close-in engagement problems associated with these threats not offered by existing

systems and give the air defense commander an option that he does not currently

have. It will significantly enhance the force protection for combat forces and

theater-level assets for the Force XXI Army.

For the past several years, SSDC has been pursuing this concept that could

provide new air and missile defense capability in force protection missions.

Numerous Department of Defense high-energy laser development programs over

the last 20 years have proven and demonstrated the laser beam generation and

beam-pointing technologies for the THEL concept. Force XXI advancements in the

area of real-time situational awareness now make it possible to capitalize on the

attributes of a THEL in operational scenarios.

A THEL will be able to rapidly fire for close-in engagements where timelines are

very short and cost only a few thousand dollars per kill or less with a deep magazine

to counter saturation attacks. Not only can THELs destroy, but they can also

degrade, disrupt, or damage to enhance operational flexibility and effectiveness

against a wide variety of air threats. This system can, therefore, operate as an

effective new weapon node in the short- to medium-range air defense architecture.

The effectiveness of high-energy lasers against short-range rockets was tested

and demonstrated in the “Nautilus” program, an outgrowth of Project Strong Safety,

in collaboration with Israel. The program was conducted primarily at SSDC’s High-

Energy Laser Systems Test Facility or HELSTF at White Sands Missile Range, N.

M., and utilized a fraction of the power of the HELSTF Mid-Infrared Advanced

Chemical Laser (MIRACL) to emulate the THEL weapon concept performance.

The MIRACL is a megawatt-class deuterium fluoride chemical laser that has

been operational at HELSTF since the early 1980s. After a series of static and

dynamic tests, the program successfully destroyed a short-range rocket in flight on

February 9, 1996. This success triggered the next development in the SSDC THEL

effort.
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In April 1996, the Prime Minister of Israel, Shimon Peres, met with President

Clinton and Secretary of Defense William Perry. During the meeting, the United

States made a commitment to assist Israel in the development of a THEL Advanced

Concept Technology Demonstrator by the end of 1997, based on the success of the

Nautilus program, to defeat the threat posed by Katyusha and other short-range

rockets against the cities in northern Israel.

In July 1996, a contract was awarded by SSDC to TRW, Inc., of Redondo Beach,

Calif., for the design, development, and fabrication of a THEL demonstrator, which

will be a transportable, tactical-sized deuterium fluoride chemical laser. Approxi-

mately 18 months will be required to design and build the system, followed by

12–18 months of testing.

If successful, the demonstrator may pave the way for future development of a

THEL for use in US peacekeeping/contingency operations. The US Army Air

Defense Artillery School in Fort Bliss, Texas, already officially designated as the

proponent for THEL by the Training and Doctrine Command, is planning to

develop a mission need statement and operational concept that could lead to an

operational requirement for a THEL system.

Evolving high-energy laser, beam control, and digital battlefield information

technologies promise to combine into a highly effective force protection THEL

weapon system for the Force XXI Army.

Prepared September 1996 by John J. Wachs, Weapons Directorate,

MDSTC, SSDC High-Energy Lasers Weapons

4.10 Lasers for Air Defense

In its 1984 directed energy plan, SDIO planned to develop an acquisition, tracking,

pointing, and fire control (ATP/FC) subsystem for directed energy weapons by

fiscal year 1990 for $1298 million. Through fiscal year 1993, SDIO allocated $1634

million to this program, accomplishing some but not all of the program objectives.

SDIO estimated that it will cost $180 million and take 3 years to resolve the

majority of the remaining technical issues. For another $100 million, the ATP

technology could be demonstrated in space.

All directed energy weapons need an ATP/FC system. In general terms, the

system must quickly engage a large number of targets by placing a directed energy

beam on the aimpoint of each target. These time and accuracy constraints dictate a

rapid succession of handovers from one sensor to another. Each successive sensor

in the system has a smaller field of view and greater accuracy.

The system locks onto the infrared signature of a missile (acquisition), calculates

the flight path of the missile (tracking), calculates an aimpoint on the missile and

directs the beam to the aimpoint (pointing), and assesses the results and selects the

next target (fire control). Depending on the mission of the directed energy system,

the ATP/FC system must perform these functions when ballistic missiles are in their

boost, post-boost, and/or midcourse phases of flight.
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The basic goal of the program was to resolve the technical issues sufficiently to

support a space test of a directed energy weapon by 1990. The overall technology

performance objectives in the 1984 plan were as follows:

• Reduce the effect on the accuracy of pointing and tracking devices of vibrations

caused by operation of the spacecraft and laser to less than 4 in. on the target.

• Develop the capability to rapidly retarget the laser beam from one target to

another in less than 2 s.

• Develop the capability to track targets at ranges of 2600–3100 miles at an

accuracy of about 4 in.

• Develop fire control computer software to handle more than 100 targets at a rate

of more than one target per second. The fire control functions are missile plume

to missile hard-body handover, tracking of multiple targets, target identification,

aimpoint selection, and damage assessment.

The plan specified that $1298 million would be required from focal years 1986

through 1990 to develop the system components and to fly space experiments to

resolve integration and space operation issues. Experiments would permit the space

test of a directed energy weapon in 1990.

SDIO met the plan’s objectives for pointing and tracking technology and rapid

retargeting technology for directed energy weapons. It did not meet the objectives

for developing long-range fine tracking and fire control software. While not meet-

ing all objectives, SD10 believes it has met the basic program goal of resolving

technical issues sufficiently to support a space test of directed energy technology.

Through fiscal year 1993, SDIO spent about $1684 million developing ATP/FC

technologies. This amount is about $286 million more than what SD10 estimated

was needed to accomplish the objectives. A majority of the funding was spent on a

series of space- and ground-based experiments. All major space tracking experi-

ments were canceled before completion due to a lack of funding. However, two

space pointing experiments were completed.

At a cost of about $262 million, SDIO reported that it completed the Relay

Mirror Experiment and the Low-Power Atmospheric Compensation Experiment,

which were focused on resolving issues related to the ground-based laser program.

Each was placed in a separate orbit by one Delta booster in 1990. The Relay Mirror

Experiment successfully demonstrated high-pointing accuracy, laser beam stabil-

ity, and long-duration beam relays. The Low-Power Atmospheric Compensation

Experiment successfully demonstrated low-power technology to compensate for

laser beam distortions, which occur when beams go through the atmosphere from

ground to space.

SDIO had spent about $684 million from fiscal years 1985 through 1991

planning, designing, and fabricating hardware for four ATP/FC space experiments

that were canceled before completion for the following reasons:

• Talon Gold was intended to demonstrate precision tracking and pointing in space

for targeting satellites and boosters. After spending about $26 million on Talon
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Gold, SDIO canceled the experiment because the cost estimates for integration

and launch had increased an additional $600 million.

• Pathfinder was started in September 1986 and was canceled in 1987 because it

was too expensive. SD10 had spent about $40 million on this experiment, which

was to address plume phenomenology using a sensor array on the space shuttle.

• The Starlab space experiment was intended to demonstrate precision tracking

and would have used the space shuttle to accomplish the experiment. After

spending about $603 million developing Starlab, SDIO canceled this experiment

in part because the Challenger accident led to nearly a 3-year delay in the launch

date, greatly increasing the overall cost. This coupled with changing priorities in

the directed energy program led to changes in requirements and increased costs,

which made the experiment too expensive to complete.

• Altair, which was canceled after SDIO had spent about $16 million in develop-

ment costs, was intended to demonstrate the same types of technologies as

Starlab, and was planned to use some of the hardware developed for Starlab.

An SDIO official estimated that it would have cost $330 million to complete

Altair.

SDIO replaced the Altair space experiment with a nonspace ATP/FC experiment

called High-Altitude Balloon Experiment. This experiment was intended to achieve

most of the same objectives as Altair but at a much lower estimated cost of $76

million. Balloons were used to carry AW/FC devices to an altitude of about 30 km

where these devices will be used to acquire and track missiles in the boost phase.

SDIO’s program manager for ATP/FC expected this experiment to yield from 80 to

90% of the data that would have been obtained from a space experiment.

SDIO designed and constructed a Rapid Retargeting/Precision Pointing [R2P2]

simulator that emulated the dynamics of a large spacecraft (e.g., motion and

vibration). Using this facility, SDIO developed and tested techniques for ensuring

the stability, accuracy, and precision of a simulated directed energy weapon’s

pointing device under rapid retargeting situations. This project demonstrated,

within the limits of a ground laboratory, that ATP/FC techniques should work in

space at the levels established in the original program plan. SDIO will have spent

about $42 million on this project from fiscal years 1986 through 1993.

Two other projects also demonstrated ATP/FC techniques. The Space Active

Vibration Isolation project developed and tested ATP/FC techniques for negating

the effects of spacecraft and weapon vibrations on the pointing device. This project

produced hardware and technology that have improved the pointing stability of

directed energy devices to below the program goal of less than 100 nanoradians or

about 4 in. from a distance of 1000 km. This project was followed by the Space

Integrated Controls Experiment, which improved the pointing stability even fur-

ther. SDIO spent about $37 million on these two projects from fiscal years 1986

through 1993.

As of 1993 SDIO estimated that it would cost $180 million and take three more

years to resolve the vast majority of the ATP/FC technical issues and perform

integrated ATP experiments against real targets from the High-Altitude Balloon
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Experiment platform. This would substantially complete the objectives of the 1984

plan. An additional $100 million would be needed to demonstrate operation in

space, assuming that it would be done as part of another directed energy space

experiment such as Star LITE, the experiment planned for the chemical laser. The

major technical issues to be resolved from 1993 through 1996 included long-range

fine tracking, fire control, integrated ATP/FC, and additional concept development.

For long-range fine tracking, the Solid-State Baser Radar Source program

produced two laser illuminators. They still need to be tested in realistic target

environments to determine their effectiveness in changing conditions and against

a wide variety of targets. In addition, their capabilities must also be developed to

support aimpoint selection and maintenance and damage assessment.

Fire control decision software had been demonstrated in computer simulations,

but its practicality and robustness had yet to be tested in an integrated field

operation. Each of the individual fire control decision algorithms needs to be tested

with several sets of scene conditions with real data. Functional integration with

sensors and autonomous operation must also be demonstrated. SDIO plans to test

the operation of the software on the High-Altitude Balloon Experiment platform

against boosting targets at the White Sands Missile Range Test.

4.10.1 Target Acquisition for Combat Operations

This section will be discussing target acquisition, tracking, and combat operation by

directed energy weapon systems.

4.10.2 Overview

The goals of this sub-thrust can best be described in three major categories:

1. The measurement of atmospheric parameters on space and time scales required

to support Air Force and directed energy weapon system and its missions in

Global Reach–Global Power

2. The prediction of the future evolution of the atmosphere from a few hours to a

few days

3. The assessment of weather impact on Air Force and directed energy weapon

systems and operations

4.10.3 Description

Theater Specification for Dominant Maneuvers sub-thrust conducts R&D programs

to better understand the physical and dynamic processes of the lower atmosphere in

order to design, develop, test, and transition remote sensing instrumentation,

retrieval algorithms, and models in support of air and space warfighters.

4.10 Lasers for Air Defense 67



Real-Time Measurements of Atmospheric Parameters from Satellites: The

measurement goal emphasizes the application and interpretation of satellite sensor

data, but also includes in-situ sensor development as part of the program. Measure-

ment emphasis is on the three-dimensional determination of cloud cover at the

highest spatial and temporal resolution to develop the models to support global

surveillance and tactical warfare.

Atmospheric Optical Turbulence Measurements and Modeling: The technical

objective is to specify and predict the atmospheric optical turbulence degradation to

ground-, air-, and space-based laser systems. Optical turbulence is highly variable

from site to site, season to season, and day to day; however, as yet there are no good

predictive models. In a program initiated in FY96, supported by the airborne laser

(ABL) SPO, Phillips Lab is obtaining optical turbulence data in theaters of interest

to the SPO.

Tactical Remote Sensing: The technical objective is to provide from aircraft and

satellite platforms remote sensing of battlefield gases and emissions. The PL/GPOR

LIDAR remote sensing program is set up to measure several atmospheric boundary

layer parameters in high spatial resolution, including wind profiles, aerosol content,

and size distribution, as well as the detection of trace elements, both natural and

man-made. Current assets include the following:

• 10.6-μm CO2 Doppler range-resolved wind profiler, dual tunable 9–11-μm CO2

Doppler range-resolved wind profiler, and DIAL system to obtain range-

resolved water vapor and trace gas profiles

• 1.574-μm portable, environmental, eye-safe LIDAR (or LADAR) for range-

resolved aerosol and cloud profiles in addition to cloud depolarization features

New assets soon to be on hand include a coherent, tunable UV DIAL system for

water vapor and ozone detection, a mechanical turbulence LIDAR or LADAR for

wind shear detection, and a refractive turbulence remote sensor to measure turbu-

lence along a path.

The Theater Forecast for Precision Engagements FTA develops tailored weather

products to support combat mission planning and execution worldwide.

Prediction of Clouds and Severe Weather: The prediction goal emphasizes the

data fusion of satellite and indigenous data sources in the battlefield where data

denial may be a factor. The resulting analysis fields will then be tested in theater-

scale prediction models on time and space scales appropriate to tactical weapon

delivery.

Virtual Weather: The goal of this program is to produce computer simulations of

the atmosphere, with high physical fidelity, valid as a function of location, season,

time of day, and geometry. In order to address these requirements, simulation

models must be developed that produce three-dimensional structure—the major

shortfall of current capability. Initial efforts involve improving the physical reality

of current cloud simulation models. Other projects include development of rain,

fog, wind, humidity, lightning, and turbulence models. A strong emphasis is placed

on physically correct visualization and the generation of radiometrically correct

atmospheric scenes.
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Weather Impact Decision Aids (WIDAs): The WIDA program is developing

software technology for operationally predicting the impact of weather on the

performance of airborne electro-optical navigation and weapon targeting systems.

The program presently has four major ongoing and/or planned components:

(1) Night Vision Goggle Operations Weather Software (NOWS), which will predict

the impact of weather on night vision goggle detection range for AFSOC and ACC;

(2) IR Target Scene Software (IRTSS), which is developing software that will

determine the impact of weather on air-to-ground target scenes in the infrared and

produce an IR scene visualization for transition to the Air Force Mission Support

System (AFMSS); (3) Weather Automated Mission Planning Software (WAMPS),

a new start in FY97 to develop software to automatically incorporate weather

impacts on airborne EO systems during theater mission planning in Theater Battle

Management Core Systems (TBMCS); and (4) Target Acquisition Weather Soft-

ware (TAWS), a new start in FY97, will provide a major upgrade to the current

operational Electro-Optical Tactical Decision Aid (EOTDA) used by Air Force

Weather (AFW) support personnel to provide weapon lock-on and acquisition

ranges for EO weapon systems used by ACC:

1. User Impact:

None.

2. User Impact:

Concept/technology.

3. Images:

None.

4. Related Initiatives:

• Target Acquisition for Combat Operations (see Sect. 5.1).

• Target-Background Discrimination for Surveillance (see Sect. 5.2)

5. Related Requirements:

None.

6. Related Categories:

Optical Surveillance Effects and Battle-Space Operations
The importance of maintaining a reduced nuclear force and the emerging

conventional ballistic force as a combat and cost-effective weapon is recognized

by Air Force Space Command (AFSPC) mission area plans and Space and

Missile Systems Command (SMC) development plan having the technology

needs in advanced guidance technologies and astrodynamics.

• The goals of advanced guidance are:

– Global Positioning System (GPS) Range Standardization/Safety

Technology

– Development of new miniature systems to lower range costs 30% by

replacing radar systems and enhance safety with greater accuracy and

reliability by FY01

– GPS accuracy enhancements
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– To increase cost effectiveness, missile navigation, and testing accuracy

with improved GPS/INS coupling by FY98

– Development of precision fiber optic gyroscope (PFOG) with low-loss

integrated optics and fiber couplers and flexured mass accelerometer

(FMA) with open-loop, two back-to-back microwave resonant cavities

by FY99

– To decrease the reliance on high-cost, high-precision inertial measurement

systems with micromechanical updates on accelerometers and gyros by

FY01

– To fly the Missile Technology Demonstration III (MTD III) during FY01

to gain data on multiple penetrator warheads delivered on an ICBM

– To develop anti-jam antennas

– To integrate plasma physics with design

– To develop and test materials for antenna windows

• The goals of astrodynamics are to:

– Improve differential correction (DC) accuracy 90%.

– Improve propagation accuracy at the end of the prediction period by 90%.

– Demonstrate integrated performance of high-accuracy lasers and

astrodynamics algorithms to precisely locate and illuminate spacecraft.

– Demonstrate next-generation initial orbit determination, DC, and propa-

gation for space surveillance.

– Show deficiencies in current operational DC and propagation which could

be eliminated.

– Demonstrate capability to maintain independent high-accuracy catalog of

selected satellites (20–30 objects).

4.11 Target-Background Discrimination for Surveillance

The following sections will apply for this purpose.

4.11.1 Overview

Space-based surveillance, tracking, and interceptor systems must accurately and

reliably discriminate target IR and optical signatures from the atmospheric and

celestial IR and optical emissions against which the targets are viewed. When

sensor specifications are optimized against realistic, accurate simulations of the

atmospheric and celestial emissions in the sensor’s field of view, then operational

performance is significantly enhanced, and system overdesign is minimized,

thereby making DOD space-based systems much more affordable. The sub-thrust

goals are to develop and demonstrate integrated background clutter mitigation
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technologies for SBIRS-High and SBIRS-Low and next-generation hyperspectral

surveillance and threat warning systems and to integrate clutter suppression tech-

nologies into hardware simulators to provide high-resolution spectral and spatial

scene data of atmospheric, cloud, terrain, and celestial background clutter to

support system designs.

This sub-thrust:

1. Defines the impact of optical and infrared backgrounds on surveillance and

threat warning, theater and national missile defense, and intelligence, surveil-

lance, and reconnaissance systems

2. Measures atmospheric and celestial infrared, ultraviolet, and visible back-

grounds using satellite and rocket-borne sensors

3. Models atmospheric and celestial optical and infrared backgrounds for the full

range of operational conditions and system design trade space

4. Provides real-world background scenes, global background statistics, and reli-

able background scene models to support system engineering trade studies

5. Measures and models in-flight infrared signatures of aircraft and missiles

6. Distributes and provides online access to background phenomenology data

7. Defines optical and infrared background requirements for surveillance systems

and battle-space simulations

4.11.2 Description

This sub-thrust defines the impact of optical and infrared backgrounds on surveil-

lance and threat warning, theater and national missile defense, and intelligence,

surveillance, and reconnaissance systems and measures atmospheric and celestial

infrared, ultraviolet, and visible backgrounds using satellite and rocket-borne

sensors. The two main project areas of this sub-thrust are backgrounds and target

phenomenology and background clutter mitigation.

The goals of the backgrounds and target future technical architecture (FTA) are

to provide high-resolution spectral and spatial scene data of atmospheric, cloud,

terrain, and celestial background clutter to support SBIRS designs; provide high-

throughput data processing, analysis, and distribution of background phenomenol-

ogy data for SBIRS, BMDO, and other DOD programs; measure in-flight infrared

signatures of aircraft and missiles; and develop models capable of predicting the

infrared characteristics of all aircraft, particularly in the design and development

stages. A major task under this FTA is to construct infrared atmospheric and

celestial background scenes from the superb data measured by the MSX satellite

and atmospheric scenes from the highly successful MSTI-3 satellite mission. The

combined data set will be used to upgrade models for the design of the new SBIRS

surveillance system.

The goals of the background clutter mitigation FTA are to (1) characterize and

predict atmospheric, cloud, and terrain infrared background clutter for the full range

of SBIRS operational conditions and system design trade space and (2) assess the
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impact of background clutter on SBIRS performance and mission capabilities.

Spatial and temporal structure in atmospheric, cloud, and terrain backgrounds

produces clutter against which infrared and optical sensor systems must detect

and track theater ballistic missiles, cruise missiles, and aircraft threats as well as

perform technical intelligence missions.

Under this program, tasks are being performed to:

1. Provide background clutter codes to extrapolate measured background data to

the full SBIRS design trade space and all SBIRS operational conditions.

2. Provide background model uncertainty bounds.

3. Assess and upgrade background clutter codes for SBIRS using MSX and MSTI-

3 data.

4. Develop dynamic, statistical background clutter models to support adaptive

hyperspectral imaging.

5. Provide expert user interface for code applications:

1. User Impact:

None.

2. User Impact:

Concept/technology.

3. Images:

None.

4. Related Initiatives:

• Space-Based Infrared System—Low Earth Orbit (SBIRS-Low)
The space-based infrared system (SBIRS) is in response to the US military

forces increasing the need for accurate and timely warning of tactical missile

attack. SBIRS will replace the current Defense Support Program (DSP)

designed to meet US infrared space-based surveillance and warning needs

through the next two to three decades. SBIRS improves support to theater

CINCs, US deployed forces, and allies by providing detailed information in

the four mission areas of missile warning, missile defense, technical intelli-

gence, and battle-space characterization. SBIRS will provide significant

performance enhancements over DSP by improving quality and timeliness

of missile warning data. SBIRS should enhance information superiority and

support the Joint Vision 2010 operational concepts of full-dimensional pro-

tection and precision engagement, by providing this data directly to theater

commanders in a timely, survivable manner, thus enabling US forces’ imme-

diate reaction to threat.

The SBIRS space segment includes a high and low component. The high

component comprises six satellites: four in geosynchronous (GEO) Earth

orbit and two hosted payloads in highly elliptical orbit (HEO). The low

component includes approximately 24 low Earth orbit (LEO) satellites. The

SBIRS high component will meet a subset of the operational requirements,

including all key threshold requirements. The SBIRS low component will

provide a unique, precision, midcourse tracking capability critical for
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effective ballistic missile defense, as well as enhanced capability in support

of other SBIRS missions. SBIRS-High, complemented by SBIRS-Low satel-

lites, will meet all of its operational requirements.

The SBIRS ground segment includes a continental US CONUS-based

Mission Control Station (MCS), a MCS backup (MCSB), a survivable MCS

(SMCS), overseas relay ground stations, Multi-Mission Mobile Processors

(M3Ps), and associated communication links. The SBIRS ground segment

will be delivered incrementally. The first increment, scheduled to be opera-

tional in FY99, consolidates DSP and Attack and Launch Early Reporting to

theater ground stations into a single CONUS ground station and will operate

with DSP satellite data. The second increment, scheduled for FY02, will

provide the necessary ground segment functions required for the new high-

altitude SBIRS satellites and the residual DSP satellites. Included in the

second increment will be mobile terminals capable of fulfilling the Army

Joint Tactical Ground Station in-theater and SBIRS strategic processing

requirements. A third increment, which will be operational in FY03, will

add the necessary ground segment functions for the first LEO satellite

scheduled to be deployed in FY04.

Background Information:
SBIRS was initiated in 1995 as a replacement for the Follow-on Early

Warning System acquisition, which was canceled due to cost and requirement

problems. Since SBIRS satellites need to be completed before the last DSP

satellite is launched, it was placed on an accelerated schedule and selected as

a lead program for acquisition reform. Much of the traditional required

documentation was reduced or consolidated into a Single Acquisition Man-

agement Plan, and emphasis was placed on direct involvement through

Integrated Product Teams (IPTs) rather than traditional documentation

reviews.

The SBIRS high component entered the EMD phase following aMilestone

II DAB review in October 1996. This decision was supported by an OA

conducted by AFOTEC and reviewed by DOT&E.

The first phase of IOT&E will be conducted in 1999 to verify the perfor-

mance of the Increment 1 ground station. Due to the critical role SBIRS plays

in Integrated Tactical Warning and Attack Assessment (ITW/AA) of attack

on the CONUS, DOT&E has become involved in this program early. DOT&E

works closely with AFOTEC, the program office, and all users to ensure that

the acquisition strategy fosters an operationally effective and suitable system

while maintaining cost effectiveness. DOT&E has supported SBIRS acqui-

sition reform through heavy involvement in IPTs, early involvement in

combined developmental and operational tests, and consolidation of devel-

opmental and operational test plans into a single integrated T&E plan.

The SBIRS test program includes a combination of OAs, combined

DT/OT testing, and dedicated IOT&E. These OT&E events will progress in

a building block manner beginning with analyses, modeling, and validated
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simulation and ending with hardware-in-the-loop (HWIL) test-beds and field

tests. Modeling, simulation, and test-beds will be used to assess those areas in

which field testing cannot be conducted, such as actual missile attacks and

operation in nuclear environments. SBIRS operational effectiveness and

suitability will be assessed on the basis of IOT&Es of each of the three

major increments, which will include fixed and mobile assets.

Test and Evaluation Activity:

In 1998, DOT&E approved an initial TEMP that defined the top-level test

strategy and mapped it into the overall acquisition strategy. DOT&E also

continued its oversight of the following areas (each of which could impact

schedule, cost, and system performance):

– Progress toward Increment 1 IOT&E

– HWIL test-bed definition and dynamic effect modeling for Increment 2

– Risk reduction efforts for Increment 3

– Testability of SBIRS/NMD requirements for Increment 3

Progress toward Increment 1 IOT&E was assessed by an AFOTEC (OA) that

addressed four areas: (1) major issues potentially affecting effectiveness and

suitability, (2) programmatic voids, (3) testability of user requirements, and

(4) ability of the program to support operational testing. DOT&E has specific

program concerns about SBIRS Increment 1: (1) immature ground system

software and delays in requirement performance verification, (2) delays in

procuring high-reliability communication links from the overseas ground

stations to the Mission Control Station, and (3) adequate hardware for crew

training. The program office is addressing many of these findings through

specific risk reduction efforts to ensure readiness to enter IOT&E for the

Increment 1 ground system in April 1999. There are still testability concerns

involving the difficulty of testing SBIRS/NMD operational requirements

within an acceptable confidence limit.

Test and Evaluation Assessment:

Year 2000 (Y2K) testing for SBIRS is well underway, and there are no

anticipated problems with the system. Due to extensive use of commercial

software and close cooperation between the contractor team and the Air

Force, an adequate verification program is in place. Final Y2K testing will

be complete prior to the start of IOT&E for the Increment 1 ground station in

April 1999.

The major near-term challenge for the SBIRS program is to ensure a

seamless transfer of operations from the current DSP ground stations to

the new SBIRS Increment 1 MCS. This demanding task is complicated by

the compressed timeline and issues associated with shared use facilities at the

overseas relay ground stations. Additionally, there have been significant

delays in validating software performance of the Increment 1 ground system.

Other near-term challenges for the SBIRS program include the adequacy of

test-bed design and the scope of models and simulations needed to validate

the stressing requirements for the SBIRS-High satellites and MCS Increment
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2 and the significant technical risks associated with accelerated deployment

of the low component by FY04. The demanding SBIRS-High requirements

are a significant improvement over DSP’s demonstrated performance and

require extensive testing to validate and assure the system’s performance. For

HWIL test-beds, continued attention must be given to ensure that the test-

beds are adequate to support OT&E, including the need to portray dynamic

backgrounds that accurately portray the Earth’s background as seen from

space.

DOT&E’s assessment is that the SBIRS compressed schedule to achieve

“online in ‘99” remains high risk, and delays in software integration and

testing pose an increased risk in a “zero margin” schedule leading to Incre-

ment 1 IOT&E scheduled for April 1999. The primary challenge for Incre-

ment 1 is the verification of software performance and reliability. There have

been significant delays in verifying software performance and reliability, as

well as delays in hardware installation at the remote ground stations. While

this type of problem is not unusual, many systems interfacing with the SBIRS

MCS are 1970’s legacy reporting systems, whose interfaces may not be

adequately documented. Delays in starting the testing of these interfaces

put an inordinate amount of pressure on the first opportunity success. The

“never fail” nature of ITW/AA systems requires extensive “online” testing to

validate reliable Increment 1 operations and a period of parallel operations

prior to declaration of IOC. Any significant delays to IOT&E would lead to

“ripple effect” delays in the Increment 1 IOC date and further delay the IOC

dates for subsequent ground system increments. Also, there is a concern that

the SBIRS Increment 1 ground system includes voids in areas of fault

detection and isolation, operator training, and manpower.

SBIRS Increment 2 (both space and ground elements) remains on sched-

ule, but faces continued challenges in the areas of simulation and test-bed

development. For Increment 2, progress has been made in identifying real-

world, dynamic effects in the short and medium wavelengths detected by the

greatly improved SBIRS-High sensors. The operational impact of these

effects must be quantified and the SBIRS-High sensor design shown to be

robust enough to handle these natural phenomena. The resolution of these

issues can be best accomplished by incorporation of adequate testing pro-

cesses into the baseline sensor ground-testing program. Until this testing is

completed, the capabilities of the SBIRS sensor and signal processing to

operate in the space environment remain a major concern.

Continuing significant technical problems with the SBIRS-Low, PDRR

satellites demonstrate the wisdom of an extensive PDRR test phase before

entering EMD to start the construction of operational SBIRS-Low satellites.

The current schedule of events is very compressed and does not allow full

evaluation of the PDRR satellites’ performance. The current baseline SBIRS-

Low schedule requires successful completion of many difficult activities

proceeding in parallel toward a successful FY04 first launch, thus violating

recommendations outlined in the recently completed Welch report on missile
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defense systems. Any additional delays in the PDRR competing contractors’

programs will require starting the EMD prior to completion of PDRR to meet

the congressional goal of an FY04 first launch. DOT&E is concerned that the

baseline schedule, which includes the Flight Demonstrations System and the

Low Altitude Demonstrations System, will be delayed, presenting very few

opportunities to collect “real-world” performance data on contractor designs

to assess their ability to meet draft performance requirements. This period of

evaluation of PDRR results is critical since “lessons learned” from PDRR test

activities form the foundation for the government and contractor teams to

perform cost as an independent value satellite design trades. Any significant

problems encountered during the PDRR phase (given the compressed sched-

ule) may lead to premature launching of inadequately designed and tested

satellites to maintain the FY04 initial deployment date.

To support Milestone II decisions, DOT&E has worked closely with the

AFOTEC, the program office, and the user community, to ensure that the

acquisition strategy throughout the acquisition cycle fosters an operationally

effective and suitable system, while maintaining cost effectiveness. This

early involvement included active membership in IPTs, fostering combined

developmental and operational tests, early validation of software maturity,

and consolidation of developmental and operational test plans into a single

integrated T&E plan.

5. Related Requirements:

None.

6. Related Categories:

• Contributing Sensors

These sensors provide observation data on satellites to USSPACECOM on a

contributing basis, but are not directly under the operational control of

USSPACECOM. Both mechanical radars and electro-optical systems are

included in this category.

• Satellite Operations

The DoD procures, operates, and maintains a myriad of satellite systems to

support national and tactical communications, missile warning, nuclear det-

onation detection, navigation, weather, and environmental monitoring.

DoD’s satellite operations include the Defense Satellite Communications

System (DSCS), Milstar, Fleet SATCOM (FLTSATCOM) system, UHF

Follow-on (UFO) system, the Defense Support Program (DSP), the Nuclear

Detonation Detection System (NUDET), the Global Positioning System

(GPS, also referred to as POSNAVTIME or position, navigation, and time),

and the Defense Meteorological Satellite Program (DMSP) systems that are

included in this category.

• Space-Based Warning System

This category addresses space systems and sensors that have a surveillance

and warning mission, which are operational, in development, or being

studied.

76 4 Laser Weapons



• DoD Space Surveillance Programs

A constant and vigilant surveillance of potentially hostile military threats is

critical in preserving the operational effectiveness of our armed forces around

the world. Naval Space Command manages two distinct surveillance efforts

in support of Fleet and Fleet Marine Forces: tracking satellites in orbit and

monitoring over-the-horizon threats from sea and air forces.

Over one million satellite detections, or observations, are collected by this

surveillance network each month. Data gathered is transmitted to a computer

center at Naval Space Command headquarters in Dahlgren, where it is used to

constantly update a database of spacecraft orbital elements. This information

is reported to Fleet and Fleet Marine Forces to alert them when particular

satellites of interest are overhead. The command also maintains a catalog of

all Earth-orbiting satellites and supports USSPACECOM as part of the

nation’s worldwide Space Surveillance Network.
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Chapter 5

Laser-Directed Energy Concepts

This chapter will discuss directed energy concepts for strategic defense. We will

talk about defensive weapons as a countermeasure against any measure that is

applied in terms of a lethal weapon against friendly targets. Directed energy

concepts can play unique roles in strategic defense because of their reaction time,

speed of light engagement, and large geographic converge. This chapter discusses

the main directed energy concepts, engagements in which they could have signif-

icant advantage, and their expected performance in them. It covers both boost-

phase engagements and midcourse applications and contrasts these results with

those of earlier analyses (Fig. 5.1).

5.1 Laser Beam andMaterial Interactions and Its Lethality

Weapons are devices, which deliver sufficient energy to targets to damage them.

Weapon design involves a dialog between weapon designers and military planners.

Designers create means of projecting energy, and planners have targets that they

would like to destroy. Effective design requires knowledge of the targets and the

circumstances of their engagement, and effective planning requires knowledge of

the weapons and their characteristics. However, in new and emerging areas of

weaponry, designers and planners often do not speak the same language. As a

result, designers can operate in ignorance of operational realities, and planners can

assume that anything involving new technology will meet all their needs.
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Directed energy weapons are no different. However, while there are books and

manuals that deal with the issues affecting the utility of nuclear missiles and rifles,

there is no comparable source of information for directed energy weapons. I have

tried to fill that void with this book as well as dealing with technical and theory of

interaction of high-energy laser in particular and avoid aspect of high-power

microwave in general as lethal weapons.

This book is way to explain high-energy laser power and how directed energy

weapons work, how the energy of high-power laser as weapon is propagated to the

target, and how the weapons/laser beam–target interaction creates effects (damage)

in the target. The mathematics and physics of effects of high-power laser radiation

beam interact with its targets and analyzes the damages within a period of dual time.

This is a technical exposition, written at the undergraduate physics and engi-

neering level that could serve either as a textbook or as a reference text for technical

practitioners. The text touches upon kinetic energy weapons in addition to high-

power lasers and stays away from the other two aspect beam weapons, namely,

microwaves and particle beams. Numerous unclassified articles and literature both

Fig. 5.1 National configurations of space tracking surveillance system (STSS) and space-based

infrared system (SBIRS)
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on high-power microwaves and particle beams can be found on the Internet that are

published by experts in these two fields xx and yy. A directed energy weapon is a

type of weapon that emits energy in a particular direction by a means other than a

projectile. It transfers energy to a target for a desired effect. Some of these weapons

are real or practicable; some are science fiction. The energy is in various forms:

• Electromagnetic radiation (typically lasers or masers).

• Particles with mass (particle beam weapons).

• Fictional weapons often use some sort of radiation or energetic particle that does

not exist in the real world or where the physical nature of the energy and its

means of transmission are not detailed and the visible effects would be impos-

sible in the real world.

Some of these weapons are known as death rays or ray guns and are usually

portrayed as projecting energy at a person or object to kill or destroy.

Some lethal directed energy weapons are under active research and develop-

ment, but most examples appear in science fiction (or nonfunctional toys and film

props).

5.2 Introduction to Effectiveness of Directed Energy
Weapons

The effectiveness of a defensive weapon system is measured by its ability to deny

the attacking system succession accomplishing its mission.

Lethality of a directed energy weapon (DEW) is, in the simplest terms, its

capability to destroy a target and incoming threat. It is appropriate to speak of

lethality as the capability of directed energy weapons to prevent a target from

accomplishing a particular mission. This requirement could be fulfilled in the form

of “hard kill” (physical destruction of the warhead) or “soft kill” (mission

impairment).

Further study of the “kill” phenomenon requires a distinction between immedi-

ate (within milliseconds) and delayed kill. The difference results in tracking the

assets wasted and the unnecessary dilution of defensive systems in a time-critical

situation [1].

To meet the kill requirements, weapon systems using three different energy

sources have been proposed. Historically, chemical and nuclear explosives have

been used. Together, they form the "potential energy" weapon (PEW) groups. More

recently, kinetic energy weapons (KEWs) and directed energy weapons (DEWs)

have been proposed, and engineering development has begun.

Thus, there may be several measures of lethality for a given target set. For an

incoming missile threat, one may define lethality criteria to structure damage of the

target in terms of hard kill and other criteria relating to destruction or indefinite

interruption of the sensors or guiding system on which the missile depends to
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accomplish its function. Similarly, actual destruction of a booster or reentry vehicle

sets certain lethality criteria, but methods of destroying accurate weapon delivery,

such as destruction of guidance electronics, in terms of soft kill, may also generate

acceptable lethality criteria for system designers. However, in the latter case,

verification of a kill becomes problematical.

The ability of laser beams (pulsed, continuous wave (CW), and repetitively

pulsed), at infrared, visible, ultraviolet, and X-ray wavelength, to destroy various

targets is analyzed. First, the physics of the interaction of various laser beams as

part of directed energy weapon with materials is examined. This information is used

to assess the effect of a given incident power or energy flounce on the target and the

ability of the target to perform its mission after such an attack. The arguments, then,

are used to size weapon system to destroy enemy targets (lethality) and related

safety factor and issues in regard to safety of friendly troops present in the

battlefield of such engagements.

The fundamental kill mechanism of CW or quasi-CW repetitively pulsed laser

beam is heating, with subsequent melting and/or evaporation of the wall of a liquid

or solid booster rocket. Subsequently, ignition of booster fuel may take place, or

mechanical failure of structures may occur before completion of burn through. In a

similar manner, the wall of the bus and components inside it may be damaged, so

that the intended function of the missile is thwarted.

In addition to energy deposition, momentum is also transferred to the target by

directed energy beams. Momentum transfer can damage targets through mechanical

shearing or buckling. This damage mechanism has been demonstrated by pulsed

laser beams for pulses less than or equal to 2 μs. Kill through repeated impulse

damage has system-level advantages over thermal kill since the pointing require-

ments are far less severe. Momentum transfer may also be used as a discrimination

tool for reentry vehicles and decoys in the midcourse such as technique employed in

LIDAR (laser radar) applications. The interaction of CW or quasi-CW laser radi-

ation with targets is discussed, and lethality criteria for this type of beams are

derived. Finally, this chapter summarizes the main conclusions, setting lower limits

on power and energy that are imposed on a DEW of laser-type system by the

lethality requirements, and as result the measurements that are needed to take under

consideration to address the issue of LRST to friendly troops in vicinity of target

engagement field.

5.3 The Mathematics of Diffusion

The history of heat conduction and its mathematical theory principally starts with

Fourier and was set forth by him in his Theorie analytique de la Chaleur with

solutions of problems naturally arising from it. While Fourier treated a large

number of cases, including most of those we shall see occasional consideration,

his work was extended and applied to more complicated problem by his contem-

poraries Laplace and Poisson and later by a number of others.
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One of the most important applications that we can consider here is the math-

ematical diffusion theory of heat conduction and principle of high-power laser

beams and the matter that both have industrial and military applications. This

includes applications such as heating, melting, vaporization, and plasma produc-

tion. These phenomena, which likewise can involve an interaction of a high-power

laser beam, are indeed sometimes called laser effects. Some of these considerations

will be out of scope of this book, but its principle is presented here, and further

investigation in any particular application should be studied by the reader. To

introduce some general idea about how to go about these applications and laying

out The Mathematics of Diffusion, we start with the diffusion equation and the

diffusion process.

5.3.1 The Diffusion Process and Basic Hypothesis
of Mathematical Theory

Diffusion is the process by which the matter is transported from one part of a system

to another as a result of random molecular motions. The transfer of heat by

conduction is also due to random molecular motions, and there is an obvious

analogy between the two processes [2]. This was recognized by Fick in 1855,

which first put diffusion on a quantitative basis by adopting the mathematical

equation of heat conduction derived some years earlier by Fourier in 1822. The

mathematical theory of diffusion in isotropic substances is therefore based on the

hypothesis that the rate of transfer of diffusing substances through unit area of a

section is proportional to the concentration gradient measured normal to the

section, i.e.,

F ¼ �D
∂C
∂X

ð5:1Þ

where F is the rate of transfer per unit area of section, C is the concentration of

diffusing substances, x is the space coordinate measured normal to the section, and

D is called the diffusion coefficient. In some cases diffusion in dilute solutions

D can reasonably be taken as constant, while in others, e.g., diffusion in high

polymers, it depends very markedly on concentration [2]. In the case of heat

transfer and solving the problem involving the temperature field determination,

one should obtain differential heat conduction. In this case the temperature increase

along the normal to the isothermal surfaces is characterized by a temperature

gradient (gradT). A temperature gradient is a vector along the normal to the

isothermal surface in the direction of the increasing temperature, i.e.,

grad T ¼ n0 ∂T=∂nð Þ ð5:2Þ
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where n0 denotes a unit vector, along the normal in the direction of the temperature

change according to Fig. 5.2 and ∂T=∂n is the temperature derivative along the

normal (n) to the isothermal surface [4].

The gradient is also denoted by ∇.

Gradient components along the Cartesian coordinates are identical to the appro-

priate partial derivatives, so that

grad T¼~∇ � T¼i
∂T
∂x

þ j
∂T
∂y

þ k
∂T
∂z

ð5:3Þ

where i, j, and k are mutual orthogonal vectors of a unit length along the coordinate

axes. This relation is possible because any vector may be represented as a vector

sum of three components along the coordinate axes.

The concept of a temperature-filed intensity may be introduced as follows:

~E ¼� grad T ð5:4Þ

The vector ~E is referred to as a vector of the temperature-filed intensity.

The quantity of heat transferred per unit time per unit area of the isothermal
surface is referred to as a heat flux; the appropriate vector is obtained by the
relation

q ¼ �n0ð Þ dQ
dt

1

S
ð5:5Þ

where dQ
dt the quantity of heat is transferred per unit time or the heat-flow rate,S is the

isothermal surface area, and �n0ð Þ is a unit vector along the normal to the surface

area S in the direction of the decreasing temperature. In this case the vector q is

therefore designated as heat flux vector, the direction of which is opposite to that of

the temperature gradient (both vectors follow the normal to the isothermal surface,

T + 2ΔT

T + ΔT

ΔT

n

E
qr

(–n)

n0

T – ΔT

T

Fig. 5.2 Isotherms of the

temperature filed [3] (letters

with arrows corresponding

to boldface type in the text)
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but their directions are opposite to each other). The projection of the vector q on any

arbitrary direction is also the vector q1, the scalar quantity of which is q cos(n, l ).
The lines which coincide with the direction of vector q are referred to as heat-

flow lines. These are perpendicular to the isothermal surfaces at the intersection

points. A tangent to the heat-flow lines taken in the opposite direction yields the

temperature gradient direction (see Fig. 5.2).

The fundamental heat conduction law may be formulated as follows: the heat flux
is proportional to the temperature field intensity, or the heat flux is proportional to
the temperature gradient, i.e.,

q ¼ k~E ¼� gradT ¼ �kn0 ∂T=∂nð Þ ð5:6Þ

where k the proportionality factor is also called thermal conductivity. To reveal the

physical significance of the thermal conductivity, we shall write the basic relation

(Eq. 5.6) for a steady one-dimensional temperature field for the situation where the

temperature depends only on one coordinate which is normal to the isothermal

surfaces. The scalar quantity of the heat flux vector is

q ¼ �k
dT

dx

∂T
∂x

¼ ∂T
∂y

¼ ∂T
∂z

¼ 0

� �
ð5:7Þ

If the temperature gradient is a constant value ∂T
∂x ¼ constant
� �

, which means the

temperature variation with x follows the linear law, then it may be written as

∂T
∂x

¼ T2 � T1

x2 � x1
¼ constant ð5:8Þ

Hence the heat-flow rate dQ
dt is also a constant value as

dQ

dt
¼ Q

t
¼ constant ð5:9Þ

where Q is the quantity of heat following in the time τ.
It follows from Eqs. 5.5 and 5.9 that

Q

St
¼ �k

T2 � T1

x2 � x1
¼ k

T2 � T1

x1 � x2
ð5:10Þ

since T1 > T2 and x2 > x1.
Thus the thermal conductivity is equal to the heat flowing per unit time and per

unit surface when the temperature difference per unit length of the normal is 1�.
Thermal conductivity has dimensions of kcal/m h �C or W/m �C. Thermal conduc-

tivity is a physical property of a body characterizing its ability to transfer heat. The

physical significance of the thermal conductivity and its dependence on basic
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properties of a body may be better understood when we consider the heat transfer

mechanism in a body in a specific state [4].

The relation k= x2 � x1ð Þ ¼ k=Δx (kcal/m2 h �C or W/m2 �C) is called thermal

conductance of a certain portion of a body, and the inverse value Δx/k (m2 h �C) or
(m2 �C/w) is the thermal resistance of this portion of a body, and the magnitude of it

varies for different materials over a wide range.

5.3.2 The Differential Equation of Diffusion Equation

The necessary condition for heat conduction is the existence of a temperature

gradient. Experience shows that heat is transferred by conduction in the direction

normal to the isothermal surface from a higher-temperature level to a lower one.

To solve problems involving the temperature field determination, one should

obtain a differential heat conduction equation. A differential of heat equation is a

mathematical relationship between physical quantities characterizing the phenom-

enon considered, these quantities being functions of space and time. Such an

equation characterizes the physical process at any point of a body at any moment.

A differential heat equation provides a relation between temperature, time, and

coordinates of an elementary volume. A differential equation will be derived by a

simplified method. A one-dimensional temperature field is assumed (heat propa-

gates in only one direction, say, in the direction of the x-axis). Under these

conditions we assume that the thermal coefficients are to be independent of spatial

coordinates and time. We single out an elementary rectangular parallelepiped of the

volume dxdydz from a uniform and isotropic infinite plate such as Fig. 5.3 whose

sides are parallel to the axes of coordinates and are of lengths dx, dy, and dz.

x

x

dy

dy

qx

z

qx+dx

dx

dz

0
y

y

Fig. 5.3 Heat flux through

elementary volume [3]
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The fundamental differential equation of diffusion in an isotropic medium is

derived from Eq. 5.1 as follows.

The heat amount flowing in through the left side, dydz, into the parallelepiped

per unit time is qxdydz, and the heat amount flowing out through the opposite side

per unit time is qxþdxdydz.
Note that from now on we represent temperature with capital T instead of small

t or C to keep everything in perspective and not to make any mistake with time t and
we shall also convert τ to t for time.

However if qx > qxþdx, then the elementary parallelepiped will be heated. But

the difference between these flows according to the law of energy conservation is

equal to the heat accumulated in this elementary parallelepiped, i.e.,

qxdydz� qxþdxdydz ¼ cρ
∂T
∂t

dxdydz ð5:11Þ

Note that the heat accumulated is calculated from the elementary relation

∇Q
� ¼ cM∇Θ ¼ cρV∇Θ, where ∇Θ is a temperature increment in a body per

unit time with the mass M and the volume V where c is representing specific heat

and ρ is the density of this mass (i.e., M ¼ ρV).
The quantity of qxþdx is an unknown function of x. If it is expanded in Taylor

series (see Appendix A for Taylor series definition) and only the first two terms of

the series are retained, it may be written as follows:

qxþdx � qx þ
∂qx
∂x

dx ð5:12Þ

Then substitution of Eq. 5.12 into 5.11 results

qxdydz� qx þ
∂qx
∂x

dx

� �
dydz ¼ cρ

∂T
∂t

dxdydz

qxdydz� qxdydz�
∂qx
∂x

dxdydz ¼ cρ
∂T
∂t

dxdydz

�∂qx
∂x

dxdyd ¼ cρ
∂T
∂t

dxdydz

Using the heat conduction Eq. 5.7 in the form of qx ¼ �k ∂T=∂xð Þ, we obtain

k
∂2

T

∂x2
cρ

∂T
∂t

or

α
∂2

T

∂x2
¼ ∂T

∂t
ð5:13Þ
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α ¼ k=cρ is the thermal diffusivity, a material-specific quantity depending on the

thermal conductivity, k, the mass density, ρ, and the specific heat capacity, c, and
can be noted as cp; from now on therefore α can be shown as α ¼ k=cρ.

Equation 5.13 is a differential heat conduction equation for a one-dimensional

heat flow. If heat propagates along the normal to the isothermal surfaces, then the

vector q may be expanded in three components along the coordinate axes. The heat

stored in the elementary volume of Fig. 5.3 will be equal to the sum of

� ∂qx
∂x

þ ∂qy
∂y

þ ∂qz
dz

� �
dxdydz

Then the differential heat conduction equation can be written as follows:

α
∂2

T

∂x2
þ ∂2

T

∂y2
þ ∂2

T

∂z2

 !
¼ α∇2T ¼ ∂T

∂t
ð5:14Þ

where ∇2 the Laplacian operator is the Cartesian coordinates and is presented as

follows:

∇2 ¼ ∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2
Cartesian coordinates

∇2 ¼ 1

r2
∂
∂r

r
∂
∂r

� �
þ 1

r2
∂2

∂θ2
þ ∂2

∂z2
cylindrical coordinates

∇2 ¼ 1

r2
∂
∂r

r2
∂
∂r

� �
þ 1

r2 sinθ

∂
∂θ

sinθ
θ

∂θ

� �
þ 1

r2 sin2θ

∂2

∂ϕ2
spherical coordinates

For details of derivation of the above relationship, refer to Appendix B.

This operator can be expressed in cylindrical and spherical as well and is shown

in above as results the heat conduction equation can be expressed in those coordi-

nates, respectively.

5.3.2.1 Diffusion Equation in Cylindrical Coordinate

Equation 5.14 can be expressed in cylindrical form by transformation of coordi-

nates or by considering elements of volume of different shapes. Thus by putting

x ¼ r cos θ
y ¼ sin θ

or by considering an element of volume of a cylinder of sides dr, rdθ, and dz, we
obtain the equation for diffusion in a cylinder as follows:
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∂T
∂t

¼ 1

r

∂
∂r

rα
∂T
∂r

� �
þ ∂
∂θ

α

r

∂T
∂θ

� �
þ ∂
∂z

rα
∂T
∂z

� �� �
ð5:15Þ

in terms of the cylindrical coordinates r, θ, and z.

5.3.2.2 Diffusion Equation in Spherical Coordinate

The corresponding equation for a sphere in terms of spherical polar coordinates r, θ,
and ϕ is obtained by writing

x ¼ r sin θ cosϕ
y ¼ r sin θ sinϕ
z ¼ r cos θ

or by considering an element of volume of a sphere of sides dr, rdθ, and r sin θdϕ.
It is

∂T
∂t

1

r2
∂
∂r

αr2
∂T
∂r

� �
þ 1

sin θ

∂
∂θ

α sin θ
∂T
∂θ

� �
þ α

sin 2θ

∂2
T

∂ϕ2

( )
: ð5:16Þ

If the thermal conductivity is independent of temperature, then simplified forms of

Eqs. 5.15 and 5.16 for pure radial diffusion, for example, in a long cylinder where

end effects are negligible or in a spherically symmetrical system, can be expressed

in terms of the nomenclature of vector analysis as follows:

∂T
∂t

¼ div αgradTð Þ ¼ α∇2T ð5:17Þ

For a one-dimensional symmetrical temperature filed, ∇2T is a function of one

space coordinate.

5.3.3 Boundary and Initial Conditions

Before any solution can be presented for any governing diffusion equation, it is

necessary to introduce additional physical information in the form of two condi-

tions that are known as initial and boundary conditions which the temperature

satisfies in the case of conduction problems. These are partly the direct expression

of the results of experiment and partly the mathematical statement of hypotheses

founded upon these results [5]. We assume that in the interior of the solid T is a

continuous function of x, y, z, and t, that this holds also for the first differential

coefficient with regard to t, and that this holds also for the first differential
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coefficients with regard to x, y, and z. At the boundary of the solid, and at the instant
at which the flow of heat is supposed to start, these assumptions are not made:

• Initial condition (I.C.) is a specification of the condition of the system at the start

of the computation. The temperature throughout the body is supposed given

arbitrary at the instant which we take as the origin of the time coordinate t. In a

thermal and diffusion analysis problem, for example, the temperature of the melt

at the time of laser dwelling with the target or some period of collapse time as an

initial condition, similar argument can readily provide good starting value for

other independent variables such as the velocity or the concentration of various

chemicals. If this arbitrary function is continuous, we require finding a solution

of our problem which shall, as t tends to zero, tend to the given value. In other

words, if the initial temperature is given by

T ¼ f x; y; zð Þ;

our solution of the equation

∂T
∂t

¼ k∇2T

must be such that

lim Tð Þ
t!0

¼ f x; y; zð Þ

at all points of the solid. If the initial distribution is discontinuous at points or

surfaces, these discontinuities must disappear after a short period of time, and in

this case our solution must converge to the value given by the initial temperature

at all points where this distribution is continuous [6].

• The surface boundary conditions (B.C.s) usually arising in the mathematical

theory of diffusion and heat transfer problem are described below. On the other

hand, defining the specification of boundary conditions is normally more diffi-

cult. In some cases especially in the case of interaction of a high-power laser

weapon with its target, very little is known about the actual thermal or dynamic

of the target condition at the interface. However, there are basically three types

of boundary conditions. The situation is simpler to analyze in the case of the

thermal problem. The three types of boundary conditions for thermal problems

are as follows:

– At the outer boundary of the system, the temperature is specified T ¼ Ts.

– The heat flux is zero (insulating boundary which means no flux across the
surface) k∇T ¼ 0.

– The heat flux is specified as q (heat exchange boundary, which means

prescribed flux across the surface) �k∇T ¼ qs.
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The book by Luikov (Analytical Heat Diffusion Theory) [3] offers different

problems and associated solution for the above three types of boundary conditions,

and readers should refer to that reference extensively to understand how to solve

heat diffusion equation under these boundary conditions. Luikov also offers differ-

ent methods for calculating the heat flow in the process of heating and cooling,

where a body receives or releases a definite quantity of heat. His suggested method

easily can be applied in the case of laser beam where the high-power laser beam is

used as part of directed energy weapons.

5.3.4 Material Response

The laser heating of a material is mainly determined by the material’s absorptivity
(A) as function of laser wavelength. Accordingly the reflectivity (R) of materials

also is dominated by the laser wavelength, and as a result both of these properties

are main driving factors and criteria for material response to laser analysis. Absorp-

tivity and reflectivity are part of optical properties of metals and in general the

condition of their surfaces and temperature, i.e., the laser heating rate. The heating

rate of the metal of consideration is mainly determined by the its absorptivity for a

given laser wavelength—a quantity which, in return, is determined by the optical

properties of the metal itself and of the metallic surface as well as the temperature

range of the source, heating rate by the source, etc.

Given the above argument, the absorptivity (A) and reflectivity (R) are main

driving factors for the choice of the most appropriate laser system as a mean for a

directed energy weapon system. Surface hardening of the target of engagement also

plays some part in this matter where the target lethality is under consideration. In

the case of dealing with an incoming foe missile and destroying such threat in flight

with a light beam such as laser, there are several possible approaches. One is to

damage the missile’s target seeker and prevent the missile from acquiring the target,

while another case is to cause the warhead or rocket fuel to detonate prematurely. It

is also possible to damage the flight controls and force the missile into an uncon-

trollable flight preplanned and path. The most common method is structurally

weakening the missile body so that the missile breaks up in flight. Throughout

these destruction methods, the ways in which missile materials react to laser

irradiation are threefold:

1. Light coupling to the material—The optical reflectivity of the material deter-

mines what fraction of the energy is absorbed and thus converted to thermal and

mechanical energy.

2. Propagation of thermal/mechanical effects—This characteristic determines the

efficiency in which the heat or shock transmits through the material.

3. Induced effects of the propagation of thermal/mechanical energy—The resulting

process occurs when high energy is deposited on a material, for instance,

melting, vaporization, shock loading, crack propagation, and spalling.
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5.3.4.1 Theory of Laser Interaction with Solids

Some of the first questions that should be asked when it comes to laser interaction

with solids in particular if it is used as weapon to destroy a target are:

1. How much laser power is needed?

2. How long this power must be applied to dual target?

3. What side effects will be produced in addition to the heating process anticipated?

Of course, the last question in the case of total target destruction is not important

at this point.

Finally the last but not the least is:

4. Are these requirements compatible with specifications of available laser system?

Whether the ABL (airborne laser) or GBL (ground-based laser) or the system is

orbiting beyond the Earth’s atmosphere.

Naturally, ABL and GBL system requires certain other analyses, considerations,

and effects such as thermal blooming, which causes the laser to defocus and

disperse energy into the atmosphere. It can be more severe if there is fog, smoke,

or dust in the air. As a result of the thermal blooming and atmospheric attenuation

of the laser beam, the beam diverges and loses its energy that is supposed to be

delivered to the target.

In many instances, the answers to the first three questions can be obtained by

performing a few simple calculations based on classical heat transfer theory.

Usually the results of these calculations will suggest an answer to the fourth

question. The purpose of this discussion is finding some appropriate solution to

the basic following heat equation under different boundary and initial conditions

which are obtained for laser heating of solids (target) under a variety of conditions

that pertain to the particular use case and applications [7]:

∇2T x; y; z; tð Þ � 1

κ

∂T x; y; z; ztð Þ
∂t

¼ �A x; y; z; tð Þ
K

ð5:18Þ

1. A(x, y, z, t): Heat rate supplied to the target per unit time per unit volume

2. κ: Thermal diffusivity (units, cm2/s)

3. K: Thermal conductivity (units, W/cm �C)
4. T(x, y, z, t): Temperature (�C)

which are obtained for laser heating of solids under a variety of boundary, initial,

and laser/target conditions that pertain to practical applications. The solution to

Eq. D.18 can only be obtained in simple analytic form when one is prepared to

make a variety of assumptions concerning the spatial and temporal dependence of

the impressed laser heat source and the geometry of the sample that is being

irradiated. As the description of these boundary conditions becomes more and

more rigorous in terms of the actual spatial and temporal dependence of the heat

source and the geometry of the workpiece, analytical solutions can no longer be
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obtained, and the resulting expression for T(x, y, z, t) can only be expressed numer-

ically. Solutions to problems of this sort are of little use except in specialized

studies and will not be discussed here. We will show that in many cases even quite

crude approximations to the actual source and sample boundary calculations are

capable of yielding predictions of T(x, y, z, t) that correspond quite closely to actual

temperature–time profiles in the solid. Where possible, these predictions have been

generalized (i.e., expressed in reduced variable form), so that they may be applied

to any material when thermal constants of that material are known [7].

One of the most important effects of high-power energy laser irradiation is the

conversion of the optical energy in the beam into thermal energy into the material of

target of interest. This is a classical heat transfer problem based on diffusion

equation of 5.18, and we will summarize this thermal response using the initial

and boundary condition defined above. The solution to conduction of heat transfer

equation 5.18 in a three-dimensional solid is given in general by the solution to the

following Cartesian form of heat transfer equation 5.19a:

ρC
∂T
∂t

¼ ∂
∂x

K
∂T
∂x

� �
þ ∂
∂y

K
∂T
∂y

� �
þ ∂
∂z

K
∂T
∂z

� �
þ A x; y; z; tð Þ ð5:19aÞ

or

∇2T � 1

κ

∂T
∂t

¼ �A x; y; z; tð Þ
K

ð5:19bÞ

where the thermal conductivity K, the density ρ, and the specific heat C are

dependent both on temperature and position and heat is supplied by laser beam to

target surface materials at the rate of A(x, y, z, t) per unit time per unit volume

[8, 9]. These thermal parameters and the temperature dependence on them make the

Eq. 5.19a to be a nonlinear one, and in return solutions under different initial and

boundary conditions become very difficult to obtain although numerical

solutions are possible in a limited number of cases when the temperature depen-

dence of κ ¼ K=ρCð Þ [thermal diffusivity], K [thermal conductivity], ρ [material

density of the target surface], and C [heat capacity or specific heat] is known. With

simple assumption of those thermal properties of most materials that change greatly

with temperature T(x, y, z, t), they can often be assumed independent of temperature

and can be assigned an average value for the temperature range of interest [7].

In order to support any experimental result of heat transfer data with theoretical

calculations, we must have information on thermal parameters of the materials

under consideration. See below:

• K: Thermal conductivity (units, W/cm �C)
• κ: Thermal diffusivity (units, cm2/s)

• Cp: (or C) The heat capacity or specific heat at constant pressure (units, J/g
�C) or

ρC (units, J/cm2 �C)
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The average values of these parameters over the temperature range from 0 to

T �C can be designated as Kavg and κavg which mathematically can be written as

follows [8]:

Kavg ¼ 1=Tð Þ
ð T
0

K Tð ÞdT ð5:20Þ

κavg ¼ 1=Tð Þ
ð T
0

κ Tð ÞdT ð5:21Þ

These integrals may be evaluated numerically when K and κ are not simple function

of T. In the case of thermal properties varying with the temperature but independent

of position, then Eq. 5.19a turns into the following form:

ρC
∂T
∂t

¼ K∇2T þ ∂K
∂T

∂T
∂x

� �2

þ ∂T
∂y

� �2

þ ∂T
∂z

� �2
( )

þ A x; y; z; tð Þ ð5:22aÞ

Equation 5.22a clearly is a nonlinear case and under this condition may be reduced

to a simpler form by introducing a new variable as follows [6]:

Θ ¼ 1

K0

� �ð T
0

KdT ð5:22bÞ

where K0 is the value of K atT ¼ 00C. These, and the lower limit of integration, are

merely introduced to give θ the dimensions of temperature and a definite value

[6]. Note that Θ is essentially a potential whose gradient is proportional to the flux

and then from Eq. 5.22b [6] follows that

∂Θ
∂t

¼ K

K0

∂T
∂t

,
∂Θ
∂x

¼ K

K0

∂T
∂x

,
∂Θ
∂y

¼ K

K0

∂T
∂y

,
∂Θ
∂z

¼ K

K0

∂T
∂z

This results in Eq. 5.19a to be reduced to the following equation:

∇2Θ� 1

K

∂Θ
∂t

¼ � A

K0

ð5:22cÞ

where, in Eq. 5.22c, A and κ ¼ K=ρcð Þ are expressed as function of the new variable

Θ; therefore in terms of this new variable, the heat conduction Eq. 5.19b is preserved

with the condition that diffusivity κ now is a function of Θ [6]. In most cases the

variation of κ with temperature is not important as K, so that, to a reasonable

approximation, it can be considered to be a constant. For example, if a metallic

surface is being near absolute zero, both K and c are approximately proportional to

the absolute temperature. In such cases, if A is independent of T, Eq. 5.22c becomes

of type Eq. 5.19b, and solutions for the case of constant conductivity may take over
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immediately by replacing T by Θ, provided that the boundary conditions prescribed

only T orK ∂T
∂n; if they are of the form

∂T
∂n

� �þ hT ¼ 0where h is a constant, this remark

does not hold [5]. Note that∂=∂n represents differentiation along the outward-drawn
normal to the surface.

In steady-state cases, the situation is very important as well since Eq. 5.22c turns

to Poisson’s equation if A is constant and reduces to Laplace’s equation if A is equal

to 0. Then in these cases, finding solution to heat conduction problem is

straightforward.

Another useful form may be obtained by introducingW, the heat content per unit

mass of the material (measured from some arbitrary zero of temperature). In this

case Eq. 5.19a reduces to the following equation:

ρC
∂W
∂t

¼ ∂
∂x

K
∂T
∂x

� �
þ ∂
∂y

K
∂T
∂y

� �
þ ∂
∂z

K
∂T
∂z

� �
þ A x; y; z; tð Þ ð5:23Þ

Or, in terms of Θ defined by Eq. 5.22b, we have

ρ

K0

∂W
∂t

¼ ∇2Θþ A

K0

ð5:24Þ

where W is related to Θ in a known manner. The introduction of W has advantages

in problems involving latent heat. We will further discuss the case of thermal

properties varying with temperature and solving Eq. 5.22c for different boundary

conditions imposed by the problem in hand, utilizing Boltzmann’s transformation
with constant diffusivity for the infinite composite solid scenario [5].

If the target or materials on the surface of the target are irradiated with a laser

beam, the temperature in the vicinity of the focal spot on target will usually rise

rapidly to within an order of magnitude.

More commonly, the approximation is made that Eq. 5.19b can be used with

averaged values of the thermal constants over the temperature range of interest.

Then Eq. 5.19b becomes

∇2T � 1

κavg

∂T
∂t

¼ �A x; y; z; tð Þ
Kavg

ð5:25Þ

In this case, solutions are possible for a number of cases in which thermal properties

vary discontinuously (i.e., composite solids) or in those cases where a simple

analytic expression is available for the spatial variation of K [7]. All these condi-

tions are valued so long as we assume the solid is taken to be homogeneous and

isotropic; then Eq. 5.19a reduces to Eq. 5.19b where again we have assumed that

κ ¼ K=ρCð Þ is the thermal diffusivity and holds. In the steady-state situation where

∂T=∂tð Þ ¼ 0, Eq. 5.19b reduces to
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∇2T ¼ A x; y; zð Þ
K

ð5:26Þ

Note that in dynamic laser heating process where laser beam weapon interacts with

a moving target, it may not be appropriate to use Eqs. 5.20 and 5.21 since these

equations give equal weight to all temperatures in the range 0 ! T to determine a

weighting factor for each K(T) and κ(T).
Both Eqs. 5.19b and 5.23 can be solved in a large number of cases using different

methods such as separation of variables or utilizing Fourier or Laplace transform

based on initial and boundary condition of the case in hand. Furthermore if no heat

is applied to the surface of the material, the A ¼ 0 and Eqs. 5.19b and 5.25 both

reduce to

∇2T ¼ 1

κ

∂T
∂t

transient-statecaseð Þ ð5:27Þ

∇2T ¼ 0 steady-statecaseð Þ ð5:28Þ

With appropriate boundary and initial condition applied in most cases whether heat

source is present or absent, usually heat transfer problem (heat conduction) can be

solved either by Eq. 5.24 or Eq. 5.26 by applying such boundary considering as heat

flux transfer crosses the surface of the target or solid. In summary we can reduce the

full conduction heat Eq. 5.18, that is, conduction with heat source or generation to

very special cases. When the thermal conductivity K is constant, the first term of

Eq. 5.18 becomes Laplacian of temperature T. The Laplacians of temperature in the

three-principle coordinate system are listed in Table 5.1, while the general heat

conduction equations with variable thermal conductivity, in three-principle coor-

dinate systems, are listed in Table 5.2. The three special forms of the conduction

Eq. 5.18 with constant thermal conductivity K are listed below:

1. Laplace’s equation.
This is for constant K, steady-state heat transfer so that the term ∂T=∂tð Þ ¼ 0,

and no heat generation or A ¼ 0, which is basically presented by Eq. 5.24 in

above.

∇2T ¼ 0 ð5:29Þ

where ∇2T is a Laplacian of the temperature T.

Table 5.1 The Laplace of temperature in the three-principle coordinate

Coordinate system ∇2T

Rectangular ∂2
T

∂x2 þ ∂2
T

∂y2 þ ∂2
T

∂z2

Cylindrical ∂2T
∂r2 þ 1

r
∂T
∂r þ 1

r2
∂2

∂ϕ2 þ ∂2T
∂z2

Spherical 1
r2

∂
∂r r2 ∂T

∂r

� �þ 1
r2 sin θ

∂
∂θ sin θ ∂T

∂θ

� �þ 1
r2 sin θ

∂2
T

∂ϕ2
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2. Poisson’s equation.
This is for constant K and steady-state heat transfer so that the term ∂T=∂tð Þ ¼ 0

with heat source being present; therefore A 6¼ 0.

∇2T þ A x; y; zð Þ
K

¼ 0

or

∇2T þ A

K
¼ 0 ð5:30Þ

3. Fourier’s equation.
This is for constant K and no heat generation or A ¼ 0 Which is basically the

representation of Eq. 5.27 or transient state with no heat source:

∇2T ¼ 1

κ

∂T
∂t

ð5:31Þ

The parameter κ is the thermal diffusivity, κ ¼ K=ρC.

In summary to find the solutions to various heat conduction problems, we need

boundary conditions in space and time since both temperature T and heat generation

term A are function of x, y, z and time t. In general, there are seven constants of

integration. There is the first-order derivation with respect to the time variable and

second-order derivatives with respect to each variable. The number of conditions

for each independent variable is equal to the order of the highest derivative of that

variable in the equation. Hence, one initial condition is required for all time-

dependent problem; two boundary conditions are needed for each coordinate.

The spatial boundary conditions may be classified into three principal classes as

we mentioned in Sect. 5.3.3 in above, and they can be summarized as follows [10]:

1. The first-kind or Dirichlet boundary conditions

2. The second-kind or Neumann boundary conditions

3. The third-kind or Robin boundary conditions

Each of these boundary conditions is described again as follows [10]:

Table 5.2 Heat conduction equations with variable thermal conductivity in the three-principle

coordinate systems

Coordinate system ∇ � K∇Tð Þ þ A ¼ ρC ∂T
∂t

Rectangular ∂
∂x K ∂T

∂x

� �þ ∂
∂y K ∂T

∂y

	 

þ ∂

∂z K ∂T
∂z

� �þ A ¼ ρC ∂T
∂t

Cylindrical 1
r

∂
∂r Kr ∂T

∂r

� �þ 1
r2

∂
∂ϕ K ∂T

∂ϕ

	 

þ ∂

∂z K ∂T
∂z

� �þ A ¼ ρC ∂T
∂t

Spherical 1
r2

∂
∂r Kr2 ∂T

∂r

� �þ 1
r2 sin θ

∂
∂θ K sin θ ∂T

∂θ

� �þ 1
r2 sin 2θ

∂
∂ϕ K ∂T

∂ϕ

	 

þ A ¼ ρC ∂T

∂t
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1. First-Kind (Dirichlet) Boundary Conditions.

Here, the temperatures are known at the boundaries.

T ~x; tð Þjsurface ¼ Ts ð5:32Þ

An example of the first kind of boundary conditions for one-dimensional heat

conduction is

T x; tð Þjx¼0 ¼ T0 and T x; tð Þjx¼L ¼ TL

An example of the first kind of boundary conditions for two-dimensional heat

conduction is

T x; y; tð Þjx¼0 ¼ T0 yð Þ and T x; y; tð Þjx¼L ¼ TL yð Þ

where T0 and TL are prescribed functions of y. If these functions are zero, these
boundary conditions are called first-kind homogeneous boundary conditions.

2. Second-Kind (Neumann) Boundary Conditions.

Here, the heat fluxes are known at the boundaries.

qs ¼ �K ∂T
∂x

��
surface

isknown : ð5:33Þ

An example of the second kind of boundary conditions for one-dimensional heat

conduction is
∂T
∂x

��
x¼0

¼ �q1 yð Þ
K ¼ f 1 yð Þ where f1 is a prescribed function of y.

If this function is zero, the boundary condition is called the second-kind homo-

geneous boundary condition.

3. Third-Kind (Robin or Mixed) Boundary Conditions.

Here, the convection heat transfer coefficients are known at the boundaries.

q ¼ hΔT ¼ �K
∂T
∂η

is known : ð5:34Þ

An example of the third kind of boundary conditions for one-dimensional heat

conduction is

h1 T1 � Tx¼0ð Þ ¼ �K ∂T
∂x

��
x¼0

or �K ∂T
∂x

��
x¼0

þ h1Tx¼0

h i
¼ h1T1 ¼ f 1

where f1 is a prescribed function of y.

Other boundary conditions include nonlinear-type boundary conditions. When

there is radiation, phase change or transient heat transfer at the boundary conditions

is nonlinear in nature.
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Example 1 For a steady-state heat conduction problem with heat generation in a

rectangular medium, write the governing equation and the mathematical represen-

tation of the boundary conditions. For x ¼ 0, there is convection with heat transfer

coefficient h1. For x ¼ a, the boundary is insulated. For y ¼ 0, there is constant heat

flux q. For y ¼ b, there is convection with heat transfer coefficient h2 (Fig. 5.4).

Solution The governing energy conservation (heat conduction) equation is given

by

∂2
T

∂x2
þ ∂2

T

∂y2
þ A

K
¼ 0 for 0 	 x 	 a and 0 	 y 	 b

The boundary conditions are

�K
∂T
∂x

þ h1T ¼ h1T1 at x ¼ 0 ð5:35Þ

∂T
∂x

¼ 0 at x ¼ a ð5:36Þ

�K
∂T
∂y

¼ q at y ¼ 0 ð5:37Þ

�K
∂T
∂x

þ h2T ¼ h2T1 at y ¼ b ð5:38Þ

5.3.4.2 Laser Radiation, Effects on Solid Target

The fundamentals of which are given in this book, and particular Chaps. 5 and 6 are

a systematic and in-depth study of the physical and chemical mechanism governing

the interaction of laser radiation with solid targets, among them metals in different

gaseous environments, and for a wide range of beam parameters.

The laser–solid interaction is crucial, particularly the amount of laser energy that

is absorbed. It is shown that the dependence of the reflection coefficient of

y

x

O a

b

convection

constant q

convection insulated

Fig. 5.4 Sketch for

Example 5.1
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absorbing media (metals) on the polarization of light may give rise to anisotropy of

the absorption of powerful laser radiation in these media. This anisotropy is

demonstrated by bending of the laser damage channel. When the polarization of

light is linear, such bending occurs in a plane perpendicular to the plane of

polarization, and the direction of bending is governed by an asymmetry of the

distribution of the intensity in a cross section of the beam in this plane. The effect is

weaker when the polarization is circular. The position of the bending plane is then

governed by the nature of the asymmetry of the distribution of the intensity over the

beam cross section.

The experiments have shown that the emission is essentially due to rapid heating

of the surface spot which the laser beam strikes, and temperatures as high as 9000 K

have been reached in some samples by using lasers with an output of 1 J [11]. Laser-

induced electron and ion emission from metals have recently been observed by

several authors [12, 13].

By focusing extremely high-power energy laser beam, radiation to its target

production of light fluxes at the coupling interface with the target takes place.

The highest radiation power (see Table 5.3 below) has been produced using

solid-state neodymium-doped glass lasers (wavelength λ¼ 1.06 microns [μ]) and
gas lasers (λ¼ 10.6 μ). The specific features of laser radiation have led to the

discovery of a number of new physical phenomena, the range of which is expanding

rapidly as the power of lasers is increased.

The effect of high-power laser radiation in absorbing the solid target can be

explained for different applications as follows:

Developed vaporization of metals. When laser radiation (e.g., pulses of a neodym-

ium laser lasting several microseconds) with a radiation flux density of 106–108

watts per sq cm (W/cm2) acts on metals, the metal in the zone of irradiation

disintegrates, and a characteristic crater appears on the surface of the target. The

bright luminosity of a plasma flare, which is a moving vapor heated and ionized by

the laser radiation, is observed near the target. The reaction pressure of the vapor

ejected from the surface of the metal imparts a recoil impulse Q to the target

(Fig. 5.5).

Vaporization takes place from the surface of a thin layer of liquid metal heated to

a temperature of several thousand degrees. The temperature of the layer is

Table 5.3 Characteristics of certain types of lasers

Laser

type

Pulse duration

(sec)

Pulse energy

(J)

Power

(W)

Maximum radiation flux density

(W/cm2)

CO2 Continuous – 103 Up to 107

Nd + glass 10�3 104 107 Up to 107–1011

CO2 6� 10�8 3� 102 5� 1019 1013

Nd + glass 10�9 3� 102 3� 1011 1016

Nd + glass (0.3)� 10�11 10–20 1012–1013 1015–1016
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determined by the equality of the absorbed energy and the losses to the cooling

associated with vaporization. The role of thermal conduction in cooling the layer in

the process is insignificant. In contrast to ordinary vaporization, this process is

called developed vaporization.

The pressure in the layer is determined by the recoil force of the vapor and, when

a gas-dynamic flow of vapor forms from the target, is one-half of the saturated

vapor pressure at the surface temperature. Thus, the liquid layer is superheated, and

its state is metastable. This makes it possible to study the conditions of maximum

superheating of metals, under which rapid volumetric boiling-up of the liquid takes

place. Upon heating to a temperature close to the critical temperature, an abrupt

drop in electrical conductivity may take place in the liquid layer of the metal, and it

may acquire the properties of a dielectric. In the process an abrupt drop in the light

reflection coefficient is observed.

Irradiation of solid targets. As in the previous case, plasma is formed in the vapor

flux from the vaporizing target upon irradiation of virtually all solid targets with

millisecond pulses of laser radiation having a radiation flux density of the order of

107–109 W/cm2. The plasma temperature is 104–105 K. This method may be used to

produce a large quantity of dense, chemically pure low-temperature plasma to fill

magnetic traps and for various industrial purposes. The vaporization of solid targets

by laser radiation is used extensively in engineering.

When nanosecond laser pulses with a radiation flux density of 1012–1014 W/cm2

are focused on a solid target, the absorbing layer of the substance is heated so

intensely that it immediately becomes plasma. In this case it is no longer possible to

speak of vaporization of the target or of a phase interface. The energy of the laser

radiation is used to heat the plasma and advance the disintegration and ionization

front into the target. The plasma temperature is so high that multiply charged ions,

in particular Ca16+, are formed in it. Until recently, the formation of ions of such

high multiplicity of ionization was observed only in the radiation of the solar

corona. The formation of ions with a nearly stripped electron shell is also interesting

from the standpoint of the possibility of conducting nuclear reactions known as

ICF (inertial controlled fusion) using heavy nuclei in accelerators of multiply

charged ions.
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Laser spark (optical breakdown of a gas).When a laser beam with a radiation flux

density of the order of 1011 W/cm2 is focused in the air at atmospheric pressure, a

bright burst of light is observed at the focal point of the lens, and a loud sound is

heard. This phenomenon is called the laser spark. The duration of the burst exceeds

the duration of the laser pulse (30 ns) by a factor of 10 or more. The formation of the

laser spark may be represented as consisting of two stages: (1) the formation at the

focal point of the lens of primary (seed) plasma, which ensures strong absorption of

the laser radiation, and (2) the spread of the plasma along the beam in the area of the

focal point. The mechanism of formation of seed plasma is analogous to the high-

frequency breakdown of gases, hence the term “optical breakdown of a gas.” For

picosecond pulses of laser radiation (I ~ 1013–1014 W/cm2), the formation of seed

plasma is also due to multiphoton ionization. The heating of the seed plasma by

laser radiation and its spread along the beam (against the beam) are caused by

several processes, one of which is the propagation of a strong shock wave from the

seed plasma. The shock wave heats and ionizes the gas beyond the shock front,

leading in turn to the absorption of the laser radiation—that is, to the maintenance

of the shock wave itself and of the plasma along the beam (light detonation). In

other directions the shock wave attenuates quickly.

Since the lifetime of the plasma formed by laser radiation greatly exceeds the

duration of the laser pulse, at great distances from the focal point, the laser spark

may be considered as a point explosion (the nearly instantaneous release of energy

at a point). This explains, in particular, the high intensity of the sound. The laser

spark has been studied for a number of gases at different pressures, under different

conditions of focusing, and for various wavelengths of laser radiation, with pulses

lasting 10�6–10�11 s.

A laser spark may also be observed at much lower intensities if absorbing seed

plasma is generated in advance at the focal point of the lens. For example, in air at

atmospheric pressure, a laser spark is developed from electric-discharge seed

plasma at a laser radiation intensity of approximately 107W/cm2; the laser radiation

“captures” the electric-discharge plasma, and during the laser pulse, the luminosity

spreads over the caustic surface of the lens. When the laser radiation is of relatively

low intensity, the spread of the plasma is due to thermal conduction, as a result of

which the rate of spread of the plasma is subsonic. This process is analogous to slow

combustion, hence the expression “laser spark in the slow combustion mode.”

Steady-state maintenance of a laser spark has been accomplished in various

gases by means of a continuous CO2 laser with a power of several hundred watts.

The seed plasma was developed by a pulse CO2 laser.

Thermonuclear fusion. Controlled thermonuclear fusion may be produced using

laser radiation. For this purpose it is necessary to form extremely dense and

hot plasma with a temperature of approximately 108 K (in the case of fusion

of deuterium nuclei). For the energy liberation resulting from the

thermonuclear reaction to exceed the energy added to the plasma during heating,

the conditionnτ � 1014 cm�3 smust be fulfilled, where n is the density of the plasma

and τ is its lifetime or confinement time. For short laser pulses, this condition is

satisfied at very high plasma densities. Here the pressure in the plasma is so great that
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it is virtually impossible to contain it magnetically. The plasma that appears near the

focal point disperses at a speed of the order of 108 cm/s. Therefore, τ is the time in

which the dense plasmoid is unable to change its volume significantly (the inertial

confinement time of the plasma). For thermonuclear fusion to occur, the length of the

laser pulse t1 obviously must not exceed τ. The minimum energy e of the laser pulse

for a plasma density of n ¼ 5� 1022 cm�3 (the density of liquid hydrogen), a

confinement time of τ ¼ 2� 10�9s, and a plasmoid with linear dimensions of

0.4 cm should be 6� 105 J. Effective absorption of light by the plasma under

conditions of inertial confinement and satisfaction of the condition nτ � 1014 occurs

only for certain wavelengths λ and that is λcr > λ > λcr=
ffiffiffiffiffi
40

p� �
, where λcr 
 1=

ffiffiffi
n

p
is

the critical wavelength for plasma with density n. When n ¼ 5� 1022 cm�3, λ lies

in the ultraviolet region of the spectrum, for which powerful lasers do not yet exist.

At the same time, when λ ¼ 1μ (a neodymium laser), even for n¼ 1021 cm�3,

corresponding to λcr, a value ofe ¼ 109J for the minimum energy, which is difficult to

realize, is obtained. The difficulty of feeding the energy of laser radiation in the

visible and infrared bands into dense plasma is fundamental. Various ideas exist for

surmounting this difficulty; one such idea that is of interest is the production of a

superdense hot plasma as a result of adiabatic compression of a spherical deuterium

target by the reaction pressure of plasma ejected from the surface of the target under

the action of laser radiation.

High-temperature heating of plasma by laser radiation was accomplished in the

first time by optical breakdown of the air. In 1966–1967, X-radiation from the

plasma of a laser spark with a temperature of the order of (1–3)� 106 K was

recorded for a laser radiation flux density of the order of 1012–1013 W/cm2. In

1971 plasma with a temperature of 107 K (measured on the basis of X-radiation)

was produced by irradiating a solid spherical hydrogen-containing target with laser

radiation having a flux density of up to 1016 W/cm2. A yield of 106 neutrons per

pulse was observed in the process. These results, as well as the existing possibilities

for increasing the energy and output of lasers, create the prospect of producing a

controlled thermonuclear reaction using laser radiation [14–16].

Chemistry of resonance-excited molecules. A selective effect on the chemical

bonds of molecules, making possible selective intervention in the chemical reac-

tions of synthesis and dissociation and in the processes of catalysis, is possible

under the action of monochromatic laser radiation. Many chemical reactions reduce

to the scission of some chemical bonds in molecules and the formation of others.

Interatomic bonds are responsible for the vibrational spectrum of a molecule. The

frequencies of the spectral lines depend on the binding energy and mass of the

atoms. A certain bond may be “built up” under the action of monochromatic laser

radiation of the resonance frequency. Such a bond may easily be broken and

replaced by another. Therefore, vibrationally excited molecules prove to be chem-

ically more active (Fig. 5.6).

Molecules with differing isotopic compositions may be separated by means of

laser radiation. This possibility is associated with the dependence of the vibrational

frequency of the atoms comprising a molecule on the mass of the atoms. The

monochromaticity and high power of laser radiation make possible selective
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pumping of molecules of a specific isotopic composition to the predissociation level

and the production of chemical compounds of monoisotopic composition or the

isotope itself in the dissociation products. Since the number of dissociated mole-

cules of a given isotopic composition is equal to the number of quanta absorbed, the

effectiveness of this method may be high in comparison with other methods of

isotope separation.

The effects mentioned above do not exhaust the physical phenomena caused by

the action of laser radiation on the matter. Transparent dielectrics are destroyed

under the action of laser radiation. When certain ferromagnetic films are irradiated,

local changes in their magnetic state are observed. This effect may be used in

developing high-speed switching devices and computer memory units. When laser

radiation is focused within a liquid, the light-hydraulic effect, which makes possible

the production of high pulse pressures in a liquid, occurs. Finally, for radiation flux

densities of approximately 1018–1019 W/cm2, the acceleration of electrons to

relativistic energies is possible. A number of new effects, such as the production

of electron–positron pairs, are associated with this.

5.3.4.3 Absorption of Laser Radiation by Metals

The laser heating of materials is mainly determined by thermal parameters of the

materials under consideration and particularly absorptivity of given metals at the

respective laser wavelength. The metal absorptivity or, alternatively, the reflectivity

Fig. 5.6 Diagram of the reaction between tetrafluorohydrazine (N2F4) and nitric oxide (NO) upon

heating (top) and upon resonance excitation of the N–F bond by laser radiation (bottom). The wavy
lines represent chemical bonds
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of the metal at a given laser wavelength plays major roles in laser interaction with

metallic target. In this section we are trying to identify the key quantities of

absorptivity/reflectivity as well as thermal conductivities to the optical properties

of metals, the general condition of their surfaces, and temperature, i.e., laser heating

rate through heat conduction equation under different boundary and initial condi-

tions. We shall discuss the physical processes that occur during the interaction of

high-power laser radiation with materials. Understanding of concept of these

processes is important to have the knowledge and limitations of laser-based mate-

rial processing. We pay attention and put emphases on metallic targets, but much of

what we will discuss is applicable to other types of absorbing materials.

When laser duels with a target surface, part of it is absorbed and part is reflected.

The energy that is absorbed begins to heat the surface. There are several regimes of

parameters that should be considered, depending on the time scale, on the duration

of engagement, and on the irradiance. The heating rate of metal sample or target

surface is mainly determined by the target material absorptivity for a given wave-

length—a quantity which, in turn, is determined by the optical properties of the

metal itself and of the target surface, as well as by the temperature range, heating

rate, etc. at the time of engagement. That is why the metal absorptivity, A, or
alternatively the metal reflectivity, R, stands as the main criteria guiding the choice

of the most appropriate laser system for destroying the metallic parts of the target or

damages it enough that the incoming target is no longer a threat. For example,

losses due to thermal conduction are small if the pulse duration is very short, but

they can be important for longer pulses. Under some conditions, there can be

important effects due to absorption of energy in the plasma formed by vaporized

material above the target surfaces. We note that losses due to thermal reradiation

from the target surfaces are usually insignificant.

The heating effects due to absorption of high-power beam can take place very

rapidly. The surface temperature quickly rises to its melting point. Laser-induced

melting is of interest because of target destruction during engagement. One often

desires maximum melting under conditions where surface vaporization does not

occur. Melting without vaporization is produced only within a fairly narrow range

of laser parameters. If the laser irradiance is too high, the surface begins to vaporize

before a significant depth of molten material is produced. In the case of industrial

application of laser welding, this means that there is a maximum irradiance suitable

for this purpose, but in our case where we are interested in target destruction, any

damage to the target as the incoming threat falls as part of target lethality require-

ment that is mentioned in Sect. 5.3.4. Alternatively, for a given total energy in the

laser pulse, it is often desirable to stretch the pulse length.

Melting of a material by laser radiation depends on heat flow in the material,

which in turn depends on the thermal conductivity K. But on the other hand, the rate
of thermal conductivity is not the only factor where the rate of change of temper-

ature is depending on. The rate of change of temperature also depends on the

specific heat c of the material at constant pressure. In fact Eq. 5.19b shows that

the heating rate is inversely proportional to the specific heat per unit volume, which

is equal to ρc, where ρ is the material density. The important factor for heat flow is
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K/ρc. This factor has the dimension of cm2/s, which is per Eq. 5.19b is characteristic

of the diffusion coefficient which is known as thermal Diffusivity.
The factor K/ρc is involved in all unsteady-state heat-flow processes, such as

pulsed laser heating. The significant of this material property is that it determines

how fast a material will accept and conduct thermal energy. Thus the higher thermal

conductivity allows larger penetration of the fusion front with no thermal shock or

cracking; on the other hand, lower thermal conductivity on the target material

surface makes it harder for the laser to duel with it and limits the penetration of

laser into the material, although low values of thermal diffusivity mean that the heat

does not penetrate well into the material. But high value of thermal diffusivity can

also allow rapid removal of heat from the surface, and this may cause reduction of

melting amount. To compensate for these effects, one should vary the laser param-

eters for optimum effects for different materials. Table 5.4 lists the thermal diffu-

sivity of several metals and alloys.

The depth of penetration of heat in time t is given approximately by the Eq. 5.39

below:

D ¼ 4Ktð Þ1=2 ¼ 4Kt

ρc

� �1=2

ð5:39Þ

where D is the depth of penetration of the heat and k ¼ K=ρc is the thermal

diffusivity. Typically for a metal with thermal diffusivity 0.25 cm2/s, heat can

Table 5.4 Thermal diffusivity and thermal time constant [17]

Metal

Thermal diffusivity

(cm2/s)

Thermal time constants (ms)

0.01 cm

thick

0.02 cm

thick

0.05 cm

thick

0.1 cm

thick

Silver 1.70 0.015 0.059 0.368 1.47

Aluminum alloys

Commercially pure 0.850 0.029 0.118 0.74 2.94

2024 alloy 0.706 0.035 0.142 0.89 3.54

A13 casting alloy 0.474 0.053 0.211 1.32 5.27

Copper alloys

Electrolytic (99.95%) 1.14 0.022 0.088 0.55 2.19

Cartridge brass 0.378 0.066 0.265 1.65 6.61

Phosphor bronze 0.213 0.117 0.470 2.93 11.74

Iron alloys

Commercially pure 0.202 0.124 0.495 3.09 12.38

303 stainless steel 0.056 0.446 1.786 11.16 44.64

Carbon steel (1.22 C,

0.35 Mn)

0.119 0.210 0.840 5.25 21.01

Nickel alloys

Commercially pure 0.220 0.114 0.454 2.84 11.36

Monel 0.055 0.455 1.818 11.36 45.46

Inconel 0.039 0.641 2.564 16.03 64.10
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penetrate only about 3� 10�4 cm during a pulse of 90-ns duration (typical of a

Q-switched laser). During a pulse of 100-μs duration (typical of a normal pulse

laser), heat can penetrate about 0.01 cm into the same metal.

The amount of light absorbed by the metallic surface is proportional to 1� R
which is the reflectivity. Quantitatively, the absorption A is the ration of the

intensity absorbed by the metallic surface, Ia, to incident intensity, I, at a certain

moment in the process of laser heating. Accordingly, the reflectivity, R ¼ 1� A, is
the ratio between the reflected (specularly and/or diffused) intensity, Ir, and the

incident intensity, I. The absorptivity of metals shows a general trend to increase

when the incident radiation wavelength decreases from the infrared to the ultravi-

olet spectral range [8, 12]. At the CO2 laser wavelength of 10.6 μm, where R is close

to unity, 1� R becomes small; as a result A is small. This means that only small

fraction of the light incident on the surface is absorbed and is available for heating

the engagement surface of the target. The difference in the value of R becomes

important at long wavelengths. For copper or silver, for example, at 10.6 μm, 1� R
is about 0.02, whereas for steel it is about 0.05. Steel then absorbs about 2.5 times as

much of the incident light as silver or copper. In practice, this means that steel

surfaces are easier to engage with a CO2 laser than are metals such as aluminum or

copper.

The wavelength variation is also important. At shorter wavelengths, the factor

1� R is much higher than at long infrared wavelengths. For example, the factor

1� R for steel is about 0.35 at 1.06 μm, about seven times as great as its value at

10.6 μm. This means that, at least initially, seven times as much light is absorbed

from a Nd:YAG laser than from a CO2 laser for equal irradiance from the two

lasers. In some cases it will be easier to carry out target destruction with a shorter-

wavelength laser because of the increased coupling of light into the metallic surface

of the target [17]. In general the shorter the wavelength, the better the coupling with

the surface of the target.

Figure 5.7 shows some data on the reflectivity of a stainless steel surface struck

by a 200-ns-duration pulse from a CO2 TEA laser, which delivered an irradiance of

1.5� 108 W/cm2 to the target.

Note that one of the important factors for a battle management of some sort on

ABL, SBL, or GBL platforms can possibly be to collect some information from its

laser finder such as LADAR (laser detection and ranging) and target acquisition

system that correct information using indirect determination of absorptivity A based

upon measuring the reflectivity R. This method generally encounters its own several

difficulties. First, we can note that the signal reflected by the target surface actually

consists of a specular component as well as scattered (diffused) component—so that

the value of total reflection coefficient R is R ¼ RR þ RD, where RR and RD are the

coefficients of specular reflection and scattering, respectively.
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(continued)
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Fig. 5.7 Specular reflectivity at 10.6 μm as a function of time for a stainless steel surface struck by

a CO2 TEA laser pulse delivering 1.5� 108 W/cm2 in a pulse of 200 ns long [17]
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A FASOR used at the Starfire Optical Range for LIDAR and laser guide

star experiments is tuned to the sodium D2a line and used to excite sodium

atoms in the upper atmosphere.

LIDAR (light detection and ranging) is an optical remote sensing technol-

ogy that measures properties of scattered light to find range and/or other

information of a distant target. The prevalent method to determine distance to

an object or surface is to use laser pulses. Like the similar radar technology,

which uses radio waves, the range to an object is determined by measuring the

time delay between transmission of a pulse and detection of the reflected

signal. LIDAR technology has application in geomantic, archaeology, geog-

raphy, geology, geomorphology, seismology, forestry, remote sensing, and

atmospheric physics [1]. Applications of LIDAR include ALSM (airborne

laser swath mapping), laser altimetry, or LIDAR contour mapping. The

acronym LADAR (laser detection and ranging) is often used in military

contexts. The term “laser radar” is also in use even though LIDAR does not

employ microwaves or radio waves, which is definitional to radar.

The ability of lasers to produce intense pulses of light energy leads to heating,

melting, and vaporization of the target. The feature of laser that allows it to be used

in directed energy weapons is, of course, its ability to deliver very high values of

irradiance to a target surface. Irradiance can be defined as the incident laser power

per unit area at the surface; it has units of W/cm2. Only an electron beam can

compare with a laser in this respect.

When laser radiation strikes a target surface, part of it is absorbed and part is

reflected. The energy that is absorbed begins to heat the surface. There are several

regimes of parameters that should be considered, depending on the time scale and

on the irradiance. For example, losses due to thermal conduction are small if the

pulse duration is very short, but they can be important for longer pulses. Under

some conditions, there can be important effects due to absorption of energy in the

plasma formed by vaporized material above the target surface. We note that losses

due to thermal reradiation from the target surface are usually insignificant [17].

Since our interest on laser concentrates on its application as directed energy

weapons, therefore the type of destruction effects on the incoming threat, whether it

is melting or vaporization due to heat conduction from chosen laser, is not impor-

tant. So as long as the threat or the incoming target gets destroyed or cannot deliver

its assigned mission to its own preselected targets, then, we have achieved our

mission of creating a DEW system.

In other applications of laser with the matter such as welding or cutting indus-

tries, the interest is on melting before we reach vaporization and plasma gets

introduced. The heating effects due to absorption of high-power beams can occur

very rapidly. The surface quickly rises to its melting temperature. Laser-induced

melting is of interest because of welding applications. One often desires maximum

melting under conditions where surface vaporization does not occur. Melting
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without vaporization is produced only within a fairly narrow range of laser param-

eters. If the laser irradiance is too high, the surface begins to vaporize before a

significant depth of molten material is produced. This means that there is a

maximum irradiance suitable for welding applications. Alternatively, for a given

total energy in the laser pulse, it is often desirable to stretch the pulse length as we

have described in above and presented in Eq. 5.39.

Effective melting and welding with lasers depend on the propagation of a fusion

front through the sample during the time of the interaction, at the same time

avoiding vaporization of the surface. Figure 5.8 shows the time dependence of

the penetration of the molten front into a massive nickel sample for an absorbed

irradiance of 105 W/cm2. About 4 ms after the start of the pulse, the surface begins

to vaporize. We note that the depth of penetration without surface vaporization is

limited. To obtain greater depth, one can tailor the laser parameters to some extent.

Generally, one lowers the irradiance and increases the pulse duration. The control is

rather sensitive. One must make careful adjustments to achieve a balance between

optimum penetration depth and avoidance of surface vaporization. (The results

shown in Figs. 5.8 and 5.9 are calculated using an analog computer routine

developed by M. I. Cohen [18].)

One is interested primarily in welding under conditions where surface vapori-

zation does not occur. Melting without vaporization is produced only within a

narrow range of laser parameters. If the laser irradiance is too high, the surface

begins to vaporize before the fusion front penetrates deep into the material. This

means that there is a maximum irradiance suitable for welding applications.

Alternatively, for a given total energy in the laser pulse, it is often desirable to

stretch the pulse length to allow time for penetration of the fusion front through the

workpiece. Figure 5.9 shows the depth of melting in stainless steel as a function of
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Fig. 5.8 Calculated depth melted in nick as a function of time for an absorbed laser irradiation of

105 W/cm2
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time. Good fusion can be achieved over a range of pulse lengths if the laser energy

is carefully controlled. For pulses shorter than 1 ms, surface vaporization is difficult

to avoid [17].

One might think that one should use lasers with very high peak power in order to

increase material removal. Paradoxically, it is not the highest laser powers that are

optimal for material removal. The very high powers from a Q-switched laser

vaporize a small amount of material and heat it to a high temperature. Early in

the laser pulse, some material is vaporized from the surface. The vaporized material

is slightly thermally ionized and absorbs some of the incident light. This heats the

vapor more, producing more ionization and more absorption in a feedback process.

Our earlier assumption that the laser light does not interact with the vaporized

material is no longer valid if the irradiance becomes very high. Rather, the vapor-

ized material does interact and absorb the incoming laser beam, so that the surface

is shielded from the laser light [17]. Under some condition, most of the material

may be removed as liquid. Figure 5.10 shows data on the fraction of the material

ejected as liquid by a Nd–glass laser pulse with 30-kW power. Early in the pulse,

most of the material was removed as vapor, but after a few hundred microseconds,

about 90% of the material removal occurred as liquid droplets.

Thus, new physical processes become important as the irradiance becomes very

high. This is shown schematically in Fig. 5.11, which shows the depth vaporized as

a function of time. The laser pulse shape is also shown for comparison. This is a

typical pulse shape for Q-switched lasers. Early in the pulse, the surface starts to

vaporize. Then the vaporized material heated and ionized by the laser forms a hot,

opaque, ionized plasma, which absorbs essentially all of the incoming laser light.

The flat portion of the curve represents the period when the surface is shielded by

the plasma, so that vaporization ceases. Finally, late in the pulse, the plasma has

expanded and become transparent again. Light can again reach the surface, and

some additional material is vaporized. Because of these effects, the amounts of
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Fig. 5.9 Calculated depth melted in stainless steel for several different values of laser irradiance.

The time at which surface vaporization begins is indicated for each curve [17]
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material that can be removed by short-duration, high-power pulses, as from a

Q-switched laser, are limited. Such lasers are not well suited for hole drilling or

for cutting.
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Fig. 5.11 Schematic representation of the depth vaporized in a metallic target as a function of

time by a 30-ns-duration laser pulse with the indicated temporal profile. The effect of shielding of

the target surface by blowoff material produced in the laser pulse is apparent [19]

112 5 Laser-Directed Energy Concepts



The shielding of the target by hot opaque plasma leads to a phenomenon called a

laser-supported absorption (LSA) wave. The LSA wave is the plasma that is

generated above the target surface and propagates backward along the beam path

toward the laser. It is accompanied by a loud noise and a bright flash of light. Thus,

the LSA wave makes an impressive demonstration, but while present it effectively

shields the target surface and reduces the material removal. It can also drive a shock

wave into the target.

We now try to explain one of the importance of physical phenomena that occur

during the interaction of high-power laser radiation with the target surface, and we

can summarize that again like we did in Sect. 5.3.4.2 in above. The physical

phenomena are depicted in Fig. 5.12 below. If the top left portion of the figure

indicates absorption of the incident laser light according to the exponential absorp-

tion law,

I xð Þ ¼ I0e
�αx ð5:40Þ

where I(x) is the laser light intensity at depth x and I0 is the incident laser light

intensity, and α is the absorption coefficient. Based on this figure, the fraction of

light that is reflected was neglected [17]. For metals, the absorption coefficient is of

the order of 105 cm�1. Thus, the energy is deposited in a layer about 10�5 cm thick.

The light energy is transformed into heat energy essentially instantaneously, in a

time less than 10�13 s. Thus the laser energy may be regarded as an instantaneous

surface source of heat.

The heat energy then penetrates into the target by thermal conduction. When the

surface reaches the melting temperature, a liquid interface propagates into the

material, as indicated in the top portion of Fig. 5.10. With continued irradiation

the material begins to vaporize, as indicated in the bottom left portion of Fig. 5.12,

Absorption and Heating

Light
Thermal

Conduction

Liquid
Interface

Melting

Plasma ProductionVaporization

I = IO e–αx α �105 cm–1

Fig. 5.12 Physical phenomena occurring when a high-power laser beam strikes an absorbing

surface [17]
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and a hole begins to be drilled [17]. If the irradiance is high enough, absorption in

the blowoff materials leads to hot opaque plasma. The plasma can grow back

toward the laser as laser-supported absorption (LSA) wave. The LAS is defined

in above. The plasma absorbs the light and shields the surface, as shown in the

bottom right portion of Fig. 5.12. The ranges of laser irradiance for which individ-

ual processes dominate the interaction are given in Table 5.5. Values are stated for

two wavelength regions: the visible and near-infrared region (around 0.5–1 μm) and

the far-infrared region near 10 μm. The values in the table are approximate and will

vary according to the exact parameters of the laser irradiation, such as pulse

duration, target properties, and the like. At relatively low irradiance, melting is

the main effect. At somewhat larger irradiance, vaporization becomes the most

important effect. This is a conventional vaporization, with minimal interaction

between the incident light and the vaporized material [17].

At still higher irradiance, LSA waves are kindled and dominate the physical

processes, whereas vaporization is diminished. The thresholds for kindling the LSA

waves are those appropriate to one specific case, namely, a titanium target with

laser pulse duration in the microsecond regime. The threshold will vary as the

circumstances change. But the numbers in Table 5.5 will serve to identify an order

of magnitude at which certain types of interaction occur. The LSA wave dominates

at a lower value of irradiance for far-infrared lasers than for visible and near-

infrared lasers.

We summarize these phenomena in Fig. 5.13, which identifies various regimes

of interaction and their potential applications. The figure defines these regimes in

terms of irradiance and the duration of the interaction. The ordinate represents the

pulse duration for a pulsed laser (or the time that the beam dwells on a spot for a

continuous laser). Below the line marked “No Melting,” the surface is not heated to

the melting point. In this region, one may have heat treating applications. In the

region marked “Welding,” one obtains a reasonable depth of molten material, and

welding applications are possible. Above the line marked “Surface Vaporization,”

the surface begins to vaporize, and welding applications are less desirable. To the

left of the welding region, the penetration of the fusion front is small because of the

short interaction time. To the right of the welding region, the heat spreads over a

broad area, and the desirable feature of localized heating is lost. Thus, welding

operations usually require careful control to remain within this process window.

Table 5.5 Approximate ranges of laser irradiance at which various processes dominate the laser–

surface interaction [17]

Process

Range for visible and near-infrared

laser (W/cm2)

Range for far-infrared

laser (W/cm2)

Melting �105 �105

Vaporization 106–1.5� 108 106–2.5� 107

Laser-supported absorption

(LSA) wave

>1.5� 108 >2.5� 107

Plasma-collective effects �1013 >1013
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Similarly, the figure identifies regimes useful for cutting, hole drilling, and material

removal for small amounts of material, such as vaporization of thin films, that is,

trimming. Above the line marked “Plasma Production,” the LSA wave develops.

The only potential application identified in this region has been shock

hardening [17].

The regions identified in Fig. 5.13 are not exact; they will vary with the target

material, laser wavelength, and so forth. Still, they define regimes of laser param-

eters where certain applications are most likely to be productive. The engineer

desiring to apply a laser in a specific material processing application must identify

the process parameters suitable for that particular application [17].

5.3.4.4 Reflectivity at Normal Incident

Consider an electromagnetic wave in vacuum, with field components of the

form [20]

Ey incidentð Þ ¼ Ey incð Þ ¼ Bz incidentð Þ ¼ Aei kx�ωtð Þ

Let the wave be incident upon a medium of dielectric constant ε and permeability

μ ¼ 1 that fills the half-space x > 0. Show that the reflectivity coefficient r(ω) as
defined by E reflð Þ ¼ r ωð ÞB incð Þ is given by
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Fig. 5.13 Regimes of laser irradiance and interaction time for material processing application

[17]
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r ωð Þ ¼ nþ ik � 1

nþ ik þ 1

where nþ ik � ε1=2, with n and k real. Further we show that the reflectance is

R ωð Þ ¼ n� 1ð Þ2 þ k2

nþ 1ð Þ2 þ k2

The reflected wave in vacuum may be written as

�Ey reflectedð Þ ¼ �Ey reflð Þ ¼ Bz reflectedð Þ ¼ A
0
e�i kxþωtð Þ

where the sign of Ey has been reversed relative to Bz in order that the direction of

energy flux (Poynting vector) be reversed in the reflected wave from that in the

incident wave. For the transmitted wave in the dielectric medium, we find

Ey transmittedð Þ ¼ Ey transð Þ ¼ ck
Bz transmittedð Þ

εω

¼ ε�1=2Bz transmittedð ÞA00
e� kx�ωtð Þ

by the use of the Maxwell’s equation curlH ¼ ε ∂E
∂t and the dispersion relation εω2

¼ c2k2 for electromagnetic waves.

The boundary conditions at the interface at x ¼ 0 are that Ey should be

continuous: Ey incð Þ þ Ey transð ÞorAþ A
0 ¼ A

00
or Aþ A

0 ¼ A
00
. Also Bz should be

continuous, so that Aþ A
0 ¼ ε1=2A

00
. We solve for the ratio A/A0 to obtain

Aþ A
0 ¼ ε1=2 A� A

0� �
, whence

A

A
0 ¼ 1� ε1=2

1þ ε1=2

and

r ¼ E reflð Þ
E incð Þ ¼ �A

A
0 ¼ ε1=2 � 1

ε1=2 þ 1
¼ nþ ik � 1ð Þ

nþ ik þ 1ð Þ

The power reflectance is

R ωð Þ ¼ r∗r ¼ n� ik � 1ð Þ
n� ik � 1ð Þ
� �

nþ ik � 1ð Þ
nþ ik � 1ð Þ
� �

¼ n� 1ð Þ2 þ k2

nþ 1ð Þ2 þ k2

Some of the most interesting phenomena associated with lasers involve the effects

produced when a high-energy power laser beam is absorbed at an opaque surface.
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The most spectacular effects involve a change of phase of the absorbing mate-

rial, for example, the luminous cloud of vaporized material blasted from a metallic

surface and often accompanied by a shower of sparks [7].

For an opaque solid, the fraction of incident radiation absorbed is

ε ¼ 1� R0

where ε is the emissivity and R0 is the reflectivity at normal incidence. R0 and ε can
be calculated from measurements of optical constants or the complex refractive

index. For a complex refractive index,

m ¼ n� ik

then based on the above derivation, the reflectivity at normal incidence is

R0 ¼ n� 1ð Þ2 þ k2

nþ 1ð Þ2 þ k2

The emissivity is then

ε ¼ 4n

nþ 1ð Þ2 þ k2

In general, n and k for metallic materials are functions of wavelength and temper-

ature. The variation of n and k with wavelength and corresponding changes in ε for
Ti at 300 K are shown in Fig. 5.14. It is apparent that both n and k are relatively

slowly varying functions of λ over the range 0.4< λ< 1.0 μm and ε is large in this

range. At longer wavelengths, n and k both increase rapidly with λ, and ε decreases

to a small fraction of its value at shorter wavelength. In the infrared ε / λ1=2 at

constant temperature. Since ε / r1=2, where r is the electrical resistivity, while

r increases with temperature, ε(λ) increases with temperature in the infrared

[7]. The temperature dependence of ε(λ) for λ 	 1μm is more complex; however,
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Fig. 5.14 Wavelength dependence of ε, n, and k for Ti at 300 K [21]
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the net change in ε is smaller than what is observed in the infrared. In the visible

region of the spectrum, ε often decreases slightly with increasing temperature [21].

Emissivities for metals at wavelengths characteristic of Ar+, ruby, Nd–YAG, and

CO2 lasers are summarized in Table 5.6. The temperature dependence of ε for some

metals at 1000 nm and 10.6 μm is shown in Figs. 5.15 and 5.16, respectively. Data

on ε (1000 nm) were obtained from the observations of Barn. That for ε (10.6 μm)

was calculated from the temperature-dependent emissivity from the expression

given by Duley [8]:

Table 5.6 Values of emissivity for various metals at laser wavelengths [21]

Metal

Emissivitya

Ar+ (500 nm) Ruby (700 nm) Nd–YAG (1000 nm) CO2 (10 μm)

Aluminum 0.09 0.11 0.08 0.019

Copper 0.56 0.17 0.10 0.015

Gold 0.58 0.07 – 0.017

Iridium 0.36 0.30 0.22 –

Iron 0.68 0.64 – 0.035

Lead 0.38 0.35 0.16 0.045

Molybdenum 0.48 0.48 0.40 0.027

Nickel 0.40 0.32 0.26 0.03

Niobium 0.58 0.50 0.32 0.036

Platinum 0.21 0.15 0.11 0.036

Rhenium 0.47 0.44 0.28 –

Silver 0.05 0.04 0.04 0.014

Tantalum 0.65 0.50 0.18 0.044

Tin 0.20 0.18 0.19 0.034

Titanium 0.48 0.45 0.42 0.08

Tungsten 0.55 0.50 0.41 0.026

Zinc – – 0.16 0.027
aAt 2 �C
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Fig. 5.15 Temperature dependence of emissivity for several metals at a wavelength of 1000 nm

[21]
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ε10:6μm Tð Þ ¼ 11:2 R20
�
C 1þ γTð Þ� 1=2 � 62:9 R20

�
C 1þ γTð Þ� 

þ 174 R20
�
C 1þ γTð Þ� 1=2 ð5:41Þ

where R20
�
C is the resistivity at 20 �C and γ is the coefficient of resistivity change

with temperature T �C.
Note: Equation 5.40 is valid for the metals heated in vacuum without a surface

oxide layer. The presence of surface films will greatly increase ε10.6μm (T ) [8].
Inspection of the data in Table 5.6 and Figs. 5.15 and 5.16 shows that the

absorption of laser light by metallic surfaces at 20 �C is almost and an order of

magnitude larger at visible wavelengths than at infrared wavelengths [21].

As we said in above, note the validation of these analyses takes place in the

absence of any surface film. In most practical applications of laser heating, this

assumption will not be valid because of oxide formation or the presence of surface

contamination and possible other films (i.e., paints). When this is the case, values of

ε in the infrared can be increased at visible wavelength. Thus, under practical

conditions the difference between ε10.6μm and εvisible is unlikely to be as large as

suggested by Duley [22] and data provided in Table 5.6. Duley et al. [23] have

investigated the effect of oxidation on ε10.6μm for several metals heated in air. This

follows work by Wieting and De Rosa [24] and Wieting and Schriempf [2] on the

absorptance of stainless steel and Ti-6A1-4 V alloy at high temperatures in vacuum.

Data obtained by Wieting and De Rosa on the absorptivity, ε, of type 304 stainless

steel at 10.6 μm and presented by Duley [21] in his book are shown in different

figures, and we suggest the reader to refer to his book.
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Fig. 5.16 Temperature dependence of emissivity at 10.6 μm for several metals [21]
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The further study of interaction of high-power laser beam with materials and

producing plasma at the target surface (see Fig. 5.12) will introduce to the research

done by Sturmer and Von Allmen [3]. The time evolution of target shielding via

plasma formation has been followed in details by them in 1978. They identify three

separate absorption regimes when a high-intensity pulse of long duration is incident

on a metallic target in air or other atmospheres. These are:

1. Strong reflection from the target

2. Absorption by plasma and target shielding

3. Dissipation of plasma and enhanced coupling to the target

As we discussed in the previous section to some degree, during step 1, which

occurs during the initial stages of laser heating, the target has high reflectivity, and ε
is small. The material evaporated from the focus may seed the gas in front of the

target initiating plasma breakdown and lead to the formation of a laser-supported

detonation (LSD) wave. This wave absorbs practically all the incident laser radia-

tion (step 2) and shields the target. It dissipates by moving away from the target

toward the focusing lens. This results in a reduction of plasma density followed by a

decrease in opacity. The surface is then exposed to the last part of the laser pulse

(step 3) which couples efficiently to the damaged target. Subsequent LSD wave

ignition is suppressed by the low gas density left in front of the target following

dissipation of the initial LSD wave.

While ε may be important in the initial stages of the heating of metallic targets

with laser radiation, it is unimportant in many practical laser heating applications.

The importance of ε is diminished when material removal has proceeded to the

point where a cavity or keyhole has formed in the workpiece (target surface). In this

case, the cavity acts as a blackbody absorber with ε effectively equal to unity. It has
been shown [25] that control over the fitting of parts to be joined can also be

effective in increasing ε. Under conditions in which laser radiation is absorbed in a

keyhole, Steen and Eboo have shown that plasma absorption occurs within the

keyhole yielding ε ¼ 1.

The data contained in Table 5.6 can be used to obtain an estimate of the relative

merit of Ar+, ruby, Nd–YAG, and CO2 sources for laser heating. Heat transfer

calculations show that the limiting temperature at the center of a Gaussian focal

spot on a bulk target is

T ¼ εI0dπ1=2

K
ð5:42Þ

where I0 is the peak laser intensity (W/cm2), d the Gaussian beam radius, and K the

thermal conductivity. With optimum focusing d / λ, where λ is the laser wave-

length, since I0 / P=λ2, where P is the laser power, one has
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P / KTλ

ε
ð5:43Þ

If we assume that useful thermal effects are produced only when T ¼ Tm or Tb,
where Tm is the melting temperature while Tb is the boiling temperature, then this

expression can be used to obtain an estimate of the relative difficulty of machining

with different laser sources. A comparison of this sort is shown in Figs. 5.17 and

5.18 for the production of melting and boiling, respectively [21].

The correlations shown in these two figures are, of course, highly approximate

because they assume room temperature values for ε and K can be used to high

temperatures [22]. The uncertainty in these estimates can be reduced somewhat by

taking ε ¼ 1. A comparison calculated on this basis is shown in Fig. 5.19. If we

compare powers required to melt or boil Ti from this figure, we see that P(CO2)/P
(Ar+) ~ 20:1. Taking ε < 1 as shown in Fig. 5.14, the corresponding ratio are ~120.
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Thus, while higher powers are required to initiate surface damage with infrared

lasers than with visible lasers, when damage has occurred (i.e., ε 
 1), much of the

effect of the increased spot size of infrared lasers has disappeared [21].

At anything other than normal incidence, the reflection of laser radiation

depends on polarization. This also well explained in Appendix F of this book.

The geometry at some general angle of incidence ϕ is shown in Fig. 5.20. The

reflectivity for the two polarization directions s and p, Rs and Rp, will in general be

different. This means that the reflection coefficient for polarized laser light will be

dependent on the orientation of the polarization vector relative to the metallic

surface. An example of the angular dependence of Rs and Rp for Cu at 10.6 μm is

shown in Fig. 5.21. It can be seen that Rs is high for all angles. However, Rp

becomes very small at close to grazing incidence. Thus ε for incident light polarized
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Fig. 5.19 Relative power to reach temperatures between Tm and Tb assuming ε ¼ 1 [21]
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Fig. 5.20 Incident and reflected waves at a metallic surface [21]
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perpendicular to the metallic surface is larger under these conditions, and enhanced

coupling occurs. This has some important consequences in laser probing target

where the efficiency of material removal depends on the relation between the

polarization direction and the direction of translation of the metal substrate. This

also can be demonstrated in the following section also known as Fresnel
absorption.

5.3.4.5 Fresnel Absorption

Energy absorption by the workpiece from the laser can involve a direct process with

the laser light incident on a surface as well as other indirect processes. There exists

a simple electromagnetic model for absorption at a metallic surface that is widely

used, especially in the context of keyhole modeling at the wavelength of a CO2

laser. At that wavelength the assumptions of a simple model of electromagnetic

interaction involving resistive dissipation are justifiable as a useful approximation,

although at shorter wavelengths it becomes progressively more suspect. The model

does not make allowance for surface impurities and must therefore be used with an

understanding of its limitations.
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This direct absorption process is usually referred to as Fresnel absorption. A
formula for the reflection coefficient ℜ that is frequently quoted [26], and which

applies to circularly polarized light, is

ℜ ¼ 1

2

1þ 1� ε cosϕð Þ2
1þ 1þ ε cosϕð Þ2 þ

cos 2ϕþ ε� cosϕð Þ2
cos 2ϕþ ε� cosϕð Þ2

 !
ð5:44Þ

where ϕ is the angle of reflection that the light makes to the normal and ε is a

material-dependent quantity defined by

ε2 ¼ 2ε2

ε1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε21 þ σst=ωε0ð Þ2

q ð5:45Þ

where ε0 is the permittivity of a vacuum, ε1 and ε2 are the real parts of the dielectric
constants for the metal and the air or vapor through which the beam is being

transmitted, and σst is the electrical conductance per unit depth of the workpiece.

The value of ε0 is 8.854� 1012 F/m, and typical values for the other terms are

approximately in unity for ε1 and ε2 and 5.0� 105Ω/m for σst. For a CO2 laser, a

wavelength of 10.6 μm gives a value for ω of 1.78� 1014 s�1, and so ε has a value
of about 0.08. Figure 5.22 shows the graph of ℜ as a function of ϕ.

It will be seen that there is a strong dependence on the angle of incidence with a

marked minimum close to ϕ ¼ 1
2
π, indicating that absorption is strongest at near-

grazing incidence. For normal incidence, however, as much as 85% of the incident
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Fig. 5.22 The reflection coefficientℜ as a function of the angle of the incident beam to the normal

[27]
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power can be reflected. This figure can be very greatly modified by surface

impurities or other additives introduced as part of the process.

Absorption of light by insulating materials is a strong function of wavelength. In

the infrared, absorption arises from vibrational modes of the crystal lattice or

organic solids by intermolecular vibration. Absorption coefficients α 
 102 � 104

cm�1 are typical within these bands. In the visible band, absorption may occur due

to impurities (e.g., transition metal ions, crystal defect centers, etc.). Absorption can

also occur due to discrete electronic transitions in molecular crystal (e.g., many

organic solids) [22]. Absorption coefficients are typically 103 � 106cm�1 within

absorption bands. Figure 5.23 shows absorptions, α, for several refractory materials

in the visible and ultraviolet α can be related to the transmission of a sheet of

thickness t via

I

I0
� 100 ¼ transmission inpercent ¼ 100e�αt
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Fig. 5.23 Absorption

coefficient α for several

insulators at wavelengths

between 100 and 700 nm

[21]
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or

I

I0
¼ e�αt ð5:46Þ

where I0 is the incident intensity and I is the transmitted intensity. A useful measure

of the thickness required for significance of incident radiation is given by

L ¼ α�1

where L is the attenuation length. A strong absorber has α ¼ 106cm�1 and L cm,

while a relatively weak absorber has α ¼ 101cm�1 and L ¼ 10�1cm.

The relation between α and refractive index is given by Eq. 5.46 where k is an
imaginary term in the complex refractive index

α ¼ 4πk

λ
ð5:47Þ

while λ is the wavelength of the incident light. In the visible region, nominally

transparent materials will typically have α 
 10�5 or α 
 10 cm�1. The absorption

due to k ¼ 0:1 is shown in Fig. 5.23.

Note that in Fig. 5.23 the curve at k ¼ 0:1 corresponds to the absorption that

would be produced by a material with an imaginary refractive index equal to this

value.

As we have mentioned, the optical properties of materials at UV wavelengths

(i.e., typical CO2 at λ¼ 10.6 μm) using the knowledge of electromagnetic radiation

(see Appendix F) with condensed matter can be characterized in terms of a complex

frequency-dependent dielectric constant ε(w) [28]:

ε wð Þ ¼ ε1 wð Þ þ iε2 wð Þ ð5:48Þ

where ε1(w) and ε2(w) are related to the complex refractive, m,as follows:

ε1 wð Þ ¼ n2 � k2 ð5:49Þ
ε2 wð Þ ¼ 2nk ð5:50Þ

with

m ¼ n� ik ð5:51Þ

where n and k are both frequency dependent. Under an ideal vacuum circumstances,

n ¼ 1, and k is zero accordingly. The presence of matter causes both n and k to

deviate from these values. With condensed matter, the density is many times larger

than that of a gas. And deviations of n and k from vacuum values are correspondingly

larger. It is not unusual to haven, k  1over a wide wavelength range in most solids.
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Physically, the dependence of n on wavelength leads to dispersive effects in

optical systems, whereas the absorption at a particular wavelength n is directly

related to k. It can be shown that the real and imaginary terms either in the dielectric

constant or in the refractive index are related through the Kramers–Kronig integrals

[5]. For the dielectric constant ε(w), these are [28]

ε1 wð Þ ¼ 1þ 2

π
P

ð1
0

w1ε2 w1ð Þ
w1ð Þ2 � w2

dw1 ð5:52Þ

ε2 wð Þ ¼ �2w

π
P

ð1
0

ε1w1 � 1

w1ð Þ2 � w2
dw1 ð5:53Þ

where P is the principal part of the integral. These relations show that knowledge of

either ε1 or ε2 over the frequency range 0 < w < 1 provides information on the

value of the other at a specific frequency w. These relationships are often used to

verify the consistency of experimental data for ε1 and ε2.
The absorption of light propagation through a medium is characterized by

refractive indices and is given by Beer–Lambert’s law [8]:

I xð Þ ¼ I0e
�αx ð5:54Þ

where I0 is the intensity at x ¼ 0 and is the intensity after a distance I(x). The
attenuation coefficient

δ�1 ¼ α ¼ 4πk

λ
ð5:55Þ

is found to be directly proportional to the imaginary term in the refractive index. At

UV wavelength, a transparent material would have α 	 1cm�1, whereas strong

absorbers such as semiconductors or metals would have a α ¼ 2� 3ð Þ � 106cm�1.

The characteristic penetration depth (i.e., skin depth δ ¼ α�1) for radiation under

these conditions is then α�1. Note that Eq. 5.53 is valid only under conditions in

which I0 is much less than the intensity at which nonlinear effects may become

significant. This can be shown in the following analysis and more details can be

found in Schriempf report [9] as well. For the examples given, the penetration depth

would be about 300–500 nm (metal) and �1 cm (transparent media). These values

show that surface effects will dominate in the interaction of UV radiation with

metals and many semiconductors. Surface roughness and composition are also

important in determining the coupling of laser radiation to solids [9, 10, 29].

5.3.4.6 Optical Reflectivity

To consider the coupling of the laser energy to a material, we need first to know the

optical reflectivity R and the transmissivity T for light incident on a surface which

divides two semi-infinite media. The transmissivity plus the reflectivity equals

unity at a single surface:
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Rþ T ¼ 1 ð5:56Þ

(See Appendix F for proof.) In most practical situations, we are dealing with more

than one surface; typically, we have a slab of material with light impinging on one

surface. Some light is reflected, and the rest is either absorbed or passes completely

through the slab. In such a situation, we shall describe the net result of all the

reflection, after multiple passes inside the slab and appropriate absorption has been

accounted for, in terms of the reflectance R, the absorptance A, and the transmit-

tance T:

RþAþT ¼ 1 ð5:57Þ

What we really are interested in from the point of view of material response is A,

the absorptance of the material. In most materials of interest from the practical aim

of using lasers to melt, weld, etc., T is zero, and

Rþ A ¼ 1 ð5:58Þ

Schriempf [30] argues how to consider the relationship between R and R.
To understand reflectivity, we must use some general results from the theory of

electromagnetic waves. Let us summarize these briefly at this point. The electric

field of the electromagnetic wave, from the following Eq. 5.58, is

E ¼ Re E0e
�2πkz=λeiω t�nz=cð Þ

h i
ð5:59Þ

This equation is well defined in Appendix F of the book (volume 2). The relation-

ships we need are those among the index of refraction n, the extinction coefficient k,
and the material properties. These relationships can be derived by substituting

Eq. 5.58 in the wave equation:

∂2
E

∂z2
¼ με

∂2
E

∂t2
þ μσ

∂E
∂t

ð5:60aÞ

where

E is the electric field of the radiation

Re stands for the real part of the complex quantity in brackets

E0 is the maximum amplitude

k is the extension coefficient; in vacuum, k ¼ 0

z is the direction in which the wave is propagating

λ is the wavelength
t is time

n is the index of refraction: in a vacuum, n ¼ 1

c is the velocity of light in vacuum

σ is the electric conductivity or conductivity
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μ is the magnetic permeability

ε is the dielectric function
ω is the angular frequency

This results in the following expression known as Eq. 5.60a:

2πk

λ
þ iωn

c

� �2

¼ με �ω2
� �þ iωμσ ð5:60bÞ

Note that Schriempf [9] is using rationalized MKS units throughout. The material

properties enter through μ, ε, and σ, which are the magnetic permeability, the

dielectric function, and the electric conductivity of the medium. Using the usual

equations between the field vectors as follows (see Appendix F and Eq. F.42 as

well),

~D ¼ ε~E

~B ¼ μ~H

~J ¼ σ~E

8>><>>: ð5:61Þ

Plugging the following assumption in Eq. 5.60b, we get and the results final result

into Eq. 5.60a along with some algebra work, we obtain Eq. 5.63:

ε ¼ Keε0

μ ¼ Kmμ0

(
ð5:62Þ

k þ inð Þ2 ¼ �KeKmε0μ0c
2 þ iKmμ0σ

c2

ω
ð5:63Þ

where

ε0 is the electric permittivity of vacuum

μ0 is the magnetic permeability of vacuum

Ke is the dielectric constant of metal

Km is the magnetic permeability of metal

Finally, if we introduce c2 ¼ ε0μ0ð Þ�1
and some more algebra, we have

n� ik ¼ ffiffiffiffiffiffiffi
Km

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ke � i

σ

ε0ω

r
ð5:64Þ

This equation relates the material parameters Km, Ke, and σ, which in general may

be complex, to the index of refraction n and extinction coefficient k. To describe the
propagation of the light wave thus requires a knowledge of Ke, Km, and a. Before we

describe these, let us look at two more general properties of our propagating

electromagnetic wave.
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The first of these is absorption. If the medium is absorbing, the intensity will fall

off to 1/e of its initial value in a distance δ, obtained by setting E2 of Eq. 5.58 equal

to (1/e)E2
max, or

4πkδ

λ
¼ 1

δ ¼ λ

4πk

8>><>>: ð5:65Þ

From this equation we can see why k is called the extinction coefficient, for it
determines the skin depth δ. Equation 5.64 is fairly general in that once k is known,
δ can be calculated, providing that knowledge of the material of interest or target

material properties is required to calculate k. Some information is discussed in

Chap. 6 on how to measure these issues experimentally, and more can be found in a

report by Joseph S. Accetta and David N. Loomis [31].

Schriempf [30] is deriving the second general property which we present here

and is the expression for reflectivity, in terms of n and k again.
To do this, consider light impinging normally onto an ideal solid surface, as

shown in Fig. 5.24. Here we have illustrated the incident Ei, reflected Er, and

transmitted Et electric waves at a vacuum–material interface. For the present, we

limit our discussion to the case of normal incidence. We now consider the boundary

condition. We have for the electric field

Ei þ Er ¼ Et ð5:66Þ

For the magnetic field ~B, we write

Bi � Br ¼ Bt ð5:67Þ

The minus sign is before Br because ~E� ~B is positive in the direction of propaga-

tion of the wave. Now, the relationship between ~B and ~E, or, since ~B ¼ μ~H,

MEDIUM 2MEDIUM 1

Ei

Er

Et

Fig. 5.24 Normal incident,

transmitted, and reflected

electric vectors at an

interface
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between ~H and ~E, is required in order to proceed further. This follows directly from
Maxwell’s equations (see Appendix F):

∇� ~E ¼ �μ
∂~H

∂t
ð5:68Þ

∇� ~H ¼ σ~E þ ε
∂~E
∂t

ð5:69Þ

It is convenient to rewrite Eq. 5.58 and introduceωλ ¼ 2πc, to have ~E, explicitly in

terms of ω instead of both ω and λ. Recall that ~E is a vector, and take it as being

along the x-direction. Thus

Ex ¼ E0e
iωte�

iω
c z n�ikð Þ ð5:70Þ

Here we have dropped the “Re” notation and shall simply note that we always mean

the real part when we write the wave in exponential form. We shall use unit vectors

~̂x and ~̂y .
Now the curl expressions (see Appendix B on vector analysis) reduce to

∇� ~E¼~̂y ∂Ex

∂z

which with Eq. 5.67 tells us that ~H has a y component:

∇� ~E¼~̂y ∂Ex

∂z
ð5:71Þ

Thus Eqs. 5.67 and 5.68 become

∂Ex

∂z
¼ �μ

∂Hy

∂t
ð5:72Þ

�∂Hy

∂z
¼ σEx þ ε

∂Ex

∂t
ð5:73Þ

and, of course, Ey ¼ Ez ¼ Hx ¼ Hz ¼ 0. Put the expression for Ex from Eq. 5.69

into 5.71 to find that

Hy ¼ n� ik

μc
E0e

�iω
c z n�ikð Þeiωt
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This is the desired relationship:

Hy ¼ n� ik

μc

� �
Ex ð5:74Þ

At this point we note in passing that Eq. 5.72 or 5.60a could be used to yield the

relationship of n and k to μ, ε, and σ. If the reader is unfamiliar with these

relationships, it is instructive to carry out the algebra. Returning to our consider-

ation of the reflected electric and magnetic fields, we rewrite Eqs. 5.65 and 5.66

with the help of the relationship between ~H and ~E, from Eq. 5.73:

Ei þ Er ¼ Et

and

μ1Hi � μ1Hr ¼ μ2Ht

becomes

Ei � Er ¼ n2 � ik2
n2 � ik1

� �
Et

Solve for Er/Ei by eliminating Et:

Er

Ei

¼ n1 � n2 � i k1 � k2ð Þ
n1 þ n2 � i k1 þ k2ð Þ

Finally, the reflectivity R at the surface is

R ¼ Er

Ei

���� ����2 ¼ n1 � n2ð Þ2 þ k1 � k2ð Þ2
n1 þ n2ð Þ2 þ k1 þ k2ð Þ2 ð5:75Þ

Take medium 1 as a vacuum and drop the subscript 2. This gives, since in a vacuum

n1 ¼ 1 and k1 ¼ 0,

R ¼ n1 � 1ð Þ2 þ k2

n1 þ 1ð Þ2 þ k2
ð5:76Þ

Equation 5.75 is the second relationship we will find useful in discussing the

coupling of optical relationship with metals. Note that it is derived for the special

case of normal incidence and is applicable to a vacuum–material interface.
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5.4 Effects Caused by Absorption of Laser Radiation
at the Surface

Effects produced by a high-power laser beam focusing and absorbed by an opaque

target surface are raising very interesting phenomena. The most spectacular effects

involve a change of phase of the absorbing material such as the luminous cloud of

vaporized material blasted from the metallic surface and often accompanied by a

shower of sparks. The irradiance in the focal spot can lead to rapid local heating,

intense evaporation, and degradation of the material. The most attractive feature of

laser excitation is its capability to probe insulator within the focal spot and

depositing heat energy into it. The most common mechanism of laser desorption

is a thermally activated process induced by surface heating of the sample or surface

of the target at the focal point. In this regime the amount of material transport across

the surface is negligible (Fig. 5.25a). Laser heating of the solid surface and induced

plume leads to the generation of different chemical species. Protonation and

alkalinization reactions are often the source of the most characteristic species in

the ion cloud [22]. Increasing the energy deposition into the sample, the surface

temperature reaches a point where material transfer across the surface becomes

significant (Fig. 5.25b).

The initial process in the conversion of high-power laser radiation to heat during

irradiation involves the excitation of electrons to states of high energy. This is

basically a simple conversion of optical energy of the beam into thermal energy in

the material. This is the base of many laser applications including its weapon

application as directed energy weapons. We shall summarize here this thermal

response through its basic classical heat-flow problem and solving heat diffusion

equation under different conditions.

Before we go further into this matter, we have to understand basic optical energy

from atomic physics point of view and to understand how the principle of laser

works. More correctly described a laser is a device for producing light that is almost

a b
target

surface
target

surface

plasma

erosion

mass transfer
momentum transfer
energy transfer

laser
light

laser
light

desorption

energy transfer

Fig. 5.25 Different regimes of laser–target interaction under the vacuum. In laser desorption (a)
material transport across the surface is negligible. Laser volatilization (b) is characterized by

considerable transport of mass, momentum, and energy and occasional plasma formation [32]
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totally coherent. It works in principle like this: an atom emits a photon of light when

it decays from an excited energy state to a lower state; the difference in energy

between the two states ΔE determines frequency v according to

ΔE ¼ hv ð5:77Þ

where h is Planck’s constant. This is illustrated in Fig. 5.26. This is the case for any
light source, whether laser, flame, incandescent body, etc. In the conventional light

source, atoms emit photons in a random, sporadic manner and spontaneously decay

to lower states when excited by heat or electric current. In a laser, on the other hand,

the photons are emitted in the phase, and the electromagnetic radiation thus

produced is, more or less, simply a propagating sinusoidal radiation field that can

be described on a macroscopic level by Eq. 5.58 and further on by Maxwell’s set of

equations as described in above sections.

For this process to occur, vacant states have to be available to accept excited

electrons. When the photon energy hv is small, as, for example, when 10.6-μm laser

radiation is absorbed, only electrons within a narrow range hv near the Fermi

energy, εF, can participate in absorption. At 0 K, the highest energy reached upon

absorption is εF þ hv.
At higher temperature, electrons occupy a range of states given by the Fermi–

Dirac distribution. This reduces to a Boltzmann function for electron energies ε
such that ε� εF  kT, where T is the metal temperature. Absorption of photons

then populates those states with energy εF þ hv. Since there are usually several

electron volts, whereas hv ¼ 0:117 eV for CO2 laser photons, absorption of IR laser

radiation then acts to distribute electrons among states close to those on the Fermi

surface.

Fermi Energy

The Fermi energy is a concept in quantum mechanics usually referring to the

energy of the highest occupied quantum state in a system of fermions at

absolute zero temperature.

(continued)

E3

E2

E1

ΔE h n

Fig. 5.26 Energy levels
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The Fermi energy εF of a system of non-interacting fermions is the

increase in the ground-state energy when exactly one particle is added to

the system. It can also be interpreted as the maximum energy of individual

fermions in this ground state.

Fermi Energy for Metal

As we defined above, the Fermi energy is the maximum energy that occupied

an electron at 0 K. By the Pauli exclusion principle, we know that electrons

will fill all available energy levels, and the top of that “Fermi sea” of electrons

is called the Fermi energy or Fermi level. The conduction electron population

for a metal is calculated by multiplying the density electron state ρ(ε) times

the Fermi–Dirac function fFD(ε). The number of conduction electrons permits

volume per unit energy:

dn

dε
¼ ρ εð Þf FD εð Þ ¼ 8

ffiffiffi
2

p
πm3=2

h3
ffiffiffi
ε

p
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Electron Density of

state

1

e ε�εFð Þ=kT þ 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Fermi-Dirac

distribution function

The total population of conduction electrons per unit volume can be obtained

by integrating this expression:

n ¼
ð1
0

ρ εð Þf FD εð Þdε ¼ 8
ffiffiffi
2

p
πm3=2

h3

ð1
0

ffiffiffi
ε

p
e ε�εFð Þ=kT þ 1

dε

At 0 K the top of the electron energy distribution is defined as εF so the

integral becomes

εF ¼ hcð Þ2
8mc2

 !
3

π

� �2=3

n2=3

For example, if we consider the element of Au having Fermi energy 5.53 eV,

then the free-electron density is n ’ 0:5906466� 1029 electron=m3.

This situation is different at excimer laser wavelength, since hv is then compa-

rable to or larger than the work function, φ, of many metals. When hv > φ,
electrons may be directly excited from states near the Fermi surface to continuum

states associated with the ejection of an electron from the metal. These electrons

will originate from levels within the skin depth δ. Those electrons that are not

ejected will dissipate their excess energy as heat within the skin depth. Photoelec-

trons, as they leave the surface with kinetic energy about hvþ kT � φ, will cool the
surface [28].
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Figure 5.27 shows a plot of photoelectron current density versus laser intensity

for 248-nm KrF laser radiation incidents on several metals.

The transfer of energy from the electron gas to the metal to produce local heating

and macroscopic thermal effects results from scattering of electrons by photons and

defects.

In order to study pulsed laser heating and evaporation of solids, we constructed a

one-dimensional model consisting of two parts: the first dealt with the heating and

melting of the target and predicted the temperature, density, and flow velocity of the

particles emerging on the liquid–vapor interface, whereas the second followed the

expansion of the plume expelled from the surface. In the following sections, we

present the framework of the calculations.

The distribution of this heat in response to a radiative source with defined spatial

and temporal properties can then be calculated using the heat equation as follows:

∇2T ~r; tð Þ � 1

κ

∂T ~r; tð Þ
∂t

¼ �A ~r; tð Þ
K

ð5:78Þ

where

κ is the thermal diffusivity (cm�2 s�1) in MKS units

K is the thermal conductivity (W/cm/�C) in MKS units

In the above equation, A ~r; tð Þ is the position-dependent rate of heat production
per unit time per unit volume (W/cm3). Equation 5.77 assumes that K and κ are

independent of temperature and do not vary across the metallic surface of the target.
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Fig. 5.27 Quantum efficiencies for photoelectron emission from various metals subjected to

248-nm KrF laser radiation [33]
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As we discussed in Sect. 5.3.4.5 and Eq. 5.54, the deposition of heat under laser

irradiation of opaque surface occurs over a depth (i.e., skin depth δ ¼ α�1) defined

by the single-photon absorption coefficient α cm�1. In metals, at optical frequencies

this dimension is typically about 10�6 cm. Since α�1 is usually much smaller than

the lateral spatial extent of focused excimer beam, the heat conduction equation

(Eq. 5.77) can be linearized. Then in one-dimensional space, we can reduce it to the

following form:

∂2
T z; tð Þ
∂z2

� 1

κ

∂T z; tð Þ
∂t

¼ �A z; tð Þ
K

ð5:79Þ

where z is a coordinate extending from the sample surface into the material.

Because A(z, t) is a volume heat source, it must be evaluated over some incremental

length Δz local at z. Assuming a homogeneous absorbing medium at the target

surface, we can write

A z; tð Þ ¼ 1� Rð ÞI0 tð Þαe�αz ð5:80Þ

where R is the surface reflectivity and I0(t) is the time-dependent laser intensity

incident at the surface. Thenð1
0

A z; tð Þdz ¼ 1� Rð ÞI0 tð Þ ð5:81Þ

Substitution of Eq. 5.80 into 5.78 results in the following equation:

∂2
T z; tð Þ
∂z2

� 1

κ

∂T z; tð Þ
∂t

¼ � 1� R

K
I0 tð Þαe�αz ð5:82Þ

Equation 5.81 then describes the solution for the temperature profile produced

inside a semi-infinite half-space exposed to a uniform surface heat irradiation by

laser beam source of 1� Rð ÞI0 tð Þ distributed as e�αz ¼ exp �αzð Þwith depth known
as the skin depth defined in the previous sections of this chapter.

The solution for the heat transfer Eq. 5.81 can be expressed in analytical form

only when the system possesses certain symmetrical boundary conditions. When

this is not the case, the heat transfer equation can be solved numerically. Detailed

analysis of almost any practical laser heating problem requires that a numerical

approach be adopted in particular for DEW application. However, as considerable

physical insight into laser heating mechanisms can often be obtained from approx-

imate solutions expressed in analytical form, available analytical solutions are

summarized in this section.

These solutions, together with relevant boundary conditions, are shown

presented by Duly [7]. While this does not represent a complete set of possible

solutions, the examples shown have been chosen to be representative of boundary
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conditions most often encountered in laser drilling. Further examples and discus-

sion can be found elsewhere (Carslaw and Jaeger [6], Ready [19], and Duley [7]).

One form of these solutions is demonstrated in Sect. 5.4.1 below.

5.4.1 Heating Without Phase Change

In time of the duration of a laser pulse or irradiation, the electrons which absorb the

photon will make many collisions, both among themselves and with lattice pho-

nons. The energy absorbed by an electron will be distributed and passed onto the

lattice. We can therefore regard the optical energy as being instantaneously turned

into heat at the point at which the light was absorbed. The distribution occurs so

rapidly on the time scale of Q-switched and normal laser pulses that we can regard a

local equilibrium as established rapidly during the pulse. Therefore, the concept of

temperature will be valid, and we are allowed to apply the usual equations for heat

flow such as Eq. 5.81.

In the case that absorption coefficient α is relatively small and we are interested

in the temperature at depth z of the order skin depth δ ¼ 1=α, the solution is

given by Eq. 5.82 below. The assumption is that the temporal pulse shape is flat

(i.e.,A tð Þ ¼ A0 ¼ constant for t � 0) and A0 being the incident intensity or beam flux
with dimension (W/cm2 or J/cm2 s). Under these conditions, in a material of thermal

conductivity K and thermal diffusivity κ, the solution to the heat-flow Eq. 5.81 (the

solution for this equation can be found using the Laplace transform method

presented in Appendix E of this book) is given by

T z; tð Þ ¼ 2A0=Kð Þ κtð Þ1=2ierfc z=2 κtð Þ1=2
h i

� A0=αKð Þe�αz

þ A0=2αKð Þexp α2κt� αzð Þerfc α κtð Þ2 � z=2 κtð Þ1=2
h i

þ A0=2αKð Þexp α2κtþ αzð Þerfc α κtð Þ2 þ z=2 κtð Þ1=2
h i ð5:83Þ

In this equation, erfc and ierfc denote the complimentary error function and its

integral that are well defined in Appendix E as well.

In the case that the optical absorption coefficient of the absorbing material will

be larger for a typical metals where α is of the order of 105–106 cm�1, then, the

solution is proved in the following form:

T z; tð Þ ¼ 2A0 κtð Þ1=2=K
h i

ierfc z=2 κtð Þ1=2
h i

ð5:84Þ

For the case that large absorption coefficient is under consideration and varying

temporal pulse shape with an infinite uniform spatial is extended, we may obtain the

solution by applying Duhamel’s theorem to Eq. 5.81 and present it as follows:
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T z; tð Þ ¼
ð1
0

ð t
0

A τð Þ
A0

∂
∂t

∂T
0
z
0
, t� τ

� �
∂z0

dz
0
dτ ð5:85Þ

where T0 is the solution of the heat-flow equation for the case of a square pulse of

absorbed flux density A0.

Typical results for a calculated temperature rise as a function of depth, with time

as a parameter, in a copper sample initially at 0 �C, are shown in Fig. 5.28 for the

indicated laser pulse shape.

Further temperature profiles for a laser pulse with a typical shape discussion can

be found in Ready [19].

5.4.2 Heating with Phase Change

When the surface temperature reaches the melting temperature of Tm, a melt region

is formed adjacent to the surface. In the absence of perturbations, this molten

material will propagate into the substrate at a speed υm that is given as following

equation [34]:

υm ¼ εI0
λm þ ρCTm

exp � υΔ
κ

� �
ð5:86Þ
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Fig. 5.28 Calculated temperature rise as a function of depth, with time as a parameter, caused by

absorption of a Q-switched laser pulse in copper [21]
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The geometry of this equation is depicted in Fig. 5.29 below, and λm is the latent

heat of fusion with MKS dimension of (J km3), C is the heat capacity holding the

dimension of (J/g/�C), Δ is the melt thickness, and υm is in cm/s.

W. W. Duley [34] is an excellent discussion about dealing with this aspect of

laser irradiation target and heating with the change of phase. If the liquid melt is not

removed while the melting wave propagates into the solid, the temperature of the

melt rises in response to the continuation of absorption at the melt–vapor interface.

If the incident radiation is of sufficient intensity, then the temperature may rise to

the boiling point, T
v
, or higher. This is accompanied by the onset of a vaporization

wave with a speed when T ¼ T
v
:

υv ¼ εI0
λv þ ρCT

v

ð5:87Þ

where λv is the latent heat of vaporization and all quantities have the same units as

in the case for υm. As I0 increases, υv increases accordingly until it approaches the

speed of sound υs in the material. When υ ! υs, then the equation for υ is written as
follows:

υ ¼ υsexp
�λZ

ρNAkBTv

� �
ð5:88Þ

where

Z is the atomic number of material

NA is the Avogadro number

kB is the Boltzmann constant

Since υ is not dependent on I0 in this regime, the speed of the vaporization

rate saturates at high flux levels [34]. For most metals this saturation occurs when
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Fig. 5.29 Geometry of melt region on the surface of semi-infinite region heated uniformly over its

surface
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υ 
 105 � 106 cms�1 and I0 � 108 Wcm�2. Note that vaporization rates of this

magnitude can be sustained only for short period of time, i.e., pulsed laser beam

excitation [34]. Further discussion can be found in Carslaw and Jaeger [6], Ready

[19], and Duley [7].

5.4.3 Melt-Through of a Metal Plate

Increasing the energy deposition into the sample target, it causes the surface

temperature to reach a point where material transfer across the surface becomes

significant (see Fig. 5.25b). Experimental observations by various researches show

that target erosion appears in the form of craters. In theoretical terms it means that

the energy balance equation has to be supplemented by the balance equations for

mass and momentum phenomena. The flow, the heating, and the expansion of

evaporated target material are governed by the equation of hydrodynamic. Solving

the coupled partial differential equations of the conservation law provides insight

into the factors determining crater depth, cloud extension, ion yield, relative

sensitivity factors, and ion kinetic energy distributions. Calculated and measured

values of these quantities show promising correlations for different kinds of lasers

and different types of materials [35–37].

The depth of melting can be determined as a function of laser parameters (energy

density and pulse duration in the case of pulsed laser and engagement or dual time

for continuous laser beam).

Mathematical analysis and calculation are done by different researchers, and few

that are recommended for further study are by Carslaw, H. S. and J. C. Jaeger [6],

A. V. Luikov [4], and M. N. Ozisik [38].

The problem of heat conduction involving melting or solidification is compli-

cated because the interface between the solid and liquid phase moves as latent heat

is absorbed or librated at the surface, and under these types of regime, all the

boundary conditions associated with such heat-flow problem more or less should be

treated as Lagrangian rather than Eulerian types.

In fluid dynamics and finite deformation plasticity, the Lagrangian specifi-

cation of the flow field is a way of looking at fluid motion where the observer

follows an individual fluid parcel as it moves through space and time. Plotting

the position of an individual parcel through time gives the path line of the

parcel. This can be visualized as sitting in a boat and drifting down a river.

The Eulerian specification of the flow field is a way of looking at fluid

motion that focuses on specific locations in the space through which the fluid

flows as time passes. This can be visualized by sitting on the bank of a river

and watching the water pass the fixed location.

(continued)
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The Lagrangian and Eulerian specifications of the flow field are sometimes

loosely denoted as the Lagrangian and Eulerian frame of reference. However,

in general both the Lagrangian and Eulerian specification of the flow field can

be applied in any observer’s frame of reference and in any coordinate system

used within the chosen frame of reference.

In such condition the location of the moving interface is not known a priori, and

the thermal properties of solid and liquid are different. Ozisik [38] is handing

solution of heat transfer flow equation at the moving interface including problems

involving ablation. He also analyzes cases for a semi-infinite region with variable
surface heat flux as well as constant surface temperature at x¼ 0. His approaches

also deal with problems involving temperature-dependent thermal properties of

target surface materials as well as time dependence.

5.4.3.1 Vaporization of a Target

Vaporization is very easy to produce with lasers. Vaporization by a high-power

laser beam is a striking phenomenon. There is a shower of sparks characteristic of

molten material expelled along with the vaporization. Induced plasma due to

vaporization has its own implication on laser beam being absorbed by the surface

of the target. This situation is to some degree has been discussed in Sect. 5.3.4.3

under the title of Absorption of Laser Radiation by Metals.

In the case utilizing laser as DEWs (directed energy weapons), vaporization of

the target is not much of concern. By the time this phase is met, we are way beyond

the target assigned mission in order to have any impact. Hopefully the incoming

threat has lost all its momentum and path during the melting phase. But for those

readers that are interested in studying this aspect of laser irradiation target, lots of

literature and references are provided by different researchers including few that

have been mentioned during the course of this chapter, and we recommend them to

those types of readers.
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Chapter 6

High-Energy Laser Beam Weapons

In this section, we talk about beam weapons and their applications as directed

energy weapons. The origin of laser technology dated back to a prediction made in

1916 by Albert Einstein where he suggested that an atom or molecule could be

stimulated to emit light of a particular wavelength when light of that wavelength

reached it, a phenomenon called stimulated emission. It had already been recog-

nized that atoms and molecules emit and absorb light spontaneously, without

outside intervention. In 1928, R. Ladenburg showed that Einstein’s prediction

was right. At that time, stimulated emission seemed to be a very rare occurrence

that was inevitably overwhelmed by spontaneous emission. It would be many years

before physicist learned how to create the right conditions to make practical use of

stimulated emission in lasers, the physics of which we know today. The 1970s saw a

series of breakthroughs that rekindled military interest in high-energy laser weap-

onry. These developments were centered in two areas, carbon dioxide and chemical

lasers, the technology of which are known today. The CO2 laser’s potential for

high-power output was recognized soon after it was first demonstrated by Patel

although technology of gas dynamic laser was invented in 1967. Similar work was

reported at about the same time by a Russian group which may have stimulated

from American research works [1].

6.1 Introduction

Are laser and beam weapons purely defensive weapons that will protect us as if they

were a colossal umbrella? Or are they dangerous and destabilizing new elements in

an accelerated arms race? With the administration considering plans to spend

billions of government and, as a result, tax payers’ dollars on the research and

development of laser and particle beam weapons, the time has arrived to consider

seriously their implication.
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The effectiveness of a defensive weapon system is measured by its ability to

deny the attacking system succession accomplishing its mission. It takes much

more than a powerful beam to make an effective weapon system. The beam must be

aimed and focused through a generally uncooperative atmosphere or over long

distances. It must concentrate high power on a small area long enough to do fatal

damage, a requirement that typically means the beam must follow the target along

its path. Most of the targets envisioned for beam weapons are fast enough that

automatic tracking and identification are needed. In the case of systems for defense

against nuclear attack, there should be a way to verify “kill” from far away.

There are several ways to look at the problems in destroying targets with beam

weapons, and the job is complicated by the very complexities involved. The

problems are best defined for laser weapons, and for that reason in this section,

we concentrated primarily on lasers as directed energy weapons than other beam

weapons such as particle beams or electromagnetic weapons which involve quite

different physics and they have their own sections and are presented from their own

sources. In laser beam weapons, there are several tasks involved, and some of might

have common ground in respect to the other beam weapons, and they are as follows

[2]:

1. Identify the target (which generally will not be sitting stationary by itself on a

target range) and a vulnerable spot on it.

2. Track the target both until the weapon is ready to fire and while it is firing.

3. Point the weapon in the direction of vulnerable spot on the target.

4. Focus the beam so it has the desired intensity (generally the highest possible) at

the target. In case laser beam as normal of incident as possible.

5. Compensate for atmospheric effects (i.e., thermal blooming) that otherwise

would tend to make the beam wander off target or disperse the beam’s energy.

6. Maintain focus of the beam on target during the attack.

7. Make sure that as much as possible the energy in the beam is deposited on the

target, not deflected away from it. Verify that the target has been disabled.

These are all good wishing goals for a good DEW system, many of which are

hard to achieve with the technology of lasers that we are aware of today. In order for

DEW system to achieve such goals, military folks along with system developer’s

lump summing them under target acquisition and fire control. A process that

provides detailed information about targets and locates them with sufficient accu-

racy to permit continued monitoring or target designation and engagement. This

will include target acquisition for both direct and indirect fire weapons as well as for

information operations that can be part of artificial intelligence (AI) system of

DEW platform where the system is hosted and it is coupled with firing control of

weapon as part of its command, control, communication, and intelligence (C
3
I)

overall system.

AI is nothing more than the science and engineering of making intelligent

machines, especially intelligent computer programs. It is related to the similar

task of using computers to understand human intelligence, but AI does not have

to confine itself to methods that are biologically observable. Early target
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discrimination is a very important task for an AI system coupled with DEW

platform to shoot the right target since the total cost of ownership and operating

cost for such DEW system in today’s dollar is not cheap, and the shot from the firing

system of DEW should not be wasted on the wrong target during its engagement. In

this case, Surveillance and Target Acquisition is an important role assigned to AI

units and/or DEW equipment. It involves watching an area to see what changes

(surveillance) and then the acquisition of targets based on that information. So in an

all beam control involves steering the beam and focusing it onto a target, in the

process compensating for atmospheric distortions (i.e., thermal blooming) in case

ground-based laser (GBL), airborne-based laser (ABL) where the beam goes

through some layer of atmosphere. Off course any DEW in the form of space-
based laser (SBL) does not fall into this category unless it is engaging in initial

phase of target boosting from its ground lunching platform.

The emerging body of Reconnaissance, Surveillance, and Targeting Acquisition
(RSTA) resources brings a powerful contribution to battle-space domination.

Diverse RSTA operations occur simultaneously within the battle space—keyed to

support a range of users from decision makers to “shooters.” In addition to

collecting information that develops situational awareness, RSTA assets contribute

too many battle-space activities: intelligence preparation of the battle space, indi-

cations and warning, situation development, force protection, battle damage assess-

ment, and targeting and collection queuing. Given this multidimensional capability,

it is no longer desirable to relegate RSTA assets solely to the realm of intelligence

collection management. The command and control of finite, high-value RSTA

resources is ultimately the commander’s responsibility.

Surveillance and Target Acquisition is a military role assigned to units and/or

their equipment. It involves watching an area to see what changes (surveillance)

and then the acquisition of targets based on that information.

Fire control in conjunction with an RSTA system is the aiming and firing of the

weapon, a task which includes identifying and tracking targets and providing

information which the beam control system can use to point the beam (AI) and

triggering shots from the weapon, spotting vulnerable points on the target, and

making sure that target is crippled or destroyed.

Beam control is unique to directed energy weapons, but fire control is a well-

established military technology that is used in many kinds of weapon systems.

Interestingly, the fire control systems used with many modern missiles and “smart”

bombs incorporate low-power lasers to mark potential targets with a laser spot that

can be detected by a sensor in the bomb or missile. Low-power lasers can also

measure the distance to a target to aid artillery fire control system in pointing

weapons. But although fire control equipment is used widely in conventional

weapons and battlefield of today, directed energy weapons would demand more

than current equipment and existing technology that can deliver. Indeed, many

observers believe that beam and fire control are much more difficult problems than

building a big laser. The difficulties arise because of the very demanding missions

envisioned for beam weapons.
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One of driving factor for designing a good fire control system for DEW is the

mission requirements assigned to such weapon system. The different missions

proposed for target engagement of beam weapons impose distinct requirements

for each of these missions and as a result on beam and its fire control system as well

as RSTA couple with DEW platform. In general, the mission can be roughly

divided into two categories that are known by early definition of strategic defense

intuitive (SDI) threats. The two groups are:

1. Endoatmospheric threats and target engagement within the atmosphere

2. Exoatmospheric threats and target engagement within the outer space, where

there is no air to deal with such as thermal blooming and beam divergence

effects or encountering particles in the air

Although some proposed systems fall into a hazy intermediate category because

they require sending a laser beam up from the ground into the space or look down

and shoot down from space in boost phase of incoming threat such as continental

ballistic missile.

Directed energy weapons intended for use in the atmosphere typically have

tactical missions on or above the battlefield. That means that they must be able to

function over ranges measured in miles or kilometers. For all practical purposes, a

beam traveling at or near the speed of light can reach such a target instantaneously.

However, the atmosphere can bend, distort, or break up the beam, and sophisticated

compensation techniques are needed to concentrate the beam energy onto the right

point of the target. Many missions, such as defense of a battleship against an

onslaught of cruise missiles, would probably require extremely fast response to

engage and zap many targets before they could reach the designated target of their

mission (i.e., ships). Speed might not be as critical in some other missions, such as

destroying comparatively slow-moving helicopters, but in most cases, the system

would have to pinpoint enemy targets in a field that included friendly forces.

Typical targets would require concentration of enough power at a critical point to

physically disable them, but in some cases, much lower powers would be sufficient

to blind a sensor and thereby disable the target without any damage to friendly force

[i.e., bidirectional reflectance distribution function (BRDF)] effects (see Chap. 2 on
Laser Safety) [2].

Ground- and air-based anti-satellite (ASAT) weapons present rather different

design constraints. Their range would be hundreds or perhaps thousands of kilo-

meters or miles, depending on the orbit of the target satellite. Moderate powers

reaching the satellite should be sufficient if the goal was to blind sensors or disable

vulnerable sensing systems or electronics, probably the most effective way to kill

current satellites. Seen from the ground, satellites would be slow-moving targets.

Some compensation for atmospheric effects (i.e., thermal blooming) might be

needed, but the task would be easier than if high powers had to be delivered to a

small point on the target.

Considering that if we divide the target acquisition and engagement into three

stages—(1) initial course or boost phase (endoatmospheric scenario), (2) -

mid-course phase for incoming ballistic missile (exoatmospheric scenario), and
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(3) final course (endoatmospheric scenario)—then defending the country against a

nuclear attack requires a different system and would have a very different set of

requirements. In an all-out attack, hundreds of targets would simultaneously appear

thousands of kilometers or miles away, and the weapon system would have to go

after them as rapidly as possible at that distance. Except for X-ray lasers, any

weapon system would have to destroy a series of many targets in succession. The

degree of devastation caused by a nuclear bomb would make it important to kill as

many targets as possible (ideally all of them) and to know which ones were not

disabled so other weapons could shoot at them. If the lasers were in space, there

would be no need to worry about atmospheric effects at all. If the lasers were on the

ground, transmitting their beams to “battle mirrors” in space, compensation for

atmospheric effects could be performed both by the optics on the laser and by the

large mirrors in space, which together would form the beam control system.

Additional differences come from the nature of the weapon itself. It takes

different techniques to direct beams of visible light, X-rays, charged particles,

uncharged particles, and microwaves. Fire control techniques for such weapons

would be more closely related to each other, although there would be some notable

differences. Our focus in this chapter is based on the high-energy laser weapon

system. The different ways in which other types of beams would be controlled will

be covered in Chap. 7 and 8 of this book, which describes the principal directed

energy alternative to lasers in more details.

6.2 Directed Energy Weapons Engagements

Target engagements with directed energy weapons (DEWs) are very likely to be

considerably different from conventional engagements with kinetic weapons. They

will demand a much more detailed knowledge of the specific target engaged, and it

will be harder to perform damage assessment during and after the engagement.

First, the target knowledge required for a DEW engagement will most likely be

significantly different and much more detailed than that required for a kinetic

engagement. The variation in effectiveness of DEWs against multiple target sets

is likely to be quite large. It is not likely that weapon developers can produce

devices that will be as universally effective as typical kinetic weapons. It will be

important for DEWs to be employed against specific components in most targets,

and those components need to be identified prior to the engagements.

Second, our ability to perform damage assessment after a DEW engagement is

likely to be significantly different than currently used methods. Physical damage

may not be easily observable. Anomalous behavior may be the only clue to a

directed energy weapon’s effectiveness on a specific target. A simple example

would be that of an air-to-air engagement. With a kinetic weapon, an attack on an

aircraft will be recognized as successful if the aircraft bursts into flames or it dives

uncontrollably toward the Earth. Both observations will indicate a successful kill.

With a DEW system, the attack may never produce a physical change in the target
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that is observable, only the uncontrolled behavior of diving toward the Earth would

indicate a successful kill. Attacks on ballistic missiles in the boost phase may well

produce easily observed explosions as well as anomalous behavior as a result of

irradiation.

The details of how these two factors are handled will vary with the type of DEW,

whether it is a laser device, a high-power microwave device, or a particle beam

device.

Consider first the laser weapon. Any laser system is likely to be fairly expensive,

though it may have a low cost per target engagement. Therefore it will be desirable

for the laser system to be able to engage targets outside of their kinetic kill range. It

should be fairly easy for a laser to do this, and it is one of the advantages of this type

of DEW that it will have a long range of effectiveness by conventional standards.

Consider the following table for the potential spot sizes generated by laser

weapons operating at 1.0 and 10.0 μm with diffraction-limited beams.

Range Spot size radius at 1.0 m Spot size radius at 10.0 m

100 m 0.1 mm 1.0 mm

1 km 1.0 mm 10.0 mm

10 km 1.0 cm 10.0 cm

100 km 10.0 cm 100.0 cm

1000 km 1.0 m 10.0 m

10000 km 10.0 m 100.0 m

Of course optics will never be perfect, and the atmosphere (thermal blooming

effects, etc. in case of laser beam weapons) will perturb the beam significantly, but

it would appear that engagements out to 1–10 km are possible.

At these ranges, a typical radar return is probably not adequate to locate a target

accurately enough to commit to firing. Therefore a tracking laser of some sort will

be required to accurately locate the target and aim the high-power laser. The

tracking laser will also be required to image the target as the spot sizes at these

ranges are small enough that a specific aimpoint on a target can be selected to

maximize the beams effect. For this to be accomplished, a reasonably detailed

knowledge of the target geometry must be available. Boresighting the tracking laser

and the high-power laser will require great precision. For actual laser weapon

systems, the acquisition, pointing and tracking challenges are at least as great as

the beam generation challenges.

To get a feel for the issues involved, it is probably useful to discuss the actual

successful target engagements accomplished by the Airborne Laser Laboratory

(ALL) in 1983 [1]. The ALL used a 10.6-μm laser to engage two targets, an

AIM-9B Sidewinder missile and a BQM-34A Aerobe drone in separate test series.

The AIM-9B test series addressed the aircraft self-defense scenario against an air-

to-air missile. The BQM-34A test series addressed the fleet defense scenario against

a cruise missile.

The first two AIM-9B engagements started at approximately 3-km range and had

beam on times of 4.8 and 3.8 s. The beam spot sizes were estimated to be less than
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10 cm in radius. In both engagements, the tracking laser acquired the missile and

aimed the high-power laser so as to hit the missile. The returned glint off the body

of the missile allowed the beam to be walked forward to the nose section containing

the tracker head of the missile guidance system. The beam then dwelled on the

tracker head resulting in burn through of the nose dome. The actual burn through

took less than a second. When the tracker head failed, the missile veered off course

and crashed into the ground. The entire engagement was observed on the tracking

screen in the ALL fire control center. The engagement was computer controlled as

the response times and tracking maneuvers exceeded any human capability. Kill

confirmation occurred when the missile veered off course. However, the AIM-9B

was instrumented in such a fashion that burn through of the nose dome and failure

of its tracking mechanism were transmitted to an instrumentation aircraft following

the ALL to confirm the effects of the laser irradiation. Still there were no visible

indications of missile kill comparable to a kinetic kill and subsequent explosion of

the missile.

So for the third engagement, a small spotting charge was rigged to a break-wire

in the nose of the missile. It would explode if the wire burned through due to laser

irradiation. This time the scanning, movement of the beam to the nose of the

missile, and burn through of the dome took 2.4 s, and the missile exploded with a

puff of white smoke. This provided an additional confirmation of missile kill

suitable for publication in the press but of no consequence for system validation.

The fourth and fifth engagements required 3.6 s and 3.1 s, respectively, to observe

the AIM-9B’s fatal veering off course and crash.

The engagements were successful because the computer on the ALL had enough

information on the return from the AIM-9B’s to know the most likely strongest glint

return from the Sidewinders body and the offset from this point to the nose dome of

the missile. The engagements could also be terminated with a reasonable beam on

time because the veering off course was a clear indication that the missile’s

guidance system had failed. All tracking was accomplished by computer, and no

visible laser beam was ever observed. The engagements were significantly different

than conventional engagements, but just as successful in terms of destroying the

target as kinetic kills would have been.

For the engagements of the BQM-34A, an aimpoint just forward of the wing root

was chosen to install a stainless steel tank to simulate a fuel tank on a cruise missile.

The glint from the nose of the drone was used as the reference point for tracking,

and the aimpoint was offset from that reference. On the first ALL engagement, the

laser hit the tank and dwelled long enough to detonate some fuel within the tank, but

the explosion was not strong enough to destroy the drone. The drone ran out of fuel

and crashed into the ocean. In the second ALL engagement, the beam control

allowed the beam to shift off the fuel tank and drift down to the wing root. This

drone was recovered from the ocean and had obvious damage to the wing root. But

the damage was not enough to cause the drone to veer out of control and destroy

itself. (One could draw an analogy to the vehicle being hit by small firearms and not

being destroyed.) On the third ALL engagement, the aimpoint was shifted from the

fuel tank to the area of the fuselage containing the flight control system, slightly
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behind the wing. At a range of 1.8 km, the ALL placed the beam on the surface

above the flight control box. Almost immediately the flight control signals being

telemetered to the tracking aircraft were disrupted. The drone rocked rapidly back

and forth, and then it took a hard 90� roll to the right and dove into the water. Once
again kill confirmation was obtained by anomalous behavior of the target.

Based on these two sets of kills by an engineered high-power laser system, future

systems will require:

1. Detailed target knowledge, if the target is larger than a few tens of centimeters

2. Computer-controlled tracking utilizing multiple lasers and recognition of laser

return signals from a spatially diverse target

3. Kill confirmation by anomalous target behavior

These requirements appear achievable, but they are somewhat different than

kinetic system requirements.

Not all laser engagements are anticipated to occur against aircraft or missile

targets. Engagement of ballistic targets is not likely to give indications that would

be useful for kill confirmation. If a kill cannot be easily confirmed, then it becomes

difficult to determine when to terminate dwell time on the target. Engagement of

fixed targets on the ground suffers from a similar lack of kill confirmation

mechanism.

High-power microwave (HPM) weapons or electromagnetic pulse weapons

suffer from the same difficulties to some extent. Aiming an HPM weapon is

much easier than a laser because the radiation is far less collimated and in many

cases may almost be isotropic. This however presents a major limitation to employ-

ment, as the device must get much closer to its target before emitting. It also

presents problems of “suicide” or “fratricide” to the weapons delivery system or

systems.

When it comes to target knowledge for an HPM system, there are classically two

types of effects or couplings into the target. In front door coupling, the attacking

system uses an antenna that is tuned for a specific frequency or range of frequencies

to overpower the receiver of the target. This is usually a solvable problem and the

power on target can be estimated. However, front door coupling is only useful

against systems having a receiving antenna that is accessible and necessary for its

continued operation. This applies primarily to communication systems.

In back door coupling, the attacking system attempts to couple into the target

through some method that is out of band and/or does not come in through an

antenna. This is a much more difficult problem and pretty much not capable of

being solved by analysis. Simply put, an attacker must have available samples of

systems that will be attacked and be able to test for the effects desired prior to

carrying out an attack. There are many ways that an electromagnetic signal can

couple into a circuit inside a porous body, but accurate analysis is extremely

difficult to perform from first principles. Shielding against inadvertent entry of

electromagnetic signals can be accomplished, and systems can be hardened to the

effects of HPM, but maintaining such shielding is difficult and probably not very
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cost-effective. To validate that an attacker has a high probability of success against

a particular system, many tests are required.

Finally, electromagnetic kills or upsets are very difficult to verify. If a commu-

nication or radar system is attacked, its failure to operate can be observed electro-

magnetically. Beyond that, confirmation of electromagnetic damage effects is very

difficult. It is very likely that the success of such devices will have to be estimated

based on lots of tests and certain risks accepted. Future research may develop active

interrogation schemes that can assess the effects of an HPM attack, but there are

few such interrogation schemes currently available.

Particle beams are the least developed of DEWs, and no known system test to

determine operating parameters for a successful kill has been determined. It is

highly likely that a similar level of target information will be required for the

employment of particle beams as is required for high-power lasers. Since particle

beams do penetrate their targets, the interior designs may be necessary to identify

aiming points and kill mechanisms. The effects of particle beams are better defined

on a geometric configuration of materials than electromagnetic waves, and many

effects can be calculated from first principles if the materials and geometries are

known.

Both electron beams and proton beams will produce a target return of electro-

magnetic radiation in the form of X-rays and gamma rays. Protons will also produce

a return of neutrons. The intensity of these returns will vary with the target that is

intercepted. Relative or spectral intensities may also provide some information on

target materials. Whether these will be adequate for steering an invisible beam in

space remains to be seen. Certainly lasers can be used to assist in the pointing and

tracking problem.

A successful kill of a ballistic warhead by a particle beam will be difficult to

identify unless enough energy is deposited to cause the target to self-explode. This

may require a prohibitive amount of energy in the beam. If the goal is an electronic

kill, any method developed for determining electronic kills for HPM weapons will

be useful. Kills of aircraft or maneuvering systems in the atmosphere will be

identified by the same anomalous behavior as has been identified for high-power

lasers.

6.2.1 Acquisition, Tracking, Pointing, and Fire Control

Directing the laser energy from the optics to the target requires a highly accurate

acquisition, tracking, pointing, and fire control system. A laser weapon system,

either space based or ground based, needs to locate the missile (acquisition), track

its motion (tracking), determine the laser aimpoint and maintain the laser energy on

the target (pointing), and finally swing to a new target (fire control). The accuracy

for each component is stringent because of the great distances between the weapon

and the targets.
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The United States put considerable time and resources into both space and

ground programs in acquisition, tracking, and pointing technologies. Space exper-

iments are critical to any high-energy laser weapon system because they demon-

strate the high-risk technologies and do so in the actual operational environment.

However, the space programs in the 1980s suffered from high costs and the space

shuttle challenger accident while many programs were terminated or had their

scope reduced due to insufficient funding, two highly successful space experiments

were completed in 1990. The Relay Mirror Experiment demonstrated the ability to

engage in high-accuracy pointing, laser beam stability, and long-duration beam

relays. This is a critical technology for any weapon architecture that requires relay

mirrors in space. Another successful test was the Low-Power Atmospheric Com-

pensation Experiment that was conducted by the MIT Lincoln Laboratory, which

demonstrated the feasibility of technologies that are designed to compensate for the

atmospheric turbulence that distorts laser beams.

A number of the space experiments were canceled or redesigned as ground

experiments. Ground experiments can be successfully conducted as long as the

tests are not limited or degraded by the Earth’s gravity. Two ground experiments

demonstrated the key technologies that are essential for the space weapon platform

to maintain the laser beam on the target despite the large vibrations induced by the

mechanical pumps of a high-energy chemical laser [3]. The rapid retargeting/

precision pointing simulator was designed to replicate the dynamic environment

of large space structures. Using this technology, which is especially critical for a

space-based laser, scientists tested methods to stabilize the laser beam, maintain its

accuracy, and rapidly retarget. Within the constraints of a ground environment, the

techniques developed should be applicable to space systems.

Another successful experiment was the Space Active Vibration Isolation project,

which established a pointing stability of less than 100 nanoradians. This equates to

4 in. from a distance of 1000 km. The Space Integrated Controls Experiment

followed that program and further improved the pointing stability 3. To understand

the technology necessary to control large structures, such as space mirrors, the

Structure and Pointing Integrated Control

Experiment Stratospheric Particle Injection for Climate Engineering (SPICE)

was developed to demonstrate the value of active, adaptive control of large optical

structures. These tests, experiments, and demonstrations represent the current state-

of-the-art laser technology, which leads to the question of how to fit these technol-

ogies into architecture and how much further to push the technology.

6.3 Wavelength Effects

The wavelength of a laser sets some fundamental constraints on the optics that can

be used with the laser. By far the most important is the Fraunhofer diffraction limit,

which determines how small a spot the beam can form. In this case, the spot size is

measured as an angle (as viewed from the laser) that is proportional to the ratio of
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wavelength to the diameter of the focusing optics. The theoretical formula for the

ideal case is [4]

Spot Size ¼ 1:22� wavelength

optics diameter
ð6:1Þ

This formula actually defines the first point at which the intensity falls to zero.

There are a series of bright rings surrounding the control spot, falling off in intensity

as the distance from the central spot increases. The formula is valid for a circular

output mirror and a perfectly uniform laser beam, which does not exist in practice

but which does give a rough approximation for real lasers. It actually gives the sine

of the angular spot size for small spots such as would be produced by a laser beam,

which is virtually identical to the angle in radians. The formula is a fundamental one

and comes from Donald H. Menzel [4].

This formula gives spot size in radians, an angular measure equal to the diameter

of the spot divided by the distance to it. (One radian equals 57.3�.) Laser physicists
usually talk in terms of spot size (sometimes sloppily called beam divergence,

although in this sense it isn’t exactly that) in radians. However, the formula can be

altered to give spot size in meters:

Spot Diameter meterð Þ ¼ 1:22 � wavelength � target distance

optics diameter
ð6:2Þ

Note that in making calculations with either formula, it is essential that everything

be measured in the same units. Thus, if wavelength starts in micrometers, target

distance in kilometers, and optics diameter in meters, they would all have to be

converted to meters before making the calculation. Spot diameter is important

because it indicates onto how small an area on the target the laser’s output can be

concentrated. Dividing the area of the focal spot on the target into the laser power or

energy gives the power or energy density at the target. Measurements of laser power

or energy density on the target are useful in making rough approximations of the

threshold for causing damage, but the actual mechanisms involved are quite

complex and far beyond the scope of this book.

Another important factor is the beam “wander” or “jitter.” That is, how precisely

can the laser beam be kept on one spot on the target while it is depositing its lethal

dose of energy? If the beam wanders all over the place, it will not stay at any one

point long enough to do any damage. The usual assumption is that beam wander

will have to be somewhat smaller than the spot size.

One suggestion to correct such wandering or jitter is coming from P. Sprangle,

A. Ting, J. Pe~nano, R. Fischer of Plasma Physics Division of Naval Research

Laboratory (NRL), and B. Hafizi of Icarus Research Inc in their paper High-
Power Fiber Lasers for Directed-Energy Application. Their recommendation for

compensating for wandering or jittering of laser beam is an approach known as

“beam wander and tip–tilt compensation”.
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Introducing tip–tilt correction into the individual steering mirrors can reduce the

overall laser spot size on target. Tip–tilt correction redirects the centroid’ of the

individual laser beams to cancel the effects of wander due to turbulence. This is

accomplished by monitoring the intensity on target and redirecting the steering

mirrors to minimize the spot size. Laser beam wander is a function of the scale size

of the turbulence fluctuations. Turbulent eddies that are large compared to the laser

beam diameter cause the laser beam centroid to be deflected and to wander in time

due to transverse air flow. Eddies that are much smaller than the beam diameter

cause spreading about the beam centroid and cannot be reduced by the use of tip–tilt

compensation. The observed long-time averaged laser spot size is a combination of

beam wander and spreading about the centroid. In weak turbulence, the beam

centroid wander represents a significant contribution to the laser beam radius. As

the turbulence level increases, or for long propagation ranges, the beam wander

contribution to the laser spot size becomes less important. In very strong turbulence,

the laser beam breaks up into multiple beams making tip–tilt compensation inef-

fective. If the individual laser beams are separated by less than r0 at the source, the
wander of the centroids on the target will be correlated. In this case, it would be

possible for beams to share a common tip–tilt correcting aperture, thus reducing the

size and complexity of the system.

With this information in mind, you can calculate some very general require-

ments on a laser weapon system if you know the lethal power or energy density and

the maximum range. For example, suppose that in the case of missile defense, it

seems desirable to concentrate a laser power of about 5 million watts onto a spot

about 1 m (about a yard) in diameter (a little over 6 million watts per square meter).

If the target is 5000 km (3000 miles) away, in angular terms, the focal spot is 0.2

millionths of a radian (or 0.2 μrad in standard scientific terminology). That figure

can be inserted into the equation that relates laser wavelength and optics diameter to

spot size. Suppose, for example, the weapon system uses a space-based hydrogen

fluoride chemical laser with a nominal wavelength of 2.8 μm or 0.0000028 m.

Simple division shows that the output mirror must be 17 m (56 ft) in diameter. If

that doesn’t sound impressive enough, you should realize that the largest telescope

in the United States, the 200-in. giant at Mount Palomar Observatory, has a main

mirror of only 5 m in diameter. The largest telescope mirror in the world is a 6-m

one in the Soviet Union, which unofficial sources report hasn’t been working very

well. The largest mirror yet designed and built for use in space is the 2.4-m (8-ft)

mirror for NASA’s space telescope.

The use of a laser with higher-power or shorter wavelength would allow use of a

smaller mirror. If a 1.3-μm chemical oxygen iodine laser could be substituted for

the hydrogen fluoride laser in the previous example, a mirror 8 m (26 ft) in diameter

could produce a 1-m spot 5000 km (3000 miles) away. Increasing the laser’s output

power does not produce such dramatic reductions in required mirror size because

damage depends on power density multiplied by illumination time, which increases

faster with decreasing spot size than with increasing power. Thus, a 10 million-watt

beam could be spread over twice as much area as a 5 million-watt beam, but as the

area doubled, the spot diameter would increase only by the square root of 2, a factor
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of 1.4. Thus, a 10 million-watt hydrogen fluoride laser beam could be focused onto

a spot 1.4 m in diameter at a distance of 5000 km (3000 miles) with a mirror only

12 m (40 ft) in diameter, yielding the same power density as would be obtained

when focusing a 5 million-watt laser over the same distance with a 17-m (56-ft)

mirror onto a 1-m spot.

From a practical standpoint, shrinking the mirror diameter from 17 m (56 ft) to

12 m (40 ft) would be important. On the ground or in space, the weight of a massive

mirror would present a problem. If weight was simply proportional to area (which

in turn depends on the square of the diameter), reducing the diameter from 17 to

12 m would cut the weight in half. In practice, an even greater weight reduction

would be possible, because the smaller-diameter mirror could be thinner and still

have enough mechanical strength to maintain its shape [2].

These simple calculations demonstrate why The Pentagon is so interested in

developing short-wavelength lasers. The prime allure of the ultraviolet is a wave-

length about one-tenth that of the hydrogen fluoride laser, making it possible to use

a mirror much smaller than needed for an iodine laser, although other consider-

ations described below might weigh against picking the smallest possible mirror

diameter [2].

It may be possible to put a laser weapon for use against missiles or satellites on

the ground, but if the targets were in space, the focusing mirror would have to be

there, too. Putting a large mirror into orbit is not going to be an easy job. Current

proposals for space-based lasers envision either a 5 million-watt chemical laser

with a 4-m (13-ft) mirror or a more potent weapon using a 10 million-watt laser and

a 10-m (33-ft) mirror. Mirror sizes would have to be the same to deliver the same

power to the same size spot, with the same laser wavelength, even if the laser was

on the ground. Military contractors seem to think the task is achievable. The

Corning Museum of Glass, PerkinElmer Corp., Itek Corp., and Eastman Kodak

have proposed a plan for a 4-m (13-ft) glass mirror. The United Technologies

Research Center has offered to build a 10-m (33-ft) lightweight mirror, using a

graphite fiber-reinforced glass matrix for the body of the mirror and vaporized

silicon for the reflective coating (Fig. 6.1).

The mirrors best able to stand up to high laser powers are made of solid metal

typically honeycombed with holes through which coolant flows. The Department of

Defense has spent millions of dollars developing ways to produce mirrors that

absorb less than 1% of the incident laser light and which I can efficiently conduct

away what heat they do absorb. Much of the effort has gone to development of

machines that use diamond-edged tools to cut mirror surfaces directly into metal

blocks, vastly simplifying the traditional time-consuming process of making optics.

Diamond turning, as the technique is called, also makes it possible to produce

mirrors with surface shapes impossible to obtain by conventional grinding and

polishing methods [2].

For more details on this subject, please refer to the book by Jeff Hecht “Beam

Weapons, The Next Arms Race.”

6.3 Wavelength Effects 157



6.4 The Atmospheric Propagation Problem

Air looks much more transparent than it really is. In the past decade, researchers are

working on a communication systems that rely on laser beams going through the

air. New technologies in direct line of sight wireless communication systems are

being developed at the University of Maryland. These are hybrid systems that use

both free space optical (FSO) communication links and radio frequency (RF) links

[5]. In order to optimize these systems, an understanding of the channel medium

(the atmosphere) is requisite. The concern of the current research is the character-

ization of the effects of atmospheric turbulence on the propagation of electromag-

netic waves at optical wavelengths.

One effect of atmospheric turbulence is that it scatters light. The current method

of research into the characteristics of atmospheric turbulence is the analysis of this

scattered light. It is this resultant scattered light that brings up two essential

questions. What does the turbulence do to the light, i.e., how does it scatter the

light? What does the scattered light tell us about the atmospheric turbulence?

The answer to the first question is important for engineering applications like an

FSO communication systems. Specifically our current research will look to opti-

mize the receiver or aperture size for an FSO communication system. The answer to

the second is important to the development of formal mathematical theories on the

behavior or physics of the atmosphere.

The effects of atmospheric turbulence are easily seen by the propagation of the

laser through the atmosphere. As can be seen in Fig. 6.2, the turbulence induces
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Fig. 6.1 Laser spot size that would be at various ranges and wavelengths by a 30-m output mirror.

The graphs show spot diameter for the 10.6-μm carbon dioxide laser, the 2.8-μm hydrogen fluoride

laser, and a hypothetical 0.5-μm visible laser, assuming that the figure of the mirror is accurate to

within 1/50th of the laser wavelength. (Drawing by Arthur Giordani based on calculations by

Wayne S. Jones, Lockheed Missiles and Space Co.)
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intensity random fluctuations in the beam known as scintillation. This is an effect of

the many random changes in the index of refraction along the path of beam

propagation due to turbulence.

Their current research will aid the development of these physical theories where

they assumed that the atmosphere can be described as a moving fluid of air. As such

it can be modeled by the Navier–Stokes equations (shown below) that describe the

behavior of moving fluids [5]:

∂v
∂t

þ v �∇ð Þv ¼ �1

ρ
∇pþ υ∇2v ∇ � v ¼ 0

Navier� Stokes Equations NSEð Þ
Assuming incompressibilityð Þ

ð6:3Þ

where ρ is density, υ ¼ η
ρ is called the kinematic viscosity, and η is called the

dynamic viscosity.

These equations show that atmosphere can move as either as turbulent flow or

laminar (nonturbulent) flow. Turbulence occurs when a fluid flow exceeds a critical

Reynolds’s number R�lu=υ with l being a characteristic linear dimension (traveled

length of fluid or hydraulic diameter when dealing with river systems) (m) while u is
the mean fluid velocity (SI units: m/s) which causes the nonlinear term ( v �∇ð Þv) of
the NSE to dominate which is characterized by the flow’s chaotic behavior (as shown

below):

v �∇ð Þv
η
ρ∇

2v

 u2=l

ηu=ρl2
¼ ul

υ
¼ R ð6:4Þ

The nonlinear nature of the equations makes them difficult to with since there are no

known solutions or families of solutions to the Navier–Stokes equations. This

forces one to look at other mathematical observations to take something meaningful

Fig. 6.2 Screen shot of

image [5]
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from these equations. In low turbulence (when the nonlinear term, v �∇ð Þv, is much

less than υ∇2v), significant symmetries arise. These symmetries are space and time

translation, Galilean transformation, parity, rotation, and scaling. In extreme

turbulence, Kolmogorov predicted and proved that the symmetries of the Navier–

Stokes equations that exist in nonturbulent systems reappear. The extreme

complications of the Navier–Stokes equations, arising from the nonlinearity,

force us to use statistical methods to characterize the behavior of a turbulent fluid

as such the atmosphere. Fortunately, the symmetries give us insight into the

statistics.

High-energy lasers (HELs) have a number of directed energy (DE) applications

[6] requiring high-intensity beams to be propagated at long distances under a wide

range of atmospheric conditions. The optimum wavelength for efficient HEL

propagation depends on the atmospheric conditions and a number of interrelated

physical processes which include thermal blooming due to aerosol and molecular

absorption [7], turbulence [8], aerosol and molecular scattering [9], thermal scat-

tering due to heated aerosols, and aerosol heating and vaporization [3, 10–15]. The

relative importance of these processes depends on the parameters of the atmo-

spheric environment which can vary significantly depending on location and time.

The main objective that was discussed by Phillip Sprangle et al. [6] is about the

optimum laser wavelength and power for efficient propagation in maritime, desert,

rural and urban atmospheric environments. The theoretical/numerical model used

in this study includes the effects of aerosol and molecular scattering, aerosol

heating and vaporization, thermal blooming due to aerosol and molecular absorp-

tion, atmospheric turbulence, and beam quality. These processes are modeled in a

fully three-dimensional and time-dependent manner. It is found that aerosols, which

consist of water, sea salt, organic matter, dust, soot, biomass smoke, urban pollut-

ants, etc., are particularly important because they result in laser scattering, absorp-

tion, and enhanced thermal blooming. In the water vapor transmission windows, the

total absorption coefficient driving thermal blooming can be caused mainly by

aerosols and not water vapor. In certain maritime environments, the deleterious

effects of aerosols can be reduced by vaporization. Aerosols which cannot be

vaporized, such as those consisting of dust, soot, etc., can significantly increase

thermal blooming. We show that moderate values of the laser beam quality

parameter have little effect on the propagation efficiency. The laser power, aver-

aged over dwell time, delivered to a distant target as a function of transmitted power

is obtained for a number of wavelengths and atmospheric environments. The

optimum wavelength and power are found for each atmospheric environment.

Atmospheric environments contain various types and concentrations of aerosols

which can, for HEL beams, enhance thermal blooming and significantly affect the

propagation efficiency. In general, aerosols consist of hygroscopic and

non-hygroscopic particles of various sizes and chemical compositions. Hygro-

scopic aerosols are water soluble and vary in size depending on the relative

humidity [15]. Oceanic aerosols consist of sea salt, water, and organic material.

Non-hygroscopic aerosols are composed of dust, soot, biomass smoke, and other
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carbon-based compounds. These aerosols typically have much larger absorption

coefficients than water-based aerosols. While they are normally present in conti-

nental, rural, and urban environments, dust aerosols can also be present in maritime

environments hundreds of miles from the shore [16].

Aerosols can absorb laser energy, and, in the case of hygroscopic aerosols, the

absorbed energy goes into both heating and vaporizing the aerosol. Heated aerosols

conductively heat the surrounding air, resulting in an increase in thermal blooming

of the HEL beam. However, since aerosol scattering and absorption coefficients are

strongly dependent on the aerosol radius, vaporizing the aerosol can improve the

propagation efficiency. Non-hygroscopic aerosols (dust, soot, etc.), however, have

large scattering and absorption coefficients and will not vaporize at the intensity

levels anticipated in DE applications. These aerosols continually heat the surround-

ing air leading to significant thermal blooming. Water vapor absorption bands and

those of carbon dioxide determine the atmospheric transmission windows in the

infrared. Under a range of atmospheric conditions and laser wavelengths, aerosol

absorption can exceed water vapor absorption and thus can be the dominant process

for thermal blooming. For example, in a maritime environment at an operating

wavelength of λ ¼ 1:045μm, the water vapor absorption coefficient is


 3 � 10�5km�1, while the aerosol absorption coefficient is often greater than

10�3km�1. In other water vapor transmission windows, i.e., 1.625 and 2.141 μm,

the water vapor and aerosol absorption coefficients can be comparable. In addition

to enhancing thermal blooming, aerosols can also significantly contribute to the

total laser scattering coefficient [6].

Longer wavelength, such as microwaves, can penetrate through dust and pre-

cipitation because the particles in the air are much smaller than the wavelength. In

some cases, longer-infrared wavelengths are transmitted much better than visible

light because of the difference in their wavelengths.

Under typical atmospheric conditions, the absorption of 10.6 μ radiation by

various molecular species results in an absorption coefficient of approximately 1:5

�10�6cm�1 and leads to various nonlinear propagation problems [17, 18]. For some

lasers (e.g., the DF laser operating at 3.8 μ), the molecular absorption in the air is

small (as low as 10�8cm�1 ), and the heating due to aerosols can dominate the

heating of the air path. For a typical atmosphere, this aerosol absorption corre-

sponds to an attenuation coefficient of approximately 10�7cm�1 but could be higher

if the aerosol concentration was unusually high [19]. In general, the nonlinear

heating effects are more important than the linear power losses.

The natural heating effects of high-energy laser beams could help to overcome

some weather-related transmission problems. A high-energy carbon dioxide laser,

for example, can bore its way through fog by heating the tiny water droplets that

obscure vision enough to make them evaporate. Much the same could be done with

clouds. Heavy rain would be harder, particularly in the realistic situation where the

beam is being scanned quickly through rapidly falling rain. If the beam scans across

the drops too quickly, it may only partly evaporate them before moving on to

illuminate other drops.
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Foul weather, dust, and smoke can do more than just blocking the beam from the

high-energy lasers. They can make it impossible to find targets visually or with

infrared optical system, making it necessary to rely on microwave radar that can

penetrate the obscuration. However, even if the high-power beam could burn its

way through, the limited resolution of microwave radars may not be able to pinpoint

the target accurately enough for the laser beam to hit a vulnerable spot.

6.4.1 Laser Light Scattering and Intensity

In general, a laser beam is attenuated as it propagates through the atmosphere. In

addition, the laser beam is often broadened, defocused, and may even be deflected

(i.e., scattered) from its initial propagation direction. These atmospheric effects

have far reaching consequences for the use of laser in optical communication,

weaponry, target designation, ranging, remote sensing, and other applications that

require transmission of laser beams through the atmosphere. In a tactical battlefield,

a new spectral light transport model for sand and other obstacles in the air should be

studied and be mathematically analyzed and experimentally put it into test. The

model should employ a novel approach to simulated light interaction with partic-

ulate materials which yields both the spectral and spatial bidirectional reflectance

distribution function (BRDF) responses of sand or other obstacles in the environ-

ment of battlefield which includes natural and man-made media such as rain or fog

and gun smoke. Furthermore, the parameters specifying the model should be based

on the physical and mineralogical properties of sand and other obstacles of the

concern. The model should be evaluated quantitatively, through comparisons with

measured data. Good spectral reconstructions if any should be achieved for the

reflectances of several real sand samples. Its potential applications include, but are

not limited to, applied optics, remote-sensing and image synthesis, as well as

weaponry.

Light scattering has provided an important method for characterizing macro-

molecules for at least three decades. However, the replacement of conventional

light sources by lasers in recent years has qualitatively changed the field and has

sparked renewed interest. Through the intense, coherent laser light and efficient

spectrum analyzers and autocorrelators, experiments in the frequency and time

domains can now be used to study molecular motion and other dynamical process.

Classical light scattering studies are concerned with the measurement of the

intensity of scattered light as a function of the scattering angle. In addition to this

kind of study, laser light sources now permit spectral information (i.e., BRDF) to be

obtained from the scattered light. The latter type of experiment is often called quasi-

elastic light scattering (QLS), and the various forms of the experiment are known as

light beating spectroscopy (LBS), intensity fluctuation spectroscopy (IFS), and

photon correlation spectroscopy (PCS). Related experiments in laser Doppler

velocimetry (LDV) now permit very low rates of uniform motion to be measured.
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A special case of LDV is electrophoretic light scattering (ELS) where motilities are

determined [20].

The attenuation and amount of beam alteration depend on the wavelength,

output power, makeup of the atmosphere, and the day-to-day atmospheric condi-

tions. When the output power is low, the effects are linear in behavior. That is,

doubling the initial beam intensity results in a doubled intensity at every point along

the beam’s path. Absorption, scattering, and atmospheric turbulence are examples

of linear effects. On the other hand, when the power is sufficiently high, new effects

are observed that are characterized by nonlinear relationships. Some important

nonlinear effects are thermal blooming, kinetic cooling, beam trapping,

two-photon absorption, bleaching, and atmospheric breakdown, which, inciden-

tally, fix an upper limit on the intensity that can be transmitted. In both cases, the

effects can be significant and may severely limit the usefulness of the beam. Many

studies have been undertaken to define the different linear and nonlinear phenom-

ena that can occur [21].

One parameter that is useful in determining the effectiveness of a Gaussian laser

beam is the beam irradiance at the target. For a beam with output power P0 and

cross-sectional area A at the target, the peak irradiance Ip at the target is [21]

Ip ¼ P0τ

A
ð6:5Þ

where τ is the atmospheric transmittance. A major system design goal is to

maximize Ip by minimizing the beam cross-sectional area A and maximizing the

product P0τ.
The propagation of a laser beam in a vacuum is governed by the diffraction

theory, which tells us that no matter how parallel the beam may be initially, it will

diverge and spaced as the beam propagates away from its source. Most laser beams

have a Gaussian intensity profile in the transverse front. The beam radius w is

defined as that transverse distance from the center of the beam (i.e., the beam axis)

to the point where the intensity has fallen to 1/e2 (0.13533) of its on-axis value (see
Fig. 6.3).
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w
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Ip e–2

Fig. 6.3 Intensity profile of

Gaussian beam
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The two parameters of most interest in describing the propagation characteristic

of a Gaussian beam are the beam radius w(z) also known as spot size at any distance
z from the beam waist and the radius of curvature of the phase front R(z). These two
parameters are given by

w zð Þ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λz

πw2
0

� �2
s

ð6:6Þ

and

R zð Þ ¼ z 1þ πw2
0

λz

� �2
" #

ð6:7Þ

where w0 is the radius at the beam waist (that part of the beam where the beam has

its smallest diameter) and λ is the wavelength [21].

Like other beams, Gaussian beams diverge as they propagate through space.

However, the intensity distribution remains Gaussian in every beam cross section.

Only the width of the Gaussian profile increases as the beam propagates. At the

beam waist (z ¼ 0 and R ¼ 1), the phase front is a plane. For most practical lasers,

the beam waist is located a short distance from the output mirror on the outside of

the resonator (see Fig. 6.4). As the Gaussian beam propagates away from the

location of its waist, the beam’s radius (or spot size) at first remains nearly constant

but then begins to diverge linearly with distance at large distances from the waist.

The smaller the spot size at the waist, the faster the beam diverges and the smaller

the distance over which it stays collimated with a near constant diameter and a near

planar wave front. The angle θ in Fig. 6.4 is the beam divergence angle. It is given

by

θ ¼ w zð Þ
z

¼ λ

πw0

for z  Rz ¼ πw2
0

λ
ð6:8Þ

where Rz is the Rayleigh range. Equation 6.8 shows that the beam’s cross-sectional

area at distance z from the waist is

Beam Waist

z = 0
z

θ

Fig. 6.4 Gaussian beam with external waist at z¼ 0
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A ¼ π w zð Þ½ �2 ¼ λ2z2

πw2
0

ð6:9Þ

From this we see that the beam’s cross-sectional area can be reduced by selecting a

shorter wavelength and by increasing the beam radius at the waist [21].

It is interesting to look at a few examples of the intensity of laser light. In a

typical ruby laser, the concentration [22] of Cr+++ ions is about 2� 1019 cm�3, and

population inversions are of the order of 3� 1016cm�3. Crudely speaking, we can

think of creating 3� 1016 quanta=cm3 in the lasing medium. Since we have

arranged the laser so that the output is in a single direction and since

photons move with the speed of light, we obtain 3� 1016 � 3� 1010 ¼ 9 � 1026

quanta=cm2 s from the laser. For ruby, the lasing wavelength is 6943 Å, and since

the energy of each quanta is hv, one can readily calculate that the output is about

2:5� 108W=cm2.

Let us compare this to the power that a hot body, say the sun, emits at the same

wavelength with a similar bandwidth. This can be calculated by the use of Planck’s

radiation law knowing that ΔE ¼ hv, where h is Plank’s constant and v is radiation
frequency [23]. This is illustrated in Fig. 6.5 and is the case for any light source,

whether laser, flame, incandescent body, etc.

Uω ¼ hω3

π2c3
1

ehω=kT
ð6:10Þ

where Uω is the energy, per unit volume and per unit bandwidth, radiated by a

blackbody at temperature T, k is Boltzmann’s constant, c is the velocity of light in

vacuum, whileω ¼ 2πv is angular velocity of photon andh ¼ h
2π is reduced Planck’s

constant. The radiation leaves the blackbody source at rate c, so that the power

radiated per unit area of the source and per unit bandwidth, is

Iω ¼ cUω

4
¼ hω3

π2c2
1=4

ehω=kT � 1
ð6:11Þ

If we use the sun’s temperature of 6000 K, and λ ¼ 6943 Å,

E3

h n

E2

ΔE

E1

Fig. 6.5 Energy levels
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Iω � 2 � 10�5 erg=cm2

For the ruby laser, a typical line width is 3 Å, so Δω � 1:2 � 1012s�1. Thus the

power density at the source is

I � 2:5 � 1012 erg=cm2s � 2:5 W=cm2

Thus the power density for comparable narrow bandwidth, nearly single-frequency

light is much greater at a laser source than at a conventional hot body source,

because laser light is coherent.

The propagation of laser light through the atmosphere poses a complex problem

and it is discussed here. Suffice it to say that, as anyone who has driven on a foggy

night certainly realizes, light is certainly scattered in the atmosphere. Lasers of

high-power density pose even more difficult propagation problems because the high

intensity warms the air and creates a density change across the beam. This variation

in density refracts the light and causes beam spreading or “thermal blooming.”

Consider briefly the propagation of laser light in free space or in vacuum. Under

these ideal conditions, the only change in the power density is due to simple beam

divergence. Since the typical laser emits light that is nearly unidirectional, the beam

divergence is small. In fact, one feature of a laser is that the divergence is nearly at

the diffraction limit, which is of the order of λ/a, where a is the diameter of the

output aperture of the laser. For the ruby laser discussed above, this gives a

divergence angle of [22]

θ � 6943� 10�8

1
� 7� 10�2 mrad

for a 1-cm aperture. In practice, one needs to go to much trouble to realize this limit

of divergence, but it has been done. More commonly, an “off-the-shelf” ruby laser

might have a beam divergence of a few mrad.

The newcomer to lasers has usually heard about diffraction-limited beams and

the consequent extreme directionality of laser light. He is usually surprised to

discover that at long distances from the source, these beams have power densities

that vary as the reciprocal of the square of the distance, like all radiating sources. To

see this, consider a source of power P W, diameter A, and divergence angle θ, as
shown in Fig. 6.6.

o

P

r

a+2r TAN q

q

q

Fig. 6.6 Simplified sketch of laser beam divergence

166 6 High-Energy Laser Beam Weapons



At distance r from the source, the power density is

I ¼ P
π
4
aþ 2r tan θð Þ2

or, since θ is very small and tan θ � θ,

I ¼ P
π
4
aþ 2rθð Þ2

or

I ¼ P
πa2
4

1þ 2r
a θ

� �2 ð6:12Þ

From this expression, it is apparent that for large distance, such that 2r=a  1,

I ¼ P
πa2
4

4r2θ2

a2

or

I ¼ P

πr2θ2

Or, since θ � λ=a

I ¼ P

πr2
a2

λ2

For example, consider a 10-kW beam of 10.6-μmwavelength and 10-cm aperture at

1-mi (i.e., a high-power CO2 laser):

I ¼ 104 � 102

π 5280� 12� 2:54ð Þ2 10� 10�4
� �2

or

I � 12 W=cm2

From Eq. 6.12, if we substitute I0, the power density at the source, for P/(πa
2/4) and

recall that θ � λ=a,
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I ¼ I0
1

1þ 2r λ
a2

� �2 ð6:13Þ

From this expression, we can see that if r is small, there is little change in power

density emitted by the source. The distance at which this is true is referred to as

“near field,” and the fine details of the beam pattern, such as local variation in

intensity, hot spots, etc., are preserved in the near field. It is apparent from Eq. 6.13

that this near-field distance will be limited to r such that I � I0, or

2rλ

a2
� 1

or

rnear field � a2=λ

For lasers with exceptionally good optics that have a Gaussian distribution of power

density across the beam, the near-field pattern will persist for distances on the order

of a (a2/λ) [5].
As a final comment on power densities at distance from laser sources, let us use

Eq. 6.13 to calculate the distance at which the power density is halved: [22]

I

I0
¼ 1

2
¼ 1

1þ 2rλ
a2

� �2
and

r1=2 ¼ a2

2λ

ffiffiffi
2

p
� 1

	 

For our illustration of a CO2 laser with a 10-cm aperture, r � 680 ft or a little more

than 0.1 mi. These calculations were done by J. T. Schriempf [22] and were

reproduced here again.

6.5 Thermal Blooming Effects

High-energy laser propagation in the atmosphere requires consideration of self-

induced beam expansion due to thermal blooming and random distortion due to

atmospheric turbulence. The thermal blooming is a result of interaction between the

laser radiation and the propagation path. A small portion of the laser energy is

absorbed by the atmosphere. This energy heats the air causing it to expand and form

a distributed thermal lens along the path. The refractive index of the medium is
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decreased in the region of the beam where heating is the greatest, causing the beam

to spread. Atmospheric turbulence is caused by random naturally occurring tem-

perature gradients in the atmosphere.

Researchers are focusing on the design of beam control system for high-energy

lasers. In particular, some folks are concentrating to compare traditional phase

conjugation and open-loop techniques to a model-based optimal correction tech-

nique which modified the laser power and focal length. For light thermal blooming,

phase conjugation is seen to be a reasonable control strategy. However, as the level

of thermal blooming increases, phase conjugation performs increasingly worse. For

moderate to heavy thermal blooming scenarios, the new technique is shown to

increase peak intensity on target up to 50% more than traditional compensation

methods. Considering a ground-based continuous-wave laser operation in an envi-

ronment with wind shows that in addition, the optimal correction technique is

insensitive to errors in the model parameters. Assumption is that a tracking system

provides target position and velocity. A reflection of the laser wave front off the

target is useful but not required.

In case of ground-based high-energy laser (GBL), a typical platform is consistent

of the following elements which (i.e., the mirrors and separators), in order of an

outgoing wave, are described below and the optical path is depicted in Fig. 6.7:

1. Deformable mirror: Deforms the wave front taking into account the wave front

received at the incoming and outgoing wave-front sensors.

2. Beam splitter: Allows a small amount of the laser to be fed to the wave-front

sensor while reflecting the rest onto the deformable mirror.

3. Outgoing wave-front sensor: Detects the wave-front error before the laser is

reflected off any mirrors.

4. Turning mirror: Reflects the beam.

5. Tilt mirror: High-bandwidth mirror which can point the beam in any direction,

used to remove tilt errors from the wave front.

6. Beam expansion: Consists of a small convex mirror and a large concave mirror.

It allows beam steering and focusing.

7. Large turning mirror (traverse): Used for course pointing in combination with

rotation of the whole beam expander. It has limited orthogonal motion capability

creating a traverse axis for better dynamic performance.

As we said before, the purpose of a high-energy laser beam system is to deliver

maxim power to a target. Several atmospheric effects decrease the effectiveness of

such mission for the given system. These effects include both linear and nonlinear

terms (see Sect. 6.3 in above). Diffraction, turbulence, jitter, and wander linearly

decrease the intensity on target. If the nonlinear effects are ignored, any increase in

intensity on target can be accomplished by increasing the laser power. When the

nonlinear effects of thermal blooming is included, increasing laser power will not

always be beneficial and can even reduce the level of transmitted power. Figure 6.4

shows the performance of an open-loop system by determining intensity on target

as a function of laser power with and without blooming. As seen in Fig. 6.8, it is

clear that thermal blooming must be considered when evaluating this system if the
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laser is operating above 25� 103 W. If thermal blooming is ignored in the design

stage, the actual intensity on target will be a small fraction of what is expected.

Distortion caused by atmospheric turbulence is independent of the applied

phase, and phase conjugation has the possibility of significantly reducing wave-

front distortion at the target. However, the atmospheric distortion caused by thermal

blooming is a function of the applied phase. It is shown that phase conjugation

techniques are not optimal, and model-based controllers can improve the perfor-

mance of directed energy systems. It has been recognized for some time that phase

conjugation methods are prone to instability. The phenomenon of phase compen-

sation instability (PCI) has been studied extensively [24, 25].

It is worth noting that thermal blooming produces a result that seemingly

contradicts logic beyond a certain point, increasing the laser power can decrease

the amount of laser energy delivering to target. This happens because the thermal

distortions caused by the laser beam grow faster than the laser power. The more

laser energy poured into the beam, the larger the percentage of energy that is bent

away from the target. It is nature’s reminder to the weapon system designers that

bigger is not always better, and it sets an ultimate limit to the size of battlefield
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Fig. 6.7 Typical high-energy ground-based laser platform
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lasers. Note that this is not the case if the beam doesn’t have to travel though

atmosphere, so advocates of space-based laser weapons are free to propose laser as

big as they like so long as they are not engaging in target during its boost phase from

its launching platform. But the question is if they can build and deploy them to the

orbit of their mission.

6.5.1 Mathematical Foundation of Thermal Blooming

Thermal blooming of high-energy lasers is a beam-spreading effect that can

significantly reduce the effectiveness of laser systems both as directed energy

weapons and as remote powering devices. When a high-energy laser propagates

through a medium, a portion of the laser energy is absorbed by the medium. This

absorbed power heats the medium causing it to expand, changing its index of

refraction [26].

Thermal blooming is classified by the form of heat transfer that balances the

absorbed power. The three cases of thermal conditions are:

1. Natural convection and forced convection.

2. Thermal condition occurs where there is no relative motion between the beam

and the medium and when no natural convective velocities are established.

Natural convection results when the absorbed power causes gas heating, which

establishes convection currents.
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Fig. 6.8 Effect of thermal blooming on power-intensity curve
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3. By far the most important continuous-wave case is convection forced by wind

and beam slewing.

A derivation of simple scaling laws for thermal blooming by J. Edward Wall

[26] is defining basic nomenclature for adaptive optics and thermal blooming. The

classical “bending into the wind” shape of a thermally bloomed wave was pictured.

Additionally, the important relationship between intensity and wave-front error is

examined by him, and he has introduced the representation of two-dimensional

wave fronts by Zernike polynomials.

Thermal blooming is a highly nonlinear phenomenon. A simple method for

analyzing the effects of thermal blooming is to start with the general wave optics

equations and find a perturbation solution. The following equations completely

specify steady-state thermal blooming in the ray optics limit. Further information

and mathematical analysis can be found in a book by Hugo Weichel [21] where he

has described mathematical analysis of laser beam propagation in the atmosphere.

6.6 Adaptive Beaming and Imaging in Turbulent
Atmosphere

In order to deal with optical distortion that is caused by atmospheric turbulence and

thermal blooming effects—corrective optics measurement, such as adaptive optical

systems is required. Due to dynamic nature and behavior of these effects and their

continuous changes of their conditions, the corrective optics would have to be

adjustable accordingly, or in the jargon of the field, “adaptive.” The idea is to use

the optics to adjust the wave front leaving the laser beam weapon in a way that

would compensate for the distortions that such beam encounters while going

through atmosphere to engage with its designated target.

The extensive use of optical technologies for solving problems of information

transfer, in form of a narrow-directional electromagnetic energy transport, and

image formation in an outdoor atmosphere calls for the development of adaptive

optical correction methods and devices. These methods call for an effective means

of controlling the decrease in the efficiency of atmospheric optical systems caused

by inhomogeneities in large-scale refractive indexes. These inhomogeneities are

due to the turbulent mixing of atmospheric air masses and molecular and aerosol

absorption in the channel of optical radiation propagation [23].

Ordinary transmissive optics is out of the question. The lens of the human eye is

deformable or in a sense “adoptive,” but essentially all other transparent materials

used as optical lenses are rigid. Solid transparent media can be damaged by high-

power laser beams because they, like the air, absorb a small fraction of the optical

energy they transmit. There is some research into the possibility of developing

gaseous optics to make the required corrections, but it is far from clear if that

concept can be made practical for the laser weaponry [2].
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Wide practical application of adaptive optical systems (AOS) has revealed a

number of problems that call for the development of a theory of optical wave

propagation under adaptive control conditions. A search for answers to these

problems necessitates the development of detailed and adequate mathematical

AOS models and the application of research methods such as numerical experi-

ments that solve a system of differential equations describing optical wave propa-

gation in the atmosphere.

Adaptive optical systems (AOS) that operate in real time allow one to:

• Improve laser radiation focusing on a target and hence increase the radiation

intensity within the focal spot.

• Decrease the image blooming of astronomical and other objects m telescopes,

increase image sharpness, and decrease the probability of object recognition

errors.

• Decrease the noise level and increase the data rate in optical communication

systems.

A wide variety of research is going on to investigate using numerical experi-

ments (models). Numerical experiments allow the maximum number of parameters

to be considered to correctly model AOS and to investigate practically any signif-

icant radiative characteristic—the effective size of the light spot, the peak radiant

intensity, the radiation power incident on the receiving aperture, the statistical

characteristics of the radiant intensity, and phase—in the context of a universal

approach. A numerical experiment with applications to AOS allows one to predict

the efficiency of various system configurations. Much time and considerable

expense would be required to perform field experiment.

A method for numerical solution can be applied to two tasks:

1. High-power laser beam propagation in homogeneous media with absorption, and

optical wave propagation through a random inhomogeneous turbulent

atmosphere.

2. As high-power coherent laser beams propagate through a nonturbulent atmo-

sphere, thermal blooming is one of the main factors causing distortion, along

with turbulent fluctuations of the refractive index.

This nonlinear effect has the lowest energy threshold and arises as a result of

absorption of part of the beam energy and the formation of the thermal inhomoge-

neities in the beam channel.

The longitudinal scale of variability for thermal inhomogeneities induced in the

propagation channel of a high-power laser beam (thermal blooming) is comparable

to the diffraction length of the beam. In the interval Δz, the equation for the phase

screen can be approximated by the product of step length Δz and the refractive

index distribution at the center of the interval zl, zl þ Δz½ � [27]. This is based on

assumption of corresponding to propagation of a wave from the plane zl.
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φl ~ρð Þ ¼ kΔzδn ~ρ, zl þ 1

2
Δz

� �
þ O Δz2

� � ð6:14Þ

where

k ¼ 2π=λ is wave number

~ρ x; yð Þ is the vector of coordinates in the beam cross section (the beam is directed

along Oz axis)
δn ¼ n� 1ð Þ � 1 is the derivations of the refractive index from unity forn0 � 1,

with n0 being vacuum refractive index

From Eq. 6.14, it follows that we have only to determine perturbations of the

refractive index in some planes, the position of which are determined by the scheme

of the splitting algorithm [27].

Heating of the medium that is caused by absorption of radiation energy includes

variation of its density, which leads to a decrease in the refractive index related to

the density ρ by the following law [28]:

δn ¼ Kρ ð6:15Þ

where K is a constant equal to two-thirds of the polarization factor of a molecule or

gas atom.

In the isobaric approximation, the density of the medium is explicitly related to

temperature by the ideal gas law, so variations of the refractive index can be

expressed through temperature variations [27]:

δn � ∂n
∂T

T � T0ð Þ ¼ n
0
TδT ð6:16Þ

T0 and T are corresponding to initial and final temperature, respectively. The

isobaric approximation is valid for the normal atmospheric conditions. Exceptions

that should be taken under consideration are, fast scanning of a continuous-wave

(CW) high-power beam when the beam speed with respect to the medium is greater

than the sonic speed and when the pulse duration τp is comparable with the acoustic

time τs:

τp ¼ τs ¼ a=cs ð6:17Þ

where a is the beam size and cs is the sonic speed.
When the isobaric approximation is valid, the distribution of the refractive index

in the beam cross section is determined by the heat balance, which is described by

the heat transfer equation for the temperature field T(x, y, z): [27]
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∂T x; y; zð Þ
∂t

þ ~V⊥∇T � χΔ⊥ ¼ α

ρ0Cp

I ð6:18Þ

where
~V⊥ ¼ Vx;Vy

� �
is the transverse component of the beam velocity relative to the

medium

χ is heat conductivity

ρ0 is the specific density of the medium

α is the absorption coefficient

Cp is the specific heat at constant pressure

Vladimir P. Lukin and Boris V. Fortes [27] have provided a solution for the

above equation and have argued when the isobaric approximation becomes invalid.

By creating an AOS that is smart enough with its onboard computer software

system, we can overcome thermal blooming effects for better laser weaponry

system particularly dealing with ground-based laser (GBL), airborne laser (ABL),

and space-borne laser (SBL) in case of engagement with a target on ground (i.e.,

boost phase).

The most promising solution is to use a mirror in which the reflective surface is

deformable, sometimes called a “rubber” mirror by engineers, although it really

doesn’t contain rubber. There are three basic types being developed. One is the

segmented mirror in which there are many discrete segments, each of which is

moved back and forth mechanically by a separate pistonlike device called an

“actuator.” Another is a mirror in which a reflective coating has been laid down

on a base material that changes its shape when signals are applied to it. (In practice,

the base material is generally a piezoelectric material, which changes size when an

electrical voltage is applied to it. An array of electrodes applies different voltages to

different parts of the mirror base [2] (Fig. 6.9).)

A third concept is similar in that the mirror has a continuous flexible surface, but

in this case, the precise contour of the surface is shaped by an array of individually

controlled mechanical actuators lying beneath it [30]. All these concepts have been

demonstrated, although not in the sizes necessary for practical weapon systems.

Performance requirements are stringent for high-energy laser applications. The

mirror must be able to withstand the laser’s high power, a need often met by forcing

a liquid coolant through holes in the body of the mirror. Getting fine enough control

over the wave front of the beam requires many separate and ultraprecise control

elements in the mirror. A mirror 16 cm (6.5 in.) in diameter requires at least

60 separate actuators, and proportionately higher numbers are needed for larger

mirrors. The 16-cm mirror, together with its mount, should hit the scales at about

1000 kg (2200 Ib), and the 60 actuators should weigh no more than 800 kg (nearly

1800 Ib).

The shape of the optical surface must be precisely controlled. The mirror surface

should be able to move back and forth over a total range of at least four times the

laser wavelength. When the surface control is operating, the surface should be
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within one-twentieth of the laser wavelength of the ideal shape. As if that isn’t

enough, adjustments in mirror shape have to be made about 1000 times a second to

keep up with fluctuations in the atmosphere. Because the optical tolerances depend

directly on laser wavelength, they get tighter at shorter wavelengths. This helps to

offset the advantage of being able to use smaller optics at such wavelengths

(Fig. 6.10).

Adaptive optics can help compensate for effects other than atmospheric distor-

tions that might defocus a laser beam. Some turbulence is inevitable in the laser

itself, as gases flow rapidly through the laser cavity and react to release energy.

Corrections applied through deformable mirrors can help in precisely tracking

targets and in finely focusing the laser beam onto a distant target, although gross

mechanical motion of the mirror would be needed to provide full compensation for

anything beyond small movements [2].

6.6.1 Adaptive Optics

No matter how powerful a laser is, it will never reach its target without optical

components. The optical components not only “direct” the beam through the laser

to its target, but they also relay the laser energy and, when required, correct for any
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Fig. 6.9 The atmospheric transmission problem, and how it can be overcome—at least in theory.

In a vacuum a laser beam could be focused tightly onto a small spot (top picture (a)). In the

atmosphere turbulence, thermal blooming, and other effects spread out the beam over a much

larger area (middle (b)). By using adaptive optics to adjust the wave front of the light emitted by

the high-energy laser, the spreading can be reduced (bottom (c)). In these drawing, ϕ, indicates
control systems that adjust the shape of the output mirror to control the laser wave front; they are

compensating for atmospheric effects only in the bottom drawing [29]
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atmospheric turbulence that will distort the beam. The tremendous advances in

optics have played a key role in convincing the Air Force that laser weapon systems

can be produced. Without these successes by government laboratories and industry,

high-energy laser weapons would be impossible.

The reason stars twinkle in the night sky is due to atmospheric turbulence, which

also will distort and degrade any laser. This effect has especially severe effects for

the shorter wavelength lasers, such as COIL. These systems require sophisticated

optics in order to “pre-compensate” the laser beam for atmospheric turbulence 60 to

pre-shape the laser beam; an adaptive optics technique is used. Over the past several

years, the Air Force Research Laboratory, Phillips Research Site, and the Massa-

chusetts Institute of Technology’s Lincoln Laboratory have made significant strides

in adaptive optics.

The principle behind adaptive optics is to use a deformable mirror to compensate

for the distortion caused by the atmosphere. The system first sends out an artificial

“star” created by a low-power laser. When that laser beam is scattered by the

atmosphere, the scattering radiation is reflected back and measured so that the

system knows just how much the atmosphere is distorting the laser. By feeding this

information into a complex control system, the deformable mirror, with its hun-

dreds of small actuators positioned behind the mirror, alters the surface of the

mirror to compensate for atmospheric distortion. Thus, a high-energy laser can be

“pre-distorted” so it will regain its coherence as it passes through the atmosphere.

Deformable Surface

Addressing Electrodes

Piezoelectric Ceramic

Common Electrode

Electrical Addressing Leads

Deformable Surface

Individual Actuators

Substrate

Electrical Leads

Fig. 6.10 Two types of active mirrors shown in cross section to indicate how the surface is

controlled. In the mirror at top, the flexible surface layer rests on a block of piezoelectric ceramic,

which changes its height when an electrical voltage is applied across it. Applying different

voltages across different parts of the mirror alters its shape because the height of the piezoelectric

material changes unevenly across the surface. In the mirror at bottom, the flexible surface layer

covers an array of pistonlike actuators, which move back and forth in response to electrical signals,

thus changing the shape of the mirror [29]
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The Starfire Optical Range at the Phillips Research Site has successfully dem-

onstrated the adaptive optics technique. It has a telescope with the primary mirror

made of a lightweight honeycomb sandwich, which is polished to a precision of

21 nm or approximately 3000 times thinner than a human hair. To compensate for

the distortion caused by gravity, the primary mirror has 56 computer-controlled

actuators behind its front surface to maintain the surface figure. The 3.5-m telescope

adaptive optics system has a 941-actuator-deformable mirror that is controlled by a

complex computer system. What has been accomplished at the Starfire Optical

Range represents possibly the most significant revolution in optical technology in

the past 10 years.

6.6.2 Deformable Mirror

Deformable mirror (DM) represents the most convenient tool for wave-front con-

trol and correction of optical aberrations. Deformable mirrors are used in combi-

nation with wave-front sensors and real-time control systems in adaptive optics.

They are also finding a new use in femtosecond pulse shaping. The shape of the DM

can be controlled with a speed that is appropriate for compensation of dynamic

aberrations present in the optical system. In practice the DM shape should be

changed much faster than the process to be corrected, as the correction process,

even for a static aberration, may take several iterations. A DM usually has many

degrees of freedom. Typically, these degrees of freedom are associated with the

mechanical actuators, and it can be roughly taken that one actuator corresponds to

one degree of freedom.

6.6.2.1 Deformable Mirror Concepts

Segmented concept: Mirrors are formed by independent flat mirror segments. Each

segment can move a small distance back and forth to approximate the average value

of the wave front over the patch area. Normally these mirrors have little or zero

cross-talk between actuators. Stepwise approximation works poorly for smooth

continuous-wave fronts. Sharp edges of the segments and gaps between the seg-

ments contribute to light scattering, limiting the applications to those not sensitive

to scattered light. Considerable improvement of the performance of the segmented

mirror can be achieved by introduction of three degrees of freedom per segment:

piston, tip, and tilt. These mirrors require three times more actuators than piston-

segmented mirrors, and they suffer from diffraction on the segment edges. This

concept was used for fabrication of large segmented primary mirrors for the Keck

telescopes.

Continuous faceplate concept: Mirrors with discrete actuators are formed by the

front surface of a thin deformable membrane. The shape of the plate is controlled by
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a number of discrete actuators that are fixed to its back side. The shape of the mirror

depends on the combination of forces applied to the faceplate, boundary conditions

(the way the plate is fixed to the mirror), and the geometry and the material of the

plate. These mirrors are often the most desirable implementation, as they allow

smooth wave-front control with very large—up to several thousand—degrees of

freedom.

MEMS deformable: Mirror with 1020 actuators, from Boston Micromachines

Corporation. MEMS concept mirrors are fabricated using bulk and surface

micromachining technologies. MEMS mirrors have a great potential to be cheap.

They can break the high price threshold of conventional adaptive optics. MEMS

mirrors typically have high response rates, have high precision, and have no

hysteresis, unlike other types of deformable mirrors. Boston Micromachines Cor-

poration is one example of a company that produces MEMS Deformable mirrors.

Membrane concept: Mirrors are formed by a thin conductive and reflective

membrane stretched over a solid flat frame. The membrane can be deformed

electrostatically by applying control voltages to electrostatic electrode actuators

that can be positioned under or over the membrane. If there are any electrodes

positioned over the membrane, they are transparent. It is possible to operate the

mirror with only one group of electrodes positioned under the mirror. In this case, a

bias voltage is applied to all electrodes, to make the membrane initially spherical.

The membrane can move back and forth with respect to the reference sphere.

Bimorph concept: Mirrors are formed by two or more layers of different materials.

One or more of (active) layers are fabricated from a piezoelectric or electrostrictive

material. Electrode structure is patterned on the active layer to facilitate local

response. The mirror is deformed when a voltage is applied to one or more of its

electrodes, causing them to extend laterally, which results in local mirror curvature.

Bimorph mirrors are rarely made with more than 100 electrodes.

6.6 Adaptive Beaming and Imaging in Turbulent Atmosphere 179



Ferrofluid concept: Mirrors are liquid-deformable mirrors made with a suspension

of small (about 10 nm in diameter) ferromagnetic nanoparticles dispersed in a

liquid carrier. In the presence of an external magnetic field, the ferromagnetic

particles align with the field, the liquid becomes magnetized, and its surface

acquires a shape governed by the equilibrium between the magnetic, gravitational,

and surface tension forces. Using proper magnetic field geometries, any desired

shape can be produced at the surface of the ferrofluid. This new concept offers a

potential alternative for low-cost, high-stroke, and large number of actuator-

deformable mirrors.

6.6.2.2 Deformable Mirror Parameters

Number of actuators: Determines the number of degrees of freedom (wave-front

inflections) the mirror can correct. It is very common to compare an arbitrary DM to

an ideal device that can perfectly reproduce wave-front modes in the form of

Zernike polynomials. For predefined statistics of aberrations, a deformable mirror

with M actuators can be equivalent to an ideal Zernike corrector with N (usually

N<M ) degrees of freedom. For correction of the atmospheric turbulence, elimi-

nation of low-order Zernike terms usually results in significant improvement of the

image quality, while further correction of the higher-order terms introduces less

significant improvements. For strong and rapid wave-front error fluctuations such

as shocks and wake turbulence typically encountered in high-speed aerodynamic

flow fields, the number of actuators, actuator pitch, and stroke determines the

maximum wave-front gradients that can be compensated for.

Actuator pitch: Is the distance between actuator centers. Deformable mirrors with

large actuator pitch and large number of actuators are bulky and expensive.

Actuator stroke: Is the maximum possible actuator displacement, typically in

positive or negative excursions from some central null position. Stroke typically

ranges from �1 to �10 μm. Free actuator stroke limits the maximum amplitude of

the corrected wave front, while the inter-actuator stroke limits the maximum

amplitude and gradients of correctable higher-order aberrations.

Influence function: Is the characteristic shape corresponding to the mirror response

to the action of a single actuator. Different types of deformable mirrors have

different influence functions; moreover the influence functions can be different

for different actuators of the same mirror. Influence function that covers the whole

mirror surface is called a “modal” function, while localized response is called

“zonal.”

Actuator coupling: Shows how much the movement of one actuator will displace

its neighbors. All “modal” mirrors have large cross-coupling, which in fact is good

as it secures the high quality of correction of smooth low-order optical aberrations

that usually have the highest statistical weight.
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Response time: Shows how quickly the mirror will react to the control signal

and can vary from microseconds (MEMS mirrors) to tens of seconds for thermally

controlled DM’s.

Hysteresis and creep: Are nonlinear actuation effects that decrease the preci-

sion of the response of the deformable mirror. For different concepts, the hysteresis

can vary from zero (electrostatically actuated mirrors) to tens of percent for mirrors

with piezoelectric actuators. Hysteresis is a residual positional error from previous

actuator position commands and limits the mirror ability to work in a feed forward

mode, outside of a feedback loop.

6.6.3 Large Optical Systems

In addition to adaptive optics, large mirrors, either on the ground or in space, are

needed to expand and project the laser energy onto the missile. Several significant

large optics programs were conducted in the late 1980s and early 1990s. The Large

Optics Demonstration Experiment (LODE) established the ability to measure and

corrected the outgoing wave front of high-energy lasers. The Large Advanced

Mirror Program (LAMP) designed and fabricated a 4-m diameter lightweight,

segmented mirror. This mirror consists of seven separate segments that are

connected to a common bulkhead. The advantages of building a mirror in segments

are to reduce the overall weight and fabricate larger mirrors. In addition, each

segment can be repositioned with small actuator motors to slightly adjust the

surface of the mirror. The program’s finished mirror successfully achieved the

required optical figure and surface quality for a space-based laser application.

6.6.4 What Is Phase Conjugation in Optics?

Phase conjugation is a fascinating phenomenon with very unusual characteristics

and properties. It operates somewhat like holography, but it is a dynamic hologram,

whose “holographic plate” is defined by interfering wave fronts in a nonlinear

optical medium, rather than etched as a static pattern on a glass plate. In this section,

it is provided an intuitive explanation of the essential principles behind phase

conjugation (Fig. 6.11) [31].

Let us begin with the properties of a phase conjugate mirror. A phase conjugate

mirror is like a mirror, in that it reflects incident light back toward where it came

from, but it does so in a different way than a regular mirror.

In a regular mirror, light that strikes the mirror normal to its surface is reflected

straight back the way it came (A). This is also true of a phase conjugate mirror (B).

When the light strikes, a normal mirror at an angle, it reflects back in the opposite

direction, such that the angle of incidence is equal to the angle of reflection (C).
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In a phase conjugate mirror, on the other hand, light is always reflected straight

back the way it came from, no matter what the angle of incidence (D)

This difference in the manner of reflection has significant consequences. For

example, if we place an irregular distorting glass in the path of a beam of light, the

parallel rays get bent in random directions, and after reflection from a normal

mirror, each ray of light is bent even farther, and the beam is scattered (Fig. 6.12).

With a phase conjugate mirror, on the other hand, each ray is reflected back in

the direction it came from. This reflected conjugate wave therefore propagates

backward through the distorting medium, and essentially “un-does” the distortion,

and returns to a coherent beam of parallel rays traveling in the opposite direction

(Fig. 6.13).

r

regular mirror
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c d

phase conjugate mirror
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Fig. 6.11 Image of regular

and phase conjugate mirror

regular mirror
distorting
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Fig. 6.12 Image of regular

mirror

phase conjugate mirrorFig. 6.13 Image of phase

conjugate mirror
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6.6.4.1 How Does the Phase Conjugate Mirror Do That?

In linear optics, light waves pass through each other transparently, as if the other

waves were not there, and the same is true of the ripples on a pond that also pass

through each other totally unaffected after they cross. But almost any optical, or

other wave phenomenon, will go nonlinear if the amplitude is sufficiently high, and

that is also true of water waves, to help our intuition. When waves in a ripple tank

are driven too strongly, they lose their perfect sinusoidal shape and form sharper

peaks between wide valleys, like wind-driven waves on the ocean. A most extreme

nonlinear wave is seen in breaking waves on the beach, whose towering crests carry

with them a slug of moving water. Waves of this sort do not pass through each other

transparently, but they collide and rebound energetically like colliding billiard

balls. In reality, nonlinear waves exhibit both linear and nonlinear components,

so that colliding waves will simultaneously pass mostly through each other unaf-

fected, and at the same time, some portion of those waves collide with and rebound

off each other, creating reflections in both directions. This concept of waves

colliding and rebounding provides the key insight into understanding the otherwise

mysterious phenomenon of phase conjugation. This antiparallel rebounding of a ray

of light in nonlinear optics, along with Huygens’s Principle of wave propagation, is
sufficient to explain some of the bizarre time-reversed reconstruction principles in

phase conjugation, which is the principle that mirrors an observed property of

perceptual reification.

6.6.4.2 Huygens’s Principle

Huygens’s principle states that a wave front is mathematically equivalent to a line

of point sources all along that front, because the outward-radiating rays from

adjacent point sources along the front eventually cancel by destructive interference,

leaving only the component traveling in a direction normal to the local orientation

of the front. This principle has an interesting spatial consequence that if the flame

front has a shape, whether curved convex or concave or a zigzag or wavy line

pattern, the shape of that wave front has a profound influence on the pattern of

propagation of that front.

6.6.4.3 Two-Wave Mixing

The interactions between nonlinear waves is illustrated by the phenomenon of

two-wave mixing, performed by projecting two laser beams to cross in the volume

of a nonlinear optical medium. Figure 6.14a shows two laser beams, B1 and B2, that

intersect through some volumetric region of space. In the volume of their zone of

intersection, a pattern of standing waves emerges in the form of parallel planes,

oriented parallel to the bisector of the angle between the two beams, as shown in
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Fig. 6.14a. Figure 6.14b shows in two dimensions how the wave fronts from the two

beams intersect to produce high amplitude by constructive interference along the

vertical lines in the figure, interleaved with planar nodes of low or zero amplitude in

between, due to destructive interference.

In linear optics, this interference pattern is a transient phenomenon that has no

effect on anything else. However if the crossing of laser beams occurs in the

transparent volume of a nonlinear optical medium, as suggested by the rectangular

block in Fig. 6.14a, and if the amplitude of the beams is sufficiently large, the

interference pattern will cause a change in the refractive index of the nonlinear

medium in the shape of those same parallel planes, due to the optical Kerr effect.

The alternating pattern of higher and lower refractive index in parallel planes

behaves like a Bragg diffractor.

6.6.4.4 Bragg Diffraction

Bragg diffraction is distinct from regular diffraction by the fact that the diffracting

element is not a two-dimensional grating of lines etched on a flat sheet, as in

standard diffraction, but a solid volume containing parallel planes of alternating

refractive index. Bragg diffraction was first observed in X-ray crystallography as a

sharp peak of reflection at a particular angle of incidence to the crystal lattice

planes. The crystal layers behave much like a stack of partially silvered mirrors,

each plane passing most of the light straight through undiminished, but reflecting a

portion of that light like a mirror, with the angle of reflection equal to the angle of

incidence.

However because of interference between reflections from successive layers at

different depths, Bragg diffraction is stronger at those angles of incidence that

promote constructive interference between reflected rays but weakens or disappears

Fig. 6.14 (a) Two laser beams B1 and B2 that cross, create an interference pattern in their zone of

intersection. (b) Constructive interference creates a pattern of high amplitude in parallel planes,

parallel to the angular bisector of the two beams, with planes of low amplitude in between. (c) The
wave vector diagram for the crossing beams, including a new lattice vector KL that corresponds to

the difference vector between the crossing beams
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altogether at other angles where the various reflected beams cancel by destructive

interference. Maximal diffraction occurs at angles that meet the Bragg condition,

that is,

2d sin θ ¼ nλ

where θ is the angle of the incident ray to the plane of the reflecting surface, d is the
distance between adjacent planes, λ is the wavelength of light, and n is an integer. In
words, Bragg reflection occurs at angles of reflection where the path length differ-

ence between reflections from adjacent planes differs by an integer number of

wavelengths.

6.6.4.5 Reciprocal Lattice Wave Vector Representation

The phase matching constraint enforced by the Bragg condition can be seen most

easily in a Fourier space called the reciprocal lattice representation. Each beam is

represented by a wave vector whose direction is normal to the wave fronts of the

corresponding beam and whose magnitude is proportional to the inverse of the

wavelength or spacing between successive wave fronts of the beam. This is a

Fourier representation in that the magnitude of the wave vectors is proportional

to the frequency of the corresponding wave. Mathematically, the magnitude k of the
wave vector of a wave of wavelength l is given by

k ¼ 2π=λ

The convenience of this representation is that the wave vectors of waves that are

phase matched so as to be in a mutually constructive relationship, form closed

polygons in this space, and this can be used to determine whether the Bragg

condition is met.

Figure 6.14c shows the wave vector representation for the crossing laser beams

depicted in Fig. 6.14a. The wave vectors K1 and K2 are oriented parallel to their

corresponding beams B1 and B2. The parallel planes of a Bragg diffractor, such as a

crystal composed of parallel planes, can also be expressed as a wave vector because

it behaves very much like a beam of coherent light to an incident beam that

strikes it. As with wave vectors, the direction of this lattice vector KL is normal

to the planes of the grating, and the vector magnitude is proportional to the inverse

of the spacing between lattice planes. Figure 6.15a shows the nonlinear optical

element replaced by a functionally equivalent crystal with lattice planes parallel to

those of the standing wave. The vector diagram of Fig. 6.14c shows the lattice

vector KL that would be required for the phase matching relation dictated by the

Bragg condition to hold. In terms of wave vectors in the reciprocal lattice repre-

sentation, the Bragg condition holds when
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K1 þ KL ¼ K2

or equivalently,

K2 � KL ¼ K1

The lattice vector acts in opposite directions on K1 and K2, which is why it is added

to one but subtracted from the other. Note how the lattice vector is oriented normal

to the planes of the lattice, which are parallel to the angular bisector of the two

beams, as required for the angle of incidence to equal the angle of reflection. For

example if the lattice spacing were somewhat larger than that dictated by the Bragg

condition, that would make the lattice vector shorter, and the three vectors would no

longer form a closed triangle, and thus little or no Bragg refraction would be

expected to occur with that crystal, that is, the light would pass through with little

or no reflection. Bragg refraction could be restored, however, by re-aligning either

or both beams to make their wave vectors meet the shorter lattice vector.

6.6.4.6 Magical Reification

The magic of nonlinear optics is that when laser beams cross in the volume of a

nonlinear optical medium, as depicted in Fig. 6.14a, the wave vector of the resultant

nonlinear standing wave pattern automatically takes on the configuration required

by the Bragg condition, no matter what the angle of intersection of the two beams.

So although Bragg reflection occurs off a crystal only for certain specific angles that

meet the Bragg condition, laser beams that cross in a nonlinear optical medium

B2

a b c

B2 B2

B2B2
B1

B1 B1

B1

B1

Fig. 6.15 (a) Nonlinear optical element replaced by functionally equivalent crystal with lattice

planes parallel to the original standing waves and with the same spacing as the standing waves. (b)
If beam B2 were shut off, then beam B1 together with the crystal would recreate B2 by Bragg

diffraction. (c) Conversely, if beam B1 were shut off, then beam B2 together with the crystal would

recreate B1 by Bragg diffraction

186 6 High-Energy Laser Beam Weapons



create a standing wave whose lattice vector is automatically equal to the difference

between the two crossing beams, or,

KL � K2 ¼ K1

This is a remarkable constructive or generative function of nonlinear optics,

creating a whole new waveform out of whole cloth, equal to the difference between

two parent wave forms. This magical act of creation can be understood as a property

of the fundamental resonances in the nonlinear optical material set up by the

passage of high-amplitude laser beams. The laser beam sets up a resonance in the

electrons that are attached to the molecules in the optical material, that makes them

vibrate in sympathy with the passing wave. The difference in nonlinear optics is that

this resonance takes energy to establish, as if the electron had a certain momentum

to be overcome or a capacitor that must absorb a certain charge, so that the optical

material does not react instantaneously to the passing light, but with a certain

energetic time lag, that borrows energy from the wave when the wave first turns

on and repays that energy debt when the wave is shut off again, like a capacitor

discharging through a resistor or a mass-and-spring system returning to center after

wave passage. This is what makes nonlinear optics automatically balance the vector

equation. If one wave vector deflects the electron this way and another deflects it

that way, the electron needs to return back to the center before it can start the next

cycle, and that returning back to the center is what closes the wave vector diagram.

If the pattern of standing waves were somehow frozen as a fixed pattern of

alternating refractive index, as in a layered crystal, as suggested in Fig. 6.15a, then

this crystal would behave like a hologram that can restore the pattern of light if one

of the input beams is removed. For example, Fig. 6.15b shows beam B1 refracted by

the functionally equivalent crystal lattice to produce a reflected beam in the

direction of the original beam B2, and Fig. 6.16c shows beam B2 refracted by the

equivalent crystal lattice to recreate the original beam B1. The reification in

two-wave mixing has created a difference vector that has created a redundancy in

the representation that allows either one of the input signals to be removed without

loss of information.

If another analogy might be helpful, consider water flowing over sand, and

creating little rippling dunes, and the rippling dunes in turn force the water to ripple

over them, the flowing water and the rippling sand modulating each other by

conforming to each other energetically. You can see the dunes eroding constantly

from their flow-ward side, and building back up again on their leeward side, causing

the little sand dunes to advance slowly to leeward, all in lock step with each other

and with the corresponding ripples in the water. If you could instantly smooth the

sand flat but preserve the rippling pattern in the water flow, it would immediately

reestablish the ripples in the sand, by allowing the sand to accumulate in the

stagnant parts of the flow. In fact, the rippling pattern would automatically

reestablish itself naturally anyway, due to the fundamental dynamics of the water/

sand interaction. Likewise, if the sand were frozen to a static plaster cast of the

ripple pattern, that pattern would coerce any water flowing over it to conform to its

6.6 Adaptive Beaming and Imaging in Turbulent Atmosphere 187



pattern of ripples, which the water would happily comply with, if the ripples are of

the right natural frequency.

The nonlinear standing wave establishes an energy coupling between the two

intersecting waves, such that one wave can “pump” or amplify the other. For

example, if B1 is of higher amplitude than B2, then the interference pattern between

B1 and B2 reflects some of the energy of B1 in the direction of B2, as in Fig. 6.15a,

whereas if B2 is of higher amplitude than B1, some of the energy of B2 is reflected in

the direction of B1, as in Fig. 6.15b. In fact, whether the two beams are of equal

amplitude or not, some portion of B1 is always lost to B2 through the crystal, while

some portion of B2 is lost to B1, as suggested in Fig. 6.15a, so the net energy transfer

always flows from the higher amplitude beam toward the lower. That is, the two

waves are intimately coupled through the nonlinear standing wave, energy-wise,

and this energy coupling is what allows phase conjugation to produce an amplified

reflection.

6.6.4.7 Degenerate Four-Wave Mixing

To create a phase conjugate mirror, we add a third probe beam, B3, to intersect with

the other two beams in the nonlinear optical element as shown in Fig. 6.16a. This

creates a fourth signal beam B4 which will eventually be our phase conjugate beam

probe beam

a b c

signal beam

pumping
beams

origin

B4

B1 B2

B2

B2

B1

B1B4

B4

B3

B3

B3

K3

K2

K1

(K1 + K2)

K4

Fig. 6.16 (a) A third beam B3 is directed into the intersection of the other beams, which produces

a fourth beam B4. The angle of that new beam can be calculated from the wave vector diagram as

shown in (b). This can be seen intuitively as (c): an interference that forms between B3 and B1,

followed by a reflection of B2 by that pattern to create B4, or alternatively it can be seen as (d) an
interference between B3 and B2, followed by a reflection of B1 by that interference pattern to

create B3
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after one last modification. This configuration is known as degenerate four-wave

mixing. (The word degenerate refers to the fact that the frequencies of all four

beams are equal, as required for the simplest form of phase conjugation exemplified

here.) The direction of that fourth beam can be computed from the vector diagram

shown in Fig. 6.16b, by the principle that the fourth beam will exactly cancel or

balance the sum of the other three vectors, or,

K1 þ K2 þ K3 þ K4 ¼ 0

Again, this is dictated by the phase matching constraint, whereby the only waves

that will emerge are those that reinforce each other constructively, and the recip-

rocal wave vector diagram helps identify the conditions under which that constraint

is met. If the pumping beams K1 and K2 remain fixed, then whichever way the probe

beam wave vector K3 is directed from the point K1 þ K2ð Þ in the vector diagram, the

conjugate beam will always return back to the origin, as shown in Fig. 6.16b.

There are two ways that this phenomenon can be understood intuitively. We can

say that probe beam B3 interferes with pumping beam B1 to produce an interference

pattern as shown in Fig. 6.16c along their angular bisector, then beam B2 reflects off

that interference pattern to produce the signal beam B4 (angle of reflection equals

angle of incidence). Alternatively we can say that the probe beam B3 interferes with

other pumping beam B2 to produce an interference pattern as shown in Fig. 6.16d,

then beam B1 reflects off that interference pattern to produce the signal beam B4. It

is more accurate however to think of all four beams as interlocked in a four-way

energy coupling consummated by the newly created signal beam that appears so as

to balance the vector equation and maintain phase coherence between all four

beams. In other words, both interference patterns of Fig. 6.16c, d coexist simulta-

neously along with the original pattern of Fig. 6.14a, interlocking the four beams in

a mutually interdependent energy relation.

6.6.4.8 Phase Conjugate Mirror

All we need to do to complete the phase conjugate mirror is to orient beams B1 and

B2 antiparallel to each other, so that in vector terms K1 þ K2 ¼ 0. This in turn

means thatK3 þ K4 ¼ 0, which means that the reflected beam B4 must be the phase

conjugate of the probe beam B3. Figure 6.17a shows the configuration required for

phase conjugation. Pumping beams B1 and B2 are projected into the nonlinear

optical element from opposite directions where they interfere to form a nonlinear

standing wave. The probe beam B3 can now be projected into the mirror from any

direction, and this will produce the phase conjugate beam B4 superimposed on B3

but traveling in the opposite direction as a “time-reversed” reflection. The summa-

tion of B3 and B4 traveling in opposite directions converts the two waves into a

standing wave that oscillates without propagation if they are of equal amplitude,

otherwise there will be a net propagation in the direction of the higher amplitude

beam. Figure 6.17b shows the wave vector diagram showing how if K1 þ K2 ¼ 0,
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then K3 þ K4 also equals 0 no matter what angle the probe beam enters the mirror,

and thus B4 must be the phase conjugate of B3.

If the pumping beams are provided at high amplitude, then the energy built up in

the nonlinear standing wave can spill over to the conjugate wave, creating an

amplified reflection of the incoming wave back outward in the direction from

whence it came. This is the phase conjugate mirror produced by degenerate four-

wave mixing.

6.6.4.9 Phase Conjugation and Optical Black Magic

Adaptive optics is more than simply deformable mirrors. A control system is

needed to determine how much to adjust the mirror’s shape. Extensive theoretical

work has been done on the propagation of high-energy laser beams through the

atmosphere, but theory is not enough. Some of the most important distortions are

caused by random atmospheric turbulence that theory cannot predict. The effects

influencing light along the path the beam is going to travel must be measured, and

that information must be converted into a control signal. This means that the control

system must receive light returning along the beam path and analyze what has

happened to it. This is by no means an easy process, and the details are well beyond

the scope of this book [2].

After the control system has measured the effects that the beam will be subjected

to, the type of compensation required must be determined. This process is called

phase conjugation. It is a complex operation in which the measured effects of

turbulence are used to create a laser wave front that will undo what the turbulence

did, making it possible to produce a tight focal spot on the target. The precise

method by which phase conjugation works is too complex to describe here; suffice

Fig. 6.17 (a) A phase conjugate mirror is produced by antiparallel pumping beams B1 and B2 that

cross in opposite directions in the nonlinear optical element. When a third probe beam B3 is

projected into the mirror from any direction, a phase conjugate beam B4 will appear as a time-

reversed reflection of the probe beam in the direction from whence it came. (b) The wave vector
diagram shows how if K1 þ K2 ¼ 0, then K3 þ K4 also equals 0, and thus B4 must be the phase

conjugate of B3
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it to say that in theory, the technique can be used to compensate for aberrations

inside the laser and in the atmosphere [21]. The critical corrections are made by

adjusting the relative phase of different parts of the laser beam, that is, by making

parts of the laser beam slightly out of step with each other, instead of staying in the

normal lockstep of the light waves in a laser beam. Interestingly, changes in the

intensity pattern of the laser beam are less important in compensating for atmo-

spheric effects than the more subtle phase shift (Fig. 6.18) [2].

Beam distortions are not so serious in space, where there is no air to get in the

way, but the tremendous distances involved to engage with target present. A

massive amount of scientific manpower and defense money is going into develop-

ment of adaptive optics. The topic is a common and hot one among scholar of this

subject.

6.7 Target Effects

Once the beam reaches the target, it deposits part of its energy there. This involves a

complex interaction between beam and target that depends strongly on the nature of

the beam and property of the target and which ultimately determines how much of

the energy in the beam is transferred to the target. Only after the energy is

transferred to the target can it do any damage.

No one is seriously thinking of using a laser beam to completely vaporize any

military targets. Instead, a continuous laser beam would cause physical damage by

heating a target until the beam melted through the skin and lethally damaged some

internal components. The actual type of damage would depend on the target and

where it was illuminated. Drilling a hole in a fuel tank could cause an explosion.

Fig. 6.18 Cutaway view of

a 19-actuator-deformable

mirror built by Rockwell

International’s Rocketdyne

Division shows the

complexity of adaptive

optics. This mirror is 16 in.

(40 cm) in diameter and

weighs 100 lb (45 kg)
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Disabling the device called a “fuse,” which triggers the explosion of a warhead,

would prevent a bomb from exploding or alternatively might trigger a premature

explosion of the warhead, in a place where it would not damage the intended target,

but could cause considerable damage to other objects and people. Knocking out the

control or guidance system could make a missile land far from its intended

target [2].

A continuous laser beam can’t do damage instantaneously. Heating the target to

the required temperature would probably take a few seconds, depending on the laser

power and the nature of the target; exact requirements are classified by the govern-

ment but can be estimated doing few mathematical analysis. The illumination time

is long enough for the beam to wander off the target spot and let the heated area cool

off. Techniques called “countermeasures,” described in many related defense

papers, could be used to reduce the amount of energy that the beam could deposit

on the target. Other types of interactions could also help protect the target [2].

There is considerable interest in substituting a rapid series of short laser pulses

for a continuous beam. As mentioned earlier, this might simplify the task of getting

the beam through the air to its target. The abrupt heating and cooling could cause

thermal shock, sufficient to shatter materials such as glass. A short, intense pulse

could also rapidly evaporate a burst of material from the surface, generating a shock

wave that would travel through the target and could cause mechanical damage.

(Evaporation caused by a continuous beam would be more gradual and would not

cause a shock wave.) The combination of thermal and mechanical damage and

heating effects caused by a series of short, closely timed laser pulses does a better

job of breaking through sheet metal of target than either heating or laser produced

shock waves can do by themselves [2].

Physical damage is not the only way a laser beam can disable a target. The beam

could also attack sensors that guide weapons to their targets, blinding or disabling

them by other means. Particle beams, microwaves, and X-rays have their own

distinct ways of producing damages to target [2].

6.7.1 Measured Characteristic of Target Both Optically
and Thermally

The purpose of measuring the characteristic of target is the absorptance of the target

at the laser wavelength that is needed for model calculations of the target’s thermal

response. Ideally, the absorptance should be known as a function of temperature.

However, if this is not available, the initial absorptance at ambient temperature is

still a vital input to the thermal model and high-energy laser weaponry [32].

For accurate lethality estimates for a metal-skinned target, it is very desirable to

know the target’s absorptance at the laser wavelength and as a function of temper-

ature. This can be done either with optical measurement approach that requires

special equipment that is not generally available and is limited to power levels that
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would not contaminate the hardware with sample ejecta. In lethality testing at high-

power levels, it is possible to get absorptance values in real time using simple

thermocouple instrumentation as discussed below [32].

6.7.2 Target Absorptance Optical Approach

For opaque (optically dense) targets as can be assumed for standard cases, the

absorptance A(θ) at a given incidence angle θ can be inferred from a measurement

of total hemispherical reflectance R(θ) at that incidence angle:

A θð Þ ¼ 1� R θð Þ

There are a number of government and commercial laboratories that perform

spectrally resolved reflectance measurements. These give the directional hemi-
spherical reflectance (DHR) of a sample as a function of wavelength over a range

of interest. The sample is positioned in an integrating sphere and is illuminated at a

fixed incidence angle by a spectrally resolved light source. This is due to the fact

that absorptance of some materials is polarization dependent, and, therefore, the

light source should either be unpolarized or measurements should be made with

orthogonal polarizations. For more information on polarization subject, reader

should refer to Appendix F this book. Commercial and custom reflectometers

have the capability of heating the sample in situ to temperatures as high as

500 �C. Note that most laboratories restrict heating to temperature below the

threshold for decomposition. Absolute measurement uncertainly is typically in

the range of 0.01–0.02.

An alternative approach, illustrated in Fig. 6.19, has been pioneered by the Air

Force Research Laboratory. The instrument, in what is known as the temperature-

dependent reflectance of aerospace materials (TRAM) facility, is a hemi-ellipsoidal

gold-coated dome. The sample is heated by a laser whose wavelength is different

from the wavelength of interest provided by the probe beam or weaponry beam. The

sample is located at one of the foci of the hemi-ellipsoid, and the entrance port of an

integrating sphere is located at the other focal point.

In order for the integrating sphere detector to distinguish the probe beam signal

from the heater beam, the probe beam is chopped at a relative high frequency

(300 Hz) and a phase-sensitive (“lock-in”) amplifier is employed. Additionally, a

filter having high reflectance at the heater laser wavelength is positioned in front of

the detector.

A pyrometer or thermographic imaging camera is employed to measure the

sample’s temperature as it is heated.

Note that for partially transparent materials, one must also measure their trans-

mittance. Recent modifications to the TRAM instrument have permitted simulta-

neous measurements to be made of reflectance and transmittance as the sample is
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heated. However, this capability is still under development and not yet fully

proven [32].

6.7.3 Target Absorptance Thermal Approach

The thermal response of a metal plate may be used to estimate the target’s

absorptance as a function of temperature. Typically, the temperature of the rear

surface is measured with attached thermocouples and/or by use of a thermographic

imaging camera. In the latter case, the rear surface is coated with a high emittance,

thermally stable black paint.

Under conditions where two- or three-dimensional heat conduction effects can

be ignored, a closed form analytical solution has been found, and it is shown in

Sect. 6.6.4 below for the response of a finite thickness slab of material insulated in

both faces to a constant uniform heat flux on one surface. This solution, which

assumes constant thermal properties and no phase change, is given by

T z; tð Þ¼ T z;0ð Þþ AIt

ρCpL

þAIL

k

3 1� z=Lð Þ2�1

6
� 2

π2

X1
n¼1

�1ð Þn
n2

exp �κn2π2t=L2
� �

cos nπ 1� z=Lð Þð Þ
( ) ð6:19Þ

Probe Beam

Pyrometer

Heater Beam

Video Camera

Sample

TRAM Dome

Detector

Heater Beam
Reflector

Integrating Sphere

Fig. 6.19 Schematic of TRAM reflectometer
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where the axial coordinate in the original formula has been replaced by L� z and
the heat flux is assumed to be the absorbed irradiance at z ¼ 0. Of course, from

initial temperature to melt, themophysical properties of most materials vary con-

siderably, but for limited temperature changes, this assumption is reasonable if

average values are used. The limitations are further discussed below. Note in the

above equation that A is the absorptance, I is irradiance (W/cm2), t is time (s), ρ is

density (g/cm3), Cp is the specific heat (J/g K), L is the slab thickness (cm), k is the
thermal conductivity (W/cmK), and κ is the thermal diffusivity (cm2/s). The first

term in the equation is the initial temperature, and the second term in the equation is

just the linear rise in average plate temperature. The summation in the bracket is a

strong function of the axial Fourier number, fNa ¼ κt=L2, the ratio of the duration of
the irradiance to the characteristic conduction time through the thickness L. For
fNa > 0:3, the summation is approximately zero, and the first term in the bracket

dominates, i.e., the temperature distribution develops a quasi-steady-state quadratic

gradient superimposed on the average plate temperature. For small values of fNa, the
sum must be calculated to capture the transient; however, the sum converges

rapidly with fewer than ten terms required for reasonable accuracy at

fNa ¼ 0:005. The behavior of the bracketed term in Eq. 6.19 is shown in Fig. 6.20

below.

The thermal diffusivity of a relative low thermal conductivity material such as

steel approximately is 0.05 cm2/s, and thickness values for many coupons are in the

0.1–0.3 cm range [32]. For an axial Fourier number of 0.3, the corresponding times
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are in the 0.06–0.54 s range. This means that, for many cases of interest (exposure

time greater than 0.5 s at these thicknesses), Equation 6.19 may be reduced to a

simpler form for analyzing plate heating,

T z; tð Þ ¼ AIt

ρCpL
þ AIL

k

3 1� z=Lð Þ2 � 1

6

( )
ð6:20Þ

Evaluating this equation at z ¼ 0 and z ¼ L, the following two results are obtained:

T 0; tð Þ ¼ T0 tð Þ ¼ AI

ρCpL
tþ L2

3κ

� �
þ T0 ð6:21Þ

T L; tð Þ ¼ TL tð Þ ¼ AI

ρCpL
tþ L2

6κ

� �
þ T0 ð6:22Þ

where advantage has been taken of the relationship between thermal conductivity

and diffusivity: k ¼ ρCpκ. Taking the first derivative with respect to time of

Eq. 6.22 and rearranging, we arrive at:

A ¼ ρCpL

I

dTL

dt
ð6:23Þ

Thus, given knowledge of the density, specific heat, and local irradiance (opposite

the location where the temperature is being measured), the absorptance can be

determined from the slope of the rear surface’s thermal response curve.

For most materials, the specific heat is temperature dependent. In addition, the

irradiance may vary with time. Then Eq. 6.23 can be conveniently evaluated using a

spreadsheet that implements measured values for Cp(T ) and I(t). Often the former

are given by stepwise polynomial fits.

Note that this method of measuring absorptance is valid only up to the point

where the target’s front surface reaches its melting point. Also, the method must be

applied under conditions where losses (convective, radiative, and lateral conduc-

tive) are small compared to the absorbed flux. Finally, the method should be applied

when the beam’s spatial irradiance profile is smooth with no local excursions about

the mean greater than about 10% [32].

6.7.4 Mathematical Modeling of Thermal Approach

The heat flow in a finite or semi-infinite thin slab for one-dimensional is governed

by the partial differential equation (PDE):
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∂u z; tð Þ
∂t

¼ c
∂2

u z; tð Þ
∂z2

ð6:24Þ

where c is a constant (called the diffusivity), and u(z, t) is the temperature at

position z and time t. The temperature over a cross section at z is taken to be

uniform (see Fig. 6.21).

Many different scenarios can arise in the solution of the heat equation; we will

consider several to illustrate the various techniques involved:

Example 1. Solve the following heat transfer problem along with boundary con-

dition (BC) and initial condition (IC) as follows (for simplicity of this analysis, we

have assumed c ¼ 1):
∂2

u z;tð Þ
∂z2 ¼ ∂u z;tð Þ

∂t
0 < z < L and t > 0

ið Þ u z; 0ð Þ ¼ u0f Initial Condition

iið Þ ∂u 0; tð Þ
∂z

¼ 0

iiið Þ u L; tð Þ ¼ u1

(
Boundary Condition

�
i:e: now flow of heat over z ¼ 0

Solution Taking the Laplace transform (See Appendix E and Eq. E.38) over t of
heat equation flow of above PDE gives;

Fig. 6.21 Finite slab

geometry
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d2U

dx2
¼ sU � u0

Then

U z; sð Þ ¼ c1cosh
ffiffi
s

p
zþ c2sinh

ffiffi
s

p
zþ u0

s

And by BC (ii), c2 ¼ 0, so that

U z; sð Þ ¼ c1cosh
ffiffi
s

p
zþ u0

s

We find by BC (iii) that

U L; sð Þ ¼ u1
s
¼ c1cosh

ffiffi
s

p
Lþ u0

s

and so

c1 ¼ u1 � u0
scosh

ffiffi
s

p
L

Therefore,

U z; sð Þ ¼ u1 � u0ð Þcosh ffiffi
s

p
z

scosh
ffiffi
s

p
L

þ u0
s

Taking the inverse Laplace transform gives

u z; tð Þ ¼ u0 þ u1 � u0ð Þ£�1 cosh
ffiffi
s

p
z

scosh
ffiffi
s

p
L

� �
¼ u1 þ 4 u1 � u0ð Þ

π

X1
n¼1

�1ð Þn
2n� 1ð Þexp � 2n� 1ð Þ2π2t=4L2

	 

cos

2n� 1

2L

� �
πz

This is analogous to Eq. 6.19 except we have to replace u(z, t) with T(z, t), u0 with
T(z, 0) and u1 with T(L, t) as well as accounting for thermal conductivity or

diffusivity c of Eq. 6.24. Very similar solution is given by Carslaw and Jaeger

page 112 equation (3) and (4).
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Chapter 7

Lasers

The word laser is an acronym for light amplification by stimulated emission of

radiation, although common usage today is to use the word as a noun—laser—

rather than as an acronym—LASER.

A laser is a device that creates and amplifies a narrow, intense beam of coherent

light.

Atoms emit radiation. We see it every day when the “excited” neon atoms in a

neon sign emit light. Normally, they radiate their light in random directions at

random times. The result is incoherent light—a technical term for what you would

consider a jumble of photons going in all directions.

The trick in generating coherent light—of a single or just a few frequencies

going in one precise direction—is to find the right atoms with the right internal

storage mechanisms and create an environment in which they can all cooperate—to

give out their light at the right time and all in the same direction.

7.1 Introduction

In this chapter we discuss the response of materials to a high-power radiation laser

with a one-dimensional mathematical modeling and presentation of solution to

different cases of heat conduction partial differential equation along with given

boundary and initial conditions under different scenarios. The topics of this chapter

also include discussion of optical reflectivity of metals at Infrared Radiation (IR)

wavelengths, laser-induced heat flow in materials, the effects of melting and

vaporization, the impulse generated in materials by both pulsed and continuous

radiation, and the influence of the absorption of laser radiation in the blow-off and

melting region in front of the irradiated materials.

LASER is an acronym that standing for “Light Amplification by the Stimulated

Emission of Radiation,” which is almost totally a coherent beam. In order to

produce a lasing beam we look at an atom that will emit a photon of light when it

© Springer International Publishing Switzerland 2016
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decays from an excited energy state to a lower state. The energy difference between

two states can be designated as ΔE which can be described in terms of frequency ν
of this light in the form of Eq. 7.1, which is also known as Planck–Einstein Relation

in quantum mechanics, for the above photon emitting light due to its decay in

energy level.

ΔE ¼ hv ð7:1Þ

where h is Planck’s constant and its value is given as h ¼ 6:62606957

�10�34J s ¼ 4:135667516� 10�15eVs. Equation 7.1 in terms of energy level is

depicted below (Fig. 7.1).

If the wavelength of emitted photon light is designated with symbol λ and speed
of light with c, then the relationship between wavelength and speed of light can be

written as:

c ¼ λv ð7:2Þ

Substitution of Eq. 7.2 into Eq. 7.1 for frequency ν, we get a new expression for the

Planck–Einstein relationship as:

ΔE ¼ hc

λ
ð7:3Þ

The above equation leads to another relationship involving Planck’s constant h.
Given p for the linear momentum of a particle (not only a photon, but other particles

as well), the de Broglie wavelength λ of the particle is given by:

λ ¼ h

p
ð7:4Þ

In some applications where it makes sense to use the angular frequency, where

the frequency is expressed in terms of radians per second instead of rotation per

second or Hertz, it is customary to absorb a factor of 2π into the Planck constant.

The resulting constant is called Reduced Planck Constant or Dirac Constant.
It is equal to the Planck constant divided by 2π, and is denoted as h and pronounced
h-bar.

E3

E2

E1

ΔE hn

Fig. 7.1 Energy levels
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h ¼ h

2π
ð7:5Þ

Therefore, the energy of photon with angular frequency ω, where ω ¼ 2πv, is
given as

ΔE ¼ hω ð7:6Þ

The reduced Planck’s constant is the quantum of angular momentum in quantum

mechanics.

The numerical value of reduced Planck constant is given as h ¼ 1:054571726

�10�34 J s ¼ 6:58211928� 10�16eVs:
The above conditions and circumstances is the case for any light source, whether

laser, flame, incandescent body, etc.

Atoms emit photons for any conventional light source in a random mode,

sporadic manner and spontaneously decay to a lower energy state when are excited

by heat or any other heat-generated source, such as electric current. On the other

hand, physics of laser indicates that the photons are emitted in phase and the

electromagnetic radiation behavior types are encountered and more or less, we

can describe it as a simply wave propagation of sinusoidal radiation filed takes

place and at a microscopic level can be defined by the following mathematical

solution of wave equation in conductor and taking the real part of the solution of the

wave equation (i.e., we assumed the general solution is complex quantity type that

includes both real and imaginary terms as part of solution) under consideration,

then the relationship is presented as below:

ε z; tð Þ ¼ ℜe ε0e
�2πkz=λeiω t�nz=cð Þ

h i
ð7:7Þ

where

ε¼ is the electric field of the radiation

ℜe¼ stands for the real part of the complex quantity in brackets

ε0 ¼ is the maximum amplitude

k¼ is the extinction coefficient and vacuum, k ¼ 0

z¼ is the direction in which the wave is propagating

λ¼ is the wavelength

t¼ is time

n¼ is the index of refraction and in vacuum n ¼ 1

c¼ is the speed of light in vacuum

Equation 7.7 is just Electric Field solution to set of Maxwell’s Equation inside a

linear, homogeneous and isotropic conducting medium that has electric permittivity

ε and magnetic permeability μ. The solution in general form of vector presentation

for electric field using complex notation is:

e~E z; tð Þ ¼ e~E0e
�kzð Þe i kz�ωtð Þ½ � ð7:8Þ
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Readers can refer to Appendix F to find how the solution of wave equation in

conductor will result in Eq. 7.7 in above, which is nothing more than the standard

representation of the electric field of traveling light wave. You can also look at the

quick approach to derive the Eq. 7.7 in next page under Wave Equation as well

Wave Equation

The macroscopic Maxwell’s Equations read as follow:

~∇ � ~E ¼ ∂~B
∂t

ð1Þ

~∇ � ~H ¼~jþ ∂~D

∂t
ð2Þ

~∇ � ~D ¼ ρ ð3Þ
~∇ � ~B ¼ 0 ð4Þ

The relationship between ~E (Electric Field), ~D (Electric Displacement), ~B

(Magnetic Field), and ~H (Magnetic Field Strength) generally speaking is

nonlinear, but in our case of interest for high-power laser interaction with

materials we can approximate them by a linear models and the relationship in

general will depend on the frequency of the radiation field. Note that these

parameters and relationship between them describe the material behavior. In

case of time harmonic fields the Fourier-transformed field quantities are

related according to the following sets of equations:

~D ~r;ωð Þ ¼ ε0ε ωð Þ~E ~r;ωð Þ ð5Þ
~B ~r;ωð Þ ¼ μ0μ ωð Þ~H ~r;ωð Þ ð6Þ

With Eq. (1), (2), (5) and (6), the wave equation can be established as:

~∇ ~∇ � ~E
� �� Δ~E ¼ �μ0ε0ε

∂2~E

∂t2
ð7Þ

In homogeneous media and with zero space charge ~∇ � ~E ¼ 0, and with

μ0ε0 ¼ 1=c2, Eq. (7) reduces to the following form:

Δ~E ¼ ε

c2
∂2~E

∂t2
ð8Þ

A solution of this Partial Differential Equation [Eq. (8)] is the equation of

plane wave as:

(continued)
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~E ¼ ~E0e
i kz�ωtð Þ½ � ð9Þ

With

k—Complex wave number

ω—Real angular frequency

The complex wave number is:

k ¼ k0
ffiffiffi
ε

p ¼ k0n ¼ kReal þ ikImaginary ¼ kr þ iki ð10Þ

where n is the complex index of refraction. The plane wave solution can also

be cast into the form of:

~E ¼ ~E0e
�kizð Þe i krz�ωtð Þ½ � ð11Þ

If the imaginary part of the complex wave number ki> 0 the wave decays

exponentially within the material.

The Eq. 7.7 is valid relationship to measure the electric field ε in a point in space
for a laser emission, where the individual photons are in phase. This equation also

allows not only to measure the electric filedεat a point in space for laser light, it will
also results in predicating the oscillating of ε as well. This is not true for an light

from a conventional source, and the Eq. 7.7 does not hold for the measuring such

electric field at some point in space in order to express the sinusoidal variation, for

the atoms emitting the light that are doing so in random, and the sinusoidal variation

due to the emission from each atom needs to be averaged out to some, time-

dependent value.

The fact that laser is a very coherent source of light where this coherency is

created by taking advantage of simulated emission in materials in which metastable

states can be induced, then by selected rules of quantum mechanics, we know that

the lifetime of an atom in an excited energy state depends on these rules for

transition to a lower state. Bear in your mind that, there are state from which

transition to a lower level is extremely impossible and such states are called

metastable states and an atom that is not going to be distributed by outside

influence, will remain in a metastable state for a very long time.

If a metastable atom interacts with a photon of frequency such that Eq. 7.1

holds, where as we said ΔE is the energy difference between the atom’s normal

and metastable states, stimulated emission will occur. The atom will decay to its

normal state by emitting another photon of frequency v, so that the net result is

two photons, and the second photon will have the same phase temporally and

spatially as the first.
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7.2 How Laser Works

LASER is an acronym for Light Amplification by Stimulated Emission of Radi-

ation. Spontaneous emission is the process by which an excited atom spontaneously

emits a photon. Electrons go from excited to a resting state when a photon of energy

is released. Photon emission can be stimulated by an external source of energy that

will increase the population of excited electrons, a process known as pumping. A

laser contains a laser chamber, a lasing medium (solid, liquid, or gas) and an

external source of energy. Stimulated emission occurs when the external source

of energy causes electrons to be excited in the lasing medium. A cascade reaction is

generated when these excited electrons release photons, which then collide with

other excited electrons in the lasing medium and cause a release of many identical

photons at the same time. Laser light continues to be generated as long as the above

cascade perpetuates.

Laser light has the following properties:

1. Coherence: Laser beam are both temporally and spatially coherent. This phe-

nomenon results from stimulated emission, and allows laser beams to have a

high-power density

2. Collimation: Laser beams are parallel to each other, (i.e., ignoring thermal

blooming while traveling through atmospheric environment for a high energy

beam), and therefore exhibit collimation. A collimated beam is created in the

laser chamber when light is reflected between two mirrors and only the exit of

parallel waves is allowed. Collimation allows laser light to travel long distance

without loss of intensity. In practice, a lens on a laser focuses the parallel light

beam down to smallest possible spot size, or the diffraction-limited spot, to

allow the light to focus on the target.

3. Radiometry: The four main concepts in understanding laser light and target

interactions are

(a) Energy,

(b) Power,

(c) Fluence, and

(d) Irradiance

The amount of light emitted from a laser can be quantified by both energy and

power. Energy represents work that is measured in Joules, while power is

measure in Watts or Joules per Second which is rate at which energy is

expended. The intensity of the laser beam on the target is a function of the

area of the target over which it is spread that is known as Spot Size.

Spot Size ¼ Cross-Sectional Area of the Laser Beam

Fluence which is measured in Joules per Square Centimeter is the energy density

of a laser beam.

206 7 Lasers



Fluence ¼W� S=Cm2¼ J=Cm2 þ Laser output

� Pulse Duration=Spot Size

Irradiance measured in Watts per Square Centimeter which refers to the power

density of a continuous wave laser beam, and it is inversely proportional to the

Square Root of the Radius of the Spot Size.

Irradiance¼W=Cm2 ¼ Laser Output=Spot Size

Exposure time, fluence, and irradiance of a laser can be altered depending on the

particular desired laser dueling target and conditions and circumstances that laser

engages the target.

Laser interacts with target in four possible ways:

1. Reflection R: Takes place when light “bounces off” the target surface without

entry into the target thickness secondary to difference in the refractive index at

engagement point and the environment that incoming laser beam traveling

through. Increasing the angle incidence increases the amount of light reflected.

Damages to target surface or target itself, occurs with particular lasers if

adequate reflection of laser beams occurs and there is proper protection

employed.

2. Absorption A: The absorptivity is the ratio of power that is deposited within the
workpiece and the power of the incident radiation

3. Transmission T: Occurs when the laser beam passes through transparent target

without altering either the target surface or the light itself

4. Scattering S: This refers to fragmentation of light after it has entered the target

skin, and it results from the interaction of light with varied elements that makeup

target layers. When scattering occurs, light is dispersed over a larger area within

the target, and the depth of penetration (Skin Depth) of the light beam is reduced

at the same time.

As we said in above, if a metastable atom interacts with a photon of frequency

such that ΔE ¼ hv, where ΔE is the energy difference between the atom’s normal

and metastable states, stimulated emission will occur. The atom will decay to its

normal state by emitting another photon of frequency v, so that the net result is two
photons, and the second photon will have the same phase temporally and spatially

as the first.

In laser, then, one establishes a large number of atoms in metastable states and

arranges the optics to increase the likelihood of stimulated emission. Schematically,

a typical laser oscillator looks like Fig. 7.2. The pumping radiation (for example,

light from a flash lamp) excites the atoms in the lasing medium (for example, Cr+++

ions in ruby).

In the decay process (if we have a successful laser), a large number of ions are

left in a metastable state; this is called a population inversion. As some atoms begin

to decay, they stimulate others to decay. But this alone would not provide a laser,
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since the emission would occur in random directions. The role of reflection is very

important; the photons moving perpendicular to the reflectors pass through the

medium many times and on each pass more and more atoms are caused to emit.

This results in the build-up of a very strong coherent light signal that travels in a

single direction. Useful light output is obtained by making one of the mirrors a

partial reflector [1].

It is interesting to look at a few examples of the intensity of laser light. In a typical

ruby laser, the concentration [5] of Cr+++ ions is about 2� 1019 cm�3, and popula-

tion inversions are of the order of 3� 1016 cm�3. Crudely speaking, we can think of

creating 3� 1016 quanta=cm3 in the lasing medium. Since we have arranged the

laser so that the output is in a single direction, and since photons move with

the speed of light, we obtain 3� 1016 � 3� 1010 ¼ 9� 1026 quanta=cm2 s from

the laser. For ruby, the lasing wavelength is 6943 Å, and since the energy of each

quanta is hv, one can readily calculate that the output is about 2:5� 108W=cm2.

Before we go forward to the next step, let us pause and briefly present the

Planck’s Energy Density Distribution using Rayleigh’s Energy Distribution by

focusing on the understanding the nature of the electromagnetic radiation inside

the cavity, by considering the radiation to consist of standing waves having a

temperature T with nodes at the metallic surface. By arguing that these standing

waves are equivalent to harmonic oscillators, for they result from the harmonic

oscillations of a large number of electrical charges, electrons that are present in the

walls of metallic surface of cavity. When cavity is in thermal equilibrium, the

electromagnetic energy density inside the cavity is equal to the energy density of

the charged particles in the walls of the cavity, and the average total energy of the

radiation leaving cavity for the average energy of the oscillators along with the

number of standing waves or mode of radiation in the frequency interval v to vþ dv
is written as:

N vð Þ ¼ 8πv2

c3
ð7:9Þ

TOTAL
REFLECTOR

LASER
OUTPUT

PARTIAL
REFLECTOR

PUMPING
RADIATION

ACTIVE MATERIAL

Fig. 7.2 Schematic representation of a laser
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where c ¼ 3� 108m=s is the speed of light and the quantity (8πv2/c3)dv gives the
number of modes of oscillation per unit volume in the frequency range v to vþ dv is
given by:

u v; Tð Þ ¼ N vð Þ Eh i ¼ 8πv2

c3
Eh i ð7:10Þ

Where hEi is the average energy of the oscillators present on the walls of the cavity
or of the electromagnetic radiation in that frequency interval and the temperature

dependence of u(v, T) are buried in hEi.
Now question is how we can calculate the average energy hEi?. According to

classical thermodynamics and equipartition theorem, all oscillators in the cavity

have the same mean energy, irrespective of their frequencies.1

Eh i ¼

ð1
0

Ee�E= kTð ÞdEð1
0

e�E= kTð ÞdE
¼ kT ð7:11Þ

Where k ¼ 1:3807� 10�23 J=K is the Boltzmann constant. An insertion of Eq. 7.11

into Eq. 7.10, leads to the Rayleigh-Jeans formula:

u v; Tð Þ ¼ 8πv2

c3
kT ð7:12Þ

Equation 7.12 except for low frequencies is in total disagreement with experimental

data: u(v,T ) as given by Eq. 7.12 diverges for high values of ν, whereas experi-
mentally it must be finite per Fig. 7.3. Moreover, integrating Eq. 7.12 over all

frequencies, the integral diverges which is indication of that the cavity contains an

infinite amount of energy. Historically, this was called the ultraviolet catastrophe,
for Eq. 7.12 diverges for high frequencies within the ultraviolet range.

Now, studying the Planck’s Energy Density Divergence an interpolation

between Wien’s rule and the Rayleigh–Jeans rule—Planck succeeded in avoiding

the ultraviolet catastrophe and proposed an accurate description of blackbody

radiation. He considered that the energy exchange between radiation and matter

must be discrete rather than continuum. His postulation indicates that the energy

radiation of frequency ν emitted by oscillating charges from the walls of the cavity

must come only in integer multiples of hν as:

1Using a variable change β ¼ 1= kTð Þ, we have Eh i ¼ � ∂
∂β In

ð1
0

e�βEdE

� �
¼ � ∂

∂β In 1=βð Þ ¼ 1=β�kT
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E ¼ nhv n ¼ 0, 1, 2, 3, . . . ð7:13Þ

where h is a universal Planck’s constant and hν is the energy of a “quantum” of

radiation, while ν represents the frequency of the oscillating charge particle in

cavity’s wall as well as the frequency of the radiation emitted from the walls. This is

because the frequency of the radiation emitted by an oscillating charged particle is

equal to the frequency of oscillation of the particle itself [8]. Equation 7.13 is

known as Planck’s Quantization Rule for energy or Planck’s Postulate.

Therefore, assuming that the energy of an oscillator is quantized, Planck showed

that the correct thermodynamic relation for the average energy can be obtained by

merely replacing the responding to the discreteness of the oscillator’s energies is

given as2:
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Fig. 7.3 Comparison of various spectral densities: Planck’s law, dotted curve; Rayleigh–Jeans
and Wien’s law, solid curve

2To drive Eq. 7.14 one needs: 1= 1� xð Þ ¼
X1
n�0

xn and 1= 1� xð Þ ¼
X1
n�0

nxnwith x ¼ e�hv=kT
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Eh i ¼

X1
n¼0

nhve�nhv=kT

X1
n¼0

hve�nhv=kT

¼ hv

e�hv=kT � 1
ð7:14Þ

and hence by inserting Eq. 7.14 into 7.10, the energy density per unit frequency of

the radiation emitted from the hole of a cavity is given by:

u v; Tð Þ ¼ 8πv2

c3
hv

ehv=kT � 1
ð7:15Þ

Equation 7.15 is known as Planck’s distribution and gives an exact fit to

various experimental radiation distribution, as displayed in Fig. 7.3 and the numer-

ical value of h obtained by fitting Eq. 7.15 with the experimental data is

h ¼ 6:626� 10�34 J s.

We should note that, as shown in Fig. 7.3, we can rewrite Planck’s energy

density Eq. 7.15 to obtain the energy density per unit wavelength as:

eu λ; Tð Þ ¼ 8πhc

λ5
1

ehc=λkT � 1
ð7:16Þ

In above we claimed for ruby laser of wavelength 6943Å, the energy of each quanta
is hν, one can calculate that the output is about 2:5� 108 W=cm2. If we compare

this degree of to the power that a black body produces, let us assume sun in this case

that emits at the same wavelength with a similar bandwidth, using the Planck

radiation law, in terms of angular frequency ω ¼ 2πv ¼ 2πc=λ we can calculate:

Uω ¼ hω3

π2c3
1

ehω=kT � 1
ð7:17Þ

Uω is the energy, per unit volume and per unit bandwidth, radiated by blackbody at

temperature T and k is Boltzmann’s constant. The radiation leaves the black-body

source at rate c, so the power radiated per unit area of the source, per unit

bandwidth, is

Iω ¼ cUω

4
¼ hω3

π2c2
1=4

ehω=kt � 1
ð7:18Þ

If we use the sun’s temperature of 6000 K, and λ ¼ 6943Å, then we can show that:

Iω � 2� 10�5erg=cm2
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For the ruby laser, a typical line width is 3 Å, so Δω � 2� 1012 s�1. Thus, the

power density at the source is

I � 2� 107erg=cm2 s � 2:5 W=cm2

Thus, the power density for comparable narrow-bandwidth, nearly single-frequency

light is much greater at a laser source than at a conventional hot-body source,

because laser light is coherent.

7.3 Laser Light Propagation

The preparation of laser light through the atmosphere posses a complex problem

and it will not be discussed here. Suffice it to say that, as anyone who has driven on

a foggy night certainly realizes, light is certainly scattered in the atmosphere. Lasers

of high-power density poses even more difficult propagation problems because the

high intensity warms the air and creates a density change across the beam. This

variation in density refracts the light and causes beam spreading, or “thermal

blooming.”

Consider briefly the propagation of laser light in free space or in vacuum. Under

these ideal conditions, the only change in the power density is due to simple beam

divergence. Since the typical laser emits light that is nearly unidirectional, the beam

divergence is small. In fact, one feature of a laser is that the divergence is nearly at

the diffraction limit, which is of the order of λ/a, where a is the diameter of the

output aperture of the laser. For the ruby laser discussed above, this gives a

divergence angle of

θ � 6943 � 10�8

1
� 7� 10�2 mrad

for, say, a 1-cm aperture. In practice, one needs to go to much trouble to realize this

limit of divergence, but it has been done. More commonly, an “off-the-shelf” ruby

laser might have a beam divergence of a few mrad.

The newcomer to lasers has usually heard about diffraction-limited beams and

the consequent extreme directionality of laser light lie is usually surprised to

discover that at long distances front the source these beams have power densities

that vary as the reciprocal of the square of the distance, like all radiating source. To

see this, consider a source of power P Watt, diameter a, and divergence angle θ, as
shown in Fig. 7.4.
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At distance r from the source, the power density is

I ¼ P
π
4
aþ 2r tan θð Þ2

or, since θ is very small and tan θ � θ, then

I ¼ P
π

4
aþ 2rθð Þ2

or

I ¼ P

πa2

4
1þ 2r

a
θ

� �2
ð7:19Þ

From this expression it is apparent that for large distance, such that 2r=a  1,

I ¼ P

πa2

4

4r2θ2

a2

or

I ¼ P

πr2θ2

or, since θ � λ=a, then we can write

I ¼ P

πr2
a2

λ2

P

a a + 2r TAN q

rq

q

Fig. 7.4 Simplified sketch of laser beam divergence
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For example, consider a 10 kW beam of 10.6 μm (CO2 laser) wavelength and 10 cm

aperture at 1 mi (i.e., a high-power CO2 laser);

I ¼ 104 � 102

π 5280� 12� 2:54ð Þ2 10� 10�4
� �2

or

I � 12 W=cm2

From Eq. 7.19, if we substitute I0, the power density at the source, for P/(πa
2/4) and

recall that θ � λ=a, then we can write

I ¼ I0
1

1þ 2r λ
a2

� �2 ð7:20Þ

From this expression we can see that if r is small there is little change in power

density emitted by the source. The distances at which this is true are referred to as

“near field,” and the fine details of the beam pattern, such as local variation in

intensity, hot spots, etc., are preserved in the near field. It is apparent from Eq. 7.20

that this near-field distance will be limited to r such that I � I0, or

2rλ

a2
� 1

or

rnear field � a2=λ

For lasers with exceptionally good optics that have a Gaussian distribution of power

density across the beam, the near field pattern will persist for distances on the order

of (a2/λ) [9–11]
As a final comment on power densities at distances from laser sources, let us use

Eq. 7.20 to calculate the distance at which the power density is halved:

I

I0
¼ 1

2
¼ 1

1þ 2rλ

a2

� �2

and

r1=2 ¼
a2

2λ

ffiffiffi
2

p
� 1

	 

For our illustration of a CO2 laser with a 10-cm aperture, r� 680 ft, or a little more

than 0.1 mi
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7.4 Physics of Laser Absorption in Metals

Lasers provide the ability to accurately deliver large amounts of energy into

confined regions of a material in order to achieve a desired response. For opaque

materials, this energy is absorbed near the surface, modifying surface chemistry,

crystal structure, and/or multi-scale morphology without altering the bulk. This

chapter covers a brief introduction to the fundamental principles governing laser

propagation and absorption as well as the resulting material responses.

The description of the interaction of electromagnetic radiation with matter can

be done at different model level. Matter for purpose of this approach does consist

of electrons and atomic kernel. Thus, the materials that laser radiation will interact

with are assumed to be a linear, homogeneous and isotropic conducting medium.

For spatial dimension r in this matter, we assume r  10�15 m the atomic kernels

can be considered to be point charges, and for spatial dimensions greater than the

classical electron radius r  r0 
 2:8� 10�15 m and the electrons can be con-

sidered to be point charges also. These point charges interact with electromagnetic

fields and excite spatially and temporally fast fluctuating fields on their part. The

framework of quantum electrodynamics, governs the interaction between electro-

magnetic fields and electrically charged particle rigorously. Therefore, the quan-

tum theoretical treatment of electromagnetic fields leads to the concept of

photons, (i.e., there can only be an integer number of photons being emitted or

absorbed).

During material processing with laser radiation the result of laser treatment is

predominantly determined by the power that is absorbed within the workpiece.

A measure of the power that is available for the material treatment processPabsorption

¼ Pabs is the absorption A or absorptivity. The absorptivity is the ratio of power that

is deposited within the workpiece and the power of the incident radiation:

A ¼ Pabs

P
ð7:21Þ

The absorptivity A can have any value between 0 and 1.0. The absorbed radiation

energy is in general transformed to heat energy through heat conduction process.

This energy conversion can pass several stages that can possibly be utilized for

material processing. The absorption of laser radiation can for example lead to the

dissociation of molecules. Before this non equilibrium state relaxes to an equilib-

rium state, i.e., transformation of the absorbed energy to heat energy, the dissoci-

ated molecules can be removed. Considering these conditions, then we can express

the material is in ablation stage. Definition of absorptivity as such is a global value

that in general contains no information that where about in the workpiece the

deposition radiation energy is taking place. But we know in case of metallic

interaction with laser the absorption always occurs in a thin surface layer of the

metal, which is called Localized Absorption. Bear in your mind that this informa-

tion is not included in the absorptivity A.
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The absorptivity can be determined directly by measuring the power of the

incident laser beam radiation and the temperature increases of the workpiece

knowing the heat capacity or indirectly by measuring the power of the reflected

light Pr and the power that is transmitted through the workpiece Pt as:

Pabs ¼ P� Pr � Pt ð7:22Þ

Here what we mean for Pt as the transmitted power, is defined as the power that is

transmitted through the whole workpiece not where Pt is the power that is trans-

mitted through the surface of the workpiece [6].

If the radiation that is transmitted through the workpiece surface is totally

absorbed within the workpiece then, the absorptivity is given by:

A ¼ 1� R ð7:23Þ

Where R is representation of surface reflectivity of the workpiece. In the case of

non-conducting materials or very thin metal films part of the radiation that pene-

trates into the workpiece can leave the workpiece and we should count on trans-

mittance part of laser beam radiation and is described by variable T, and thus, a new
form of Eq. 7.23 is possible:

A ¼ 1� R� T ð7:24Þ

In general for heat conduction calculation and mathematical approach of high-

power laser as a directed energy weapon, we can ignore the transmittance part, and

therefore, Eq. 7.23 holds for purpose of these kinds of analysis. But we need to take

under serious consideration of laser interaction material are parameters such as the

following:

• Index of refraction n normally real part of a complex number for general index

• Index of absorption k normally imaginary part of a complex number for general

index

• Electric conductivity of materials σ that laser duels with

• Heat conductivity of materials K
• Specific heat of materials at constant pressure cp

All of the above are material-specific parameters. They solely depend on the

properties of the target material at hand and the radiation wavelength can be

calculated approximately for simple materials.

Furthermore, the absorptivity not only depends on the above material properties,

but it is influenced by following factors as well and they are:

• Properties of the laser beam such as wavelength and polarization.

• The ambient conditions (i.e., process gas, material that surround the workpiece,

etc.).

• The surface properties (i.e., roughness, morphology, etc.).
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• The geometry of the workpiece (i.e., thickness, boundaries of the workpiece,

etc.).

• The changes of the workpiece such as phase due to latent heat of vaporization

and introduction of plasma at the ablation surface where the frequency of laser

beam and plasma are equal to each other and the environment that are induced

by the absorbed laser power (i.e., local heating or spot size, phase changes, laser-

induced plasma).

7.4.1 Description of the Phenomena

The interaction of electromagnetic with matter can be described, by assuming that

the matter consists of electrons and atomic kernels. For spatial dimensions r 
10�15 m the atomic kernel can be considered as a point charge, while the electron

can also be considered as a point charge because of spatial dimension greater than

the classical electron radius of r >> r0e2:8� 10�15. These point charges interact

with electromagnetic fields or simply a propagating sinusoidal radiation field

governed by Eq. 7.8 and get excited spatially and temporally fast fluctuating fields

of their own part. The interaction between electromagnetic field and electrically

charged particles is treated rigorously within the framework of classical quantum

electrodynamics [6] as well as what is shown in Appendix F of this volume. The

quantum theoretical treatment of electromagnetic fields leads to the concept of

photons, i.e., there can only be an integer number of photons being emitted or

absorbed (i.e., what was described in Sect. 7.2 in above). If the particles that interact

with electromagnetic fields of Eq. 7.8 are bound these too can only absorbed or emit

certain energy quanta. From atomistic point of view this is described as the

absorption of a photon and the creation of a phonon or energy quantum of lattice

oscillations.

Classical description of the spatiotemporal evolution of electromagnetic field,

which is defined by the microscopic aspect of Maxwell Equations in vacuum is

interacting, with these point charges of positively charged atomic kernels and

negatively charged electrons.

The atoms can be defined as dipoles that are excited by the external radiation,

which emits radiation on their part that interferes with the primary radiation. This

process can be interpreted as coherent scattering. If radiation hits a surface of a solid

matter or slab, the radiation that is emitted by the dipoles at this solid surface

consists of three parts and they are as follows:

1. The first one is corresponding to the reflected wave.

2. The second one is emitted in the same direction as the incident wave and

according to the Ewald-Oseen [7] extinction theorem modulus and phase of

this wave are such that the incident wave and this wave extinct each other

exactly within region 2. See Fig. 7.5 below.

3. The third part corresponds to the refracted wave
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Further evaluation of electromagnetic phenomena revels to average over mac-

roscopic small but microscopic large spatial regions. Therefore, in this manner, one

gets the macroscopic Maxwell’s Equations. The macroscopic Maxwell equations

treat the matter as a continuum whose electromagnetic properties are described by

material parameters of interest target. These parameters can either be measured or

calculated using microscopic approaches. The macroscopic Maxwell’s Equation

are presented here and solution of these sets of equation are provide in Appendix F

of this volume.

~∇ � ~E ¼ ∂~B
∂T

~∇ � ~H ¼~jþ ∂~D

∂T
~∇ � ~D ¼ ρ~∇ � ~B ¼ 0 ð7:25Þ

7.5 The Behavior of Electromagnetic Radiation
at Interface

One of the major advantages of the laser as a directed energy weapon for engaging

target material processing is the ability to precisely control where in the material

and at what rate energy is deposited. This control is exercised through the proper

selection of laser processing parameters to achieve the desired material modifica-

tion. In this section, we discuss the principles and equations that describe the

propagation and absorption of laser energy and heat flow.

Most of the processes that occur during the interaction of laser radiation with

matter start at the surfaces. For small intensities the interaction of the electromag-

netic field with the target surface is driven by Fresnel formula. The Fresnel formula

describes the reflection and transmission of a plane harmonic wave incident on an

infinitely extended ideal plane surface. Reflection r and transmission t of the field
amplitudes are defined by the following relations:

Ei

E1

B1

k1

n1

n2

Er

Bi a a

b

Br

ki
kr

Fig. 7.5 Polarized perpendicular to the plane of incidence
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r ¼ Er

Ei

ð7:26Þ

t ¼ Et

Ei

ð7:27Þ

with

Ei¼Electric field of the incident wave

Er¼Electric field of the reflected wave

Et¼Electric field of the transmitted wave

Although the Fresnel formula is establishing both Eqs. 7.26 and 7.27 and

behavior at the surface of the metal target, but is not capable describing anything

about transmission or absorption within specimen.

The Fresnel formula is driven via Maxwell’s Equation sets of Eqs. 7.25 (see

Appendix F as well), considering the boundary conditions for the fields at the

surface of interaction with target materials. This interaction can be divided into

two groups of Perpendicular (┴) and Parallel (║) polarization that is also known as
s-polarized Senkrecht¼ Perpendicular) and p-polarized (Parallel) as well and we

explain them further down in this chapter.

In case of perpendicular polarization the electric field vector is perpendicular to

the plane that is spanned by the incident and reflected wave vectors, whereas in case

of parallel polarization the field vectors are parallel to this plane. The wave vector
~ki, ~kr, and ~kt all lie in one plane. The vector of the electric field can have

components perpendicular (┴) or parallel (║) to this plane. Reflection and trans-

mission depend on the direction of the electric field vector relative to the plane of

incidence as it illustrated in Fig. 7.6 below.

Fig. 7.6 Incident, reflected,

and transmitted beams lie in

one plane. The electric field

vector can be split into two

components: one

component is parallel and

the other component is

perpendicular to this plane
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For practical applications the polarization of the laser radiation is often chosen

so that the field strength is either perpendicular or parallel to the plane of incidence

and very special cases circular polarization is used. In these cases, the decomposi-

tion of the field vectors in their perpendicular and parallel components can be

omitted and the mathematical treatment is simplified. Figure 7.5 shows the situation

in the case of normal incidence.

The angle α that the wave vectors of the incident and reflected wave, respec-

tively, make with the surface normal and angle β of refracted wave are connected

by Snell’s law as:

n1 sin α ¼ n2 sin β ð7:28Þ

n1 and n2 are the indices of refraction of the two media. The Fresnel formula for

perpendicular polarization read

Er

Ei

¼ rs ¼
n1 cos α� μ1

μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � n21 sin

2α
q

n1 cos αþ μ1
μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � n21 sin

2α
q ð7:29Þ

Et

Ei

¼ ts ¼ 2n1 cos α

n1 cos αþ μ1
μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � n21 sin

2α
q ð7:30Þ

with μ1 and μ2 for magnetic permeability of media 1 and 2 respectively.

Figure 7.7 shows the situation for parallel polarization. The Fresnel formula for

parallel polarization read (see Appendix G, Optics for derivation) as:

Ei

E1

B1

k1

n1

n2

Er

Bi

a a

b

Br

ki
kr

Fig. 7.7 The field vector of the reflected wave is often given in the opposite direction. In that case

Eq. 7.32 must be multiplied by �1
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Er

Ei

¼ rp ¼
μ1
μ2
n22 cos α� n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � n21 sin

2α
p

μ1
μ2
n22 cos αþ n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � n21 sin

2α
p ð7:31Þ

Et

Ei

¼ tp ¼ 2n1n2 cos α
μ1
μ2
n22 cos αþ n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � n21 sin

2α
p ð7:32Þ

In the case of normal incidence, i.e.,α ¼ 0, the plane of incidence cannot be defined

uniquely any more and the difference between perpendicular and parallel polariza-

tion vanishes. In that case Eqs. 7.29 and 7.31 and Eqs. 7.30 and 7.32 give the same

results. The amplitudes of the reflected and transmitted waves in case of normal

incidence are given by:

Er

Ei

¼ n1 � n2
n2 þ n1

ð7:33Þ

Et

Ei

¼ 2n1
n2 þ n1

ð7:34Þ

When n2 > n1 the reflected wave undergoes a phase change of 180� and this holds

for real indices of refraction.

7.5.1 Light Propagation in Materials

The primary interaction between laser radiation and a solid is photochemical

excitation of electrons from their equilibrium states to some excited states by the

absorption of photons.

Some of these transitions are schematically shown in Fig. 7.8. Interband transi-

tions take place when photon energy is larger than band gap of the material. In this

process, electron–hole pairs are generated. The free electrons may jump back from

conduction band to valence band through thermal (dashed lines) or photochemical

processes. If the photon energy is less than band gap of the material, the energy can

be absorbed by defect levels in the band gap or produce Intra-band transitions. Both

transitions will induce thermal processes as electrons jump back to valence band.

With higher laser light intensities, multi-photon absorption is favored, because the

probability of nonlinear absorption increases strongly with laser intensity. The

coherent multi-photon transitions would generate electron–hole pairs similar to

inter-band transitions.

Thus, the initial electronic excitation is followed by complex secondary pro-

cesses, which can be classified into thermal and photochemical processes. The type

of interaction between laser radiation and the material depends on laser parameters

(wavelength, pulse duration, and fluence) and on the properties of the

materials [26].
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Laser ablation (material removal) can be analyzed on the basis of photothermal

(purely photolytic), photochemical (purely photolytic), and photo-physical pro-

cesses, in which both thermal and non-thermal mechanisms contribute to the overall

ablation rate.

Confinement of deposited energy to desired regions on a material’s surface can

be achieved by controlling the laser’s spatial intensity profile. The predominant

methods for control include beam steering by fixed or galvanometric scanning

mirrors, beam focusing through telescoping or converging optics, and beam shap-

ing with homogenizers [12], amplitude masks, refractive elements [13], and

diffractive optical elements [13]. However, one can also use more advanced optical

devices such as spatial light modulators [14], deformable mirrors [15], and tunable

acoustic gradient index (TAG) lenses [16] allowing real-time modulation of the

beam’s intensity profile on the surface. There has been extensive work in the area of

beam shaping with a number of articles and books [17, 18], as well as a chapter in

this book devoted to the subject.

When light strikes the surface of a material, a portion will be reflected from the

interface due to the discontinuity in the real index of refraction and the rest will be

transmitted into the material. The fraction of the incident power that is reflected

from the surface R depends on the polarization and angle of incidence θi of the light
as well as the index of refraction of the atmosphere n1 and the material n2. The
reflection coefficients for the s-polarized and p-polarized components of the light

can be calculated from the well-known Fresnel equations [19], which we provided
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hν

Fig. 7.8 Schematic of

different types of electronic

excitation in a solid
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as Eqs. 7.29–7.34 for normal incidents as well and now we rewrite it in a different

form below [19]:

Rs ¼ Er

Ei

� �2
¼ n1 cos θið Þ � n2 cos θtð Þ

n1 cos θið Þ þ n2 cos θtð Þ
� �2

ð7:35aÞ

Rp ¼ Er

Ei

� �2
¼ n1 cos θtð Þ � n2 cos θið Þ

n1 cos θtð Þ þ n2 cos θið Þ
� �2

ð7:36aÞ

and are related to the transmission coefficients through Ts ¼ 1� Rs and

Tp ¼ 1� Rp.

For perfectly flat surface both Eqs. 7.35a and 7.36a, produce the following forms

of equation sets 7.35b and 7.36b, assuming media 1 is vacuum so n1 ¼ 1 and n2 ¼ n
for media or target index of refraction with φ being angle of incidence and

parameters such as κ¼ thermal diffusivity is target material property:

Rs ¼ n� cosφð Þ2 þ κ2

nþ cosφð Þ2 þ κ2
ð7:35bÞ

Rp ¼
n� 1

cosφ

	 
2
þ κ2

nþ 1
cosφ

	 
2
þ κ2

ð7:36bÞ

For the case of normally incident light on a flat surface, the above equations reduce

to the more familiar form:

R ¼ Rs ¼ Rp ¼ n1 � n2
n1 þ n2

� �2

ð7:37Þ

which is analogous to Eq. 7.33, in above.

A variation of the reflectivity with angle of incidence is shown in Fig. 7.9. At

certain angles the surface electrons may be constrained from vibrating. Otherwise

electrons would have to leave the surface and they would be unable to do that

(collective vibrational modes) without disturbing the matrix, i.e., absorbing the

photon. Thus, if the electric vector is in the plane of incidence, the vibration of the

electron is inclined to interfere with the surface and absorption is thus high.

While if the plane is at right angles to the plane of incidence then the vibration

can proceed without reference to the surface and reflection is preferred. There is

particular angle—the “Brewster” angle—at which the angle of reflection is at right

angles to the angle of refraction. When this occurs, it is impossible for the electric

vector in the plane of incidence to be reflected since there is no component at right

angles to itself. Thus, the reflected ray will have an electric vector only in the plane

at right angles to the plane of incidence. At this angle the angle of refraction¼ 90�,
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which is the angle of incidence and hence by Snell’s law the refractive index,

n¼ tan (Brewster angle). Any beam, which has only, or principally, one plane for

the electric vector is called a “polarized” beam.

The reflectivity of a given material will depend on the frequency of the light

source through the dispersion relation of its index of refraction. For instance in the

case of normal incidence, values for reflectivity of metals in the near UV and visible

spectral range are typically between 0.4 and 0.95, and between 0.9 and 0.99 for the

IR [20]. In addition, the reflectivity of a surface will depend on the temperature of

the material through changes in the permittivity, band structure, plasma oscilla-

tions, or material phase [21]. For instance, upon melting, the reflectivity of silicon

increases by a factor of about 2 [21], while that of a metal such as Ni changes by

only a few percent [22]. In the case of small scale or structured materials, additional

optical resonances are possible, such as surface and bulk plasmons and polaritons,

which can lead to enhanced absorption or reflection due to the details of the photon–

electron interactions [23].

Once inside the material, absorption causes the intensity of the light to decay

with depth at a rate determined by the material’s absorption coefficient α. In
general, α is a function of wavelength and temperature, but for constant α, intensity
I decays exponentially with depth z according to the Beer–Lambert law,

I zð Þ ¼ I0e
�αz ð7:38Þ

where I0 is the intensity just inside the surface after considering reflection loss.

The magnitude of the gradient of intensity yields the volumetric energy deposi-

tion rate αI0e�αz.
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Fig. 7.9 Reflectivity of steel to polarized 1.064 μm radiations
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It is convenient to define the optical penetration or absorption depth, δ ¼ 1=α
which is the depth at which the intensity of the transmitted light drops to 1/e of its
initial value at the interface. Figure 7.10 shows optical absorption depths as a

function of wavelength for a variety of metals and semiconductors. The important

thing to note from Fig. 7.10 is that the absorption depths are short relative to bulk

material dimensions. For instance, in the case of most metals undergoing UV

illumination, the absorption depth is on the order of 10 nm. Although the interpre-

tation of absorption depth was developed for a plane wave, the fact that energy

absorption is approximately confined within the absorption depth still holds for

more general beam profiles. Therefore, choosing wavelength with short absorption

depths can allow local modification of surface properties without altering the bulk

of the material.

The above treatments considered only linear optical phenomena; however, this is

not necessarily the case in all materials, nor for all incident laser conditions. Some

materials such as glasses exhibit strong nonlinearities in their index of refraction

[28], which can lead to a number of interesting effects such as self-focusing,

defocusing, or soliton propagation [29].When dealing with CW or nanosecond

duration laser pulses, it is typically assumed that most of the absorption is due to

single photon interactions. However, for picosecond (ps) and femtosecond

(fs) lasers, the extremely high instantaneous intensity enables phenomena such as

optical breakdown and multi-photon absorption which can significantly decrease

absorption depths [29].

Another consideration of physics of high-power laser interaction with target

materials is Focal Spot Size, which determines the maximum energy density that

can be achieved when the laser beam power is set to engage target surface or

workpiece and in industry this phenomena also plays an important rule for material

processing.

In order to adjust the beam, to guide it to the workpiece and shape it, there are

many devices. In nearly all of them the simple laws of geometric optics are
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sufficient to understand how they work. However, to calculate the precise spot size

and depth of focus one needs to refer to Gaussian optics and diffraction theory.

As we discussed before (i.e., Sect. 7.3), a beam of finite diameter is focused by a

lens onto a plane as shown in Fig. 7.11. When a beam of finite diameterD is focused

by a lens onto a plane, the individual parts of the beam striking the lens can be

imaged to be point radiators of new wavefront. The light rays passing through a lens

will converge on the focal plane and interfere with each other, and thus, construc-

tive and destructive superposition will take place and light energy is distributed as

shown in Fig. 7.11. The central maximum contains about 86% of the total power.

The focusing diameter is measured between the points where the intensity has fallen

to 1/e2 of the central peak value.

For a circular beam with a plane wavefront, the diffraction limited beam

diameter, which is the smallest focal diameter (ωmin), that is given by Eq. 7.39:

ωmin ¼ 2:44
f � λ
DL

� �
ð7:39Þ

where f is the lens focus length, λ is the light wavelength, DL is the unfocused beam

diameter. Equation 7.30 is representation of the upper limit of laser processing

precision at a specific frequency, although in theory, laser should be free of these

limitations, considering its coherency nature.

Equation 7.39, can be modified to the smallest possible focal spot size in this

case as:

ω0 ¼ 2:44
f � λ
D

� �
2pþ lþ 1ð Þ ð7:40Þ

where f is the lens focal length, D is the beam diameter at the lens, λ is wavelength
of the light, p and l are the mode number.

The ideal laser should produce an intense, perfectly collimated beam of light that

could be focused to a very small spot size. That tiny intense spot of light could be

D Y

f

j

Fig. 7.11 Focus patter of parallel laser light [32]
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used to cut any shape in any materials. Unfortunately, such a well-focused high

intensity laser was hard to find before 1990, and even present ones are impractical

for some laser cutting in industry.

The problem can be explained through the following Eq. 7.41 as:

DF ¼ M24

π
� λ � f

DL

ð7:41Þ

where DF is the diameter of the laser beam in the focal plane of the focusing lens,

M2 is the beam quality factor, λ is wavelength of the laser light, f is the focal length
of the focusing lens, and DL is the diameter of the collimated laser beam on the

focusing lens.

Further analysis of Eq. 7.41 indicates that if one wants smaller diameter of the

laser beam DF, it requires either an smaller ration of f/DL, or make f very small and

DL very large. However, one should also consider the laser’s Raleigh length RL,

RL ¼ DF � f

DL

ð7:42Þ

which is the distance above and below the focal plane where diameter of the beam

has increased by and the beam intensity has dropped by
ffiffiffi
2

p
. In practice, one can cut

very thick materials, which are as thick as Raleigh lengths. To cut thicker materials

one would need large f/DL ratio, so the only parameters left is the wavelength and

beam quality M2 to be adjusted to reduce the spot diameter DF for the purpose of

cutting very small objects with very small laser beam as a cutting tool or utilization

of very high-power laser as a directed energy weapon.

Ultrafast laser oscillators generate pulse energy initially at nJ (i. e., 10�9 J) scale,

amplification to mJ level is needed in micromachining, but one knows, when pulse

lasting time is very small, peak energy intensity goes up far beyond the safe

operation range of normal optical amplification systems. Ultra-short pulsed lasers

successfully solved this difficulty using Chirped Pulse Amplification (CPA) and

Pulse Compression techniques. The energy of ultrafast lasers are highly concen-

trated in time domain, but their frequency distributions are much broader than

normal laser systems. Light at different frequencies travel at different speeds

through optical mediums and this is not very good thing at first glance, but contrary

to one’s intuition, this forms the base for the final solution. In free space, different

components in a broad band laser pulse travel at nearly same speed. When normal

optical components are in the optical path, long wavelength light components travel

through the medium faster than short wavelength components, and thus, pulse

lasting time is stretched and energy intensity is lowered. Special optical devices

such as chirped mirrors or special prism pairs are used to compensate the pulse

spreading; they allow short light components pass through faster than long wave-

length components, so they compress pulse lasting time.
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Further analysis of Eq. 7.40, clearly shows not only shows the influence of

modes on the focal property, but other factors that also affect focal spot size, such as

spherical aberration and thermal lens effects should be taken under consideration

as well.

Most lenses are made with a spherical shape, but they cannot be of perfect shape

because there exists spherical aberration. Lenses in laser systems transmit or reflect

high-power laser radiation. However, laser power variations can cause shape

changes of the lenses, so the focal point will change when the radiation power

changes, thus affecting the focal spot size.

According to Lasag [33], manufacturer of Nd-YAG laser system, the spot

diameter of laser beam focused onto the workpiece and Fig. 7.12 below, can be

approximated as:

2ω � 2f θ

M
ð7:43Þ

where f is the focal length of the lens, θ is the divergence of the laser beam before

the expander, and M is the expansion factor of the beam expander.

7.5.2 Depth of Focus

The laser light is first converged at the lens focal plane, and then diverged to a wider

beam diameter again. The Depth Of Focus (DOF) is the distance over which the

focused beam has about the same intensity. This is also called beam waist,

x

z

y

focal length

2mworkpiece

laser beam

Fig. 7.12 Schematic of laser beam impinging on a workpiece
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Fig. 7.13. It is defined as the distance over which the focal spot size changes �5%.

The equation for DOF is [33]

DOF ¼ 8λ

π

� �
f

D

� �2
¼ 2:44λ

f

D

� �2
ð7:44Þ

where λ is the wavelength, f is the lens focal length and D is the unfocussed beam

diameter. Usually longer depth of focus is preferred, because equal energy density

along the beam is preferred when using the laser to process materials.

Position of the focal plane is known to have an effect on final shape of the hole as

well as degree of penetration. As the laser focusing spot moves up and down, the

laser material interaction area ArF varies too, according to expression [34].

ArF ¼ nω0 1þ z� zω
2ω0f=D

� �2
" #1

2

ð7:45Þ

where ω ¼ ω0 is the laser beam radius at the beam waist equals to ω0 which is the

minimum radius of the laser beam. In our analytical and numerical calculations,

Eq. 7.11 is proved to be the most accurate one to use.

While calculating the drilled-hole profiles defocusing of the laser beam effects

should be taken into account. As a rule, the divergence of the laser beam would

increase the radial heat flux on the hole-walls, by decreasing energy at the entrance

of laser beam of the evolving hole. However, multiple reflections inside the hole

will accumulate the energy at the bottom of the drilled hole, which was described

before.

Laser beam

focal length = 50 mm

DOF, beam waist = 0.18 mm

beam diameter = 0.3 mm

material thickness = 0.76 mm

material - stainless steel 304

Fig. 7.13 Laser beam focusing onto the sample
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7.5.3 Laser Beam Quality

The concept ofM2 is important to describe actual propagation of laser beams.M2 is

a beam quality that measures the difference between the actual beam and the

Gaussian beam. In order to find out the M2 of a laser system, we need first measure

the spot size along the laser optical axis.

Edge method is used if beam profile-meter is not available. Edge method uses a

knife-edge to block the laser beam, a power-meter measures the power after the

blocking of the knife-edge, by recording the 86% and 14% location of the full

power. Subtracting the two values one gets the beam spot size at that point. This

method measures the 1/e2 radius of the laser beam. Because the laser spot size is

rather small, the relative measurement error for such dimension using edge method

can be large. Usually a beam expander, or a collimator, is used to expand and

“parallel” the beam, the spot size out of the collimator is several millimeters. For

such dimension, knife-edge method can easily reduce the relative measurement

error to less than 2%. As illustrated by Fig. 7.14, six measurements at three

different distances from the collimator are taken, Zn, Dn, where n ¼ 1, 2, 3. The

distance from any chosen point along the optical axis and the spot size at that

location are recorded.

The beam size at location Zn, satisfies the following equation:

D2
n ¼ D2

0 þ
4M2λ

π

� �2
Zn � Z0

D0

� �
for n ¼ 1, 2, 3 ð46Þ

Where Dn is the beam size at location Zn, D0 is the beam waist, Z0 is the beam waist

location, λ is the wavelength, and M2 is the beam quality parameter which is

unknown. In this relation, λ is known, Dn and Zn can be measured, M2, D0 and Z0
are also unknowns.

Taking the measured data into Eq. 7.41, we get three highly nonlinear equations

for three unknowns. One can solve these equations using, e.g., MathCAD. Knowing

M2, one can calculate the beam divergence, focused spot size, and depth of focus

(DOF) as follows:

Fig. 7.14 Six different

measurments at three

different collimator distance
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Dmin ¼ 4fM2λ

πDL
ð7:47Þ

DGaussian ¼ Af

πD0

� �
ð7:48Þ

θact ¼ M2λ

πD0

θinfinity ¼ D3 � D2

2 Z3 � Z2ð Þ
� �

ð7:49Þ

DOF ¼ �0:08λ
Dmin

M2λ

� �
ð7:50Þ

where DL is the laser beam size when it propagates to the front side of the focus

objective lens, f is the focus length, Dmin is the minimum beam diameter that can be

achieved. θact is the real beam divergence. It can be verified that the equations are

solved with an error less than 10�10. In practical cases, one should first measure the

pulse energy or average power of the laser beam, then measure the beam spot size

along the optical axis. Using Eqs. 7.47 and 7.48 one can calculate the beam waist

and beam waist location, and one can find M2 of the beam, then can calculate the

other indexes in Eq. 7.50. Knowing DOF one can calculate M2 value as

M2 ¼ 0:08
Dminð Þ2
λ DOFð Þ

" #1=2
ð7:51Þ

whereDmin is the minimum beam diameter that can be achieved. Knowing diameter

at any location, one can determine the intensity of the laser beam at that location.

7.5.4 Spherical Aberration

There are two reasons why a lens will not focus to a theoretical point. First is the

diffraction limited problem as discussed in Sect. 7.3, and the second is that lens is

not of a perfect shape. Most lenses are made with a spherical shaped since this can

be accurately manufacture without too much cost and alignment of the beam is not

so critical as with a perfect aspheric shape. The net result is that the outer ray

entering the lens is brought to a shorter axial focal point than the rays nearer the

center of the lens. This leaves a blur in the focal point location. The plane of best

geometric focus is a little short of the plane wavefront (paraxial point). The size of

the minimum spot, dmin is given by

7.5 The Behavior of Electromagnetic Radiation at Interface 231



dmin ¼ K n; q; pð Þ DL

f

� �3

Sa ¼ 2ΘaSa ð7:52Þ

where Θa is the angular fault (half angle), Sa is distance from lens, DL is diameter of

top hat beam mode on lens, f is the focal length of the lens, K(n, q, p) is the factor
dependent on the refractive index n, q is the lens shape, and p is lens position,

K n; q; pð Þ ¼ 1

128n n� 1ð Þ
nþ 2

n� 1
q2 þ 4 nþ 1ð Þpqþ 3nþ 2ð Þ n� 1ð Þp2 þ n3

n� 1

� �
ð7:53Þ

where q is the lens shape factor (¼ r2 þ r1ð Þ= r2 � r1ð Þ ), r1, r2 are the radii of

curvature of the two faces of the lens, and p is position factor (¼ 1� 2f=Sa).

7.5.5 Thermal Lens Effect

In optical elements, which transmit or reflect high-power radiation there will be

some heating of the component, which will alter its refractive index and shape

[35]. As the power, or the absorption, changes so will the focal point and spot size.

The two main elements usually concern are the output coupler and the focusing

lens. The beam guidance mirrors could also be of concerned if adequate cooling is

not supplied (water cooling or dry air cooling).

Thermal lensing is mainly caused by the rise in temperature increasing the

refractive index (dn/dT) and thus shortening the focal length. A lesser effect is

the thermal distortion (dl/dT). The focal length shift for thin lenses can be calcu-

lated to be

ΔF ¼ 2APF2

πkD2
L

dn

dT

� �
ð7:54Þ

where A is the optic absorptance, k is the thermal conductivity, T is the temperature,

P is incident power of the laser beam.

Uneven heating causes further complications. The approximate Gaussian power

distribution of the incident beam heats the middle more than the edge causing a

radial temperature gradient (usually the edge of the lens is being cooled). A typical

temperature difference would be 14� for a 1500W beam of 38 mm diameter passing

through an optic with 0.2% absorptance.

At this time let us mention another problem. During laser micromachining, from

the fact that the absorption is on the surface of the lens, there is also going to be a

temperature gradient in the depth direction. The thicker the optic the more bowed

will be the internal isotherms. Such an aberration will affect the M2 value, trans-

verse mode, and on the spatial distribution of the laser beam as well.
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7.6 Theoretical Discussion of Laser Absorption
and Reflectivity

This subject was touched upon in Sect. 7.4 in above and we expand it further again.

To consider the coupling of the laser energy to a material, we need first to know the

optical reflectivity R and the transmissivity T for light incident on a surface which

divides two semi-infinite media. The transmissivity plus the reflectivity equals

unity at a single surface:

Rþ T ¼ 1 ð7:55Þ

In most practical situations we are dealing with more than one surface; typically, we

have a slab of material with light impinging on one surface. Some light is reflected,

and the rest is either absorbed or passed completely through the slab. In such a

situation we shall describe the net result of all the reflection, after multiple passes

inside the slab and appropriate absorption has been accounted for, in terms of the

reflectance R, the absorptance A, and the transmittance T:

Rþ T þ A ¼ 1 ð7:56Þ

The absorption of the laser energy takes place through photon interaction with

bound and free electrons in the material structure, which raises them to the higher

energy levels. Energy conversion takes place through various collision processes

involving electrons, lattice phonons, ionized impurities and defect structures.

If the surface being machined reflects too much light energy, the absorbed

energy is decreased, the operation efficiency is lowered, and the reflected light

may do harm to the optical systems. Reflection and absorption of laser beams is

closely related to laser micromachining or dueling with target surface materials.

The value of absorption and reflection is related by Eq. 7.56.

What we really are interested in from the point of view of material response is A,
the absorptance of the material. In most materials of interest, from the practical aim

of using lasers to melt, weld, etc., T is zero, and thus, Eq. 7.56 reduces to:

Rþ A ¼ 1 ð7:57Þ

In metals, the radiation is predominantly absorbed by free electrons in an “electron

gas.” These free electrons are free to oscillate and reradiate without disturbing the

solid atomic structure. Both Eqs. 7.56 and 7.57 are analogous to Eqs. 7.23 and 7.24

for what we found out and discussed in Sect. 7.4 in above. As an electromagnetic

(EM) wave-front arrives at a surface of the target then all the free electrons in the

surface vibrate in phase generating an electric filed 180� out of phase with the

incoming beam creating “electron gas.” This “electron gas” within the metal

structure means that the radiation is unable to penetrate metals to any significant

depth, only one to two atomic diameters (or free paths), and thus, metals are opaque

and they appear shiny.
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According to Fig. 7.15 reflectivity decreases as wavelength becomes shorter,

while absorption increases when photon energy increases.

If sufficient energy is absorbed then the vibration becomes so intense that the

molecular bonding is stretched so far that it is no longer capable of exhibiting

mechanical strength and the material is said to have melted. On further heating the

bonding is further loosened due to the strong molecular vibrations and the material

is said to have evaporated. The vapor is still capable of absorbing the radiation, but

only slightly since it will only have bound electrons. The exception occurs if the gas

is sufficiently hot so that electrons are shaken free and the gas is then said to be in

plasma status.

To understand reflectivity, we must use some general results from the theory of

electromagnetic waves. Let us summarize these briefly at this point. The electric

field of the electromagnetic wave, from Eq. 7.7, is:

ε z; tð Þ ¼ ℜe ε0e
�2πkz=λeiω t�nz=cð Þ

h i
Eq: 7:7 as beforeð Þ

The relationships we need are those among the index of refraction n, the extinction
coefficient k, and the material properties. These relationships can be derived by

substituting Eq. 7.7 in the wave equation as:

∂2ε z; tð Þ
∂z2

¼ 1

v2
∂2ε z; tð Þ

∂t2
ð7:58Þ

where v is the phase velocity of the wave and for traveling wave in media of density,

the phase velocity is given by

v ¼ f λ ¼ vλ and ω ¼ 2πf ¼ 2πv ¼ 2π

λ
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Fig. 7.15 Reflectivity as a function of wavelength for different metals
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In case media as vacuum v ¼ c speed of light in vacuum.

If we get twice derivation of Eq. 7.7 and substitute the result in Eq. 7.58, it

results in:

∂2ε

∂z2
¼ με

∂2ε

∂t2
þ μσ

∂ε
∂t

ð7:59aÞ

Equation 7.59a results in the expression of Eq. 7.59b below as:

2πk

λ
þ iωn

c

� �2

¼ με �ω2
� �þ iωμσ ð7:59bÞ

Note that we are using rationalized MKS units throughout. The material properties

enter through μ, ε, and σ, which are the magnetic permeability, the dielectric

function, and the electric conductivity of the medium. Using the usual equations

between the field vectors

~D ¼ Keε0~ε ð7:60aÞ

~B ¼ Kmμ0~H ð7:60bÞ

~J ¼ σ~ε ð7:60cÞ

We have

ε ¼ Keε0 ð7:60dÞ

μ ¼ Kmμ0 ð7:60eÞ

In Eqs. 7.60a and 7.60b, ε0 and μ0 are the electric permittivity and magnetic

permeability of a vacuum. Ke is the dielectric constant and Km the magnetic

permeability of the material. By substituting Eqs. 7.60d and 7.60e into Eq. 7.59b

and using 2π=λð Þ ¼ ω=cð Þ, we obtain that:

k þ inð Þ2 ¼ �KmKeε0μ0c
2 þ iKmμ0σ

c2

ω

� �
ð7:61Þ

Finally, if we introduce c2 ¼ ε0μ0ð Þ�1
and do some algebra, we get:

n� ik ¼ ffiffiffiffiffiffiffi
Km

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ke � i

σ

ε0ω

r
ð7:62Þ

This equation relates the material parameters Ke, Km, and σ, which in general may

be complex, to index of refraction n and extinction coefficient k. To describe the
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propagation of the light wave thus requires a knowledge of Ke, Km, and σ. Before
we describe these, let us look at two more general properties of our propagating

electromagnetic wave.

The first of these is absorption. If the medium is absorbing, the intensity will fall

off to 1/e of its initial value in a distance δ, obtained by setting ε2 of Eq. 7.7 equal to
1=eð Þε2max, or

4πkδ

λ
¼ 1 ð7:63aÞ

or

δ ¼ λ

4πk
ð7:63bÞ

This shows why k is called the extinction coefficient, for it determines skin depth δ.
Equation 7.63b is fairly general in that once k is known, δ can be calculated. As

noted, a knowledge of the material properties is required to calculate k.
The second general property we wish to derive is the expression for reflectivity,

in terms of n and k. To do this, consider light impinging normally onto an ideal solid

surface, as shown in Fig. 7.64. Here we have illustrated the incident ~εið Þ, reflected
~εrð Þ, and transmitted ~εtð Þ electric waves at a vacuum–material interface. For the

present, we limit our discussion to the case of normal incidence. We now consider

the boundary condition. Then, for electric field, we have

εi þ εr ¼ εt ð7:64Þ

For the magnetic field ~B, we can right:

Bi � Br ¼ Bt ð7:65Þ

The minus sign is before Br because~ε� ~B is positive in the direction of propagation

of the wave. Now, the relationship between ~B and~ε, or, since ~B ¼ μ~H, between ~H
and ~ε, is required in order to proceed further (Fig. 7.16).

This follows directly from Maxwell’s equations as:

Δ�~ε ¼ �μ
∂~H

∂t
ð7:66Þ

Δ� ~H ¼ σ~εþ ε
∂~ε
∂t

ð7:67Þ

It is convenient to rewrite Eq. 7.7 and introduce ωλ ¼ 2πc, to have ~ε explicitly in

terms of ω instead of both ω and λ. Recall that ~ε is a vector, and take it as being

along the x-direction. Thus, we can write:

236 7 Lasers



~εx ¼ ε0e
iωte�

iω
c z n�ikð Þ ð7:68Þ

Here we have dropped the “Re” notation, and shall simply note that we always

mean the real part when we write the wave in exponential form. We shall use unit

vectors x̂ , ŷ, and }\hat{z}{.
Now the curl expression reduces to:

Δ�~ε ¼ ŷ
∂Ex

∂z
ð7:69Þ

which, with Eq. 7.66, tells us that ~H has only a y-component, so, we have:

Δ� ~H ¼ �x̂
∂Hy

∂t
ð7:70Þ

Thus, Eqs. 7.66 and 7.67 become in the following form:

∂εx
∂z

¼ �μ
∂Hy

∂t
ð7:71Þ

and

�∂Hy

∂z
¼ σεx þ ε

∂εx
∂t

ð7:72Þ

and, of course, εy ¼ εz ¼ Hx ¼ Hz ¼ 0. Putting the expression for εx from Eq. 7.68

into 7.71 leads to:

Hy ¼ n� ik

μc
ε0e

�iω
c z n�ikð Þeiωt ð7:73Þ

This is desired relationship as:

MEDIUM 2

Si

MEDIUM 1

Sr

St

Fig. 7.16 Incident,

transmitted, and reflected

electric vectors at an

interface
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Hy ¼ n� ik

μc

� �
εx ð7:74Þ

At this point we note in passing that Eq. 7.72 or 7.59b could be used to yield the

relationship of n and k to μ, ε, and σ. If the reader is unfamiliar with these

relationships, it is instructive to carry out the algebra.

Returning to our consideration of the reflected electric and magnetic fields, we

rewrite Eqs. 7.64 and 7.65 with the help of the relationship between H and ε, from
Eq. 7.74

εi þ εr ¼ εt

and

μ1Hi � μ1Hr ¼ μ2Ht

become

εi � εr ¼ n2 � ik2
n1 � ik1

� �
εt

Solving for εr=εi by eliminating εt, we get:

εr
εi

¼ n1 � n2 � i k1 � k2ð Þ
n1 þ n2 � i k1 þ k2ð Þ

Finally, the reflectivity R at the surface is:

R ¼ εr
εi

���� ����2 ¼ n1 � n2ð Þ2 þ k1 � k2ð Þ2
n1 þ n2ð Þ2 þ k1 þ k2ð Þ2 ð7:75Þ

Take medium 1 as a vacuum and drop the subscript 2, since in a vacuum n1 ¼ 1 and

k1 ¼ 0, then Eq. 7.75 reduces to:

R ¼ n� 1ð Þ2 þ k2

nþ 1ð Þ2 þ k2
ð7:76Þ

Equation 7.76 is the second relationship we will find useful in discussing the

coupling of optical radiation with metals. Note that it is derived for the special

case of normal incidence and is applicable to a vacuum–material interface.
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7.6.1 Reflectivity of Materials at Infrared Wavelength

We turn now to a derivation of the optical reflectivity of metals for infrared

wavelengths, where experiment has shown that the free-electron theory (sometimes

called the Drude–Lorentz theory) of metals is adequate. This theory rests on three

assumptions:

1. The first is that electromagnetic radiation interacts only with the free electrons in

the metal.

2. The second is that the free electrons obey Ohm’s law, or, more specifically, that

m
dυ

dt
þ m

τ
υ ¼ �eε ð7:77Þ

where m is the effective mass of the electron, υ the drift velocity of electro, τ the
relaxation time due to collisions (i.e., mean free time between ionic collisions.

See Fig. 7.17), and �eε, the force on the electron due to the electromagnetic

field.

3. The third assumption is that the free electrons of a metal can be described in

terms of a single effective mass, carrier concentration, and relaxation time.

There has been a good deal of discussion about the validity of these assumptions

in the literature.

Fig. 7.17 Drude–Lorentz model electrons (shown here in blue or small dot). Constantly bounce

between heavier, stationary crystal ions (shown in red larger dot)
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Recent work [10] indicates that, for wavelengths in the intermediate infrared

(a few microns to many tens of microns) and beyond, the free-electron theory does a

reasonable job of predicting the reflectivity of metals.

To derive the free-electron optical reflectivity, we try solutions to Eq. 7.77 of the

form

υ � eiωt

So that Eq. 7.77 with substitution of above relation results in:

m* iωð Þ þ m*

τ

� �
υ ¼ �eε ð7:78Þ

Manipulating Eq. 7.78, we can find that:

υ ¼ � eτ

m* 1þ iωτð Þ ε ð7:79Þ

Now the current flow obeys:

~J ¼ σ~E ¼ �Ne~υ ð7:80Þ

Where N is the electron concentration (number of electron per unit volume). By

comparison of the last two equations,

σ

Ne
¼ eτ

m 1þ iωτð Þ ð7:81Þ

or

σ ¼ Ne2τ

m 1þ iωτð Þ ð7:82Þ

Now the dc conductivity is

σ0 ¼ Ne2τ

m
ð7:83Þ

We see σ is a complex quantity and seek to write it as the sum of a real and

imaginary part. Thus,

σ ¼ Ne2τ 1� ωτð Þ
m 1þ ω2τ2ð Þ ð7:84Þ
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Define

σ ¼ σ1 � iσ2 ð7:85Þ

The result is

σ1 ¼ σ0
1þ ω2τ2

ð7:86aÞ

σ2 ¼ σ0ωτ

1þ ω2τ2
ð7:86bÞ

To proceed further we need to use the general expression for electromagnetic waves

developed in Sect. 7.6. Recall Eq. 7.62:

n� ik ¼ ffiffiffiffiffiffiffi
Km

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ke � i

σ

ε0ω
Previous Eq: 7:62ð Þ

r
and from the complex σ of Eq. 7.85, we can write:

n� ik ¼ ffiffiffiffiffiffiffi
Km

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ke � i

σ1 � iσ2
ε0ω

r
ð7:87Þ

If we assume only free-electron optical interactions, the metal does not polarize

under the wave, and Ke ¼ 1. In addition, for metals in the infrared, Km ¼ 1. Thus,

n� ik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i

σ1 � iσ2
ε0ω

r
ð7:88aÞ

or

n� ik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ2

ε0ω
� i

σ1
ε0ω

r
ð7:88bÞ

It remains only to separate the real and imaginary parts of Eq. 7.26, which will yield

two equations in n and k and thus give n and k in terms of the dc conductivity or and

the relaxation time τ. Then we can use our expression for the reflectivity from

Eq. 7.76 to generate R from n and k.
To carry out the algebra we use the identity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ iB

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Rþ A

2

r
þ i

ffiffiffiffiffiffiffiffiffiffiffiffi
R� A

2

r

Where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
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Letting

A ¼ 1� σ2
ε0ω

and

B ¼ � σ1
ε0ω

We have

2n2 ¼ i� σ2
ε0ω

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ2

ε0ω

� �2

þ σ1
ε0ω

� �2
s

ð7:89aÞ

2k2 ¼ � 1� σ2
ε0ω

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ2

ε0ω

� �2

þ σ1
ε0ω

� �2
s

ð7:89bÞ

Equations 7.89a and 7.89b, together with Eq. 7.76 give the reflectivity of R. Notice
that R is a function solely of σ1, σ2 and ω. Look again at Eqs. 7.86a and 7.86b and

note that σ0 can be used to replace τ in the expression for σ1, and σ2 as:

σ1 ¼ σ0

1þ ω2
m2σ20
N2e4

ð7:90aÞ

σ2 ¼ σ20

m
Ne2 ω

1þ ω2
m2σ20
N2e4

ð7:90bÞ

Equation 7.90a and 7.90b show that σ1, and σ2, and thus R, depend on frequency ω,
constant m/N, and dc conductivity σ0. Thus,

R ¼ f ω, σ0,m=Nð Þ ð7:91Þ

This means that we can use the dc conductivity to predict the reflectivity. Further-

more, if we know the temperature variation of σ0, we can use this method to

calculate R as a function of temperature. This is a useful result, because it is difficult

to measure optical reflectivity as a function of temperature, whereas it is fairly easy

to measure σ0 vs. temperature.

A wealth of data on electrical conductivity has been amassed for most metals

and alloys. Thus, the free-electron model is currently enjoying a great deal of

attention as a way of providing reflectivity-vs-temperature information in the

study of laser effects.
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There is, of course, one problem in using σ0(T ) data to predict R, and that is the

parameter m/N. It turns out that R is fairly insensitive to this parameter at infrared

wavelengths. To see this we show here some numerical illustration. Define

β ¼ m=m0 ð7:92Þ

where m0 is the free electron mass, and then the parameter β/N is equivalent to m/N.
Figure 7.18 shows a plot of ∂R=∂ β=Nð Þ as a function of β/N for λ ¼ 10μm and

various values of σ0. Here σ0 is in units of reciprocal ohm-centimeters. Typical

values are, for example, σ0 ¼ 105Ω�1 cm�1 and β=N ¼ 10�23 cm3 for aluminum.

Then the value of∂R=∂ β=Nð Þ is about 7:2� 1020cm�3. If we take a 10% error in β/
N, we get

∂R
∂ β=Nð ÞΔ β=Nð Þ ¼ 7:2� 100 � 10�24

ΔR ¼ 0:00072

Since for these values R ¼ 0:97366, the change in R? is only about 0.1%. We can

obtain quite good predictions by the Drude–Lorentz model using the experimental
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values of σ0 and the most simple choice for β/N, namely one free electron for each

valence electron per atom in the metal, and β ¼ 1. For alloys, it is sufficient to

choose the major constituent of the alloy. For example, with stainless steel we

choose iron, or two electrons per atom, to compute N and hence β/N.
Figures 7.19 and 7.20 do show the predictions of the free-electrons theory for a

variety of metals and some comparison to experimental data [10]. The abrupt

change when the metal molts is caused by the abrupt change- in the 0 conductivity.

Notice in the comparison to data that aluminum films give values closet to the

theory. This is probably because they prevent the best surfaces. Defects, oxide

layers, etc., tend to trap the incident radiation and cause they real surface to absorb

more radiation than the ideal surface. These graphs are in terms of absorptance,

which is the experimentally measured quantity, and, since metals are opaque,

A ¼ 1� R, which is correct for specular reflection at normal incidence from an

opaque substance.

Let us return to the expressionism for n and k to look at some limiting forms and

thus show how these complete expressions reduce to simple relationships. Remem-

ber that R (Eq. 7.76) is determined by n and k (Equations sets 89a and 89b), which

are in turn obtained from the dc conductivity and m/N (Equations sets 7.90a and

7.90b). The variation of n and k with wavelength is shown in Fig. 7.21 for a typical
good conductor like aluminum or copper at room temperature. Note that at long
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wavelengths n ¼ k. We can derive this by using Equations sets 86a and 86b for σ1
and σ2 and noting that as ω ! 0, σ1 ! σ0 and σ2 ! σ0ωτ. By substituting these

values into Equation sets of 89a and 89b, we can readily show that
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n ¼ k ¼
ffiffiffiffiffiffiffiffiffiffi
σ0

2ε0ω

r
ð7:93Þ

This is called the Hagen–Rubens limit. Note that n is very large. Under these

conditions algebra can be used to reduce Eq. 7.76 to the following form:

R ¼ n� 1

nþ 1
ð7:94aÞ

or

R ¼ 1� 2

n
ð7:94bÞ

and Eq. 7.93 can be substitute for n to get:

R ¼ 1� 2

ffiffiffiffiffiffiffiffiffiffi
2ωε0
σ0

r
ð7:95Þ

This is the Hagen–Rubens reflectivity.

We can also comment on the skin depth. We have, at long wavelength ω ! 0ð Þ,

δ ¼ λ

2π

ffiffiffiffiffiffiffiffiffiffi
2ε0ω

σ0

r
ð7:96Þ

This can be rewritten as:

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

μ0σ0ω

s
ð7:97Þ

Equation 7.97 is the common expression for skin depth used at long wavelength.

Finally, we see from Fig. 7.22 that n and k reconverge at short wavelengths. This
is called the plasma resonance. To see this, one must look at the behavior of n and

k over a larger spectrum. We have already discussed the long-wavelength limiting

behavior of n and k. This is the Hagen–Rubens region, where n ¼ k. At short
wavelengths, it is easy to show from Equations sets 7.90a and 7.90b that:

σ1 ! N2e4

m2σ0ω2
ð7:98aÞ

σ2 ! Ne2

mω
ð7:98bÞ

Thus, Eqs. 7.89a and 7.89b can be written, for large ω, as:
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n2 ¼ 1� Ne2

ε0mω2
ð7:99aÞ

k2 ¼ 0 ð7:99bÞ

Now the plasma frequency is usually defined from Eq. 7.99a by setting n ¼ 0 to

yield

ω2
p ¼

Ne2

ε0m
ð7:100aÞ

and thus

n2 ¼ 1� ω2
p

ω2
ð7:100bÞ

We see, then, that at very high frequencies the free-electron model predicts a

transparent behavior k ¼ 0ð Þ and the index of refraction approaches that of a

vacuum. The transition to this transparent behavior takes place at the plasma

frequency, and it is a fairly abrupt transition, as Fig. 7.22 shows. In fact, some

texts call this transition the “ultraviolet catastrophe.”

Note that at ω near ωp Equations sets of 99a and 99b and 100a and 100b) are not

valid. For these frequencies we must use the full expression. If we use again the
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values of σ0 ¼ 105Ω�1cm�1 and β=N ¼ 10�23cm3, which are appropriate to a good

conductor like aluminum at room temperature, the reflectivity looks like Fig. 7.23.

One can see that, in terms of the reflectivity, the transition is very abrupt, indeed.

The optical reflectivity of real metals is, as we have seen, in reasonable accord

with the free-electron model at wavelengths in the infrared. The surface, however,

must be nearly perfect for the predicted reflectivities to be achieved, and, of course,

as the wavelengths approach the visible region band effects become important and

the reflectivity shows rapid -Actuations with frequency. The absorptance of a

practical metal surface is still largely an empirical matter. For high-power, contin-

uous-wave radiation by a CO2 laser, some data are available, but very little

information on absorptivity as a function of surface temperature under these

conditions is available.

Shown in Table 7.1 are room temperature absorptances for a few materials.
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Table 7.1 Room-temperature absorptance of aerospace metals and alloys at 10.6 μm for various

surface conditions and at normal incidence

Metal or alloy

Surface condition

Ideal Polished As-received Sandblasted

Al 0.013 0.03 0.040� 0.02 0.115� 0.015

Au 0.006 0.01 0.02 0.14

Cu 0.011 0.016 0.06

Ag 0.005 0.011

2014 Al 0.033 0.07� 0.02 0.25

304 Stainless steel 0.11 0.4� 0.2

Ti Alloy (6Al, 4 V) 0.65� 0.2

Mg alloy Az-31B 0.06� 0.03
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Data on the reflectivity of a metal during actual irradiation by a laser beam is

quite difficult to obtain, although this information is central to the problem of laser–

material interaction. One classic experiment along these lines was carried out by

Bonch-Bruevich, Imas, Romanov, Libenson, and Maitsev in Russia in 1967 [36].

They surrounded their specimens with a sphere to monitor the reflected radiation, as

shown schematically in Fig. 7.24. The output of the photodetector is proportional to

the reflectance of the specimen. Some of their results for steel and copper are shown

in Fig. 7.25. The laser pulse (Nd: glass laser, 1.06 μm), with a peak power density of

LASER
BEAM

PHOTOMETRIC SPHERE

PHOTODETECTOR

TARGET

Fig. 7.24 Schematic representation of Bonch-Bruevich experiment
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the order of 108 W/cm2, is shown as a broken line. As time passes, of course, the

laser pulse heats the surface and the reflectance decreases. An especially interesting

feature of these data is the shoulder. The author has suggested that this leveling off

is associated with the surface reaching the melting point and pausing at that

temperature while the thickness of the molten layer propagates into the solid. In

short, order, however, the molten layer begins to heat up and the reflectance

continues to decrease. As the power density of the laser pulse reaches its peak

and begins to fall, the surface temperature can no longer be maintained, and as the

surface cools the reflectance begins to increase again.

In calculation of the laser interacting with metals commonly used material

properties are: (for energy balance analysis) density, heat capacity, specific heat

ratio, heat conductivity, heat diffusivity, latent heat, melting point, vaporization

point; (for stress and momentum analysis): viscosity, modulus of elasticity, shears

modulus, Poison’s ratio, stress-strain constitutive relation.

7.7 Mathematical of Laser Absorption in Metals

A complete understanding of laser interaction with materials is still a matter of trials

and adjustments. The real physical processes of laser beam interaction (drilling,

cutting, welding, or being used as a directed energy weapon application) with

materials are very complex. Problem of laser interaction with materials presents

many difficulties, both from modeling as well as from experimental sides. One

would expect a reasonable description of the main phenomena occurring during

laser interaction, but this is complicated because many of physical processes

equally contribute to the development of conservation equations, producing draw

back because of a great complexity of the equations to be solved. In most instances,

this leads to formulation of a model needed to be solved numerically. A lack of

pertinent experimental data to compare with, forces one to simplify some equations

and use previous analytical and computational work done in this field [4].

The absorption coefficient, which can be derived from the material’s dielectric

function and conductivity, determines the absorption of light as a function of depth.

However, the specific mechanisms by which the absorption occurs will depend on

the type of material. In general, photons will couple into the available electronic or

vibrational states in the material depending on the photon energy. In insulators and

semiconductors, the absorption of laser light predominantly occurs through reso-

nant excitations such as transitions of valence band electrons to the conduction band

(interband transitions) or within bands (intersubband transitions) [20]. These

excited electronic states can then transfer energy to lattice phonons. Photons with

energy below the material’s band gap will not be absorbed (unless there are other

impurity or defect states to couple to or if there is multi-photon absorption). Such

energies typically correspond to light frequencies below vacuum ultraviolet for

insulators and below the visible to infrared spectrum for semiconductors. However,
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resonant coupling to high-frequency optical phonons in the near-infrared region is

possible in some cases [31].

As we discussed in previous sections, light impinging on a material surface can

be reflected, transmitted, or absorbed. In reality, all three occur to some degree. In

order for laser machining to be practical, the laser light must be absorbed by the

material. To yield an efficient process, it is necessary to couple as much of the

incident intensity to the work-piece as possible. This coupling efficiency is

described by the sample absorptivity A (in some parts of the book this is also

referred to as absorptance, absorption coefficient, or just absorption). The absorp-

tivity is defined as the ratio between the absorbed energy and the incident energy.

Absorptivity changes during the heating process and is a function of the sample’s

optical properties as well as the properties of the electromagnetic wave.

The mathematical model must be derived such that the parameters are easily

handled. Once the model is verified by experiments, it can simulate the process and

provide information such as heat-affected zone, transient temperature distribution,

and cooling rates. Therefore, the model can reduce the experimentation by deter-

mining the effects of particular parameters beforehand.

This section presents the formulation of the general governing equation using the

concept of the divergence of transport intensity as the net accumulation rate of

energy per unit volume of the medium under consideration. Prediction of thermal

effects produced by laser beam scanning the surface of an absorbing sample

requires that three dimensional heat transfer equation be solved subject to finite

size conditions of a sample. The geometry considered in this dissertation is illus-

trated in Fig. 7.26, which is finite in dimensions slab irradiated by a laser beam

impinging on its surface subject to convective and radiative losses.

x

z

y

focal length

2Wworkpiece

laser beam

Fig. 7.26 Laser beam impinging on a finite size sample
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As part of dealing with high-power laser interaction with materials and analysis

of thermal response that is discussed in Sect. 7.8, we can define heat flux qn as the
magnitude of the in the n-direction (with n being x, y, z) one may introduce the

vector sum, ~q, of the directional fluxes as:

~q ¼ qx̂i þ qŷj þ qzk̂ ð7:101Þ

Where (ı̂, ĵ, k̂ ) are the unit vectors along each of the Cartesian coordinate directions.
Having defined a vector representation of the energy transport involved, one

may write the expression for the net accumulation rate of thermal energy per unit

volume as:

∇ � qþ Q ¼ ∂u
∂t

ð7:102Þ

where Q is a volumetric term accounting for the internal generation of heat u. The
right hand side of Eq. 7.102 represents the total rate of change of the element’s

specific internal energy. Thus, Eq. 7.102 is a general statement of the first law of

thermodynamics.

Using thermodynamic arguments, Eq. 7.102 can be expended further. If one

considers sample under consideration to be a homogenous continuum composition,

with more than one phase, than one can uniquely determine the state of any property

of the continuum using two independent properties, specific energy and specific

enthalpy, one can write [37].

dum ¼ ∂um
∂υ

� �
T

dυþ cυdT ð7:103Þ

dhm ¼ ∂hm
∂p

� �
T

dpþ cpdT ð7:104Þ

where

um¼ Specific internal energy

hm¼ Specific enthalpy

υ¼Volume

p¼ Pressure

cυ¼ Specific heat at constant volume

cp¼ Specific heat at constant pressure

T¼Temperature distribution

Both the specific heat at constant pressure and volume are defined as below

respectively:
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cp ¼ ∂u
∂T

� �
p

ð7:105Þ

cυ ¼ ∂u
∂T

� �
υ

ð7:106Þ

For solids and incompressible fluids the specific volume is assumed constant. If one

also neglects pressure changes in the given process, Eqs. 7.105 and 7.106 can be

simplified to yield:

dum ¼ cυdT ð7:107Þ

dhm ¼ cpdT ð7:108Þ

Recalling the definition of specific enthalpy from classical thermodynamics as:

hm ¼ um þ pυ ð7:109Þ

One can combine Eqs. 7.105 and 7.103 to find that:

cp ¼ cυ ¼ c for dυ � dp � 0 ð7:110Þ

If pressure is allowed to vary, Eq. 7.109 still holds approximately for solids and

incompressible fluids. Taking the relations in Eqs. 7.107 and 7.109 and multiplying

by the density of the medium results in expressions in terms relative to the unit

volume as opposed to the unit mass. Using Eq. 7.109, these new volumetric terms

can be expressed as:

du ¼ ρ � c Tð ÞdT ð7:111Þ

dh ¼ ρ � c Tð ÞdT ð7:112Þ

and

h ¼ uþ ρdT ð7:113Þ

Integrating both sides of Eq. 7.111 over proper variables and differentiating with

respect to time yields

∂u
∂t

¼ ρ � ∂
∂t

ð T
T0

c Tð ÞdT ð7:114Þ
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Where T0 is the temperature at the beginning and T is the temperature at the end of

the infinitesimal time step, dt. For the particular very infinitesimal time interval dt
one can assume a constant specific heat, then Eq. 7.114 simplifies to:

∂u
∂t

¼ ρ � c∂T
∂t

ð7:115Þ

since the initial temperature is constant with respect to time. Substituting Eq. 7.115

into Eq. 7.102 yields the heat diffusion equation as:

�∇qþ Q ¼ ρ � c∂T
∂t

ð7:116Þ

Solution of Eq. 7.116 for the time-dependent field, T(x, y, z, t), requires the use of a
constitutive equation relating the temperature to heat flow. For conductive heart

transfer equation this relation is Fourier’s law of conduction. It states that the heat

flux in a direction n is proportional to the temperature gradient in that direction.

Mathematically this is expressed as

qnn̂ ¼ �k � ∂T
∂n

n̂ ð7:117Þ

where k is thermal conductivity and qn is the heat flux in the n-direction. Negative
sign is necessary to satisfy the second law of thermodynamics.

In the analysis of the Fourier heat conduction model, the heat flux through a

given plane is considered as being a function of the spatial temperature gradient at

that plane.

This depends upon the assumption that the temperature gradient remains almost

constant between two successive and closely spaced planes. However, the distance

between these planes is finite, therefore, error occurs when high-order terms, which

are neglected, become important at high-power laser intensities. The heat flux

through a given plane depends on the electron energy distribution through the

material, therefore, the material cannot be considered as a homogeneous continuum

when one is analyzing very short pulses (shorter then a picosecond) at

intermolecular level (distances less than 0.1 μm).

Substituting Eq. 7.117 into Eq. 7.116 yields

�∇ � k∇Tð Þ þ Q ¼ ρ � c∂T
∂t

ð7:118Þ

which is the general form of the governing differential equation for isobaric thermal

conduction in a homogenous solid or incompressible fluid.

In laser micromachining or its interaction with materials surface, the internal

energy generation, Q, is commonly thought of as the rate of laser energy absorbed

per unit volume in the irradiated medium. In case of metals, this absorption occurs
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at beginning in a very thin layer at the surface of the workpiece or target of interest

and, for many practical cases can be considered as a boundary condition to

Eq. 7.118. This absorption process is calculated by Beer–Lambert’s law, via the

following relation as:

I zð Þ ¼ ε � I0 0ð Þj
z ¼ 0
material surface

exp �μ � zð Þ ð7:119Þ

where I(z) is the intensity of the incident radiation at a given distance, z, into the

absorbing medium from the irradiated surface, ε is the surface emissivity of the

medium and μ is the absorption coefficient of the material, measure of the absorp-

tion of radiation propagating through the medium. Using the terminology used in

Eq. 7.102, differentiating Eq. 7.117 with respect to the direction of propagation of

the laser beam yields the volumetric extraction rate of energy absorbed by the

differential element. Since the accumulation rate is negative of the extraction rate

for a given volume, the necessary volumetric term for use in Eq. 7.119, is given by:

Q ¼ �∂I zð Þ
∂z

¼ εμð ÞI0 0ð Þj
z ¼ 0
material surface

exp �μ � zð Þ ð7:120Þ

or for simplicity we write Eq. 7.111 as:

Q ¼ �∂I zð Þ
∂z

¼ εμð ÞI0 0ð Þexp �μ � zð Þ ð7:121Þ

Using the Drude–Zener theory [38], Eq. 7.121 leads to the following expression for

Q(x, y, z, t):

Q x; y; z; tð Þ ¼ Aexp �βtð Þ μI0 x; y; z; tð Þexp �μzð Þ½ � ð7:122Þ

where A is the surface absorptivity, β is the pulse parameter, and I0 x; y; z; tð Þjz¼0 is

laser radiation intensity at the material surface (z¼ 0).

In Eq. 7.122, absorption coefficient of the material ı̀ measuring the absorption of

radiation propagating through the medium is considered constant at this time, but

based on a number of publications ı̀ should be a function of temperature and axial

position of the irradiated laser beam in respect to the material under consideration.

At this time let us modify Eq. 7.122 to be

Q x; y; z; tð Þ ¼ Aexp �βtð Þ μ T; zð ÞI0 x; y; 0; tð Þexp �μ T; zð Þ � zf g½ � ð7:123Þ

and function μ(T, z) will be defined as bulk absorption coefficient at distance z from
metal surface. Here for purpose of our analysis and discussion we keep μ constant,

but based on a number of publications μ should be a function of temperature and
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axial position of the irradiated laser beam in respect to the material under

consideration

Incorporation Eq. 7.122 into 7.118, for laser pulse with a position-dependent

intensity, for this form of pulse input, the Fourier differential Eq. 7.118 can be

rewritten a in very general form as:

ρc Tð Þ∂T
∂t

¼ ∇ k Tð Þ∇T
�
x, y, z, t

� þ Q x; y; z; tð Þ ð7:124Þ

where c(T ) is the density of the material of the workpiece, is the temperature

dependent specific heat of the material, k(T ) is the temperature dependent thermal

conductivity, T(x, y, z, t) is the resulting three-dimensional time dependent temper-

ature distribution in the material t is time and we can assume for the purpose of any

boundary condition that T0 is the initial temperature, and x, y, z are the spatial

Cartesian coordinates, while Q(x, y, z, t) is the rate at which heat is supplied to the

solid per unit time per unit volume, depends on the laser pulse parameter and

physical and optical properties of materials irradiated. Note that both A and μ are

functions of temperature and wavelength of the incident radiation as shown in the

later sections of this chapter.

Solid or liquid evaporates at any temperature greater than 0 K. The evaporation

rates strongly depend on the surface temperature Ts. Equation 7.124 considers heat

diffusion into material only through conduction. Based on experimental and theo-

retical evidence, evaporation takes place, so one has to consider moving elements

of vapor and liquid inside the material during laser beam interaction.

Considering this fact, the general governing differential equation allowing a

phase change process can be written as:

ρ Tð Þc Tð Þ∂T
∂t

¼ ∇ k∇Tð Þ þ ρ Tð Þc Tð ÞVn Tð Þ∇ Tð Þ þ Q ð7:125Þ

where Vn is the normal component of the evaporation front or melt front velocity

(recession velocity)

Let us define velocity, Vn. From literature [39], the interface moves into depth of

the material at the speed defined as:

V Tsð Þ ¼ 1� c

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

2πkBTs

psat Tsð Þ
r

ð7:126Þ

where c is recondensation factor which is usually taken as 0.18 and psat(Ts) is

saturated vapor pressure defined from Clapeyron–Clausius Equation as:

psat Tsð Þ ¼ φ0exp � Ea

kBTs

� �
ð7:127Þ
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and kB is Boltzmann’s constant, φ0 is pre-exponential factor, and Ea is an activation

evaporation per atom.

Note that Eq. 7.126 is a pressure dependent function, which has to be calculated

simultaneously with temperature dependent velocity. Thus, let us derive a velocity

as a function of temperature and the latent heat of phase transition, which is also

temperature dependent.

The rate of change of latent heat with temperature can be expressed as [40].

∂H
∂T

¼ H

T
þ cpv � cpl
� �� H

υv � υl

∂υv
∂T

� �
p

� ∂υl
∂T

� �
p

" #
ð7:128Þ

where cpv and cpl are specific heats at constant pressure for vapor and liquid states,

respectively, and υv and υl are specific volumes for vapor and liquid states.

One has to realize that integration of the latent heat over the temperature ranging

from 0 to critical temperature Tc is difficult, because we do not have enough

information about values for the latent heat especially at extreme value of the

range under consideration. It is safe to assume [41], that little inaccuracy is involved

in taking the room temperature latent heat as the latent heat at absolute zero,

because, by knowing that υv << υl and
∂υv
∂T

	 

p
>> ∂υl

∂T

	 

p
, i.e., the specific volume

of gas, υv is much greater than the condensed liquid, υl and its rate of change with

temperature at constant pressure is corresponding greater. Thus, Δcp is extremely

small for temperature up to room temperature Ta.
According to Maxwell’s law the function of velocity distribution of molecules

can be defined as [42].

f Vnð ÞdVn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M

2πkBTs

exp
MV2

n

2πkBTs

� �
dVn

s
ð7:129Þ

where Vn is the velocity in the direction normal to the surface, and the other

parameters were defined earlier. Using vernacular terms, function f(Vn)dVn is

ratio of number of atoms with velocity Vn to Vn þ dVn per unit volume, to the

total number of atoms per unit volume. Only those molecules whose velocity is

greater than Vmin obtained from Equation given by [42] as:

1

2
MV2

min ¼ H Tð Þ ð7:130Þ

will escape from the retaining potential, where Vmin lies in the z direction. If n is the
number of atoms per unit volume then the number of atoms with velocities Vn to

Vn þ dVn per unit volume is nf(Vn)dVn and the number of atoms with these

velocities passing a unit area per unit time is nf(Vn)VndVn
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Assuming that all the atoms for which , do not return to their equilibrium

position under evaporation circumstances and if Vn > Vmin and if we define as

the number of atoms evaporated per unit time per unit area, then we can write:

NG ¼
ð1
Vmin

nf Vnð ÞVn½ �dVn

¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

2πkBTs

r ð1
Vmin

exp
MV2

n

2πkBTs

� �
Vn

� �
dVn ð7:131Þ

After integration and substitution of Eq. 7.130 into 7.131, we obtain:

NG ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

2πkBTs

r
exp

H Tð Þ
kBTs

� �
Vn ð7:132Þ

If atoms are equally spaced within the lattice a surface layer would consist of n2/3

with an evaporation time n2/3NG. The average velocity of the surface, Vn would be:

Vn ¼ 1

n1=3
NG

n2=3
ð7:133Þ

Vn ¼
ffiffiffiffiffiffiffiffiffiffi
kBT

2πM

r
exp �H Tð Þ

kBT

� �
ð7:134Þ

Where H(T ) is the Latent Heat.
Considering Eq. 7.134, the general governing differential equation define in

Eq. 7.135 below, with phase change processes at the surface of material interaction

with high-power laser irradiation could be written as:

ρ Tð Þc Tð Þ∂T
∂t

¼ ∇ k∇Tð Þ þ ρ Tð Þc Tð Þ
ffiffiffiffiffiffiffiffiffiffi
kBT

2πM

r
exp �H Tð Þ

kBT

� �
∇T þ Q ð7:135Þ

Note that latent heatH(T ), in Eqs. 7.134 and 7.135, is based on some theoretical and

experimental evidence is temperature dependent and the final form of it is going to

be described in later section.

In order to solve Eq. 7.134, appropriate boundary conditions should be applied.

Section 7.8.1 discusses formulation of the appropriate boundary conditions.

7.8 Material and Thermal Response

Metal processing with lasers has reached a high level of maturity and acceptance in

industry. It is used for cutting, drilling, welding, forming, engraving, marking,

hardening, and various forms of surface treatment of metals in a broad spectrum
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of modern industries, including the automotive and aerospace industries, the

shipbuilding industry, the microelectronics industry and the medical instrument

industry to name a few and now its application as a directed energy weapon both

based on ground and space usages.

The details of the material response will depend on the particular material

system and the laser processing conditions. As was mentioned earlier, if laser

induced excitation rates are slow compared to the thermalization time, then the

process is denoted as photothermal, and one can consider the absorbed laser energy

as being directly transformed into heat. In this case, the material response will be a

function of the local material heating and cooling rates, maximum temperatures

reached, and temperature gradients, all of which can be determined from the

solution to the heat equation for the given irradiation conditions. Because material

heating rates can be so extreme, reaching as high as 109 K/s for nanosecond

(ns) pulses and even higher for femtosecond lasers, significant changes to the

material can occur.

One of the most important effects of intense laser irradiation is the conversion of

the optical energy in the beam into thermal energy in the material. This is the basis

of many applications of lasers, such as welding and cutting. We shall summarize

here this thermal response. It is basically a classical problem, namely heat flow. In

the usual manner, we shall seek solutions to the equation which governs the flow of

heat, namely

ρc
∂T
∂t

¼ ∂
∂x

K
∂T
∂x

� �
þ ∂
∂y

K
∂T
∂y

� �
þ ∂
∂z

K
∂T
∂z

� �
þ A ð7:136Þ

We use here ρ for the density, c for the specific heat, T for temperature, I for time,

and K for thermal conductivity. A is the heat produced per unit volume per unit of

time. In Eq. 7.136, ρ, c, and K are considered functions of both position and

temperature, and A is a function of both position and time. In effect, the equation

is a simple statement that the rate at which heat accumulates in an elemental volume

dx dy dz is equal to the net flow of heat across the faces of that volume plus the rate

at which heat is produced within the volume.

Thus, thermal response studies consist essentially of two parts. First, one needs

to know the rate and source of production of heat by the laser, which yields A. Then
one solves Eq. 7.136 subject to the boundary conditions of the situation of interest.

This can be a very elaborate task and frequently can be done only with the aid of a

computer.

There is a great deal of effort among workers in the field of laser effects to

develop an all-inclusive computer program to solve Eq. 7.136 for every possible

situation. However, the solution to Eq. 7.136 can be no better than the knowledge of

A, and, as we see in later sections, it is often very difficult to establish A with any

precision in a laser material interaction situation.
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7.8.1 Boundary Conditions

Boundary conditions are important part of a model. They influence the program-

ming and calculation results greatly. Specifying the suitable boundary conditions is

the basis for successful computation. Three kinds of boundary conditions are

typically encountered in heat conduction analysis. These are:

1. Given the boundary temperature, T.
2. Given the boundary heat flux, q.
3. A boundary heat flux balance relation.

If the boundary temperature is given, there is no particular difficulty in model-

ing, one needs only to specify the value of the boundary grids to the specified

temperature.

The magnitude of heat flux due to convection to the ambient from the sample

surface is expressed using Newtonian law of cooling

qconv ¼ hc Ts � Tambð Þ ð7:137Þ

where hc is convection heat transfer coefficient, Ts is the surface temperature, and

Tamb is the temperature of ambient or surrounding.

In order to determine hc, the characteristic length L of the workpiece should be:

L ¼ Area

Ob
ð7:138Þ

where Area is the area of the surface, and Ob is the perimeter of the workpiece.

Then, the Nusselt number for the horizontal plate is [43]:

Nu ¼ 0:27 Rað Þ0:25 ð7:139Þ

where the Rayleigh number Ra is:

Ra ¼ gβ

κγ
L3 T � Tambð Þ ð7:140Þ

In Eq. 7.140, g is the gravitational acceleration, β is the coefficient of the volumetric

thermal expansion, κ is the thermal diffusivity, γ is the kinematic viscosity, and

other parameters are as defined for Eq. 7.137. The convective heat transfer coeffi-

cient hc can be calculated as:

hc ¼ Nu

kair
L

ð7:141Þ

where kair is the thermal conductivity of the air surrounding the workpiece. Note

that in case of high-power laser as directed energy weapon and its application as
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Ground Based Laser (GBL) or Air Born Laser (ABL), we need to consider the

above discussion. Radiation to the ambient is expressed using the relation:

qrad ¼ σε T4
s � T4

amb

� � ð7:142Þ

where qrad is the magnitude of radiation flux, ε is the emissivity of the material, and

σ is the Stefan–Boltzmann constant. Note that convection is a linear function of

temperature, whereas radiation is a nonlinear, due to its dependence on the differ-

ence of the fourth powers of the surface and ambient temperature.

The magnitude of convection and conduction in the overall transport of heat can

be evaluated from the value of the Péclet number, Pe, which is defined by

Pe ¼ ucpLr
k

ð7:143Þ

Where u is velocity, Lr is the characteristic length, taken as the pool radius at the top
surface of the weld pool and the other parameters as defined earlier.

Heat transported by a combination of convection and conduction mechanism is

observed in the weld pool in laser micro-welding applications. When Péclet number

is less than 1, the heat transport within the weld pool, occurs primary by conduction.

When Péclet number is much higher than 1, then the convective heat transport is the

main mechanism of heat transfer in the material.

If one is using shielding gas in laser micromachining then heat transfer coeffi-

cient hc required in Eq. 7.141, is calculated from Mazumder and Steen [44] and

Gordon and Cobonpue [45] for case of a vertically impinging jet

hc ¼ 13Re0:3Pr0:35kg
1

B
ð7:144Þ

where B is the jet plate distance, is the Reynolds number at jet exit, is the Prandtl

number for gas, and kg is thermal conductivity of the gas.

Performing an energy balance on a boundary where both convection and radi-

ation losses occur, one can relate the flux conducted to the interface to the

convection and radiation losses by the expression

qn ¼ qconv þ qrad ð7:145Þ

Substituting for qn from Eq. 7.117, for qconv from Eq. 7.137 and finally for qrad from
Eq. 7.142, into Eq. 7.145, we get

�k
∂T
∂n

� �
s

¼ hc Ts � T1ð Þ þ σε T4
s � T4

1
� � ð7:146Þ

where the term on the left-hand side of the Eq. 7.146 represents the magnitude of

the heat conducted normal to the boundary surface. Equation 7.146 should be
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applied to all exposed boundary of the finite sample under consideration. Setting the

right-hand side of Eq. 7.146 to zero accommodates insulated boundaries.

In laser micro-drilling or interaction with materials, Eq. 7.146 should be applied

in the region of the newly vaporized material (hole area) and an appropriate heat

transfer coefficient should be used. Since the question of modeling of the micro-

drilling phenomena is associated with creating the hole formation has not yet been

solved, then to chose an appropriate heat transfer coefficient is an educated guess

and open to debate.

For the case when phase change transition takes place, the boundary condition at

the liquid–vapor interface is

�k
∂T
∂z

����
z

þ ρυdvHv ¼ 1� Rð ÞI0 ð7:147Þ

where k is thermal conductivity of the solid or liquid phase, ∂T
∂z

��
z

is the

temperature gradient at the surface along the normal (z-axis), ρ is the density of

the solid or liquid phase, υdv is the component of boundary velocity due to

evaporation, R is the reflectivity for the laser wavelength, and I0 is the intensity

of the laser beam at the surface. For surface temperatures less than approximately

half of the critical temperature, the energy of evaporation per atom U can be

assumed to be constant. Then the component of the boundary velocity due to

evaporation υdv was defined by Eq. 7.134, and also defined in similar fashion by

Niedrig and Bostonjglo [46].

υdv ¼ V0exp
�U

Ts

� �
ð7:148Þ

where V0 is a coefficient of the order of magnitude of the sound velocity, Ts is the
surface temperature, and U is the energy of evaporation per atom defines as:

U ¼ MHv

NakB
ð7:149Þ

Where Hv is the latent heat of vaporization (per unit mass), kB is Boltzmann’s

constant,M is the atomic mass, and Na is Avogadro’s number. Velocity Vn, defined

in Eq. 7.138, is equal to υdv.
The classic Stefan boundary condition is applied to the solid–liquid boundary

(melting front z ¼ zm) as:

ρHfvm ¼ ks
∂Ts

∂z

����
z¼zm

� kl
∂Tl

∂z

����
z¼zm

ð7:150Þ

where Hf is the latent heat of fusion, vm is the melting front velocity, and subscripts

“ S ” and “ l ” represent “solid” and “liquid,” respectively. The Stefan boundary

condition assumes an instant transition from solid to liquid at the melting
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temperature Tm and does not allow superheating at the melting front. The approx-

imation is adequate for the slow velocities of melt front propagation typical of laser

welding and drilling, where the melting kinetics can be disregarded.

To understand how the boundary conditions were defined, let us first compre-

hend material removal process together with energy transport in multiple phase

transitions, which is going to be discussed later on. To establish effects of convec-

tive heat transfer coefficient due to evaporation recoil generated melt flow Semak

et al. [47] performed two simulations. In the first one recoil pressure and related

melt flow were disregarded and in the second case recoil pressure and melt flow

were accounted for. Those observations they supported by calculating the melt

surface temperatures at the axis of the laser beam for different values of absorbed

intensity I0 presented in Fig. 7.27. When recoil pressure and melt flow were

included, the steady-state values of temperature were reached faster, and the

maximum temperature were lower and the cooling rates much higher, than for the

case where recoil pressure and flow were neglected. Analyzing, Fig. 7.27, one can

calculate that ignoring recoil pressure and associated convective heat transfer

results in 1-5% error in calculations of surface temperature in the center of the

laser beam.

with/melt
flow

without/melt
flow

0.5 |MW/cm2

5 |MW/cm2

1 |MW/cm2

0

1000

2000

3000

4000

0 0.00005 0.00010

time

0.00015 0.00020

Fig. 7.27 Calculated temperature of iron surface at the beam axis for the cases without

(top curves) and with (bottom curves) melt flow, for the different maximum absorbed intensity

value and different laser pulse durations: 130 is (0.5 MW cm2), 70 is (1 MW cm2), and 25 is

(5 MW cm2) [47]
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7.9 Solutions of Governing Equation

This section considers the solution of the General Governing Eq. 7.136 subject to its

related boundary conditions, by means of exact and numerical methods. This

section consists of a discussion of the approximate solution of the problem using

mathematical tools and is divided into four subsections parts. First four sections

Sects. 7.9.1.1, 7.9.1.2, 7.9.1.3, and 7.9.1.4 present an analytical method of the

solution of the general governing equation using the Fourier theory. Section 7.9.1.5

considers interaction of laser energy with materials using very short laser pulses and

introduces electron–phonon theory approach to solve the heat transfer problem of

the interaction of ultra short pulses with the matter. Section 7.10 consists of a

discussion of the approximate solution of the problem using the Finite Difference

Method (FDM) and Finite Element Method (FEM), and presents the computer

solutions developed

7.9.1 Analytical Methods

There have been many analytical solution published for various special cases of the

Fourier heat transfer equation. Section 7.9.1.1 illustrates analytical solution for

heating case without phase change in case of simple infinite solid, by laser defined

as a step function (constant heating). Section 7.9.1.2 solves the problem of similar

as Sect. 7.9.1.1, but considering the Slab of Finite Thickness. Section 7.9.1.3 deals

with Analytical Solution of Heat Transfer Equation, with Spatial Dependent Laser

Pulse Heating. Next Sect. 7.9.1.4 considers analytical solution to the governing heat

transfer equation for laser pulse with a time-dependent Gaussian pulse heating.

Section 7.9.1.5 considers analytical solution of heat transfer equation with time

dependent Gaussian laser pulse heating with convective boundary conditions.

Section 7.9.1.6 describes heating analysis with time dependent pulse intensity and

where evaporation is considered as the exclusive phenomenon taking place during

the ablation process. Section 7.9.1.7 presents the heating analysis with pulsed laser

heating process by considering both Fourier conduction and electron–phonon

kinetic theory approaches.

7.9.1.1 No Phase Change: Simple Infinite Solid

Before we go through such details, let us consider the simplest situation of high-

power laser interaction with metal where we have No Phase Change and Semi-

Infinite Solid case. Let the laser beam be perfectly uniform over an extremely large

area, so that we have a one-dimensional situation. Assume also that the material

parameters are temperature-independent and that the solid is uniform and isotropic

and of semi-infinite extent (see Fig. 7.28). Finally, assume that there is no phase

264 7 Lasers



change; the rate at which energy enters the material is not sufficient to induce

melting or vaporization.

First rewrite Eq. 7.136 in one-dimensional and in z-direction, using the fact that

ρ, c and K are constant as:

∂2
T z; tð Þ
∂z2

� 1

κ

∂T z; tð Þ
∂t

¼ �A

K
ð7:151Þ

Here we have introduced κ ¼ K= ρcð Þ, which is the thermal diffusivity. Let us adopt

the convention that T is measured with respect. to the initial (or ambient) temper-

ature of the material. This is possible because Eqs. 7.136 and 7.151 define T only to

within an additive constant. Then we have as a boundary condition that T ! 0 as

z ! 1. The boundary condition on the front face z ¼ 0ð Þ depend on what we

assume for radiative and convective losses. It can be shown that, for most cases of

interest, the rate at which the laser creates heat at the interface is overwhelmingly

larger than convective and radiation losses, so we ignore them for the present

calculation. Thus, the boundary condition is that there is no heat flux at z ¼ 0,

that is,

K
∂T
∂z

����
z¼0

¼ 0

Now consider A. Denote by I the power density of the laser radiation at the surface;
the dimensions of I are power per unit area. The power density of the radiation

transmitted to the surface is I 1� Rð Þ. Then the power density as a function of z is:

F ¼ 1� Rð ÞIe�4πkz=λ ð7:152Þ

This follows from the fact that the energy in the electromagnetic wave goes as E2.

Now to get the power transferred per unit volume, consider elemental volumes of

length dz and unit area:

SEMI - INFINITE
SOLID

UNIFORM LASER
BEAM

z = O z

Fig. 7.28 Uniform irradiation of a semi-infinite solid
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A ¼ �∂F
∂z

¼ 1� Rð ÞIe�4πkz=λ ð7:153Þ

The minus sign appears because ∂F=∂z is the power per unit volume lost by the

radiation and A is the power per unit volume absorbed by the material. Finally, we

define the absorption coefficient

α ¼ 4πk

λ
ð7:154Þ

which is, of course 1/δ, the skin depth. Thus, Eq. 7.153 takes the following form:

A ¼ 1� Rð ÞI tð Þαeαz ð7:155Þ

where we have included the possibility of I varying with time. Therefore the

equation need to be solved is:

∂2
T

∂z2
� 1

κ

∂T
∂t

¼ � 1� Rð ÞI tð Þαe�αz

K
ð7:156Þ

In keeping with our assumption of temperature-independent thermal parameters,

we assume further that R is independent of temperature. Equation 7.155 is valid for

temperature-dependent R and can be used to give A(z, t, T).
For metals, α is a fairly large number. As we see in Sect. 7.6, k is of the order of

100 at λ ¼ 10μm, so that α is of the order of 106 cm�1. Hence, the absorption occurs

in a very narrow layer at the surface. It then becomes more convenient to seek

solutions for the homogeneous part of Eq. 7.156, as:

∂2
T

∂z2
� 1

κ

∂T
∂t

¼ 0 ð7:157Þ

subject to the boundary conditions that T ¼ 0 at z ¼ 1, but with a specific flux

into the surface at z ¼ 1, i.e.,

�K
∂T
∂z

����
z¼0

¼ 1� Rð ÞI tð Þ

or, with the definition

F tð Þ ¼ 1� Rð ÞI tð Þ ð7:158Þ

�K
∂T
∂z

����
z¼0

¼ F tð Þ ð7:159Þ
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First examine the case of F ¼ F0, a constant. This is appropriate to irradiation by a

continuous laser, given temperature-independent material properties. We note here

only the solution, for many excellent texts on heat conduction can be consulted for

the details [3]. See also Example 5 in Appendix H. Also here we show detailed

solution of this problem here as well.

Temperature in a Semi-infinite Solid

Before we solve this problem, we do couple of simple problem to establish a

foundation and refresher for those readers that have out of these fundamental

mathematic problem as well.

Problem 1: Let Γ denote the curved problem BJPKQLA of the Bromwich

contour Fig. (a) with equation s ¼ Reiθ, θ0 	 θ 	 2π � θ0, i.e., Γ is the arc of

a circle of radius R with center at O. Suppose that on Γ we have

f sð Þj j < M

Rk

where k > 0 and M are constant. Show that

lim
R!1

ð
Γ
estf sð Þds ¼ 0

J

B
P

K

AQ
L

T

T
R

O
x

g
q0

y

Fig. a

If Γ1, Γ2, Γ3, and Γ4 represent arcs of BJ, JPK, KQL, and LA, respectively,
we have:ð

Γ
estf sð Þds ¼

ð
Γ1

estf sð Þdsþ
ð
Γ2

estf sð Þdsþ
ð
Γ3

estf sð Þdsþ
ð
Γ4

estf sð Þds

(continued)

7.9 Solutions of Governing Equation 267

http://dx.doi.org/10.1007/978-3-319-31289-7_BM1


Then if we can show that each of the integrals on the right hand side

approaches zero as R ! 1, we will have proved the required result. To do

this we consider these four integrals.

Case I. Integral over Γ1 or BJ
Along Γ1 we have, since s ¼ Reiθ, θ0 	 θ 	 π=2

I1 ¼
ð
Γ1

estf sð Þds ¼
ðπ=2
θ0

eRe
iθ tf Reiθ
� �

iReiθdθ

Then

I1j j 	
ðπ=2
θ0

e R cos θð Þt�� �� ei R sin θð Þt�� �� f Reiθ
� ��� �� iReiθ�� ��dθ

	
ðπ=2
θ0

e R cos θð Þt f Reiθ
� ��� ��Rdθ

	 M

Rk�1

ðπ=2
θ0

e R cos θð Þtdθ ¼ M

Rk�1

ðϕ0

0

e R sinϕð Þtdϕ

Where we have used the given condition f sð Þj j 	 M=Rk on Γ1 and the

transformation θ ¼ π=2� ϕ where

ϕ0 ¼ π=2� θ0 ¼ arcsin γ=Rð Þ ¼ sin �1 γ=Rð Þ.
Since sinϕ 	 sinϕ0 	 cos θ0 ¼ γ=R, this last integral is less than or

equal to

M

Rk�1

ðϕ0

0

eγtdϕ ¼ Meγtϕ0

Rk�1
¼ Meγt

Rk�1
sin �1 γ

R

But asR ! 1, this last quantity approached zero as can be seen by noting,

for example, that sin �1 γ=Rð Þ � γ=R for large R. Thus, lim
R!1

I1 ¼ 0.

Case II. Integral over Γ2 or JPK
Along Γ2 we have, since s ¼ Reiθ, π=2 	 θ 	 π

I2 ¼
ð
Γ2

estf sð Þds ¼
ð π
π=2

eRe
iθtf Reiθ
� �

iReiθdθ

Then, as in Case 1, we have

(continued)
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I2j j 	 M

Rk�1

ð π
π=2

e R cos θð Þtdθ ¼ M

Rk�1

ðπ=2
0

e� R sinϕð Þtdϕ

Upon letting θ ¼ π=2þ ϕ
Now sinϕ � 2ϕ=π for 0 	 φ 	 π=2 so that the last integral is less than or

equal to

M

Rk�1

ðπ=2
0

e�2rϕt=πdϕ ¼ πM

2tRk
1� eRt
� �

which approaches zero as R ! 1. Thus, lim
R!1

I2 ¼ 0

Case III. Integral over Γ3 or KQL
This case can be treated in a manner similar to Case II in above.

Case IV. Integral over Γ4 or QL
This case can be treated in a manner similar to Case I in above.

Problem 2: Find the Inverse Laplace transform of the following function with

branch point by use of complex inversion formula.

£�1 e�a
ffiffi
s

p

s

( )
¼ ?

Solution: By the complex inversion formula and use of Fig. (b) below, the

required inverse Laplace transform is given by:

F tð Þ ¼ 1

2πi

ðγþi1

γ�i1

est�a
ffiffi
s

p

s
ds ð1Þ

Since s ¼ 0 is a branch point of the integrand, we consider

J

B
D

K

E

A

L

H

N

R

O
x

g + iT

g – iT

”

y

Fig. b Branch Contour

(continued)
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1

2πi

I
C

est�a
ffiffi
s

p

s
ds ¼ 1

2πi

ð
AB

est�a
ffiffi
s

p

s
dsþ 1

2πi

ð
BDE

est�a
ffiffi
s

p

s
ds

þ 1

2πi

ð
EH

est�a
ffiffi
s

p

s
dsþ 1

2πi

ð
HJK

est�a
ffiffi
s

p

s
ds

þ 1

2πi

ð
KL

est�a
ffiffi
s

p

s
dsþ 1

2πi

ð
LNA

est�a
ffiffi
s

p

s
ds

where C is the contour of Fig. (b) consisting of the line AB s ¼ γð Þ, the arcs
BDE and LNA of a circle of radius R and the center at origin O, and the arc

HJK of a circle of radius ε with center at O.
Since the only singularity s ¼ 0of the integrand is not inside C, the integral

on the left is zero by Cauchy’s theorem. Also, the integrand satisfies the

condition of Problem 1 in above, so that on taking the limit as R ! 1 the

integrals along BDE and LNA approach zero. It follows that

F tð Þ¼ lim
R!1
ε! 0

1

2πi

ð
AB

est�a
ffiffi
s

p

s
ds¼ 1

2πi

ðγþi1

γ�i1

est�a
ffiffi
s

p

s
ds

¼ lim
R!1
ε! 0

1

2πi

ð
EH

est�a
ffiffi
s

p

s
dsþ

ð
HJK

est�a
ffiffi
s

p

s
dsþ

ð
KL

est�a
ffiffi
s

p

s
dsþ

( ) ð2Þ

Along EH, s ¼ xeπi,
ffiffi
s

p ¼ ffiffiffi
x

p
eπi=2 ¼ i

ffiffiffi
x

p
and as s goes from�R to�ε, x goes

from R to ε. Hence, we haveð
EH

est�a
ffiffi
s

p

s
ds ¼

ð�ε

�R

est�a
ffiffi
s

p

s
ds ¼

ð ε
R

e�xt�ai
ffiffi
x

p

x
dx

Similarly, along KL, s ¼ xe�πi,
ffiffi
s

p ¼ ffiffiffi
x

p
e�πi=2 ¼ �i

ffiffiffi
x

p
and as s goes from

�ε to �R, x goes from ε to R. Then, we haveð
KL

est�a
ffiffi
s

p

s
ds ¼

ð�R

�ε

est�a
ffiffi
s

p

s
ds ¼

ð R
ε

e�xtþai
ffiffi
x

p

x
dx

Along HJK, s ¼ εeiθ and we have

(continued)
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ð
HJK

est�a
ffiffi
s

p

s
ds ¼

ð�π

π

eεe
iθ t�a

ffiffi
ε

p
eiθ=2

εeiθ
iεeiθdθ

¼ i

ð�π

π
eεe

iθ t�a
ffiffi
ε

p
eiθ=2dθ

Thus, (2) becomes

F tð Þ ¼ � lim
R ! 1
ε ! 0

1

2πi

ð ε
R

e�xt�ai
ffiffi
x

p

x
dxþ

ð R
ε

e�xtþai
ffiffi
x

p

x
dxþ i

ð�π

π
eεe

iθ t�a
ffiffi
ε

p
eiθ=2dθ

( )

¼ � lim
R ! 1
ε ! 0

1

2πi

ð R
ε

ext eai
ffiffi
x

p
� e�ai

ffiffi
x

p� �
x

dxþ i

ð�π

π
eεe

iθ t�a
ffiffi
ε

p
eiθ=2dθ

( )

¼ � lim
R ! 1
ε ! 0

1

2πi
2i

ð R
ε

e�xt sin a
ffiffiffi
x

p
x

dxþ i

ð�π

π
eεe

iθt�a
ffiffi
ε

p
eiθ=2dθ

� �

Since the limit can be taken underneath the integral sign, we have

lim
ε!0

ð�π

π
eεe

iθ t�a
ffiffi
ε

p
eiθ=2dθ ¼

ð�π

π
1 dθ ¼ �2π

and so we find that:

F tð Þ ¼ 1� 1

π

ð1
0

e�xt sin a
ffiffiffi
x

p
x

dx

and this result can be written as error function. See next Problem 3 below

F tð Þ ¼ 1� erf a=2
ffiffi
t

p� � ¼ erfc a=2
ffiffi
t

p� �
Problem 3: Prove that

1

π

ð1
0

e�xt sin a
ffiffiffi
x

p
x

dx ¼ erf a=2
ffiffi
t

p� �
Letting x ¼ u2, the required integral becomes

I ¼ 2

π

ð1
0

e�u2t sin au

u
du

(continued)
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Then differentiating with respect to a and using the following

∂I
∂a

¼ 2

π

ð1
0

e�u2t cos audu ¼ 2

π

ffiffiffi
π

p
2
ffiffi
t

p e�a2=4t

� �
¼ 1ffiffiffiffi

πt
p e�a2=4t

Hence, using the fact that I ¼ 0 when a ¼ 0,

I ¼
ð a
0

1ffiffiffiffi
πt

p e�p2=4tdp ¼ 2ffiffiffi
π

p
ða=2 ffitp

0

e�u2du ¼ erf a=2
ffiffi
t

p� �
and the required result is established.

Now that we learned all above knowledge and using Fig. (c) here, let us

now derive the formula and solution for the temperatures T(z, t) in a semi-

infinite solid z � 0, initially at temperature zero, when a constant flux of heat

(F0) is maintained at the boundary z ¼ 0.

O

zF0

Fig. c

In this idealized case of a thick slab of material, we shall substitute for the

thermal condition at the right-hand boundary, the condition that T tends to

zero as z tends to infinity. The boundary value problem then becomes as:

1. ∂2
T z; tð Þ
∂z2

� 1

κ

∂T z; tð Þ
∂t

¼ 0
�
z > 0 , t > 0

�
2. T z; 0ð Þ ¼ 0 z > 0ð Þ
3. �K∂T z;tð Þ

∂z

���
z¼0

¼ F0 lim
z!1T z; tð Þ ¼ 0 t > 0

Let u(z, s) be Laplace transform, with respect to time t, of the temperature

function T(z, t). Transforming the members of equations (1) and (3), we have

the following problem in ordinary differential equations which u(z, s) must

satisfy, so we can write:

(continued)
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su z; sð Þ � T z; 0ð Þ ¼ κ
d2u z; sð Þ

dz2
or

d2u z; sð Þ
dz2

� s

κ
u z; sð Þ ¼ 0 4ð Þ

where

u 0; sð Þ ¼ £ T o; tð Þf g ¼ F0

s
5ð Þ

and u ¼ u z; sð Þ is required to be bounded. Now the boundary condition (3) in

the new Laplace plane becomes:

�K
∂T z; sð Þ

∂z
¼ F0

s
lim
z!1 T z; sð Þ ¼ 0 6ð Þ

Solving Eq. 4, we find that:

u z; sð Þ ¼ c1e
ffiffiffiffiffiffi
s=κz

p
þ c2e

�
ffiffiffiffiffiffi
s=κz

p
7ð Þ

Then we choose c1 ¼ 0 so that u is bounded as z ! 1, and we have

u z; sð Þ ¼ c2e
�
ffiffiffiffiffiffi
s=κz

p
8ð Þ

From boundary condition of Eq. 6 and what is shown in Eq. 5 we have

c2 ¼ F0

ffiffiffi
κ

p
=Ks

ffiffi
s

p
, so that

u z; sð Þ ¼ F0

ffiffiffi
κ

p
Ks

ffiffi
s

p e�
ffiffiffiffiffiffi
s=κz

p

Hence, by Problems 2 and 3 in above, we know that:

£�1 1ffiffi
s

p e�z
ffiffiffiffiffi
s=κ

p� �
¼ 1ffiffiffiffi

πt
p e�z2= 4κtð Þ

and view of the factor 1/s in our formula for u(z, s) it follows

T z; tð Þ ¼ F0

K

ffiffiffi
κ

π

r ðτ¼t

τ¼0

e�z2= 4κτð Þ dτffiffiffi
τ

p

¼ F0z

K
ffiffiffi
π

p
ð1
z=
�
2
ffiffiffi
κt

p
1

λ2
e�λ2dλ

Where the second integral is obtained from the first by substitution

λ ¼ z= 2
ffiffiffiffi
κt

p� �
. Upon integration the last integral by parts, we find that

(continued)
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T z; tð Þ ¼ F0

K
ffiffiffi
π

p 2
ffiffiffiffi
κt

p
e�z2= 4κtð Þ � 2z

ð1
z=
�
2
ffiffiffi
κt

p e�λ2dλ

 !

Which is result of Eq. 7.160

The solution to this problem is given by:

T z; tð Þ ¼ 2F0

ffiffiffiffi
κt

p
K

ierf z=2
ffiffiffiffi
κt

p�  ð7:160Þ

or

T z; tð Þ ¼ 2F0

K

ffiffiffiffi
κt

π

r
e�z=4κt � z

2
erf z= 2

ffiffiffiffi
κt

p� �� � �
The functions which appear here are error functions, and it is useful to summarize

some of their properties and definitions. (See Carslaw and Jaeger Chapter II) [3].

The error function is:

erf xð Þ ¼ 2ffiffiffi
π

p
ð x
0

e�‘2d‘

erf 0ð Þ ¼ 0 erf 1ð Þ ¼ 1 erf �xð Þ ¼ �erf xð Þ

The complementary error function is:

erfc xð Þ ¼ 1� erf xð Þ ¼ 2ffiffiffi
π

p
ð1
x

e�‘2d‘ erfc 0ð Þ ¼ 1

The integral of the complementary error function is:

ierfc xð Þ ¼
ð1
x

erfc ‘ð Þd‘

or

ierfc xð Þ ¼ 1ffiffiffi
π

p e�x2 � xerfc xð Þ

ierfc xð Þ ¼ 1ffiffiffi
π

p e�x2 � xþ xerf xð Þ
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Some derivations are useful:

∂erf xð Þ
∂x

¼ �∂erfc xð Þ
∂x

¼ 2ffiffiffi
π

p e�x2

∂2
erf xð Þ
∂x2

¼ �∂2
erfc xð Þ
∂x2

¼ � 4ffiffiffi
π

p xe�x2

∂ierfc xð Þ
∂x

¼ �erfc xð Þ

∂2
ierfc xð Þ
∂x2

¼ 2ffiffiffi
π

p e�x2

Now we can show that the boundary condition is satisfied. Using the first form of

Eq. 7.160 yields that:

∂T
∂z

¼ 2F0

ffiffiffiffi
κt

p
K

�erfc z= 2
ffiffiffiffi
κt

p� �� � � 1

2
ffiffiffiffi
κt

p

and since erfc 0ð Þ ¼ 1, therefore

∂T
∂z

����
z¼0

¼ �F0

K

One can also show that Eq. 7.160 satisfies Eq. 7.157.

We can use Eq. 7.160 to show what the front surface temperature behavior is,

under constant irradiation, by setting z ¼ 0 so that:

T 0; tð Þ ¼ 2F0

K

ffiffiffiffi
κt

π

r
ð7:161Þ

As an illustration, let us calculate the time required to raise aluminum to its melting

point for a power density of 5 k W/cm2:

K ¼ 2:3W=cm2

κ � 0:9cm2=s

T ¼ Tmelt � Troom � 600 �C

F0 ¼ 1� Rð ÞI
1� Rð Þ ¼ 0:04

F0 ¼ 0:04� 5� 103 ¼ 200W=cm2
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Then t ¼ πK2T2
� �

= 4F2
0κ

� �
yields t � 42s. In practice, it is very difficult to melt

extremely thick slabs of aluminum with even a high-power laser, as these calcula-

tions suggest.

Equation 7.160. although derived for a very simple case, describes man, very

important features of thermal response to lasers. First we shall define the diffusion

length, which is useful in that it permits a wide variety of order-of-magnitude

calculations to be made. The thermal diffusion length D is defined as:

D ¼ 2
ffiffiffiffi
κt

p ð7:162Þ

Strictly speaking, the thermal diffusion length is defined as the distance required for

the temperature to drop to 1/e of its initial value and depends somewhat on the

geometry and the boundary condition. For most purpose it is sufficient simply to

take it as defined by Eq. 7.162. Looking at our Eq. 7.160, for example, we see that:

T D; tð Þ ¼ 2F0

K

ffiffiffiffi
κt

π

r
1

e
� D

2
erfc 1ð Þ

� �
Using table of erfc we get: erfc 1ð Þ � 0:1573, See Table 7.2 below as well

Table 7.2 Table of error function and its complementary

Value x Erf (x) Erfc (x)

0 0 1

0.05 0.0563720 0.9436280

0.1 0.1124629 0.8875371

0.15 0.1679960 0.8320040

0.2 0.2227026 0.7772974

0.25 0.2763264 0.7236736

0.3 0.3286268 0.6713732

0.35 0.3793821 0.6206179

0.4 0.4283924 0.5716076

0.45 0.4754817 0.5245183

0.5 0.5204999 0.4795001

0.55 0.5633234 0.4366766

0.6 0.6038561 0.3961439

0.65 0.6420293 0.3579707

0.7 0.6778012 0.3221988

0.75 0.7111556 0.2888444

0.8 0.7421010 0.2578990

0.85 0.7706681 0.2293319

0.9 0.7969082 0.2030918

0.95 0.8208908 0.1791092

1 0.8427008 0.1572992

(continued)
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T D; tð Þ ¼ 2F0

K

ffiffiffiffi
κt

π

r
1

e
� D

2
0:1573ð Þ

� �
From Eq. 7.161, we have:

T D; tð Þ ¼ T 0; tð Þ 1

e
� 0:1573

ffiffiffi
π

p� �
Thus

T D; tð Þ ¼ 0:09T 0; tð Þ ð7:163Þ

In this case, whereas 1=eð ÞT 0; tð Þ � 0:37T 0; tð Þ. Referring to our example of

irradiating aluminum for 42 s to reach the melting point, we note that the diffusion

length at that time is given by:

Table 7.2 (continued)

Value x Erf (x) Erfc (x)

1.1 0.8802051 0.1197949

1.2 0.9103140 0.0896860

1.3 0.9340079 0.0659921

1.4 0.9522851 0.0477149

1.5 0.9661051 0.0338949

1.6 0.9763484 0.0236516

1.7 0.9837905 0.0162095

1.8 0.9890905 0.0109095

1.9 0.9927904 0.0072096

2 0.9953223 0.0046777

2.1 0.9970205 0.0029795

2.2 0.9981372 0.0018628

2.3 0.9988568 0.0011432

2.4 0.9993115 0.0006885

2.5 0.9995930 0.0004070

2.6 0.9997640 0.0002360

2.7 0.9998657 0.0001343

2.8 0.9999250 0.0000750

2.9 0.9999589 0.0000411

3 0.9999779 0.0000221

3.1 0.9999884 0.0000116

3.2 0.9999940 0.0000060

3.3 0.9999969 0.0000031

3.4 0.9999985 0.0000015

3.5 0.9999993 0.0000007
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D ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:9 � 42

p
� 12 cm

and by Eq. 7.163, and the value of T ¼ 600 �C, the temperature at distance D into

the material is 0.09� 600, or about 54 �C above ambient temperature given by

above values.

Now let us illustrate the solution Eq. 7.160 graphically as demonstrated in

Fig. 7.29. For convenience rewrite the equation by introducing D ¼ 2
ffiffiffiffi
κt

p
and by

reducing it to the error function erf, so that:

T z; tð Þ ¼ 2F0

K

D

2
ffiffiffi
π

p e�z2=D2 � z

2
þ z

2
erf z=Dð Þ

� �
Now let η ¼ z=D, and

T z; tð Þ ¼ F0D

K

e�η2

2
ffiffiffi
π

p � ηþ ηerf ηð Þ
" #

ð7:164aÞ

or equivalently in terms of ierfc, we can rewrite the above equation as follow:

T z; tð Þ ¼ F0D

K
ierfc ηð Þ ð7:164bÞ

Finally, we define a dimensionless temperature θ ¼ TK= F0Dð Þ, that [48]:

θ ¼ ierfc ηð Þ ð7:164cÞ

0 0.5

erf 2 = 0.9953
erf 3 = 0.99998
erf ∞ = 1.0 exaclly

1.0 1.5
x

er
f X

2.0 2.5 3.0
0

0.2

0.4

0.6

0.8

1.0

Fig. 7.29 The error function plot
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Thus, the plot of the integral of the complementary error function here is the graph

of the solution to the problem of constant heat flux on the surface of a semi-infinite

solid.

Now, although the graph of Eq. 7.164c (see Fig. 7.30) represents very succinctly

the solution to our problem, it does not really snow how the temperature varies as a

function of position and time. For this purpose it is useful to look at the temperature

profiles for various times and see how the profile changes with time. These curves

can be generated quickly from θ ¼ ierfc ηð Þ by recalling the definitions of θ and η,
and writing them in the following form:

T ¼ 2F0

ffiffiffi
κ

p
K

� � ffiffi
t

p
θ ð7:165aÞ

z ¼ 2
ffiffiffi
κ

p ffiffi
t

p
η ð7:165bÞ

Thus, at a given time the θ ¼ ierfc ηð Þ curve scales according to Eq. 7.166; the basic
shape of the curve is unchanged, but it is stretched one way or the other depending

on the parameters, and this stretching progresses in time as
ffiffi
t

p
. The case of

aluminum is shown in Fig. 7.31.

We can also look at the variation of temperature with time at a fixed position.

The variation of the surface z ¼ 0ð Þ is simply T 0; tð Þ � ffiffi
t

p
as Eq. 7.161 shows.

Wherever z= 2
ffiffiffiffi
κt

p� �
is very small, the temperature variation will approach

ffiffi
t

p
. Thus,

at any position T � ffiffi
t

p
at sufficiently large t. The temperature vs. time profiles at

fixed position for times such that z= 2
ffiffiffiffi
κt

p� �
is not small can be calculated, of course,

from Eq. 7.160. Some results for aluminum, with the parameters used above, are

shown in Fig. 7.32. Notice that at z ¼ 10 cm the temperature profile is far from the

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ierfc (0) = 0.5642
ierfc (1) = 0.0502
ierfc (2) = 0.0010
ierfc (∞) = 0 exaclly

x

|e
rf

c 
(x

)

0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 7.30 The integral of the complementary error function
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Fig. 7.31 Laser-induced temperature rise in aluminum as a function of depth
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Fig. 7.32 Laser-induced temperature rise on front surface of aluminum as a function of time
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“long-time,” or
ffiffi
t

p
, behavior even at 40 or 50 s, whereas the surface has already

begun to melt.

We now turn to some order-of-magnitude arguments. One such argument can be

used to estimate the power-pulse length combination which might be expected to

yield surface vaporization.

Consider a laser pulse that has the simple time behavior shown in Fig. 7.33 and

uniformly irradiates the surface of the material. The pulse length is tp and the

intensity is such that, combined with the reflectance, the absorbed power density is

F0. Again we assume that the optical energy is absorbed in a very thin layer at the

surface. Let Dp be the diffusion length associated with the time tp.
The question is whether a significant amount of surface vaporization will occur

before the pulse ends. One approach would be to use Eq. 7.161 to calculate the

surface temperature at the time tp and compare it to this vaporization temperature.

However, this would ignore the influence of the latent heats of melting and of

vaporization, which have an important influence. We shall discuss thermal flow

with phase changes later. For the present purpose we can include them by consid-

ering the energy required to melt and vaporize a portion of the material. The key is

to estimate what thickness of the material is involved, and in this order-of-magni-

tude argument we simply use the thermal diffusion length for this thickness. Thus,

we set the criterion for vaporization as

F0tp
Dp

� ρ cs Tm � T0ð Þ þ Lm þ c‘ Tb � Tmð Þ þ Lυ½ �

where ρ is density of the material, cs and c‘ are the specific heats of the solid and

liquid, respectively, Tm is the melting point, Tb is the boiling point, and Lm and Lυ

z = 0

SEMI-INFINITE
SOLID

SPATIALLY UNIFORM LASER PULSE,
POWER DENSITY ABSORBED = Fo
                        PULSE LENGTH = tp

z = Dp

Fo

tp

Fig. 7.33 Irradiation of a semi-infinite solid by a pulse
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are the heats of melting and vaporization. Notice we are ignoring differences

between the solid and liquid for density and conductivity, as is appropriate in this

crude argument. If numerical values are checked, Lυ, dominates the expression on

the right side of the inequality. For example, for aluminum Lυ ¼ 10, 875 J=g,
whereas all the other terms contribute a total of 3.046 J/g. Since the argument is

crude, then, one usually takes:

F0tp
Dp

� ρLυ

as the criterion for vaporization by a pulse. Since Dp ¼ 2
ffiffiffiffiffiffi
κtp

p
, we have

F0 � aprrox
2
ffiffiffi
κ

p
Lυρffiffiffiffi
tp

p ð7:166Þ

Some calculations based on Eqs. 7.165a and 7.165b are shown in Fig. 7.34. Most

metals fall in the band indicated. For a given pulse time, at power densities greater

than the band indicates, vaporization effects would be expected to be important.

Some useful thermal constants are included in Table 7.3.

In deriving Eq. 7.166, we have been seeking the power density required, at a

given pulse length, for a thermal layer to be vaporized. The same expression, of

course, tells us the pulse time at which vaporization becomes important for a fixed

power density. Rewriting Eq. 7.166 gives for this time
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Fig. 7.34 Power density pulse time criterion for vaporization
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tp > aprrox
K2T2

vapπ

4F2
0κ

ð7:167Þ

Let us compare this to the time required for surface vaporization to begin. We do

this by using our solution for heat flow in the semi-infinite solid for the surface

(Eq. 7.161) and solving for the time at which the front surface reaches the vapor-

ization temperature:

Tvap ¼ 2F0

K

ffiffiffiffiffiffiffiffiffi
κtvap
π

r
or

tvap ¼
K2T2

vapπ

4F2
0κ

Thus, at tp ¼ tvap this calculation would predict that vaporization at the surface

begins. For example, at F0 ¼ 106W=cm2, vaporization begins at tp � 10�5 to

10�6 s, depending on the metal. On the other hand, for a thermal layer to be

evaporated requires, according to Eq. 7.167, tp � 10�3 s. It turns out that both

estimates are useful. In a later section we shall discuss features of a more correct

treatment, which accounts for both the heat of melting and the heat of vaporization

in the dynamic situation of propagating solid–liquid and liquid–vapor interfaces.

7.9.1.2 No Phase Change: Slab of Finite Thickness

Let us turn now to a treatment of another geometry which can be useful in practical

cases, namely irradiation of one surface of a sheet or slab of finite thickness. Let the

slab be taken as infinite in extent in the x and y direction, and let the laser irradiation
be uniform over the entire surface z ¼ 0. Thus, we again have a one-dimensional

situation, as shown in Fig. 7.35. The thickness of the sheet is taken as ‘, the
absorbed power density as a function of time is F(t), and we again assume that

the radiation is absorbed in a very narrow layer at the front surface. The equation we

wish to solve is, then:

∂2
T z; tð Þ
∂z2

� 1

κ

∂T z; tð Þ
∂t

¼ 0

with boundary conditions
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�K
∂T z; tð Þ

∂z

����
z¼0

¼ F tð Þ

�K
∂T z; tð Þ

∂z

����
z¼‘

¼ 0

The second boundary condition states that—he rear surface is insulated. We shall

look at the consequences of this assumption a little later.

As we showed for the semi-infinite slab, the solutions turn out to be elaborate.

Turning to the special case of F tð Þ ¼ F0, a constant, the solution is as follows and

easily can be obtained very similar to the methods in case I by using Laplace

Transform or separation of variables methods by assuming T z; tð Þ ¼ Z zð ÞU tð Þ and
given boundary conditions to obtain a general solution. In case Laplace Transfor-

mation approach the Ordinary Differential Equation (ODE) in Laplace time and

space plane is given as:

su z; sð Þ � T x; 0ð Þ ¼ κ
d2u z; sð Þ

dz2
or

d2u z; sð Þ
dz2

� su z; sð Þ
κ

¼ �F0

κ
ð7:168Þ

Taking Laplace Transform over the boundary conditions provides the new form of

them in Laplace domain as:

£ �K
∂T z; tð Þ

∂z

����
z¼0

� �
¼ ∂u z; sð Þ

∂z

����
z¼0

¼ F0

Ks

£ �K
∂T z; tð Þ

∂z

����
z¼‘

� �
¼ ∂u z; sð Þ

∂z

����
z¼‘

¼ 0

0 z

F(t)

l

Fig. 7.35 Irradiation of

slab of finite thickness
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The general solution of Eq. 7.168 is written as:

u z; sð Þ ¼ c1cosh
ffiffiffiffiffiffiffi
s=κ

p
zþ c2sinh

ffiffiffiffiffiffiffi
s=κ

p
z

Applying the new sets of boundary conditions to solve for c1 and c2 and taking

reverse Laplace Transform to transfer from coordinates of (z, s) to (z, t) as well as
dealing with finding the residues at given s ,then calculating the sum of residues and

some mathematical manipulations we will end up with the following solution

(Eq. 7.169). Readers should go through this exercise on own.

T z; tð Þ ¼ F0κ

K‘
tþ F0‘

K

3 ‘� zð Þ2 � ‘2

6‘2
� 2

π2

X1
n¼1

�1ð Þn
n2

e�κn2π2t=‘2 cos
nπ ‘� zð Þ

‘

� �( )
ð7:169Þ

We can check that this satisfies the boundary conditions:

∂T z; tð Þ
∂z

¼ F0‘

K

� ‘� zð Þ
‘2

� 2

π2

X1
n¼1

�1ð Þn
n2

e�κn2π2t=‘2 nπ

‘
sin

nπ ‘� zð Þ
‘

� �( )

Now sin nπð Þ ¼ 0 and sin 0ð Þ ¼ 0, so the
X

term vanishes at both z ¼ 0 and z ¼ ‘,

and

∂T z; tð Þ
∂z

����
z¼0

¼ �F0

K

∂T z; tð Þ
∂z

����
z¼‘

¼ 0

Similarly, the thermal diffusion equation is satisfied, as the reader can verify.

Let us look briefly at this solution. It consists of a linear term in t, together with a
“correcting term,” which can he plotted as shown in Fig. 7.36. In other words, what

is plotted is the term

D ¼ 3 ‘� zð Þ2 � ‘2

6‘2
� 2

π2

X1
n¼1

�1ð Þn
n2

e�κn2π2t=‘2 cos
nπ ‘� zð Þ

‘

� �

Let us examine some special cases. At z ¼ 0,for example, we have:

T 0; tð Þ ¼ F0κ

K‘
tþ F0‘

K

1

3
� 2

π2

X1
n¼1

1

n2
e�κn2π2t=‘2

" #
ð7:170Þ
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We can rewrite this as

T 0; tð Þ ¼ F0κ

K‘
tþ F0‘

K
Dz¼0

Now D at a fixed value of z is a function of κt/‘2. If η ¼ κt=‘2, we can write

T 0; tð Þ ¼ F0‘

K
ηþ Dz¼0 ηð Þ½ � ð7:171Þ

Figure 7.37 shows how D, depends on , η, for z ¼ 0, and was taken from the

previous graph of D, vs. 1� z=‘ð Þ as per Fig. 7.36. Note that at small η, i.e., at

κt � ‘2, D � 0, so that the front surface initially heats up linearly with time, as:

T 0; tð Þ ¼ F0κ

K‘
t ð7:172Þ

For large t values, or κt  ‘2,Dz¼0 approaches a limiting value of about 0.33. Thus,

at long times, we have:

T 0; tð Þ ¼ F0‘

K

κt

‘2
þ 0:33

� �
κt  ‘2 ð7:173Þ
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Fig. 7.36 D as a function of 1� z=‘ (reference [3], Page 113)
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Here again we see linear behavior, but this time there is an additive constant. If we

have a very thick slab, we should get the same result as our previous solution for the

time to reach 600 �C on the front surface of aluminum with an absorbed power

density of 200 W/cm2. It turns out that the limiting form of Eq. 7.172 is not correct

because it ignores the behavior of Dz¼0 ηð Þ at small η. It. is necessary to use the full

expression. Thus

ηþ Dz¼0 ηð Þ ¼ KT

F0‘

Assume that ‘ ¼ 100 cm, since we know from our infinite-slab solution that the

diffusion distance is 12 cm at T ¼ 600 �C on the front. Thus

ηþ Dz¼0 ηð Þ ¼ 2:3� 600

200� 100
¼ 0:069

Reading very rough from the graph of Dz¼0 vs. η gives

η � 0:004 at D � 0:065

Thus, our solution is:

η � 0:004 ¼ κt

‘2

0 0.1 0.2
h

0.3

D
 (

z 
=

 0
)

0.4 0.5
0

0.1

0.2

0.3

0.4

Fig. 7.37 D at z¼0 as a function of η
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which gives, since κ � 0:9cm2=s, a time of about 44 s, in reasonable agreement

with the semi-infinite-slab solution.

Now let us turn to a consideration of the rear surface temperature. For this case

z ¼ ‘, so Eq. 7.169 reduces to:

T z; tð Þ ¼ F0tκ

K‘
þ F0‘

K
�1

6
� 2

π2

X1
n¼1

�1ð Þn
n2

e�κn2π2t=‘2

( )

or, introducing η as before, we have:

T ‘; tð Þ ¼ F0‘

K
ηþ Dz¼‘ ηð Þ½ �

Comments could be made here for the rear surface temperature, and they would be

similar to those we made for the front surface temperature. It is interesting to

compare the front surface temperature to the back surface temperature. This has a

simple form for thin sheets, where κt=‘2  1. By referring to the graph Fig. 7.36 of

D, vs. 1� z=‘ð Þ, one can read off values for Dz¼‘ 1ð Þ and Dz¼0 1ð Þ, and thus:

T 0; tð Þ � T ‘; tð Þ � 0:5
F0‘

K

for

κt

‘2
 1

Notice in Fig. 7.36 that the limiting values are approached rapidly; they are nearly

realized by the time κt=‘2  1. As a numerical illustration, if we have 0.3 cm-thick

aluminum,

T 0; tð Þ � T ‘; tð Þ � 13∘C

For the same numbers we used above. This situation, with the two surfaces heating

at the same rate but separated by 13 �C, would start at a time of the order of

t � ‘2=κ � 0:1 s. At this time the front surface temperature is about 35 �C.
Let us turn now to a different sort of heat input. So far we have been discussing

continuous irradiation. Another simple case, which is a reasonable approximation

under certain conditions, is that of a laser pulse which is short enough to be treated

as a delta function. Take again a slab of thickness ‘, and assume that the energy is

deposited in a very thin layer near the surface. F refers, as before, to the fraction

absorbed by the material. The laser power density, that is, must be multiplied by the

optical absorptance. In this case we solve the thermal diffusion equation subject to

the boundary condition that:
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�K
∂T z; tð Þ

∂z

����
z¼0

¼ �K
∂T z; tð Þ

∂z

����
z¼‘

¼ 0

with the stipulation that there is an instantaneous release of E0 units of energy per

unit area in the plane z ¼ 0 at time zero. This type of problem is discussed in

Carslaw and Jaeger [3] and is most easily solved by Laplace transform methods. For

our present purpose we quote the solution

T z; tð Þ ¼ F0κ

K‘
1þ 2

X1
n¼1

cos
nπz

‘

	 

e�κn2π2t=‘2

( )
ð7:174Þ

In Eq. 7.174 we have introduced E0, the energy per unit area in the pulse. Thus,

E0 ¼
ð1
0

F tð Þdt

For the case under consideration, F(t) is considered to be a delta function.

Equation 7.174 is the basis for a scheme used quite frequently for the measure-

ment of thermal parameters [49]. This scheme consists of using a thin sheet of the

material to be studied and irradiating uniformly one surface with a very short laser

pulse while monitoring the temperature rise induced on the back surface. If one

knows E0, and if the assumptions of no heat loss are valid, the experiment can yield

values of both specific heat and thermal conductivity. One adjusts the pulse energy,

and hence E0, so that the induced temperature rise is small. In this way the values of

specific heat and thermal conductivity are representative of essentially the ambient

temperature of the material.

To see how this is applied, rewrite Eq. 7.174 for the back surface, z ¼ ‘ as:

T z; tð Þ ¼ F0κ

K‘
1þ 2

X1
n¼1

�1ð Þne�κn2π2t=‘2

( )
ð7:175Þ

If we introduce a characteristic time tc ¼ ‘2=κπ2, Eq. 7.175 looks approximately

like the curve shown in Fig. 7.38. Here we have also introduced a characteristic

temperature tc ¼ E0κ=K‘
2 and plotted T/Tc, vs. t/tc, or

T

Tc

¼ 1þ 2
X1
n¼1

�1ð Þne�n2t=tc ð7:176Þ

Essentially the experiment consists of monitoring the temperature as a function of

time and fitting it to Eq. 7.177. This can be done quite readily. First, the long-term

temperature rise T1 yields the specific heat because:
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T1
Tc

¼ 1

and, on substituting for Tc

T1 ¼ E0κ

K‘

or, since κ ¼ K=ρcp

cp ¼ E0

T1ρ‘
ð7:177Þ

This technique of measuring specific heat is, of course, not unique, to pulsed lasers.

It is sometimes referred to as the slat, calorimeter. The accuracy of the method

depends on knowing E0, which is frequently difficult to ascertain with laser

radiation. In some application Eq. 7.172 is used to calculate E0, the energy actually

absorbed from the laser pulse, by using materials o. known specific heat.

The pulsed laser measurement technique is especially suited to determining

thermal diffusivity. The magnitude of the back surface temperature rise depends,

as we saw, on the energy which is coupled into the material, and this may be

difficult to know with any precision. However the time dependence of the hack

surface temperature is independent of the energy input and is controlled only by the

diffusivity κ. A simple way to derive κ from a temperature–time profile can lie seen

from Fig. 7.38. One measure the time required for the measured temperature

response to reach some fraction, say one-half, of its limiting value. Let us call

this time Il. It can lie shown numerically [49] from Eq. 7.176 that:

0 1 2
1.37

3

t/tc

T
/T

c

4 5 6
0

0.5

1.0

Fig. 7.38 Normalized back surface temperature response to a delta function heat pulse
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T

Tc

¼ 1

2
¼ 1þ 2

X1
n¼1

�1ð Þne�n2t1=2=tc

is satisfied when

t1=2
tc

¼ 1:37

Using tc ¼ ‘2= κπ2ð Þ yields

κ ¼ 1:37

π2
‘2

t1=2
ð7:178Þ

Thus, a measurement of t1/2, together with the thickness of the specimen, immedi-

ately gives thermal diffusivity. If one knows E0 this experiment gives values of both

the, specific heat and the diffusivity, and hence, if one knows the density ρ the

experiment gives the thermal conductivity.

This technique has been applied often, at rather high temperatures. usually in the

1000 �C range and above. At these temperatures steady-state methods of measuring

the thermal conductivity are difficult to apply because radiation losses are so large.

In the laser flash technique the radiation loss goes like T4
1 � T4

0 where T0 is the

starting or ambient temperature, established by, say, a furnace, and T1 is defined

above. This radiation loss can be made quite small by adjusting E0 so thatT1 is only

a few degrees larger than T0. Since 0the precise value of E0 is difficult to establish,

these experiments typically measure only thermal diffusivity, not the conductivity.

A final remark on the criterion for the applicability of Eq. 7.177 for slab heating

concerns the limits on the laser pulse duration. No laser pulse is, of course, a true δ
function. Our solution would be expected to be correct for laser pulse times which

are short compared to the time it takes the back surface to respond. The response

times are of the order of tc, so we have the criterion as:

tp � tc

or

tp � ‘2= κπ2
� �

Calculations that include explicitly the time dependence of the laser pulse [50]

indicate that our δ function solution is in error by less than about 2% provided that

tp is less than or equal to about 4% of tc. Some typical value of tc with specimens

1 mm thick is given below as:
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κ (cm2/s) tp ¼ ‘2= κπ2ð Þ (ms)

Aluminum 0.85 1.2

Stainless steel 0.05234 19

Typical laser pulse lengths are about ½ to 1 ms for the so-called “normal mode”

lasers, and thus, with 1 mm thick specimens the technique would be fairly accurate

for stainless steel but not very good for aluminum. Thicker specimens would help,

but this would make the rear surface temperature rise number. If our laser pulse has,

say, 20 J/cm2 in it and we use the 10.6 μm absorptance quoted earlier for as received

surfaces, the anticipated temperature rises at the back of the 1-mm specimens would

be as shown below.

A E0 (J/cm
2) ρ (g/cm3) cp (J/g

�C) T1 ¼ E0=ρc‘ (�C)
Aluminum 0.04 0.8 2.7 1.05 2.8

Stainless steel 0.4 8.0 8.0 0.628 16

We see the need to use shorter laser pulses with the same amount of energy.

Another solution would be to carry out a more detailed heat-flow calculation. Both

tailoring of the pulse shape and more detailed calculations are usually employed in

current applications of laser flash techniques [51].

7.9.1.3 Analytical Solution of Heat Transfer Equation with Spatial

Dependent Laser Pulse Heating

This section presents analysis of the conduction heating process introduced for a

practical Nd:YAG Gaussian laser pulse with a position-dependent intensity. An

analytical solution to the problem is obtained with appropriate boundary conditions

for a typical Continuous Wave Laser (CW) irradiation was developed in

Sect. 7.9.1.1 in above and now we pay our attention to pulse laser irradiation.

When the laser intensity is rather low, no phase transition occurs and the only effect

of laser absorption is heating of the material. In metals the laser radiation is

absorbed by “free electron,” and the energy transfer in metals is also due to electron

heat conduction. The temperature field is described by the standard Fourier heat

conduction and for laser pulse with a position-dependent intensity, for this form of

pulse input, the Fourier differential equation is described by Eq. 7.124. Q(x, y, z, t)
in this equation is defined by the Drude–Zener theory which leads to the following

expression [40].

Q x; y; z; tð Þ ¼ Ae�βtμImax x; y; tð Þe�μz ð7:179Þ

where A is the surface absorptivity, β is the time pulse parameter, μ is the absorption
coefficient of the material, and Imax x; y; tð Þjz¼0 is the maximum laser radiation

intensity at the material surface z ¼ 0ð Þ. According to Sparks [52] μ is independent
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of temperature, while surface absorption coefficient of the material, A ¼ 1� R,
where R is the surface reflectivity, is a linear function of the surface temperature

A ¼ A0 þ A1 T � T0ð Þ ð7:180Þ

where A0 is the surface absorptivity at room or ambient temperature, T0, and for

most of engineering materials, the absorption factor A1 is almost unity for Nd:YAG

laser wavelength. This temperature dependence of surface absorptivity results from

the fact that A is proportional to the electron–phonon collision frequency which, in

turn, is proportional to the crystal lattice temperature.

For metals and certain applications, at temperatures above the Debye tempera-

ture, it can be assumed that k(T ) and c(T) do not change dramatically with

temperature. Where again c(T ) is the density of the material of the workpiece, is

the temperature dependent specific heat of the material, k(T ) is the temperature

dependent thermal conductivity and details of these analysis were discussed in

Sect. 7.7.

Therefore, assuming constant specific heat and thermal conductivity for a

particular time interval, Eq. 7.124 can be simplified to

k
∂2

T

∂z2

 !
þ μImax x; y; tð Þe�μz ¼ ρc

∂T
∂t

ð7:181Þ

In many practical cases the transverse dimensions of laser focusing spot are large

compared to the thickness of the heated layer, and heat conduction problem.

Equation 7.181 can be considered one-dimensional and can be solved using stan-

dard methods, Carslaw and Jaeger [3].

It is unnecessary to solve for the complete pulse since the complete solution may

be obtained by summation of the solutions for the individual parts of time expo-

nential, then equation is linear. Rearrangement of Eq. 7.181 gives:

∂2
T z; tð Þ
∂z2

þ μImax

k
exp �μzð Þ ¼ 1

κ

∂T z; tð Þ
∂t

ð7:182Þ

where thermal diffusivity, κ ¼ k= ρcð Þ, with boundary conditions and z > 0, t > 0ð Þ
∂T z;tð Þ
∂z

���
z¼0

¼ 0

T z; tð Þjz!1 ¼ 0
for lim

z!1 T z; tð Þ ¼ 0 t > 0

T z; 0ð Þ ¼ 0 z > 0ð Þ

Laplace transform can be used to solve certain type of partial differential equations

with two or more independent variables. To solve Eq. 7.182 let us show how to

solve in detail differential equation using Laplace transformation of one dimen-

sional heat equation and homogeneous aspect of Eq. 7.182, given the Boundary
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Condition (B.C.) and Initial Condition (I.C.) as before in Sect. 7.9 and they are

established below again:

∂2
T

∂z2
¼ 1

κ

∂T
∂t

ð7:183Þ

B:C: T 0; tð Þ ¼ F0 t > 0

I:C: T z; 0ð Þ ¼ 0 z > 0

This was done for a CW laser interaction with target materials in Sect. 7.9.1.1.

The physical model of Eq. 7.183 is a semi-infinite slab of metal with a plane face

on which the origin of the z-axis is located with the positive half of the axis directed
into slab. This situation is illustrated in Fig. 7.39.

The approach will be to take Laplace transform of the dependent variable T(z, t)
in the heat equation with respect to the time t, as a result of which an ordinary

differential equation with z as its independent variable will be obtained for the

transformed variable that will then depend on both the Laplace transform variables

s and z. After the ordinary differential equation has been solved for the transformed

variable, the inverse Laplace transform £�1
� �

will be used to recover the time

variation, and so to arrive at the required solution as a function of z and t. Please
note that if the Laplace transform is applied to the independent variable t in the

function of two variables T(z, t), the variable z will behave like a constant. Conse-
quently, the rules for transforming derivatives of functions of a single independent

variable also apply to a function of two independent variables.

Using the notation T z; sð Þ ¼ £ T z; tð Þf g to denote the Laplace transform of T(z, t)
with respect to the time.

The formula for the transform of first derivative is:

£
∂T z; tð Þ

∂t

� �
¼ sT z; sð Þ � T z; 0ð Þ ð7:184Þ

To proceed further we must now use the condition that at time t ¼ 0 the material of

the slab is at zero temperature, so T z; 0ð Þ ¼ 0, as a result of which

0 z

Fig. 7.39 Semi-infinite

metal slab
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£
∂T z; tð Þ

∂t

� �
¼ sT z; sð Þ ð7:185Þ

Next, since z is regarded as a constant, one has

£
∂2

T z; tð Þ
∂z2

( )
¼ ∂2

T z; sð Þ
∂z2

ð7:186Þ

Using Eq. 7.186 when taking the Laplace transform of the heat conduction equation

with respect to t, and using the linearity property of the transform, one obtains

sT z; sð Þ ¼ κ
d2T z; sð Þ

dz2

� �
for

z > 0

t > 0
ð7:187Þ

where now one can use an ordinary linear derivative with respect to z, so z can be

considered to be the only independent variable. Therefore Eq. 7.187 can be rewrit-

ten as

d2T z; sð Þ
dz2

� s

κ
T z; sð Þ ¼ 0 ð7:188Þ

Equation 7.188 has the general solution of the following with two distinctive roots

for its auxiliary or characteristic equation of:

r2 � s

κ
¼ 0

r ¼ �
ffiffiffi
s

κ

r
and

T z; sð Þ ¼ c1e
ffiffiffiffiffi
s=κ

p� �
z þ c2e

�
ffiffiffiffiffi
s=κ

p� �
z ð7:189Þ

Since temperature has to be finite for z > 0 and t > 0, so for s ! þ1, we have

c1 ¼ 0 and then the Laplace transform of temperature is seen to be given by:

T z; sð Þ ¼ c2e
�
ffiffiffiffiffi
s=κ

p
¼ c2exp �

ffiffiffiffiffiffiffi
s=κ

p	 

z

h i
ð7:190Þ

To determine c2 we can use boundary condition on the plane face of the slab that

required T 0; tð Þ ¼ F0 from which it follows that £ T 0; tð Þf g ¼ F0=s. Thus, the
Laplace transform of the solution with respect to the time t is
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T z; sð Þ ¼ F0

s
exp �

ffiffiffi
s

κ

r
z

� �
ð7:191Þ

So the coefficient c2 ¼ F0=s. To recover the time variation from Eq. 7.200, it is

necessary to find inverse of Laplace function £�1
� �

, i.e.

£�1 T z; sð Þ� � ¼ T z; tð Þ ð7:192Þ

Result of such analysis was shown in Sect. 7.9 in more details and we just use the

results here that such inverse transformation yields:

T z; tð Þ ¼ F0erfc
z

2
ffiffiffiffi
κt

p
� �

ð7:193Þ

Where the error function, erf, is defined again as:

erf zð Þ ¼ 2

π

ð s
0

e�u2du ð7:194Þ

and the complementary error function erfc is defined by Carslaw and Jaeger [3], as

erfc zð Þ ¼ 1� erf zð Þ ð7:195Þ

where z is the independent variable, and u is the dummy variable.

Continuing the forgoing mathematical calculations, the Laplace transformation

of Eq. 7.182 and its related B.C. and I.C. with respect to t and substitution of

boundary and initial conditions using z-direction for a one-dimensional problem

yields:

∂2
T z; sð Þ
∂t2

� g2T z; sð Þ ¼ � Imax z; tð Þexp �μz½ �
ks

ð7:196Þ

where g2 ¼ s=κ and T z; sð Þ the transform variable, with which has a complementary

and particular solution and we try to solve them here. Eq. 7.196 is in a second-order

linear but nonhomogeneous differential equation, so we assume a general solution

of the following type:

T z; sð Þ ¼ yc þ Tp z; sð Þ ð7:197Þ

where yc is a general solution of the homogenous part of solution to Eq. 7.196, while

Tp z; sð Þ is the any specific function that satisfies the nonhomogeneous part of

Eq. 7.196.
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Solution of yc is similar to what we found in case of Eq. 7.188 and as result

Eq. 7.189, therefore the general solution to yc with the help of its characteristic or

auxiliary equation, is presented as:

r2 � g2 ¼ 0

r ¼ �g

yc ¼ c1exp �gzð Þ þ c2exp þgzð Þ
ð7:198Þ

and to find the particular solution of nonhomogeneous part of Eq. 7.196, we assume

the following:

Tp z; sð Þ ¼ Ae�μz ð7:199aÞ

then

∂Tp z; sð Þ
∂z

¼ �Aμe�μz ð7:199bÞ

and

∂2
Tp z; sð Þ
∂z2

¼ �Aμ2e�μz ð7:199cÞ

By substituting Eq. 7.199c into 7.196, we find that:

�Aμ2e�μz � g2Ae�μz ¼ � Imaxμ

ks
e�μz

A ¼ Imaxμ

ks

1

g2 � μ2ð Þ
ð7:200Þ

Thus, the particular solution of Tp z; sð Þ is given as:

T z; sð Þ ¼ Imaxμ

ks
exp �μzð Þ ð7:201Þ

Now the summation of last term of Eqs. 7.198 and 7.201 is general solution of

Eq. 7.196 and is written as:

T z; sð Þ ¼ yc þ Tp z; sð Þ
¼ c1exp �gzð Þ þ c2exp þgzð Þ þ Imaxμ

ks

� �
1

μ2 � g2ð Þ
� �

exp �μzð Þ ð7:202Þ
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where c1 and c2 are arbitrary constants. Substituting the boundary conditions related
to Eq. 7.182 in Laplace transform plane indicates that:

c1 ¼ Imaxμ2

ksg μ2 � g2ð Þ and c2 ¼ 0

Therefore, the complex solution of Eq. 7.196 in the transform plane is:

T z; sð Þ ¼ � Imaxμ

ks

μexp �gz½ �
g μ2 � g2ð Þ �

exp �μz½ �
μ2 � g2ð Þ

� �
ð7:203Þ

The problem now is to invert the solution of Eq. 7.203 which is a product of two s-
functions. There are two ways to do this. The first is a convolution integral method

and the second one is to entail expansion of the functions into partial fractions.

Using the second method, the full solution obtained by inverse Laplace transfor-

mation of Eq. 7.203 is

T z; tð Þ ¼ Imaxμ

ks
�4

μ

ffiffiffiffi
κt

π

r
exp � z2

4κt

� ��
� 1� μz

μ2
� 1þ μz

μ2

� �
erfc

z

2
ffiffiffiffi
κt

p
� �

� 1

μ2
exp κμ2 � t� μz
� �

erfc
z

2
ffiffiffiffi
κt

p � μ
ffiffiffiffi
κt

p� �� �
� 1

μ2
exp κμ2 � t� μz
� �

erfc
z

2
ffiffiffiffi
κt

p þ μ
ffiffiffiffi
κt

p� �� �
� 2

μ2
exp �μzð Þ 1� exp κμ2t

� �� �
ð7:204Þ

where

erfc zð Þ ¼ 1� erf zð Þ ¼ 2
π

ð1
z

e�u2du, defined by Eqs. 7.194 and 7.195 and know-

ing that:

ierfc zð Þ ¼
ð1
z

erfcξdξ ¼ 1ffiffiffi
τ

p exp �z2
� �

erfc zð Þ ð7:205Þ
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The final solution of Eq. 7.204 is:

T z; tð Þ ¼ 2Imax

k

ffiffiffiffi
κt

p
ierfc

z

2
ffiffiffiffi
κt

p
� �

� Imax

kμ
exp �μzð Þ

þ Imax

2kμ
exp κμ2 � t� μz
� �

erfc μ
ffiffiffiffi
κt

p � z

2
ffiffiffiffi
κt

p
� �� �

þ Imax

2kμ
exp κμ2 � tþ μz
� �

erfc μ
ffiffiffiffi
κt

p þ z

2
ffiffiffiffi
κt

p
� �� �

ð7:206Þ

Equation 7.206 gives the temperature profile inside the material for a given beam

power intensity is shown in Fig. 7.40

It should be noted that as the time tends to infinity in Eq. 7.206, i.e.,

lim
t!1T z; tð Þ ¼ 1 ð7:207Þ

no steady state solution exists for the temperature distribution.

In the majority of calculations regarding the laser heating of solids surfaces, the

temperature dependence of the surface reflectivity usually is neglected. If we set

A ¼ 0, growth of the temperature at the surface in the center of laser beam with time

may be obtained by setting z ¼ 0 into Eq. 7.206, i.e.,

0
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Fig. 7.40 Temperature distribution inside a material
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T 0; tð Þ ¼ Imax

kμ
2

ffiffiffiffiffiffiffiffiffi
κμ2t

p
π

þ exp κμ2t
� �

erfc μ
ffiffiffiffi
κt

p� �� 1

" #
ð7:208Þ

Graphical representation of Eq. 7.208 is shown in Fig. 7.41.

Distribution in Fig. 7.41 represents the surface temperature of the workpiece

during the laser interaction, and roughly one can estimate if there is going to be a

drilling or melting on that surface. Writing in MathCAD parametric program as a

function of thermal properties for different materials, (thermal conductivity of lead

k ¼ 19:66, cp ¼ 0:151 ; titanium, k ¼ 20:5, cp ¼ 0:782, and 304 stainless steel

k ¼ 41:84. cp ¼ 0:418. Typical result of such a parametric study is illustrated in

Fig. 7.42.

Using very complicated function, programming in MathCAD is not always easy.

Thus, to obtained similar result, one can simply substitute values of thermo-

physical parameters for solid first, then for liquid and by displaying those on two

different graphs compare results. This method was used on Eq. 7.214, because

equation is very complex.

Further examination of Eq. 7.206, assuming maximum absorption coefficient; let

us say that μ goes to infinity, one obtains the following result.

T z; tð Þ ¼ 2Imax

k

ffiffiffiffi
κt

p
ierfc

z

2
ffiffiffiffi
κt

p
� �

ð7:209Þ

Graphical representation of Eq. 7.209 is shown in Fig. 7.43.
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Fig. 7.41 Temperature distribution on the surface of the material
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Differentiation of Eq. 7.206 with respect to gives the temperature gradient inside

the material, i.e.

d

dz
T z; tð Þ ¼ Imax

k
exp �μzð Þ � Imax

k
erf

z

2
ffiffiffiffi
κt

p
� �

þ Imax

2k
exp κμ2t� μz
� �

erfc μ
ffiffiffiffi
κt

p � z

2
ffiffiffiffi
κt

p
� �

þ Imax

2k
exp κμ2tþ μz
� �

erfc μ
ffiffiffiffi
κt

p � z

2
ffiffiffiffi
κt

p
� � ð7:210Þ
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It is evident that dT(z, t)/dz, Fig. 7.44 will only be zero at the surface, i.e., maximum

temperature will occur at the surface.

The variation of dT(z, t)/dz with distance z i.e., (depth, expressed in μm) as a

function of three different time instances is shown in Fig. 7.45.

As illustrated in Fig. 7.45 the slope of the curves decreases reaching the

minimum and then increases to attain almost zero as the temperature profile

becomes almost asymptotic with z. In this case, the behavior of dT(z, t)/dz with

z may be divided into three regions, which are indicated in Fig. 7.45.
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In the first region, the heat gain due to laser irradiation dominates the conduction

losses, i.e., the internal energy increase is considerably high as compared to

conduction losses. In the second region, the slope has a z ¼ minimum value; in

this case, the energy gain due to incident laser beam balances the conduction losses,

i.e., the internal energy of the material remains almost constant. In this case, the

distance z corresponding to this point may be defined as the equilibrium distance

(z)eq, (Fig. 7.46), and dT(z, t)/dz becomes (dT(z, t)/dz)min.

In the third region, the slope increases to reach almost zero. In this region,

conduction losses are dominant and the energy gain to the external field is insig-

nificant, i.e., the internal energy decreases as the distance increases.

Variation of the equilibrium distance show in Fig. 7.46, can be dimensionalized

by:

zμð Þeq ¼ C κμ2t
� �m

q
ð7:211Þ

and is expected, that increase in heating time increases the dimensionless equilib-

rium distance, which in turn increases the dimensionless equilibrium temperature,

which can be defined as:

T z; tð Þ
Imax=kμ

� �
eq

¼ C zμð Þmq ð7:212Þ

where C is the constant and m is the power. In other words the equilibrium

temperature is defined as the temperature where dT(z, t)/dz is minimum.

Based on research done by Yilbas and Sami [53], the relationship between

equilibrium temperature and equilibrium distance on the logarithmic scale is linear

for all materials and pulse lengths.
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If the pulse length is approximately 10�9 s the analysis of the heat transfer

process using the Fourier equation becomes invalid. In this case the heating process

would be nonequilibrium.

In semi-infinite medium as shown in Fig. 7.39, atT ¼ 0with no heat flow at time

t ¼ 0 and with the heat source defined in Eq. 7.213 below,

I zð Þ ¼ εI0 0ð Þe�μz ð7:213Þ
The solution to this same problem is as:

T z; tð Þ ¼ 2Imax

ffiffiffiffi
κt

p
μk

ierfc
z

2
ffiffiffiffi
κt

p
� �

� Imax

kμ2
exp �μzð Þ

þ Imax

2kμ2
exp κμ2t� μz
� 

erfc μ
ffiffiffiffi
κt

p � z

2
ffiffiffiffi
κt

p
� �

þ Imax

2kμ2
exp κμ2tþ μz
� 

erfc μ
ffiffiffiffi
κt

p þ z

2
ffiffiffiffi
κt

p
� �

ð7:214Þ

and is illustrated in Fig. 7.47. Solution in Eq. 7.214, is identical to Sparks’s [54]

solution for infinite thickness slab ‘ >> δ.
Let us consider variation of the temperature distribution with respect to the

difference from the material properties variations with temperature. Analytically

one can determine that based on extreme material properties for maximum and

minimum values of thermal properties, known from the literature. Thermal con-

ductivity varies between 14.9 and 16.2, for ambient temperature, Ta, and 32 for

vaporization temperature, Tυ, heat capacity cp varies from 500 to 824, and density ρ
varies from 7870 to 8000 g/m3. Discrepancies related to the thermo physical

properties of the material could be determined by substituting the lowest and the

Fig. 7.47 Temperature distribution of laser irradiated material with the lowest values of

thermophysical parameters, (a) temperature as a function of depth and time, (b) temperature or

melting of the material with depth calculated using Eq. 7.214

7.9 Solutions of Governing Equation 305



highest values to solution given by Eq. 7.214. Examining graphs in Figs. 7.47 and

7.48, one can conclude that melting temperature dependencies of the material may

invoke an estimated error of about 50%, and we talk more about melting process in

Sect. 7.9.2 of this chapter.

Based on Anisimov and Khokhlov [55] rate of cooling after the end of the pulse

can be estimated by Eq. 7.215 and graphically represented as in Fig. 7.49 as below.

Fig. 7.48 Temperature distribution of laser-irradiated material with the pulse can be

thermophysical parameters, (a) temperature as a function of depth and time, (b) temperature or

melting of the material with depth
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VimpC z; tð Þ ¼ 2AImax

k

ffiffiffiffiffi
κ

t‘t

r�
ierfc

z

2
ffiffiffiffi
κt

p
� �

þ
zerfc

z

2
ffiffiffiffi
κt

p
� �
2t‘t

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ

t‘t � tp

r
ierfc μ

ffiffiffiffi
κt

p � z

2
ffiffiffiffi
κt

p
� �

� z

2 t‘t � tp
� � erfc μ

ffiffiffiffi
κt

p þ z

2
ffiffiffiffi
κt

p
� �#

ð7:215Þ

7.9.1.4 Analytical Solution of Heat Transfer with Time Dependent

Gaussian Laser Pulse Heating

This section presents time-unsteady analysis of the conduction limited heating

process introduced for a practical Nd:YAG laser pulse with a time-dependent

intensity. An analytical solution to the problem is obtained with appropriate bound-

ary conditions.

The output from a pulsed Nd:YAG laser is described by approximating the form

of the true output by the subtraction of two exponential functions. This analytical

form is given by:

I0 ¼ Imax e �βtð Þ � e �γtð Þ
h i

ð7:216Þ

For metals and certain applications, at temperatures above the Debye temperature,

it can be assumed that k(T) and c(T) do not change with temperature. Therefore,

assuming constant specific heat and thermal conductivity for a particular time

interval, Eq. 7.125 can be simplified to:

k
∂2

T

∂z2

 !
þ exp � βtþ γtð Þ½ � � μImax x; y; tð Þz¼0exp �μzð Þ ¼ ρc

∂T
∂t

ð7:217Þ

It is unnecessary to solve for the complete pulse, since the complete solution may be

obtained by summation of the solutions for the individual parts of time exponential,

then equation is linear. Rearrangement of Eq. 7.217 gives:

∂2
T

∂z2
þ μImax

k
exp �μzð Þexp � βtþ γtð Þ½ � ¼ 1

κ

∂T
∂t

ð7:218Þ
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with boundary conditions as:

∂T
∂t

����
z¼0

¼ 0 ð7:219Þ

T 1; tð Þ ¼ 0 ð7:220Þ

T z; 0ð Þ ¼ 0 ð7:221Þ

Laplace transformation of Eq. 7.218 with respect to t and substitution of boundary

condition from Eq. 7.220 yields:

∂2
T z; sð Þ
∂z2

� g2T z; sð Þ ¼ �Imaxμe�μz

k sþ βð Þ ð7:222Þ

withT z; sð Þ,g2 ¼ s=κ, and s the transform variable, which has a complementary and

particular solution as:

T z; sð Þ ¼ c1exp �gzð Þ þ c2exp gzð Þ þ Imaxμe�μz

k sþ βð Þ μ2 � g2ð Þ ð7:223Þ

where c1 and c2 are arbitrary constants. Substitution of boundary Equation of 7.219
and 7.221 gives these constant as, c2 ¼ 0 and

c1 ¼ Imaxμ2

kg sþ βð Þ μ2 � g2ð Þ ð7:224Þ

Therefore, the complex solution in the transform plane is:

T z; sð Þ ¼ � Imaxμ

k sþ βð Þ
μexp �gzð Þ
g g2 � μ2ð Þ �

exp �μzð Þ�
g2 � μ2

" #
ð7:225Þ

The problem now is to invert this solution, which is a product of two p-functions.
There are two ways to do this. The first is a convolution integral method and the

second method is simpler, entailing expansion of the functions into partial fractions.

Using the second method the full solution, obtained by inverse Laplace transfor-

mation of Eq. 7.226 is
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T z; tð Þ ¼ Imaxμ

2k

κ�
β þ κμ20

iμ
ffiffiffi
α

β

r�
exp �βtð Þ exp iz

ffiffiffi
β

κ

r !
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2
ffiffiffiffi
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2
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2
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κt
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� 2exp �μzð Þ exp κμ2tð Þ � exp �βtð Þ½ �

9>>=>>; ð7:226Þ

Using the relationship erfc �zð Þ ¼ 2� erfc zð Þ, give the solution in following form:

T z; tð Þ ¼ Imaxμ

2k

κ�
β þ κμ20

iμ
ffiffiffi
α

β

r�
exp �βtð Þ exp iz

ffiffiffi
β

κ
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ffiffiffiffi
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ffiffiffiffi
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p� ��

þ exp αμ2tð Þ exp μzð Þerfc z

2
ffiffiffiffi
κt

p þ μ
ffiffiffiffi
κt

p� �� ��

� exp �μzð Þerfc z

2
ffiffiffiffi
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p � μ
ffiffiffiffi
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9>>=>>; ð7:227Þ
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Note that:

i2merfc �zð Þ ¼ �i2merfc zð Þ þ
Xm
q¼0

z2q

22 m�qð Þ�1 2qð Þ! m� qð Þ!

i2mþ1erfc �zð Þ ¼ i2mþ1erfc zð Þ þ
Xm
q¼0

z2qþ1

22 m�qð Þ�1 2qþ 1ð Þ! m� qð Þ!

The temperature distribution calculated in Eq. 7.227, is illustrated in Fig. 7.50

(Fig. 7.51).

Fig. 7.50 (a) Temperature distribution inside the material (z-axis) with respect to time:

(b) temperature vs. depth of the workpiece, at few different time instances from the beginning

of the pulse, with the highest values of thermophysical parameters calculated using Eq. 7.227

Fig. 7.51 (a) Temperature distribution inside the material (z-axis) with respect to time:

(b) temperature vs. depth of the workpiece, at few different time instances from the beginning

of the pulse, with the highest values of thermophysical parameters calculated using Eq. 7.227

310 7 Lasers



The time at which the maximum value of the pulse occurs can be obtained by

differentiating Eq. 7.227 with respect to t for the pulse. Mathematically speaking

one has to find t, in the condition that the first derivative of this function should be

equal to zero, which gives the condition for the maximum time tmax.

tmax ¼
ln γ

β

	 

γ � β

ð7:228Þ

or

ffiffiffiffiffiffiffiffiffiffi
βtmax

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ln γ

β

	 

γ
β � 1

vuut ð7:229Þ

Insertion of Eq. 7.229 into 7.227 gives the maximum temperature when the

maximum pulse occurs. Solving Eqs. 7.227 and 7.229 give the condition that the

maximum temperature may coincides with the maximum pulse amplitude, i.e., at

this point ffiffiffiffiffiffiffiffiffiffi
βtmax

p ¼ 1:282 and
ffiffiffiffiffiffiffiffi
γ=β

p ¼ 1:596

The time at which the maximum temperature occurs is a function of pulse param-

eters, provided that the pulse rise times are much greater than the equilibrium time

C/κμ2, described in Sect. 7.9.1.1. The surface temperature depends on absorption

depth in the initial stages of the pulse and ability to absorb the laser depends on the

shape of the pulse Yilbas et al. [41].

The knowledge of pulse parameters β and γ allows at least theoretically, to adjust
the pulse for maximum desired effect based on deductions from the physics of

lasing system

7.9.1.5 Analytical Solution of Heat Transfer with Time Dependent

Gaussian Laser Pulse Heating with Convective Boundary

Conditions

This section presents time and unsteady analysis of the conduction with limited

heating process introduced for a practical Nd-YAG laser pulse with a time-

dependent intensity. An analytical solution to the problem is obtained with appro-

priate boundary conditions.

The output from a pulsed Nd-YAG laser is described by approximating the form

of the true output by the subtraction of two exponential functions. This analytical

form is given by:

I ¼ AImax exp �βtð Þ � exp �γtð Þ½ � ð7:230Þ
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For metals and certain applications, at temperatures above the Debye temperature,

it can be assumed that k(T) and c(T) do not change with temperature. Therefore,

assuming constant specific heat and thermal conductivity for a particular time

interval, Eq. 7.125 can be simplified to:

ρc
∂T z; tð Þ

∂t
¼ k

∂2
T z; tð Þ
∂z2

 !
þ exp �βtð Þ

� exp �γtð Þ AμImax x; y; tð Þz¼0exp �μzð Þ�  ð7:231Þ

It is unnecessary to solve for the complete pulse, since the complete solution may be

obtained by summation of the solutions for the individual parts of time exponential,

then equation is linear. Rearrangement of Eq. 7.231 gives:

∂2
T

∂z2
þ A

μImax

k
exp �βtð Þ � exp �γtð Þexp μzð Þ ¼ 1

κ

∂T
∂t

ð7:232Þ

with boundary conditions

∂T
∂t

����
z¼0

¼ h

k
T 0; tð Þ � T0½ � ð7:233Þ

T 1; tð Þ ¼ 0 ð7:234Þ

T z; 0ð Þ ¼ 0 ð7:235Þ

Complete solution can be obtained by subtraction of solutions for the individual

parts of the time exponential pulse. It should be noted that for the solution of a

complete pulse, the ambient temperature is considered as zero (T0¼ 0). Hence, the

heat transfer for the half-pulse becomes

∂2
T

∂z2
þ A

μImax

k
exp ��βtþ μz
�  ¼ 1

κ

∂T
∂t

ð7:236Þ

The solution of Eq. 7.236 can be obtained through the Laplace transformation

method, with respect to t as:

∂2
T z; sð Þ
∂z2

þ AImaxμexp �μzð Þ
k sþ βð Þ ¼ 1

κ
sT z; sð Þ � T z; 0ð Þ�  ð7:237Þ

with T z; sð Þ, and T z; 0ð Þ ¼ 0, where s the transform variable, which has a comple-

mentary and particular solution as before.
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The full solution, obtained by inverse Laplace transformation of Eq. 7.237, is

T z; tð Þ ¼ a10
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ð7:238Þ

where

a10 ¼ �μImaxκ hþ kμð Þ
k2

ð7:239Þ

a20 ¼ Imaxκμ

k
ð7:240Þ

a30 ¼
ffiffiffi
κ

p
h

k
T0 ð7:241Þ

The temperature distribution calculated in Eq. 7.238 is illustrated in Fig. 7.52

(Figs. 7.53, 7.54, and 7.55).
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7.9.1.6 Analytical Solution of Governing Heat Transfer Equation,

Considering Transfer Evaporative Case

This section presents analysis of the heating process. In the heating analysis,

evaporation is considered as the exclusive phenomenon taking place during the

ablation process. Based on, forgoing discussion, melting without vaporization can

be produced only in very narrow range of laser parameters. Usually both phase
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Fig. 7.52 (a) Temperature distribution inside the material (z-axis) with respect to time: (b)
temperature vs. depth of the workpiece, at few different time instances from the beginning of

the pulse, with the highest values of thermophysical parameters calculated using Eq. 7.238
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transitions (melting and vaporization) occurs almost simultaneously in standard

laser applications. Note that the latent heat of vaporization is larger than that of

fusion by the factor of 20-50 times.

Thus, evaporation plays the most important part in the energy balance. To

simplify our discussion we will assume that the vaporization occurs in vacuum

and the vapor does not absorb the laser energy. When the vapor does not absorb the
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Fig. 7.54 Temperature distribution inside the material (z-axis) with respect to time, with the

lowest values of thermophysical parameters calculated using Eq. 7.238
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Fig. 7.55 (a) Temperature distribution inside the material (z-axis) for few different time
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laser light, the process in the condensed and gaseous phases can be considered

separately. An analytical solution to the problem is obtained with appropriate

boundary conditions. In this case, plasma formation, liquid expulsion, and nucleate

boiling are omitted.

Solid or liquid evaporates at any temperature greater than 0�K. The evaporation
rates strongly depend on the temperature, T. This dependence can be written in the

form

Vn ¼ V0exp �U

T

� �
ð7:242Þ

where Vn is the normal component of the evaporation front velocity, and

U ¼ MHv

NakB
ð7:243Þ

and Hv is the latent heat of vaporization per unit mass, kB is Boltzmann’s constant.

M is the atomic mass, and V0 is a constant whose value is the order of the speed of

sound in the condensed phase and finally Na is Avogadro’s number. The Fourier

differential equation allowing a phase change process can be written as:

ρ Tð Þ ∂
∂t

ð T
T0

c Tð ÞdT ¼ ∂
∂x

k Tð Þ∂T
∂x

� �
þ ∂
∂y

k Tð Þ∂T
∂y

� �
þ ∂
∂z

k Tð Þ∂T
∂z

� �
þ ρ Tð Þc Tð Þ½ �V ∂T

∂z
þ Q ð7:244Þ

where ρ(T ) is the density of the material of the workpiece, c(T ) is the temperature

dependent specific heat of the material, k(T ) is the temperature dependent thermal

conductivity, V is the recession velocity which is the velocity of the liquid–vapor

interface, and T ¼ T x; y; zð Þ is the resulting three-dimensional time dependent

distribution in the material, t is time T0 is the initial temperature, and x, y, z are
the spatial coordinates.

Q ¼ Q x; y; z; tð Þ is the rate at which heat is supplied to the solid per unit time per

unit volume, depends on the laser pulse parameters and optical properties of target

material irradiated and defined by 7.179.

Sparks [54] has defined absorption coefficient of the material as a linear function

of the surface temperature in Eq. 7.151. For practical reason the absorption factor A

we assume as unity. This temperature dependence of A results from the fact that A is

proportional to the electron–phonon collision frequency which, in turn, is propor-

tional to the crystal lattice temperature.

The recession velocity of the surface can be formulated from energy balance at

the free surface of irradiated workpiece. In this case the energy flux at the free

surface can be written as

I0 ¼ ρ Tð ÞV c Tð ÞTs � Hv½ � ð7:245Þ
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Where

I0 ¼ Imax 1� Rð Þ ð7:246Þ

and Ts is the surface temperature and Hv is latent heat of vaporization and R is

surface reflectivity. Rearranging of Eq. 7.245 yields

V ¼ I0
ρ Tð Þ c Tð ÞTs � Hv½ � ð7:247Þ

For metals and certain applications, at temperatures above the Debye temperature,

it can be assumed that k(T ), ρ(T ) and c(T ) do not change dramatically with

temperature.

Therefore, assuming constant specific heat and thermal conductivity for a

particular time interval, Eq. 7.244 can be simplified to

ρc
∂T
∂t

¼ k
∂2

T

∂z2

 !
þ ρcV

∂T
∂z

þ Imax x; y; tð Þz¼0 1� Rð Þμe� μzþβtð Þ ð7:248Þ

It should be noted that peak power intensity, Imax does not vary with time. Since the

surface temperature is time dependant, the recession velocity varies with time. This

result is nonlinear form of Eq. 7.247, which cannot be solved analytically by

Laplace transformation method.

For a known surface temperature there is a unique value for recession velocity,

so an iterative method can be applied here to solve Eq. 7.248 analytically. In our

case keeping the recession velocity constant in Eq. 7.247 enables us to determine

the surface temperature analytically and after obtaining the surface temperature the

recession velocity can be calculated using Eq. 7.247. This procedure can be

repeated so long as the surface temperature and recession velocity converge to

correct results. Rearrangement of Eq. 7.248 gives

∂2
T

∂z2
þ V

κ

∂T
∂z

þ μI0
k

e�βte�μz ¼ 1

κ

∂T
∂t

ð7:249Þ

where thermal diffusivity κ ¼ k
ρc, with boundary conditions

∂T
∂t

��
z¼0

¼ ρVL

k

T z; tð Þjz!1 ¼ 0

T z; tð Þjt¼0 ¼ 0

8>>>><>>>>: ð7:250Þ
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We can apply the Laplace transform, defined as:

T z; sð Þ ¼
ð1
0

T z; tð Þe�stdt ð7:251Þ

Laplace transformation of Eq. 7.249 with respect to t and substitution of boundary

conditions from Eq. 7.250, gives:

∂2
T z; sð Þ
∂z2

þ V

κ

∂T z; sð Þ
∂z

� s

κ
T z; sð Þ ¼ � I0μ

k sþ βð Þ e
�μzð Þ ð7:252Þ

with T z; sð Þ, and s the transform variable in Laplace plane, which has a comple-

mentary (homogeneous) and particular (nonhomogeneous) solution as:

T z; sð Þ ¼ T z; sð Þc þ T z; sð Þp ð7:253Þ

The homogeneous part of Eq. 7.253, T z; sð Þc is as:

∂2
T z; sð Þ
∂z2

þ V

κ

∂T z; sð Þ
∂z

� s

κ
T z; sð Þ ¼ 0 ð7:254Þ

The characteristic or auxiliary equation for the homogeneous solution can be

written as:

r2 þ V

κ
r � s

κ
¼ 0 ð7:255Þ

which Eq. 7.255 has two distinctive roots as:

r1,2 ¼ �V

2κ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4sκ

p
2κ

ð7:256Þ

The homogeneous solution from Eq. 7.255, then results in:

T z; sð Þc ¼ c1e
r1z þ c2e

r2z ð7:257Þ

or

T z; sð Þc ¼ e�
Vz
2κ c1e

�
ffiffiffiffiffiffiffiffiffi
V2þ4sκ

p
2κ

	 

z þ c2e

þ
ffiffiffiffiffiffiffiffiffi
V2þ4sκ

p
2κ

	 

z

" #
ð7:258Þ

For the particular solution, one can provide exponential solution as:

T z; sð Þp ¼ P0e
�δz ð7:259Þ
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where P0 is some arbitrary constant coefficient. Substitution of T z; sð Þp given by

Eq. 7.258 into Eq. 7.252 results in:

P0δ
2e�δz � V

κ
P0δe

�δz � s

κ
P0δe

�δz ¼ H0e
�δz ð7:260Þ

where

H0 ¼ I0
1

sþ βð Þ
δ

k
ð7:261Þ

and

P0 ¼ � H0κ

sþ Vδ� κδ2
ð7:262Þ

and substituting Eq. 7.262 into Eq. 7.259, and the end result of that along with

Eq. 7.258 into Eq. 7.253, we obtain:

T z; sð Þ ¼ e�
Vz
2κ c1e

�
ffiffiffiffiffiffiffiffiffi
V2þ4sκ

p
2κ

	 

z þ c2e

þ
ffiffiffiffiffiffiffiffiffi
V2þ4sκ

p
2κ

	 

z

" #
� H0κ

sþ Vδ� κδ2
e�δz ð7:263Þ

Now defining:

V1 ¼ Vδ� κδ2 ð7:264Þ

and substituting Eq. 7.264 and using boundary Eq. 7.250, then c2 ¼ 0 and all into

Eq. 7.263, we get:

T z; sð Þ ¼ c1e
1
2κ Vþ

ffiffiffiffiffiffiffiffiffiffiffi
V2þ4sκ

p� 
z þ I0δκ

k

e�δz

sþ βð Þ Sþ V1ð Þ ð7:265Þ

We can calculate c1 by using boundary condition of Eq. 7.250 in Laplace plane and
defining:

ϖ1 ¼ I0δκ

k
ð7:266Þ

T z; sð Þ
∂z

¼ � 1

2κ
V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4sκ

ph i
c1e

1
2κ V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4sκ

ph i
z � δϖ1κe�δz

sþ βð Þ Sþ V1ð Þ

( )
z¼0

¼ ρVL

ks

ð7:267Þ
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From Eq. 7.267, c1 is going to be

c1 ¼ � 2δϖ1κ

sþ βð Þ sþ V1ð Þ V þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4sκ

p	 
� 2κ ρVL
k

s V þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4sκ

p	 
 ð7:268Þ

Hence,

T z; sð Þ ¼ 2δϖ1κe
� 1

2κ Vþ
ffiffiffiffiffiffiffiffiffiffiffi
V2þ4sκ

p� 
sþ βð Þ sþ V1ð Þ V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4sκ

p	 

þ ϖ1e

�δz

sþ βð Þ sþ V1ð Þ þ Tmm z; sð Þ

ð7:269Þ

where

Tmm z; sð Þ ¼ �2κρVL
e�

1
2κ Vþ

ffiffiffiffiffiffiffiffiffiffiffi
V2þ4sκ

p� 
ks V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4sκ

p	 
 ð7:270Þ

For the purpose of easier handling calculation for the future, let us define: H1(s),
H2(s), and H3(s) to be:

H1 sð Þ ¼ e�
1
2κ Vþ

ffiffiffiffiffiffiffiffiffiffiffi
V2þ4sκ

p� 
sþ βð Þ sþ V1ð Þ V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4sκ

p	 
 ð7:271Þ

H2 sð Þ ¼ 1

sþ βð Þ sþ V1ð Þ ¼
1

V1 � β

1

sþ β
� 1

sþ V1

� �
ð7:272Þ

H3 sð Þ ¼ e�
1
2κ Vþ

ffiffiffiffiffiffiffiffiffiffiffi
V2þ4sκ

p� 
s V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4sκ

p	 
 ð7:273Þ

And term of these defined variables Eq. 7.269 becomes as:

T z; sð Þ ¼ �2κμϖ1H1 sð Þ þϖ1e
�μzH2 sð Þ � 2κ

ρVL

k
H3 sð Þ ð7:274Þ
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Consequently the solution to Eq. 7.249 is going to be:

T z; tð Þ ¼ £�1 T z; sð Þ� � ð7:275Þ

or

T z; tð Þ ¼ �2κμϖ1£
�1 H1 sð Þf g þϖ1e

�μz£�1 H2 sð Þf g

� 2κ
ρVL

k
£�1 H3 sð Þf g ð7:276Þ

To obtain the inverse transformation of functions £�1 H1 sð Þf g and £�1 H3 sð Þf g, let
us introduce

p ¼ V2 þ 4κs or dp ¼ 4κds and s ¼ 1

4κ
p� V2
� �

Therefore

£�1 H1 sð Þf g ¼ 1

2πi

ðcþi1

c�i1
etsH1 sð Þds ð7:277Þ

or

£�1 H1 sð Þf g ¼ 1

4κ
e�

Vz
2κþV2

4κ

� �
1

2πi

ðcþi1

c�i1

e�
Vz
2κþV2

4κ

� �
p
4κ � V2

4κ þ β
	 


p
4κ � V2

4κ þ V1

	 

V þ ffiffiffi

p
p� �dp
ð7:278Þ

where

c ¼ 4κcþ V2 ð7:279Þ

We can use one more transformation by letting:

ϑ ¼ 1

4κ
p or dp ¼ 4κdϑ ð7:280Þ

After tedious and lengthy algebra, we obtain

£�1 H1 sð Þf g ¼ 1

4κ
e�

Vz
2κþV2

4κ

� �
1

2πi

ð ĉþi1

ĉ�i1

4κe
� z

ffi
s

pffiffi
κ

p
	 


eϑt

ϑ� V2

4κ þ β
	 


ϑ� V2

4κ þ V1

	 

V þ 2

ffiffiffi
κ

p ffiffi
s

pð Þ
dϑ

ð7:281Þ
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Where

ĉ ¼ c=4κ ð7:282Þ

Hence,

£�1 H1 sð Þf g ¼ 4κe�
V
2κ zþtV

2ð Þ£�1 H4 sð Þf g ð7:283Þ

where

H4 sð Þ ¼ 4κe
� z

ffi
s

pffiffi
κ

p
	 


eϑt

ϑ� V2

4κ þ β
	 


ϑ� V2

4κ þ V1

	 

V þ 2

ffiffiffi
κ

p ffiffi
s

pð Þ
ð7:284Þ

Similarly, £�1 H3 sð Þf g can be obtained, i.e., as:

£�1 H3 sð Þf g ¼ 4κe�
V
2κ zþtV

2ð Þ£�1 H7 sð Þf g ð7:285Þ

where

H7 sð Þ ¼ e
� z

ffi
s

pffiffi
κ

p
	 


ffiffiffi
κ

p ffiffi
s

p � V2
� �

2
ffiffiffi
κ

p
sþ Vð Þ2

ð7:286Þ

or

H7 sð Þ ¼ e
� z

ffi
s

pffiffi
κ

p
	 


8κ
ffiffiffi
κ

p ffiffi
s

p � ξð Þ ffiffi
s

p þ ξð Þ2
ð7:287Þ

where

ξ ¼ V

2
ffiffiffi
κ

p ð7:288Þ

Introducing partial fraction and rearrangement yields:

H7 sð Þ ¼ 1

8V2
ffiffiffi
κ

p e
� z

ffi
s

pffiffi
κ

p
	 

ffiffi
s

p � ξð Þ �
e
� z

ffi
s

pffiffi
κ

p
	 

ffiffi
s

p þ ξð Þ �
e
� z

ffi
s

pffiffi
κ

p
	 


ffiffiffi
κ

p ffiffi
s

p þ ξð Þ2

264
375 ð7:289Þ
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It is noted from the Laplace inversion that

£�1 e�k
ffiffi
s

pffiffi
s

p þ s

( )
¼ 1ffiffiffiffi

πt
p e�

k2

2t � aeakea
2terfc a

ffiffi
t

p þ k

2
ffiffi
t

p
� �

ð7:290Þ

where complementary error function is defined as:

erfc zð Þ ¼ 1� erf zð Þ ¼ 2

π

ð1
z

e�u2du ð7:291Þ

Therefore

£�1 e
� zffiffi

κ
p
ffiffi
s

pffiffi
s

p � ξ

( )
¼ 1ffiffiffiffi

πt
p e�

z2

2κt þ V

2
ffiffiffi
κ

p e
Vz
2κ

V2

e4κ terfc
z

2
ffiffiffiffi
κt

p þ k

2
ffiffiffi
κ

p ffiffi
t

p� �
ð7:292Þ

£�1 e
� zffiffi

κ
p
ffiffi
s

pffiffi
s

p þ ξ

( )
¼ 1ffiffiffiffi

πt
p e�

z2

2κt � V

2
ffiffiffi
κ

p e
Vz
2κ

V2

e4κ terfc
z

2
ffiffiffiffi
κt

p þ k

2
ffiffiffi
κ

p ffiffi
t

p� �
ð7:293Þ

Letting
ffiffi
s

p þ ξ ¼ ffiffiffi
p

p
and using the definition of inverse Laplace integral £�1

e
� zffiffi

κ
p ffi

s
pffiffi

s
p þξ

� �
become as follow:

£�1 e
� zffiffi

κ
p
ffiffi
s

pffiffi
s

p þ ξ

( )
¼ 1ffiffiffiffi

πt
p e�

z2

2κte
V2

4κ terfc
z
ffiffi
t

p
2
ffiffiffi
κ

p þ z

2
ffiffiffiffi
κt

p
� �

1þ Vz

2κ
þ V2t

2κ

� �
� V

ffiffi
t

p
2
ffiffiffiffiffi
πκ

p e�
z2

4κt

ð7:294Þ

Using Eqs. 7.292–7.294, and after simplification, the Laplace inversion of H3(s)
becomes

£�1 H3 sð Þf g ¼ 1

16κV
e
Vz
κ erfc

z� Vt

2
ffiffiffiffi
κt

p
� �

� 1þ Vz

κ
þ V2t

κ

� �
erfc

zþ Vt

2
ffiffiffiffi
κt

p
� �� �

þ
ffiffi
t

p
8κ

ffiffiffiffiffi
πκ

p e�
zþVtzð Þ2
4κt

ð7:295Þ

Let w2
2 ¼ V2

4κ, k1 ¼ zffiffi
κ

p , w2
3 ¼ V2

4κ � V1 and w4 ¼ V
2
ffiffi
κ

p , then H4(s) becomes

H4 sð Þ ¼ 1ffiffi
s

pð Þ2 � w2
2

	 
 ffiffi
s

pð Þ2 � w2
3

	 
 ffiffi
s

pð Þ � w4ð Þ
1

2
ffiffiffi
κ

p e� k1
ffiffi
s

pð Þ ð7:296Þ
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and after using partial fraction expansion, H4(s) becomes

H4 sð Þ ¼
D1ffiffi
s

p � w2ð Þ þ
D2ffiffi
s

p þ w2ð Þ
D3ffiffi
s

p � w3ð Þ
D4ffiffi
s

p � w3ð Þ
þ D5ffiffi

s
p � w4ð Þ

2664
3775 1

2
ffiffiffi
κ

p e� k1
ffiffi
s

pð Þ ð7:297Þ

where

D1 ¼ 1

2w2 w2
2 � w2

3

� �
w2 þ w4ð Þ ð7:298Þ

D2 ¼ 1

2w2 w2
2 � w2

3

� � �w2 þ w4ð Þ ð7:299Þ

D3 ¼ 1

2w3 w2
3 � w2

2

� �
w3 þ w4ð Þ ð7:300Þ

D4 ¼ 1

2w3 w2
3 � w2

2

� � �w2 þ w4ð Þ ð7:301Þ

D5 ¼ 1

w2
4 � w2

2

� �
w2
4 þ w2

3

� � ð7:302Þ

After substitution of Eqs. 7.298 through 7.302 into Eq. 7.297, then the Laplace

inversion £�1 H4 sð Þf g can be written as:

£�1 H4 sð Þf g ¼ 1

2
ffiffiffi
κ

p

D1

1ffiffiffiffi
πt

p
� �

e�
k21
4t þ w2e

�w2k1ew
2
2
t1erfc �w2

ffiffi
t

p þ k1

2
ffiffi
t

p
� �� �

þD2

1ffiffiffiffi
πt

p
� �

e�
k21
4t � w2e

�w2k1ew
2
2
t1erfc w2

ffiffi
t

p þ k1

2
ffiffi
t

p
� �� �

þD3

1ffiffiffiffi
πt

p
� �

e�
k21
4t þ w3e

�w3k1ew
2
3
t1erfc �w3

ffiffi
t

p þ k1

2
ffiffi
t

p
� �� �

þD4

1ffiffiffiffi
πt

p
� �

e�
k21
4t � w3e

�w3k1ew
2
3
t1erfc w3

ffiffi
t

p þ k1

2
ffiffi
t

p
� �� �

þD5

1ffiffiffiffi
πt

p
� �

e�
k21
4t � w4e

�w4k1ew
2
4
t1erfc w4

ffiffi
t

p þ k1

2
ffiffi
t

p
� �� �

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>;
ð7:303Þ
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However, it is known from Eq. 7.275 that T(z, t) can be written as:

T z; tð Þ ¼ £�1 T z; sð Þ� � ¼ �2κμϖ1e
�V
2κ zþ V

2κt
� 

£�1 H4 sð Þf g
þϖ1e

�μz£�1 H2 sð Þf g

� 8κ2
ρVL

k
£�1 H3 sð Þf g ð7:304Þ

Note that

£�1 H2 sð Þf g ¼ 1

V1 � β
e�βt � e�V1t
� � ð7:305Þ

Substituting Eqs. 7.298–7.302, into Eq. 7.303, we get

T z; tð Þ ¼ κμϖ1ffiffiffi
κ

p e�
V
2ι zþ V

2
t

� �

1ffiffiffiffi
πt

p e�
k21
4t D1 þ D2 þ D3 þ D4 þ D5½ �

D1 w2e
�w2k1ew

2
2
terfc �w2

ffiffi
t

p þ k1

2
ffiffi
t

p
� �� �

þD2 �w2e
�w2k1ew

2
2
terfc w2

ffiffi
t

p þ k1

2
ffiffi
t

p
� �� �

þD3 w3e
�w3k1ew

2
3
terfc �w3

ffiffi
t

p þ k1

2
ffiffi
t

p
� �� �

þD4 �w3e
�w3k1ew

2
3
terfc w3

ffiffi
t

p þ k1

2
ffiffi
t

p
� �� �

þD5 �w4e
�w4k1ew

2
4
terfc w4

ffiffi
t

p þ k1

2
ffiffi
t

p
� �� �

þ ϖ1

V1 � β
e�μz e�βt � e�V1t

� 

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
� ακL

2k
e�

V2

κ erfc
z� Vt

2
ffiffiffiffi
κt

p
� �

� 1þ Vz

κ
þ V2t

κ

� �
erfc

zþ Vt

2
ffiffiffiffi
κt

p
� �� �

� ρVL

k

ffiffiffiffi
κt

p ffiffiffi
π

p e�
zþVtð Þ2
4κt

ð7:306Þ
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Knowing that D1 þ D2 þ D3 þ D4 þ D5 ¼ 0 Eq. 7.306 becomes:

T z; tð Þ ¼ ffiffiffi
κ

p
μϖ1e

�V
2κ zþ V

2
t

� �
�

ew
2
2
t

2 w2
2 � w2

3

� � e�w2k1

erfc w2

ffiffi
t

p þ k1

2
ffiffi
t

p
� �
w2 þ w4

þ e�w2k1

erfc w2

ffiffi
t

p þ k1

2
ffiffi
t

p
� �
w4 þ w2

2664
3775

þ ew
2
3
t

2 w2
3 � w2

2

� � e�w3k1

erfc w3

ffiffi
t

p þ k1

2
ffiffi
t

p
� �
w3 þ w4

þ e�w3k1

erfc w3

ffiffi
t

p þ k1

2
ffiffi
t

p
� �
w4 � w3

2664
3775

þD5w4e
w2
4
t

e
w2
3
k1
erfc w4

ffiffi
t

p þ k1

2
ffiffi
t

p
� �

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
þ ϖ1

V1 � β
e�μz e�βt � e�V1t

� � ακL

2k
e
Vz
κ erfc

z� Vt

2
ffiffiffiffi
κt

p
� �

� 1þ Vz

κ
þ V2t

κ

� �
erfc

zþ Vt

2
ffiffiffiffi
κt

p
� �� �

� ρVL

k

ffiffiffiffi
κt

p ffiffiffi
π

p e�
zþVtð Þ2
4κt

ð7:307Þ

In order to generate graphical representation of Eq. 7.307, let us define the follow-

ing variables, which will be later used in MathCAD program.

i ¼ 0 . . .N . . . . . . zi ¼ hti

N
ð7:308Þ

j ¼ 1 . . . L . . . . . . tj ¼ τij

L
ð7:309Þ

τj ¼ κμ2t ð7:310Þ

V0 ¼ V

κμ
or V0 ¼ 1þ V1

κμ2
ð7:311Þ

β0 ¼ 1

κμ2
β ð7:312Þ

w2 ¼ V0

4κ
� β0 ð7:313Þ

w3 ¼ V0 � 2

2

� �
κμ2 ð7:314Þ

w4 ¼ V0

2

ffiffiffiffiffi
κμ

p ð7:315Þ

D5 ¼ 1

β0 V0 � 1
� �

κμ2ð Þ2 or D5 ¼ 1

βV1
ð7:316Þ
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One can use MathCAD program to perform calculations, so our function T(z, t) can
be formulated Tij and substituting above parameters we can obtain.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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 !
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vuut þ zi
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ffiffiffi
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E3i, j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V02 � 4 V0 � 1

� �q
ð7:320Þ
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Temperature distribution with respect to depth of the workpiece and time is

graphically shown in Fig. 7.56, where recession velocity of vaporization surface

was estimated to be about 33 m/s.
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A closed form solution illustrated in Fig. 7.56 is limited to the surface ablation

only and does not consider the plasma formation and liquid expulsion from

irradiated workpiece.

The temperature gradient attains relatively lower values in the surface vicinity of

the substrate material than that corresponding to some depth below the surface. In

this case, internal energy gain in this region due to absorption of laser beam energy

becomes more important as compared to diffusional heat transfer from the surface

vicinity to the bulk of the substrate material due to temperature gradient. As the

heating period progresses, the point of minimum temperature gradient moves

towards the solid bulk of the substrate material.

In the region beyond the point of minimum temperature gradient, the diffusional

energy transport plays an important role inside the substrate material.

The large change in the power intensity occurs with increasing β0; however, the
magnitude of temperatures in the surface region does not alter considerably. This is

because of the rate of evaporation, which increases with increasing power intensity.

Consequently, the convective boundary condition at the surface suppresses the

temperature rise in the surface vicinity at high-power intensities

7.9.1.7 Analytical Solution of Heat Transfer Equation with Kinetic

Theory Approach

This section examines pulsed laser heating process by considering both Fourier

conduction and electron–phonon kinetic theory approaches, which is described in

Sect. 7.10 of this chapter later on. A one-dimensional kinetic theory approach is

presented. More specifically, this section is focused on development of equations

governing an interaction of a Gaussian laser beam with materials, where analytical
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Fig. 7.56 Temperature distribution of the workpiece with consideration of transfer evaporative

case calculated using Eq. 7.326
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solution of these equations based on both the Fourier heat conduction theory and

kinetic theory approach using a Laplace integral transformed method is utilized. A

comparison of the analytical solution of the Fourier theory and closed form solution

of the kinetic theory approach is introduced in the next section of this chapter

(Sect. 7.11). The temperature distribution for the heated material predicted from the

kinetic theory is compared with the Fourier theory findings.

Most theoretical work relating to laser beam interaction with materials is based

on the solution of the classical heat conduction equation derived from Fourier

theory. It has been shown that the Fourier theory of heat conduction is not fully

applicable to short pulsed laser heating due to the assumptions made in the theory.

These assumptions include:

1. Matter is assumed as continuous and homogeneous, and that;

2. The heat flux across any plane is a function of only the temperature gradient at

that plane.

The first assumption is not valid for distances less than inter-atomic spacing and

the second is only true if all the energy crossing the isothermal plane is

accounted for.

Conduction in metals occurs due to subsequent collisions between excited

electrons and lattice site atoms. The electron motion in the substrate is random,

which means that electrons move from the surface to the bulk as well as from the

bulk to the surface. Moreover, the amount of energy transferred to lattice site atoms

depends on the electron energy distribution in a particular region. Harrington

(1967) showed, based on kinetic theory considerations, that electrons within five

times of the electron mean free path contribute 98.5% of the total energy

transported provided that ∂T=∂z is constant over this distance. Consequently,

attempting to generate the Fourier equation, the application of q ¼ �k ∂T=∂zð Þ is
limited to planes in excess of ten times the electron mean free path apart.

In addition, the absorption depth of the metals is of the order of ten electron

mean free paths; therefore, the gradient ∂T=∂z is not uniform over the spatial

increment Δz � 10λð Þ and λ being the electron mean free path. In this case, the

higher order gradients ∂3
T=∂z3

	 

, which are neglected in the Fourier heating

model, become important and the validity of the Fourier heating model comes into

question. Therefore, it becomes necessary to examine the laser-induced conduction

heating on a microscopic scale.

The applicability of the Fourier equation in laser heating is limited to the cases in

which low power laser intensities are employed [56].

This is due to the following facts:

1. In the analysis of the Fourier heat conduction model, the heat flux through a

given plane is considered as being a function of the spatial temperature gradient

at that plane. This depends upon the assumption that the temperature gradient

remains almost constant between two successive and closely spaced planes.

The distance between these planes is finite, and therefore, error occurs when
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high-order terms, which are neglected, become important at high-power laser

intensities.

2. The heat flux through a given plane depends on the electron energy distribution

through the material, therefore, the material cannot be considered as a homoge-

neous continuum.

Consequently, a new model may be required to be developed for heating

mechanism, which is appropriate to high-power laser heating process. A model

considering a kinetic theory approach describing the transport of energy by elec-

trons within the electron mean free path may be suitable in this case. The basis of

this model was introduced by Yilbas [57] for one-dimensional heating. It was

shown that the predictions made from the new model agree well with the experi-

mental findings. He adopted the electron motion in metals to formulate the laser

pulse heating process. The heating process was established based on a kinetic

energy transfer mechanism, which occurred during the collisions between excited

electrons and lattice site atoms. In this case, the excess electron energy was

transferred to lattice site atoms resulting in increased amplitude of lattice site

vibrations during the collision process.

In this section, comparisons of the electron kinetic theory approach are made

with Fourier theory models for a pulse laser heating process. The temperature field

due to each model is predicted for step intensity as well as exponentially decaying

intensity pulses. The study is extended to include the analytical solution to the

electron kinetic theory approach for Gaussian intensity pulses. Electron kinetic

theory approach is based on electron and phonon movements.

7.9.2 Melting Process

Consider first the case of a semi-infinite slab as before, melted, with instantaneous

melt removal, as indicated in Fig. 7.57.

We solve this by considering ourselves moving along with interface. But to do

this we have to reconsider our heat-flow equation, which is:

∂2
T z; tð Þ
∂z2

� 2

κ

∂T z; tð Þ
∂t

¼ 0 ð7:327Þ

Recall that this was derived by noting the rate at which heat accumulated in an

elemental volume:

ρc
∂T z; tð Þ

∂t
þ ∂
∂z

�K
∂T z; tð Þ

∂z

� �
¼ 0 ð7:328Þ

If the medium is moving, then an additional amount of heat ρcT is flowing in at rate

V, therefore
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�K
∂T
∂z

becomes �K
∂T
∂z

þ VρcT

As result of this, the Eq. 7.329a turns out to be:

ρc
∂T z; tð Þ

∂t
þ ∂
∂z

�K
∂T z; tð Þ

∂z
þ VρcT z; tð Þ

� �
¼ 0 ð7:329aÞ

or for simplicity, we write as

ρc
∂T
∂t

þ ∂
∂z

�K
∂T
∂z

þ VρcT

� �
¼ 0 ð7:329bÞ

This equation is valid, providing that we are not generating any heat in the solid.

Assuming that κ ¼ K=ρc as before, then Eq. 7.329b yields to:

∂T
∂t

� κ
∂2

T

∂z2
þ V

∂T
∂z

¼ 0 ð7:330Þ

Therefore, we can find at least a steady-state solution to the problem by basing our

coordinate system at the interface and letting the material flow in at some rate to be

determined. Call the rate �U, where U is a positive number. The solution will be

T ¼ Tme
�Uz0=κ ð7:331Þ

where κ is diffusivity of the solid, Tm is the melting temperature, and z ’ is the

distance from melting front. That is, this is solution to:

∂T z0, tð Þ
∂t

� κ
∂2

T z0, tð Þ
∂z02

� U
∂T z0, tð Þ

∂z0
¼ 0 ð7:332Þ

SEMI-INFINITE
MEDIUM

z = 0

Fo

T = Tm

z = Ut

Fig. 7.57 Irradiation of a

semi-infinite slab with

instantaneous melt removal
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as we can verify, First, ∂T=∂t ¼ 0 because this is the steady-state profile, or

κ
∂2

T z0, tð Þ
∂z02

þ U
∂T z0, tð Þ

∂z0
¼ 0 ð7:333Þ

of course T ¼ Tm at z0 ¼ 0 and T z0, tð Þ ! 0 as z0 ! 0. It is trivial to show, by

differentiation, that Eq. 7.330 is the solution to Eq. 7.332.

To calculate U, we use energy balance. F0 must raise the material to Tm, its
melting point and note that Tm

�C above ambient or environment, and then melt

it. Thus, in time Δt the energy put into thickness Δz’ (where U ¼ Δz0=Δt) must be

given by:

F0Δt
Δz0

¼ Lρþ cTmρ ð7:334aÞ

or

F0 ¼ ρ Lþ cTm½ �U ð7:334bÞ
Thus, we can write, for the steady-state temperature profile,

T z0, tð Þ ¼ Tmexp � z0

κ

F0

ρ Lþ cTmð Þ
� �� �

ð7:335Þ

Definition of Sublimation Sublimation is a physical process in which a solid

directly converts into a gaseous (vapor) state without going through a liquid state.

The latent heat of sublimation at a particular temperature is the amount of heat

required to convert a unit mass of solid into gas. For example, when ice sublimates

into vapor, the amount of heat required at 0 �C is estimated equal to 2,838 kJ/kg,

which is the latent heat of sublimation of ice at 0 �C. In the crystal growth of ice and
snow in atmosphere, this process plays a dominant role. See Fig. (d) below

HEAT ENERGY TAKEN FROM ENVIRONMENT

Sublimation

Melting

Freezing
Liquid

Deposition

Ice

Vapor

Condensation

Evaporation

HEAT ENERGY RELEASED TO ENVIRONMENT

Fig. d Depiction of Latent Heat

7.9 Solutions of Governing Equation 333



This process is opposite to the process of deposition. Also bear in your mind that,

when a substance changes from one state to another, by definition, latent heat is

added or released in the process.

whereF0= ρ Lþ cTmð Þ½ � is the velocity of the melting front. This solution also would

be appropriate to sublimation, where L is then the latent heat of sublimation and Tm
the sublimation temperature. Note: that this is the semi-infinite-slab approximation

and cannot be used to estimate the time to penetrate a slab of given thickness.

Let us consider aluminum, withF0 ¼ 200W=cm2. Taking a more accurate value

of the melting point than in earlier examples, Tm ¼ 640 �C (the actual melting point

of 660 �C minus room temperature of 20 �C). If we put in the other values of the

parameters, T falls off as shown in Fig. 7.58.

As another illustration, consider Plexiglas. Plexiglas is rapidly eroded by

10.6 μm laser radiation, by a process that is essentially sublimation. Since it couples

extremely well A � 1:0ð Þ and has a very low thermal diffusivity κ � 10�4 cm=s2
� �

,

it can be used to make “burn patterns” of the beam. That is, the depth of the erosion

at a given point is linearly proportional to the energy density incident at that point.

We can understand this by applying heat-flow concept. Let us apply Eq. 7.330 and

interpret L as the heat of erosion. Since c � J=g� �C and Tm ¼ 200 �C and

L � 1000J=g, for a crude calculation we can ignore cTm. The density is about

1.1 g/cm3. We then have:

T z0, tð Þ � 200 e�9F0z
0 ð7:336Þ

SinceA � 1:0, for a typical power density like 5 kW/cm2 we haveF0 ¼ 5� 103, so

that

T � 200 e�4:5�104z0 ð7:337Þ

Hence, the temperature profile is confined to an extremely narrow region near the

eroding surface. The rate of erosion is, by Eq. 7.334b with cTm ignored as:

0
0

320

T = 640 e–0.082z�

CRUDE SKETCH

NOTE I/e POINT AT~ z� = 12 cm

640

10 20 30
z� (cm)

T
 (

�C
)

Fig. 7.58 Temperature

profile in aluminum with

instantaneous melt removal
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U � 4:5cm=s ð7:338Þ
Now we can see why Plexiglas is useful for monitoring the beam profile, and why it

can pick up fairly fine structure in the beam. After irradiation for a time t the

penetration depth is Ut ¼ F0tð Þ= ρLð Þ, and this should be large compared to a

thermal diffusion length D ¼ 2
ffiffiffiffi
κt

p
if the pattern is to reveal fine structure.

Otherwise thermal diffusion would “wash out” the pattern by distributing the

energy in a radial direction. Thus

2
ffiffiffiffi
κt

p � F0t

ρL
ð7:339Þ

For the numbers we used above at t ¼ 1=4 s, we have a depth of 1 cm. Thus

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�4 � 1

4

r
¼ 0:1 mm � 1 cm ð7:340Þ

and we see the criterion is well satisfied.

Let us look at a more complete problem, namely melting by laser radiation of a

slab of material. One basic problem is what happens to the melted material.

(We ignore the vaporization question for now.) There are two eases which are fairly

amenable to numerical solution. They are the “fully retained liquid” case, in which

all the liquid is presumed to stay in place, and the “full ablation” case, in which the

melt is presumed to disappear magically as soon as it forms. The latter case might

correspond to the presence of a heavy wind-stream which blows away the melt.

Looking first at the full ablation case, we have the situation shown in Fig. 7.59.

T2 is the temperature in the solid, and the front surface at z ¼ 0 first warms up to the

melting point Tm (above ambient temperature) and then begins to move to the right.

S denotes its position as a function of time. When S ¼ ‘, the process is over, and we
call this time tf. We denote by tm the time at which the front surface begins to melt.

The field equation is:

∂2
T2

∂z2
� 1

κ2

∂T2

∂t
¼ 0 for 0 	 t 	 tf ð7:341Þ

INSULATED BACK SURFACE

z = 0

Fo

T = Tm

z = S z = l z

SOLID REGION, T = T2 (z,t)

Fig. 7.59 Fully ablated case
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The boundary conditions are

K2
∂T2

∂z

���
z¼0

¼ �F0 for 0 	 t 	 tm ð7:342Þ

K2
∂T2

∂z

���
z¼S

¼ �F0 þ ρL
dS

dt
for tm 	 t 	 tf ð7:343Þ

K2
∂T2

∂z

���
z¼‘

¼ 0 for 0 	 t 	 tf ð7:344Þ

The boundary conditions are:

T2 z; 0ð Þ ¼ T20

Sjt	tm
¼ 0

ð7:345Þ

The above boundary conditions are nonlinear, and a solution in analytical form is

very difficult. This is due to the presence of the moving boundary and appears in the

second boundary condition, which states that the boundary moves at a rate dS/dt
determined by a balance between the heat of melting L, the heat input F0, and the

heat flow by thermal conduction.

One relationship must hold for this problem; it follows from energy balance. The

total energy put in per unit area is F0tf, and, since the material is simply heated to Tm
and melted, this energy goes solely to those processes. Thus

F0tf ¼ ρ Lþ cTmð Þ ð7:346Þ

This is convenient, for one can check numerical solutions. More important, it gives

a first-order estimate of the time needed to melt through materials by laser radiation.

Turning now to the fully retained liquid case, we have the following set of

equations. The definitions are the same as above, except that subscript 1 now refers

to the molten state, whereas subscript 2 is still the solid state (see Fig. 7.60). The

field equations are

∂2
T2

∂z2
� 1

κ2

∂T2

∂t
¼ 0 for 0 	 t 	 tf solidð Þ ð7:347aÞ

∂2
T1

∂z2
� 1

κ1

∂T1

∂t
¼ 0 for tm 	 t 	 tf liquidð Þ ð7:347bÞ

The boundary conditions are:

K2
∂T2

∂z

���
z¼0

¼ �F0 f 0 	 t 	 tm ð7:348aÞ

K1
∂T1

∂z

���
z¼0

¼ �F0 0 	 t 	 tf ð7:348bÞ
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K1
∂T1

∂z

���
z¼S

� K2
∂T2

∂z

���
z¼S

¼ �ρL
dS

dt
tm 	 t 	 tf ð7:348cÞ

K2
∂T2

∂z

���
z¼‘

¼ 0 0 	 t 	 tf ð7:348dÞ

T2jz¼S ¼ T1jz¼S ¼ Tm tm 	 t 	 tf ð7:348eÞ

The initial conditions are:

T2 z; 0ð Þ ¼ T20 ð7:349aÞ

Sjt	tm
¼ 0 ð7:349bÞ

Rather than discuss this problem in detail, we pass on to the more practical,

although more complex, case of vaporization. For the fully retained liquid case,

suffice it to say that the retained liquid has a shielding effect, and this causes the

time to reach melting at the back surface to be longer than in the ablated model.

Some typical values of melt through time for 0.2-cm-thick material with F0 � 2

kW=cm2 are given below.

Ablated (s) Retained (s)

Aluminum 0.32 0.37

Stainless steel 4.0 4.5

INSULATED BACK
SURFACE

z = 0

Fo

T = Tm

z = S z = l z

SOLID REGION, T = T2 (z,t)
LIQUID REGION, T = T1 (z,t)

Fig. 7.60 Fully retained liquid case

7.9 Solutions of Governing Equation 337



7.9.3 Melting and Vaporization

We present here without derivation some results for the case of a slab of material,

insulated on the surfaces, subjected to uniform and continuous irradiation [58].

These are one-dimensional calculations. It is assumed that the melt is fully retained

until it reaches the vaporization temperature, where it disappears. Then we have the

case illustrated in Fig. 7.61.

Here S2 is the, position of the liquid–vapor interface and S1 the position of the

solid–liquid interface. This problem is been solved numerically at NRL [58], and

we shall show sonic results. The assumptions are that in each phase the thermal

properties are independent of temperature.

In the curves, the following definitions are used:

αQ̂ ¼ F0‘

ρLκsolid
ð7:350Þ

τ ¼ κsolid
‘2

ð7:351Þ
θ ¼ T � Tmð Þcsolid=L ð7:352Þ

where

L ¼ latentheatof fusion

Subscription 0 is¼ ambient or environment temperature

ω ¼ Lv=L

with Lv is the latent heat of vaporization.
In these equation T is understood to be in degree Celsius and represents the

actual temperature. Although the thermal conductivities of liquid and solid are

allowed to differ, the specific heats are assumed to be the same.

INSULATED BACK
SURFACELIQUID SOLID

z = 0

Fo

z = S2 z = lz = S1 z

Fig. 7.61 Melting and vaporization, with fully retained liquid
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Note that when F0 ! 0 and F0 ! 1, we get certain easy ’limits. For F0 ! 0

no vaporization can take place, the melting is small, and we approach toe fully

ablated limit. On the other hand, as F0 ! 1 all the liquid should be vaporized by

(f, the time the back surface melts.

So in this limit

F0tf ¼ ρ‘ Lþ Tm � T0ð Þcsolid þ Tv � Tmð Þcliquid þ Lv
� 

for F0 ! 1
ð7:353Þ

whereas

F0tf ¼ ρ‘ Lþ Tm � T0ð Þcsolid½ � for F0 ! 0 ð7:354Þ

The limiting values are represented by asymptotes of the curves Figs. 7.62–7.67

indication Fig. 7.64 indicating by dashed lines on the plots of αQ̂ vs. τ. Note on

these plots that the dashed lines are at 45�, or have a slope of �1. These are log-log

plots, so the asymptotes can be described by

log αQ̂
	 


¼ logC� logτf ð7:355Þ
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Fig. 7.66 Rear surface temperature rise for aluminum alloy [58]
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where C ! C1 as αQ̂ ! 1, and C ! C0 as αQ̂ ! 0. If we take the antilog of

Eq. 7.355, we get the following:

αQ̂ ¼ C

τf
¼ C τf

� ��1 ð7:356Þ

Substituting in the definition of αQ̂ Eq. 7.350 and τ Eq. 7.351, gives:

F0‘

ρLκsolid
¼ C

‘2

κsolidτf
ð7:357aÞ

or

F0τf ¼ ρ‘LC ð7:357bÞ
By comparison with the F0 ! 0 and F0 ! 1 limits above we can see that

C0 ¼ 1

L
Lþ Tm � T0ð Þcsolid½ � ð7:358Þ

and

C1 ¼ 1

L
Lþ Tm � T0ð Þcsolid þ Tv � Tmð Þcliquid þ Lv
�  ð7:359Þ

The numerical values of the thermal parameters which were used in generating

these solutions are included as a separate table (Table 7.4) in addition to the graphs

(Figs. 7.62, 7.63, 7.64, 7.65, 7.66, and 7.67).
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Fig. 7.67 Rear surface temperature rise for titanium alloy [58]
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Provided one knows F0, these solutions are reasonable estimates for the time

to penetrate a metal specimen with a laser beam. In application, however, one

must consider the actual size of the beam. These solutions will be useful for effects

in the center of the beam if the diffusion length is small compared to the beam

radius, or if for times up to and including the melt-through time tf the beam radius

R > 2
ffiffiffiffiffiffi
κtf

p
is as:

R > 2
ffiffiffiffiffiffi
κtf

p ð7:360Þ

In terms of the parameter τf this becomes, upon squaring both sides as:

τf ¼<
1

4

R

‘

� �2

ð7:361Þ

7.9.4 Electron–Phonon Analytical Solution

The kinetic theory approach essentially deals with the kinetic energy transfer

mechanism that occurs when electrons and lattice atoms with different energies

interact. In order to simplify the phenomenon, some useful assumptions are made.

These include omission of thermionic emission, attainment of steady space charge,

and mean free path of molecules being independent of temperature. A net flow of

electrons occurs in the substrate by the presence of an electron source at infinity,

and the electron gives fraction of its excess energy to the lattice site atoms during an

electron–phonon collision and this fraction is assumed to be constant throughout

the successive collisions.

When the electron absorbs the incident laser energy, some excess energy of the

electron is transferred to the lattice site atoms during electron–phonon collision

process. This energy manifests itself as an increase in the amplitude of the atomic

vibration (phonon). As a result, neighboring atoms in the lattice are forced away to

new equilibrium positions and absorb some of this extra energy in the process. A

stage may be reached where eventually the lattice site atoms in the localized region

around the original collision site are all in equilibrium and have increased their

vibrational energies. It is this energy mechanism, which defines the conduction

process in the solid substrate when subjected to a laser heating pulse. The amount of

energy which electrons from section I transfer to lattice site atoms in the same

section, Fig. 7.68, can be calculated as follows.

The number of electrons leaving section I, is:NzAzVzdtwhereAz ¼ dxdy, and Nz

is the number density of electrons which transfer energy to dz from dζ, andVz is the

average electron velocity entering the control volume in the z-axis across area Az at

time dt.
The energy of N atoms in one direction due to lattice vibration is: E ¼ NkBT

which can be described as the phonon energy. The number of collisions, which
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takes place between electrons and phonons through the material, can be assessed by

the total collision probability of electrons. Probability of electron traveling a

distance z, where z k 2λ, (λ being the mean free path), without making a collision

is exp �z
λ

� �
, the probability of an electron having just collided in dz is dz/λ.

In general, thermal conductivity is usually defined with respect to steady heat

transfer through homogeneous medium in a random process. Thus, the thermal

conductivity in one direction can be defined as:

k ¼ NVzkBλ

6
ð7:362Þ

Note: that N is the number of free electrons per unit volume. It has been shown that

for the temperatures higher than the Debye temperature, thermal conductivity can

be assumed constant. The number of the electrons which have just collided in

section I is:NζzAzVz
dζ
λ Therefore, the number of electrons, which have just collided

in dζ during dt is:

NζzAzVz

ðþ1

�1
exp � z� ζj j

λ

� �
dζ

λ

dz

λ
ð7:363Þ

and which then travel to section II before colliding in dz, whereðþ1

�1
exp � z� ζj j

λ

� �
dζ
λ

dz
λ is the total electrons-lattice site atoms collision probabil-

ity as described in [57].

The negative sign of the integral is due to a mirror image introduced at a surface.

This mirror image represents reflected electrons from the free surface. The net

x

dx

dy

dz

Nzs

Nsz

+

y z

Fig. 7.68 Electron movement at the metal surface vicinity (z¼0 is the surface)
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transfer of energy during the electron–phonon collision through the entire body can

be written as:

ΔEz, t ¼
ðþ1

�1
exp � z� ζj j

λ

� �
dz

λ

dζ

λ
fð Þ � Eζ, t � Ez, t½ � ð7:364Þ

where Eζ,t and Ez,t are energy of electrons and photons at a considered region

respectively, in the z-axis and parameter f is a fraction of electron energy. It is

suggested that the rate of transfer of energy between the electrons and the molecules

will be determined only by the difference in temperature of the electrons and lattice

vibrations. If the temperature of the lattice site atoms in u v; Tð Þ ¼ N vð Þ Eh i ¼ 8πv2

c3

Eh i is Θ(ζ, t) then the energy transfer to the lattice site atoms in dz from collisions

with electrons in which the electrons give up a fraction “f ’” of their excess energy is

NζzAzVz
dζ

λ

dz

λ
exp � z� ςj j

λ

� �
f � kB Θ ζ; tð Þ � Θ z; tð Þ½ � ð7:365Þ

Summing the contributions from all such sections to obtain the energy in section II
gives

ΔEz, t ¼ Azdzdt

ðþ1

�1

NζzVz

λ

f � kB
λ

exp � z� ζj j
λ

� �
Θ ζ; tð Þ � Θ z; tð Þ½ �dζ ð7:366Þ

During electron–phonon collision, some fraction f of the electron excess energy is

transferred to the phonon. For any inelastic collision, the conservation of energy in

any section may be written as:

Electronenergyentering the section ¼ Electronenergyentering thesection

þ Energy transfer tophotons in thesection

ð7:367Þ

This gives:

f ¼ Electronenergy in� Electronenergyout

Excesselectronenergy in
ð7:368aÞ

f ¼ EeIð Þin � EeIð Þout
EeIð Þin � Ephoton

ð7:368bÞ

providing that 0 	 f 	 I from the energy conservation, where EeIð Þexcess ¼ EeIð Þin
�Ephoton and Ephoton ¼ meanenergyof phonon. The effective f value over a region

sufficiently large to allow many collisions approaches unity and this corresponds to

attainment of thermal equilibrium. In the case of a single collision, f depends only
upon the masses of the colliding particles, according to
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f ¼ 2M � m
M þ mð Þ2 ð7:369Þ

whereM andm are the masses of an atom and an electron, respectively. Substituting

appropriate values shows, that the f value is of the order of 10�4. The most energetic

phonon is only 0.01 eV, assuming cs ¼ 105 cm=s (velocity of sound in the solid), but
electrons near the Fermi level have energies of several eV; hence, when such

electrons are scattered, only a small fraction of their energy can be given during

an electron–phonon collision. In the present analysis, f is equal to 10�4 and is

assumed as a constant over successive collisions. The change of irradiance of the

laser beam passing through a homogeneous medium (metal), as a function of

distance is given by dIz=dz ¼ �μIz zð Þ, where μ is the absorption coefficient. The

negative sign indicates the reduction in beam irradiance due to absorption as μ is a

positive quantity. The absorption of the incident laser beam takes place in z-axis.
Integrating defined dIz/dz, the intensity of the incident beam at any plane z inside the
substrate is given by Iz ¼ I0exp �μzð Þ, where I0 the peak intensity of incident

irradiance. The limit for a small section Δz wide at z, the energy absorbed.

dIz
dz

¼ d

dz
μI0exp �μzð Þð Þ ð7:370aÞ

or

Iz ¼ �I0
d

dz
f zð Þj j ð7:370bÞ

or

Iz ¼ �I0f
0
zð Þ ð7:370cÞ

where f0 (z) is the absorption function. Since the mirror image situation is consid-

ered, Fig. 7.68, for electron movement at the surface, the laser beam will be

absorbed in a manner described by: �f
0
zð Þ ¼ d

dz exp �μ zj jð Þj j. for all z. Using

Eq. 7.368a and 7.368b for intensity of the laser beam, the rate of applied external

energy at dz during the time interval dt can be given as

ΔEz, tjabz ¼ I0μe
�μzAdtdz ð7:371Þ

The total energy increases in the material at dz during dt is:

NA Ez, tþdt � Ez, tð Þdz ¼ ΔEz, t þ Ez, tjabs ð7:372Þ

The total amount of energy, which is absorbed in an element∂ζ, area A in time dt is:

�I0Adtdζf
0
ζð Þ, since all the beam energy is absorbed in the z-direction. One must
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allow for the possibility that electron densities may vary throughout the material

and, in particular, the number traveling from dζ to dz may not be the same as that

from dz to dζ. Therefore, the proportion of energy which is absorbed by the

electrons which travel from dζ to dz in dt is: �I0Adtdζf
0
ζð Þ Nζz

NζzþNzζ

The average energy absorbed by one electron in dζ in a time dt is:�I0
f
0
ξð Þdξ

NζzþNzζð ÞVz
,

and the total amount absorbed by this electron from dz to dζ is:

ð ζ
z

I0
f
0
ξð Þdζ

NζzþNzζð ÞVz

The final temperature of the electrons in dz after the collision process can be

readily found from the conservation of energy, i.e.,

Total electronenergyafter collision ¼ Total electronenergy induringdt
� change site energy

The assumption that all directions of travel are equally probable gives:

Nζz ¼ Nzζ ¼ N
6

where N is the number of free electrons per unit volume, therefore, we can write

∂
∂t

ρcΦ z; tð Þð Þ ¼
ð1
�1

f k

λ3
exp � z� ζj j

λ

� �
Θ ζ; tð Þdζ

�
ð1
�1

f k

λ3
exp � z� ζj j

λ

� �
Θ z; tð Þdζ

þ
ð1
�1

I0f

λ2
exp � z� ζj j

λ

� �ð ζ
z

f
0
zð Þdξdζ ð7:373Þ

and ð1
�1

f k

λ3
exp � z� ζj j

λ

� �
Θ ζ; tð Þdζ � fΦ z; tð Þdζ½ �

¼
ð1
�1

k

λ3
exp � z� ζj j

λ

� �
1� fð ÞΘ ζ; tð Þdζ

þ
ð1
�1

1� fð Þexp � z� ζj j
λ

� �ð ζ
z

f
0
zð Þdξdζ ð7:374Þ

Equations 7.373 and 7.374 are of interest to laser machining. The method of

solution to be used in the following analysis is the transformation of the simulta-

neous differential integral Eqs. 7.373 and 7.374 using the Fourier integral transfor-

mation, with respect to A. The resulting ordinary differential equations may then be

handled much more conveniently. The Fourier transformation of a function f(z) is
defined [57] by
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F f zð Þ½ � ¼
ð1
�1

exp �iωzð Þf zð Þdz ¼ F ωð Þ ð375Þ

and the Fourier inversion is given as

f zð Þ ¼ 1

2π

ð1
�1

F ωð Þ exp �ωzð Þd ωð Þ½ � ¼ F ωð Þ ð7:376Þ

The Fourier transformation of convolution integral

ð1
�1

f ξð Þg z� ζð Þdζ is the

product of the transforms F ωð Þg ωð Þ and the transform of function exp
zj j
λ

	 

is

2λ
1þω2λ2

. Applying Fourier transformation to Eqs. 7.371 and 7.372 yields

f þ ω2λ2
� � ∂

∂t
ρcΦð Þ ¼ �ω2kfΘþ I0δf

2δ

δ2 þ ω2
ð7:377Þ

The multiplication in the transform domain by (iω)2 corresponds to a second order

differential in the real plane. Hence, the inversion of Eq. 7.377 gives

f � λ2μ2

∂z2

� �
ρc

∂Φ
∂t

¼ kf
∂2Φ
∂z2

þ I0μf exp �μ zj jð Þ ð7:378Þ

If the term λ2μ2

f∂z2

	 

ρc ∂Φ

∂t is neglected for all f values, Eq. 7.376 becomes

ρc
∂Φ
∂t

¼ k
∂2Φ
∂z2

þ I0μexp �μ zj jð Þ ð7:379Þ

which is the same as a Fourier heat conduction equation, shows as Eq. 7.182. It is

apparent that the electron kinetic theory equations for the heat conduction process

are much more general than the Fourier equation. The new model of the conduction

process is valid in regions close to the surface where an absorption process takes

place and therefore, the temperature profiles, which are obtained in these regions,

can be expected to be valid.

One further advantage of this new approach is that the problem is completely

specified; together with spatial boundary conditions, by the final equations, and that

these equations can be solved using the method of Fourier transformation.
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The Eq. 7.377 in the transform plane for the Gaussian intensity pulse is:

Φ z; tð Þ¼AI0μ

ρc

1

β 1�μ2λ2
� �þ κμ2

" #

iμ

ffiffiffiffiffiffiffiffiffiffiffiffi
κ�βλ

β

r
exp � βκt

κ�βλ2

� �
exp i zj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

κ�βλ2

s" #

erfc
zj j

2
ffiffiffiffi
κt

p þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βκt

κ�βλ2

s" #

�exp i zj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β

κ�βλ2

s" #
erfc

zj j
2
ffiffiffiffi
κt

p � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βκt

κ�βλ2

s" #

þexp κμ2t�μ zj jð Þerfc μ
ffiffiffiffi
κt

p � zj j
2
ffiffiffiffi
κt

p
� �

�exp κμ2t�μ zj jð Þerfc μ
ffiffiffiffi
κt

p � zj j
2
ffiffiffiffi
κt

p
� �

�2exp � βκt

κ�βλ2
þμ zj j

� �

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
ð7:380Þ

and gives the closed form result of the electron kinetic theory approach, which

graphically is shown in Fig. 7.69.
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Fig. 7.69 Temperature, closed form solution of the electron kinetic theory approach, with respect

to depth of the sample and time
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7.10 Comparison of Fourier and Kinetic Theory

Comparison of analytical results of the Fourier relation given by Eq. 7.227, and

kinetic theory equation, Eq. 7.321, shows that the two are identical when the

following two conditions are meet: μ2λ2 k 1 and κ  βλ2. For most materials, μ
and λ are of the same order of magnitude. Since μ is of the order of 10�5 and λ is of
the order of 10�8, then β k 1011. This scenario corresponds to laser micromachining

for laser pulses with picosecond rise times. Generally, β k κ
λ2
and Eq. 7.378 reduces

to exactly the analytical solution obtained from the Fourier theory for the exponen-

tial pulse, provided that. I k μ2λ2. When “ β ” approaches zero, the pulse solution

reduces to that for a constant intensity analytical solution of Fourier heating

Eq. 7.227. The comparison of the temperature gradient ∂Φ=∂z predicted from the

Fourier and electron kinetic theories with the distance in the z-axis for two pulse

lengths is shown in Fig. 7.70. The temperature gradients predicted from both

theories are similar for the long pulse length tpulse ¼ 6� 10�10. In general, the

temperature gradient decreases sharply in the surface vicinity to reach its minimum.

As the distance from the point of minimum increases further inside the substrate,

∂Φ=∂z increases gradually. The sharp decrease of ∂Φ=∂z in the surface vicinity is

due to the rapid increase of the temperature in this region. In this case, the energy

absorbed by the electrons in the surface vicinity is converted into the internal

energy gain of the substrate through collision process. This gives rise to a sharp

increase of the lattice site temperature. The energy balance attains among the

absorbed energy, internal energy gain, and the conduction process at the point of

minimum ∂Φ=∂z. As the distance increases beyond the point of minimum, the

0.00E+00
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Fourier theory (6×10–11)

Kinetic theory (6×10–9)

Kinetic theory (6×10–11)

–3.50E+09

–2.80E+09

–2.10E+09

–1.40E+09

–7.00E+08

0.00E+00
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depth, m
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Fig. 7.70 dT/dz predicted from the Fourier and Kinetic Theory, along the -axis for two pulse

lengths: 6� 10�9s and 6� 10�11s [57]
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gradual increase in ∂Φ=∂z reveals that the conduction effect due to phonon

relaxation dominates. However, as the pulse length reduces, less

tpulse < 6� 10�10 s, the temperature gradients predicted from both theories differ

considerably. The temperature gradient predicted from the Fourier theory reduces

significantly as compared to its counterpart predicted from electron kinetic theory.

The difference in ∂Φ=∂z predicted from both theories is due to the temperature

response of the material for a short laser heating pulse as indicated earlier.

In summary, one can deduct a following conclusion: Temperature profiles

predicted from Fourier heating model with kinetic theory approach for

1-dimensional model were compared in this study. In general, temperature profiles

for 1-dimensional Fourier heating case and kinetic theory approach are very similar.

Although the Fourier heating model fails to predict correct temperatures for the

short pulse heating case, the equilibrium time exists for a given material, and the

balance occurs between the internal energy gain due to laser irradiation and the

conduction losses. The analytical solution of the electron kinetic theory approach

obtained for the exponentially decaying pulse reduces to a step input intensity

solution when β approaches zero. Moreover, the closed form solution of the

electron kinetic theory for the step point intensity approaches the Fourier solution

when μ2 λ2

f 	 1. The electron kinetic theory results deviate considerably from the

Fourier theory results when β k 1011.

The difference in temperature profiles occurs because of the fact that the

electrons in the surface vicinity absorb the incident laser energy and the excited

electrons do not make sufficient collisions with the lattice site atoms to transfer their

excess energy in the surface region. Thus, lattice site temperature in this region

becomes lower than the electron temperature as evident from Fig. 7.70, in which the

electron temperature distribution inside the substrate is shown. Therefore, the

Fourier theory fails to predict the temperature rise in the surface vicinity accurately

for heating time of tpulse < 6� 10�10s.

7.11 Finite Difference Methods

In this section, the solution of governing equation is accomplished using an explicit

finite difference approximation and the corresponding boundary conditions. The

representative results for computational investigations are presented and discussed.

To solve general governing equation, Eq. 7.124, Finite Difference Method (FDM)

was used, and the approximations to model the governing equation were based on

forward-difference in time and central-difference in space. For more detailed

information please refer to Nowakowski [40].
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7.12 Effects of Pulsed Wave Laser Radiation

In this section and related sub-sections, we are going to deal with power levels of

pulsed laser, Material vaporization effects and finally, the effects from absorption

of radiation in the plume which we did touch before.

7.12.1 Power Levels of Pulsed Wave Laser

Highly intense pulses of short duration can be produced in a variety of ways.

Typically it is done by creating a large population inversion by the injection of

electrical energy from the discharge of large, highly charged capacitors. In these

systems all the energy is produced in a burst, the duration of which can bemade quite

short. We shall not discuss the various techniques by which these pulses are created,

but in Table 7.5 we simply note some commonly obtained values (Ready) [2].

From the above table it is apparent that with beam areas of the order of 1 cm2

extremely high-power densities can be obtained, and, although the pulse lengths are

short, the total energy in each pulse is considerable. The available power densities

range as high as 1012 W/cm2.

Practically speaking, one is usually interested only in power densities below the

breakdown threshold of air because at higher power densities the energy never

reaches the target. These breakdown levels are functions of wavelength, spot size,

and pulse length, and depend aswell on the contaminants in the air. Typical values are

109 W/cm2 in “clean” air at Standard Temperature and Pressure (STP) for CO2 laser

pulses with duration of about 10�6 s and longer. At shorter pulse lengths the threshold

is somewhat higher, becoming 1010 W/cm2 at 10�8 s and 1011 W/cm2 at 10�10 s. In

the infrared region, the breakdown threshold scales with the square of the frequency.

7.12.2 Material Vaporization Effects

We shall first discuss the effect of high-power-density laser pulses on materials

from the point of view of target vaporization, and shall assume that the vaporizing

surface is not shielded from the radiation by the vapor. In this case we can show

Table 7.5 Some commonly obtained values for different pulsed lasers

Laser type Pulse length Power Energy per pulse (J)

Ruby (normal mode) 0.1 to ms 1–100 kW 1–50

Ruby (Q-switched) 10–8 s 1–10 GW 1–10

Ruby (mode-locked) 10–11 s 0.1–1 TW 0.1–1

CO2 TEA 10� 10–6 s 100 MW 100

CO2 e-beam 2� 10–5 s 50 MW 1000

CO2 shock tube gdl 3� 10–4 s 0.3 MW 100
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that, in addition to thermal input to the target, there is a strong pressure built up on

the target surface due to recoil from the blow-off of the vapor. The integral of this

pressure over the time of the laser pulse imparts a net impulse to the target. There

arises then the possibility of inducing stresses large enough to create gross mechan-

ical changes, such as spall and deformation, by pulsed laser irradiation.

To calculate the pressure applied to a surface by a laser pulse, we start with a

consideration of the vaporization process. We use a one-dimensional calculation

because in most cases of interest the beam radius R is larger than the thermal

diffusion length during the pulse time tp, or

R  2
ffiffiffiffiffiffi
κtp

p ð7:381Þ

We shall avoid consideration of thin targets, so that ‘ is also large compared to the

diffusion length. In this case we can calculate the time tb required for the front

surface to reach the vaporization temperature Tυ from the semi-infinite slab result of

Eq. 7.161, which is

Tυ ¼ 2F0

K

ffiffiffiffiffiffi
κtb
π

r
ð7:382aÞ

or

tb ¼ πK2T2
υ

4F2
0κ

ð7:382bÞ

or, since κ ¼ K
ρc, then Eq. 7.382b yields:

tb ¼ π

4

KρcT2
υ

F2
0

ð7:382cÞ

In applying Eq. 7.161 in this way, we ignore the molten layer and assume that the

values of K, ρ, and c appropriate to the solid can be used. This is not as gross an

approximation as it may seem, because at these power densities the molten layer is

very thin.

Once the material on the surface reaches the boiling point, the surface begins to

erode at a rate Us given by energy consideration, as we saw in Sects. 7.8 and 7.9 and

their subsequent sub-sections as:

Us ¼ F0

ρs csolidTm þ Lm þ cliquid Tυ � Tmð Þ þ Lυ
�  ð7:383Þ

To simplify the calculation we take csolid ¼ cliquid ¼ c and ignore Lm by comparison

to Lυ, then Eq. 7.383 reduces to:
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Us ¼ F0

ρs Lυ þ cTυð Þ ð7:384Þ

Here we have used ρs, for the density of the solid. So after the time tb given by

Eq. 7.382c the surface begins to evaporate, and it recedes at the rate Us. By

conservation of momentum it must be true that

Uυρυ ¼ Usρs ð7:385Þ

where ρυ and Uυ designate the density and velocity, respectively, of the evaporation

products. Thus, we have:

Uυρυ ¼
F0

Lυ þ cTυ
ð7:386Þ

by combining Eqs. 7.384 and 7.386.

To see how the pressure exerted on the surface is related to density and velocity,

note that the pressure on the surface is just the pressure of the evaporation products.

To calculate this pressure, consider particles which move a distance Δz in time Δt
under the pressure P and thereby acquire a velocity V. The pressure (force per unit
area) must equal the rate of change of momentum (per unit area) so that

P ¼ ρΔzð ÞV
Δt

ð7:387Þ

That is, ρΔz is the mass per unit area which is brought to velocity V in time Δt by
the force per unit area P. V ¼ Δz=Δt, and so P ¼ ρV2. Thus, in our specific case of

density ρυ and velocity Uυ there is an associated pressure, given by:

P ¼ ρυU
2
υ ð7:388Þ

We could compute the pressure from this expression if we knew ρυ and Uυ.

However, we only know the product ρυUυ, from Eq. 7.386. We need another

relationship, which we simply take from the ideal gas law,

P ¼ ρυ
R

A
Tυ ð7:389Þ

where R is the gas constant and A the molecular weight. Denote R/A by C
0
and use

Eq. 7.389, then

ρυU
2
υ ¼ ρυC

0
Tυ ð7:390Þ

or
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Uυ ¼
ffiffiffiffiffiffiffiffiffiffi
C

0
Tυ

q
ð7:391Þ

Upon combining Eq. 7.385 through 7.389, we get the desired relationship,

P ¼ F0

ffiffiffiffiffiffiffiffiffiffi
C

0
Tυ

p
Lυ þ cTυ

ð7:392Þ

Since the specific heat of metal is typically 3R/A we can approximateC
0
by (1/3)c to

yield

P ¼ 1ffiffiffi
3

p F0

ffiffiffiffiffiffiffi
cTυ

p
Lυ þ cTυ

ð7:393Þ

Finally, we compute the specific impulse delivered during the pulse, which is the

force per unit area multiplied by the time over which it acts, and we get

Im ¼ P tp � tb
� � ð7:394Þ

or

Im ¼ 1ffiffiffi
3

p F0

ffiffiffiffiffiffiffi
cTυ

p
Lυ þ cTυ

tp � π

4

KρcT2
υ

F2
0

� �
ð7:395Þ

A word about units is in order. It has become conventional to quote impulse in units

of dyne-s, and specific impulse in dyne-s/cm2. If we use J/cm2 for energy density,

J/g �C for specific heat, and J/g for heat of vaporization, we have

Im ¼ J=cm2ffiffiffiffiffiffiffi
J=g

p
¼ cm�2

ffiffiffiffiffiffi
J-g

p

¼ cm2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
107erg� g

p ð7:396Þ

or

Im ¼
ffiffiffiffiffiffiffi
107

p
dyne-sð Þ=cm2 ð7:397Þ

This unit, dyne-s/cm2, is called a tap. Thus, in taps

Im ¼ 1:83� 103E0

ffiffiffiffiffiffiffi
cT0

p
Lυ þ cTυ½ � 1� π

4

KρcT2
υ

E2
0

tp

� �
ð7:398Þ
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Note that Eq. 7.398 predicts a threshold value of E0 for impulse production at a

given pulse length tp. This is due to the criterion we introduced for vaporization;

vaporization must commence before the end of the pulse or there will be no

impulse. The threshold is given by

π

4

KρcT2
υ

E2
0

tp ¼ 1 ð7:399Þ

or

E0jth ¼
ffiffiffi
π

p
2

Tυ

ffiffiffiffiffiffiffiffiffiffiffiffi
Kρctp

p ð7:400Þ

This vaporization model also predicates that, at very large E0, the impulse per unit

area is directly proportional to the energy density with a constant coupling coeffi-
cient, given by:

Im
E0

� �
max

¼ 1:83� 103
ffiffiffiffiffiffiffi
cTυ

p
Lυ þ cTυð Þ ð7:401Þ

This is the limit at which vaporization begins essentially instantaneously with

respect to the pulse length and vapor produces are produced for the entire pulse.

Some numerical values art, illustrated below and in Fig. 7.71. E0 is in J/cm
2 and

tp in μs, so that Im is in taps:

For Titanium

Im ¼ 8:04E0 1� 6:23ð Þ tp
E2
0

� �
ð7:402Þ
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Fig. 7.71 Coupling coefficient vs. energy density for titanium
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For Aluminum

Im ¼ 6:49E0 1� 33:9ð Þ tp
E2
0

� �
ð7:403Þ

The above, model illustrates the principles involved in generating impulse by laser

vaporization. In fact, in predicting threshold values it gives results which are within

a factor of two of experimental measurements. It has been refined (Anisimov) [59]

by a calculation which accounts for the fact that Tυ is probably not a handbook value
that comes from measurements at atmospheric pressure, but rather a different value

appropriate to the dynamic and high-pressure situation created by the laser-induced

vaporization. In this refinement, Tυ is determined from the kinetic model of

vaporization, which predicts that Us ¼ caexp Lυ=
�
R

0
Tυ

� 
where the speed of

sound in the solid is ca and R0 the gas constant per gram. When this is done, the

thresholds agree very well with theory. However, as E0 (and hence F0, since tp is
constant) is increased, experiments show that delivered impulse does not increase

indefinitely but to fall off. This is due to the onset of absorption of laser energy by

the vapor products and/or the heated air near the target. We turn now to a

consideration of this problem.

7.12.3 Effects from Absorption of Radiation in the Plume

The plume of vaporized material blown off the target becomes, at some power

density hot enough that it or the air begins to absorb the laser radiation. The onset of

this process is not thoroughly understood, and the ignition of these so-called

absorption waves is then subject of a great deal of research. Proper treatment of

the problem depends on, among other things, computing the onset of ionization and

the rate of absorption of light by the electrons; and also accounting for both cascade

processes and relaxation processes in a full dynamic sense. We shall not treat this

problem here. Rather we shall look at some crude models which show, in a semi-

quantitative way, various features of the absorption process.

First note that the decoupling of the absorption from the material surface due to

shielding by the plume depends on the wavelength of the radiation. Recall from

Eq. 7.100a that at the plasma frequency of the νp reflectivity of a “free-electron”

metal drop sharply from a value near unity to essentially zero. If we assume that the

coupling to the plume is due to the light interacting with electrons. Eq. 7.100a is

valid. Using the mass of the free electron gives:

vp ¼ 8:97� 103N1=2 ð7:404Þ

For the plasma frequency νp in hertz, when N is in electrons per cubic centimeter.

This can be rewritten in terms of the corresponding wavelength λp to yield:
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N ¼ 1:12� 1013
� �

=λ2p ð7:405Þ

where λp is in centimeters. At a given wavelength the plume is transparent until the

electron density reaches the value given by Eq. 7.405, where there will be a

transition to a condition in which the plume absorbs and reflects the radiation and

thereby shields the material. For 10.6 μm CO2 radiation, shielding begins at 1019

electrons per cm3, for 1.06 μm (Nd Laser) at 1021 electron per cm3, and for

0.6943 μm (Ruby Laser) at 2.3� 1021 electrons per cm3.

When the electron density reaches a high enough value, the beam decouples

from the surface and presumably the pressure due to material blow-off will drop. To

get some idea of the order of magnitude of the energy density for a given pulse

length where this process begins, let us simply assume that cutoff begins when the

front surface reaches the temperature at which the material is fully ionized. ’s

should predict an upper limit, for full ionization is obviously not required. For

example, solids have N� 1023 cm�3, whereas we only require, at 10.6 μm, N> 1019

cm�3. For simplicity assume that melting and vaporization processes can be

ignored, and again use for the front surface temperature raises the simple expression

T ¼ 2F0

K

ffiffiffiffi
κt

π

r
ð7:406Þ

A typical ionization temperature for a metal would be about 75,000 �C. Using
simply the values of K and k for the solid, we get for titanium,

F0

ffiffi
t

p � 5:7� 104Ws1=2=cm ð7:407Þ

Using E0¼F0t, this can be rewritten as:

E0 � 57
ffiffiffiffiffi
tμs

p ð7:408Þ

where tμs is understood to be time in microseconds.

Figure 7.72 shows some data taken b. 1Dr. Rudder of the Air Force Weapons

Laboratory, at two pulse lengths, 1.2 and 11 μs, with 1.06-pm radiation and titanium

targets (Canavan et al. [61]). The lines marked “Anisimov predictions” are calcu-

lated from the vaporization model of the previous section with the refined method

for determining Tυ. (This was first done in the Soviet Union by (Anisimov [55]).

The experimental data agree very well at values of E near threshold. Note that

Eq. 7.406 for estimating the onset of shielding is roughly consistent with these data,

although the experimental onset of shielding is, as one might expect, fairly gradual.

The line on the graph marked LSD. Predictions refers to a theoretical estimate

based on the idea that the laser light, when it couples into the blow-off, can create an

explosion like shock wave in the air which travels up the beam, absorbing the

radiation energy in the process. This Laser Supported Detonation, or LSD), wave is

one form of laser-supported-absorption wave. We discuss these waves next.
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Once the coupling of the radiation with the ejected vapor (and perhaps the air)

reaches a sufficient level, the absorption region begins to behave in a fashion

characterized by hydrodynamic dissuasion of the energy coupled into it. For now,

let us ignore the ignition problem. The absorption region typically propagates up

the laser beam in a way that is determined by the medium in which it propagates

(usually air) and also by the balance between the power being fed in by the laser and

the relaxation processes which dissipate the power. Three types of laser-supported-

absorption waves are usually identified. Typical power level at which they appear

and their typical velocities of propagation are indicated below for 10.6 μm radiation

and targets in air at standard temperature and pressure [61].

Type of wave

Power level of laser

flux (W/cm2)

Velocity of

propagation (cm/s)

Laser supported detonation wave LSD 107 105

Laser supported combustion wave LSCW 104 103

Plasmatron 104 0

The LSD wave propagates as a shock wave, i.e., at supersonic velocity, whereas

the LSC wave moves more slowly and relaxes by thermal conduction. The

plasmatron is at rest, with the energy input being balanced by reradiation and

convective losses into the atmosphere. Although we discuss these effects here in

the section on pulsed lasers, they are just a.4 valid for continuous radiation. Since

pulsed lasers are the, most convenient devices for reaching these power levels,
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Fig. 7.72 Specific impulse delivered to solid targets by 1.06 μm laser radiation [61]
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especially for LSD waves, absorption waves are usually considered under pulsed

effects

Hydrodynamic theory can he applied Lo model these waves. The problem was

first solved in the Soviet Union by (Raizer) [62]. Detonation waves can be discussed

most. Readily because the hydrodynamic equations reduce- to fairly simple expres-

sions, so we shall consider them in some detail. A few remarks about combustion

waves will come later.

We can derive conditions for the steady-state behavior of a detonation wave by

considering conservation of mass, momentum, and energy at the detonation front.

For this purpose we do not concern ourselves with how the process starts but

presume that a detonation wave has been formed and is propagating at some steady

rate as sketched in Fig. 7.73. The absorption region is propagating to the right at a

steady velocity u. We assume that it is very thin and can be treated as a detonation

front. Thus, u is the detonation velocity. The temperature, density, etc. of the air go

through very rapid changes in the very short distance ‘. Note that this wave

propagates, in this treatment in air, and thus, our results will be independent of

target material

In this discussion “behind the front” refers to the high-temperature-and-pressure

region immediately to the left of the absorption region in Fig. 7.73. “Ahead of the

front” is to the right in the sketch and refers to ambient air conditions. Note we have

given the beam a finite radius R and thus will have to consider lateral expansion.

First let us do the one-dimensional problem and assume that the detonation front

propagates simply as a plane wave.

Behind the front let ρ, P, and e be the density, pressure, and internal energy per
unit mass, respectively, and ρ0, P0, and e0 be the same variables ahead of the front.

Define the velocities with respect to a coordinate system moving with the front at
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Fig. 7.73 Temperature and density profiles typical of a laser-supported detonation wave [60]
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the detonation rate u. Then the ambient gas moves into the front with the speed of u,
and we define υ as the speed with which the high-pressure gases leave the front. We

can now write down the conservation equations for mass, momentum, and energy

across the detonation front. These equations are based on flow, that is, they are in the
terms of “per unit mass area, per unit time.” The equation for mass is:

Mass ρ0u ¼ ρυ ð7:409Þ

The conservation-of-momentum condition results from the impulse to the change in

momentum. Now impulse is force multiplied by time, but in the “per unit area, per

unit time” sense this becomes simply pressure. Since mass, in this flow concept, is

ρυ, momentum is ρυð Þυ ¼ ρυ2. Hence, we have

P� P0 ¼ � ρυð Þυ� ρ0uð Þu½ � ð7:410Þ

and, if we ignore P0, which is much smaller than P, we have for momentum:

Momentum Pþ ρυ2 ¼ ρ0u
2 ð7:411Þ

The conservation-of-energy condition follows from similar considerations. The

difference in energy flow on each side of the front must be balanced by the work

done on the gas P0u� Pυð Þ and the energy absorbed from the laser beam, which,

using our earlier notation, is F. F¼AI, where A is the absorptance of the gas in the

absorption region. Thus, we have:

ρu eþ 1

2
υ2

� �
� ρ0u e0 þ 1

2
u2

� �
¼ P0u� Pυþ F ð7:412Þ

If we use P0� 0 and e0� 0 and substitute from Eq. 7.409, we get for energy

eþ 1

2
υ2 � 1

2
u2 ¼ �p

ρ
þ F

ρ
0
u

ð7:413Þ

or

Energy eþ P

ρ
þ 1

2
υ2 ¼ 1

2
u2 þ F

ρ0u
ð7:414Þ

Our goal is to use these conservation laws to predict the pressure P behind the front

and ultimately the pressure transmitted to the target. For now assume that F is

known, and, of course, the ambient air density ρ0 is known. Thus, we have three

equations and five unknown, P, ρ, υ, e and u. To proceed we need to invoke some

equation of state for the gases, and we shall simply assume that the ideal gas law

holds. Thus, we have:

P ¼ ρR
0
T ð7:415Þ
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where R0 is the gas constant per unit mass, or R
0 ¼ R=M, whereM is the molecular

weight. Since the wave is presumed to be in air in this treatment, M would be the

average molecular weight of air. Taking M for air to be 29.4/mol gives R
0 ¼ 2:84

�106erg= g �Cð Þ and is consistent with the ideal gas law and with ρ0 ¼ 1:26� 10�3

g=cm3 for air at 0 �C and 1 atmosphere¼ 106 dyne/cm2). Now Eq. 7.415 essentially

introduces another unknown, the temperature T, so we need to add the expression

for the energy of an ideal gas, which is:

e ¼ R
0
T

γ � 1
¼ P

γ � 1ð Þρ ð7:416Þ

Where γ is the ratio of the specific heat, γ ¼ cp=cυ. For our purpose it is sufficient to
take γ ¼ 1:4.

Now we have four equations that are Eqs. 7.407, 7.409, and 7.414 as well as

Eq. 7.425 in five unknowns that are P, ρ, υ, e and u. To get the final condition we use
the criterion for detonation, which is the velocity of the high-pressure gases behind

the front, relative to the front, is equal to or greater than the local speed of sound.

Intuitively this seems reasonable, for propagation of shock waves is, by definition,

in excess of the speed of sound. The criterion can be properly derived from a

consideration of the thermodynamics of the situation, but we shall not do so here,

however you can refer to (Ya. B. Zel’dovich and Yu P. Raizer) [63]. Since we shall

be interested in the minimum value of F (or I) required to sustain in detonation

wave, we take υ equal to the speed of sound. For an ideal gas the sound speed is

(γP/ρ)1/2, so we have our last condition as:

υ2 ¼ γP

ρ
ð7:417Þ

Before discussing the algebra, let us collect the Eqs. 7.409, 7.411, 7.414, 7.425, and

7.417 respectively:

Mass ρ0u ¼ ρυ

Momentum Pþ ρυ2 ¼ ρ0u
2

Energy eþ P

ρ
þ 1

2
υ2 ¼ 1

2
u2 þ F

ρ0u

Energy of Ideal Gas e ¼ P

γ � 1ð Þρ

Velocity Behind Shock υ2 ¼ γP

ρ

Combine Eqs. 7.409 and 7.411 to yield expressions for u2 and υ2 as:

u2 ¼ Pρ

ρ0 p� ρ0ð Þ ð7:418Þ
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υ2 ¼ Pρ

ρ p� ρ0ð Þ ð7:419Þ

Now use Eqs. 7.415 and 7.417 to eliminate υ2 and ρ so that we can get:

ρ

ρ0
¼ 1þ γ

γ
ð7:420Þ

which is one of the equations we need, namely ρ in terms of the known quantities

ρ0 and γ. Now we can use Eq. 7.411 to get P in terms of u by eliminating υ2 with
Eq. 7.417 to get:

P ¼ ρ0u
2

1þ γ
ð7:421Þ

We need one more relation to complete the solution, namely u in terms of F. This
will, by Eq. 7.421, give us P in terms of F. To get this we use Eq. 7.414 and replace
e via Eq. 7.416. Thus, Eq. 7.414 becomes:

P

1þ γð Þρþ
P

ρ
þ 1

2

γP

ρ
¼ 1

2
u2 þ F

ρ0u
ð7:422Þ

If we use Eq. 7.421 to eliminate P, we get

u2

1þ γ

1

γ � 1ð Þ
ρ0
ρ
þ ρ0

ρ
þ 1

2

γρ0
ρ

� �
¼ 1

2
u2 þ F

ρ0u
ð7:423Þ

or

ρ0
ρ

� �
u2

1þ γ

� � 1
2
γ 1þ γð Þ
γ � 1

� �
¼ 1

2
u2 þ F

ρ0u
ð7:424Þ

or

1

2

ρ0
ρ
u2

γ

γ � 1

� �
¼ 1

2
u2 þ F

ρ0u
ð7:425Þ

If we use Eq. 7.420 for ρ/ρ0, we get

1

2
u2

γ

γ � 1

� �
¼ 1

2
u2 þ F

ρ0u
ð7:426Þ

Finally we arrive at

u3
1

γ2 � 1

� �
¼ 2F

ρ0
ð7:427Þ
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or

u ¼ 2 γ2 � 1ð ÞF
ρ0

� �1=3

ð7:428Þ

The equations which represent the solution for the detonation wave, then, are

ρ

ρ0
¼ 1þ γ

γ
ð7:429Þ

P ¼ ρ0u
2

1þ γ
ð7:430Þ

u ¼ 2 γ2 � 1ð ÞF
ρ0

� �1=3
ð7:431Þ

These three equations, together with the ideal gas law, represent the formal solution

to the propagation of the laser-supported-detonation wave. Given the temperature

behind the front, and since Eq. 7.429 defines ρ, we could calculate P and hence u

and finally the F required to support it. However, this does not really solve the

problem. What we wish to discover is: given the laser intensity I, will an LSD wave

be supported? To answer this question, we need to consider the distance it takes for

the laser radiation to be absorbed. We also need a more realistic situation than the

simple plane wave.

First we note that the beam has a finite radius R and that lateral expansion can

take place. The order of magnitude of the radial expansion velocity will be the

speed of sound ca. To maintain the detonation, we must replace the energy lost to

expansion by energy put into the absorption region. To simplify, let us assume all

of the laser beam energy is absorbed in the distance ‘. (Actually the beam intensity

only falls by 1/e in the distance ‘). We define Δt as the time for the shock front to

move a distance ‘, or Δt ¼ ‘=u. In this time the radial expansion is the amount

caΔt. Now πR2IΔt is the energy deposited by the beam in the cylindrical volume

shown in Fig. 7.74 caΔt << Rð Þ. But the energy in this volume after expansion is

R

Ca Δt

l

Fig. 7.74 Cylindrical

volume which absorbs beam

energy via expansion
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approximately equal to its volume multiplied by its internal energy p, in unit

volume. Thus

πR2IΔt � ρ0e πR2‘þ 2πRcaΔt‘
�  ð7:432Þ

Since Δt ¼ ‘=u:

IπR2 � ρ0eu πR2 þ 2πRca
‘

u

� �
ð7:433Þ

Note that γ � 1:4, Eq. 7.429 predicts that ρ � 2ρ0 and hence, using ρυ ¼ ρca�ρ0u,
u � 2ca. So we have, after some algebra

ρ0eu � I

1þ ‘=R
ð7:434Þ

But this equation simply represents the rate at which we must put energy into the

absorption volume in order to maintain the conditions we assume to carry out our

detonation wave calculation, namely a plane wave propagating by absorption

of laser energy in a distance ‘. Thus, the energy flow per unit area from the laser

beam is:

F ¼ I

1þ ‘=Rð Þ ð7:435Þ

Finally, we can complete the problem if we know the absorption length ‘. To
compute ‘ we need to invoke some model of the ionized air. For this purpose it is

sufficient to assume that free electrons absorb the light and that the electrons come

from singly ionized atoms. We shall not derive the expressions which we need but

simply quote them. There are two relationships. The first of these is that is known as

Saha Equation [63] Eq. 7.425 below, which relates the fraction of atoms ionized α,
to the absolute temperature T and the ionization potential J of a single atom:

α2

1� α
¼ 2

g1
g0

m

ρ

2πm0kT

h2

� �3=2

e�J=kt ð7:436Þ

In this equation m is the mass of the atom, m0 is that of the electron, k is

Boltzmann’s constant, and h is Planck’s constant. The statistical weights of ground

state of the atom and its first ionized state are g0 and g1, respectively. Typically
g1¼ g0¼ 1. In terms of known constants, then, the Saha equation gives us the

degree of ionization as a function of temperature.

Knowing the degree of ionization, we can get the absorption length. Again we

simply quote the relationship [60], which assumes that the light is absorbed by

inverse Bremsstrahlung. The expression is
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1

‘
¼ 4

3

2π

3m0kT

� �1=2 e6h2

m0c hvð Þ3
ρ2α2

m2

� �
1� e�hv=hT
	 


ð7:437Þ

which, at the temperature of interest and for 10.6 μm radiation, becomes (for hv=h
T k 1):

1

‘
¼ 4

3

2π

3m0

� �1=2 e6h2

m2m0c hvð Þ2 �
ρ2α2

kTð Þ3=2
ð7:438Þ

In Eq. 7.438, ν is of course, the frequency of the laser radiation, c is the speed of

light, and e is the electronic charge. By combining Eqs. 7.437 and 7.438 we can

calculate ‘ in terms of temperature T, density ρ, and known parameters. A typical

value of J for air is of the order of 13 eV. For O2, J is 12.1 eV, for N2 it is 15.6 eV,

and thus, we have ‘ as a function of ρ and T as:

‘ ¼ f ρ; Tð Þ ð7:439Þ

or, since ρ ¼ ρ0 1þ γð Þ=γ � 2ρ0, we can get a relationship between ‘ and T and

hence between I and T, via Eqs. 7.431 and 7.435. Typically results are shown in

Fig. 7.75.

Here we have assumed a beam radius of 10 cm. The important point is that there

is a minimum in the I vs. T relation. We identify this as the minimum flux Im
required to maintain LSD wave. Associated with it is the temperature Tm of the

high-pressure region at the detonation front.

0
107

R = 10 cm
λ = 10.6 mm
PROPAGATION INTO STP AIR

l/R = 1

l/R<1108

109

1010

1
T (cv)

I (
W

/c
m

2 )

2

Fig. 7.75 Relationship between I and T for a laser-supported detonation wave [60]. This plot is

based on a more realistic expression for the equation of state of the gases than the ideal gas law, but

the ideal gas law gives a similar result
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We can then use our detonation-wave relationships, Eqs. 7.429 and 7.431

through Eq. 7.420, to get the pressure behind the front, or equivalently, get pressure

from Tm via ρ � 2ρ0 and ideal gas law.

We shall turn to a calculation of the pressure on the target in a moment. First note

that the radial expansion concept imposes a natural criterion for the difference

between a combustion wave and a detonation wave. The time for radial expansion is

R/ca, whereas the time for passage of the absorption region is V/u. If the detonation

condition is to be maintained, radial expansion times must be larger than propaga-

tion times in order for the high-pressure region to move as a shock front and not

dissipate itself radially. Hence, R=ca > ‘=u. We have already noted that u � 2ca
crudely, u � ca, so thatR > ‘, or ‘=R < 1, is the condition for detonation waves. If ‘
becomes larger than R, the absorption region is large, the relaxation in the radial

direction is important, and the process called a combustion wave takes place. This

can be treated in a similar fashion to the detonation wave, but the hydrodynamic

equations do not take the simple form of Eqs. 7.409, 7.411, and 7.413. We shall not

treat combustion waves in this book. The solution in Fig. 7.75 is for a detonation

wave and hence is valid for ‘=R < 1. The limit ‘=R ¼ 1 is shown in the figure by a

dashed line.

Finally, compute the impulse delivered to target by a laser beam of intensity

I just sufficient to maintain a detonation wave [61]. The beam has a pulse duration

tp. We wish to calculate the effect on the target due to the “explosion products”

behind the absorption region. These, of course, expand in all directions and create a

pressure on the target. To demonstrate the effect we shall use a very simple model,

namely a model of cylindrical expansion. We consider that the absorption region

has propagated a distance Z by the end of the laser pulse, and at that time we have

created a cylinder of high pressure gas which has a radius equal to the beam radius

R, a length Z, and a pressure Pd given by Eqs. 7.430 and 7.431 above, with P¼Pd.

This cylinder is then allowed to expand radially at a speed estimated to be the speed

of sound ca. Then we get the impulse delivered to the target by integrating the force

on the target due to the pressure in the expanding cylinder during the time the

cylinder expands from R to the target radius RT. For RT very large, the integration is

stopped when the cylinder pressure drops to atmospheric pressure. The model is

sketched in Fig. 7.76 at the time t¼ tp.

RT

R

TARGET

I

z = utp

Fig. 7.76 Radial expansion model for impulse delivered to a target from a laser-supported

detonation (LSD) wave
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The model might be expected to be valid if Z � R and if

tp � the time required for radial expansion, either to RT or to atmospheric pres-

sure, to take place. We also are assuming that impulse due to target vaporization is

negligible, i.e., that the detonation wave is formed very early in the laser pulse.

We take the radial expansion to be at constant temperature. Then P times the

volume V, of the cylinder is a constant. Since our model presumes only cylindrical

expansion, we have the condition that.

Pr2 ¼ Constant ð7:440Þ

where r is the radius of the cylinder andR 	 r 	 RT. We shall need this relationship

in the derivation of the impulse. Let the impulse be Im, and let F be the force on the

target due to the pressure. This gives the following:

I
0
m ¼

ðt r¼RTð Þ

t r¼Rð Þ
Fdt ð7:441Þ

where the upper limit is understood to be valid only where P is greater than

atmospheric pressure at r ¼ RT. Since the radial expansion rate is ca. From ideal

gas relation for the speed of sound, we have:

ca ¼
ffiffiffiffiffiffi
γP

ρ

s
ð7:442Þ

we have

dt ¼
ffiffiffiffiffiffiffiffiffiffi
ρ

γP
dr

r
ð7:443Þ

Thus

I
0
m ¼

ðRT

R

F

ffiffiffiffiffiffi
ρ

γP

r
dr ð7:444Þ

Now at any time

F ¼ πr2
� �

P ¼ πr2P ð7:445Þ

but, since r2P is constant, then we can evaluate F from the initial pressure Pd at

r¼R, or

F ¼ πR2Pd ð7:446Þ
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Now the impulse becomes, by taking F out of integral sign of Eq. 7.444, then we

have

I
0
m ¼ πR2Pd

ðRT

R

ffiffiffiffiffiffi
ρ

γP

r
dr ð7:447Þ

again invoking r2P ¼ constant, gives

r2P ¼ PdR
2 ð7:448Þ

or

P ¼ Pd

R2

r2
ð7:449Þ

So the impulse is then:

I
0
m ¼ πR

ffiffiffiffiffi
Pd

p ðRT

R

ffiffiffi
ρ

γ

r
rdr ð7:450Þ

Recall from Eq. 7.429 that ρ ¼ ρ0 1þ γð Þ=γ. This gives

I
0
m ¼ πR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pdρ0 1þ γð Þ

γ2

s
R2
T

2
� R2

2

� �
ð7:451Þ

Since R < RT, we shall ignore the R
2/2 term. Thus, specific impulse Im, which is I

0
m

divided by the area of the beam π R2 is then

Im ¼ I
0
m

πR2
¼ R2

T

2R

ffiffiffiffiffiffiffiffiffiffi
Pdρ0

p ffiffiffiffiffiffiffiffiffiffiffi
1þ γ

p
γ

ð7:452Þ

Recalling the expression in Eqs. 7.430 and 7.431 for Pd, and ignoring ‘/R with

respect to unity, we can write:

Im ¼ R2
T

2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ

γ2

� �
ρ0

ρ0
1þ γ

� �
2 γ2 � 1ð Þ

ρ0
I

� �2=3s
ð7:453Þ

This simplifies to:

Im ¼ R2
T

2R

1

γ
2 γ2 � 1
� �� 1=3� �

ρ2=30 I1=3 ð7:454Þ
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The expression in braces is nearly equal to unity for typical vale of γ (say, γ ¼ 1:4),
so, Eq. 7.454 reduces to:

Im ¼ R2
T

2R
ρ2=30 I1=3 ð7:455Þ

Now the energy per unit area in the beam is E0 ¼ Itp, and we write the coupling

coefficient Im/E0 as:

Im
E0

¼ R2
T

2R
ρ2=30 = t1=3p E

2=3
0

	 

ð7:456Þ

This is the equation of the straight line marked Laser Supported Detonation (LSD)

Predictions shown in Fig. 7.72, where the calculations were done for the parameters

appropriate to the 1.2 μs pulse length.
Several important consequences of the LSD wave are seen in Eq. 7.445. One is

that the coupling coefficient is reduced as E0 becomes larger, which tells us that we

cannot create an arbitrarily large impulse at a target by simply increasing the energy

in the laser beam. In fact, when Eq. 7.456 is considered to be correct at high E0 and

the results of the vaporization model (see Eq. 7.398 and Fig. 7.72) are used at lower

values of E0, there is, for a given pulse length, an optimum value of E0 for

transferring the largest amount of impulse to a target. For the 1.2 μs pulse illustrated
in Fig. 7.72 the optimum value of E0 is about 22 J/cm2, and this is in reasonable

accord with the data. Of course the specific impulse Im per se goes as Im/E
1=3
0 . so

larger E0 will create larger Im. However, this slow increase of 1 m with E0 is a very

inefficient way to impart stress to a material. A better scheme, perhaps, would be to

use multiple pulses at the optimum E0 value.

Another consequence of the LSD wave is a lack of dependence of impulse on the

parameters of the target material. The same impulse is produced independently of

the target. This is in accord with experiment. When I is well into the range where

LSD’s are formed, the measured impulse is the same for all target materials. Some

data taken by Naval Research Laboratory (NRL) [64] are shown in Fig. 7.77. In this

graph we see, in accord with the vaporization model, a strong dependence of Im/E0

on material type at lower power densities, whereas at the high-power densities

typical of LSD formation the values of Im/E0 are the same for all materials. In this

range, however, a target area dependence appears. The target area dependence

shown is for aluminum. Here again the general behavior predicted by Eq. 7.445

can be seen.

We have not yet considered the radius at which the expanding cylinder reaches

atmospheric pressure. Call this radius R0. As explained above Pr2 is constant, so

P0R
2
0 ¼ PdR

2 ð7:457Þ

where P0 is atmospheric pressure, 106 dyne/cm2. Thus,
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R0 ¼ RP
�1=2
0 P

1=2
d ð7:458Þ

From Eqs. 7.419 and 7.420, for Pd this becomes

R0 ¼ RP
1=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0

1þ γ

2 γ2 � 1ð Þt
ρ0

� �2=3s
ð7:459Þ

Again the factor involving γ are nearly unity, so

R0 ¼ RP
1=2
0 ρ1=60 I1=3 ð7:460Þ

Upon substituting I ¼ E0=tp, we get

R0 ¼ RP
1=2
0 ρ1=60 E

1=3
0 t�1=3

p ð7:461Þ

So if R0 is less than RT, one replace RT by R0 in Eq. 7.456. For target sizes larger

than R0 will all receive the same impulse.

A numerical illustration is useful. LetE0 ¼ 1000J=cm2 and tp ¼ 100μs. Suppose
the beam radius is 1 cm. The power density I is about 107 W/cm2, so we expect a

106
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Fig. 7.77 Coupling coefficient as a function of power density [64]
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LSD wave. If we take RT ¼ 5cm for the target radius, Eq. 7.445 yields (with ρ0
¼ 1:29� 10�3g=cm3)

Im
E0

¼ 25

2
1:29� 10�3
� �

= 10�4
� �1=3

1010
� �2=3h i

dyne-s=erg

Im
E0

� 7� 10�7 dyne-s=erg

or

Im
E0

� 7dyne-s=J

In this example expansion to atmospheric pressure would take place at a radius

given by Eq. 7.461:

R0 ¼ 106
� ��1=2

1:29� 10�3
� �1=6

1010
� �1=3

10�4
� ��1=3

Where we have used erg/cm2 for E0. Then

R0 � 15cm

Thus, targets with radii of 15 cm and larger would exhibit a maximum

coupling coefficient of (15/5)2 time 7, or 65 dyne-s/J. If we compute Im, we have

63,000 dyne-s/cm2, that is 63,000 taps, as the maximum specific impulse from

this laser pulse. Since this impulse is delivered in times of the order of magnitude

of the laser pulse time, this corresponds to a pressure of roughly

6:3� 104
� �

=10�4 � 6� 108 dyne=cm2, or about 600 atmospheres.

7.13 Effects of Continuous Wave Laser Radiation

The choice of laser system depends on the application at hand. First of all the

structuring of metals, semiconductors, and dielectrics is very diverse. Since ultra-

short pulse lasers operate at very high intensities, they can employ nonlinear

absorption and are therefore an obvious choice for laser processing of transparent

materials, but it all depends on the specifications of the application.

Laser can be categorized most easily according to their mediums, which are

divided into three basic categories as defined by the state of the lasing material:

(a) Gas

(b) Liquid

(c) Solid
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Furthermore, all laser types operate in one or two temporal modes:

1. Continuous wave (CW) mode

2. Pulse mode

In CW mode, the laser beam is emitted without interruption. In pulsed mode as

we describe in previous sections, the laser beam is emitted periodically.

If structures on the tens of micrometers scale are the aim of the application, a

nanosecond laser will often provide sufficient accuracy, and will typically have a

greater throughput, thereby making it the preferred solution. If, however, features

on the nanometer scale are required, a picosecond or femtosecond laser system

would be a better choice.

For nanosecond laser systems the resolution of the generated features is limited

by the heat diffusion length, ‘ � ffiffiffiffiffi
κτ

p
, where κ is the thermal diffusivity of the

material and τ is the laser pulse duration [65]. Metals typically have a high thermal

diffusivity, and precise micro-structuring must therefore be undertaken with shorter

pulses [66, 67]. It should also be noted that nanosecond laser processing is associ-

ated with a heat-affected zone, i.e., an area around the laser-generated hole where

the temperature has been high enough for the material to undergo melting (but not

vaporization). Though the material resolidifies, the strength of this area may have

been greatly reduced.

The output of a laser can be continuous wave (CW) or pulsed. In pulsed

operation, much higher peak powers can be achieved since the energy stored in

the laser gain medium is released in a short burst. Laser ablation is the process of

removing material from a surface by laser beam irradiation. Short pulse laser

ablation is advantageous since the material can be heated up to the temperature of

vaporization in a very short time. This means that the energy does not have time to

spread into the deeper parts of the material and thereby the energy is localized

where it is needed.

For a sufficiently low power flux the thin surface layer will be heated to the fluid

state but will stay beyond the evaporation temperature, while the solid–fluid

interface will slowly progress into the bulk material by heat conduction. In iron

the typical progress rate is about 10�2 cm m/s, and the power flux for this situation

may be around 106 W/cm2.

At a somewhat higher power flux, between 106 and 108 W/cm2, the thin

absorbing surface layer is heated up to its evaporation temperature before the

solid–fluid interface has progressed appreciably into the material by heat conduc-

tion. Thus, with continuing laser power, a less than μ-thick layer of material will

continually evaporate, with the material–air interface progressing into the material.

Typically a gas jet develops. The gas jet ejects also part of the molten material, and

thus, the progress rate of the hole is faster than with evaporation of all the material.

At a still higher flux of 109–1010 W/cm2, after initial evaporation of the surface

layer the gas jet is thermally ionized and absorbs most of the incident radiation,

which is blocked away from the material. The surface layer explodes with an

ultrasonic jet; its temperature may rise beyond 105 K, its pressure beyond 103 at

material properties or select from a set of predefined materials.
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As we say at the beginning of this chapter, light contains energy. When that light

is absorbed by a material, its energy goes toward heating the material. However, the

faster the material gains heat, the faster it sheds heat. If the rate of heat loss gets

high enough to equal the rate of heat gain, the death ray can no longer raise the

temperature of the surface. Otherwise, the surface continues to gain heat and its

temperature rises. The temperature to which a beam of light can bring a material

depends on the intensity of the light and the rates and mechanisms by which the

material responds to the heat.

Generally, there are three mechanisms by which heat moves around: heat

conduction, heat convection, and radiation. Heat conduction is what you get

when heat moves through a material, transferred from atom to atom by the atoms

bumping into each other and exchanging energy. Convection is the movement of

heat by moving the material it is stored in. Radiation transfers heat by the emission

or absorption of electromagnetic waves. When a surface is exposed to a death ray, it

gets heated by radiation.

For continuous wave (CW) laser beams of relatively low intensity, the only

effect is heating from absorption of electromagnetic radiation. The temperature of

the absorbing material is raised until a balance exists between the absorbed power

and thermal losses from conduction, convection, and radiation.

It has been known since prehistory that sunlight can make an absorbing surface

hot, and in Greek antiquity it was known that concentrated sunlight, having

traversed spherical water-filled flasks or convex pieces of glass, could kindle

fires3. Archimedes proposed to concentrate the sun’s rays by means of reflecting

the harbor of Syracuse. He hoped to ignite the ropes, sails, and spars of the vessels

of enemy’s fleet.

The power flux density of the sun at zenith on the earth’s surface is about

0.13 W/cm2 which leads to the solar furnaces with temperatures near 3000 �C. If
the irradiated area is large enough, lateral heat conduction may be ignored. The

radiative loss of a black-body surface is given by Stefan–Boltzmann’s law. If the

irradiated area is large enough, lateral heat conduction may be ignored. The power

flux density, σT4, corresponds to 1 kW/cm2 at T¼ 3644 K. Convective cooling by

air-flow over a 3000 K surface at Mach number unity is only a few hundred W/cm2.

At pressures prevailing at booster burn-out altitudes, 80–160 km, convective

cooling is completely negligible. From the foregoing, it is clear that the temperature

of most materials may be raised above the melting temperature Tm and the vapor-

ization temperature Tv for CW laser flux densities in the range of 1–100 kW/cm2. In

the early days of laser history, in 1961, when the pulsed ruby laser was the most

powerful available, it was established that a focused ruby laser pulse of about 1 J

energy could punch a hole in a razor blade4. Two very simple cases serve to

3Aristophanes, Comedy of Clouds, 434 B.C., English translation
4The strength of those pulses was measured in unofficial unit of “Gillette.”
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establish the order of magnitude of fluxes and fluencies on target required for

lethality [68]. Most analysis that we have showed so far are applicable for the

CW laser type as well.
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Chapter 8

Atmospheric Propagation of High-Energy
Laser Beams

Starting from the invention of LASER in the early 1960s, laser radiation

propagation in the atmosphere has been the subject of intensive research. The

high spatial and time coherence of laser sources makes their application attractive

for communication, location, geodesy, and high-energy transmission over long

distances. Laser sources are widely used for exploring the atmosphere, in particular,

its gas composition and pollution, velocities of air and sea flows, and features of the

land and sea surface.

Incorporating HEL systems into military operations is not without challenge.

The impact of the environment—in the atmosphere, over land, over water, and in

space—on system performance can be significant. Understanding and predicting

such impacts, as well as the effects and vulnerabilities of HEL systems, can be

important considerations in designing systems, identifying promising areas of

technology research, developing concepts of operations, and employing HEL

systems on the battlefield.

8.1 Introduction

In this chapter we will discuss the response of materials to a high-power radiation

laser with a one-dimensional mathematical modeling and presentation of solution to

different cases of heat conduction partial differential equation along with a given

boundary; a directed energy weapon (DEW) has been a recurring theme in science

fiction literature and cinema ever since H.G. Wells published the “War of the

Worlds” in 1898. The idea of a “death ray” which can instantly destroy or burn a

target at a distance retains its allure to this very day. More than a century after Wells

contrived his “heat ray,” the technology is maturing to the point of becoming soon

deployable.
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High-energy laser weapons have been progressively evolving since the 1960s, a

path punctuated by a series of important scientific breakthroughs and engineering

milestones.

The popular view of a HEL, seen as constructing a great big laser and pointing it

at a target with the intention of vaporizing it, bears only vague similarity to a real

HEL weapon. There are genuine technological and operational challenges involved

in creating truly useful and effective weapons.

A laser weapon system uses high-energy lasers such as deuterium fluoride

(DF) or hydrogen fluoride (HF) for which all necessary reactants and other mate-

rials are carried on an easily movable vehicle. Reactant gases are stored mixed with

a diluent gas, such as helium, for ease of handling and to provide nearly ideal gas

behavior. Cooling water for the laser is also employed in a high-pressure steam

generator that uses diesel fuel and oxygen to produce heat. Apart from a fluorine

generator, the system uses only four storage tanks for reactant gases.

But what are the advantages of using a laser as a weapon? Is it even possible?

Could you use such a weapon to stun an opponent? These questions are being

addressed by the Air Force Research Laboratory’s Directed Energy Directorate.

This program is developing high-energy lasers, microwave technologies, and other

futuristic weapon systems, such as the airborne laser and the PHaSR.

Lasers and other directed energy weapons have many advantages over conven-

tional projectile weapons like bullets and missiles:

• The weapons’ light outputs can travel at the velocity of light.

• The weapons can be precisely targeted.

• Their energy output can be controlled—high power for lethal outcomes or

cutting and low power for nonlethal outcomes.

The propagation of high-energy laser (HEL) beams in the atmosphere is rich in

fundamental physics and of paramount importance to the Navy’s directed energy

research program. Laser beams with hundreds of kilowatts to megawatts of average

power are affected by numerous interrelated linear and nonlinear phenomena such

as molecular and aerosol absorption and scattering, atmospheric turbulence, and

thermal blooming. Aerosol scattering and absorption are often the major limiting

factors in HEL propagation. In particular, aerosol absorption has been shown to be a

major factor leading to thermal blooming. Properties of aerosols are often found in

outdated tables using methodologies that may not be consistent with HEL propa-

gation. In particular, under nonlinear conditions attained by HELs, aerosols can

change their scattering and absorption properties during the HEL engagement time.

In a typical directed energy engagement scenario at multi-kilometer ranges, approx-

imately half of the laser power can be lost to aerosol scattering. In addition, the

maritime propagation environment is characterized by strong turbulence which

causes beams to wander and spread. Standard adaptive optic (see Sect. 8.4) methods

fail to compensate for the effects of deep turbulence, which can result in significant

power loss at the target. Thus it is important to characterize and understand the

interaction of HEL beams with aerosols and the effects of deep turbulence on beam

propagation.
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Early experiments showed that laser beams propagating in the atmosphere are

distorted because of the turbulent inhomogeneity of the refractive index. Not far

away from the source, the turbulence distorts the phase front of the light wave and

disturbs the spatial coherence.

The effect of the atmospheric turbulence on laser propagation has been thor-

oughly studied [1–10]. The results suggest that adaptive optic systems [11–13] will

eventually eliminate turbulence-caused noise.

At higher intensities or radiation powers of hundreds of kilowatts in the

continuous-wave mode available today, laser beam propagation in the atmosphere

is hindered by another source of distortion: inhomogeneities resulting from the

radiation action on the medium [14–26]. One mechanism responsible for atmo-

spheric air parameter variation under the action of radiation is heat. The air

temperature and, consequently, its optical parameters vary as a result of radiation

absorption by atmospheric gases and aerosols. Even in originally homogeneous

media, the refractive index may vary either regularly (when the medium is heated

by radiation with a regular intensity distribution) or randomly if the intensity is a

random function of space and time.

Thus heat-induced changes in the optical parameters of the medium lead to

changes in radiation propagation. This change is referred to as thermal blooming.
Thermal blooming is manifest as strong distortions of laser beams that were first

detected in beam propagation in absorbing fluids. Calculated data suggested that

similar phenomena could be observed also in the propagation of high-power

radiation along lengthy atmospheric paths, though the radiation is but weakly

absorbed by air. This conclusion promoted an interest in thermal blooming of

laser beams in the atmosphere.

Hundreds of publications are now available which discuss different aspects of

thermal blooming. Most publications deal with the thermal blooming in aerosols

and clouds where thermal nonlinear effects become conspicuous at lower intensities

and in greater variety than in the transparent atmosphere. The findings on the

thermal blooming in aerosols are summarized in References [7, 19, 20].

Thermal blooming in a transparent atmosphere having low absorption and

scattering factors is discussed in References [16–18]. These surveys are concerned

mostly with the results of numerical and experimental simulation of the thermal

blooming in homogeneous (in the absence of radiation) media.

A specific feature of the atmospheric propagation paths is regular or random

variation of the medium parameters. In regular variations, the magnitude and

direction of the wind velocity are critical for the blooming, while in random ones,

turbulent pulsations of both wind velocity and medium temperature are vital. Some

of the information here is compiled as the results of theoretical and experimental

studies of thermal blooming carried out in the Institute of Atmospheric Physics of

the USSR Academy of Sciences. The studies were aimed chiefly at forecasting the

effects of thermal blooming in a turbulent atmosphere and testing the blooming

calculation procedures in a turbulent medium by laboratory simulation. The com-

bined effect of thermal nonlinearity and turbulence on the propagation of laser

beams is discussed in Sect. 8.2 and its subsections.
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The summary of such effort by USSR Academy of Sciences, which includes a

theoretical study of the effect of turbulence on beam propagation, was carried out

by solving nonlinear equations by various perturbation techniques. A better insight

into the blooming process in a medium assumed homogeneous was required for the

study. Specifically, the following points had to be clarified: applicability of an

isobaric approximation to the calculation of the perturbations in a medium

subjected to radiation and of specific features of thermal blooming in the modes

when the medium compressibility cannot be neglected, applicability of various

approximate techniques of thermal blooming analysis, the effect of the initial

intensity distribution and regular velocity variation of the wind along the blooming

path, and stability of blooming.

8.2 Laser Propagation in the Atmosphere

Atmospheric effects dictate the design and performance of almost all high-energy

laser systems (SBLs being exceptions). These effects include those common to all

electro-optical systems, namely, obstruction by opaque clouds, transmission losses

from scattering and absorption, and optical turbulence degradation. They also

include effects unique to HEL systems, such as thermal blooming arising from

molecular and aerosol absorption.

High-energy laser beams propagating through the atmosphere can be severely

defocused or deflected by thermal blooming [17]. The thermal blooming process is

driven by a small fraction of the laser energy that is absorbed by the molecular and

aerosol constituents of air [27, 28]. The absorbed energy locally heats the air and

leads to a decrease in the air density which modifies the refractive index. The

refractive index variation leads to a defocusing or deflection of the laser beam. In

the presence of a transverse wind, the region of heated air is convected out of the

beam path, and a steady-state situation is realized [17]. In general, however, the

intensity of a beam undergoing thermal blooming is a function of both time and

spatial position, particularly in a stagnation zone, where the effective wind velocity

is zero.

Stagnation zones, i.e., regions in which the effective wind velocity is zero, can

greatly enhance the thermal blooming of high-energy laser (HEL) beams in the

atmosphere. An expression for the Strehl ratio of a focused HEL beam propagating

through a stagnant absorbing region is derived. The propagation of a HEL beam in a

maritime atmosphere is numerically modeled in a fully three-dimensional and time-

dependent manner. The beam is focused onto a remote target, and a stagnation zone

is created by slewing the laser in the direction of the wind. The laser power

delivered to the target is calculated as a function of slew rate. For the parameters

considered, it is found that a stagnation zone near the laser source has little effect on

the propagation efficiency, while a stagnation zone near the target can significantly

reduce the power on the target.
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Stagnation zones are particularly detrimental to HEL propagation since, without

an effective clearing mechanism for the heated air, the strength of the thermal lens

grows in time. In this situation, the defocusing process is eventually limited by

thermal conduction or buoyancy. However, by the time these processes become

effective, the beam may have already been severely degraded.

Thermal blooming in the presence of a stagnation zone was experimentally

observed in a laboratory experiment using a 10-W, CO2 laser passed through an

absorption cell containing CO2 gas. The cell was pivoted to simulate a wind profile

containing a stagnation zone. This experiment was also modeled using a code that

solved time-dependent thermal blooming equations in the isobaric regime [29].

In the atmosphere, beam propagation and divergence are to a first approximation

the same as in a vacuum, with the added feature that interaction of the beam with

atmospheric constituents causes it to lose photons. The intensity of the beam then

decreases with range for two reasons: divergence increases the beam size, and

atmospheric interactions reduce the energy that it carries. Having already quantified

the first of these effects, we will turn our attention to the second. Photons may be

lost from the beam in several ways. They may be scattered or absorbed by

atmospheric gases or particulate contaminants. They may be bent from the beam

by the lensing effect of density fluctuations in the atmosphere. And at high

intensities, they may cause the air through which the beam passes to break down

into the absorbing plasma. These and related effects will be considered in this

section [30].

Adaptive optics provides the means to maintain beam quality in the face of

atmospheric turbulence. However, such methods are not applicable or completely

effective in all situations. Ideal adaptive optics requires a beacon—a point source of

light from the target—and this is not completely or even partially achievable in

some systems or applications. Furthermore, for long slant or near-horizontal prop-

agation paths, the integrated turbulence strength can be sufficiently strong that even

the best adaptive optics cannot completely compensate for the turbulence. Thus the

system performance is degraded by the atmospheric turbulence conditions and the

limited capabilities of the adaptive optic system. Volume I of this book went

through more details of adaptive optical system (AOS) and mirror conjugation as

well as mirror juddering in Chap. 6.

System performance is significantly enhanced by a capability to model and

predict laser system effectiveness under specific atmospheric conditions. Forecast-

ing and decision aids for existing conventional electro-optical systems provide a

model for HEL systems. A joint program, involving the Army, Navy, and Air

Force, has developed and delivered decision aids for systems where atmospheric

effects are a concern, including low-light-level TV systems, passive infrared

seekers, and laser-guided munitions.

The program in atmospheric measurements and modeling for the airborne laser

provides expanded understanding of atmospheric effects applicable to emerging

HEL systems. High-altitude clouds (cirrus) and optical turbulence fundamentally

limit ABL effectiveness and range.
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Early in the program, it was recognized that the variability of turbulence was

producing variability in ABL performance. As a result, a parallel Air Force

Research Laboratory (AFRL) S&T (Scientific and Technical) program (with lim-

ited core S&T funding augmented by ABL funds) was initiated to examine atmo-

spheric measurements and modeling. This effort has evolved into the Atmospheric

Decision Aid (ADA) program.

Emerging HEL systems for air-to-ground applications suffer far more perfor-

mance variability than does the ABL in its missile defense mission. This is a result

of the atmospheric boundary layer and the degree to which weather and diurnal

cycle affect performance. In addition to turbulence, the full range of cloud fields

and aerosols will need to be modeled in air-to-ground applications.

The first-order effect of clouds on electro-optic (EO) and HEL systems has to do

with the line of sight to the target. This effect is quantified through the cloud-free

line-of-sight (CFLOS) statistic. Although CFLOS is a basic concept, it is somewhat

unique to military problems. Additionally, clouds vary significantly with season

and location, and therefore a firm understanding of the climatology of CFLOS over

militarily significant areas is needed. As future HEL systems are specified and

designed, realistic physical models of clouds and CFLOS are required—particu-

larly in light of the increased importance of virtual engineering, simulation, and

testing. And as these systems are deployed, the ability to forecast clouds in terms of

CFLOS probabilities will become essential. These capabilities will require an

improvement in the current ability to forecast clouds, including improvements in

satellite cloud sensing, using numerical weather models.

Although employment modes for some HEL systems may eliminate or minimize

atmospheric effects (such as the space-based laser or reduced distances to the target

for the ABL), it is desirable that these systems be effective in much more broadly

defined scenarios, especially when adjunct missions are considered. Atmospheric

modeling and decision aids will significantly enhance HEL systems and expand

their operational capabilities, much like the demonstrated contribution of atmo-

spheric decision aids to the effectiveness of comparatively simpler systems such as

infrared (IR) seekers. Like the ADA program for the ABL, expanded capabilities

will need to be tailored to the operational scenarios and lethality mechanisms of

new HEL systems. Advancements in atmospheric modeling and decision aids will

require an expanded, long-term S&T program, as the need for atmospheric models

is military specific and is not being addressed by the civilian research community.

Further, a tri-service S&T program needs to coordinate the expertise resident across

the service laboratories, so that it is effectively focused on this difficult problem.

8.2.1 Cloud Descriptions

A cloud is a visible mass of minute water droplets or ice particles suspended in the

atmosphere. Fog is basically a cloud that reaches the surface of the Earth and is a

direct expression of the physical processes that are taking place in the atmosphere.
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In order to produce a cloud, three conditions must be met: sufficient moisture must

be present, some sort of lifting (or cooling) mechanism, and condensation or

sublimation nuclei to initiate the process. There have been international agreements

on cloud classification, a convention accepted by most countries around the world.

The importance of an international classification of clouds cannot be overestimated,

since it tends to make cloud observations standard throughout the world.

Clouds have been divided into etageres, genera, species, and varieties. This

classification system is based primarily on the mechanisms that produce clouds.

Although clouds are continually in a process of development and dissipation, many

have distinctive features that make the classification possible. Genera clouds are:

• CIRRUS (CI)—Thin feather-like clouds

• CIRROCUMULUS (CC)—Thin cotton or flake-like clouds

• CIRROSTRATUS (CS)—Very thin, sheet cloud

• ALTOCUMULUS (AC)—Sheepback-like clouds

• ALTOSTRATUS (AS)—Highly uniform sheet cloud

• NIMBOSTRATUS (NS)—Dark, threatening rain cloud

• STRATOCUMULUS (SC)—Globular masses or rolls

• STRATUS (ST)—Low uniform sheet cloud

• CUMULUS (CU)—Dense dome-shaped puffy looking clouds

• CUMULONIMBUS (CB)—Cauliflower towering clouds with cirrus veils on the

top

For further information on clouds and their database and how it must be coupled

with the meteorologist’s ability to predict cloud coverage and location necessary to

employ “Tactical” High-Energy Laser, readers should go to Reference [31] of this

chapter.

8.2.2 Absorption and Scattering of Laser Beam by Gases
and Solids

Earlier in this chapter, we discussed the absorption and scattering of light by both

gases and solids. While the atmosphere is composed primarily of gases, solids are

present, too, in the form of suspended particulate matter (water droplets and dust or

aerosols). Both contribute their part to energy losses from a propagating laser beam.

In our discussion of fundamentals, we concentrated our attention on the interaction

of a single photon of light with a single molecule of gas. Our task now is to extend

that analysis to the case where many photons of light encounter many molecules of

gas, as well as small, suspended particles.

Molecules: When a photon encounters a molecule of gas, it may be absorbed or

scattered. The probability of this happening is expressed in terms of the cross
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section σ1 for such an event to occur [32]. This concept is illustrated in Fig. 8.1.

Imagine that a laser beam of area A is propagating through a thickness dz of the
atmosphere in which there are N molecules per cubic centimeter. The total number

of molecules that photons within the beam will encounter is NAdz. If each of these

molecules has an effective “size” or cross section σ, the area blocked off by the

molecules will be a ¼ σNAdz. Therefore, the probability that a photon will collide

with a molecule and be lost from the beam through absorption or scattering is the

ratio of the area blocked off to the total area, a=A ¼ Nσdz.
This means that if n photons enter the region shown in the figure, nNσdz will be

lost from the beam. Since the beam intensity, S, is proportional to the number of

photons n, it follows that S decreases by an amount dS ¼ �SNσdz in propagating a

distance dz.
The equation dS ¼ �SNσdz is well known in mathematics. Its solution for the

intensity S(z) which a beam whose original intensity was S(z) will have after

propagating a distance z is S zð Þ ¼ S 0ð Þe�Nσz. This is known as Bouguer’s law or

Lambert’s law. This law simply states that as light propagates through the atmo-

sphere (or any substance, for that matter), its intensity decreases exponentially over

the distance traveled. The quantity Nσ is traditionally denoted K and is called the

attenuation coefficient. This distance over which a beam’s intensity will decrease

by a factor of 1/e (about 1/3) is 1/K, called the absorption length. The product Kz
¼ NσZ is known as the optical depth and is a measure of the effective thickness,

n photons
in, intensity

S

N molecules / cm3

cross section σ

n(1-Nσ dz) photons out,
intensity S(1-Nσ dz)

dz

Fraction of area blocked = NsA dz/A = Ns dz

Fig. 8.1 Scattering and absorption cross section

1The treatment of binary (one-on-one) interactions in terms of cross sections is common in physics

and will be used throughout this book. A good discussion of the cross-sectional concept can be

found in Chapter II of Reference [32].
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from the standpoint of absorption, of the medium through which the light has

traveled.

Figure 8.2 is a plot of S(z)/S(0), the fraction of a beam’s intensity transmitted

over a range z, as a function of optical depth Kz. You can see from this figure that for

ranges z much greater than 1/K, larger amounts of energy will be lost from the

beam. Clearly, we must choose the parameters of a laser so that K is as small as

possible, and the effective propagation range, 1/K, as larger as possible.
Our derivation of the absorption law looked at the probability of a photon

interacting with a single type of molecule, with a cross section σ. Within the

atmosphere, there are many types (species) of molecules present (N2, O2, CO2, etc.).

The probability of interaction with one is independent of the probability of inter-

action with another. That is, photons lost through the interaction with one type of

molecule may be added to those lost through the interaction with another. As a

result, the attenuation coefficients attributable to each type of molecule may simply

be added: K ¼ K N2ð Þ þ K O2ð Þ þ K CO2ð Þ þ . . . etc:ð Þ. Furthermore, the attenua-

tion coefficient due to each molecular type is in turn comprised of two parts, one for

the absorption of photons by that type and one for their scattering: K(CO2) +K
(absorption by CO2) +K (scattering by CO2) and so on.

Clearly, attenuation in the atmosphere can be quite complex, with a variety of

terms contributed from different molecular species, whose relative abundance and

importance might change with latitude, longitude, relative humidity, and other

climatic factors. Each of these terms may have a different dependence upon the

laser wavelength, since a given wavelength may not be absorbed by one type of

molecule and yet be strongly absorbed by another.

Therefore, it should not be surprising that a considerable body of literature has

developed in this area, ranging from detailed studies of the absorption by a single

molecule to gross measurements of how much light penetrates the atmosphere as a

function of frequency under given climactic conditions [33]. We can only scratch
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the surface and provide a general feeling for atmospheric absorption and

scattering.2

Figure 3.24 is an overview of atmospheric attenuation over a broad range of

wavelengths [33]. This figure shows some of the broad windows for the propagation

of laser light. However, there is considerable fine structure which the scale of this

figure does not reveal. This is shown in the bottom portion of Fig. 8.3, which is an

expanded view of one narrow region in the upper half.

From Fig. 8.3, you can see that even within what appears to be a propagation

window, there may be narrow absorption bands at specific frequencies. Therefore,

the choice of laser wavelength can be critical for propagation. For example, recent

measurements of the output frequencies from a deuterium fluoride (DF) chemical

laser have resulted in a changing one wavelength from 3.7886 to 3.7902 μm [33].

This change has been sufficient to alter the assessment of how much of this light

would penetrate a 10-km path at sea level from about 90% to about 50%. This is

one reason why free-electron lasers have recently received considerable interest.

Unlike most lasers, whose output frequencies are fixed by the active, light-

producing material in them, free-electron lasers are tunable in wavelength, offering

greater flexibility in adjusting the output for efficient atmospheric propagation.
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Fig. 8.3 Atmospheric attenuation vs. wavelength

2A good summary of absorption as a function of frequency, adequate for zero-order analysis, can

be found in Section 14, “Optical Properties of the Atmospheric” in Reference [33].
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To this point, we have seen that the intensity of a laser beam will decrease with

distance as S zð Þ ¼ S 0ð Þe�Kz, where K, the attenuation coefficient, is a sum of terms

representing absorption and scattering by the different species present in the

atmosphere. Given K and knowing the range z required for a given application,

Fig. 8.2 can be used to evaluate the resulting decrease in intensity or brightness.

This decrease can then be used to modify our results for the propagation in a

vacuum, allowing us to develop new criteria for target damage in atmospheric

applications. For example, Fig. 8.4 says that a laser power of 10 kW is required to

deliver an intensity of 104 W/cm2 in a collimated beam with a 3-cm aperture. If the

beam is propagating in the atmosphere and K is such that only 50% of the intensity

is transmitted over the range to the target, we would need to use a 20-kW laser, so

that after 50% attenuation we would have 10-kW leftover to meet the intensity

requirement on the target. Alternatively, we might choose a laser with a different

wavelength, for which the attenuation would be less.

A further complication arises in longer-range strategic applications. The atmo-

spheric parameters which determine K may change over a long range, so that K is

not constant, but varies with distance. This would occur, for example, in using a

ground-based laser to attack the moon. As the beam goes up through the atmo-

sphere, K, which is proportional to the density of molecules, is steadily decreasing.

Eventually, the beam leaves the atmosphere and over the greater part of its range is

propagating in a vacuum. We would greatly overestimate the amount of beam

attenuation by using exponential absorption with a K appropriate to the atmosphere

at sea level and a z equal to the range to the moon! In cases like this, we must

modify our treatment of attenuation and allow K to be a function of z. If K is a
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variable, dependent upon z, the solution to our original equation,

dS zð Þ=dzð Þ ¼ �KS, becomes as

S zð Þ ¼ S 0ð Þexp �
ðz¼z

z¼0

K zð Þdz
� �

ð8:1Þ

This “improved” version of the exponential attenuation law looks complicated, but

its interpretation is straightforward. It says we must integrate K over the path

length. In effect, we split the beam’s path into many small segments. Over each,

K is effectively constant, and exponential attenuation can be used. The total effect is

then given by the sum of the optical depths over each small path segment. Doing

this in any realistic case requires the use of a computer model which can keep track

of how the distribution of molecules and their density varies with altitude and can

use these data to calculate an altitude-dependent attenuation coefficient. There is,

however, a simple model which is reasonably accurate, can be solved analytically,

and gives a good feel for the effect of altitude dependence upon beam attenuation.

Within the lower atmosphere (0–120 km), density varies exponentially with

altitude [34]. This result is seen experimentally and may be derived using statistical

mechanics. It assumes that temperature is roughly independent of altitude and that

the acceleration due to gravity is a constant. Therefore, it is most accurate near the

surface of the Earth. Since this is where absorption is the greatest, the “exponential

atmosphere” is often adequate for “zero-order” analysis. That is, the density of

molecules N(h) at altitude h is related to the density N(0) at sea level by the

relationship N hð Þ ¼ N 0ð Þexp �h=h0ð Þ, where the constant ho is about 7 km.

Since K ¼ σN is also proportional to N, we can to a first approximation say that

K hð Þ ¼ K 0ð Þexp �h=h0ð Þ.
Note that since different atmospheric constituents have different molecular

weights, they each fall off differently with altitude. The “7-km” value for h0 is an
average over all constituents. Species whose weight is lighter than the average will

fall off less rapidly, and those whose weight is heavier than the average will fall off

more rapidly. Since absorption may depend on a single species at a given wave-

length, the exact scale length for absorption may differ from the nominal value in a

specific application.

Suppose that we are to fire a laser into the air at some angle ϕ, as illustrated in

Fig. 8.5. The beam’s altitude h is related to its range z and the elevation angle ϕ
through the simple geometrical relationship h ¼ z sinϕ sin . When ϕ ¼ 0, for any z,

and when ϕ ¼ 90
�
, h and z are identical. Using this relationship between h and z and

assumingK hð Þ ¼ K 0ð Þexp �h=h0ð Þ,we can evaluate the optical depth to any range z.
The result is shown in Fig. 8.6.3

Figure 8.6 is a plot of the optical depth to a range z, normalized to K(0)h0, as a
function of z, normalized to h0. At ϕ ¼ 0, the beam is propagating horizontally, the

3Figure 8.6 is a plot of the expression

ð z
0

K zð Þdz ¼ K 0ð Þh0= sinϕ½ � �exp �z sinϕ=h0ð Þ½ �.
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atmospheric density is constant, and the optical depth increases linearly with

distance, as we would expect. At ϕ ¼ 90
�
, the beam is propagating straight up

and rapidly emerges from the atmosphere, and beyond that point the optical depth

no longer increases.

At intermediate angles, the beam has greater and greater lengths of the atmo-

sphere to propagate through before it emerges from the atmosphere, and so the

optical depth approaches a limiting value later and of a higher value. For ranges less

than h0, the altitude over which atmospheric density changes significantly, the

optical depth is roughly independent of the elevation angle.

Figure 8.6 can be used together with our results for vacuum propagation to

estimate the attenuation for long-range applications and its impact on laser require-

ments. For example, let us return to the case where we wish to attack the moon. If at

sea level, the attenuation coefficient at the frequency of our laser is 0.1 km�1, and if

we are able to shoot when the moon is directly overhead ϕ ¼ 90
�� �
, then by Fig. 8.6

the optical depth will be K(0)h0 or 0.7.
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We can then use Fig. 8.2 to see that for this optical depth, laser intensity and

brightness will be about 0.6 of what they would have been in a vacuum. Therefore,

the brightness requirements necessary to place a given intensity on the target,

obtained from Fig. 8.7, must be increased by a factor of 1/0.6 or about 1.7.

Small Particles (Aerosols): To this point, we’ve looked at the attenuation of a laser

beam due to the gases (molecules) which comprise the majority of the atmosphere.

We must next consider the effect of small solid or liquid aerosols which are

invariably suspended in the atmosphere, especially near the surface. Figure 8.8,

for example, shows the number density of suspended particles as a function of

particle radius at sea level, along with the way in which the density of particles in

different size ranges varies with altitude.4 This figure must, of course, be considered

somewhat notional, since the actual particle size distribution can vary greatly,

depending on the local climate and wind conditions. A commonly used
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4Figure 8.8 is adapted from figures found in C. E. Junge, Air Chemistry and Radioactivity
(New York: Academic Press, 1963), and n J. E. Manson’s article in S.L. Valley (ed), Handbook
of Geophysics and Space Environments (Hanscom AFB: Air Force Cambridge Research

Laboratories, 1965).
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mathematical expression for the density of particles of size r is r ¼ arαexp �brγð Þ.
The constants a, b, α, and γ will vary depending on climate and other conditions.

Representative values may be found in Sect. 3.14 [35]. A number of important

things are apparent from Fig. 8.8. First, particles in excess of 1 μm are quite rare and

largely confined to regions near the surface of the Earth. Second, the range of

particle sizes is comparable to the wavelengths of lasers operating from the visible

to far infrared (0.4–10 μm). The absorption and scattering of light by solid particles

become quite complex to analyze when the particle size is comparable to the

wavelength of the light.

The relevant theory is known as Mie scattering theory for its developer, a

German meteorologist [36]. The development of this theory is beyond the scope

of this book, but its essence is summarized in Fig. 8.9.

Figure 8.9 shows how the actual attenuation cross section for a dielectric aerosol

(in this case water) compares to its physical size, πa2, as a function of 2πa/λ where
a is the aerosol radius and λ the wavelength of the light. There are various dips and

bumps in the cross section, reflecting resonances between particle size and light

wavelength, but for the most part, σ is on the order of 2πa2, especially when a is

much larger than λ. Somewhat crudely, you might think that each particle contrib-

utes twice its physical cross section to light attenuation because it can contribute to

attenuation in two ways—through absorption and scattering.

Curves similar to Fig. 8.9 are available in the literature for a variety of different

particle types, both dielectric and metallic5. As a general rule, they exhibit behavior

similar to that shown in Figure 8.9—σ falls to zero as 2πa/λ goes to zero, but for

2πa=λ > 1, σ is in the neighborhood of 2πa2. Given Fig. 8.8, which suggests that

the majority of aerosols are of a size less than 1 μm, we can conclude that the effect

of aerosols on light attenuation will be greater for visible lasers λ ¼ 0:4� 0:7μmð Þ
than for those operating in the infrared λ ¼ 1� 10μmð Þ. The relative particle size,
2πa/λ, is shown in Fig. 8.10 as a function of wavelength and particle size. This figure
may be used with Fig. 8.9 to estimate the contribution of aerosols to light
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Fig. 8.9 Attenuation factor due to aerosols in Mie’s theory [36]

5A number of representative curves, along with references to the original literature, can be found in

Born and Wolf Reference [36].
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attenuation. However, it must be emphasized that under realistic circumstances the

density and type of aerosols can vary greatly from day to day.

Thus, the operational use of lasers will require that site-specific surveys be made

and that beam brightness be increased to enable meeting damage criteria under

“worst-case” conditions.

Just as the attenuation coefficient for a mixture of molecules may be obtained as

the sum of the coefficients contributed by each molecule present, the total attenuation

coefficient when aerosols are suspended in the atmosphere is the sum of contributions

from the molecules and the aerosols taken separately. Molecules and aerosols can

contribute to attenuation in roughly equal amounts, but for quite different reasons.

The attenuation coefficient K is σN, where σ is the attenuation cross section and

N the density of the attenuator. Molecules have a very small attenuation cross section

(10�25 � 10�26 cm2), but their density is quite large (3� 1019=cm3 at sea level). By

contrast, particles can have a very large cross section � 3� 1019=cm8cm2
� �

, but

their density is quite low (1/cm3 or less). Further details about the variation of

atmospheric density with altitude and its effects on energy absorption and scattering

can be found in the book by P. E. Nielsen Effects of Directed Energy Weapons,
published in 1994, and the PDF format of it can be found on the Internet to download.

All the above portion of this book (Sect. 8.2.1) was copied from his book, and we

encourage readers to refer to this title. There is more information such as the index of

refraction variations of air, and its impact on turbulent and coherency beam also has

been discussed by him as well. He also shows a good section on adaptive optics that

makes use of the fact that if we know what the atmosphere is like along the beam

path, it’s possible to send out the distorted beam in such a way that turbulence will in

fact straighten it out.
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To discuss further the aerosol absorption and nonlinear effects of the radiation
propagation in aerosols, we should note that the aerosol absorption is a more

regular function of the wavelength than molecular absorption. This statement is

illustrated in Fig. 8.8 which shows the coefficients of attenuation and absorption

spectra calculated in footnote 4 for conventional models of the continental and sea

aerosols.

The spectra are normalized by the attenuation coefficient α0 at a wavelength of

λ ¼ 0:55μm. The coefficient varies over a wide range with the weather. In a

transparent atmosphere with a visibility range of S> 25 km, the coefficient is

α0 < 0:15 km�1. Coefficients of absorption by the continental aerosol at the wave-

lengths of high-power lasers are αabs < 0:002km�1 for a DF laser λ ¼ 3:75μmð Þ,
αabs< 0.003 km�1 for a CO laser (λ ¼ 5:05μm), and αabs < 0:006km�1 for a CO2

laser λ ¼ 10:6μmð Þ, which is approximately one-tenth of the molecular absorption

coefficients. Meanwhile, in the ranges λ ¼ 0:69μm and λ ¼ 1:06μm, the aerosol

absorption is comparable with the molecular one even in the case of good visibility

and should be taken into account in the calculation of thermal nonlinearities. The

average temperature and refractive index variations depend, as in the case of the

molecular absorption, only on the aerosol absorption coefficient.

Unlike the molecular absorption-induced heating, the air heating resulting from

absorption by aerosol particles is nonuniform. There are thermal halos, i.e., zones of

an elevated temperature, around the particles. Heat halos lead to higher radiation

scattering. The effect was predicted by Askaryano [37] and experimentally

observed in References [38] and [39]. The scattering-induced variation of the

radiation attenuation coefficient is found from Reference [39] (Fig. 8.11):

αatt ¼ α0att 1þ αabs=α
0
att

� �
f 2 I0; tð Þ�  ð8:2Þ

f I0; tð Þ ¼ dn

dT

I0
ρ0crel

ffiffiffiffiffiffiffiffiffiffiffi
σabst1
λ2χ

r
ð8:3Þ

f I ¼ 9

ðx¼1

x¼0

x
sin x� x cos x

x3

ðτ0¼τ

τ0¼0

I τ0t0ð Þ
I0

exp �x2 τ � τ0ð Þ� 
dτ0

( )2

dx ð8:4Þ

where αatt is the scattering-induced attenuation coefficient for a low beam intensity;

σabs is the aerosol absorption coefficient; cab is the particle absorption cross section;
I is the radiation intensity density; n, ρ0, crel, and χ are the refractive index, density,
heat capacity, and thermal conductivity of the air, respectively; λ is the wavelength
of the light radiation;τ ¼ t=t0; t0 ¼ a2=χ; and a is the radius of the absorbing particle.
At times t  t0, and with the relationship I(t) of the form I tð Þ ¼ I0 for t  t0 true,
time t1, determined from Eq. 8.4, is directly proportional to the momentum time t,
i.e., t1 ¼ tln2. Substituting air parameters in Eq. 8.4, we have
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f I0; tð Þ ¼ 10�3I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σabs λ2
� � � 4t� �q

ð8:5Þ

where I0 is given in W/cm2 and t in s.

Evaporation of water drops in the laser radiation field has recently been in the

focus of research into possible clearing of clouds and fog (Fig. 8.12).

The radiation power necessary for drop evaporation can be estimated for the

wind velocity, v0, as

P ¼ αabs=αabsð Þ πdv0=4ð ÞqlLv ð8:6Þ

where d is the beam diameter, l is the length of the layer of the cloud to be

evaporated, q is the water content, and Lv is the latent heat of evaporation. For

d ¼ 1m, v0 ¼ 5m=s, αabs=αabsð Þ ¼ 0:1, l ¼ 100m, and q ¼ 1 g=m3, the power

P � 107W.

It follows from the above estimate that high power is required for cloud clearing,

i.e., laser beams could transmit high powers effectively only in a clear atmosphere.

For further details of such analysis, please refer to a report by V.V. Vorob’ev [40].
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8.3 Laser and Thermal Blooming Effects

To this point, everything we have considered has been independent of the laser’s

intensity. Absorption, for example, reduces the intensity at a given range z by a

fraction, S zð Þ=S 0ð Þ ¼ e�Kz, which is independent of S(0). This means that the

transmitted intensity, S(z), is directly proportional to the intensity out of the laser,

S(0). If we were to plot S(z) as a function of the S(0), the plot would be a straight
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line, as shown in Fig. 8.13a. For this reason, the propagation effects we’ve looked at

so far are known as linear effects.

As intensity increases, it is usually found that at some point the relationship

between S(z) and S(0) is no longer linear—there is a sudden shift in behavior, like

that shown in Fig. 8.13b.

This typically occurs when S(0) exceeds some threshold value, and beyond that

threshold the relationship between S(z) and S(0) can be quite complex and not at all

linear, so that nonlinear propagation effects are said to have occurred. The physical
reason for nonlinear effects is that when intensities are strong enough, the beam

actually modifies the environment through which it propagates in such a way that its

physical characteristics are altered. For example, a very intense beam might

vaporize the aerosols in its path and suffer less degradation due to aerosol absorp-

tion and scattering than a lower intensity beam. Or it might ionize the atmosphere in

its path, increasing absorption to the point where propagation ceases. Unfortu-

nately, most nonlinear effects degrade, rather than enhance the intensity on the

target. In this section, we will consider nonlinear effects which affect both propa-

gation (thermal blooming and bending) and attenuation (stimulated scattering,

breakdown, and absorption waves). Our emphasis will be on those effects which

are of concern from the standpoint of beam propagation in weapon applications.

There are many nonlinear effects not considered here which may be important at the

intensities and powers appropriate to other applications, such as laser fusion, or

which are of interest from a scientific standpoint for insight into the structure of

matter.

One of the first nonlinear phenomena recognized as likely to affect the propa-

gation of a high-power laser, thermal blooming results from the energy which a

laser deposits in the air through which it propagates. The beam loses energy as a

result of absorption. This energy is deposited within the beam path, where it causes

a temperature rise in the air. This temperature rise modifies the air’s density, alters

its index of refraction, and can severely affect the beam’s propagation. The

sequence of events which results in thermal blooming is illustrated in Fig. 8.14.

Figure 8.14a shows the intensity profile of a typical laser beam viewed end on:

higher in the center than at the edges, where the intensity falls to zero.
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Nonlinear Effects
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Fig. 8.13 Linear and nonlinear propagation effects
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The temperature of the air through which the beam propagates will exhibit a similar

profile, as suggested by Fig. 8.14b. This is because absorption of energy by the air is

a linear phenomenon—as intensity goes up, the amount of energy absorbed, being a

constant fraction of the incident intensity, goes up as well.

The absorbed energy manifests itself as an increase in temperature. But hot air is

less dense than cold air—at constant (atmospheric) pressure, an increase in tem-

perature implies a decrease in density. Thus, the density profile in the air through

which the beam propagates assumes a form inverse to the intensity profile, as shown

in Fig. 8.14c. The implication of this is that the index of refraction of the air through

which the beam propagates, shown in Fig. 8.14d, mirrors the density profile, since

(n� 1) is proportional to density (see Fig. 8.15).
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Fig. 8.14 The physics of thermal blooming
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This sequence of events has the effect of introducing within the volume of the

beam what amounts to a diverging lens, with a greater optical density at the edges

than at the center. As shown at the bottom of Fig. 8.14, this causes the beam to

bloom or diverge, at a rate greater than would otherwise be expected.

In practical scenarios, wind sweeps across the beam—either a naturally occur-

ring wind or one which results from the relative motion of the beam and atmosphere

as the beam slews to keep itself on the target. Such a crosswind causes the beam to

bend as well as bloom. The physical reason for this is illustrated in Fig. 8.16. In this

figure, we begin with the temperature profile which produced thermal blooming.

However, wind is blowing across the beam and introduces cold air. As a result, the

upwind portion of the temperature profile becomes cooler and the downwind

portion warmer. In effect, the wind tries to push the hot air downstream. As a

result, the index of refraction profile assumes a shape like that shown, and the beam

sees what looks like a wedge inserted into it.

This wedge causes the beam to bend into the wind, as indicated. Another way of

looking at it might be to think that the wind displaces the diverging lens of thermal

blooming, so the beam sees only one-half of that lens, and bends in a single

direction.

Looking at Figs. 8.14 and 8.16, you can easily imagine that the analysis of

thermal blooming and bending will be quite difficult, involving gas flow, laser

heating, and the temperature and density dependence of the index of refraction of

air. In any realistic scenario, wind velocity will vary along the beam path, and beam

blooming and bending will occur simultaneously. The resulting distortions of the

beam’s intensity profile can be quite complex, as shown in Fig. 8.17, which

compares a beam’s intensity on the target in the presence of these effects with

what it would have been in their absence. Our goal will be to determine the

thresholds for thermal blooming, the magnitude of the effect, and the potential

for dealing with it through techniques such as adaptive optics (see Sect. 8.4) in those

cases where target range and damage criteria prevent the operation below the

threshold. We must first recognize that there is a pulse width threshold for thermal

blooming. Even though the atmosphere absorbs energy and its temperature begins

Wind

T T n

Fig. 8.16 The physics of thermal bending
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to rise almost immediately, some finite time is required for the heated air to expand

and move out of the beam, creating the density “hole” shown in Fig. 8.14c. The

characteristic velocity at which disturbances propagate in air is the speed of sound,

ac ¼ 3� 104 cm=s. Therefore, the time for air to move out of a beam of radius

w and for blooming to begin is approximately w/ac. Figure 8.18 is a plot of the time

for thermal blooming to develop as a function of beam radius.

You can see from Fig. 8.18 that thermal blooming is not likely for pulsed lasers,

where the goal is to place all the energy on the target in short time scales—10�5 s or

less, for example. On the other hand, if seconds of interaction time with the target is

required, there is a potential for thermal blooming to be a problem, even for

strategic applications, where the beam radius may be relatively large. Therefore,

Fig. 8.17 Beam profile

with thermal blooming and

bending [41]
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we must consider next the magnitude of the effect, to see if thermal blooming will

pose a serious threat to mission accomplishment should it occur.

The quantitative analysis of all nonlinear phenomena is quite complex and

difficult, since it depends on a beam intensity which is itself changing in response

as the interaction proceeds. Predicting how the spot size and intensity vary with

time on the target for a beam of arbitrary intensity distribution therefore requires a

computer program in which all these effects are modeled [42]. Considerable

insights can be gained, however, by looking at simplified examples for which

exact solutions exist. One case which has been extensively studied is that of a

beam in a uniform crosswind of velocity v, having an intensity profile [43] which

varies with the radius asS rð Þ ¼ S0exp �2r2=w2ð Þ. Such a beam can be characterized

through a thermal distortion factor, Nt, which is given by [44] as

Nt ¼ � dn=dTð Þ
nρcp

� KSz2

vw
ð8:7Þ

The first factor in the expression for Nt contains parameters related to the gas

through which the laser is propagating, and the second contains parameters related

to the laser and scenario in which it is employed. The individual terms have the

following interpretation:

• dn/dT is the slope of a curve of the index of refraction, n, as a function of

temperature, T. The greater the dependence of n on T, the more pronounced will

be the lens or wedge introduced as the beam heats the air.

• cp is the heat capacity of the air (J/g K), and ρ its density (g/cm
3). Their product,

ρcp, is the number of joules of energy which must be absorbed to heat a cubic

centimeter of air by 1�.
• K is the absorption coefficient of the air (cm�1), and S the laser intensity (W/cm2).

Their product, KS, is the number of joules being deposited in a cubic centimeter of

air each second.

• z is the range to the target, w the beam radius, and v the wind velocity. Nt

increases as z goes up, because the thermal lens has a longer distance over which

to act. It decreases as v and w increase. A stronger wind will cool the beam

volume, perhaps even blowing the heated air out of it. Since the intensity

changes the most near the edge of the beam, a larger w reduces the relative

importance of these edge effects and the blooming or bending which results

from them.

As Nt increases, the beam becomes more and more distorted, and its intensity

falls off as shown in Fig. 8.19. Since Nt is proportional to the beam intensity S, it’s
not possible at large distortion numbers to overcome the effect of thermal blooming

by increasing S. For example, if Nt is 10, the intensity on the target will be about 0.1

of what it would have been in the absence of blooming. If we try to compensate for

this by increasing S by a factor of 10, we’ll increase Nt to 100, since it’s proportional

to S. But at an Nt of 100, the relative intensity is 0.001, and the net effect of
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increasing S by a factor of 10 will have been to reduce the intensity on the target!

This illustrates one of the more unpleasant features of nonlinear effects. Actions

taken to correct them can have an effect opposite to that intended, because of the

many feedback loops which affect how the system responds to its inputs.

It is interesting to note as another example that an instability may occur when

adaptive optics (see Sect. 8.4) is employed in the presence of thermal blooming.

The reason for this is sketched in Fig. 8.20.

In the upper portion of the figure, we see what an adaptive optic system perceives

as thermal blooming begins—that a diverging lens has been inserted into the beam

path. As a response, the system tries to do what is shown in the bottom portion of

the figure—send a converging beam into the lens so that the diverging nature of the

lens will only serve to straighten the beam out. Unfortunately, this serves to

increase the intensity in the center of the beam, increase the temperature in this

region, and aggravate the diverging lens effect, leading to further focusing, further

divergence, etc. Thus the algorithm responsible for adaptive optics must be capable

of adapting to and compensating for nonlinear phenomena such as thermal bloom-

ing, as well as linear phenomena such as turbulence. This can create both hardware
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and software challenges in dealing with the two phenomena together. Developing

adaptive optic schemes capable of handling both thermal blooming and turbulence

is an ongoing area for research [43].

If we want to avoid the complexities of dealing with thermal blooming, Fig. 8.19

tells us that the distortion number must be of order unity or less. What are the

implications from the standpoint of beam design? Figure 8.21 shows the relation-

ships among intensity, range, velocity, and beam radius subject to the constraint

that Nt ¼ 1. The curve may be used in the following way.

Suppose we wish to engage a target at a range of 10 km with a beam whose radius

is 0.5 m (50 cm) and anticipate that the crosswind will be 5 mi/h (about 200 cm/s).

Then the product vw is 104 cm2/s. As the lines drawn on the figure show, the product

KS must therefore be less than or equal to about 3� 10�6W=cm3 if the distortion

number is to be kept less than 1. If we know that the beam intensity needs to be

104 W/cm2 in order to meet our damage criteria, this implies that the absorption

coefficient K must be less than 3� 10�10 cm�1 (3� 10�5 km�1) for no thermal

blooming or bending to occur. Since absorption coefficients within propagation

“windows” are more like 10�3 � 10�2 km�1, you can see that it’s very unlikely

that we can accomplish this mission without thermal blooming [43]. On the other

hand, if the target is an aircraft moving at 500 mi/h, vwwill be increased to 106 cm2/s

and KS to 3� 10�4W=cm3. Under these circumstances, a 104W/cm2 laser can do the

job if K is less than 3� 10�3 km�1, a more reasonable value.

You can play with Fig. 8.21 and look at the likelihood of avoiding thermal

blooming under a variety of scenarios. In realistic scenarios, of course, the wind is

unlikely to be constant over the whole path, and the beam profile may not be

Gaussian. An effective distortion number can nevertheless be calculated by inte-

grating over factors which change along the beam path and over the beam front,

much as we did in integrating K(z) dz to obtain the optical depth when K was not a

constant.

The procedure is described in Gebhardt (note 31). The relative intensity

(Fig. 8.19) varies with the distortion number as in Fig. 3.42 for a surprisingly
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broad range of experimental conditions. Such an examination will convince you

that there are far more circumstances where thermal blooming needs to be consid-

ered, than where it does not. The only sure-fire way around the problem is to shorten

the interaction time to the point where blooming cannot develop (Fig. 8.18). This

solution can bring problems of its own with it, however, since at short pulse widths,

the intensity necessary for the damage can become quite high and may exceed the

threshold for other nonlinear effects, such as stimulated scattering and air

breakdown.

In summary, propagation of light beams through the atmosphere is accompanied

by an energy loss by molecular absorption and by scattering on aerosols and

molecules. For light power laser, the air heating due to absorption induces along

the propagation path a reduction effect of the refractive index in the beam axis,

whose effect is to spread the beam and to noticeably reduce in radiance relative to

its expected value: it is the “thermal blooming” phenomenon, which has been, for

over the years, the subject of much theoretical and experimental work [17, 45].

The result of the above argument is a deflection and defocusing of the beam in a

complex fashion which was discussed. The effect as we said is known as thermal

blooming. Laser wavelengths for atmospheric propagation are chosen where

absorption is weak; nevertheless, residual absorption together with the intense

radiation can lead to blooming. The absorbed energy per unit volume which pro-

duces the heating is the product of the absorption constant, the beam intensity, and a

time which can depend on beam motion through the air and heat transport due to

convection (wind) or conduction. The phenomenon of thermal blooming was

observed in liquids not long after the invention of the laser and was subsequently

found in solids and gases. Because of the practical difficulty of full-scale atmo-

spheric tests, much of the work has concentrated on laboratory simulation and

theory.

To analyze the effects of thermal blooming, computing models and codes have

been established by various authors. The experimental verification of the results of

these calculations in free field over long paths presents great difficulties in view of

the lack of precision in our knowledge of the various physical parameters involved

in this phenomenon.

8.4 Mission Impact

It is convenient to divide cloud impacts on tactical aircraft missions into two

separate categories: impacts on air-to-air missions and impacts on air-to-ground

missions. It is now possible to estimate which cloud etageres might affect the

prosecution of these two distinct missions. For example, high clouds would gener-

ally be of no concern to the application of a tactical laser in a close air support

scenario, but might be in the en route escort of a high-value airborne asset. First, a

few of the possible missions affected by low clouds are highlighted (see Table 8.1).
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All of the above cloud types are optically opaque in their normal state. The time

of year and location will generally determine cloud content—that is, if the clouds

are composed of water droplets and/or snow and ice crystals. There are, however,

times when the absolute humidity present may be minimal in some stratus clouds.

This condition results in an optically and physically “thin” cloud, regardless of what

the surface reports may indicate. (Note: A ceiling layer of 6/10th or greater sky

coverage may be reported indicating a broken to overcast sky condition, but the

cloud in this case would not be optically opaque.) These “thin” ceiling layers allow

the warfighter to see through the cloud and therefore would allow the possibility of

employing a tactical laser. Stratocumulus clouds often present a cellular appearance

with breaks in the overcast where there may be opportunities to use a tactical laser

in the holes between the clouds. As mentioned previously, stratocumulus clouds are

not very “thick” and do not have a large vertical extent.

The next chart Table 8.2 shows the effects middle clouds may have in the

prosecution of different missions.

All of the above cloud types are optically opaque in their normal state. Again, the

time of year and location will generally determine cloud content. Cumulus and

cumulonimbus clouds contain by far the largest-sized water droplets (in reference

to diameter) and also the greatest amount of total water vapor content. They are

always optically opaque. There are, however, occasions that the absolute humidity

present may be minimal in some altostratus clouds. As in the case of stratus clouds,

this would result in an optically and physically “thin” cloud, regardless of what the

surface reports may indicate. It is possible to see through these “thin” cloud layers

and would again allow the possibility of employing a tactical laser. Altocumulus

clouds present a cellular appearance with breaks in between each cell, so there may

be opportunities to use a tactical laser in the holes between the clouds.

Table 8.1 A few of the possible missions affected by low clouds

Low cloud types Droplet size Possible missions affected

Stratus 100 m to 1 mm Close air support (CAS)

Offensive counter-air (OCA)

Stratocumulus 1 mm + RECCE/CSAR, strategic attack

Nimbostratus ~1 mm + Air interdiction mine warfare

Cumulus 10 mm to cm CAP/TAC (A)

Table 8.2 The effects of middle clouds

Middle cloud types Droplet size Possible missions affected

Altostratus 10–100 m TBM intercept

Altocumulus 1 mm + Large A/C self-protect

Nimbostratus ~1 mm + Small A/C self-protect

Cumulus 10 mm to cm High-value “escort”

Cumulonimbus 10 mm to cm+ Close air support
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As mentioned previously, altocumulus clouds are not very “thick” and do not have a

large vertical extent.

Finally, the effects of high clouds should have the least direct impact on the

application of a tactically sized laser mounted on a fighter aircraft, and these are

listed below (see Table 8.3).

With this brief discussion of the nature of clouds, it is now apparent that the

distribution of clouds in the tactical engagement arena must be established for the

warfighter to successfully employ HEL weapons. To determine the cloud distribu-

tion, the databases for historical cloud cover must be described.

8.5 Adaptive Optics

Adaptive optics makes use of the fact that if we know what the atmosphere is like

along the beam path, it’s possible to send out the beam distorted in such a way that

turbulence will in fact straighten it out! This may seem farfetched, but the general

principle is straightforward and is illustrated in Fig. 8.22. In the upper portion of the

figure, a beam of light encounters a lens which might represent a cell of turbulence.

This lens focuses the light, so that it diverges. In the bottom portion of the figure, a

second lens has been introduced, identical to the first, and positioned at twice the

focal distance from it. This lens has the effect of presenting a diverging beam to the

original lens, which then proceeds to focus it back into a parallel beam. The second

lens compensates for the first, so that the net result is as though the first lens were

not present. The idea behind adaptive optics is to compensate for the many little

“lenses” of turbulence in a similar way. All we need to do is know what’s out there

Table 8.3 The effects of high clouds

High cloud types Droplet size Possible missions affected

Cirrus 100 m to 1 mm TBM intercept

Cirrostratus 100 m to 1 mm Large A/C self-protect

Cirrocumulus 1 mm + Small A/C self-protect

Cumulus 10 mm to cm High-value “escort”

Cumulonimbus 10 mm to cm+ Offensive counter-air, RECCE, CAP/TAC (A)

Fig. 8.22 The principle of adaptive optics
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and compensate the beam, mixing up its initial parameters in such a way that the

optical path which it traverses acts to convert the mixed-up beam into the beam

we’d have in the absence of that optical path.

The practical problem in carrying out this approach is knowing what’s out there

so we can compensate for it, since turbulence changes from moment to moment.

We need a way to obtain real-time feedback on the environment and to use that

information in adjusting the beam appropriately. This is a formidable task, but not

impossible, and it has been accomplished experimentally [44].

Figure 8.23 shows schematically how this has been done. The key to the

technique is a deformable mirror—one in which small actuators move the surface

up and down to distort the outgoing beam in such a way that turbulence will

compensate for this distortion, resulting in a nearly diffraction-limited beam on

the target. The degree of distortion required is found by examining some of the light

which is reflected back from the target. This light, indicated by the dashed line in

Fig. 8.23, is fed into a phase sensor, which compares the quality of the returning

light with that in the outgoing beam. The difference between these is, of course,

related directly to the turbulence along the beam path. A computer uses this

information to provide instructions to the actuators which then deform the mirror

appropriately.

There are, of course, practical considerations which may limit the ability to do this

in realistic scenarios. First, the number of actuators required may be quite large. Since

the beam is being broken up into segments of a size r0, it follows that the mirror

surface must be broken up into segments of area less than πr20. As we have seen,

propagation over large distances requires large mirror sizes—1–10 m. Since ro is

typically 5–10 cm, the mirror must be divided into something on the order of 10,000

segments, with a corresponding number of actuators. These actuators must be able to

produce the necessary degree of distortion sufficiently fast to compensate for a

continually shifting environment as well. Typically, this requires that any section

on the mirror surface be able to move 1–10 μm in times on the order of 10�3 s. The

time scale for mirror motion is related to the frequency with which the turbulent

Phase Sensor/Computer
Appropriate Instructions

Beam Splitter

Laser

Target

Deformable
Mirror

Fig. 8.23 An adaptive optic experiment
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environment shifts from one configuration to another, and the degree of motion is

related to the wavelength of the light. See Pearson [44].

In summary, adaptive optics provides the means to maintain beam quality in the

face of atmospheric turbulence. However, such methods are not applicable or

completely effective in all situations. Ideal adaptive optics requires a beacon—a

point source of light from the target—and this is not completely or even partially

achievable in some systems or applications. Furthermore, for long slant or near-

horizontal propagation paths, the integrated turbulence strength can be sufficiently

strong that even the best adaptive optics cannot completely compensate for the

turbulence. Thus the system performance is degraded by the atmospheric turbu-

lence conditions and the limited capabilities of the adaptive optic system.

System performance is significantly enhanced by a capability to model and

predict laser system effectiveness under specific atmospheric conditions. Forecast-

ing and decision aids for existing conventional electro-optical systems provide a

model for HEL systems. A joint program, involving the Army, Navy, and Air

Force, has developed and delivered decision aids for systems where atmospheric

effects are a concern, including low-light-level TV systems, passive infrared

seekers, and laser-guided munitions.

The Air Force Research Laboratory leads the tri-service team that developed the

Target Acquisition Weather Software (TAWS) currently in operational use by the

Air Force and Navy weather support personnel in both training and strike mission

planning. For IR seekers, TAWS uses numerical weather forecasts, real-world

target models, and sensor characteristics to produce quantitative predictions of

lock-on range. This is accomplished using physics-based models that predict

weather effects on target contrast through thermal modeling of targets, back-

grounds, and atmospheric transmission. TAWS supports strike mission planning

by producing simulations of lock-on range versus the time of day or azimuthal

angle of attack. The capability is currently being implemented in a mission planning

initiative for generating air tasking order. The system enables weather impacts to be

considered in weapon selection and time of attack planning. The result will be

fewer weather aborts, improved effectiveness, reduced exposure to risk, and cost

savings.

The program in atmospheric measurements and modeling for the airborne laser

provides expanded understanding of atmospheric effects applicable to emerging

HEL systems. High-altitude clouds (cirrus) and optical turbulence fundamentally

limit ABL effectiveness and range. Early in the program, it was recognized that the

variability of turbulence was producing variability in ABL performance. As a

result, a parallel AFRL S&T program (with limited core S&T funding augmented

by ABL funds) was initiated to examine atmospheric measurements and modeling.

This effort has evolved into the Atmospheric Decision Aid (ADA) program.

From 1997 to 2000, the emphasis of the ADA program was on collecting theater

turbulence data to validate ABL’s design specification, which is based on data from

core AFRL S&Twork in the 1980s. Currently, the emphasis has shifted to modeling

and forecasting. By merging the operational Air Force numerical weather model

with an optical turbulence model, a three-dimensional forecast of turbulence,
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including its temporal variability, is being developed. High-altitude clouds are

another focus of the ADA model. More specifically, improved models of cirrus

forecasting and the resulting laser transmission are required for ABL performance.

AFRL is developing the models and software for delivery to the ABL’s ADA

integrator contractor to be implemented into a system that can be fielded.

The initial goal of the ADA is to support the ABL test phase by optimizing orbit

placement; this modest goal can be achieved using existing models. The more

ambitious goal, however, is to quantitatively forecast performance in terms of

maximum effective range or required dwell time. To achieve this goal requires a

longer-term core lab S&T program to improve the current state of the art of

turbulence and cirrus modeling.

Emerging HEL systems for air-to-ground applications suffer far more perfor-

mance variability than does the ABL in its missile defense mission. This is a result

of the atmospheric boundary layer and the degree to which weather and diurnal

cycle affect performance. In addition to turbulence, the full range of cloud fields

and aerosols will need to be modeled in air-to-ground applications.

The first-order effect of clouds on electro-optics (EO) and HEL systems has to

do with the line of sight to the target. This effect is quantified through the cloud-free

line-of-sight (CFLOS) statistic. Although CFLOS is a basic concept, it is somewhat

unique to military problems. Additionally, clouds vary significantly with season

and location, and therefore a firm understanding of the climatology of CFLOS over

militarily significant areas is needed. As future HEL systems are specified and

designed, realistic physical models of clouds and CFLOS are required—particu-

larly in light of the increased importance of virtual engineering, simulation, and

testing. And as these systems are deployed, the ability to forecast clouds in terms of

CFLOS probabilities will become essential. These capabilities will require an

improvement in the current ability to forecast clouds, including improvements in

satellite cloud sensing, using numerical weather models.

Although employment modes for some HEL systems may eliminate or minimize

atmospheric effects (such as the space-based laser or reduced distances to the target

for the ABL), it is desirable that these systems be effective in much more broadly

defined scenarios, especially when adjunct missions are considered. Atmospheric

modeling and decision aids will significantly enhance HEL systems and expand

their operational capabilities, much like the demonstrated contribution of atmo-

spheric decision aids to the effectiveness of comparatively simpler systems such as

IR seekers. Like the Atmospheric Decision Aid (ADA) program for the ABL,

expanded capabilities will need to be tailored to the operational scenarios and

lethality mechanisms of new HEL systems. Advancements in atmospheric model-

ing and decision aids will require an expanded, long-term S&T program, as the

need for atmospheric models is military specific and is not being addressed by the

civilian research community. Further, a tri-service S&T program needs to coordi-

nate the expertise resident across the service laboratories, so that it is effectively

focused on this difficult problem.
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8.6 Current Initiatives

The Department of Defense currently has three major initiatives underway involv-

ing high-energy lasers (HELs):

1. The airborne laser (ABL)

2. The space-based laser (SBL)

3. The Tactical High-Energy Laser (THEL)

The ABL is the furthest along in its development, having entered the program

development and risk reduction phase in 1996. An initial operational capability for

this boost-phase ballistic missile defense (BMD) system could be achieved in about

2010, following an aggressive testing schedule in the next few years. The Space-

Based Laser project—a system also designed to destroy targets in the boost phase—

is still in the very early development stage, with no decision at this time to pursue an

operational system. Should a decision be made, initial operational capability is at

least two decades away. The High-Energy Laser System-Tactical Army

(HELSTAR), a US-only version of THEL, is under consideration to be funded as

a new program. This system would provide HEL capability for the Army’s

Enhanced Area Air Defense System and other applications.

Each of these systems has the potential to contribute to multiple missions and

provide a significant technological advantage to the warfighter. Technologies for

high-energy lasers have matured to the point that a family of applications is feasible

in the next few decades. A common thread in these initiatives, however, is the need

for more robust science and technology investment to realize cost-effective oper-

ational capabilities.

Key S&T (scientific and technical) issues, which have an impact on all initia-

tives in this and following chapters, include pointing and tracking accuracy, beam

control, and beam propagation in a battlefield environment or during poor weather

conditions. In the case of laser weapons, lethality effects against a variety of targets

must also be clearly understood. More specifically, these concerns are [31]:

• Pointing and tracking accuracy: is the ability to point the laser beam to the

desired aimpoint and to maintain that aimpoint on the target.

• Beam control: refers to forming and shaping the beam. Depending on the nature

of the specific laser, beam control can include initial processing of the beam to

shape it and eliminate unwanted off-axis energy or can include wave-front

shaping and/or phase control.

• Beam propagation: describes the effects on the beam after it leaves the HEL

output aperture and travels through the battlefield environment to the target.

Optical stability of the platform and beam interactions with the atmosphere, both

molecules and aerosol particles, primarily determine the laser beam quality at

the target. Beam quality is a measure of how effective the HEL is in putting its

light into a desired spot size on the target.

• Lethality: defines the total energy and/or fluence level required to defeat specific
targets. The laser energy must couple efficiently to the target, and it must exceed
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a failure threshold that is both rate dependent and target specific. Laser output

power and beam quality are two key factors for determining whether an HEL has

sufficient fluence to negate a specific target, as Fig. 8.24 illustrates.
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Appendix A
Short Course in Taylor Series

The Taylor series is mainly used for approximating functions when one can identify

a small parameter. Expansion techniques are useful for many applications in

physics, sometimes in unexpected ways.

A.1 Taylor Series Expansions and Approximations

In mathematics, the Taylor series is a representation of a function as an infinite sum

of terms calculated from the values of its derivatives at a single point. It is named

after the English mathematician Brook Taylor. If the series is centered at zero, the

series is also called a Maclaurin series, named after the Scottish mathematician

Colin Maclaurin. It is common practice to use a finite number of terms of the series

to approximate a function. The Taylor series may be regarded as the limit of the

Taylor polynomials.

A.2 Definition

A Taylor series is a series expansion of a function about a point. A one-dimensional

Taylor series is an expansion of a real function f(x) about a point x ¼ a is given by;

f xð Þ ¼ f að Þ þ f 0 að Þ x� að Þ þ f 00 að Þ
2!

x� að Þ2 þ f 3 að Þ
3!

x� að Þ3 þ � � �

þ f nð Þ að Þ
n!

x� að Þn þ � � � ðA:1Þ
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Ifa ¼ 0, the expansion is known as aMaclaurin Series. Equation A.1 can be written
in the more compact sigma notation as follows:

X1
n¼0

f nð Þ að Þ
n!

x� að Þn ðA:2Þ

where n ! is mathematical notation for factorial n and f(n)(a) denotes the n th

derivation of function f evaluated at the point a. Not that the zeroth derivation of

f is defined to be itself and both x� að Þ0 and 0 ! by their mathematical definitions are

set equal to 1.

Taylor series of some common functions expanding around point x ¼ a
include;

1

1� x
¼ 1

1� a
þ x� a

1� að Þ2 þ
x� að Þ2
1� að Þ2 þ

x� að Þ3
1� að Þ3 þ � � � ðA:3aÞ

ex ¼ ea 1þ x� að Þ þ 1

2
x� að Þ2 þ 1

6
x� að Þ3 þ � � �

� �
ðA:3bÞ

1nx ¼ 1naþ x� a

a
� x� að Þ2

2a2
þ x� að Þ3

3a3
þ � � � ðA:3cÞ

cos x ¼ cos a� sin a x� að Þ � 1

2
cos a x� að Þ2 þ 1

6
sin a x� að Þ3 þ � � � ðA:3dÞ

sin x ¼ sin a� cos a x� að Þ � 1

2
sin a x� að Þ2 þ 1

6
cos a x� að Þ3 þ � � � ðA:3eÞ

tan x ¼ tan a� sec 2a x� að Þ � sec 2a tan a x� að Þ2 þ sec 2a sec 2a� 2

3

� �
x� að Þ3 þ � � �

ðA:3fÞ

Derivation of any f these function can be found in any calculus books.

Taylor series can also be defined for functions of a complex variable. By the

Cauchy integral formula and is written in form of;
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f zð Þ ¼ 1

2πi

ð
C

f z0ð Þdz0
z0 � z

¼ 1

2πi

ð
C

f z0ð Þdz0
z0 � z0ð Þ � z� z0ð Þ

¼ 1

2πi

ð
C

f z0ð Þdz0

z0 � z0ð Þ 1� z� z0
z0 � z0

� �
ðA:4Þ

In the interior of C,

z� z0j j
z0 � z0j j < 1

So, using

1

1� t
¼
X1
n¼0

tn

It follows that;

f zð Þ ¼ 1

2πi

ð
C

X1
n¼0

z� z0ð Þnf z0ð Þdz0
z0 � z0ð Þnþ1

¼ 1

2πi

X1
n¼0

z� z0ð Þn
ð
C

f z0ð Þdz0
z0 � z0ð Þnþ1

ðA:5Þ

Using the Cauchy integral formula for derivatives,

f zð Þ ¼
X1
n¼0

z� z0ð Þn f
nð Þ z0ð Þ
n!

ðA:6Þ

A.3 Maclaurin Series Expansions and Approximations

In the particular case where a ¼ 0, the series is also called a Maclaurin series:

f 0ð Þ þ f 0 0ð Þxþ f 00 0ð Þ
2!

x2 þ f 000 0ð Þ
3!

x2 þ � � � ðA:7Þ
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A.4 Derivation

The Maclaurin/Taylor series can be derived in the following manner.

If a function is analytic, it may be defined by a power series:

f xð Þ ¼
X1
n¼0

anx
n ¼ a0 þ a1xþ a2x

2 þ a3x
3 þ � � � ðA:8Þ

Evaluating at x ¼ 0, we have:

f 0ð Þ ¼ a0 ðA:9Þ

Differentiating the function,

f 0 xð Þ ¼ a1 þ 2a2xþ 3a3x
2 þ 4a4x

3 þ � � � ðA:10Þ

Evaluating at x ¼ 0,

f 0 0ð Þ ¼ a1

Differentiating the function again,

f 00 xð Þ ¼ 2a2 þ 6a3xþ 12a4x
2 þ � � �

Evaluating at x ¼ 0,

f 00 xð Þ
2!

¼ a2

Generalizing,

an
f n 0ð Þ
n!

where fn(0) is the nth derivative of f(0).
Substituting the respective values of an in the power expansion,

f 0ð Þ þ f 0 0ð Þxþ f 00 0ð Þ
2!

x2 þ f 000 0ð Þ
3!

x2 þ � � � ðA:11Þ

which is a particular case of the Taylor series (also known as Maclaurin series).

Generalizing further, by writing f in a more general form, allowing for a shift of

a, we have
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f xð Þ ¼ b0 þ b1 x� að Þ þ b2 x� að Þ2 þ b3 x� að Þ3 þ � � � ðA:12Þ

Generalizing similar as above, for evaluating at x ¼ a, we get

bn ¼ f n að Þ
n!

ðA:13Þ

Substituting, we get

f xð Þ ¼ f að Þ þ f 0 að Þ x� að Þ þ f 00 að Þ
2!

x� að Þ2 þ f 000 að Þ
3!

x� að Þ3 þ � � � ðA:14Þ

which is the Taylor series.

Examples The Maclaurin series for any polynomial is the polynomial itself.

The Maclaurin series for 1� xð Þ�1
is the geometric series

1þ xþ x2 þ x3 þ � � � ðA:15Þ

so the Taylor series for x�1 at a ¼ 1 is

1� x� 1ð Þ þ x� 1ð Þ2 � x� 1ð Þ2 þ � � � ðA:16Þ

By integrating the above Maclaurin series we find the Maclaurin series for

1n 1� xð Þ, where ln denotes the natural logarithm:

xþ x2

2
þ x3

3
þ x4

4
þ � � � ðA:17Þ

and the corresponding Taylor series for 1n x at a ¼ 1 is

x� 1ð Þ � x� 1ð Þ2
2

þ x� 1ð Þ3
3

� x� 1ð Þ4
4

þ � � � ðA:18Þ

The Taylor series for the exponential function ex at a ¼ 0 is

1þ x1

1!
þ x2

2!
þ x3

3!
þ x4

4!
þ x5

5!
þ � � � ¼ 1þ xþ x2

2
þ x3

6
þ x4

24
þ x5

120
þ � � � ðA:19Þ

The above expansion holds because the derivative of ex with respect to x is also ex

and e0 equals 1. This leaves the terms x� 0ð Þn in the numerator and n! in the

denominator for each term in the infinite sum.
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A.5 Convergence

The sine function is closely approximated by its Taylor polynomial of degree 7 for a

full period centered at the origin.

The Taylor polynomials for log 1þ xð Þ only provide accurate approximations in

the range�1 < x 	 1. Note that, forx > 1, the Taylor polynomials of higher degree

are worse approximations.

In general, Taylor series need not be convergent. More precisely, the set of

functions with a convergent Taylor series is a meager set in the Frechet space of

smooth functions. In spite of this, for many functions that arise in practice, the

Taylor series does converge.

The limit of a convergent Taylor series of a function f need not in general be

equal to the function value f(x), but in practice often it is. For example, the function

f xð Þ ¼
e�1=x2 if x 6¼ 0

0 if x ¼ 0

8<: ðA:20Þ

is infinitely differentiable at x ¼ 0, and has all derivatives zero there. Consequently,

the Taylor series of f(x) is zero. However, f(x) is not equal to the zero function, and

so it is not equal to its Taylor series.

If f(x) is equal to its Taylor series in a neighborhood of a, it is said to be analytic
in this neighborhood. If f(x) is equal to its Taylor series everywhere it is called

entire. The exponential function ex and the trigonometric functions sine and cosine

are examples of entire functions. Examples of functions that are not entire include

the logarithm, the trigonometric function tangent, and its inverse arctan. For these

functions the Taylor series do not converge if x is far from a.
Taylor series can be used to calculate the value of an entire function in every

point, if the value of the function, and of all of its derivatives, are known at a single

point. Uses of the Taylor series for entire functions include:

1. The partial sums (the Taylor Polynomials) of the series can be used as approx-

imations of the entire function. These approximations are good if sufficiently

many terms are included.

2. The series representation simplifies many mathematical proofs.

Pictured on the right is an accurate approximation of sin(x) around the point

a ¼ 0. The pink curve is a polynomial of degree seven:

sin xð Þ � x� x3

3!
þ x5

5!
þ x7

7!
ðA:21Þ

The error in this approximation is no more than jxj9/9 !. In particular, for

�1 < x < 1, the error is less than 0.000003.
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In contrast, also shown is a picture of the natural logarithm function log 1þ xð Þ
and some of its Taylor polynomials around a ¼ 0. These approximations converge

to the function only in the region �1 < x 	 1; outside of this region the higher-

degree Taylor polynomials are worse approximations for the function. This is

similar to Runge’s phenomenon.

The error incurred in approximating a function by its nth-degree Taylor poly-

nomial, is called the remainder or residual and is denoted by the function Rn(x).
Taylor’s theorem can be used to obtain a bound on the size of the remainder.
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Appendix B
Short Course in Vector Analysis

In this study of Laser Physics and related electricity and magnetism, a great saving

in complexity of notation may be accomplished by using the notation of vector

analysis. The purpose of this section is to give a brief but self-contained exposition

of basic vector analysis to bring to the forefront of physical ideas involved in

equations and provide knowledge of the field that is required for treatment of

electromagnetic wave and Maxwell’s equations.

B.1 Definitions

In study a basic and elementary physics, several kinds of quantities we are faced

with and need to understand in particular we need to distinguish between Vectors

and Scalars. For our purpose we define each of them separately as follows.

1. Scalar

A Scalar is a quantity that is completely characterized by the magnitude.

Examples of scalars are numerous such as mass, time, volume, etc. A simple

extension of the idea of scalar is a Scalar Field—a function of position that is

completely specified by its magnitude at all points is space

2. Vector

A vector is defined as follow.

A Vector is a quantity that is completely characterized by its magnitude and

direction.

Examples of vectors that we can cite is position from a fixed origin, velocity,

acceleration, force, etc. The generalization to a Vector Field gives a function of

position that is completely specified by its magnitude and direction at all points

in space.

More complicated kinds of quantities, such as tensor, may be also defined.

Scalars and Vectors will, however, largely suffice for our purpose.
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B.2 Vector Algebra

Vector algebra is very similar to scalar algebra that readers are familiar with it. In

order to proceed with this development it is convenient to have a representation of

vectors, for which purpose we introduce a Three-Dimensional Cartesian Coordinate

system. This Three-Dimensional system will be denoted by the three variables x, y,

z or, when it is more convenient, x1, x2,x3. With respect to this coordinate system, a

vector is specified by it x�, y�, and z� components. Thus a vectorV is specified by

its components Vx, Vy, Vz, where Vx ¼ Vj j cos α1, Vy ¼ Vj j cos α2 and

Vz ¼ Vj j cos α3, the α’s being the angles between V and appropriate coordinate

axes. The scalar Vj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
x þ V2

y þ V2
z

q
is the magnitude of the vector V, or its

length. In the case of Vector Fields, each of the components is to be regarded as a

function of X, Y, and Z. It should be emphasized at this point that we introduce a

representation of the vectors with respect to a Cartesian coordinate system only for

simplicity and ease of understanding; all of the definitions and operations are, in

fact, independent of any special choice of coordinates.

The sum of two vectors is defined as the vector whose components are the sums

of the corresponding components of the original vectors. Thus if �C is the sum of

�A and �B, we write

C ¼ A þ B ðB:1Þ

and

Cx ¼ Ax þ Bx Cy ¼ Ay þ By Cz ¼ Az þ Bz ðB:2Þ

This definition of the vector sum is completely equivalent to the familiar parallel-

ogram rule for vector addition.

Vector subtraction is defined in terms of the negative of a vector, which is the

vector whose components are the negative of the corresponding components of the

original vector. Thus if A is a vector, �A is defined by

�Að Þx ¼ �Ax �Að Þy ¼ �Ay �Að Þz ¼ �Az ðB:3Þ

The operation of subtraction is then defined as the additional of the negative and is

written

A�B ¼ Aþ �Bð Þ ðB:4Þ

Since the addition of real numbers is associative and commutative, it follows that

vector addition (and subtraction) is also associative and commutative. In vector

notation this appears as
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Aþ BþCð Þ ¼ AþBð ÞþC

¼ AþCð ÞþB ¼ AþBþC
ðB:5Þ

In other words, the parentheses are not needed, as indicated by the last form.

Proceeding now to the process of multiplication, the simplest step is product of a

scalar with a vector. The result of such operation is a vector and each component of

which is the scalar times the corresponding component of the original vector. If c is
a scalar and A is a vector, the product cA is a vector B ¼ cA, defined by

Bx ¼ cAx By ¼ cAy Bz ¼ cAz ðB:6Þ

It is clear that if A is a vector field and c is a scalar field, then B is a new vector field

that is not necessary a constant multiple of the original field.

If two vectors are to be multiplied, there are then two possibilities of occurrence

and that is known as vector and scalar products of such multiplication. Considering

first the scalar product, we note that this name derives from the scalar nature of the

product, although the alternative names, inner product and dot product, are some-

times used as well. The definition of the scalar product, written A�B is

A�B ¼ AxBx þ AyBy þ AzBz ðB:7Þ

This definition is equivalent to another, and perhaps more familiar, definition—that

is, as the product of the magnitudes of the original vectors times the cosine of the

angles between these vectors. If A and B are perpendicular to each other, then;

A�B ¼ 0

The scalar product is commutative. The length of A is

Aj j ¼ ffiffiffiffiffiffiffiffiffiffiffi
A�Ap

The vector product of two vectors is a vector, which accounts for the name.

Alternative names are outer product and cross product. The vector product is

written as A�B. If C is the vector product of A and B , then C ¼ A�B or

Cx ¼ AyBz � AzBy Cy ¼ AzBx � AxBz Cz ¼ AxBy � AyBx ðB:8Þ

Note: that above results can be obtained easily using a determinant form of the cross

product of C ¼ A�B as follows;
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cx

cy

cz

�����������

�����������

î

ĵ

k̂

������������

������������
¼

î ĵ k̂

Ax Ay Az

Bx By Cz

������������

������������
¼ î AyBz � AzBy

� �� ĵ AxBz � AzBzð Þ þ k̂ AxBy � AyBx

� �

¼ î AyBz � AzBy

� �� ĵ AzBx �AxBzð ÞþK̂ AxBy � AyBx

� �
and by equating each side of equality sign to its own appropriate components we get

the result in Eq. (B.8).

It is important to note that the cross product depends on the order of the factor;

interchanging the order introduces a minus sign:

B�A ¼� A�B

Consequently,

A� A ¼ 0

This definition is equivalent to the following: The vector product is the product of

the magnitudes times the sin of the angle between the original vectors, with the

direction given by a right-hand screw rules (i.e. Let A be rotated into B through the

smallest possible angle. A right-hand screw rotated in this manner will advance in a

direction perpendicular to both A and B; this direction is the direction of A�B).

The vector product may be easily remembered in terms of a determinant. If ı̂, ĵ

and k̂ are unit vectors—that is, vectors of unit magnitude, in the x-, y-, and

z-direction, respectively—Then

A�B ¼
î ĵ k̂

Ax Ay Az

Bx By Cz

���������

��������� ðB:9Þ

If this determinant is evaluated by the usual rules, the result is precisely our

definition of the cross product.

The preceding algebraic operations may be combined in many ways. Most of the

results so obtained are obvious; however, there are two triple products of sufficient

importance to merit explicit. The triple scalar product
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D ¼ A�B�C ¼
Ax Ay Az

Bx By Bz

Cx Cy Cz

���������

��������� ¼ �B�A�C ðB:10Þ

This product is unchanged by an exchange of dot and cross or by a cyclic

permutation of the three vectors.

Note: that parentheses are not needed, since the cross product of a scalar and a

vector is undefined.
The other interesting observation is about triple product of vectors such as

D ¼ A� B�Cð Þ. By a repeated application of the definition of the cross product,

Eq. (B.8), we find

D ¼ A� B�Cð Þ ¼ B A�Cð Þ�C A�Bð Þ ðB:11Þ

which is frequently known as the back cab rule. It should be noted that in the cross

product the parentheses are vital; without them the product is not well defined.

At this point we now define vector division and try to expand on its operation.

This operation can be defined in two folds as follows:

3. Division of a vector by a scalar.

4. Division of a vector by another vector.

Division of a vector by a scalar can, of course, be defined as multiplication by

reciprocal of the scalar.

Division of a vector by another vector will be possible if the two vectors are

parallel. In other words, it is possible to write general solutions to vector equations

and so accomplish something closely akin to division.

Consider the equation

c ¼ A�X ðB:12Þ

where c is a known scalar,A is a known vector, andX is an unknown vector. General

solution that satisfies Eq. (B.12) is given as follows:

X ¼ cA

A�Aþ B ðB:13Þ

Where B is an arbitrary vector that is perpendicular to A that is satisfying the

relationship of A�B¼0. The above steps is very nearly to divide c by A ; more

correctly, we have found the general form of the vector that satisfies Eq. (B.12).

There is no unique solution, and this fact accounts for the vector B. In the same

fashion, we may consider the vector equation

Appendix B: Short Course in Vector Analysis 427



C ¼ A�B ðB:14Þ

whereA andC are known vectors andX is an unknown vector. The general solution

of this equation is

X ¼ C�B

A�A þ kA ðB:15Þ

where k is an arbitrary scalar. Thus, X as defined by Eq. (B.15) is very nearly the

quotient of C by A; the scalar K takes account of the non-uniqueness of process. If

X is required to satisfy both Eqs. B.12 and B.14, then the result is unique if there

exists such matter and is given by:

X ¼ C�B

A�A þ cA

A�A ðB:16Þ

B.3 Gradient

Since the previous section was dealing with some extension of differentiation and

integration we will now consider the vector calculus. The simples of all of these

relationships are known as a particular vector field to the derivatives of a scalar

field. It is convenient first to introduce the idea of the directional derivative of a

function of several variables, which is just the rate of change of the function in

specified direction. The direction derivative of a scalar function φ is usually

denoted by dφ/ds; it must be understood that ds represents an infinitesimal dis-

placement in the direction being considered, and that ds is the scalar magnitude of

ds. If ds has the components dx, dy, dz, then

dφ

ds
¼ lim

Δs!0

φ xþ Δx, yþ Δy, zþ Δzð Þ
Δs

¼ ∂φ
∂x

dx

ds
þ ∂φ

∂y
dy

ds
þ ∂φ

∂z
dz

ds

In order to clarify the idea of a directional derivative, consider a scalar function of

two variables. Thus, φ(x, y) represents a two-dimensional scalar field. We may plot

φ as a function of x and y as is depicted in Fig. B.1 for the function

φ x; yð Þ ¼ x2 þ y2. The directional derivative at the point x0,y0 depends on the

direction. If we choose the direction corresponding tody=dx ¼ �x0=y0, then we find
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dφ

ds

����
x0,y0

¼ ∂φ
∂x

dx

ds
þ ∂φ

∂y
dy

ds
¼ ∂φ

∂x
þ ∂φ

∂y

dy
ds
dx
ds

" #
x0,y0

¼ 2x0 � 2y0
x0
y0

� �
¼ 0 ðB:17aÞ

Alternatively, if we choose dy=dx ¼ y0=x0, we find

dφ

ds

����
x0,y0

¼ 2x0 þ 2
y20
x0

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20

x20 þ y20
¼ 2

x20 þ y20
x0

� �s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20

x20 þ y20

s

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20
� �

x20
x20 x20 þ y20
� �s

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

q ðB:17bÞ

Since ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxð Þ2 þ dyð Þ2

q
. As a third possibility, choose dy=dx ¼ α ; then

Eq. (B.17b) can be written as follows:

j

dy
dx 1

2
=

= –

dy
dx

y0
x0

x0

x

y0

y0
y–y

x0

Fig. B.1 The function φ x; yð Þ ¼ x2 þ y2 plotted against x and y in a three-dimensional graph
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dφ

ds

����
x0,y0

¼ 2x0 þ 2
y20
x0

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20

x20 þ y20

s
¼ 2x0 þ 2

y0
x0
y0

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20

x20 1þ y2
0

x2
0

	 
vuut
¼ 2x0 þ 2αy0ð Þ 1þ α2

� �1=2 ðB:17cÞ

In order to find value of α, we differentiate Eq. (B.17c) with respect to α and set it

equal to zero for maximum or minimum of it. Performing these operations result in

α ¼ y0=x0, which simply means that the direction of maximum rate of change of the

functionφ ¼ x2 þ y2 is the radial direction. If the direction is radially outward, then
the maximum is the maximum rate of increase; if it is radially inward, it is a

maximum rate of decrease or minimum rate of increase. In the direction specified

bydy=dx ¼ �x0=y0, the rate of change of x
2 þ y2 is zero. This direction is tangent to

the circle x2 þ y2 ¼ x20 þ y20. Clearly, on this curve, φ ¼ x2 þ y2 does not change.

The direction in which dφ/ds vanishes gives the direction of the curve φ¼ constant
through the point being considered. These lines, which are circles for the function

x2 þ y2, are completely analogous to the familiar contour lines or lines of constant

altitude that appear on topographic maps. Figure B.2 shows the functionφ ¼ x2 þ y2

re-plotted as a contour map.

The idea of contour lines may be generalized to a function of three variables, in

which case the surfaces, φ(x, y, z) ¼ constant, are called level surface or equipo-
tential surfaces. The three-dimensional analog to Fig. B.2 is the only practical way

of graphing a scalar field for a three-dimensional space. The gradient of a scalar

function may now be defined as follows.

Note: The gradient of a scalar function φ is a vector whose magnitude is the

maximum directional derivative at the point being considered and whose direction

is the direction of the maximum directional derivative at the point.

dy

43
2

1

dx

x

y

j = 5

1

dy
dx 2

Fig. B.2 The function

φ(x, y) of Fig. B.1
expressed as a contour map

in two dimensions
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It is evident that the gradient has the direction normal to the level surface of φ
through the point being considered. The most common symbols for the gradient are

∇ and grad. In terms of the gradient, the directional derivative is given by

dφ

ds
¼ grad φj j cos θ ðB:18Þ

Where θ is the angle between the direction of ds and the direction of the gradient.

This result is immediately evident from the geometry of Fig. B.3. If we write ds for
the vector displacement of magnitude ds, then Eq. (B.18) can be written as;

dφ

ds
¼ grad φ� ds

ds
ðB:19Þ

This equation enables us to find the explicit form of the gradient in any coordinate

system in which we know the form of ds. In rectangular coordinates, we know that

ds ¼ idxþ jdyþ kdz. We also know that

dφ ¼ ∂φ
∂x

dxþ ∂φ
∂y

dyþ ∂φ
∂z

dz

From this equation and Eq. (B.19), it follows that

∂φ
∂x

dxþ ∂φ
∂y

dyþ ∂φ
∂z

dz ¼ grad φð Þxdxþ grad φð Þydyþ grad φð Þzdz

Equating coefficients of differentials of independent variables on both sides of the

equation gives;

P

Q

S

j = j0 j = j0 + Δj

Δs

nFig. B.3 Parts of two level

surfaces of the function

φ(x, y, z). jgradφj at
P equals the limit as

PQ ! 0 of Δφ/PQ and

dφ/ds is the corresponding
limit of Δφ=PS
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grad φ ¼ i
∂φ
∂x

þ j
∂φ
∂y

þ k
∂φ
∂z

ðB:20Þ

In rectangular coordinates. In a more complicated case, the procedure is the same.

In spherical polar coordinates, with r, θ, ϕ as defined in Fig. B.4, we have

dφ ¼ ∂φ
∂r

dr þ ∂φ
∂θ

dθ þ ∂φ
∂ϕ

dϕ ðB:21Þ

and

ds ¼ ardr þ aθrdθ þ aϕr sin θdϕ ðB:22Þ

Where ar, aθ and aϕ are unit vectors in the r, θ, and ϕ directions, respectively.

Applying Eq. (B.19) and equating coefficients of independent variables yields

dφ

ds
¼ grad φ� ds

ds
¼ grad φ� ardr þ aθrdθ þ aϕr sin θdϕ

ds

grad φ ¼ ar
∂φ
∂r

þ aθ
1

r

∂φ
∂θ

þ aφ
1

r sin θ

∂φ
∂φ

ðB:23Þ

in spherical coordinates

Polar
axis

P

y

x

r

z

O

q

f

Fig. B.4 Definition of the

polar coordinates r, θ and ϕ
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B.4 Vector Integration

Although there are other aspects to differentiation involving vectors, it is conve-

nient to discuss vector integration first. For our purposes, we may consider three

kinds of integrals according to the nature of differential appearing in the integral as

follows:

1. Line

2. Surface

3. Volume

The integrand may be either a vector field or a scalar field; however, certain

combinations of integrands and differentials give rise to uninteresting integrals.

Those of most interests are the scalar line integral of a vector, the scalar surface

integral of a vector, and the volume integrals of both vectors and scalars.

If F is a vector field, a line integral of F is writtenð b
a Cð Þ

F rð Þ�dl ðB:24Þ

Where C is the curve along which the integration is performed, a and b the initial

and final points on the curve C. Since F□ dl is a scalar, then it is clear that the line

integral is a scalar. The definition of the line integral follows closely the Riemann

definition of the definite integral. The segment of C between a and b is divided into
a large number of small increments Δli; for each increment an interior point is

chosen and the value of F at that point found. The scalar product of each increment

with the corresponding value of F is found and the sum of these computed. The line

integral is then defined as the limit of this sum as the number of increments becomes

infinite in such a way that each increment goes to zero. This definition may be

compactly written as ð b
a Cð Þ

F rð Þ� dl ¼ lim
N!1

XN
i¼1

Fi � Δli

It is important to note that the line integral usually depends not only on the

endpoints a and b but also on the curve C along which the integration is to be

done, since the magnitude and direction of F(r) and the direction of dl depend on

C and its tangent, respectively. The line integral around a closed curve is of

sufficient importance that a special notation is used for it, namely,þ
C

F � dl ðB:25Þ
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The integral around a closed curve is usually not zero; the class of vectors for which

the line integral around any closed curve is zero is of considerable importance. For

this reason, one often encounters line integrals around undesignated closed paths.

For example, þ
F � dl ðB:26Þ

This notation is useful only in those cases where the integral is independent of the

contour C within rather wide limits. If any ambiguity is possible, it is wise to

specify the contour. The basic approach to the evaluation of line integrals is to

obtain a one-parameter description of the curve and then use this description to

express the line integral as the sum of three ordinary one-dimensional integrals. In

all but the simplest cases, this procedure is long and tedious. Fortunately, it is

seldom necessary to evaluate the integrals in this fashion. As will be seen later, it is

often possible to show that the line integral does not depend on the path between the

endpoints. In the latter case, a simple path may be chosen to simplify the

integration.

If F is again a vector, a surface integral of F is writtenð
S

F�nda ðB:27Þ

where S is the surface over which the integration is to be performed, da is an

infinitesimal area on S and n is a unit normal to da. There is a twofold ambiguity in

the choice of n, which is resolved by taking n to be outward drawn normal if S is a

closed surface. If S is not closed and is finite, then it has a boundary, and the sense of
the normal is important only with respect to the arbitrary positive sense of travers-

ing the boundary. The positive sense of the normal is the direction in which a right-

hand screw would advance if rotate in the direction of the positive sense on the

bounding curve, as illustrated in Fig. B.5. The surface integral of F over a closed

surface S is sometimes denoted by þ
S

F�nda
Comments exactly parallel to those made for the line integral can be made for the

surface integral. This surface integral is clearly a scalar; it usually depends on the

surface S, and cases where it does not are particularly important. The definition of

the surface integral is made in a way exactly comparable to that of the line integral.

The detailed formulation is left for the problem section.
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If F is a vector and φ a scalar, then the two volume integrals in which we are

interested are

J ¼
ð
v

φdv and K ¼
ð
v

Fdv ðB:28Þ

Clearly J is a scalar and K is a vector. The definitions of these integrals reduce

quickly to just the Riemann integral in three dimensions except that in K one must

note that there is one integral for each component of F. These integrals are

sufficiently familiar to require no further comment.

B.5 Divergence

Another important operator, which is essentially a derivative, is the divergence

operator. The divergence of vector F, written divF, is defined as follows.

The divergence of a vector is the limit of its surface integral per unit volume as

the volume enclosed by the surface goes to zero. This is:

divF ¼ lim
V!0

1

V

þ
S

F�nda

The y a scalar point function (scalar field), and it is defined at the limit point of

the surface of integration. This definition has several virtues: It is independent of

any special choice of coordinate system, and it may be used to find the explicit form

of the divergence operator in any particular coordinate system.

In rectangular coordinates the volume element ΔxΔyΔz provides a convenient

basis for finding the explicit form of the divergence. If one corner of the rectangular

parallelepiped is at the point x0,y0,z0, then

Fig. B.5 Relation of

normal n to a surface and

the direction of traversal of

the boundary
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Fx x0 þ Δx, y, zð Þ ¼ Fx x0; y; zð Þ þ Δx
∂FX

∂x

����
x0,y, z

Fy x, y0 þ Δy, zð Þ ¼ Fy x; y0; zð Þ þ Δy
∂FY

∂Y

����
x,y0, z

ðB:29Þ

Fz x, y, zþ Δzð Þ ¼ FZ x; y; z0ð Þ þ Δz
∂Fz

∂z

����
x,y, z0

where higher-order terms in Δx,Δy, and Δz have been omitted. Since the area

element ΔyΔz is perpendicular to the x -axis, ΔzΔx is perpendicular to the y -axis,
and ΔxΔy is perpendicular to z -axis, the definition of the divergence becomes,

divF ¼ lim
V!0

1

ΔxΔyΔz

ð
Fx x0; y; zð Þ dydz

�

þΔxΔyΔz
∂Fx

∂x
þ
ð
Fy x; y0; zð Þ dxdy

þΔxΔyΔz
∂Fy

∂y
þ
ð
Fz x; y; z0ð Þ dxdy

þΔxΔyΔz
∂Fz

∂z
þ
ð
Fx x0; y; zð Þ dydz

�
ð
Fy x; y0; zð Þdxdz�

ð
Fz x; y; z0ð Þ dxdyg

ðB:30Þ

The minus signs associated with the last three terms account for the fact that the

outward drawn normal is in the direction of the negative axes in these cases. The

limit is easily taken, and the divergence in rectangular coordinates is found to be

divF ¼ ∂Fx

∂x
þ ∂Fy

∂y
þ ∂Fz

∂z
ðB:31Þ

In spherical coordinates, the procedure is similar. The volume enclosed by the

coordinate intervals Δr,Δθ,Δϕ. Because the area enclosed by the coordinate

intervals depends on the values of the coordinates (which is not the case with

rectangular coordinates), it is best to write F�nΔa in its explicit form:

F�nΔa ¼ Frr
2 sin θΔθΔϕ

þFθr sin θΔϕΔr þ FϕrΔrΔθ
ðB:32Þ
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It is clear from this expression that Frr
2 sin θ, rather than just Fr, must be expanded

in Taylor series. Similarly, it is the coefficient of the products of coordinate

intervals that must be expanded in the other terms. Making these expansions and

using them to evaluate the surface integral in the definition of the divergence gives

div F ¼ lim
V!0

1

r2 sin θΔrΔθΔϕ
∂
∂r

Frr
2 sin θ

� �
ΔrΔθΔϕ

�

þ ∂
∂θ

Fθr sin θð ÞΔθΔrΔϕþ ∂
∂ϕ

Fϕr
� �

ΔϕΔrΔθ
� ðB:33Þ

Taking the limit, the explicit form of the divergence in spherical coordinates is

found to be

div F ¼ 1

r2
∂
∂r

r2Fr

� �þ 1

r sin θ

∂
∂θ

sin θFθð Þ þ 1

r sin θ

∂Fϕ

∂ϕ
ðB:34Þ

This method of finding the explicit form of the divergence is applicable to any

coordinate system, provided that the forms of the volume and surface elements or,

alternatively, the elements of length are known.

The physical significance of the divergence is readily seen in terms of an

example taken from fluid mechanics. If V is the velocity of a fluid, given as a

function of position, and ρ is its density, then

þ
S

ρV�nda is clearly the net amount of

fluid per unit time that leaves the volume enclosed by S. If the fluid is incompress-

ible, the surface integral measures the total sources of fluid enclosed by the surface.

The preceding definition of the divergence then indicates that it may be interpreted

as the limit of the source strength per unit volume, or the source density of an

incompressible fluid.

An extremely important theorem involving the divergence may be stated and

proved.

Divergence theorem. The integral of the divergence of a vector over a volume V is

equal to the surface integral of the normal component of the vector over the surface

bounding V. That is: ð
V

div Fdv ¼
þ
S

F�nda

Consider the volume to be subdivided into a large number of small cells. Let the

ith cell have volume ΔVi and be bounded by the surface Si. It is clear that
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X
i

þ
Si

F�nda ¼
þ
S

F�nda ðB:35Þ

Where in each integral on the left, the normal is directed outward from the volume

being considered. Since outward to one cell is inward to the appropriate adjacent

cell, all contributions to the left side of Eq. (B.35) cancel except those arising from

the surface of S, and Eq. (B.35) is essentially proved. The divergence theorem is

now obtained by letting the number of cells go to infinity in such a way that the

volume of each cell goes to zero.

þ
Si

F�nda ¼ lim
ΔV!0

X
i

1

ΔVi

þ
S

F�nda
8<:

9=;ΔVi ðB:36Þ

In the limit, the sum on i becomes an integral over V, and the ratio of the integral

over Si to ΔVi becomes the divergence of F. Thus,ð
V

divFdv ¼
þ
S

F � nda ðB:37Þ

which is the divergence theorem. We shall have frequent occasion to exploit this

theorem, both in the development of the theoretical aspects of electricity and

magnetism and for the very practical purpose of evaluating integrals.

B.6 Curl

The third interesting vector differential operator is the curl. The curl of a vector,

written curl F, is defined as follows.

The curl of a vector is the limit of the ratio of the integral of its cross product with

the outward drawn normal, over a closed surface, to the volume enclosed by the

surface as the volume goes to zero. That is,

curlF¼ lim
V!0

1

V

þ
S

n�F�da ðB:38Þ

The parallelism between this definition and the definition of the divergence is

quite apparent; instead of the scalar product of the vector with the outward drawn

normal, one has the vector product. Otherwise the definitions are the same.

A different but equivalent definition is more useful. This alternative is as follows.
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The component of curl F in the direction of the unit vector a is the limit of a line

integral per unit area, as the enclosed area goes to zero, this area being perpendic-

ular to a. That is,

a� curlF ¼ lim
S!0

þ
C

F � dl ðB:39Þ

where the curve C, which bounds the surface S, is in a plane normal to a.

It is easy to see the equivalence of the two definitions by considering a plane

curve C and the volume swept out by this curve when it is displaced a distance ξ in
the direction of the normal to its plane, as shown in Fig. B.6. If a is a normal to this

plane, then taking the dot product of a with the first definition of the curl,

Eq. (B.38), gives

a� curlF ¼ lim
V!0

1

V

þ
S

a�n�F� da
Since a is parallel to the normal for all of the bounding surface except the narrow strip

bounded by C and C’, only the integral over this surface need be considered. For this

surface we note that a�nda is just ξd1, where d1 is an infinitesimal displacement

along C. Since, in addition V ¼ ξS, the limit of the volume integral is just

a� curlF ¼ lim
V!0

1

ξS

þ
S

ξF�d1
which reduces to the second form of our definition upon canceling the ξ’s. This
equivalence can be shown without the use of the special volume used here;

however, so doing scarifies much of the simplicity of the proof given above.

The form of the curl in various coordinate systems can be calculated in much the

same way as was done with the divergence. In rectangular coordinates, the volume

∇xΔyΔz is convenient. For the x� component of the curl only the faces perpen-

dicular to the y� and z� axes contribute. Recalling that j� k¼� k� j ¼ i, the

non-vanishing contributions from the faces of the parallelepiped to the

x-component of the curl give

C

da

d 1

a × n

a

n

ξ

C�

Fig. B.6 Volume swept out

by displacing the plane

curve C in the direction of

its normal a
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curlFð Þx ¼ lim
V!0

1

V
�Fy x, y, zþ Δzð Þ þ Fy x; y; zð Þ� 

ΔxΔy
�

þ Fz x, yþ Δy, zð Þ � Fz x; y; zð Þ½ �ΔxΔyg
ðB:40Þ

Making a Taylor series expansion and taking the limit gives

curlFð Þx ¼
∂Fx

∂y
� ∂Fy

∂z
ðB:41Þ

for the x� component of the curl. The y� and z� components may be found in

exactly the same way. They are

curlFð Þy ¼
∂Fx

∂z
� ∂Fz

∂y
and curlFð Þz ¼

∂Fy

∂x
� ∂Fx

∂y
ðB:42Þ

The form of the curl in rectangular coordinates can be easily remembered if it is

noted that it is just the expansion of a three-by-three determinant namely,

curlF ¼

i j k

∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

����������

����������
ðB:43Þ

Finding the form of the curl in other coordinate system is only slightly more

complicated and is left to the problem section.

As with the divergence, we encounter an important and useful theorem involving

the curl, known as Stokes’s theorem.

Stokes’s theorem: The line integral of a vector around a closed curve is equal to the
integral of the normal component of its curl over any surface bounded by the curve.

That is, þ
C

F�dl¼ð
S

curlF�nda ðB:44Þ

where C is a closed curve that bounds the surface S.

The proof of this theorem is quite analogous to the proof of the divergence

theorem. The surface S is divided into a large number of the cells. The surface of the

i th cell is called ΔSi and the curve bounding it is Ci. Since each of these cells must

be traversed in the same sense, it is clear that the sum of the line integrals around the
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Ci’s is just the line integral around the bounding curve; all of the other contributions

cancel. Thus þ
C

F� dl ¼X
i

þ
Ci

F� dl
It remains only to take the limit as the number of cells becomes infinite in such a

way that the area of each goes to zero. The results of this limiting process isþ
C

F�dl ¼ lim
ΔSi!0

X
i

1

ΔSi

þ
Ci

F� dlΔSi ¼
ð
S

curlF�nda

which is Stokes’s theorem. This theorem, like the divergence theorem, is useful

both in the development of electromagnetic theory and the evaluation of integrals. It

is perhaps worth noting that both the divergence theorem and Stokes’s theorem are

essentially partial integrations.

B.7 The Vector Differential Operator ∇

We now introduce an alternative notation for the three types of vector differentia-

tion that have been discussed-namely, gradient, divergence, and curl. This notation

uses the vector differential operator del, defined in Cartesian coordinates as

∇ ¼ i
∂
∂x

þ j
∂
∂y

þ k
∂
∂z

ðB:45Þ

Del is a differential operator in that it is used only in front of a function of (x, y, z),
which it differentiates; it is a vector in that it obeys the laws of vector algebra*. In

terms of del, Eqs. B.20, B.31, and B.44 are expressed as follows:

grad¼∇;

∇φ ¼ i
∂φ
∂x

þ j
∂φ
∂y

þ k
∂φ
∂z

ðB:20Þ

div ¼ ∇:;

∇�F ¼ ∂Fx

∂x
þ ∂Fy

∂y
þ ∂Fz

∂z
ðB:31Þ
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curl ¼ ∇x ;

curl ¼ ∇� F ¼

i j k

∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

����������

����������
ðB:44Þ

The operations expressed with del are themselves independent of any special choice

of coordinate system. Any identities that can be proved using the Cartesian repre-

sentation hold independently of the coordinate system. Del can be expressed in a

non-Cartesian (curvilinear) orthonormal coordinate system in a form analogous to

Eq. (B.46) with the appropriate distance elements, but it must be remembered in

applying it that the unit vectors in such coordinate systems are themselves functions

of position and have to be differentiated**. The important integral theorems,

according to

*Note: It is also a vector in terms of its transformation properties as shown

**Note: Results for cylindrical and spherical coordinates are found in

Equations B.19, B.45, and B.37, areð b
a Cð Þ

∇φ�dl ¼ ð b
a

dφ ¼ φjba ¼ φb � φa ðB:46Þ

ð
S

∇� F�n da ¼
þ
S

F�n da ðB:45Þ

ð
V

∇�Fdv ¼ þ
S

F�n da ðB:37Þ

These give the integral of a derivative of a function over a region of n dimensions,

in terms of the values of the function itself on the n� 1ð Þ-dimensional boundary of

the region, for n¼ 1,2,3. Because the del operator obeys the rules of vector algebra,

it is convenient to use it in calculations involving vector analysis, and henceforth

we shall express the gradient, divergence, and curl in terms of∇. It should be noted

that ∇ is a linear operator:

∇ aφþ bψð Þ ¼ a∇φþ b∇ψ

∇� aFþ bGð Þ ¼ a∇�Fþb∇�G
∇� aFþ bGð Þ ¼ a∇� Fþb∇�G

If a and b are constant scalars.
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B.8 Further Developments

The gradient, divergence, and curl operations may be repeated on appropriate kinds

of fields. For example, it makes sense to take the divergence of the gradient of scalar

field. Indeed, this combined operation is sufficiently important that it has a special

name, The Laplacian. It does not, however, make sense to take the curl of the

divergence of a vector field because doing so involves taking the curl of a scalar,

which is undefined. There is altogether five second-order operations that make

sense, and two of these yield zero. All five, however, are very important in the study

of electromagnetic fields.

The first of these is the Laplacian Operator, which is defined as the divergence

of the gradient of a scalar field, and which is usually written ∇2,

∇�∇ ¼ ∇2

In rectangular coordinates,

∇2φ ¼ ∂2φ

∂x2
þ ∂2φ

∂y2
þ ∂2φ

∂z2
ðB:47Þ

This operator is of great importance in electronics and heat transfer and laser effects

on materials and is considered in Chap. 5.

The curl of the gradient of any scalar field is zero. This statement is most easily

verified by writing it out in rectangular coordinate. If the scalar field is φ, then

∇� ∇φð Þ ¼

i j k

∂
∂x

∂
∂y

∂
∂z

∂φ
∂x

∂φ
∂x

∂φ
∂x

������������

������������
¼ i

∂2φ

∂y∂z
� ∂2φ

∂y∂z

 !
þ :::::: ¼ 0 ðB:48Þ

which verifies the original statement. In operator notation,

∇�∇ ¼ 0

The divergence of any curl is also zero. This result is verified directly in rectangular

coordinates by writing

∇� ∇� Fð Þ ¼ ∂
∂x

∂Fx

∂y
� ∂Fy

∂z

� �
þ ∂
∂y

∂Fx

∂z
� ∂Fz

∂x

� �
þ :::::: ¼ 0 ðB:49Þ
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The two other possible second-order operations are taking the curl of the curl or the

gradient of the divergence of a vector field. It is left as an exercise to show that in

rectangular coordinates

∇� ∇� Fð Þ ¼ ∇ ∇�Fð Þ �∇2F

Where the Laplacian of a vector is the vector whose rectangular components are the

Laplacians of the rectangular components of the original vector. In any coordinate

system other than rectangular the Laplacian of a vector is defined by Eq. (B.51).

Another way in which the application of the vector differential operators may be

extended is to apply them to various products of two vectors and scalars. The six

possible combinations of differential operators and products are tabulated in

Table B.1. These identities may be readily verified in rectangular coordinates,

which is sufficient to assure their validity in any coordinate system. A derivative

of a function, can be calculated by repeated applications of the identities in

Table B.1, which is therefore exhaustive. The formulas can be easily remembered

from the rules of vector algebra and ordinary differentiation. The only ambiguity

could be in Eq. (B.1.1.6) where F�∇ occurs (not ∇�F).
Some particular types of functions come up often enough in electromagnetic

theory or heat transfer that is worth noting their various derivatives now. For the

function F ¼ r,

∇� r ¼ 3

∇� r ¼ 0

∇�Gð Þr ¼ G

∇2r ¼ 0

ðB:50Þ

For a function that depends only on the distance r ¼ rj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
,

Table B.1 Differential vector identification

∇�∇φ ¼ ∇2φ Eq. (B.1.1.1)

∇�∇� F ¼ 0 Eq. (B.1.1.2)

∇�∇φ ¼ 0 Eq. (B.1.1.3)

∇� ∇� Fð Þ ¼ ∇ ∇�Fð Þ �∇2F Eq. (B.1.1.4)

∇ φψð Þ ¼ ∇φð Þψ þ φ∇ψ Eq. (B.1.1.5)

∇ F�Gð Þ ¼ F�∇ð ÞGþ F� ∇� Fð Þ þ G�∇ð ÞFþG� ∇� Fð Þ Eq. (B.1.1.6)

∇� φFð Þ ¼ ∇φð Þ�Fþ φ∇�F Eq. (B.1.1.7)

∇� F�Gð Þ ¼ ∇� Fð Þ�G� ∇�Gð Þ�F Eq. (B.1.1.8)

∇� φFð Þ ¼ ∇φð Þ � Fþ φ∇� F Eq. (B.1.1.9)

∇� F�Gð Þ ¼ ∇�Gð ÞF� ∇�Fð ÞGþ G�∇ð ÞF� F�∇ð ÞG Eq. (B.1.1.10)
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φ rð Þ or F rð Þ : ∇ ¼ r

r

d

dr
ðB:51Þ

For a function that depends on the scalar argument Α� r, where Α is a constant

vector,

Α� rð Þ or F Α� rð Þ : ∇ ¼Α
d

d Α� rð Þ ðB:52Þ

For a function that depends on the argument R ¼ r� r0 where r0 is treated as a

constant,

∇ ¼ ∇R ðB:53Þ

∇R ¼ i
∂
∂x

þ j
∂
∂y

þ k
∂
∂z

where R ¼ Xiþ Yjþ Zk. If r is treated as constant instead,

∇ ¼ �∇
0 ðB:54Þ

where

∇
0 ¼ i

∂
∂x0 þ j

∂
∂y0 þ k

∂
∂z0

There are several possibilities for the extension of the divergence theorem and of

Stock’s theorem. The most interesting of these is Green’s theorem, which isð
V

ψ∇2φ� φ∇2ψ
� �

dv ¼
þ
S

ψ∇φ� φ∇ψð Þ�nda ðB:55Þ

This theorem follows from the application of the divergence theorem to the vector

F ¼ ψ∇φ� φ∇ψ

Using this F in the divergence theorem, we obtainð∇
V

ψ∇φ� φ∇ψ½ � ¼
þ
S

ψ∇φ� φ∇ψð Þ�nda ðB:56Þ

Using the identity (Table 1.1) for the divergence of scalar times a vector gives
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∇� φ∇ψð Þ �∇� φ∇ψð Þ ¼ ψ∇2φ
� �� φ∇2ψ ðB:57Þ

Combining Eqs. (B.56) and (B.57) yields Green’s theorem. Some other integral

theorems are in Table B.2.

This concludes our brief discussion of vector analysis. In the interests of brevity,

the proofs of many results have been relegated to the problems. No attempt has been

made to achieve a high degree of rigor. The approach has been utilitarian: What we

will need, we have developed; everything else has been omitted.

B.9 Summary

Three different types of vector differentiation can be expressed by the vector

differential operator del, ∇, namely, divergence, and curl:

∇φ ¼ i
∂φ
∂x

þ j
∂φ
∂y

þ k
∂φ
∂z

∇�F ¼ ∂Fx

∂x
þ ∂Fy

∂y
þ ∂Fz

∂z

∇� F ¼

i j k

∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

����������

����������
Del is a linear operator. Repeated applications of it, or its application to products of

functions, produce formulas that can be derived in rectangular coordinates, but are

independent of the coordinate system. They can be remembered by the rules of

vector algebra and ordinary differential. The derivatives of a few special

functions are worth committing to memory. The most important integral theorems

about the derivatives are

Table B.2 Vector integral

theorems

ð
S

n�∇φda ¼
þ
S

φdl
Eq. (B.1.2.1)

ð
V

∇φdv ¼
þ
S

φnda
Eq. (B.1.2.2)

ð
V

∇� Fdv ¼
þ
S

n�Fda
Eq. (B.1.2.3)

ð
V

∇�GþG�∇ð ÞFdv ¼
þ
S

F G�nð Þda Eq. (B.1.2.4)
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ð b
a Cð Þ

∇φ� dl ¼ φj bað
S

∇� F�nda ¼
þ
C

F� dl Stokes0s theoremð Þ
ð
V

∇�Fdv ¼ þ
S

F�nda Divergence theoremð Þ

These are generalizations of the functional theorem of calculus.

B.10 Examples and Solved Problems

Example B.1 Let ~C ¼ ~A� ~B using diagram below, and calculate the dot product

of ~C with itself. Using dot product expression Eq. (B.7)

A C

B

θ

Diagram of Problem B.1

Solution
~C� ~C ¼ ~A� ~B

	 
�~A� ~B ¼ ~A�~B� ~A�~Bþ ~Bþ ~B�~B
or

C2 ¼ A2 þ B2 � 2AB cos θ

This is the law of cosines.

Example B.2 Using the definition of dot product and cross product along with the

diagram below,

A

B

θ

Diagram.A of Problem B.2
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Dot Product is defined as;
~A�~B ¼ AB cos θ The result is SCALAR form.

Cross Product is defined as;
~A� ~B ¼ AB sin θn̂ The result is a VECTOR form

where n̂ is a unit vector (vector of length 1) pointing perpendicular to the plane

of ~A and B.

C

A

q2

q3

q1

B +
 C C

B

sin q2

B sin q1

B cos q1 C cos q2

Diagram.B of Problem B.2

Show that the dot product and cross product are distributive,

(a) When the three vectors are coplanar;

(b) In the general case.

Solution

(a) From the diagram below, we have: ~Bþ ~C
��� cos θ3 ¼ ~B

�� �� cos θ1 þ ~C
��� ��� cos θ2��� .

Multiply by ~A
�� �� we have then, ~A

�� �� ~Bþ ~C
��� ��� cos θ3 ¼ ~A

�� �� ~B�� �� cos θ1þ
~A
�� �� ~C��� ��� cos θ2
So ~A� ~Bþ ~C

	 

¼ ~A�~Bþ ~A� ~C (Dot product is distributive).

Similarly: ~Bþ ~C
��� ��� sin θ3 ¼ ~B

�� �� sin θ1 þ ~C
��� ��� sin θ2. Multiply by ~A

�� ��n̂ we have

then, ~A
�� �� ~Bþ ~C
��� ��� sin θ3n̂ ¼ ~A

�� �� ~B�� �� sin θ1n̂ þ ~A
�� �� ~C��� ��� sin θ2n̂ .

If n̂ is the unit vector pointing out of the page, it follows that ~A� ~Bþ ~C
	 


¼ ~A� ~B
	 


þ ~A� ~C
	 


(Cross product is distributive)

(b) For the general case, see G. E. Hay’s Vector and Tensor Analysis, Chap. 1,
Sects. 7 (dot product) and 8 (cross product).
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Example B.3 Is the cross product associative?

~A� ~B
	 


� ~C 6¼ ~A� ~Bþ ~C
	 


Solution The triple cross-product is not in general associative. For example,

suppose ~A ¼ ~B and ~C is perpendicular to ~A, as in the diagram. Then ~B� ~C
	 


points out-of-the-page, and ~A� ~Bþ ~C
	 


points down, and has magnitude ABC.

But ~A� ~B
	 


¼ 0, so ~A� ~B
	 


� ~C ¼ 0 6¼ ~A� ~B� ~C
	 


A = B

B × C

C

A × (B × C)

Diagram of Problem B.3

Example B.4 Find the angle between the face diagonals of a cube, using following

diagram

z

y

x

A

B

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

θ

Diagram of Problem B.3

Solution We might as well use a cube of side I, and place it as shown in above

figure, with one corner at the origin. The face diagonals ~A and ~B are;
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~A ¼ 1x̂ þ 0ŷ þ 1ẑ ~B ¼ 0x̂ þ 1ŷ þ 1ẑ

So, in component form,

~A�~B ¼ 1:0þ 0:1þ 1:1

On the other hand, in "abstract" form,

~A�~B ¼ AB cos θ ¼
ffiffiffi
2

p ffiffiffi
2

p
cos θ ¼ 2 cos θ

Therefore;

cos θ ¼ 1=2 or θ ¼ 60

Of course, you can get the answer more easily by drawing in a diagonal across

the top of the cube, completing the equilateral triangle. But in cases where the

geometry is not so simple, this device of comparing the abstract and compohent

forms of the dot product can be a very efficient means of finding angles.

Example B.5 Find the gradient of r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
(the magnitude of the

position vector).

Solution

∇r¼ ∂r
∂x

x̂ þ ∂r
∂y

ŷ þ ∂r
∂z

ẑ

¼ 1

2

2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p x̂ þ 1

2

2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ŷ þ 1

2

2zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ẑ

¼ xx̂ þ yŷ þ zẑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ¼ ~r

r
¼ r̂

Does this make sense? Well, it says that the distance from the origin increases

most rapidly in the radial direction, and that its rate of increase in that direction is 1.

Example B.6 Suppose the vectors are in form of ~Va ¼ ~r ¼ xx̂ þ yŷ þ zẑ ,
~Vb ¼ ~r ¼ ẑ , and ~Vc ¼ ~r ¼ zẑ . Calculate their divergences.

Solution

∇� ~Va ¼ ∂
∂x

xð Þ þ ∂
∂y

yð Þ þ ∂
∂z

zð Þ ¼ 1þ 1þ 1 ¼ 3

As anticipated, this function has a positive divergence.

∇� ~Vb ¼ ∂
∂x

0ð Þ þ ∂
∂y

0ð Þ þ ∂
∂z

1ð Þ ¼ 0þ 0þ 0 ¼ 0
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∇� ~Vc ¼ ∂
∂x

0ð Þ þ ∂
∂y

0ð Þ þ ∂
∂z

zð Þ ¼ 0þ 0þ 1 ¼ 1

Example B.7 Suppose the vectors are in form of ~Va ¼ ~r ¼ �yx̂ þ xŷ , and
~Vb ¼ ~r ¼ xŷ . Calculate their curls.

Solution

∇X~Va ¼
x̂ ŷ ẑ

∂=∂x ∂=∂y ∂=∂z

�y x 0

���������

��������� ¼ 2ẑ

and

∇X~Vb ¼
x̂ ŷ ẑ

∂=∂x ∂=∂y ∂=∂z

0 x 0

���������

��������� ¼ ẑ

As expected, these curls point in the + z-direction. (Incidentally, they both have

zero divergence.)

Appendix B: Short Course in Vector Analysis 451



Appendix C
Short Course in Ordinary and Partial
Differential Equations

The laws of nature are written in the language of Ordinary and Partial Differential

Equations. Therefore, these equations arise as models in virtually all branches of

science and technology. Our goal in this section is to help you to understand what

this vast subject is about. The section is an introduction to the field. We assume only

that you are familiar with basic calculus and elementary linear algebra. Introductory

courses in differential and partial differential equations are given all over the world

in various forms. The traditional approaches to the subjects are to introduce a

number of analytical techniques, enabling the student to derive exact solutions of

some simplified problems.

We introduce analytical and computational techniques in this section to some

degree. The main reason for doing this is that the computer, developed to assist

scientists in solving differential and partial differential equations, has become

commonly available and is currently used in all practical applications of partial

differential equations. Therefore, a modern introduction to this topic must focus on

methods suitable for computers. But these methods often rely on deep analytical

insight into the equations. We must therefore take great care not to throw away

basic analytical methods but seek a sound balance between analytical and compu-

tational techniques.

C.1 Differential Equations

The theory of differential equations is quite developed and the methods used to

study them vary significantly with the type of the equation. Many physical situa-

tions are represented mathematically by equations that involve a variable and its

rate of change. For example, mathematical model of the natural cooling of any

object relates the temperature T of the object to its rate of change. In symbolic form

we would write this as
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dT

dt
¼ αT þ β ðC:1Þ

Such an equation cannot be integrated directly with respect to the time variable

t using the techniques of any normal integration, because the right-hand side

involves the function T. We need a new set of techniques to solve equations of

this type. An equation which involves the dependent variable T and its derivative is

called an ordinary differential equation and in the next few section we investigate

methods of solving them.

C.1.1 Definition

• An ordinary differential equation (ODE) is a differential equation in which the

unknown function (also known as the dependent variable) is a function of a

single independent variable. In the simplest form, the unknown function is a real

or complex valued function, but more generally, it may be vector-valued or

matrix-valued: this corresponds to considering a system of ordinary differential

equations for a single function. Ordinary differential equations are further

classified according to the order of the highest derivative of the dependent

variable with respect to the independent variable appearing in the equation.

The most important cases for applications are first-order and second-order

differential equations. In the classical literature also distinction is made between

differential equations explicitly solved with respect to the highest derivative and

differential equations in an implicit form.

• A partial differential equation (PDE) is a differential equation in which the

unknown function is a function of multiple independent variables and the

equation involves its partial derivatives. The order is defined similarly to the

case of ordinary differential equations, but further classification into elliptic,

hyperbolic, and parabolic equations, especially for second-order linear equa-

tions, is of utmost importance. Some partial differential equations do not fall into

any of these categories over the whole domain of the independent variables and

they are said to be of mixed type. (See Sect. 2 of this appendix)

Both ordinary and partial differential equations are broadly classified as linear and

nonlinear. A differential equation is linear if the unknown function and its deriv-

atives appear to the power 1 (products are not allowed) and nonlinear otherwise.

The characteristic property of linear equations is that their solutions form an affine

subspace of an appropriate function space, which results in much more developed

theory of linear differential equations. Homogeneous linear differential equations

are a further subclass for which the space of solutions is a linear subspace, i.e., the

sum of any set of solutions or multiples of solutions is also a solution. The

coefficients of the unknown function and its derivatives in a linear differential
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equation are allowed to be (known) functions of the independent variable or vari-

ables; if these coefficients are constants, then one speaks of a constant coefficient

linear differential equation.

There are very few methods of explicitly solving nonlinear differential equa-

tions; those that are known typically depend on the equation having particular

symmetries. Nonlinear differential equations can exhibit very complicated behavior

over extended time intervals, characteristic of chaos. Even the fundamental ques-

tions of existence, uniqueness, and extendability of solutions for nonlinear differ-

ential equations, and well-posedness of initial and boundary value problems for

nonlinear PDEs are hard problems and their resolution in special cases is considered

to be a significant advance in the mathematical theory (cf. Navier–Stokes existence

and smoothness).

Linear differential equations frequently appear as approximations to nonlinear

equations. These approximations are only valid under restricted conditions. For

example, the harmonic oscillator equation is an approximation to the nonlinear

pendulum equation that is valid for small amplitude oscillations (see below).

C.1.2 Types of ODE and PDE

In the first group of examples, let u be an unknown function of x, and c and ω are

known constants.

1. Inhomogeneous first-order linear constant coefficient ordinary differential

equation:

du

dx
¼ cuþ x2

2. Homogeneous second-order linear ordinary differential equation:

d2u

dx2
� x

du

dx
þ u ¼ 0

3. Homogeneous second-order linear constant coefficient ordinary differential

equation describing the harmonic oscillator:

d2u

dx2
þ ω2u ¼ 0
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4. First-order nonlinear ordinary differential equation:

du

dx
¼ u2 þ 1

5. Second-order nonlinear ordinary differential equation describing the motion of a

pendulum of length L:

g
d2u

dx2
þ L sin u ¼ 0

In the next group of examples, the unknown function u depends on two variables
x and t or x and y.

6. Homogeneous first-order linear partial differential equation:

∂u
∂t

þ t
∂u
∂x

¼ 0

7. Homogeneous second-order linear constant coefficient partial differential equa-

tion of elliptic type, the Laplace equation:

∂2
u

∂x2
þ ∂2

u

∂y2
¼ 0

8. Third-order nonlinear partial differential equation, the Korteweg–de Vries
equation:

∂u
∂t

¼ 6u
∂u
∂x

� ∂3
u

∂x3

C.1.3 Classification of Differential Equations

Before we begin we need to introduce a simple classification of differential

equations which will let us increase the complexity of the problems we consider

in a systematic way. In order to talk about Differential Equation, we shall classify

them by Type, Order, and Linearity.

C.1.4 Classification of Differential Equations by Type

If an equation contains only ordinary derivatives of one or more dependent vari-

ables with respect to a single independent variable, it is said to be an Ordinary

Differential Equation (ODE). For example
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dy

dx
þ 5y ¼ ex

d2y

dx2
� dy

dx
þ 6y ¼ 0

dx

dt
þ dy

dt
¼ 2xþ y ðC:2Þ

are ordinary differential equations.

Note that if an equation involving the partial derivative of one or more depen-

dent variables of two or more independent variables is called a Partial Differential

Equation (PDE). For example

∂2
u

∂x2
þ ∂2

u

∂y2
¼ 0

∂2
u

∂x2
¼ ∂2

u

∂t2
� 2

∂u
∂t

∂u
∂y

¼ �∂v
∂x

ðC:3Þ

are partial differential equations. In general the nth derivative is written as dny/dxn

or y(n). In most books the Leibniz Notation such as dy/dx, d2y/dx2, d3y/dx3, . . .. over
the Prime Notation such as y0, y00, y000, . . .. Also sometime you will the Newton’s
Dot Notation as well such as, _y ,€y,

:::
y , . . . :

C.1.5 Classification of Differential Equations by Order

The Order of a Differential Equation (either ODE or PDE) is the order of the

highest derivative in the equation. For example,

Second-Order First-Order

d 2y

dx2

d y
–4y = ex+ 5

3

dx

is a second-order ordinary differential equation. First-Order ordinary differential

equations are occasionally written in differential form M x; yð Þdxþ N x; yð Þdy ¼ 0.

For example, if we assume that y denotes the dependent variable in

y� xð Þdxþ 4xdy ¼ 0, then y
0 ¼ dy=dx, and so by dividing by the differential dx

we get the alternative form 4xy
0 þ y ¼ x.

In general we can express an nth-order ordinary differential equation in one

dependent variable by the general for of;

F x, y, y
0
, y

00
, . . . . . . , y nð Þ

	 

¼ 0 ðC:4Þ

Where F is a real-valued function of nþ 2 variables, x, y, y0, y00, . . . . . ., y(n), and
where y nð Þ ¼ dny=dxn. We are making the assumption both from practical and

mathematical point of view, it is possible to solve an ordinary differential equation

form of Eq. (C.4) uniquely for the highest derivative y(n) in terms of the remaining

nþ 1 variables. The differential equation
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dny

dxn
¼ f x, y, y

0
, y

00
, . . . . . . , y nð Þ

	 

ðC:5Þ

where f is a real-valued continuous function, is referred to as the Normal Form of

Eq. (C.4). Thus when it suits our purposes, we shall use the normal forms of

dy

dx
¼ f x; yð Þ and

d2y

dx2
¼ f x; y; y

0
	 


to represent general first- and second-order ordinary differential equations.

For example, the normal form of the first-order equation 4xy
0 þ y ¼ x is

y
0 ¼ x� yð Þ=4x.

C.1.6 Classification of Differential Equations by Linearity

An nth-order ordinary differential Eq. (C.4) is said to be Linear if F is linear in y,
y0, y00, . . . . . ., y(n). This means that an nth order ODE is linear when Eq. (C.4) is

an xð Þy nð Þ þ an�1 xð Þy n�1ð Þ þ . . . :þ a1 xð Þy0 þ a0 xð Þy� g xð Þ ¼ 0

or we can write as follows:

an xð Þ d
ny

dxn
þ an�1 xð Þ d

n�1ð Þy
dx n�1ð Þ þ . . . :þ a1 xð Þdy

dx
þ a0 xð Þy� g xð Þ ¼ 0 ðC:6Þ

From Eq. (C.6) we see the characteristic two properties of a linear differential

equation:

1. The dependent variable and all its derivatives are of the first degree—that is, the

power of each term involving y is 1.
2. Each coefficient depends at most on the independent variable x.

The equations

y� xð Þdxþ 4xdy ¼ 0 y
00 � 2y

0 þ y ¼ 0 and
d3y

dx3
þ x

dy

dx
� 5y ¼ ex

are, in turn, linear first-, second-, and third-order ordinary differential equations.

Note that the first equation in above is linear in the variable y by writing it in the

alternative for 4xy
0 þ y ¼ x. A Nonlinear ordinary differential equation is simply

one that is not linear. Nonlinear functions of the dependent variable or its deriva-

tives, such as sin y or ey
0
, cannot appear in a linear equation. Therefore,
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nonlinear term:
coefficient depends on y

(1 – y)y � + 2y = ex + sin y = 0
d 2y

d x2
and

nonlinear term:
coefficient function on y

nonlinear term:
power not 1

+ y 2 = 0
d 4y

d x4

are examples of nonlinear first-, second-, and forth-order ordinary differential

equations, respectively.

C.1.7 Initial Value Problems (IVP)

We are often interested in solving a differential equation subject to prescribed

side conditions—conditions that are imposed on the unknown solution y ¼ y
xð Þ or its derivatives. On some interval I containing x0, the problem

Solve :
dny

dxn
¼ f x, y, y

0
, . . . :, y n�1ð Þ

	 

Subject : y x0ð Þ ¼ y0 y

0
x0ð Þ ¼ y1, . . . y n�1ð Þ x0ð Þ ¼ yn�1

ðC:7Þ

where y0, y1, . . . yn�1 are arbitrary specified real constants, is called an Initial

Value Problem (IVP). The values of y(x) and its first n� 1 derivatives at a

single point x0 : y x0ð Þ ¼ y0, y
0
x0ð Þ ¼ y1, . . . y n�1ð Þ x0ð Þ ¼ yn�1 are called

Initial Conditions.

First- and second-Order IVPs: The problem given in Eq. (C.7) is also called and

nth-order initial value problem. For example

Solve:
dy

dx
¼ f x; yð Þ

Subject to: y x0ð Þ ¼ y0

ðC:8Þ

and

Solve:
d2y

dx2
¼ f x; y; y

0
	 


Subject to: y x0ð Þ ¼ y0, y
0
x0ð Þ ¼ y1

ðC:9Þ

are first- and second-order initial-value problem, respectively [5].
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Example 1: First-Order IVP It is readily verified that y ¼ cex is a one-parameter

family of solutions of the simple first-order equation y
0 ¼ y on the interval

�1,1ð Þ. If we specify an initial condition, say, y 0ð Þ ¼ 3, then substituting

x ¼ 0, y ¼ 3, in the family determines the constant 3 ¼ cex ¼ c. Thus the function
y ¼ cex is a solution of the initial-value problem.

y
0 ¼ y y 0ð Þ ¼ 3

(0, 3)

(1, –2)

y

x

Now if we demand that a solution of the differential equation pass through the

point 1, � 2ð Þ rather that (0, 3), then y 1ð Þ ¼ �2 will yield �2 ¼ ce or c ¼ �2e�1.

The function y ¼ �2ex�1 is a solution of the initial value problem.

Example 2: Second-Order IVP Before we do this type of problem we show that

the function x ¼ c1 cos 4t and x ¼ c2 sin 4t, where c1 and c2 are arbitrary

constants or parameters are both solutions of the linear differential equation

x
00 þ 16x ¼ 0.

For x ¼ c1 cos 4t the first two derivatives with respect to t are x
0 ¼ �4c1 sin

4t and x
00 ¼ �16c1 cos 4t. Substituting x00 and x then gives;

x
00 þ 16x ¼ �16c1 cos 4tþ 16c1 cos 4t ¼ 0

Similarly for x ¼ c2 sin 4t we have x
00 ¼ �16c2 sin 4t and so

x
00 þ 16x ¼ �16c2 sin 4tþ c2 sin 4t ¼ 0

Finally is straightforward to verify that the linear combination of solutions or the

two-parameter family x ¼ c1 cos 4tþ c2 sin 4t is also a solution of the differen-

tial equation. Now we turn our task to Second-Order IVP in hand problem.

In this case we want to find a solution of the initial-value problem

x
00 þ 16x ¼ 0 x

π

2

	 

¼ �2 and x

0 π

2

	 

¼ 1 ðC:10Þ
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We first apply x π=2ð Þ ¼ �2 to the given family of solutions:

c1 cos 2π þ c2 sin 2π ¼ �2. Since cos 2π ¼ 1 and sin 2π ¼ 0, we find that

c1 ¼ �2. We next apply x
0
π=2ð Þ ¼ 1 to the one-parameter family

x tð Þ ¼ �2 cos 4tþ c2 sin 4t. Differentiating and then setting t ¼ π=2 and

x
0
π=2ð Þ ¼ 1 8 sin 2π þ 4c2 cos 2π ¼ 1, from which we see that c2 ¼ 1

4
. Hence x

¼ �2 cos 4tþ 1

4
sin 4t is a solution of (I).

Example 3: An IVP Can Have Several Solutions Each of the functions y ¼ 0 and

y ¼ 1

16
x4 satisfies the differential equation dy=dx ¼ xy1=2 and the initial condition

y 0ð Þ ¼ 0, and so the initial-value problem

dy

dx
¼ xy1=2 and y 0ð Þ ¼ 0

y

x(0, 0)

1

y = 0

y = x 4/16

has at least two solutions. As illustrated in the figure here, the graphs of both

functions pass through the same point (0, 0).

Within safe confines one can be fairly confident that most differential equations
will have solutions and that solutions of initial-value problem will probably be

unique.

C.1.8 Linear First-Order Differential Equations

A differential equation is said to be linear when it is of the first degree in the

dependent variable and all its derivatives. When n ¼ 1 in Eq. (C.6), we obtain a

linear first-order differential equation.
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Definition 1: Separable Equation

A first-order differential equation of the form

dy

dx
¼ g xð Þh yð Þ

1

h yð Þdy ¼ g xð Þdx

p yð Þdy ¼ g xð Þdx

ðC:11Þ

is said to be a Separable or have Separable Variables. Note that we have

denoted the
1

h yð Þ by p(y).

For example the equations

dy

dx
¼ y2xe3xþ4y and

dy

dx
¼ yþ sin x

are separable and non separable, respectively. In the first equation we can factor

f x; yð Þ ¼ y2xe3xþ4y as

g xð Þ h yð Þ
# #

f x; yð Þ ¼ xe3xð Þ y2e4yð Þ

but in the second equation there is no way of expressing f x; yð Þ ¼ yþ sin x as a

product of a function of x times a function of y.

Definition 2: Linear Equation

A first-order differential equation of the form

a1 xð Þdy
dx

þ a0 xð Þy ¼ g xð Þ ðC:12Þ

is said to be a linear equation.

When g xð Þ ¼ 0, the linear equation is said to be homogenous; otherwise, it is

nonhomogeneous.

By dividing both side of Eq. (C.8) by the lead coefficient a1(x) we obtain a more

useful form that is known as Standard Form of a linear equation as follows:
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dy

dx
þ P xð Þy ¼ f xð Þ ðC:13Þ

Where P xð Þ ¼ a0 xð Þ
a1 xð Þ and f xð Þ ¼ g xð Þ

a1 xð Þ are respectively. We now seek a solution for

Eq. (C.9) on an interval I for which both function P(x) and f(x) are continuous. In
order to solve Eq. (C.9) we note a Property for it that its solution is the Sum of the

two solutions: y ¼ yc þ yp, where yc is aComplementary solution of the associated

homogeneous part of Eq. (C.9) in the following form

dy

dx
þ P xð Þy ¼ 0 ðC:14Þ

while yp is the Particular solution of the nonhomogeneous part. To see this, please

observe that [5].

d

dx
yc þ yp
� þ P xð Þ yc þ yp

�  ¼ dyc
dx

þ P xð Þyc
� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

0

þ dyc
dx

þ P xð Þy1
� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}�

f xð Þ

¼ f xð Þ

Now the homogeneous Eq. (C.14) is also separable. This fact enables us to find yc

by writing Eq. (C.14) as if we multiply both sides by
dx

y
,

dx

y
þ P xð Þdx ¼ 0

and integrating. Solving for y gives yc ¼ ce
�
ð
P xð Þdx

. For convenience let us write

yc ¼ cy1 xð Þ, where y1 xð Þ ¼ e
�
ð
P xð Þdx

. The fact that dy1=dxþ P xð Þy1 ¼ 0 will be

used next to determine yp.
We can now find a particular solution of Eq. (C.9) by a procedure known as

Variation of Parameters. The basic idea here is to find a function u so that yp ¼

u xð Þy1 xð Þ ¼ u xð Þe
�
ð
P xð Þdx

is a solution of Eq. (C.9). In order words, our

assumption for yp is the same as yc ¼ cy1 xð Þ except that c is replaced by the

“Variable Parameter” u. Substituting yp ¼ uy1 into Eq. (C.2) gives,
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Product Rule Zero

# #
u
dy1
dx

þ y1
du

dx
þ P xð Þuy1 ¼ f xð Þ or u

dy1
dx

þ P xð Þy1
du

dx

� �
¼ f xð Þ

so

y1
du

dx
¼ f xð Þ

Separating variables and integrating then gives

du
f xð Þ
y1 xð Þ dx and u ¼

ð
f xð Þ
y1 xð Þ dx

Since y1 xð Þ ¼ e
�
ð
P xð Þdx

, we see that 1=y1 xð Þ ¼ e

ð
P xð Þdx

. Therefore;

yp ¼ uy1

ð
f xð Þ
y1 xð Þ dx

� �
e
�
ð
P xð Þdx

¼ e
�
ð
P xð Þdxð

e

ð
P xð Þdx

f xð Þdx

and

y ¼ ce
�
ð
P xð Þdx|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
yc

þ e
�
ð
P xð Þdxð

e

ð
P xð Þdx

f xð Þd|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
yP

x ðC:15Þ

Here if Eq. (C.9) has a solution, it must be of form Eq. (C.15). Closely, it is a

straightforward exercise in differentiation to verify that Eq. (C.4) constitutes a

one-parameter family of solution of Eq. (C.9).

We do not need to remember or memorize the formula in Eq. (C.15). However,

you should remember the special term

e

ð
P xð Þdx

ðC:16Þ

because it is used in the equivalent but easier way of solving Eq. (C.9). If Eq. (C.15)

is multiplied by Eq. (C.16), then we have
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e

ð
P xð Þdx

y ¼ cþ
ð
e

ð
P xð Þdx

f xð Þdx ðC:17Þ

and then Eq. (C.17) is differentiated.

d

dx
e

ð
P xð Þdx

y

264
375 ¼ e

ð
P xð Þdx

f xð Þ ðC:18Þ

we get

e

ð
P xð Þdx dy

dx
þ P xð Þe

ð
P xð Þdx

¼ e

ð
P xð Þdx

f xð Þdx ðC:19Þ

Dividing Eq. (C.19) by e

ð
P xð Þdx

gives Eq. (C.9) [5].

C.1.8.1 Method of Solving a Linear First-Oder Equation

The recommendedmethod of solving Eq. (C.9) actually consists of Eqs. (C.17–C.19)

worked in reverse order. Because we can solve Eq. (C.9) by integrating after

multiplication by e

ð
P xð Þdx

, we call this function an Integral Factor for the

differential equation. In brief summary the followings are the steps one needs to

take in order to solve such first-order differential equations;

1. Put a linear equation of form Eq. (C.8) into the standard form of Eq. (C.9).

2. From the standard form identify P(x) and then the integrating factor e

ð
P xð Þdx

.

3. Multiply the standard form of the equation by the integrating factor. The left-

hand side of the resulting equation is automatically the derivative of the inte-

grating factor and y:

d

dx
e

ð
P xð Þdx

y

264
375 ¼ e

ð
P xð Þdx

f xð Þ

4. Integrate both sided of this last equation.
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Example 1: Solving a Homogeneous Linear Differential Equation Solve
dy

dx
� 3y ¼ 0

Solution: This linear equation can be solved by separation of variables. Alterna-

tively, since the equation is already in the standard form Eq. (C.9), we see that P

xð Þ ¼ �3 and so the integrating factor is e
Ð

�3ð Þdx ¼ e�3x. We multiply the equation

by this factor and recognize that

e3x
dy

dx
� 3e3xy ¼ 0 is the same as

d

dx
e�3xy
�  ¼ 0

Integrating both sides of the last equation gives e3xy ¼ c. Solving for y gives us

the explicit solution y ¼ ce3x, �1 < x < 1 (Fig. C.1).

Example 2: Solving a Nonhomogeneous Linear Differential Equation Solve
dy

dx
� 3y ¼ 6

Solution: The associated homogeneous equation for this DE was solved in Exam-

ple 1 in above. Again the equation is already in the standard form Eq. (C.9), and the

integrating factor I still e
Ð

�3ð Þdx ¼ e�3x. This time multiplying the given equation

by this factor gives

e3x
dy

dx
� 3e3xy ¼ 6e�3x which is the same as

d

dx
e�3xy
� 

6e�3x

Integrating both sides of the last equation gives e�3xy ¼ �2e�3x þ c or

y ¼ �2þ ce3x, �1 < x < 1.

The final solution in Example 2 is the sum of two solution y ¼ yc þ yp, where

yc ¼ ce3x is the solution of the homogeneous equation in Example 1 and yp ¼ �2 is

a particular solution of the nonhomogeneous equation y
0 � 3y ¼ 6. You need not be

concerned about whether a linear first-order equation is homogeneous or

y

x

y = –2

–1

–3

–2

–1

1

1 2 3 4

Fig. C.1 Some solution of

y
0 � 3y ¼ 6 [5]
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nonhomogeneous; when you follow the solution procedure outlined above, a

solution of a nonhomogeneous equation necessarily turns to be y ¼ yc þ yp.

Example 3: General Solution Solve x
dy

dx
� 4y ¼ x6ex

Solution: Dividing by x, we get the standard form

dy

dx
� 4

x
y ¼ x5ex ðC:20Þ

From this form we identify P xð Þ ¼ �4=x and f xð Þ ¼ x5ex, further observe that

P and f are continuous on . Hence the integrating factor is

we can use ln x instead of ln xj j since x > 0
#

e
�4

ð
dx=x

¼ e�4lnx ¼ elnx
�4 ¼ x�4

Here we have used the basic identity blognN ¼ N, N > 0. Now we multiply

Eq. (C.20) by x�4 and rewrite,

x�4dy

dx
� 4x5y ¼ xex as

d

dx
x�4y
�  ¼ xex

It follows from integration by parts that the general solution defined on the

interval x�4y ¼ xex � ex þ c is or y ¼ x5ex � x4ex þ cx4.

Note: Except in the case when the lead coefficient is 1, the recasting of Eq. (C.8)

into the standard form Eq. (C.9) requires division by a1(x). Values of x for which

a1 xð Þ ¼ 0are called Singular Points of the equation. Singular points are potentially

troublesome. Specifically, in Eq. (C.9), if P(x) (formed by dividing a0(x) by a1(x)) is
discontinuous at a point, the discontinuity may carry over to solution of the

differential equations [5].

Example 4: General Solution Find the general solution of x2 � 9ð Þdy
dx

þ xy ¼ 0.

Solution: We write the differential equation in standard form

dy

dx
þ x

x2 � 9
y ¼ 0 ðC:21Þ

and identify P xð Þ ¼ x= x2 � 9ð Þ. Although P is continuous on �1, � 3ð Þ, �3, 3ð Þ,
and 3;1ð Þ, we shall solve the equation on the first and third intervals. On these

intervals the integrating factor is
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e

ð
xdx= x2 � 9

� �
¼ e

1

2

ð
2xdx= x2 � 9

� �
¼ e

1

2
ln x2 � 9
�� ��

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 9

p

After multiplying the standard form (C.21) by this factor, we get

d

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 9

ph i
¼ 0

Integrating both side it will give
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 9

p
y ¼ c. Thus for either x > 3 or x < �3 the

general solution of the equation is

y ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 9

p

Notice that in this example x ¼ 3 and x ¼ �3 are singular points of the equation and

that every function in the general solution y ¼ c=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 9

p
is discontinuous at these

points.

C.1.8.2 Functions Defined by Integrals

Some simple functions do not possess anti-derivatives that are elementary function,

and integrals of these kinds of functions are called non-elementary. Two such

functions are the error function and the complementary error function. For

example from calculus we know that
Ð
ex

2

dx and
Ð
sin x2dx are non-elementary

integrals and in applied mathematics some important function are defined in terms

of these non-elementary integrals.

Error Function

Two such functions are the error function and the complementary error function

as follows;

erf xð Þ ¼ 2ffiffiffi
π

p
ð x
0

e�t2dt and erfc xð Þ ¼ 2ffiffiffi
π

p
ð1
0

e�t2dt

Since lim
x!1 erf xð Þ ¼ 2=

ffiffiffi
π

pð Þ
ð1
0

e�t2dt ¼ 1, it is seen from above relationship that

the error function erf(x) and the complementary error function erfc(x) are related by
erf xð Þ þ erfc xð Þ ¼ 1 (Fig. C.2).
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Example: Solve the initial-value problem
dy

dx
� 2xy ¼ 2, y 0ð Þ ¼ 1.

Solution: Since the equation is already in standard form

dy

dx
e�x2
h i

¼ 2e�x2 we get y ¼ 2ex
2

ð x
0

e�t2dtþ cex
2 ðC:22Þ

y ¼ 2e

ð x
0

e�t2dtþ ex
2 ¼ ex

2

1þ ffiffiffi
π

p
erf xð Þ� 

The graph of this solution on �1,1ð Þ, shown in Fig. C.3 above among other

members of the family defined by (C.22) was obtained with the aid of a compute

algebra system such as Mathematica [7].

Dirac Delta Function

Another special function that is convenient to work with is Delta function and is

defined as below

O
t

–1

1

erf(t )Fig. C.2 Error Function

y

x

c > 0

c < 0

c = 0

–4

–4

–2

2

4

–2 2 4

Fig. C.3 Some solutions of

y
0 þ 2xy ¼ 2
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δ t� t0ð Þ ¼ lim
a!1 δa t� t0ð Þ

The later expression, which is not a function at all, can be characterized by the two

properties

1. δ t� t0ð Þ ¼
1 t ¼ t0

0 t 6¼ t0

(

2.

ð1
0

δ t� t0ð Þdt ¼ 1

The unit impulse δ t� t0ð Þ is called the Dirac Delta Function. It is possible to

obtain the Laplace transform of Dirac delta function by the formal assumption that

£ δ t� t0ð Þ½ � ¼ lim
a!0

£ δa t� t0ð Þ½ � [7]. See Sect. 2.1 of Appendix E.

Beta Function

In mathematics, the beta function, also called the Euler integral of the first kind, is a

special function defined by

B x; yð Þ ¼
ð1
0

tx�1 1� tð Þy�1dt

for Re xð Þ, Re yð Þ > 0.

The beta function was studied by Euler and Legendre and was given its name by

Jacques Binet; its symbol B is a Greek capital β.

Gamma Function

Euler’s integral definition of the Gamma Function is as follow

Γ xð Þ ¼
ð1
0

tx�1e�tdt ðC:23Þ

Convergence of the integral requires that x� 1 > �1 or x > 0. The recurrence

relation

Γ xþ 1ð Þ ¼ xΓ xð Þ ðC:24Þ
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Equation C.24 can be obtained from Eq. (C.23) with integration by parts. Now

when x ¼ 1, Γ 1ð Þ ¼
ð1
0

e�tdt ¼ 1, and thus Eq. (C.24) gives

Γ 2ð Þ ¼ 1Γ 1ð Þ ¼ 1

Γ 3ð Þ ¼ 2Γ 2ð Þ ¼ 2:1

Γ 4ð Þ ¼ 3Γ 3ð Þ ¼ 3:2:1

And so on. In this case manner it is seen that when n is a positive integer then we

have,

Γ nþ 1ð Þ ¼ n!

For this reason the gamma function is often called the Generalized Factorial

Function.

Although the integral form Eq. (C.23) does not converges for x < 0, it can be

shown by means of alternative definitions that the gamma function is defined for all

real and complex numbers except x ¼ �n, n ¼ 0, 1, 2, � � �. As a consequence,

Eq. (C.24) is actually valid for x 6¼ �n. The graph of Γ(x),considered as a function

of a real variable x, is as given in Fig. C.4.

Bessel Function

The two differential equations occur frequently in advanced studies in applied

mathematics, physics, and engineering are the as follows;

20–2

–4

–2

0

2

4

–4 4

Fig. C.4 The Gamma function along part of the real axis

Appendix C: Short Course in Ordinary and Partial Differential Equations 471



x2y
00 þ xy

0 þ x2 � v2
� �

y ¼ 0 ðC:25Þ

1� x2
� �

y
00 þ 2xy

0 þ n nþ 1ð Þy ¼ 0 ðC:26Þ

They are called Bessel’s Equation and Legendre’s Equation respectively. In

solving Eq. (C.25) we shall assume v � 0, whereas in Eq. (C.26) we shall consider

only the case when n is a non-negative integer. Since we seek series solutions of

each equation about x ¼ 0, we observe that the origin is a regular singular point of

Bessel’s equation, but is an ordinary point of Legendre’s equation. Solution of

Bessel’s Equation that is given by reference Zill [5] is presented here with its

coefficient c2n where also is shown;

c2n ¼ �1ð Þn
22nþvn! 1þ vð Þ 2þ vð Þ� � �� nþ vð ÞΓ 1þ vð Þ ¼

�1ð Þn
22nþvn!Γ 1þ vþ nð Þ ðC:27Þ

Using the coefficients c2n and r ¼ v, a series solution of Eq. (C.25) is

y ¼
X1
n¼0

c2nx
2nþv. This solution is usually denoted by Jv(x):

Jv xð Þ ¼
X1
n¼0

�1ð Þn
n!Γ 1þ vþ nð Þ

x

2

	 
2nþv
ðC:28Þ

If v � 0, the series converges at least on the interval
�
0,1�. Also, for the second

exponent r2 ¼ �v we obtain, in exactly the same manner,

J�v xð Þ ¼
X1
n¼0

�1ð Þn
n!Γ 1� vþ nð Þ

x

2

	 
2n�v
ðC:29Þ

The function Jv(x) and J�v xð Þ are called Bessel Function of the First Kind of order

v and �v, respectively. Depending on the value of v, Equation C.29 may contain

negative powers of and hence converge on 0;1ð Þ [5]. When v ¼ 0, it is apparent

that Eqs. (C.28) and (C.29) are the same. If v > 0 and r1 � r2 ¼ v� �vð Þ ¼ 2v is
not a positive integer, it follows that Jv(x) and J�v xð Þ are linearly independent

solutions of Eq. (C.25) on 0;1ð Þ, and so the general solution of the interval is

y ¼ c1Jv xð Þ þ c2J�v xð Þ. But when r1 � r2 ¼ 2v is a positive integer, a second series
solution of Eq. (C.25) may exist. In this case we distinguish two possibilities. When

v ¼ m positive integer, J�m xð Þ defined by Eq. (C.29) and Jm(x) are not linearly

independent solution.

It can be shown that J�m xð Þ is a constant multiple of Jm(x) [see (i) in properties of
Bessel function within table below]. In addition, r1 � r2 ¼ 2v can a be a positive

integer when r1 � r2 ¼ 2v is half and odd positive integer. In this case it can be
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shown that Jv(x) and J�v xð Þ are linearly independent and the general solution of

Eq. (C.25) on 0;1ð Þ is given by

y ¼ c1Jv xð Þ þ c2J�v xð Þ v 6¼ int eger ðC:30Þ

The graph of y ¼ J0 xð Þ and y ¼ J1 xð Þ are given in Fig. C.5 below;

If v is not integer v 6¼ int egerð Þ, the function defined by the linear combination

Yv xð Þ ¼ cos vπJv xð Þ � J�v xð Þ
sin vπ

ðC:31Þ

and the function Jv(x) are linearly independent solutions of Eq. (C.25). Thus another
form of the general solution of Eq. (C.25) is y ¼ c1Jv xð Þ þ c2Yv xð Þ, provided
v 6¼ int eger. As v ! m, m an integer, Eq. (C.31) has the indeterminate form 0/0.

However, it can be shown by L’Hospital’s rule that lim
v!m

Yv xð Þ exists. Moreover, the

function

Ym xð Þ ¼ lim
v!m

Yv xð Þ

and Jm(x) are linearly independent solution of x2y
00 þ xy

0 þ x2 � m2ð Þy ¼ 0. Hence

for any value of v the general solution of Eq. (C.25) on 0;1ð Þ can be written as

y ¼ c1Jv xð Þ þ c2Yv xð Þ ðC:32Þ

Yv(x) Is called the Bessel Function of the Second Kind of order v. Figure C.6

below shows the graph of Y0(x) and Y1(x).

By identifying v2 ¼ 9 and v ¼ 3we see from Eq. (C.32) that the general solution

of the equation x2y
00 þ xy

0 þ x2 � m2ð Þy ¼ 0 on 0;1ð Þ is y ¼ c1J3 xð Þ þ c2Y3 xð Þ.
Sometime it is possible to do some mathematical manipulation of a differential

equation into form of Eq. (C.25) and be able to solve it as a Bessel Function

approach as above [5].

Example 1: We have the following differential equation in form of

mx
00 þ ke�αtx ¼ 0, α > 0. We can find the general solution of this equation using

2
–0.4

–0.2

0.2

0.4

0.6
0.8

1

4 6 8

x

y

J0

J1

Fig. C.5 Bessel functions

of the first kind for

n¼ 0,1,2,3,4
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the Bessel Function Methods. This is the problem of free undamped motion of a

mass on an aging spring.

Solution: If we change variables using the transformation of s ¼ 2
α

ffiffiffi
k
m

q
then we

have

s2
d2x

ds2
þ s

dx

ds
þ s2x ¼ 0

This equation can be recognized if we set v ¼ 0 in Eq. (C.25) and with the

symbol x and s playing the roles of y and x, respectively. The general solution of the
new equation is then given in form of x ¼ c1J0 sð Þ þ c2Y0 sð Þ. If we re-substitute s,
the general solution of mx

00 þ ke�αtx ¼ 0 is then seen to be [5].

x tð Þ ¼ c1J0
2

α

ffiffiffiffi
k

m

r
e�α t

2

 !
þ c2Y0

2

α

ffiffiffiffi
k

m

r
e�α t

2

 !

Some Properties of Bessel Functions

We list below a few of the more useful properties of Bessel Functions of order

m, m¼01,1,2,. . ..

ið Þ J�m xð Þ ¼ �1ð ÞmJm xð Þ iið Þ Jm �xð Þ ¼ �1ð ÞmJm xð Þ

iiið Þ J0 xð Þ ¼
0 m > 0

1 m ¼ 0

8><>: ivð Þ lim
x!0

Ym xð Þ ¼ �1

Note that property (ii) indicates that Jm(x) is an even function if m is an even

integer and odd function if m is an odd integer. The graphs of Y0(x) and Y1(x)

(continued)
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Fig. C.6 Bessel function of

the second kind for

n¼ 0,1,2,3,4
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in Fig. C.6 illustrate property (iv): is unbounded at the origin. This last fact is
not obvious from Eq. (C.31). It can be shown either from Eq. (C.31) or by the

methods of solutions about singular point 5 that for,

Y0 xð Þ ¼ 2

π
J0 xð Þ γ þ ln

x

2

h i
� 2

π

X1
k¼1

�1ð Þk
k!ð Þ2 1þ 1

2
þ � � � þ 1

k

� �
x

2

	 
2k
where γ ¼ 0:57721566 . . . : is Euler’s Constant. Because of the presence of
the logarithmic term, Y0(x) is discontinuous at x ¼ 0.

C.2 Initial-Value Problem (IVP)

We are often interested in solving a differential equation subject to prescribed side

conditions. Conditions that are imposed on the unknown solution y ¼ y xð Þ or its

derivatives. On some interval I containing x0, the problem

solve :
dny

dxn
¼ f x; y; y

0
; � � �; y n�1ð Þ

	 

ðC:33Þ

Subject to : y x0ð Þ ¼ y0 y
0
x0ð Þ ¼ y1, � � �, y n�1ð Þ x0ð Þ ¼ yn�1 ðC:34Þ

where y1, y2, � � �� , yn�1 are arbitrarily specified real constant is called Initial-Value

Problem (IVP). The values of y(x) and its first n� 1 derivative at a single point

x0 : y x0ð Þ ¼ y0, y
0
x0ð Þ ¼ y1, � � �, y n�1ð Þ x0ð Þ ¼ yn�1 are called Initial Conditions.

The problem given in Eq. (C.33) in above also called an nth-order initial-value
problem. For example

Solve :
dy

dx
¼ f x; yð Þ

Subject : y x0ð Þ ¼ y0

ðC:35Þ

Solve :
d2y

dx2
¼ f x; y; y

0
	 


Subject : y x0ð Þ ¼ y0 and y
0
x0ð Þ ¼ y1

ðC:36Þ

are first and second-ordered initial-value problem, respectively. These two prob-

lems are easy to interpret in geometric terms. For Eq. (C.35) we are seeking a

solution of the differential equation on an interval I containing x0 so that a solution

curve passes through the prescribed point (x0, y0), see Fig. C.7.
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For Eq. (C.36) we want to find a solution of the differential equation whose

graph not only passes through (x0, y0) but passes through so that the slope of the

curve at this point is y1. See Fig. C.8. The term initial condition derives from

physical system where the independent variable is time t and where y t0ð Þ ¼ y0 and

y
0
t0ð Þ ¼ y1 represent, respectively [5], the position and velocity of an object at some

beginning, or initial, time t0. Solving an nth-order initial-value problem frequently

entails using an n-parameter family of solutions of the given differential equation to

find n specialized constants so that the resulting par solution of the equation also

“fits” that is, satisfies the n initial conditions [5].

Example 1: First-Order IVP It can be verified that y ¼ cex is a one-parameter

family of solutions of the simple first-order equation y
0 ¼ y on the interval

�1,1ð Þ. If we assume an initial condition such as y 0ð Þ ¼ 3, then substitute

x ¼ 0, y ¼ 3 in the family determines the constant 3 ¼ ce0 ¼ c. Thus the function
y ¼ 3ex is a solution of the initial-value problem.

We can pick another sets of value for x and y say y 1ð Þ ¼ �2 to obtain another set

of solution for the family such as y ¼ �2ex�1 and Fig. C.9 can be produced.

Example 2: Second-Order IVP If we pick another example such as

x ¼ c1 cos 4tþ c2 sin 4t, we can observe a two-values of IPV is need in order

to solve this family. If we let x π
2

� � ¼ �2 and x
0 π
2

� � ¼ 1 then with a little mathematics

work and taking first derivative of the example we will find the following solution

and values for c1 and c2 as follows:

solutions of the DE
y

x

(x0, y0)

I

Fig. C.7 First-Order IVP

solutions of the DE
y

x

m = y1

(x0, y0)

I

Fig. C.8 Second-

Order IVP
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c1 ¼ �2 for t ¼ π

2

c2 ¼ 1

4
for t ¼ �π

2

8>>><>>>: then the solution is x ¼ �2 cos 4tþ 1

4
sin 4t

Summarizing the IVP problem we have to define the Intervals of Validity. First let
us take a look at a theorem about linear first-order differential equations. This is a

very important theorem although it is not going to be really used for its most

important aspect.

Theorem 1

Consider the following IVP.

y
0 þ p tð Þy ¼ g tð Þ y t0ð Þ ¼ y0

If p(t) and g(t) are continuous functions on an open interval α < t < β and the
interval contains t0, then there is a unique solution to the IVP on that interval.

This theorem tells us, first for a linear first-order differential equations a solu-

tions are definitely exists and more importantly the solution is a unique one. We

may not be able to find the solution, but we do know that it exists and there will only

be one of them. This is a very important aspect of this theorem.

Next, if the interval in the theorem is the largest possible interval on which p(t)
and g(t) are continuous, then the interval is the interval of validity for the solution.

This means, that for linear first-order differential equations, we will not need to

actually solve the differential equation in order to find the interval of validity.

Notice as well that the interval of validity will dependent only partially on the initial

condition. The interval must contain t0, but the value of y0, has no effect on the

interval of validity.

(0, 3)

(1, –2)

y

x

Fig. C.9 Solution of IVPs

family
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Example 1: Without solving, determine the interval of validity for the following

initial value problem.

t2 � 9ð Þy0 þ 2y ¼ ln 20� 4tj j y 4ð Þ ¼ �3

Solution: First, in order to use the theorem to find the interval of validity we must

write the differential equation in the proper form given in the theorem. So we will

need to divide out by the coefficient of the derivative.

y
0 þ 2

t2 � 9
y ¼ ln 20� 4tj j

t2 � 9

Next, we need to identify where the two functions are not continuous. This will

allow us to find all possible intervals of validity for the differential equation. So, p
(t) will be discontinuous at t ¼ �3 since these points will give a division by zero.

Likewise, g(t) will also be discontinuous at t ¼ �3 as well as t ¼ 5 since at this

point we will have the natural logarithm of zero. Note that in this case we won’t

have to worry about natural log of negative numbers because of the absolute

values.

Now, with these points in hand we can break up the real number line into four

intervals where both p(t) and g(t) will be continuous. These four intervals are

�1 < t < �3 � 3 < t < 3 3 < t < 5 5 < t < 1

The endpoints of each of the intervals are points where at least one of the two

functions is discontinuous. This will guarantee that both functions are continuous

everywhere in each interval. Finally, let’s identify the actual interval of validity for

the initial value problem. The actual interval of validity is the interval that will

contain t0 ¼ 4. So, the interval of validity for the initial value problem is.

3 < t < 5

In this last example we need to be careful to not jump to the conclusion that the

other three intervals cannot be intervals of validity. By changing the initial condi-

tion, in particular the value of to, we can make any of the four intervals the interval

of validity. The first theorem required a linear differential equation. There is a

similar theorem for non-linear first-order differential equations. This theorem is not

as useful for finding intervals of validity as the first theorem was so we won’t be

doing all that much with it.

Here is the theorem.
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Theorem 2

Consider the following IVP

y
0 ¼ f t; yð Þ y t0ð Þ ¼ y0

If f(t, y) and ∂f
∂y are continuous function in some rectangle α < t < β, γ < y

< δ containing the point (t0, y0) then there is a unique solution to the IVP in

some interval t0 � h < t < t0 þ h that is contained in α < t < β.

Unlike the first theorem, this one cannot really be used to find an interval of

validity. So, we will know that a unique solution exists if the conditions of the

theorem are met, but we will actually need the solution in order to determine its

interval of validity. Note as well that for non-linear differential equations it appears

that the value of y0 may affect the interval of validity. Here is an example of the

problems that can arise when the conditions of this theorem aren’t met.

Example 2: Determine all possible solutions to the following IVP.

y
0 ¼ y

1
5 y 0ð Þ ¼ 0

Solution: First, notice that this differential equation does NOT satisfy the condi-

tions of the theorem.

f yð Þ ¼ y
1
5

df

dy
¼ 1

3y
2
3

So, the function is continuous on any interval, but the derivative is not contin-

uous at y ¼ 0and so will not be continuous at any interval containingy ¼ 0. In order

to use the theorem both must be continuous on an interval that contains y0 ¼ 0 and

this is problem for us since we do have y0 ¼ 0. This differential equation is

separable and is fairly simple to solve.ð
y�

1
5dy ¼

ð
dt

3

2
y
2
3 ¼ tþ c

Applying the initial condition gives c ¼ 0 and so the solution is.
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3

2
y
2
3 ¼ t

y
2
3 ¼ 2

3
t

y2 ¼ 2
3
t

� �3
y tð Þ ¼ � 2

3
t

� �3
2

We have got two possible solutions here, both of which satisfy the differential

equation and the initial condition. There is also a third solution to the IVP. y tð Þ ¼ 0

is also a solution to the differential equation and satisfies the initial condition.

In this last example we had a very simple IVP and it only violated one of the

conditions of the theorem, yet it had three different solutions. All the examples

we’ve worked in the previous sections satisfied the conditions of this theorem and

had a single unique solution to the IVP. This example is a useful reminder of the

fact that, in the field of differential equations, things don’t always behave nicely. It’s

easy to forget this as most of the problems that are worked in a differential

equations class are nice and behave in a nice, predictable manner.

Let’s work one final example that will illustrate one of the differences between

linear and non-linear differential equations.

Example 3: Determine the interval of validity for the initial value problem below

and give its dependence on the value of y0.

y
0 ¼ y2 y 0ð Þ ¼ y0

Solution: Before proceeding in this problem, we should note that the differential

equation is non-linear and meets both conditions of the Theorem 2 and so there will

be a unique solution to the IVP for each possible value of y0.
Also, note that the problem asks for any dependence of the interval of validity on

the value of y0. This immediately illustrates a difference between linear and

non-linear differential equations. Intervals of validity for linear differential equa-

tions do not depend on the value of y0. Intervals of validity for non-linear differ-

ential can depend on the value of y0 as we pointed out after the second theorem.

So, let’s solve the IVP and get some intervals of validity.

First note that if y0 ¼ 0 then y tð Þ ¼ 0 is the solution and this has an interval of

validity of �1 < t < 1.

So for the rest of the problem let’s assume that y0 6¼ 0. Now, the differential

equation is separable so let’s solve it and get a general solution.
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ð
y�2dy ¼

ð
dt

�1

y
¼ tþ c

Applying the initial condition gives

c ¼ � 1

y0

The solution is then.

�1

y
¼ tþ� 1

y0

Now that we have a solution to the initial value problem we can start finding

intervals of validity. From the solution we can see that the only problem that we’ll

have is division by zero at

This leads to two possible intervals of validity.

�1 < t <
1

y0

1

y0
< t < 1

That actual interval of validity will be the interval that contains t0 ¼ 0. This

however, depends on the value of y0. If y0 < 0 then 1
y0
< 0 and so the second interval

will contain t0 ¼ 0. Likewise if y0 > 0 then 1
y0
> 0 and in this case the first interval

will contain t0 ¼ 0.

This leads to the following possible intervals of validity, depending on the value

of yo.

If y0 > 0 �1 < t <
1

y0
is the interval of validity:

If y0 ¼ 0 �1 < t < 1 is the interval of validity:

If y0 < 0
1

y0
< t < 1 is the interval of validity:

On a side note, notice that the solution, in its final form, will also work if y0 ¼ 0.

So what did this example show us about the difference between linear and

non-linear differential equations?
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First, as pointed out in the solution to the example, intervals of validity for

non-linear differential equations can depend on the value of y0, whereas intervals of
validity for linear differential equations don’t.

Second, intervals of validity for linear differential equations can be found from

the differential equation with no knowledge of the solution. This is definitely not the

case with nonlinear differential equations. It would be very difficult to see how any

of these intervals in the last example could be found from the differential equation.

Knowledge of the solution was required in order for us to find the interval of

validity.

C.3 Boundary-Value Problems (BVP)

Before we start off this section we need to make it very clear that we are only going

to scratch the surface of the topic of boundary value problems. There is enough

material in the topic of boundary value problems that we could devote a whole class

to it. The intent of this section is to give a brief (and we mean very brief) look at the

idea of boundary value problems and to give enough information to allow us to do

some basic partial differential equations in the next chapter.

Now, with that out of the way, the first thing that we need to do is to define just

what we mean by a boundary value problem (BVP for short). With initial value

problems we had a differential equation and we specified the value of the solution

and an appropriate number of derivatives at the same point (collectively called

initial conditions). For instance for a second-order differential equation the initial

conditions are

y t0ð Þ ¼ y0 y
0
t0ð Þ ¼ y

0
0

With boundary value problems we will have a differential equation and we will

specify the function and/or derivatives at different points, which we’ll call bound-

ary values. For second order differential equations, which will be looking at pretty

much exclusively here, any of the following can, and will, be used for boundary

conditions.

y x0ð Þ ¼ y0 y x1ð Þ ¼ y1 ðC:37Þ

y
0
x0ð Þ ¼ y0 y

0
x1ð Þ ¼ y1 ðC:38Þ

y
0
x0ð Þ ¼ y0 y x1ð Þ ¼ y1 ðC:39Þ

y x0ð Þ ¼ y0 y
0
x1ð Þ ¼ y1 ðC:40Þ
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As mentioned above we’ll be looking pretty much exclusively at second order

differential equations. We will also be restricting ourselves down to linear differ-

ential equations. So, for the purposes of our discussion here we’ll be looking almost

exclusively at differential equations in the form,

y
00 þ p xð Þy0 þ q xð Þy ¼ g xð Þ ðC:41Þ

along with one of the sets of boundary conditions given in Eqs. (C.37–C.40). We

will, on occasion, look at some different boundary conditions but the differential

equation will always be on that can be written in this form.

As we’ll soon see much of what we know about initial value problems will not

hold here. We can, of course, solve Eq. (C.41) provided the coefficients are

constants and for a few cases in which they aren’t. None of that will change. The

changes (and perhaps the problems) arise when we move from initial conditions to

boundary conditions.

One of the first changes is a definition that we saw all the time in the earlier

chapters. In the earlier chapters we said that a differential equation was homoge-

neous if g xð Þ ¼ 0 for all x. Here we will say that a boundary value problem is

homogeneous if in addition to g xð Þ ¼ 0 we also have y0 ¼ 0 and y1 ¼ 0 (regardless

of the boundary conditions we use). If any of these are not zero we will call the BVP

nonhomogeneous.

It is important to now remember that when we say homogeneous

(or nonhomogeneous) we are saying something not only about the differential

equation itself but also about the boundary conditions as well.

The biggest change that we’re going to see here comes when we go to solve the

boundary value problem. When solving linear initial value problems a unique

solution will be guaranteed under very mild conditions. We only looked at this

idea for first-order IVP’s but the idea does extend to higher order IVP’s. In that

section we saw that all we needed to guarantee a unique solution was some basic

continuity conditions. With boundary value problems we will often have no solu-

tion or infinitely many solutions even for very nice differential equations that would

yield a unique solution if we had initial conditions instead of boundary conditions.

Before we get into solving some of these let’s next address the question of why

we’re even talking about these in the first place. As we’ll see in the next chapter in

the process of solving some partial differential equations we will run into boundary

value problems that will need to be solved as well. In fact, a large part of the

solution process there will be in dealing with the solution to the BVP. In these cases

the boundary conditions will represent things like the temperature at either end of a

bar, or the heat flow into/out of either end of a bar. Or maybe they will represent the

location of ends of a vibrating string. So, the boundary conditions there will really

be conditions on the boundary of some process.

So, with some of basic stuff out of the way let’s find some solutions to a few

boundary value problems. Note as well that there really isn’t anything new here yet.

We know how to solve the differential equation and we know how to find the
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constants by applying the conditions. The only difference is that here we’ll be

applying boundary conditions instead of initial conditions.

Example 1: Solve the following BVP. y
00 þ 4y ¼ 0with y 0ð Þ ¼ �2 and y π

4

� � ¼ 10.

Solution: This a simple differential equation to solve and the solution is in the

form of the following as a general solution. Finding these types of solutions is

explained in the next section.

y xð Þ ¼ c1 cos 2xð Þ þ c2 sin 2xð Þ

Now all that we need to do is apply the boundary conditions.

�2 ¼ y 0ð Þ ¼ c1

10 ¼ y
π

4

	 

¼ c2

Then the solution is y xð Þ ¼ �2 cos 2xð Þ þ 10 sin 2xð Þ
We mentioned above that some boundary value problems can have no solutions

or infinite solutions we had better do a couple of examples of those as well here.

This next set of examples will also show just how small of a change to the BVP it

takes to move into these other possibilities.

Example 2: Solve the BVP of y
00 þ 4y ¼ 0 and with initial condition of y 0ð Þ ¼ �2

and y 2πð Þ ¼ �2.

Solution: We are working with the same differential equation as the first example

so we still have,

y xð Þ ¼ c1 cos 2xð Þ þ c2 sin 2xð Þ

Upon applying the boundary conditions we get,

�2 ¼ y 0ð Þ ¼ c1

�2 ¼ y 2πð Þ ¼ c1

So in this case, unlike the previous example, both boundary conditions tell us

that have to have and neither one of them tell us anything about . Remember

however that all we are asking for is a solution to the differential equation that

satisfies the two given boundary conditions and the following function will do that,

y xð Þ ¼ �2 cos 2xð Þ þ c2 sin 2xð Þ
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In other words, regardless of the value of c2 we get a solution and so, in this case
we infinitely solutions to the boundary vale problem. For information and example

refer to the following web site.

http://tutorial.math.lamar.edu/Classes/DE/BoundaryValueProblem.aspx

C.3.1 Second-Order Linear Equation

Linear equations of second order are of crucial importance in the study of differ-

ential equations for two main reasons. The first is that linear equations have a rich

theoretical structure that underlies a number of systematic methods of solution.

Further, a substantial portion of this structure and these methods are understandable

at a fairly elementary mathematical level. In order to present the key ideas in the

simplest possible context, we describe them in this chapter for second-order

equations. Another reason to study second order linear equations is that they are

vital to any serious investigation of the classical areas of mathematical physics. One

cannot go very far in the development of fluid mechanics, heat conduction, wave

motion, or electromagnetic phenomena without finding it necessary to solve

second-order linear differential equations.

C.3.2 Homogeneous Linear Equations with Constant
Coefficients

We have seen that the first-order differential equation of the form y
0 þ ay ¼ 0where

a is a constant, possesses the exponential solution y ¼ c1e
�ax on the interval

�1,1ð Þ. Therefore, it is natural to ask whether exponential solution exists on

�1,1ð Þ for homogeneous linear higher-order differential equations such as the

following:

any
nð Þ þ an�1y

n�1ð Þ þ � � � þ a2y
00 þ a1y

0 þ a0y ¼ 0 ðC:42Þ

Where the coefficients a, i ¼ 0, 1, � � �, n are real constant and an 6¼ 0. The surprising

fact is that all solutions of Eq. (C.42) are exponential function or are constructed out

of exponential [5] functions.

A second-order ordinary differential equation as we said in general with both

homogeneous and non-homogeneous parts is presented below as Eq. (C.43).

d2y

dt2
¼ f t; y;

dy

dt

� �
ðC:43Þ
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Where f is some given function and can be considered the non-homogeneous part of

the second-order differential equation while d2y
dt2 ¼ 0 is the special case or auxiliary

form of second order known as homogeneous part of Eq. (C.43). This equation has a

general solution such as (y) that consists of solution of both terms and they can be

designated (yc) which is Auxiliary or Complementary solution its homogeneous

part while (yp) know as Particular solution for non-homogeneous part of same

equation. This solution is shown as follows:

y ¼ yc þ yp ðC:44Þ

Usually, we will denote the independent variable by t since time is often the

independent variable in physical problems, but sometimes we will use x instead,

while letter of y is used as dependent variable. Eq. (C.43) is linear ordinary

differential equation if f has the form of following Eq. (C.45), that is, if f is linear
in y and y0.

f t; y;
dy

dt

� �
¼ g tð Þ � p tð Þdy

dt
� q tð Þy

¼ g tð Þ � p tð Þy0 � q tð Þy
ðC:45Þ

In Equation C.45 g, p, and q are specific functions of the independent variable but

do not dependent on . In this we can rewrite Eq. (C.45) as

y
00 þ p tð Þy0 þ q tð Þy ¼ g tð Þ ðC:46Þ

Sometime Eq. (C.46) can be written as Eq. (C.47) below and if P tð Þ 6¼ 0, then we

can divide both side of this equation by P(t) and obtain Eq. (C.46).

P tð Þy00 þ Q tð Þy0 þ R tð Þy ¼ G tð Þ ðC:47Þ

Where in this case we have,

p tð Þ ¼ Q tð Þ
P tð Þ q tð Þ ¼ R tð Þ

P tð Þ g tð Þ ¼ G tð Þ
P tð Þ ðC:48Þ

If Equation C.43 is not of the form Eqs. (C.46) or (C.47), then it is called nonlinear.

Finding an analytical solution of nonlinear equations are not trivial and requires

numerical or geometrical approaches that are more often appropriate. Additionally

there two more special types of second-order nonlinear equations that can be solved

by a change of variables that reduces them to first-order equations. In most cases an

initial value problem (IVP) consisting type of differential equations such as

Eqs. (C.43), (C.46), and (C.47) involves a set of initial conditions such as y t0ð Þ
¼ y0 and y

0
t0ð Þ ¼ y

0
0, where y0 and y

0 are given numbers. The initial conditions for a
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second-order equation prescribe not only a particular point (t0, y0) through which

the graph of the solution must pass, but also the slope y
0
0 of the graph at that point. It

is reasonable to expect that two initial conditions are needed for a second-order

equation because, roughly speaking, two integrations are required to find a solution

and each integration introduces an arbitrary constant. Presumably, two initial

conditions will suffice to determine values for these two constants.

A second-order linear equation is said to be homogeneous if the term g(t) in
Eq. (C.46), or the term G(t) in Eq. (C.47), is zero for all t. Otherwise, the equation is
called non-homogeneous. As a result, the term g(t), or G(t), is sometimes called the

non-homogeneous term. We begin our discussion with homogeneous equations,

which we will write in the form

P tð Þy00 þ Q tð Þy0 þ R tð Þy ¼ 0 ðC:49Þ

First we concentrate our attention to special case where the P, Q, and R are

constants and in that case Eq. (C.49) becomes in the form of Eq. C.50 and we

call it Auxiliary Equation, which is a very special case of Equation of (C.43) and

as a result Eq. (C.42).

ay
00 þ by

0 þ cy ¼ 0 ðC:50Þ

If we try a solution of the form y ¼ emt, then after substituting y
0 ¼ memt and y

00

¼ m2emt into Eq. (C.50), this equation takes the following form:

am2emt þ bmemt þ cemt ¼ 0

or

emt am2 þ bmþ c
� � ¼ 0

Since emt is never zero for real values of t, it is apparent that the only way this

exponential function can satisfy the differential Eq. (C.50) is if m is chosen as a root

of the quadratic equation

am2 þ bmþ c ¼ 0 ðC:51Þ

This last equation is called the auxiliary or characteristic equation of the differ-

ential Eq. (C.50) and has two roots as follows:
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m1 ¼
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p	 

2a

m2 ¼
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p	 

2a

There will be three forms of the general solution of Eq. (C.50) corresponding to the

three cases;

1. m1 and m2 real and positive b2 � 4ac
� �

> 0.

2. m1 and m2 real and equal b2 � 4ac
� � ¼ 0.

3. m1 and m2 conjugate complex numbers b2 � 4ac
� �

< 0.

Case 1: Distinct Real Roots. Under the assumption that the auxiliary

Eq. (Eq. C.51) has two unequal real roots m1 and m2, we find two solutions, y1 tð Þ
¼ em1t and y2 tð Þ ¼ em2t. These functions are linearly independent on �1, þ1ð Þ
and hence form a fundamental set. It follows that the general solution of Eq. (C.50)

on this interval is

y ¼ c1y1 tð Þ þ c2y2 tð Þ ¼ c1e
m1t þ c2e

m2t ðC:52Þ

Example 1: Solve equation y
00 � y ¼ 0 that

satisfies the initial conditions of y 0ð Þ ¼ 2 and y
0
0ð Þ ¼ �1.

Solution: Comparing the differential equation of the example with Eq. (C.50) we

see that a ¼ 1, b ¼ 0, and c ¼ �1. So we looking for a solution that not only

satisfies the example problem also pass through the point (0, 2) and at that point has

the slope �1. The first solution is the type two distinct real roots of m1 ¼ 1 and

m2 ¼ �1. As a result we have two separate solutions of y1 tð Þ ¼ c1e
t and y2 tð Þ ¼ c2

e�t with general solution of y ¼ c1y1 tð Þ þ c2y2 tð Þ ¼ c1e
t þ c2e

�t form. Secondly,

we set t ¼ 0 and y ¼ 2 in this general solution and we get c1 þ c2 ¼ 2. Next, we

differentiate the general solution and we have y
0 ¼ c1e

t � c2e
�t. Then setting t ¼ 0

and y
0 ¼ 1, we obtain c1 � c2 ¼ �1. By solving for c1 and c2, we get that c1 ¼ 1

2
and

c2 ¼ 3
2
. Finally inserting these results in general solution we have the final solution

of the example which is y ¼ 1
2
et þ c2e

�t.

Example 2: Solve equation y
00 þ 5y

0 þ 6y ¼ 0 that satisfies the initial conditions of

y 0ð Þ ¼ 2 and y
0
0ð Þ ¼ 3.

Solution: We are not going to explain all the steps but show all the details. Assume

y ¼ ert then we have;
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r2 þ 5r þ 6 ¼ r þ 2ð Þ r þ 3ð Þ ¼ 0

r1 ¼ �2 and r2 ¼ �3

y ¼ c1e
�2t þ c2e

�3t

Using the initial condition we have

c1 þ c2 ¼ 2

�2c1 � 3c2 ¼ 3

8><>:
c1 ¼ 9

c2 ¼ �7

8><>:
y ¼ 9e�2t � 7e�3t

The graph of the solution is shown in Fig. C.10.

Case 2: Repeated Real Roots. When m1 ¼ m2 we necessarily obtain only one

exponential solution, y1 tð Þ ¼ em1t. From the quadratic formula we find thatm1 ¼ �
b=2a since the only way to havem1 ¼ m2 is to have b2 � 4ac

� � ¼ 0. It follows that a

second solution of the equation is [5];

y2 ¼ em1t

ð
e2m1t

e2m1t
dt ¼ em1t

ð
dt ¼ tem1t ðC:53Þ

In Eq. (C.53) we have used the fact that �b=a ¼ 2m1. The general solution is then

y ¼ c1e
m1t þ c2te

m1t ðC:54Þ

0.5

1
y = 9e–2t – 7e–3t

2

y

1 1.5 2 t

Fig. C.10 Solution of

y
00 þ 5y

0 þ 6y ¼ 0,

y 0ð Þ ¼ 2, y
0
0ð Þ ¼ 3
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Example 1 Solve the differential equation y
00 � 10y

0 þ 25y ¼ 0.

Solution: Again assume y ¼ emt then we have

m2 � 10mþ 25 ¼ m� 5ð Þ2 ¼ 0

m1 ¼ m2 ¼ 5

Then

y ¼ c1e
5t þ c2te

5t

Case 3: Complex Roots. If m1 and m2 are complex, then we can write m1 ¼ αþ i

β and m2 ¼ α� iβ, where α and β > 0 are real and i2 ¼ �1. Formally, there is no

difference between this case and Case 1, and hence

y ¼ c1e
αþiβð Þt þ c2e

α�iβð Þt

Using Euler’s formula we have;

eiθ ¼ cos θ þ i sin θ

where θ is any real number. It follows from this formula that

eiβt ¼ cos βtþ i sin βt and e�iβt ¼ cos βt� i sin βt ðC:55Þ

where we have used cos �βtð Þ ¼ cos βt and sin �βtð Þ ¼ � sin βt. By adding first
and then subtracting the two equations in Eq. (C.55), we obtain, respectively,

eiβt þ e�iβt ¼ 2 cos βt and eiβt � e�iβt ¼ 2 i sin βt

Since y ¼ c1e
αþiβð Þt þ c2e

α�iβð Þt is a solution of Eq. (C.50) for any choice of the

constant c1 and c2, the choices c1 ¼ c2 ¼ 1 and c1 ¼ 1, c2 ¼ �1 give, in turn, two

solutions [4]:

y1 ¼ c1e
αþiβð Þt þ c2e

α�iβð Þt and y2 ¼ c1e
αþiβð Þt � c2e

α�iβð Þt

But y1 ¼ eαt eiβt þ e�iβt
� � ¼ 2eαt cos βt

and y2 ¼ eαt eiβt � e�iβt
� � ¼ 2ieαt sin βt

The last two results show that eαt cos βt and eαt sin βt are real solutions of

Eq. (C.50). Moreover, these solutions form a fundamental set on �1,1ð Þ. As a
result, the general solution is

y ¼ c1e
αt cos βtþ c2e

αt sin βt ¼ eαt c1 cos βtþ c2 sin βtð Þ ðC:56Þ
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Example 1: Solve the differential equation y
00 þ 4y

0 þ 7y ¼ 0.

Solution: Again assume y ¼ emt then we have

m2 þ 4mþ 7 ¼ 0

m1 ¼ �2þ ffiffiffiffi
3i

p
and m2 ¼ �2� ffiffiffiffi

3i
p

Then with α ¼ �2 and β ¼ ffiffiffi
3

p
, we have

y ¼ e�2t c1 cos
ffiffiffiffi
3t

p
þ c2 sin

ffiffiffiffi
3t

p	 


C.3.3 Fundamental Solutions of Linear Homogeneous
Equations

In the preceding section it was shown how to solve some differential equations of

the form Eq. (C.50) as follows:

ay
00 þ by

0 þ cy ¼ 0

where a, b, and c are constants. Now we build on those results to provide a clearer

picture of the structure of the solutions of all second order linear homogeneous

equations.

Theorem 1
Consider the initial value problem

y
00 þ p tð Þy0 þ q tð Þy ¼ g tð Þ y t0ð Þ ¼ y0 and y

0
t0ð Þ ¼ y

0
0

ðC:57Þ

where p, q, and g are continuous on an open interval I. Then there is exactly

one

solution y ¼ ϕ tð Þ of this problem, and the solution exist throughout the

interval I. This emphasize three thing as follows:

1. The initial value problem has a solution; in other words, a solution exists.
2. The initial value problem has only one solution; that is, the solution is

unique.
3. The solution ϕ is defined throughout the interval I where the coefficients

are continuous and is at least twice differentiable there.
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For some problem of these assertion we have seen solution in example previous

section such as y
00 � y ¼ 0 and initial value of y 0ð Þ ¼ 2 and y

0
0ð Þ ¼ �1 which has

solution of y ¼ 1
2
et þ 3

2
e�t. The above Theorem 1 indicates that this solution is

indeed the only solution of the initial value problem (IVP) [5]. However, for most

problems of the form Eq. (C.57), it is not possible to write down a useful expression

for the solution. This is a major difference between first order and second order

linear equations. For more information please refer to reference [6] of this appendix

where you can find some unique techniques such as Wronskian Determinant, or

simply Wronskian. Here we show a brief version of Principle of Superposition

along with few examples which is in the form of the following equation [5].

y
00 þ p tð Þy0 þ q tð Þy ¼ 0 y t0ð Þ ¼ y0 y

0
t0ð Þ ¼ y

0
0

ðC:58Þ

Example 1: Find the solution of Eq. (C.58) in above where p and q are continuous
in an open interval I containing t0.

Solution: The solution of this problem is given by Boyce and DiPrima of reference

[5] in this appendix. The summary of this solution is presented here

y ¼ c1y1 tð Þ þ c2y2 tð Þ ðC:59Þ

Where c1 and c2 are give as follows;

c1 ¼ y0y
0
2 t0ð Þ � y

0
0y2 t0ð Þ

y1 t0ð Þy0
2 t0ð Þ � y

0
1 t0ð Þy2 t0ð Þ and c2 ¼ �y0y

0
1 t0ð Þ � y

0
0y1 t0ð Þ

y1 t0ð Þy0
2 t0ð Þ � y

0
1 t0ð Þy2 t0ð Þ

c1 ¼

y0 y2 t0ð Þ

y
0
0 y

0
2 t0ð Þ

�������
�������

y1 t0ð Þ y2 t0ð Þ

y
0
1 t0ð Þ y

0
2 t0ð Þ

�������
�������

and c2 ¼

y1 t0ð Þ y0

y
0
0 t0ð Þ y

0
2

�������
�������

y1 t0ð Þ y2 t0ð Þ

y
0
1 t0ð Þ y

0
2 t0ð Þ

�������
�������

With these values for c1 and c2 the Eq. (C.58) satisfies its initial condition as well
as the differential equation in it.

Example 2: Given differential equation of y
00 þ 5y

0 þ 6y ¼ 0 find the Wronskian

of y1 and y2.

Solution: The solution for this differential equation is given by y1 tð Þ ¼ e�2t and

y2 tð Þ ¼ e�3t where readers can work out the details of these two answers by

themselves. Then Wronskian of these two functions is
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W ¼
e�2t e�3t

�2e�2t �3e�3t

�����
����� ¼ �e�5t

C.3.4 Nonhomogeneous Equations; Method
of Undetermined Coefficients

Now if we return to Eq. (C.46) and assume a Nonhomogeneous aspect of this

equation we then have

L yð Þ ¼ y
00 þ p tð Þy0 þ q tð Þy ¼ g tð Þ ðC:60Þ

Where p, q, and g are continuous functions on the open interval I. The equation

L yð Þ ¼ y
00 þ p tð Þy0 þ q tð Þy ¼ 0 ðC:61Þ

in which g tð Þ ¼ 0 and p and q are the same as in Eq. (C.60), is called the

homogeneous equation corresponding to Eq. (C.60). The following two results

describe the structure of solutions of the nonhomogeneous Eq. (C.60) and provide

a basis for constructing its general solution [5].

Theorem I

If Y1 and Y2 are two solutions of the nonhomogeneous Eq. (C.60), then their

difference Y1 � Y2 is a solution of the corresponding homogeneous

Eq. (C.61). If, in addition y1, and y2 are a fundamental set of solutions of

Eq. (C.61), then

Y1 tð Þ � Y2 tð Þ ¼ c1y1 tð Þ þ c2y2 tð Þ ðC:62Þ

where c1 and c2 are certain constants [6].

The proof of this theorem is given by Boyce and DiPrima of reference [5] in this

appendix.
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Theorem II

The general solution of the nonhomogeneous Eq. (C.60) can be written in

form

y ¼ ϕ tð Þ ¼ c1y1 tð Þ þ c2y2 tð Þ þ Y tð Þ ðC:63Þ

where y1 and y2 are fundamental set of solutions of the corresponding

homogeneous equation of Eq. (C.61), c1 and c2 are arbitrary constants, and

Y is some specific solution of the nonhomogeneous Eq. (C.60) [6].

The proof of this theorem is give by Boyce and DiPrima of reference [6] in this

appendix. The Theorem II states that to solve the nonhomogeneous Eq. (C.60), we

must do three steps:

1. Find the general solution c1y1 tð Þ þ c2y2 tð Þ of the corresponding homogeneous

equation. This solution is frequently called the Complementary Solution and

may be denoted by yc(t).
2. Find some single solution Y(t) of the nonhomogeneous equation. Often this

solution is referred to as a Particular Solution and denoted by yp(t).
3. Add the two solutions in the two preceding steps we have a solution for

Eq. (C.61) that denoted as y tð Þ ¼ yc tð Þ þ yp tð Þ.
We have presented how to find a yc(t) solution, at least when the homogeneous

Eq. (C.61) has constant coefficients in previous sections. Therefore, in next few

paragraph we will focus on how to find the particular solution for Y(t) of the

nonhomogeneous Eq. (C.61). There are two methods that can be considered as

follows:

1. Undetermined Coefficients

2. Variation of Parameters.

There some advantages and some possible shortcoming for each of these above

methods [6].

C.3.4.1 Method of Undetermined Coefficients

The method of undetermined coefficients requires that we make an initial assump-

tion about the form of the particular solution Y(t), but with the coefficients left

unspecified. We then substitute the assumed expression into Eq. (C.60) and attempt

to determine the coefficients so as to satisfy that equation. If we are successful, then

we have found a solution of the differential Eq. (C.60) and can use it for the

particular solution Y(t). If we cannot determine the coefficients, then this means

that there is no solution of the form that we assumed. In this case we may modify

the initial assumption and try again.
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The main advantage of the method of undetermined coefficients is that it is

straightforward to execute once the assumption is made as to the form of Y(t). Its
major limitation is that it is useful primarily for equations for which we can easily

write down the correct form of the particular solution in advance. For this reason,

this method is usually used only for problems in which the homogeneous equation

has constant coefficients and the nonhomogeneous term is restricted to a relatively

small class of functions. In particular, we consider only nonhomogeneous terms that

consist of polynomials, exponential functions, sines, and cosines. Despite this

limitation, the method of undetermined coefficients is useful for solving many

problems that have important applications. However, the algebraic details may

become tedious and a computer algebra system can be very helpful in practical

applications. We will illustrate the method of undetermined coefficients by several

simple examples and then summarize some rules for using it [5].

Example 1: Find a particular solution of y
00 þ 3y

0 � 4y ¼ 3e2t

Solution: Looking for a function Y such that the combination Y
00
tð Þ � 3Y

0
tð Þ � 4Y

tð Þ is equal to 3e2t. Since the exponential function reproduce itself through differ-

entiation, the most possible way to achieve the desired result is to assume Y(t) is

some multiple of e2t, that is, Y tð Þ ¼ Ae2t where the coefficient A is yet to be

determined. To find A we calculate

Y
00
tð Þ ¼ 2Ae2t Y

00
tð Þ ¼ 4Ae2t

and substituting for y, y0, and y00 in the differential equation of example we have;

4A� 6A� 4Að Þe2t ¼ 3et

This result that A ¼ �1=2. Thus a particular solution is A ¼ �1
2
e2t.

Example 2: Find a particular solution of y
00 � 3y

0 � 4y ¼ 2 sin t.

Solution: Let us assume Y tð Þ ¼ A sin t, then we have the following steps:

�5A sin t� 3A cos t ¼ 2 sin t

2þ 5Að Þ sin tþ 3A cos t ¼ 0 ðC:64Þ

The functions sin t and cos t are linearly independent, so Eq. (C.64) can hold on

an interval only if the coefficients 2þ 5A and 3A are both zero. These contradictory

requirements mean that there is no choice of the constant A that makes Eq. (C.64)

true for all t. Thus we conclude that our assumption concerning Y(t) is inadequate.
The appearance of the cosine term in Eq. (C.64) suggests that we modify our

original assumption to include a cosine term in Y(t), that is,
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Y tð Þ ¼ A sin tþ B cos t

where A and B are to be determined. Then

Y
0
tð Þ ¼ A cos t� B sin t Y

00
tð Þ ¼ �A sin t� B cos t

Substituting for y, y0 and y00 we have

�Aþ 3B� 4Að Þ sin tþ �B� 3A� 4Bð Þ cos t ¼ 2 sin t

A ¼ �5=17 B ¼ 3=17

Y tð Þ ¼ � 5

17
sin tþ 3

17
cos t

The method illustrated in the preceding examples can also be used when the right

side of the equation is a polynomial. Thus, to find a particular solution of y
00 � 3y

0

�4y ¼ 4t2 � 1 we initially assume that Y(t) is a polynomial of the same degree as

the nonhomogeneous term, that is, Y tð Þ ¼ At2 þ Btþ C.
In summary we can have the following table for this type of method of finding

particular solution of a nonhomogeneous differential equations.

Summary

1. If nonhomogeneous term g(t) is an exponential eαt function then Y(t) is
proportional to the same exponential function.

y
00 þ 3y

0 � 4y ¼ 3e2t Then Y tð Þ ¼ Ae2t

2. If nonhomogeneous term g(t) is sin βt or cos βt, then Y(t) is a linear

combination of sin βt and cos βt.

y
00 � 3y

0 � 4y ¼ 2 sin t Then Y tð Þ ¼ A sin tþ B cos t

3. If nonhomogeneous term g(t) is a polynomial, and then assume Y(t) is a
polynomial of same degree.

y
00 � 3y

0 � 4y ¼ 4t2 � 1 Then Y tð Þ ¼ At2 þ Btþ C

4. If nonhomogeneous term g(t) is a product of any two, or all three, of these
types of functions, as

y
00 � 3y

0 � 4y ¼ �8et cos t2t Then Y tð Þ ¼ Aet cos 2tþ Bet sin 2t
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We encourage that reader of this book to refer to Boyce and DiPrima of

reference [5] in this appendix

C.3.4.2 Method of Variation of Parameters

The procedure that we used in Sect. 1.8 to find a particular solution of a linear First-

Order Differential Equation on an interval is applicable to linear higher-order

equations as well. To adapt a method such as Variation of Parameters to a Linear

Second-Order Differential Equation such as Eq. (C.60) is a question that we need to

address. We want to know if this method can be applied effectively to an arbitrary

equation such Eq. (C.60) which is reflecting below again

y
00 þ p tð Þy0 þ q tð Þy ¼ g tð Þ ðC:65Þ

where p, q, and g are given continuous functions. As we have learned in previous

section the general solution of homogeneous part of Eq. (C.65) which is present

below is give by Eq. (C.67) in form Complementary or Characteristic form of

Eq. (C.65)

y
00 þ p tð Þy0 þ q tð Þy ¼ 0 ðC:66Þ

yc tð Þ ¼ c1y1 tð Þ þ c2y2 tð Þ ðC:67Þ

Based on this major assumption it is shown how to solve Eq. (C.66) providing that it

has constant coefficients. If the coefficients of Eq. (C.67) are function of variable t,
then we have to use Series Solutions of Second-Order Linear Equations methods in

order to find yc(t).
Now we have to find a particular solution of yp(t) that satisfies nonhomogeneous

part of Eq. (C.65) as well. We seek a solution of the form

yp tð Þ ¼ u1 tð Þy1 tð Þ þ u2 tð Þy2 tð Þ ðC:68Þ

Now we have to identify u1(t) and u2(t) that Eq. (C.68) becomes solution of

nonhomogeneous part of Eq. (C.65) rather than homogeneous Eq. (C.66). Thus

we differentiate Eq. (C.68) to obtain the following;

y
0
p tð Þ ¼ u

0
1 tð Þy1 tð Þ þ u1 tð Þy0

1 tð Þ þ u
0
2 tð Þy2 tð Þ þ u2 tð Þy0

2 tð Þ ðC:69Þ

y
00
p tð Þ ¼ u

0
1 tð Þy0

1 tð Þ þ u1 tð Þy00
1 tð Þ þ u

0
2 tð Þy0

2 tð Þ þ u2 tð Þy00
2 tð Þ ðC:70Þ

Considering that we set the terms involving u
0
1(t) and u

0
2(t) Eq. (C.69) equal to zero;

that is we require that
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u
0
1 tð Þy1 tð Þ þ u

0
2 tð Þy2 tð Þ ¼ 0 ðC:71Þ

Now we substitute for y, y0, and y00 in Eq. (C.65) from Eqs. (C.68), (C.69),

and (C.70), respectively. After rearranging the terms in the resulting equation we

find that

u1 tð Þ y
00
1 tð Þ þ p tð Þy0

1 tð Þ þ q tð Þy1 tð Þ� 
þ u2 tð Þ y

00
2 tð Þ þ p tð Þy0

2 tð Þ þ q tð Þy2 tð Þ� 
þ u

0
1 tð Þy0

1 tð Þ þ u
0
2 tð Þy0

2 tð Þ ¼ g tð Þ

ðC:72Þ

Each of the expressions in square brackets in Eq. (C.72) is zero because both y1 and
y2 are solutions of the homogeneous Eq. (C.66). Therefore Eq. (C.72) reduces to

u
0
1 tð Þy0

1 tð Þ þ u
0
2 tð Þy0

2 tð Þ ¼ g tð Þ ðC:73Þ

By Cramer’s rule, the solution of the system

u
0
1 tð Þy1 tð Þ þ u

0
2 tð Þy2 tð Þ

u
0
1 tð Þy0

1 tð Þ þ u
0
2 tð Þy0

2 tð Þ ¼ g tð Þ

8><>: or

y1 tð Þu0
1 tð Þ þ y2 tð Þu0

2 tð Þ ¼ 0

y
0
1 tð Þu0

1 tð Þ þ y
0
2 tð Þu0

2 tð Þ ¼ g tð Þ

8><>: ðC:74Þ

can be expressed in terms of determinants:

u
0
1 tð Þ ¼ W1

W
¼ � y2 tð Þg tð Þ

W
and u

0
2 tð Þ ¼ W2

W
¼ � y1 tð Þg tð Þ

W
ðC:75Þ

whereW(y1, y2) is the Wronskian of y1(t) and y2(t). Note that division byW(y1, y2) is
permissible since y1(t) and y2(t) are a fundamental set of solutions, and therefore

Wronskian is nonzero.

W y1; y2ð Þ ¼
y1 tð Þ y2 tð Þ
y
0
1 tð Þ y

0
2 tð Þ

�����
����� W1 ¼

0 y2 tð Þ
g tð Þ y

0
2 tð Þ

�����
����� W2 ¼

y1 tð Þ 0

y
0
1 tð Þ g tð Þ

�����
����� ðC:76Þ

By integrating Eq. (C.75) we find the desired functions u1(t) and as follows:

u1 tð Þ ¼ �
ð
y2 tð Þg tð Þ
W y1; y2ð Þ dtþ c1 u2 tð Þ ¼

ð
y1 tð Þg tð Þ
W y1; y2ð Þ dtþ c2 ðC:77Þ

Finally, substituting the results of Eq. (C.77) into Eq. (C.68) we obtain the general

solution of Eq. (C.65). We can summarize the result as a following theorem [5].
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Theorem III

If the functions p, q, and g are continuous on an interval I, and if the functions
y1 and y2 are linearly independent solutions of the homogeneous Eq. (C.66)

corresponding to the nonhomogeneous Eq. (C.65),

y
00 þ p tð Þy0 þ q tð Þy ¼ g tð Þ

Then a particular solution of Eq. (C.65) is given as

Y tð Þ ¼ �y1 tð Þ
ð
y2 tð Þg tð Þ
W y1; y2ð Þ dtþ y2 tð Þ

ð
y1 tð Þg tð Þ
W y1; y2ð Þ dt ðC:78Þ

and the general solution is

y ¼ c1y1 tð Þ þ c2y2 tð Þ þ Y tð Þ ðC:79Þ

as prescribed by Theorem II.

Example 1: Solve y
00 � 4y

0 þ 4y ¼ xþ 1ð Þe2x

Solution: The auxiliary equation of complementary term is given by

m2 � 4mþ 4 ¼ m� 2ð Þ2 ¼ 0, which has repeating roots therefore we have

y ¼ c1e
2x þ c1xe

2x. With the identification y1 ¼ e2x and y2 ¼ xe2x, we next compute

the Wronskian [4]:

W e2x, xe2x
� � ¼ e2x xe2x

2xe2x 2xe2x þ e2x

�����
����� ¼ e4x

Since the given differential equation is already in the form of Eq. (C.65) (that is,

the coefficient of y00 is 1), we identify f xð Þ ¼ xþ 1ð Þe2x. From Eq. (C.76) we obtain

W1 ¼
0 xe2x

xþ 1ð Þe2x 2xe2x þ e2x

�����
����� ¼ � xþ 1ð Þxe4x

W2 ¼
e2x 0

2e2x xþ 1ð Þe2x

�����
����� ¼ xþ 1ð Þxe4x

And so from Eq. (C.75) we have
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u
0
1 ¼ � xþ 1ð Þxe4x

e4x
¼ �x2 � x u

0
2 ¼ � xþ 1ð Þxe4x

e4x
¼ xþ 1

It follows that u1 ¼ �1
3
x3 � 1

2
x2 and u2 ¼ 1

2
x2 þ x. Hence

yp ¼ �1

3
x3 � 1

2
x2

� �
e2x þ 1

2
x2 þ x

� �
xe2x ¼ 1

6
x3e2x þ 1

2
x2e2x

and y ¼ yc þ yp ¼ c1e
2x þ c2xe

2x þ 1

6
x3e2x þ 1

2
x2e2x

Example 2: Solve 4y
00 þ 36y ¼ csc 3x

Solution: Here we are not spending time to explaining the details of solution and

we leave that to reader but show all the steps

y
00 þ 9y ¼ 1

4
csc 3x

m2 þ 9 ¼ 0
m1 ¼ 3i

m2 ¼ �3i

8<: Complex roots for complementary function

yc ¼ c1 cos 3xþ c2 sin 3x

y1 ¼ cos 3x

y2 ¼ sin 3x

(
and f xð Þ ¼ 1

4
csc3x

The Wronskian [5]:

W cos 3x, sin 3xð Þ ¼
cos 3x sin 3x

�3 sin 3x 3 cos 3x

�����
����� ¼ 3

W1 ¼
0 sin 3x

1

4
csc3x 3 cos 3x

������
������ ¼ 1

4
W2 ¼

cos 3x 0

�3 sin 3x
1

4
csc3x

������
������ ¼ 1

4

cos 3x

sin 3x

Integrating, we have

u
0
1 ¼

W1

W
¼ �1

4
u

0
2 ¼

W2

W
¼ 1

4

cos 3x

sin 3x

Then u1 ¼ � 1

12
x and u2 ¼ 1

36
ln sin 3xj j
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Thus the particular solution is yp ¼ �1
2
x cos 3xþ 1

36
sin 3xð Þln sin 3xj j

The general solution say between interval (0, π/6) is [5].

y ¼ yc þ yp ¼ c1 cos 3xþ c2 sin 3x� 1

12
x cos 3xþ 1

36
sin 3xð Þln sin 3xj j

Example 3: Solve y
00 � y ¼ 1

x

Solution: The auxiliary equation m2 � 1 ¼ 0 yield m1 ¼ �1 and m2 ¼ 1 [4].

Therefore yc ¼ c1e
x þ c2e

�x. Now W ex; e�xð Þ ¼ �2 and

u
0
1 ¼ � e�x 1=xð Þ

�2
u1 ¼ 1

2

ð x
x0

e�t

t
dt

u
0
2 ¼ � e�x 1=xð Þ

�2
u2 ¼ �1

2

ð x
x0

e�t

t
dt

Due to fact that forgoing integrals are nonelementary type, we are forced to write

yp ¼
1

2
ex
ð x
x0

e�t

t
dt� 1

2
e�x

ð x
x0

e�t

t
dt

and

y ¼ yc þ yp ¼ c1e
x þ c2e

�x þ 1

2
ex
ð x
x0

e�t

t
dt� 1

2
e�x

ð x
x0

e�t

t
dt

C.4 Eigenvalues and Eigenvectors

We need a quick review of linear algebra we need to get this section. Without this

we will not be able to do any of the differential equations work that is in this section

and appendix.

So let’s start with the following. If we multiply an n� n matrix by an n� 1

vector we will get a new n� 1 vector back. In other words,

A~η ¼ ~y

What we want to know is if it is possible for the following to happen. Instead of just

getting a brand new vector out of the multiplication is it is possible instead to get the

following:

A~η ¼ λ~η ðC:80Þ

In other words is it possible, at least for certain λ and ~η, to have matrix multipli-

cation be the same as just multiplying the vector by a constant?. Of course, we

probably wouldn’t be talking about this if the answer was no. So, it is possible for
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this to happen, however, it won’t happen for just any value of λ or ~η. If we do

happen to have a λ and~η for which this works (and they will always come in pairs)

then we call λ an eigenvalue of A and ~η an eigenvector of A.
So, how do we go about find the eigenvalues and eigenvectors for a matrix? Well

first notice that that if ~η ¼ ~0 then Eq. (C.14) is going to be true for any value of λ
and so we are going to make the assumption that. With that out of the way let’s

rewrite Eq. (C.14) a little.

A~η� λ~η ¼ ~0

A~η� λIn~η ¼ ~0

ðA� λInÞ~η ¼ ~0

Notice that before we factored out the ~η we added in the appropriately sized

identity matrix. This is equivalent to multiplying things by a one and so doesn’t

change the value of anything. We needed to do this because without it we would

have had the difference of a matrix, A, and a constant, λ, and this can’t be done. We

now have the difference of two matrices of the same size which can be done.

So, with this rewrite we see that

A� λInð Þ~η ¼ ~0 ðC:81Þ

is equivalent to Eq. (C.80). In order to find the eigenvectors for a matrix we will

need to solve a homogeneous system. Recall the fact from the previous section that

we know that we will either have exactly one solution ~η ¼ ~0Þ
	

or we will have

infinitely many nonzero solutions. Since we’ve already said that don’t want ~η ¼ ~0
this means that we want the second case.

Knowing this will allow us to find the eigenvalues for a matrix. Recall from this

fact that we will get the second case only if the matrix in the system is singular.

Therefore we will need to determine the values of λ for which we get,

det A� λIð Þ ¼ 0

Once we have the eigenvalues we can then go back and determine the eigenvectors

for each eigenvalue. Let’s take a look at a couple of quick facts about eigenvalues

and eigenvectors.

Fact

If A is an n� nmatrix then det A� λIð Þ ¼ 0 is an nth degree polynomial. This

polynomial is called the Characteristic Polynomial.

To find eigenvalues of a matrix all we need to do is solve a polynomial. That’s

generally not too bad provided we keep n small. Likewise this fact also tells us that

for an n� n matrix, A, we will have n eigenvalues if we include all repeated

eigenvalues.
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Fact

If λ1, λ2. . . .., λn is the complete list of eigenvalues for A (including all

repeated eigenvalues) then,

1. If λ occurs only once in the list then we call λ simple.

2. If λ occurs k > I times in the list then we say that λ has multiplicity k.
3. If λ1, λ2: . . . :, λn k 	 nð Þ are the simple eigenvalues in the list with

corresponding eigenvectors ~η 1ð Þ,~η 2ð Þ: . . . :,~η kð Þ then the eigenvectors are

all linearly independent.

4. If λ is an eigenvalue of k > I then λwill have anywhere from 1 to k linearly
independent eigenvectors.

The usefulness of these facts will become apparent when we get back into

differential equations since in that work we will want linearly independent

solutions.

For those readers that have access to website, I encourage you go to the

following link to go to and get more information on the Paul’s Online Math Notes

http://tutorial.math.lamar.edu/

Let’s work a couple of examples now to see how we actually go about finding

eigenvalues and eigenvectors.

Example 1: Find the eigenvalues and eigenvectors of the following matrix

A ¼
2 7

�1 �6

 !

Solution:

The first thing that we need to do is find the eigenvalues. That means we need

the following matrix,

A� λI ¼
2 7

�1 �6

 !
� λ

1 0

0 1

 !
¼

2� λ 7

�1 �6� λ

 !

In particular we need to determine where the determinant of this matrix is

zero.

det A� λIð Þ ¼ 2� λð Þ �6� λð Þ þ 7 ¼ λ2 þ 4λ� 5 ¼ λþ 5ð Þ λ� 1ð Þ

So, it looks like we will have two simple eigenvalues for this matrix, λ1 ¼ �5

and λ2 ¼ 1. We will now need to find the eigenvectors for each of these. Also

(continued)
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note that according to the fact above, the two eigenvectors should be linearly

independent.

To find the eigenvectors we simply plug in each eigenvalue into Eq. (C.15)

and solve. So, let’s do that.

λ1 ¼ �5 :

In this case we need to solve the following system

7 7

�1 �1

� �
~η ¼

0

0

 !

Recall that officially to solve this system we use the following augmented

matrix.

7 7 0

�1 �1 0

� �1
7
R1þR2

) 7 7 0

�1 �1 0

� �
Upon reducing down we see that we get a single equation

7η1 þ 7η2 ¼ 0 ) η1 ¼ �η2

that will yield an infinite number of solutions. This is expected behavior.

Recall that we picked the eigenvalues so that the matrix would be singular

and so we would get infinitely many solutions.

Notice as well that we could have identified this from the original system.

This won’t always be the case, but in the 2 x 2 case we can see from the

system that one row will be a multiple of the other and so we will get infinite

solutions. From this point on we won’t be actually solving systems in these

cases. We will just go straight to the equation and we can use either of the two

rows for this equation.

Now, let’s get back to the eigenvector, since that is what we were after. In

general then the eigenvector will be any vector that satisfies the following,

~η ¼
η1

η2

0@ 1A ¼
�η1

η2

0@ 1A η2 6¼ 0

We really don’t want a general eigenvector however so we will pick a value

for η2 to get a specific eigenvector. We can choose anything (except η2 ¼ 0),

so pick something that will make the eigenvector “nice”. Note as well that

(continued)
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since we’ve already assumed that the eigenvector is not zero we must choose

a value that will not give us zero, which is why we want to avoidη2 ¼ 0 in this

case. Here’s the eigenvector for this eigenvalue.

~η 1ð Þ ¼
�1

1

0@ 1A using η2 ¼ 1

Now we get to do this all over again for the second eigenvalue.

λ2 ¼ 1 :

We’ll do much less work with this part than we did with the previous part. We

will need to solve the following system.

1 7

�1 �7

� �
~η ¼ 0

0

� �
Clearly both rows are multiples of each other and so we will get infinitely

many solutions. We can choose to work with either row. We’ll run with the

first because to avoid having too many minus signs floating around. Doing

this gives us,

η1 þ 7η2 ¼ 0 η1 ¼ �7η2

Note that we can solve this for either of the two variables. However, with an

eye towards working with these later on let’s try to avoid as many fractions as

possible. The eigenvector is then,

~η 2ð Þ ¼
�7

1

0@ 1A using η2 ¼ 1

~η 2ð Þ ¼
�7

1

0@ 1A using η2 ¼ 1

Summarizing we have,

(continued)
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λ1 ¼ �5 ~η 2ð Þ ¼
�1

1

0@ 1A

λ2 ¼ 1 ~η 2ð Þ ¼
�7

1

0@ 1A
Note that the two eigenvectors are linearly independent as predicted.

C.5 Eigenvalues and Eigenfunctions

For a given square matrix, A, if we could find values of λ for which we could find

nonzero solutions, i.e. ~x 6¼ ~0, to,

A~x ¼ λ~x

then we called λ an eigenvalue of A and was its corresponding eigenvector. It’s

important to recall here that in order for λ to be an eigenvalue then we had to be able
to find nonzero solutions to the equation. In order to show the relationship between

this topic and Boundary Value problem (BVP) we show the two following exam-

ples and expand on them. In these two examples we solve homogeneous (and that is

very important to notice) BVP’s in the form of,

y
00 þ λy ¼ 0 y 0ð Þ ¼ 0 y 2πð Þ ¼ 0 ðC:82Þ

Example 1: Solve the following BVP

y
00 þ 4y ¼ 0 y 0ð Þ ¼ 0 y 2πð Þ ¼ 0

Solution: Here the general solution is,

y xð Þ ¼ c1 cos 2xð Þ þ c2 sin 2xð Þ

Applying the boundary conditions gives

0 ¼ y 0ð Þ ¼ c1

0 ¼ y 2πð Þ ¼ c1

So c2 is arbitrary and the solution is y xð Þ ¼ c2 sin 2xð Þ and in this case we will get

infinitely many solutions.
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Example 2: Solve the following BVP

y
00 þ 3y ¼ 0 y 0ð Þ ¼ 0 y 2πð Þ ¼ 0

Solution: The general solution in this case is

y xð Þ ¼ c1 cos
ffiffiffi
3

p
x

	 

þ c2 sin

ffiffiffi
3

p
x

	 

Applying the boundary conditions gives

0 ¼ y 0ð Þ ¼ c1

0 ¼ y 2πð Þ ¼ c2 sin
ffiffiffi
3

p
x

� � ) c2 ¼ 0

In this case we found both constants to be zero and so the solution is, y xð Þ ¼ 0

In Example 1 we had λ ¼ 4 and we found nontrivial (i.e. nonzero) solutions to

the BVP. In Example 2 we used λ ¼ 3 and the only solution was the trivial solution

(i.e. y xð Þ ¼ 0). So, this homogeneous BVP (recall this also means the boundary

conditions are zero) seems to exhibit similar behavior to the behavior in the matrix

equation above. There are values of λ that will give nontrivial solutions to this BVP
and values of λ that will only admit the trivial solution.

So, for those values of λ that give nontrivial solutions we’ll call λ an eigenvalue
for the BVP and the nontrivial solutions will be called Eigenfunctions for the BVP

corresponding to the given eigenvalue. We now know that for the homogeneous

BVP given in Eq. (C.82), λ ¼ 4 is an eigenvalue (with eigenfunctions y xð Þ ¼ c2 sin
2xð Þ) and that λ ¼ 3 is not an eigenvalue.

Eventually we’ll try to determine if there are any other eigenvalues for

Eq. (C.82), however before we do that let’s comment briefly on why it is so

important for the BVP to homogeneous in this discussion. In Example 3 and

Example 4 down below we solve the homogeneous differential equations.

y
00 þ λy ¼ 0

with two different nonhomogeneous boundary conditions in the form,

y 0ð Þ ¼ a y 2πð Þ ¼ b

Example 3: Solve the following BVP

y
00 þ 4y ¼ 0 y 0ð Þ ¼ �2 y 2πð Þ ¼ �2
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Solution: We have a general solution of the form as follows:

y xð Þ ¼ c1 cos 2xð Þ þ c2 sin 2xð Þ

Upon applying the boundary conditions we get

�2 ¼ y 0ð Þ ¼ c1

�2 ¼ y 2πð Þ ¼ c1

So in this case, unlike previous example, both boundary conditions tell us that we

have to have c1 ¼ �2 and neither one of them tell us anything about c2. Remember

however that all we’re asking for is a solution to the differential equation that

satisfies the two given boundary conditions and the following function will do that

y xð Þ ¼ �2 cos 2xð Þ þ c2 sin 2xð Þ

In other words, regardless of the value of c2 we get a solution and so, in this case
we get infinitely many solutions to the boundary value problem.

Example 4: Solve the following BVP.

y
00 þ 4y ¼ 0 y 0ð Þ ¼ �2 y 2πð Þ ¼ 3

Solution: Again we have the following general solution as follows:

y xð Þ ¼ c1 cos 2xð Þ þ c2 sin 2xð Þ

This time the boundary conditions give us,

�2 ¼ y 0ð Þ ¼ c1

3 ¼ y 2πð Þ ¼ c1

In this case we have a set of boundary conditions each of which requires a

different value of c1 in order to be satisfied. This, however, is not possible and so in
this case have no solution.

In these two examples we saw that by simply changing the value of a and/or bwe
were able to get either nontrivial solutions or to force no solution at all. In the

discussion of eigenvalues/eigenfunctions we need solutions to exist and the only

way to assure this behavior is to require that the boundary conditions also be

homogeneous. In other words, we need for the BVP to be homogeneous. There is

one final topic that we need to discuss before we move into the topic of eigenvalues

and eigenfunctions and this is more of a notational issue that will help us with some

of the work that we’ll need to do.
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Let’s suppose that we have a second order differential equations and its charac-

teristic polynomial has two real, distinct roots and that they are in the form

r1 ¼ α r2 ¼ �α

Then we know that the solution is,

y xð Þ ¼ c1e
r1x þ c2e

r1x ¼ c1e
αx þ c2e

�αx

While there is nothing wrong with this solution let’s do a little rewriting of this.

We’ll start by splitting up the terms as follows,

y xð Þ ¼ c1e
αx þ c2e

�αx

¼ c1
2
eαx þ c1

2
eαx þ c2

2
e�αx þ c2

2
e�αx

Now we’ll add/subtract the following terms (note we’re “mixing” the ci and �α up

in the new terms) to get,

y xð Þ ¼ c1
2
eαx þ c1

2
eαx þ c2

2
e�αx þ c2

2
e�αx þ c1

2
e�αx � c1

2
e�αx

	 

þ c2

2
eαx � c2

2
eαx

	 

Next, rearrange terms around a little,

y xð Þ ¼ 1

2
c1e

αx þ c1e
�αx þ c2e

αx þ c2e
�αxð Þ þ 1

2
c1e

αx � c1e
�αx � c2e

αx þ c2e
�αxð Þ

Finally, the quantities in parenthesis factor and we’ll move the location of the

fraction as well. Doing this, as well as renaming the new constants we get,

y xð Þ ¼ c1 þ c2ð Þ e
αx þ e�αx

2
þ c1 � c2ð Þ e

αx � e�αx

2

¼ C1

eαx þ e�αx

2
þ C2

eαx � e�αx

2

All this work probably seems very mysterious and unnecessary. However there

really was a reason for it. In fact you may have already seen the reason, at least in

part. The two “new” functions that we have in our solution are in fact two of the

hyperbolic functions. In particular,

cosh xð Þ ¼ ex þ e�x

2
sinh xð Þ ¼ ex � e�x

2

So, another way to write the solution to a second order differential equation whose

characteristic polynomial has two real, distinct roots in the form r1 ¼ α, r2 ¼ �α is,

Appendix C: Short Course in Ordinary and Partial Differential Equations 509



y xð Þ ¼ C1cosh αxð Þ þ C2sinh αxð Þ

Having the solution in this form for some (actually most) of the problems we’ll be

looking will make our life a lot easier. The hyperbolic functions have some very

nice properties that we can (and will) take advantage of.

First, since we’ll be needing them later on, the derivatives are,

d

dx
cosh xð Þð Þ ¼ sinh xð Þ d

dx
sinh xð Þð Þ ¼ cosh xð Þ

Next let’s take a quick look at the graphs of these functions.

–3 –2 –1 0

1

2

3

4

5

6

1 2 3
x

y
y = cosh x

–3

–6

–4

–2

2

6

4

–2 –1 1 2 3
x

y

y = sinh x

Note that cosh 0ð Þ ¼ 1 and sinh 0ð Þ ¼ 0. Because we’ll often be working with

boundary conditions at x ¼ 0 these will be useful evaluations.

Next, and possibly more importantly, let’s notice that cosh xð Þ > 0 for all x and so
the hyperbolic cosine will never be zero. Likewise, we can see that sinh xð Þ ¼ 0only

if x ¼ 0. We will be using both of these facts in some of our work so we shouldn’t

forget them.

Now let’s work an example to see how we go about finding eigenvalues/

eigenfunctions for a BVP.
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Example 5

Find all the eigenvalues and eigenfunctions for the following BVP.

y
00 þ λy ¼ 0 y 0ð Þ ¼ 0 y 2πð Þ ¼ 0

Solution

We started off this section looking at this BVP and we already know one

eigenvalue λ ¼ 4ð Þ and we know one value of λ that is not an eigenvalue

λ ¼ 3ð Þ. As we go through the work here we need to remember that we will

get an eigenvalue for a particular value of λ if we get non-trivial solutions of
the BVP for that particular value of λ.

In order to know that we’ve found all the eigenvalues we can’t just start

randomly trying values of λ to see if we get non-trivial solutions or not.

Luckily there is a way to do this that’s not too bad and will give us all the

eigenvalues/eigenfunctions. We are going to have to do some cases however.

The three cases that we will need to look at are: λ > 0, λ ¼ 0, λ < 0 and . Each

of these cases gives a specific form of the solution to the BVP which we can

then apply the boundary conditions to see if we’ll get non-trivial solutions or

not. So, let’s get started on the cases.

λ > 0

In this case the characteristic polynomial we get from the differential equa-

tion is,

r2 þ λ ¼ 0 ) r1,2 ¼ � ffiffiffiffiffiffi�λ
p

In this case since we know that λ > 0 these roots are complex and we can

write them instead as, r1,2 ¼ �i
ffiffiffi
λ

p
and the general solution to the differential

equation is then,

y xð Þ ¼ c1 cos
ffiffiffi
λ

p
x

	 

þ c2 sin

ffiffiffi
λ

p
x

	 

Applying the first boundary condition gives us,

0 ¼ y 0ð Þ ¼ c1

So, taking this into account and applying the second boundary condition

we get,

(continued)
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0 ¼ y 2πð Þ ¼ c2 sin 2π
ffiffiffi
λ

p	 

This means that we have to have one of the following,

c2 ¼ 0 or sin 2π
ffiffiffi
λ

p� � ¼ 0

However, recall that we want non-trivial solutions and if we have the first

possibility we will get the trivial solution for all values of λ > 0. Therefore

let’s assume that c2 6¼ 2. This means that we have,

sin 2π
ffiffiffi
λ

p� � ¼ 0 ) 2π
ffiffiffi
λ

p ¼ nπ n ¼ 1, 2, 3, � � �

In other words, taking advantage of the fact that we know where sine is zero

we can arrive at the second equation. Also note that because we are assuming

that λ > 0 we know that 2π
ffiffiffi
λ

p
> 0 and so n can only be a positive integer for

this case. Now all we have to do is solve this for λ and we’ll have all the

positive eigenvalues for this BVP. The positive eigenvalues are then,

λn ¼ n

2

	 
2
¼ n2

4
n ¼ 1, 2, 3, � � �

and the eigenfunctions that correspond to these eigenvalues are

yn xð Þ ¼ sin
nπ

2

	 

n ¼ 1, 2, 3, � � �

Note that we subscripted an n on the eigenvalues and eigenfunctions to denote

the fact that there is one for each of the given values of n. Also note that we

dropped the c2 on the eigenfunctions. For eigenfunctions we are only inter-

ested in the function itself and not the constant in front of it and so we

generally drop that.

Let’s now move into the second case.

λ ¼ 0

In this case the BVP becomes,

y
00 ¼ 0 y 0ð Þ ¼ 0 y 2πð Þ ¼ 0

and integrating the differential equation a couple of times gives us the general

solution,

(continued)
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y xð Þ ¼ c1 þ c2x

Applying the first boundary condition gives,

0 ¼ y 0ð Þ ¼ c1

Applying the second boundary condition as well as the results of the first

boundary condition gives,

0 ¼ y 2πð Þ ¼ 2c2π

Here, unlike the first case, we don’t have a choice on how to make this zero.

This will only be zero if c2 ¼ 0. Therefore, for this BVP (and that’s impor-

tant), if we have λ ¼ 0 the only solution is the trivial solution and so λ ¼ 0

cannot be an eigenvalue for this BVP.

Now let’s look at the final case.

λ < 0

In this case the characteristic equation and its roots are the same as in the first

case. So, we know that,

r1,2 ¼ �
ffiffiffiffiffiffi
�λ

p

However, because we are assuming λ < 0 here these are now two real distinct

roots and so using our work above for these kinds of real, distinct roots we

know that the general solution will be,

y xð Þ ¼ c1cosh
ffiffiffi
λ

p
x

	 

þ c2sinh

ffiffiffi
λ

p
x

	 

Note that we could have used the exponential form of the solution here, but

our work will be significantly easier if we use the hyperbolic form of the

solution here. Now, applying the first boundary condition gives,

0 ¼ y 0ð Þ ¼ c1cosh 0ð Þ þ c2sinh 0ð Þ ¼ c1 1ð Þ þ c2 0ð Þ ¼ c1 ) c1 ¼ 0

Applying the second boundary condition gives,

0 ¼ y 2πð Þ ¼ c2sinh 2π
ffiffiffiffiffiffi
�λ

p	 

(continued)
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Because we are assuming λ < 0 we know that 2π
ffiffiffiffiffiffi�λ

p 6¼ 0 and so we also

know that sinh 2π
ffiffiffiffiffiffi�λ

p� � 6¼ 0. Therefore, much like the second case, we must

have c2 ¼ 0.

So, for this BVP (again that’s important), if we have λ < 0 we only get the

trivial solution and so there are no negative eigenvalues.

In summary then we will have the following eigenvalues/eigenfunctions

for this BVP.

λn ¼ n2

4
yn xð Þ ¼ sin

nπ

2

	 

n ¼ 1, 2, 3, � � �

Let us take a look at another example with slightly different boundary

conditions.

Example 6

Find all the eigenvalues and eigenfunctions for the following BVP

y
00 þ λy ¼ 0 y

0
0ð Þ ¼ 0 y

0
2πð Þ ¼ 0

Solution:

Here we are going to work with derivative boundary conditions. The work is

pretty much identical to the previous example however so we won’t put in

quite as much detail here. We’ll need to go through all three cases just as the

previous example so let’s get started on that.

λ > 0

The general solution to the differential equation is identical to the previous

example and so we have

y xð Þ ¼ c1 cos
ffiffiffi
λ

p
x

	 

þ c2 sin

ffiffiffi
λ

p
x

	 

Applying the first boundary condition gives us,

0 ¼ y
0
0ð Þ ¼ ffiffiffi

λ
p

c2 ) c2 ¼ 0

Recall that we are assuming that λ > 0 here and so this will only be zero if

c2 ¼ 0. Now, the second boundary condition gives us,

0 ¼ y
0
2πð Þ ¼ �

ffiffiffi
λ

p
c1 sin 2π

ffiffiffi
λ

p	 

(continued)
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Recall that we don’t want trivial solutions and that λ > 0 so we will only get

non-trivial solution if we require that,

sin 2π
ffiffiffi
λ

p� � ) 2π
ffiffiffi
λ

p
n ¼ 1, 2, 3, � � �

Solving for λ and we see that we get exactly the same positive eigenvalues for

this BVP that we got in the previous example.

λn ¼ n

2

	 
2
¼ n2

4
n ¼ 1, 2, 3, � � �

The eigenfunctions that correspond to these eigenvalues however are,

yn xð Þ ¼ cos
nx

2

	 

n ¼ 1, 2, 3, � � �

So, for this BVP we get cosines for eigenfunctions corresponding to positive

eigenvalues.

Now the second case.

λ ¼ 0

The general solution is, y xð Þ ¼ c1 þ c2x. Applying the first boundary condi-

tion gives, 0 ¼ y
0
0ð Þ ¼ c2. Using this result, the general solution is then, y xð Þ

¼ c1 and note that this will trivially satisfy the second boundary condition,

0 ¼ y
0
2πð Þ ¼ 0. Therefore, unlike the first example, λ ¼ 0 is an eigenvalue for

this BVP and the eigenfunctions corresponding to this eigenvalue is,

y xð Þ ¼ 1. Again, note that we dropped the arbitrary constant for the

eigenfunctions.

Finally let’s take care of the third case.

λ < 0

The general solution here is,

y xð Þ ¼ c1cosh
ffiffiffiffiffiffi
�λ

p
x

	 

þ c2sinh

ffiffiffiffiffiffi
�λ

p
x

	 

Applying the first boundary condition gives,

0 ¼ y
0
0ð Þ ¼ ffiffiffiffiffiffi�λ

p
c1sinh 0ð Þ þ ffiffiffiffiffiffi�λ

p
c2cosh 0ð Þ ¼ ffiffiffiffiffiffi�λ

p
c2 ) c2 ¼ 0

Applying the second boundary condition gives,

(continued)
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0 ¼ y
0
2πð Þ

ffiffiffiffiffiffi
�λ

p
c1sinh 2π

ffiffiffiffiffiffi
�λ

p	 

As with the previous example we again know that 2π

ffiffiffiffiffiffi�λ
p 6¼ 0 and so

sinh 2π
ffiffiffiffiffiffi�λ

p� � 6¼ 0. Therefore we must have c1 ¼ 0. So, for this BVP we

again have no negative eigenvalues.

In summary then we will have the following eigenvalues/eigenfunctions

for this BVP.

λn ¼ n2

4
yn xð Þ ¼ cos

nx

2

	 

n ¼ 1, 2, 3, � � � λ0 ¼ 0 y0 xð Þ ¼ 1

Notice as well that we can actually combine these if we allow the list of n’s
for the first one to start at zero instead of one. This will often not happen, but

when it does we’ll take advantage of it. So the “official” list of eigenvalues/

eigenfunctions for this BVP is,

λn ¼ n2

4
yn xð Þ ¼ cos

nx

2

	 

n ¼ 1, 2, 3, � � �

For those readers that have access to web site, I encourage you to go to the

following link to go to and get more information on the Paul’s Online Math Notes

http://tutorial.math.lamar.edu/

C.6 Higher-Order Differential Equations

We now turn our attention to the solution of differential equations of order two or

higher but we also remind you for the purpose of this book we do not need to know

beyond second order differential equations (ODEs) behavior and their solution. The

only equation we deal with is heat conduction and equation which is a second-order

type with various Intial and Boundary conditions. Therefore readers that are

interested to understand and learn more about ODEs beyond second order should

refer to references [4] and [5] of this appendix.

C.7 Partial Differential Equation

This section discusses elementary partial differential equations in engineering and

physical sciences. It is suited for courses whose titles include Fourier Series

orthogonal functions, or boundary value problem. It may also be used in courses
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on Green’s Function or Transform Methods such as Laplace Transform, etc. (See

Appendix E). Simple models (Heat Flow, Vibrating Strings and Membranes) are

emphasized. Equations are formulated carefully from physical principles, motivat-

ing most mathematical topics. Standard topics such as the method of separation of

variables, Fourier series, Laplace Transformation, and orthogonal functions are

developed with considerable detail. In addition, there is variety of clearly presented

topics, such as differentiation and integration of Fourier Series, Reverse Laplace

Transformation, zeros of Sturm-Liouville Egienfunctions, Rayleigh quotient,

Multidimensional Eigenvalue problems, Bessel Functions for vibration circular

membrane, egienfunctions expansion for nonhomogeneous problems, Green’s

functions, Fourier and Laplace Transform solutions, method of characteristics,

and numerical methods. Some optional advanced material of interest is also

included (for example, asymptotic expansion of large eigenvalues, calculation of

perturbed frequencies using the Fredholm alternative, and the dynamics of shock

waves).

C.7.1 Definition

A partial differential equation (PDE) describes a relation between an unknown

function and its partial derivatives. PDEs appear frequently in all areas of physics

and engineering. Moreover, in recent years we have seen a dramatic increase in the

use of PDEs in areas such as biology, chemistry, computer sciences (particularly in

relation to image processing and graphics) and in economics (finance). In fact, in

each area where there is an interaction between a numbers of independent variables,

we attempt to define functions in these variables and to model a variety of processes

by constructing equations for these functions. When the value of the unknown

function(s) at a certain point depends only on what happens in the vicinity of this

point, we shall, in general, obtain a PDE.

The general form of a PDE for a function u(x1, x2, . . .., xn) is

F x1, x2, . . . :, xn, u, ux1 , ux2 , . . . :ux11 , . . . :ð Þ ¼ 0 ðC:83Þ

where x1, x2, . . .., xn are the independent variables, u is the unknown function, and

uxi denotes the partial derivative
∂u
∂uxi

. The equation is, in general, supplemented by

additional conditions such as initial conditions (as we have often seen in the theory

of ordinary differential equations (ODEs)) or boundary conditions.

The analysis of PDEs has many facets. The classical approach that dominated

the nineteenth century was to develop methods for finding explicit solutions.

Because of the immense importance of PDEs in the different branches of physics,

every mathematical development that enabled a solution of a new class of PDEs

was accompanied by significant progress in physics. Thus, the method of
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characteristics invented by Hamilton led to major advances in optics and in

analytical mechanics. The Fourier method enabled the solution of heat transfer

and wave propagation, and Green’s method was instrumental in the development of

the theory of electromagnetism. The most dramatic progress in PDEs has been

achieved in the last 50 years with the introduction of numerical methods that allow

the use of computers to solve PDEs of virtually every kind, in general geometries

and under arbitrary external conditions (at least in theory; in practice there are still a

large number of hurdles to be overcome).

The technical advances were followed by theoretical progress aimed at under-

standing the solution’s structure. The goal is to discover some of the solution’s

properties before actually computing it, and sometimes even without a complete

solution. The theoretical analysis of PDEs is not merely of academic interest, but

rather has many applications. It should be stressed that there exist very complex

equations that cannot be solved even with the aid of supercomputers. All we can do

in these cases is to attempt to obtain qualitative information on the solution. In

addition, a deep important question relates to the formulation of the equation and its

associated side conditions. In general, the equation originates from a model of a

physical or engineering problem. It is not automatically obvious that the model is

indeed consistent in the sense that it leads to a solvable PDE. Furthermore, it is

desired in most cases that the solution will be unique, and that it will be stable under

small perturbations of the data. A theoretical understanding of the equation enables

us to check whether these conditions are satisfied. As we shall see in what follows,

there are many ways to solve PDEs, each way applicable to a certain class of

equations. Therefore it is important to have a thorough analysis of the equation

before (or during) solving it.

Partial differential equations come in three types. For a function of two variables

T ¼ T x; yð Þ, the general second-order linear PDE has the form

a
∂2

T x; yð Þ
∂x2

þ 2b
∂2

T x; yð Þ
∂x∂y

þ c
∂2

T x; yð Þ
∂y2

þ d
∂T x; yð Þ

∂x
þ e

∂T x; yð Þ
∂y

þ f T x; yð Þ ¼ A

ðC:84Þ

where a, b, c, d, e, f, g may depend on x and y only. We call Eq. (C.17)

elliptic if b2 � ac < 0

hyperbolic if b2 � ac > 0

parabolic if b2 � ac ¼ 0
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Example C.1 : Assuming T ¼ T xð Þ as function of one variable

1. The heat equation

∂T
∂t

¼ c
∂2

T

∂x2

is parabolic

2. The wave equation

∂2
T

∂t2
¼ a2

∂2
T

∂x2

is hyperbolic

3. The Laplace equation

∂2
T

∂x2
þ ∂2

T

∂y2
¼ 0

is elliptic

C.7.2 Classification

We pointed out in the previous section that PDEs are often classified into different

types. In fact, there exist several such classifications. Some of them will be

described here.

• The order of an equation

The first classification is according to the order of the equation. The order is

defined to be the order of the highest derivative in the equation. If the highest

derivative is of order k. Thus, for example, the equation utt þ uxxxx ¼ 0 is called

fourth-order equation.

• Linear equations

Another classification is into two groups: linear versus nonlinear equations. An

equation is called linear if in Eq. (C.83), F is a linear function of the unknown

function u and its derivatives. Thus, for example, the equation x7ux þ exyuy þ
sin x2 þ y2ð Þu ¼ x3 is a linear equation, while u2x þ u2y ¼ 1 is a nonlinear

equation. The nonlinear equations are often further classified into subclasses

according to the type of the nonlinearity. Generally speaking, the nonlinearity is

more pronounced when it appears in a higher derivative. For example, the

following two equations are both nonlinear:
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uxx þ uyy ¼ u3 ðC:85Þ

uxx þ uyy ¼ ∇uj j2u ðC:86Þ

Here ∇uj j denotes the norm of the gradient of uWhile Eq. (C.86) is nonlinear, it

is still linear as a function of the highest-order derivative. Such nonlinearity is

called quasilinear. On the other hand in Eq. (C.85) the nonlinearity is only in the
unknown function. Such equations are often called semilinear.

• Scalar equations versus systems of equations

A single PDE with just one unknown function is called a scalar equation. In
contrast, a set of m equations with l unknown functions is called a system of

m equations.

C.7.3 Differential Operators and Superposition Principle

A function has to be k times differentiable in order to be a solution of an equation of

order k. For this purpose we define the set Ck(D) to be the set of all functions that are
k times continuously differentiable in D. In particular, we denote the set of

continuous functions in D by C0(D), or C(D). A function in the set Ck that satisfies

a PDE of order k, will be called a classical (or strong) solution of the PDE.

Mappings between different function sets are called operators. The operation of

an operator L on a function u will be denoted by L[u]. In particular, we shall deal in
this book with operators defined by partial derivatives of functions. Such operators,

which are in fact mappings between different Ck classes, are called differential
operators.

An operator that satisfies a relation of the form

L a1u1 þ a2u2½ � ¼ a1L u1½ � þ a2L u2½ �

where a1 and a2 are arbitrary constant, and u1, u2 are arbitrary functions are called a
linear operator. A linear differential equation naturally defines a linear operator:

the equation can be expressed as L u½ � ¼ f , where L is a linear operator and f is a
given function. A linear differential equation of the form L u½ � ¼ 0, where L is a

linear operator, is called a homogeneous equation. For example, define the operator

L ¼ ∂2

∂x2
� ∂2

∂y2
. The equation

L u½ � ¼ uxx � uyy ¼ 0

is homogeneous equation, while the equation
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L u½ � ¼ uxx � uyy ¼ x2

is an example of nonhomogeneous equation.

C.8 Heat Equation

We begin by formulating the equations of heat flow describing the transfer of

thermal energy. Heat energy is caused by the agitation of molecular matter. Two

basic processes take place in order for thermal energy to move;

1. Conduction

This results from the collision of neighboring molecules in which the kinetic

energy of vibration of one molecule is transferred to its nearest neighbor.

Thermal energy is thus spread by conduction even if the molecules themselves

do not move their location appreciably.

2. Convection

In addition to conduction, if a vibrating molecule moves from one region to

another, it takes its thermal energy with it. This type of movement of thermal

energy is called convection.

3. Radiation

Radiation is energy that comes from a source and travels through some material

or through space. Light, heat and sound are types of radiation. The kind of

radiation discussed in this presentation is called ionizing radiation because it can

produce charged particles (ions) in matter. Ionizing radiation is produced by

unstable atoms. Unstable atoms differ from stable atoms because they have an

excess of energy or mass or both.

Before we get into actually solving partial differential equations and before we

even start discussing the method of separation of variables we want to spend a little

bit of time talking about the two main partial differential equations that we’ll be

solving later on in the chapter. We’ll look at the first one in this section and the

second one in the next section. For those readers that have access to web site, I

encourage them to go to the following link to go to and get more information on the

Paul’s Online Math Notes

http://tutorial.math.lamar.edu/

The first partial differential equation that we’ll be looking at once we get started

with solving will be the heat equation, which governs the temperature distribution

in an object. We are going to give several forms of the heat equation for reference

purposes, but we will only be really solving one of them.

We will start out by considering the temperature in a 1D bar of length L. What

this means is that we are going to assume that the bar starts off at x ¼ 0 and ends

when we reach x ¼ L. We are also going to so assume that at any location, x the

temperature will be constant an every point in the cross section at that x. In other
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words, temperature will only vary in x and we can hence consider the bar to be a 1D

bar. Note that with this assumption the actual shape of the cross section (i.e.,

circular, rectangular, etc.) doesn’t matter.

Note that the 1D assumption is actually not all that bad of an assumption as it

might seem at first glance. If we assume that the lateral surface of the bar is

perfectly insulated (i.e. no heat can flow through the lateral surface) then the only

way heat can enter or leave the bar as at either end. This means that heat can only

flow from left to right or right to left and thus creating a 1D temperature

distribution.

The assumption of the lateral surfaces being perfectly insulated is of course

impossible, but it is possible to put enough insulation on the lateral surfaces that

there will be very little heat flow through them and so, at least for a time, we can

consider the lateral surfaces to be perfectly insulated.

Okay, let’s now get some definitions out of the way before we write down the

first form of the heat equation.

u x; tð Þ ¼ Temperature at point x and any time t:

c xð Þ ¼ Specific Heat:

ρ xð Þ ¼ Mass Density:

φ x; tð Þ ¼ Heat Flux:

Q x; tð Þ ¼ Heat energy generated per unit volume per unittime:

We should probably make a couple of comments about some of these quantities

before proceeding.

The specific heat, c xð Þ > 0, of a material is the amount of heat energy that it

takes to raise one unit of mass of the material by one unit of temperature. As

indicated we are going to assume, at least initially, that the specific heat may not be

uniform throughout the bar. Note as well that in practice the specific heat depends

upon the temperature. However, this will generally only be an issue for large

temperature differences (which in turn depends on the material the bar is made

out of) and so we’re going to assume for the purposes of this discussion that the

temperature differences are not large enough to affect our solution.

The mass density, ρ(x), is the mass per unit volume of the material. As with the

specific heat we’re going to initially assume that the mass density may not be

uniform throughout the bar.

The heat flux, φ(x, t), is the amount of thermal energy that flows to the right per

unit surface area per unit time. The “flows to the right” bit simply tells us that if

ρ xð Þ > 0 for some x and t then the heat is flowing to the right at that point and time.

Likewise if ρ xð Þ < 0 then the heat will be flowing to the left at that point and time.

The final quantity we defined above is Q(x, t) and this is used to represent

any external sources or sinks (i.e. heat energy taken out of the system) of heat

energy. If Q x; tð Þ > 0 then heat energy is being added to the system at that location
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and time and if Q x; tð Þ < 0 then heat energy is being removed from the system at

that location and time.

With these quantities the heat equation is,

c xð Þρ xð Þ∂u x; tð Þ
∂t

¼ �∂φ x; tð Þ
∂x

þ Q x; tð Þ ðC:87Þ

While this is a nice form of the heat equation it is not actually something we can

solve. In this form there are two unknown functions, u and φ, and so we need to get
rid of one of them. With Fourier’s law we can easily remove the heat flux from this

equation.

Fourier’s law states that,

φ x; tð Þ ¼ �K0 xð Þ∂u x; tð Þ
∂t

whereK0 xð Þ > 0 is the thermal conductivity of the material and measures the ability

of a given material to conduct heat. The better a material can conduct heat the larger

K0(x) will be. As noted the thermal conductivity can vary with the location in the

bar. Also, much like the specific heat the thermal conductivity can vary with

temperature, but we will assume that the total temperature change is not so great

that this will be an issue and so we will assume for the purposes here that the

thermal conductivity will not vary with temperature.

Fourier’s law does a very good job of modeling what we know to be true about

heat flow. First, we know that if the temperature in a region is constant, i.e.
∂u x;tð Þ
∂x ¼ 0, then there is no heat flow.

Next, we know that if there is a temperature difference in a region we know the

heat will flow from the hot portion to the cold portion of the region. For example, if

it is hotter to the right then we know that the heat should flow to the left. When it is

hotter to the right then we also know that
∂u x;tð Þ
∂x > 0 (i.e., the temperature increases

as we move to the right) and so we’ll haveφ x; tð Þ < 0and so the heat will flow to the

left as it should. Likewise, if
∂u x;tð Þ
∂x < 0 (i.e., it is hotter to the left) then we’ll have

φ x; tð Þ > 0 and heat will flow to the right as it should.

Finally, the greater the temperature difference in a region (i.e. the larger
∂u x;tð Þ
∂x is)

then the greater the heat flow.

So, if we plug Fourier’s law into Eq. (C.87), we get the following form of the

heat equation,

c xð Þρ xð Þ∂u x; tð Þ
∂t

¼ � ∂
∂x

K0 xð Þ∂ u; xð Þ
∂x

� �
þ Q x; tð Þ ðC:88Þ

Note that we factored the minus sign out of the derivative to cancel against the

minus sign that was already there. We cannot however, factor the thermal
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conductivity out of the derivative since it is a function of x and the derivative is with
respect to x.

Solving Eq. (C.88) is quite difficult due to the non uniform nature of the thermal

properties and the mass density. So, let’s now assume that these properties are all

constant, i.e.,

c xð Þ ¼ c ρ xð Þ ¼ ρ K0 xð Þ ¼ K0

where c, ρ and K0 are now all fixed quantities. In this case we generally say that the

martial in the bar is uniform. Under these assumptions the heat equation becomes,

cρ
∂u
∂t

¼ K0

∂2
u

∂x2
þ Q x; tð Þ ðC:89Þ

For a final simplification to the heat equation let’s divide both sides by cρ and define
the thermal diffusivity to be,

k ¼ K0

cρ

The heat equation is then,

∂u
∂t

¼ k
∂2

u

∂x2
þ Q x; tð Þ

cρ
ðC:90Þ

To most people this is what they mean when they talk about the heat equation and in

fact it will be the equation that we’ll be solving. Well, actually we’ll be solving

Eq. (C.90) with no external sources, i.e. Q x; tð Þ ¼ 0, but we’ll be considering this

form when we start discussing separation of variables in a couple of sections. We’ll

only drop the sources term when we actually start solving the heat equation.

Now that we’ve got the 1D heat equation taken care of we need to move into the

initial and boundary conditions we’ll also need in order to solve the problem. If you

go back to any of our solutions of ordinary differential equations that we’ve done in

previous sections you can see that the number of conditions required always

matched the highest order of the derivative in the equation.

In partial differential equations the same idea holds except now we have to pay

attention to the variable we’re differentiating with respect to as well. So, for the heat

equation we’ve got a first-order time derivative and so we’ll need one initial

condition and a second order spatial derivative and so we’ll need two boundary

conditions.

The initial condition that we’ll use here is

u x; 0ð Þ ¼ f xð Þ
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and we don’t really need to say much about it here other than to note that this just

tells us what the initial temperature distribution in the bar is.

The boundary conditions will tell us something about what the temperature

and/or heat flow is doing at the boundaries of the bar. There are four of them that

are fairly common boundary conditions.

The first type of boundary conditions that we can have would be the prescribed

temperature boundary conditions, also called Dirichlet conditions. The prescribed

temperature boundary conditions are,

u 0; tð Þ ¼ g1 xð Þ u L; tð Þ ¼ g2 tð Þ

The next type of boundary conditions are prescribed heat flux, also called Neu-

mann conditions. Using Fourier’s law these can be written as,

�K0 0ð Þ∂u 0; tð Þ
∂x

¼ φ1 tð Þ �K0 Lð Þ∂u L; tð Þ
∂x

¼ φ2 tð Þ

If either of the boundaries is perfectly insulated, i.e., there is no heat flow out of

them then these boundary conditions reduce to,

∂u 0; tð Þ
∂x

¼ 0
∂u L; tð Þ

∂x
¼ 0

and note that we will often just call these particular boundary conditions insulated

boundaries and drop the “perfectly” part.

The third type of boundary conditions use Newton’s law of cooling and are

sometimes called Robins conditions. These are usually used when the bar is in a

moving fluid and note we can consider air to be a fluid for this purpose.

Here are the equations for this kind of boundary condition.

�K0 0ð Þ∂u 0; tð Þ
∂x

¼ H u 0; tð Þ � g1 tð Þ½ � �K0 Lð Þ∂u L; tð Þ
∂x

¼ H u L; tð Þ � g2 tð Þ½ �

where H is a positive quantity that is experimentally determined g1(t) and g2(t) give
the temperature of the surrounding fluid at the respective boundaries.

Note that the two conditions do vary slightly depending on which boundary we

are at. At x ¼ 0 we have a minus sign on the right side while we don’t at x ¼ L. To
see why this is let’s first assume that at x ¼ 0we haveu 0; tð Þ > g1 tð Þ. In other words
the bar is hotter than the surrounding fluid and so at x ¼ 0 the heat flow (as given by

the left side of the equation) must be to the left, or negative since the heat will flow

from the hotter bar into the cooler surrounding liquid. If the heat flow is negative

then we need to have a minus sign on the right side of the equation to make sure that

it has the proper sign.
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If the bar is cooler than the surrounding fluid at x ¼ 0, i.e. u 0; tð Þ < g1 tð Þwe can
make a similar argument to justify the minus sign. We’ll leave it to you to

verify this.

If we now look at the other end, x ¼ L, and again assume that the bar is hotter

than the surrounding fluid or, u L; tð Þ > g2 tð Þ. In this case the heat flow must be to

the right, or be positive, and so in this case we can’t have a minus sign. Finally, we’ll

again leave it to you to verify that we can’t have the minus sign at x ¼ L is the bar is
cooler than the surrounding fluid as well.

Note that we are not actually going to be looking at any of these kinds of

boundary conditions here. These types of boundary conditions tend to lead to

boundary value problems such as Example 5 in the Eigenvalues and Eigenfunctions

Sect. 3 of this appendix. As we saw in that example it is often very difficult to get

our hands on the eigenvalues and as we’ll eventually see we will need them.

It is important to note at this point that we can also mix and match these

boundary conditions so to speak. There is nothing wrong with having a prescribed

temperature at one boundary a prescribed flux at the other boundary for example so

don’t always expect the same boundary condition to show up at both ends. This

warning is more important that it might seem at this point because once we get into

solving the heat equation we are going to have the same kind of condition on each

end to simplify the problem somewhat.

The final type of boundary conditions that we’ll need here are periodic boundary

conditions. Periodic boundary conditions are,

u �L, tð Þ ¼ u L; tð Þ ∂u
∂x

�L, tð Þ ¼ ∂
∂x

u L; tð Þ

Note that for these kinds of boundary conditions the left boundary tends to be

x ¼ �L instead of x ¼ 0 as we were using in the previous types of boundary

conditions. The periodic boundary conditions will arise very naturally from a

couple of particular geometries that we’ll be looking at down the road.

We will now close out this section with a quick look at the 2D and 3D version of

the heat equation. However, before we jump into that we need to introduce a little

bit of notation first.

The del operator is defined to be,

∇ ¼ ∂
∂x

~iþ ∂
∂y

~j∇ ¼ ∂
∂x

~iþ ∂
∂y

~jþ ∂
∂z

~k

depending on whether we are in 2 or 3 dimensions. Think of the del operator as a

function that takes functions as arguments (instead of numbers as we’re used to).

Whatever function we “plug” into the operator gets put into the partial derivatives.

So, for example in 3D we would have
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∇f ¼ ∂
∂x

~iþ ∂
∂y

~jþ ∂
∂z

~k

This of course is also the gradient of the function f(x, y, z).
The del operator also allows us to quickly write down the divergence of a

function. So, again using 3D as an example the divergence of f(x, y, z) can be

written as the dot product of the del operator and the function. Or,

∇� f ¼ ∂f
∂x

þ ∂f
∂y

þ ∂f
∂z

Finally, we will also see the following show up in the our work,

∇� ∇fð Þ ¼ ∂
∂x

∂f
∂x

� �
þ ∂
∂y

∂f
∂y

� �
þ ∂
∂z

∂f
∂z

� �
This is usually denoted as,

∇2f ¼ ∂2
f

∂x2
þ ∂2

f

∂y2
þ ∂2

f

∂z2

and is called the Laplacian. The 2-D version of course simply doesn’t have the

third term.

Okay, we can now into the 2D and 3D version of the heat equation and where

ever the del operator and or Laplacian appears assume that it is the appropriate

dimensional version.

The higher dimensional version of Eq. (C.83) is,

cρ
∂u
∂t

¼ �∇�φþ Q ðC:91Þ

and note that the specific heat, c, and mass density, ρ, are may not be uniform and so

may be functions of the spatial variables. Likewise, the external sources term, Q,
may also be a function of both the spatial variables and time.

Next, the higher dimensional version of Fourier’s law is,

φ ¼ �K0∇u

where the thermal conductivity, K0, is again assumed to be a function of the spatial

variables.

If we plug this into Eq. (C.91) we get the heat equation for a non uniform bar

(i.e., the thermal properties may be functions of the spatial variables) with external

sources/sinks,
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cρ
∂u
∂t

¼ ∇� K0∇uð Þ þ Q ðC:92Þ

If we now assume that the specific heat, mass density and thermal conductivity are

constant (i.e., the bar is uniform) the heat equation becomes,

∂u
∂t

¼ k∇2uþ Q

cρ
ðC:93Þ

where we divided both sides by cρ to get the thermal diffusivity, k in front of the

Laplacian.

The initial condition for the 2-D or 3-D heat equation is,

u x; y; tð Þ ¼ f x; yð Þ or u x; y; z; tð Þ ¼ f x; y; zð Þ

depending upon the dimension we’re in.

The prescribed temperature boundary condition becomes,

u x; y; tð Þ ¼ T x; y; tð Þ or u x; y; z; tð Þ ¼ T x; y; z; tð Þ

where (x, y) or (x, y, z), depending upon the dimension we’re in, will range over the

portion of the boundary in which we are prescribing the temperature.

The prescribed heat flux condition becomes,

�K0∇u�~n ¼ φ tð Þ

where the left side is only being evaluated at points along the boundary and is the

outward unit normal on the surface.

Newton’s law of cooling will become,

�K0∇u�~n ¼ H u� uBð Þ

where H is a positive quantity that is experimentally determine, uB is the temper-

ature of the fluid at the boundary and again it is assumed that this is only being

evaluated at points along the boundary.

We don’t have periodic boundary conditions here as they will only arise from

specific 1D geometries.

We should probably also acknowledge at this point that we’ll not actually be

solving Eq. (C.93) at any point, but we will be solving a special case of it in the

Laplace’s Equation Sect. 5.1 below.

For those readers that have access to website, I encourage you to go to the

following link and to get more information on the Paul’s Online Math Notes

http://tutorial.math.lamar.edu/
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C.8.1 Laplace’s Equation

The next partial differential equation that we’re going to solve is the 2D Laplace’s

equation,

∇2u ¼ ∂2
u

∂x2
þ ∂2

u

∂y2
¼ 0

A natural question to ask before we start learning how to solve this is does this

equation come up naturally anywhere? The answer is a very resounding yes! If we

consider the 2-D heat equation,

∂u
∂t

¼ k∇2uþ Q

cρ

We can see that Laplace’s equation would correspond to finding the equilibrium

solution (i.e. time independent solution) if there were not sources. So, this is an

equation that can arise from physical situations.

How we solve Laplace’s equation will depend upon the geometry of the 2-D

object we’re solving it on. Let’s start out by solving it on the rectangle given by

0 	 x 	 L, 0 	 y 	 H. For this geometry Laplace’s equation along with the four

boundary conditions will be,

∇2u ¼ ∂2
u

∂x2
þ ∂2

u

∂y2
¼ 0

u 0; yð Þ ¼ g1 yð Þ u L; yð Þ ¼ g2 yð Þ
u x; 0ð Þ ¼ f 1 xð Þ u x;Hð Þ ¼ f 2 yð Þ

ðC:94Þ

One of the important things to note here is that unlike the heat equation we will not

have any initial conditions here. Both variables are spatial variables and each

variable occurs in a 2nd order derivative and so we’ll need two boundary conditions

for each variable.

Next, let’s notice that while the partial differential equation is both linear and

homogeneous the boundary conditions are only linear and are not homogeneous.

This creates a problem because separation of variables requires homogeneous

boundary conditions.

To completely solve Laplace’s equation we’re in fact going to have to solve it

four times. Each time we solve it only one of the four boundary conditions can be

nonhomogeneous while the remaining three will be homogeneous.

The four problems are probably best shown with a quick sketch so let’s consider

the following sketch.
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u1 (x, H ) = 0 u2 (x, H ) = 0

u2 (x, 0) = 0

u1 (0, y ) = 0 u2 (L, y ) = g2 (y )

u1 (L, y ) = 0

∇2u2 = 0∇2u1 = 0

u2 (0, y ) = 0

u1 (x, 0) = f1 (x)

u4 (x, H ) = 0

u4 (x, 0) = 0u3 (x, 0) = 0

u3 (x, H ) = f2 (x)

u3 (0, y ) = 0 u4 (L, y ) = 0

u3 (L, y ) = 0

∇2u3 = 0 ∇2u4 = 0

u4 (0, y ) = g1 (y )

Now, once we solve all four of these problems the solution to our original

system, (Eq. C.94), will be,

u x; yð Þ ¼ u1 x; yð Þ þ u2 x; yð Þ þ u3 x; yð Þ þ u4 x; yð Þ

Because we know that Laplace’s equation is linear and homogeneous and each of

the pieces is a solution to Laplace’s equation then the sum will also be a solution.

Also, this will satisfy each of the four original boundary conditions. We’ll verify the

first one and leave the rest to you to verify.

u x; 0ð Þ ¼ u1 x; 0ð Þ þ u2 x; 0ð Þ þ u3 x; 0ð Þ þ u4 x; 0ð Þ ¼ f 1 xð Þ þ 0þ 0þ 0 ¼ f 1 xð Þ

In each of these cases the lone nonhomogeneous boundary condition will take the

place of the initial condition in the heat equation problems that we solved a couple

of sections ago. We will apply separation of variables to the each problem and find a

product solution that will satisfy the differential equation and the three homoge-

neous boundary conditions. Using the Principle of Superposition we’ll find a

solution to the problem and then apply the final boundary condition to determine
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the value of the constant(s) that are left in the problem. The process is nearly

identical in many ways to what we did when we were solving the heat equation.

We’re going to do two of the cases here and we’ll leave the remaining two for

you to do.

Example 1: Find a solution to the following partial differential equation.

∇2u4 ¼ ∂2
u4

∂x2
þ ∂2

u4
∂y2

¼ 0

u4 0; yð Þ ¼ g1 yð Þ u4 L; yð Þ ¼ 0

u4 x; 0ð Þ ¼ 0 u4 x;Hð Þ ¼ 0

Solution: We’ll start by assuming that our solution will be in the form of the

following using separation of variable method,

u4 x; yð Þ ¼ h xð Þφ yð Þ

and then recall that we performed separation of variables on this problem (with a

small change in notation) back in Example 5 of the Separation of Variables Sect.

2.1, Appendix I. So from that problem we know that separation of variables yields

the following two ordinary differential equations that we’ll need to solve.

d2h

dx2
� λh ¼ 0

d2φ

dy2
þ λφ ¼ 0

h Lð Þ ¼ 0 φ 0ð Þ ¼ 0 φ Hð Þ ¼ 0

Note that in this case, unlike the heat equation we must solve the boundary value

problem first. Without knowing what λ is there is no way that we can solve the first

differential equation here with only one boundary condition since the sign of λ will
affect the solution.

Let’s also notice that we solved the boundary value problem in Example 1 of

Solving the Heat Equation and so there is no reason to resolve it here. Taking a

change of letters into account the eigenvalues and eigenfunctions for the boundary

value problem here are

λn ¼ nπ

H

	 
2
φn yð Þ ¼ sin

nπ

H

	 

n ¼ 1, 2, 3, � � �

Now that we know what the eigenvalues are let’s write down the first differential

equation with λ plugged in.

Because the coefficient of h(x) in the differential equation above is positive we

know that a solution to this is,
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h xð Þ ¼ c1cosh
nπ

H

	 

þ c2sinh

nπ

H

	 

However, this is not really suited for dealing with the h Lð Þ ¼ 0 boundary

condition. So, let’s also notice that the following is also a solution.

h xð Þ ¼ c1cosh
nπ x� Lð Þ

H

� �
þ c2sinh

nπ x� Lð Þ
H

� �
You should verify this by plugging this into the differential equation and

checking that it is in fact a solution. Applying the lone boundary condition to this

“shifted” solution gives,

0 ¼ h Lð Þ ¼ c1

The solution to the first differential equation is now,

h xð Þ ¼ c2 sin h
nπ x� Lð Þ

H

� �
and this is all the farther we can go with this because we only had a single boundary

condition. That is not really a problem however because we now have enough

information to form the product solution for this partial differential equation. A

product solution for this partial differential equation is,

un x; yð Þ ¼ Bn sin h
nπ x� Lð Þ

H

� �
sin

nπ

H

	 

n ¼ 1, 2, 3, � � �

The Principle of Superposition then tells us that a solution to the partial differ-

ential equation is,

u4 x; yð Þ ¼
X1
n¼1

Bn sin h
nπ x� Lð Þ

H

� �
sin

nπ

H

	 

and this solution will satisfy the three homogeneous boundary conditions. To

determine the constants all we need to do is apply the final boundary condition.

u4 0; yð Þ ¼ g1 yð Þ ¼
X1
n¼1

Bn sin h
nπ �Lð Þ

H

� �
sin

nπy

H

	 

Now, in the previous problems we’ve done this has clearly been a Fourier series

of some kind and in fact it still is. The difference here is that the coefficients of the

Fourier sine series are now,
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Bn sin h
nπ �Lð Þ

H

� �
instead of just Bn. We might be a little more tempted to use the orthogonality of the

sines to derive formulas for the Bn, however we can still reuse the work that we’ve

done previously to get formulas for the coefficients here.

Remember that a Fourier sine series is just a series of coefficients (depending on n)

times a sine. We still have that here, except the “coefficients” are a little messier

this time that what we saw when we first dealt with Fourier series. So, the

coefficients can be found using exactly the same formula from the Fourier Sine

Series section of a function on 0 	 y 	 H we just need to be careful with the

coefficients.

Bn sin h
nπ �Lð Þ

H

� �
¼ 2

H

ð H
0

g1 yð Þ sin nπy

H

	 

dy n ¼ 1, 2, 3, � � �

Bn
2

H sin h
nπ �Lð Þ

H

� �ð H
0

g1 yð Þ sin nπy

H

	 

dy n ¼ 1, 2, 3, � � �

The formulas for the Bn are a little messy this time in comparison to the other

problems we’ve done but they aren’t really all that messy.

For more complex examples and further details we urge reader to the following

site http://tutorial.math.lamar.edu/Classes/DE/LaplacesEqn.aspx

C.9 References

1. Richard Haberman. (1983) Elementary applied partial differential equations with fourier series

and boundary value problems. 2nd Edition, Prentice-Hall, Inc

2. Erich Zauderer (1989) Partial differential equations of applied mathematics. 2nd Edition, John

Wiley

3. Yehuda Pinchover and Jacob Rubinstein (2005) An introduction to partial differential equa-

tions. Cambridge University Press

4. Dennis G. Zill. A first course in differential equations with modeling applications. 7th Edition,

Brooks/Cole Thomson Learning

5. Boyce We and Diprima Rc (2001) Elementary differential equations and boundary value

problems. 7th Ed, John Wiley

Appendix C: Short Course in Ordinary and Partial Differential Equations 533



Appendix D
Short Course in Complex Variables

In the study of Laser Physics and its interaction with materials as well as solving

heat transfer and related physics of optics, a great saving in complexity of notation

may be accomplished by using the notation of Complex Variables and Applica-

tions. The purpose of this section is to give a brief but self-contained exposition of

basic complex variables analysis to bring to the forefront of physical ideas involved

in solving heat transfer equations and provide knowledge of the field that is required

for treatment of partial differential equations that results in solving such complex

boundary value problems. The primary objective of this section is to develop those

parts of the theory that are prominent in the applications of the subject. Note that the

basic and principal analysis of complex variable numbers section (Sects. 1.1 to

1.10) at the beginning of this chapter has been borrowed from book by Brown and

Churchill 1 and the rest has been gathered from different sections of Schaum’s

Outlines Complex Variables (i.e., courtesy of published) with an Introduction to

Conformal Mapping and Its Application by Murray R. Spiegel 2 but it is formatted

to the need of this book where we need to solve boundary value problems of heat

diffusion and it use it in understanding of Physics of Laser Beam Interaction with

materials. Also various different references (See references that have been men-

tioned at the end of this chapter) are used for different examples and problems

presented in this Appendix.

D.1 Complex Numbers

A complex number is a number consisting of a real and imaginary part. It can be

written in the form aþ ib, where a and b are real numbers, and i is the standard

imaginary unit with the property i2 ¼ �1 The complex numbers contain the

ordinary real numbers, but extend them by adding in extra numbers and corre-

spondingly expanding the understanding of addition and multiplication (Fig. D.1).
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If z ¼ aþ ib, the real part a is denoted Re(z), and the imaginary part b is denoted
Im(z). The complex numbers (C) are regarded as an extension of the real numbers

(R) by considering every real number as a complex number with an imaginary part

of zero. The real number a is identified with the complex number aþ 0i. Complex

numbers with a real part of zero (Re(z)¼0) are called imaginary numbers. Instead of

writing 0þ ib, that imaginary number is usually denoted as just ib. If b equals

1, instead of using 0þ 1i or 1i, the number is denoted as i.
In some disciplines (in particular, electrical engineering, where i is a symbol for

current), the imaginary unit i is instead written as j, so complex numbers are

sometimes written as aþ jb or aþ bj.

D.2 Branch Points and Branch Lines

Suppose that we are given the functionw ¼ z1=2. Suppose further that we allow z to
make a complete circuit (counterclockwise) around the origin starting from point

A (See Fig. D.2). We have z ¼ reiθ, w ¼ ffiffi
r

p
eiθ=2 so that at A, θ ¼ θ1 and

w ¼ ffiffi
r

p
eiθ1=2. After a complete circuit back to A, θ ¼ θ1 þ 2π and

w ¼ ffiffi
r

p
ei θ1þ2πð Þ=2 ¼ � ffiffi

r
p

eiθ1=2. Thus we have not attached the same value of

w with which we started. However, by making a second complete circle back to

A, i.e. θ ¼ θ1 þ 4π, w ¼ ffiffi
r

p
ei θ1þ4πð Þ=2 ¼ ffiffi

r
p

eiθ1=2 and we then do obtain the same

value of w with which we started. We can describe the above by stating that if

0 	 θ < 2π we are on one branch of the multiple-valued function z1/2, while if

2π 	 θ < 4π we are on the other branch of the function.

It is clear that each branch of the function is single-valued. In order to keep the

function single-valued, we set up an artificial barrier such as OB where B is at

infinity [although any other line from O can be used] which we agree not to cross.

This barrier [drawn heavy in the figure] is called a branch cut, and point O is called

Fig. D.1 A complex

number can be visually

represented as a pair of

numbers forming a vector

on a diagram called an

Argand diagram,

representing the complex

plane
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a branch point. It should be noted that a circle around any point other than z ¼ 0

does not lead to different values; thus z ¼ 0 is the only finite branch point.

D.3 Singular Points

A point at which f(z) fails to be analytic is called a singular point or singularity of f
(z). Various types of singularities exist.

D.3.1 Isolated Singularities

The point z ¼ z0 is called an isolated singularity or isolated singular point of f(z) if
we can find δ > 0 such that the circle z� z0j j ¼ δ encloses no singular point other

than z0 (i.e., there exists a deleted δ neighborhood of z0 containing no singularity). If
no such δ can be found, we call z0 a non-isolated singularity.

If z0 is not a singular point and we can find δ > 0 such that z� z0j j ¼ δ encloses
no singular point, then we call z0 an ordinary point of f(z).

D.3.2 Poles

If we can find a positive integer n such that lim
z!z0

z� z0ð Þnf zð Þ ¼ A 6¼ 0, then z ¼ z0 is

called a pole of order n. If n ¼ 1, z0 is called a simple pole.

Example 1: f zð Þ ¼ 1

z�2ð Þ3 has a pole of order 3 at z ¼ 2

Example 2: f zð Þ ¼ 3z�2

z�1ð Þ2 zþ1ð Þ z�4ð Þ has a pole of order 2 at z ¼ 1, and simple poles at

z ¼ �1 and z ¼ 4.

z plane

B

A

O
q = 

q1

Fig. D.2 Branch Points and

Branch Lines
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If g zð Þ ¼ z� z0ð Þnf zð Þ, where f z0ð Þ 6¼ 0 and n is a positive integer, then z ¼ z0 is
called a zero of order n of g(z). Ifn ¼ 1, z0 is called a simple zero. In such case z0 is a
pole of order n of the function 1/g(z).

D.3.3 Branch Points

Branch points of multiple-valued functions, already considered in Sect. 2, are

singular points.

Example 1: f zð Þ ¼ z� 3ð Þ1=2 has a branch point at z ¼ 3.

Example 2: f zð Þ ¼ ln z2 þ z� 2ð Þ has branch points where z2 þ z� 2 ¼ 0, i.e. at

z ¼ 1 and z ¼ �2

D.3.4 Removable Singularities

The singular point z0 is called a removable singularity of f(z) if lim
z!z0

f zð Þ exists.

Example 1: The singular point z ¼ 0 is a removable singularity of f zð Þ ¼ sin z
z since

lim
z!0

sin z
z ¼ 1

D.3.5 Essential Singularities

A singularity which is not a pole, branch point or removable singularity is called an

essential singularity.

Example 1: f zð Þ ¼ e1= z�2ð Þ has an essential singularity at z ¼ 2.

If a function is single-valued and has a singularity, then the singularity is either a

pole or an essential singularity. For this reason a pole is sometimes called a non-
essential singularity. Equivalently, z ¼ z0 is an essential singularity if we cannot

find any positive integer n such that lim
z!z0

z� z0ð Þnf zð Þ ¼ A 6¼ 0.

D.3.6 Singularities at Infinity

The type of singularity of f(z) at z ¼ 1 [the point at infinity see Sect. 12.0] is the

same as that of f(1/w) at w ¼ 0
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Example 1: The function f zð Þ ¼ z3 has a pole of order 3 at z ¼ 1, since f 1=wð Þ
¼ 1=w3 has a pole of order 3 at . w ¼ 0

For methods of classifying singularities using infinite series (i.e., See Chap. 6 of

reference [3] of this appendix)

D.4 Orthogonal Families

In this w ¼ f zð Þ ¼ u x; yð Þ þ iv x; yð Þ is analytic, then the one-parameter families of

curves

u x; yð Þ ¼ α v x; yð Þ ¼ β ðD:1Þ

where α and β are constants, are orthogonal , i.e., each member of one family

(shown heavy in Fig. D.3) is perpendicular to each member of the other family

(shown dashed in Fig. D.4) at the point of intersection.

The corresponding image curves in the plane consisting of lines parallel to the

u axes also from orthogonal families (See Fig. D.4).

D.5 Curves

If ϕ(t) and ψ(t) are real functions of the real variable t assumed continuous in

t1 	 t 	 t2, the parametric equations

Fig. D.3 Orthogonal

Families
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z ¼ xþ iy ¼ ϕ tð Þ þ iψ tð Þ ¼ z tð Þ t1 	 t 	 t2 ðD:2Þ

define a continuous curve or arc in the z plane joining points a ¼ z t1ð Þ and b ¼ z t2ð Þ
(See Fig. D.5) below.

If t1 6¼ t2 while z t1ð Þ ¼ z t2ð Þ. i.e. a ¼ b, the endpoints coincide and the curve is

said to be closed. A closed curve which does not intersect itself anywhere is called a

simple closed curve. For example the curve of Fig. D.5 is a simple closed curve

while that of Fig. D.6 is not.

If ϕ(t) and ψ(t) [and thus z(t) have continuous derivative in t1 	 t 	 t2 the curve
is often called a smooth curve or arc. A curve which is composed of finite number of

smooth arcs is called a piecewise or sectionally smooth curve or sometimes a

contour. For example, the boundary of a square is a piecewise smooth curve or

contour.

Unless otherwise specified, whenever we refer to a curve or simple closed curve

we shall assume it to be piecewise smooth.

Fig. D.4 Orthogonal

Families

y

x

b

a

Fig. D.5 Curve Contour
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D.6 Complex Integration and Cauchy’s Theorem

In this section we introduce Cauchy’s theorem and complex integration. Here is

perhaps the most remarkable fact about analytic functions: the values of an analytic
function f(z) on a closed loop C dictate its values at every point inside. If z0 is a point
inside C, then the equation relating f(z0) to the known values of f(z) on C is called

the Cauchy integral formula.

D.6.1 Complex Line Integrals

Let f(z) at all points of a curve C (See Fig. D.7) which we shall assume has a finite

length, i.e. C is a rectifiable curve.

y

x

Fig. D.6 Curve Contour

y

x

a

z1

x1 x2

xk

xn

z2

zk –1 zn –1

b
C

zk

Fig. D.7 Curve C
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Subdivide C into n parts by means of points z1, z2, . . . , zn�1, chosen arbitrarily,

and calla ¼ z0,b ¼ zn. On each are joining zk�1 to zk [where k ¼ 1, 2, . . . n] choose a
point ξk. From the sum

Sn ¼ f ξ1ð Þ z1 � að Þ þ f ξ2ð Þ z2 � z1ð Þ þ . . .þ f ξnð Þ b� zn�1ð Þ ðD:3Þ

On writing zk � zk�1 ¼ Δzk, this becomes

Sn ¼
Xn
k¼1

f ξkð Þ zk � zk�1ð Þ ¼
Xn
k¼1

f ξkð ÞΔzk ðD:4Þ

Let the number of subdivision n increase in such a way that the largest of the chord
lengths |Δzk| approaches zero. Then the sum Sn approaches a limit which does not

depend on the mode of subdivision and we denote this limit by:ð b
a

f zð Þdz or

ð
C

f zð Þdz ðD:5Þ

Called the complex line integral or briefly line integral of f(z) along curve C, or the
definite integral of f(z) from a to b along curve C. In such case f(z) is said to be

integrable along C. Note that if f(z) is analytic at all points of a regionℜ and if C is

a curve lying in ℜ then f(z) is certainly integrable along C.

D.6.2 Real Line Integrals

If P(x, y) andQ(x, y) are real functions of x and y continuous at all points of curve C,
the real line integral ofPdxþ Qdyalong curve C can be defined in a manner similar

to that given above and is denoted byð
C

P x; yð Þdxþ Q x; yð Þdy½ � or

ð
C

Pdxþ Qdy ðD:6Þ

the second notation being used for brevity. If C is smooth and has parametric

equations x ¼ ϕ tð Þ and y ¼ ψ tð Þwhere t1 	 t 	 t2, the value of Eq. D.6 is given byðt2
t1

P ϕ tð Þ,ψ tð Þf gϕ0
tð Þdtþ Q ϕ tð Þ,ψ tð Þf gψ 0

tð Þdt
h i

Suitable modification can be made if C is piecewise smooth. See below example;
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Example: Evaluate

ð 2;4ð Þ

0;3ð Þ
2yþ x2
� �

dxþ 3 3x� yð Þdy along
(a) The parabola x ¼ 2t, y ¼ t2 þ 3

(b) Straight lines from (0,3) to (2,3) and then from (2,3) to (2,4)

(c) A straight line from (0,3) to (2,4)

Solution:

(a) The point (0,3) and (2,4) on the parabola correspond to t ¼ 0 and t ¼ 1

respectively. Then the given integral equalsð1
t¼0

2 t2 þ 3
� �þ 2tð Þ2

n o
dtþ 3 2tð Þ � t2 þ 3

� �� �
2tdt

¼
ð1
t¼0

24t2 þ 12� 2t3 � 6t
� �

dt ¼ 33=2

(b) Along the straight line from (0,3) to (2,3), y ¼ 3, dy ¼ 0 and the line integral

equals ð2
x¼0

6þ x2
� �

dxþ 3x� 3ð Þ0 ¼
ð2
x¼0

6þ x2
� �

dx ¼ 44=3

Along the straight line from (2,3) to (2,4), x ¼ 2, dx ¼ 0 and the line integral

equals ð4
y¼3

2yþ 4ð Þ0þ 6� yð Þdy ¼
ð2
y¼3

6þ x2
� �

dx ¼ 5=2

Then the required value ¼ 44/3+5/2¼103/6.

(c) An equation for the line joining (0,3) and (2,4) is 2y� x ¼ 6. Solving for x,

we y ¼ 1
2
xþ 6ð Þ have x ¼ 2y� 6. Then the line integral equalsð4
y¼3

2yþ 2y� 6ð Þ2
n o

2dyþ 3 2y� 6ð Þ � yf gdy

¼
ð4
3

8y2 � 39yþ 54
� �

dy ¼ 97=6

The result can also be obtained by using y ¼ 1
2
xþ 6ð Þ.

Appendix D: Short Course in Complex Variables 543



D.6.3 Connection Between Real and Complex Line Integrals

If f zð Þ ¼ u x; yð Þ þ iv x; yð Þ ¼ uþ iv the complex line integral Eq. (D.94) can be

expressed in terms of real line integrals asð
C

f zð Þdz ¼
ð
C

uþ ivð Þ dxþ idyð Þ ¼
ð
C

udx� vduþ i

ð
C

vdxþ udv ðD:7Þ

For this reason the above equation sometimes is taken as a definition of a complex

line integral.

D.6.4 Properties of Integrals

If f(z) and g(z) are integrable along C, then

1.

ð
C

f zð Þ þ g zð Þf gdz ¼
ð
C

f zð Þdzþ
ð
C

g zð Þdz

2.

ð
C

Af zð Þdz ¼ A

ð
C

f zð Þdz where A ¼ any constant.

3.

ð
C

f zð Þdz ¼ �
ð
C

f zð Þdz

4.

ð
C

f zð Þdz ¼
ðm
a

f zð Þdzþ
ð b
m

f zð Þdz where points a, b,m are on C.

5.

ð
C

f zð Þdz
���� ���� 	 ML

where f zð Þj j 	 ML, i.e., is an upper bound of |f(z)| on C, and L is the length of C.
There are various other ways in which the above properties can be described. For

example if T andU and V are successive points on a curve, Equation D.6 can be then

written as: ð
TUV

f zð Þdz ¼ �
ð
VUT

f zð Þdz:

Similarly if C, C1 and C2 represent curves from a to b, a to m, and m to b,
respectively, it is natural for us to consider C ¼ C1 þ C2 and to write Eq. D.7 asð

C1þC2

f zð Þdz ¼
ð
C1

f zð Þdzþ
ð
C2

f zð Þdz
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D.6.5 Change of Variables

Let z ¼ g ξð Þ be a continuous function of a complex variable ξ ¼ uþ iv. Suppose
that curve C in the z plane corresponding to curve C0 in the ζ plane and that the

derivative g0(ζ) is continuous on C0. Thenð
C

f zð Þdz ¼
ð
C
0
f g ζð Þf gg0

ζð Þdg ðD:8Þ

These conditions are certainly satisfied if g is analytic in a region containing

curve C0.

D.6.6 Simply and Multiply Connected Regions

A region ℜ is called simply-connected if any simple closed curve see Sect.

18 which lies in ℜ can be shrunk to a point without leaving ℜ. A region ℜ
which is not simply-connected is called multiply-connected.

For example suppose ℜ is the region defined by zj j < 2 shown shaded in

Fig. D.8a. If Γ is any simple closed curve lying in ℜ (i.e., whose points are in

ℜ), we see that it can be shrunk to a point which lies in ℜ, and thus does not leave

ℜ, so that ℜ is simply-connected. On the other hand if ℜ is the region defined by

1 < zj j < 2 shown shaded in Fig. D.8b, then there is a simple closed curve Γ lying

in ℜ, which cannot possibly be shrunk to a point without leaving ℜ, so that ℜ, is

multiply-connected.

Intuitively, a simply-connected region is one which does not have any “holes” in

it, while a multiply-connected region is one which does. Thus the multiply-

connected regions of Fig. D.8b, c have respectively one and three holes in them.

z
= 

2

z
= 

1

z = 2
y

a b c

ΓΓ

x

y

x

y

x

Fig. D.8 Region ℜ Curve
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D.6.7 Convention Regarding Traversal of a Closed Path

The boundary C of a region is said to be traversed in the positive sense or direction
if an observer traveling in this direction (and perpendicular to the plane) has the

region to the left. This convention leads to the direction indicated by the arrows in

Fig. D.9a–c. We use the special symbolþ
C

f zð Þdz

To denote integration of f(z) around the boundary C in the positive sense. Note that

in the case of circle (Fig. D.9a) the positive direction is the counterclockwise
direction. The integral around C is often called a contour integral.

D.6.8 Cauchy’s Theorem

Let f(z) be analytic in region ℜ and on its boundary C. Thenþ
C

f zð Þdz ¼ 0 ðD:9Þ

This fundamental theorem, often called Couchy’s integral theorem or briefly

Couchy’s theorem, is valid for both simply and multiply-connection regions. It

was first proved by use of Green’s theorem with the added restriction that f0(z) be
continuous in ℜ (See Example 1 below). However, Goursat gave a proof which

removed this restriction. For this reason the theorem is sometimes called Cauchy–
Goursat theorem (See Example 2 to Example 5) when one desires to emphasize the

removal of this restriction.

z
= 

2z = 2
y

a b c

ΓΓ

x

y

x

y

xz
= 

1

Fig. D.9 Contour Configuration
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Example 1: Prove Cauchy’s theorem
Þ
Cf zð Þdz ¼ 0 if f(z) is analytic with deriva-

tive f0(z) which is continuous at all points inside and on a simple closed curve C.

Solution: If f zð Þ ¼ uþ iv is analytic and has a continuous derivative

f
0
zð Þ ¼ ∂u

∂x
þ i

∂v
∂x

¼ ∂v
∂y

� i
∂v
∂y

it follows that the partial derivatives (1)
∂u
∂x

¼ ∂v
∂y

, (2)
∂v
∂x

¼ �∂v
∂y

are continuous

inside and on C. Thus Green’s theorem can be applied and we haveþ
C

f zð Þdz ¼
þ
C

uþ ivð Þ dxþ idyð Þ ¼
þ
C

udx� vdyþ i

þ
C

vdxþ udy

¼
ð ð
ℜ

�∂v
∂x

� ∂u
∂y

� �
dxdyþ i

ð ð
ℜ

∂u
∂x

� ∂v
∂y

� �
dxdy ¼ 0

Using Cauchy-Riemann equation (1) and (2) in above.

By using the fact that Green’s theorem is applicable to multiply connected

regions, we can extend the result to multiply-connected regions under the given

conditions on f(z). The Cauchy–Goursat theorem (See Example 2 to 3) removes the

restriction that f0(z) be continuous.
Other Methods.
The result can be obtained from the complex form of Green’s theorem Example 3

in Sect. 22.9 in above by nothing that if B z; zð Þ ¼ f zð Þ is independent of z, then

∂B=∂z ¼ 0 and so
Þ
Cf zð Þdz ¼ 0.

D.6.9 Morera’s Theorem

Let f(z) be continuous in a simply-connected region ℜ and suppose thatþ
c

f zð Þdz ¼ 0 ðD:10Þ

around every simple closed curve C in ℜ. Then f(z) is analytic in ℜ.

This theorem, due to Morera, is often called the converse of Cauchy’s theorem.
It can be extended to multiply-connected regions. For a proof which assumes that f0

(z) is continuous in ℜ, see the following Example 1. For a proof which eliminates

this restriction, see Example 2 below as well.

Example 1: Prove Morera’s theorem under the assumption that f(z) has a contin-
uous derivative in ℜ.
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Solution: If f(z) has a continuous derivative in ℜ, then we can apply Green’s

theorem to obtainþ
c

f zð Þdz¼
þ
c

udx� vdyþ i

þ
c

vdx� udy

¼
ð ð

c

�∂v
∂x

� ∂u
∂y

� �
dxdyþ i

ð ð
c

�∂u
∂x

� ∂v
∂y

� �
dxdy

Then if
Þ
cf zð Þdz ¼ 0 around every closed path C in ℜ, we must haveþ

c

udx� vdy ¼ 0 and

þ
c

vdx� udy ¼ 0

around every closed path C in ℜ.

Example 2: If f(z) is analytic in a simple-connected regionℜ, prove that

ð b
a

f zð Þdz
is independent of the path in ℜ joining any two points a and b in ℜ. (Fig. D.10)

Solution: By Cauchy’s theorem, ð
ADBEA

f zð Þdz ¼ 0

or ð
ADB

f zð Þdzþ
ð

BEA

f zð Þdz ¼ 0

Hence ð
ADB

f zð Þdz ¼ �
ð

BEA

f zð Þdz ¼
ð

AEB

f zð Þdz

Thus ð
C1

f zð Þdz ¼
ð
C2

f zð Þdz ¼
ð b
a

f zð Þdz

which yields the required result
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Example 3: ProveMorera’s theorem (the converse of Cauchy’s theorem): If f(z) is

continuous in a simply-connected region ℜ and if

þ
C

f zð Þdz ¼ 0 around every

simple closed curve C in region ℜ, then f(z) is analytic in ℜ.

Solution: If
Þ
Cf zð Þdz ¼ 0 independent of C, it follows by Example 2 above, that

F zð Þ ¼
ð z
a

f zð Þdzis independent of the path joining a and z, so long as this path is inℜ.

Then by reasoning identical with that used in Example 3 in above, it follows

that F(z) is analytic in ℜ and F
0
zð Þ ¼ f zð Þ. However, by Example 2 of Sect.

18, it follows that F0(z) is also analytic if F(z) is. Hence f(z) is analytic in ℜ.

Example 4: Let f(z) be analytic in region ℜ bounded by two simple closed curves

C1 and C2 [See Fig. D.11] and also C1 and C2. Prove that

þ
C1

f zð Þdz ¼
þ
C2

f zð Þdz,
where C1 and C2 are both traversed in the positive sense relative to their interiors

[counter-clockwise in Fig. D.36].

Solution: Consider cross-cut DE. Then since f(z) is analytic in the region ℜ, we

have by Cauchy’s theorem ð
DEFGEDHJKLD

f zð Þdz ¼ 0

or

ð
DE

f zð Þdzþ
ð

EFGE

f zð Þdzþ
ð
ED

f zð Þdzþ
ð

DHJKLD

f zð Þdz ¼ 0

Hence since

ð
DE

f zð Þdz ¼ �
ð
ED

f zð Þdz

A
D

E

C2

C1

B
b

a

y

x

Fig. D.10 Contour Curve

C1 and C2
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ð
DHJKLD

f zð Þdz ¼ �
ð

EFGE

f zð Þdz ¼
ð

EGFE

F zð Þdz or

Example 5: Evaluate

þ
C

dz

z� a
where C is any simple closed curve C and z ¼ a is

(a) Outside C.
(b) Inside C.

Solution:
(a) If a is outside C, then f zð Þ ¼ 1= z� að Þ is analytic everywhere inside and on C.

Hence by Cauchy’s theorem

þ
C

dz

z� a
¼ 0 (Fig. D.12)

(b) Suppose a is inside C and let Γ be a circle of radius εwith center at z ¼ a so that
Γ is inside C [this can be done since z ¼ a is an interior point]. By Example

4 above we have þ
C

dz

z� a
¼
þ
Γ

dz

z� a
ðD:11Þ

D

H

J

K

Å

L

E

G

F

C1

C2

Fig. D.11 Path of Contour

Fig. D.12 Contour

Configuration
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Now on Γ, z� aj j ¼ ε or z� a ¼ εeiθ, i.e. z ¼ aþ εeiθ, 0 	 θ < 2π. Thus
since dz ¼ iεeiθdθ, the right side of Eq. (D.11) becomesð2π

θ¼0

iεeiθdθ

εeiθ
¼ i

ð2π
θ¼0

dθ ¼ 2πi

which is the required value.

Example 6: Evaluate

þ
C

dz

z� að Þn n ¼ 2, 3, 4 . . . : where z ¼ a is inside the simple

closed curve C.

Solution: As Example 5 of aboveþ
C

dz

z� að Þn ¼
þ
Γ

dz

z� að Þn

¼
ð2π
θ¼0

iεeiθdθ

εneinθ
¼ i

εn�1

ð2π
θ¼0

e 1�nð Þiθdθ

¼ i

εn�1

e 1�nð Þiθ

εneinθ

����2π
0

¼ 1

1� nð Þεn�1
ε2 n�1ð Þπi � 1
h i

¼ 0

where n 6¼ 1.

D.6.10 Some Consequences of Cauchy’s Theorem

Let f(z) be analytic in a simply-connected region ℜ. Then the following

theorems hold.

Theorem 1. If a and z are any two points in ℜ, thenð z
a

f zð Þdz ðD:12Þ

Is independent of the path in ℜ joining a and z.

Theorem 2. If a and z are any two points in ℜ and

G zð Þ ¼
ð b
a

f zð Þdz ðD:13Þ
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Then G(z) is analytic in ℜ and G
0
zð Þ ¼ f zð Þ. Sometime above expression can be

defined as the following form as well;

G zð Þ ¼
ð z
a

f ξð Þdξ ðD:14Þ

Theorem 3. If a and b are any two points in ℜ and F
0
zð Þ ¼ f zð Þ, thenð b

a

f zð Þdz ¼ F bð Þ � F að Þ ðD:15Þ

This can also be written in the form, familiar from elementary calculus,ð b
a

f zð Þdz ¼ F zð Þjba ¼ F bð Þ � F að Þ ðD:16Þ

Example :

ð1�i

3i

4zdz ¼ 2z2
��1�i

3i
¼ 2 1� ið Þ2 � 2 3ið Þ2 ¼ 18� 4i

Theorem 4. If f(z) be analytic in a region bounded by two simple closed curves
C and C1 [where C1 lies inside C as in Fig. D.13 below] and on these curves. Thenþ

C

f zð Þdz ¼
þ
C1

f zð Þdz ðD:17Þ

where C and C1 are both traversed in the positive sense relative to their interiors

[counter-clockwise in Fig. D.14].

The result shows that if we wish to integrate f(z) along curve C we can

equivalently replace C by any curve C1 so long as f(z) is analytic in the region

between C and C1.

Fig. D.13 Contour

Configuration
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Theorem 5. If f(z) be analytic in a region bounded by the non-overlapping simple
closed curves C, C1,C2,C3, . . ..Cn [where C,C1,C2,C3, . . ..Cn are inside C as in
Fig. D.12 above] and on these curves. Thenþ

C

f zð Þdz ¼
þ
C1

f zð Þdzþ
þ
C2

f zð Þdzþ
þ
C3

f zð Þdzþ . . . :þ
þ
Cn

f zð Þdz ðD:18Þ

This is a generalization of the Theorem 4.

D.7 Cauchy’s Integral Formulas and Related Theorem

In this section we will talk about Cauchy’s integral formula that states where the

integral is a contour integral along the contour γ enclosing the point a and related

other theorem

D.7.1 Cauchy’s Integral Formulas

If f(z) is analytic inside and on a simple closed curve C and z0 is any point inside

C (Fig. D.15), then

f z0ð Þ ¼ 1

3πi

þ
γ

f zð Þ
z� z0

dz ðD:19Þ

where the integral is a contour integral along the contour γ enclosing the point z0. It
can be derived by considering the contour integralþ

γ

f zð Þ
z� z0

dz ðD:20Þ

Fig. D.14 Contour

Configuration
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defining a path γr as an infinitesimal counterclockwise circle around the point z0,
and defining the path γ0 as an arbitrary loop with a cut line (on which the forward

and reverse contributions cancel each other out) so as to go around z0. The total path
is then

γ ¼ γ0 þ γr ðD:21Þ

so þ
γ

f zð Þ
z� z0

dz ¼
þ
γ0

f zð Þ
z� z0

dzþ
þ
γr

f zð Þ
z� z0

dz ðD:22Þ

From the Cauchy integral theorem, the contour integral along any path not

enclosing a pole is 0. Therefore, the first term in the above equation is 0 since

γ0 does not enclose the pole, and we are left withþ
γ

f zð Þ
z� z0

dz ¼
þ
γr

f zð Þ
z� z0

dz ðD:23Þ

Now, let z ¼ z0 þ reiθ, so dz ¼ ireiθdθ. Thenþ
γ

f zð Þ
z� z0

dz ¼
þ
γr

f z0 þ reiθ
� �
z� z0

ireiθdθ

¼
þ
γr

z0 þ reiθ
� �

idθ

ðD:24Þ

But we are free to allow the radius r to shrink to 0, soþ
γ

f zð Þ
z� z0

dz ¼ lim
x!0

þ
γr

f z0 þ reiθ
� �
z� z0

idθ

¼
þ
γr

f z0ð Þidθ

¼ if z0ð Þ
þ
γr

dθ

¼ 2πif z0ð Þ

ðD:25Þ

Given Eq. D.25.

z0 = +

g0 grg

Fig. D.15 Contour

Configuration
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If multiple loops are made around the point z0, then Eq. D.25 becomes

f z0ð Þ ¼ 1

2πi

þ
γ

f zð Þ
z� z0

dz

A similar formula holds for the derivative of f(z)

f
0
z0ð Þ ¼ lim

h!0

f z0 þ hð Þ � f z0ð Þ
h

¼ lim
h!0

1

2πih

þ
γ

f zð Þdz
z� z0 � h

�
þ
γ

f zð Þdz
z� z0

� �

¼ lim
h!0

1

2πih

þ
γ

f zð Þ z� z0ð Þ � z� z0 � hð Þ½ �dz
z� z0 � hð Þ z� z0ð Þ

� �

¼ lim
h!0

1

2πih

þ
γ

hf zð Þdz
z� z0 � hð Þ z� z0ð Þ

¼ lim
h!0

1

2πi

þ
γ

f zð Þdz
z� z0ð Þ2

ðD:26Þ

Iteration again,

f
00
z0ð Þ ¼ 2

2πi

þ
γ

f zð Þdz
z� z0ð Þ3 ðD:27Þ

Continuing the process n times, we have

f n z0ð Þ ¼ n!

2πi

þ
γ

f zð Þdz
z� z0ð Þnþ1

n ¼ 1, 2, 3, . . .

Example 1: If f(z) is analytic inside and on boundary C of a simply-connected

region ℜ, prove Cauchy’s integral formula

f að Þ ¼ 1

2πi

þ
C

f zð Þ
z� a

dz

Solution: Method 1. The function f zð Þ= z� að Þ is analytic inside and on C except at

the point z ¼ a (See Fig. D.16). By theorem 4 of Sect. 22.14, we have
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þ
C

dz

z� a
¼
þ
Γ

dz

z� a
ðD:28Þ

where we can chosen Γ as a circle of radius ε with center at a. Then an equation for
Γ is z� aj j ¼ ε or z� a ¼ εeiθ where 0 	 θ < 2π. Substituting z ¼ aþ εeiθ,
dz ¼ iεeiθdθ, the integral on the right of Eq. (D.28) becomesþ

Γ

f zð Þ
z� a

dz ¼
ð2π
θ¼0

f aþ εeiθ
� �

iεeiθ

εeiθ
dθ ¼ i

ð2π
θ¼0

f aþ εeiθ
� �

dθ

Thus we have from Eq. (D.28)þ
C

f zð Þ
z� a

dz ¼ i

ð2π
θ¼0

f aþ εeiθ
� �

dθ ðD:29Þ

Taking the limits of both sides of Eq. (D.29) and making use of the continuity of f
(z), we haveþ

C

f zð Þ
z� a

dz ¼ lim
ε!0

i

ð2π
θ¼0

f aþ εeiθ
� �

dθ

¼ i

ð2π
θ¼0

lim
ε!0

f aþ εeiθ
� �

dθ ¼ i

ð2π
θ¼0

f að Þdθ ¼ 2πif að Þ
ðD:30Þ

So that we have, as required,

f að Þ ¼ 1

2πi

ð
C

f zð Þ
z� a

dz

y

x

C

a
”

Γ

Fig. D.16 Contour

Configuration
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Method 2. The right side of Eq. (D.28) of Method 1 can be written asþ
Γ

f zð Þ
z� a

dz ¼
þ
Γ

f zð Þ � f að Þ
z� a

dzþ
þ
Γ

f zð Þ
z� a

dz

¼
þ
Γ

f zð Þ � f að Þ
z� a

dzþ 2πif að Þ

using Example 5 of Sect. 22.11 in above. The required result will follow if we can

show that þ
Γ

f zð Þ � f að Þ
z� a

dz ¼ 0

But by Example 1 of Sect. 3.4 we haveþ
Γ

f zð Þ � f að Þ
z� a

dz ¼
þ
Γ
f
0
að Þdzþ

þ
Γ
ηdz ¼

þ
Γ
ηdz

Then choosing Γ so small that for all points on Γ we have ηj j < δ=2π, we findþ
Γ
ηdz

���� ���� < δ

2π

� �
2πεð Þ ¼ ε

Thus

þ
Γ
ηdz ¼ 0 and the proof is complete.

Example 2: If f(z) is analytic inside and on the boundary C of a simply-connected

region ℜ, prove that

f
0
að Þ ¼ 1

2πi

þ
Γ

f zð Þ
z� að Þ2 dz

Solution: From Example 1 in above (Sect. 23.1) if a and aþ h lie in ℜ, we have

f aþ hð Þ � f að Þ
h

¼ 1

2πi

þ
C

1

h

1

z� aþ hð Þ �
1

z� a

� �
f zð Þdz

¼ 1

2πi

þ
C

f zð Þdz
z� a� hð Þ z� að Þ ¼

1

2πi

þ
C

f zð Þdz
z� að Þ2

þ h

2πi

þ
C

f zð Þdz
z� a� hð Þ z� að Þ2
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The result follows on taking the limit as h ! 0 if we can show that the last term

approaches zero.

To show this we use the fact that if Γ is a circle of radius ε and center awhich lies
in ℜ (See Fig. D.17), then

h

2πi

þ
C

f zð Þdz
z� a� hð Þ z� að Þ2

h

2πi

þ
Γ

f zð Þdz
z� a� hð Þ z� að Þ2

Choosing h so small in absolute value that aþ h lies in Γ and hj j < ε=2, we have by
argument in Sect. 1.4 z1 � z2j j � z1j j � z2j jð Þ, and the fact that Γ has equation

z� aj j ¼ ε,

z� a� hj j � z� aj j � hj j > ε� ε=2 ¼ ε=2

Also since f(z) is analytic in ℜ we can find a positive number M such that

f zð Þj j < M.

Then since the length of Γ is 2πε, we have

h

2πi

þ
Γ

f zð Þdz
z� a� hð Þ z� að Þ2

�����
����� 	 hj j

2π

M 2πεð Þ
ε=2ð Þ ε2ð Þ ¼

2 hj jM
ε2

and if follows that the left side approaches zero ash ! 0, thus completing the proof.

It is of interest to observe h ! 0 that the result is equivalent to

d

dt
f að Þ ¼ d

da

1

2πi

þ
C

f zð Þ
z� a

dz

� �
¼ 1

2πi

þ
C

∂
∂z

f zð Þ
z� a

� �
dz

which is an extension to contour integrals of Laibmitz’s rule for differentiating

under the integral sign.

C

ℜ

Γ

x

y

a ”

a + h

Fig. D.17 Contour

Configuration
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Example 3: Prove that under the condition of Example 2

f nð Þ að Þ ¼ n!

2πi

þ
C

f zð Þ
z� að Þnþ1

dz n ¼ 0, 1, 2, 3, . . .

The case where n ¼ 0 and 1 follow from Example 1 and 2 respectively provided

we define f 0ð Þ að Þ ¼ f að Þ and 0! ¼ 1.

Solution: To establish the case where n ¼ 2, we use problem 2 where a and aþ h
lie in ℜ to obtain

f
0
aþ hð Þ � f

0
að Þ

h
¼ 1

2πi

þ
C

1

z� a� hð Þ2 �
1

z� að Þ2
( )

f zð Þdz

¼ 2!

2πi

þ
C

1

z� að Þ3f zð Þdzþ h

2πi

þ
C

3 z� að Þ � 2h

z� a� hð Þ2 z� að Þ3 f zð Þdz

The result follows on taking the limit as h ! 0 if we can show that the last term

approaches zero. The proof is similar to that of Example 2, for using the fact that the

integral around C equals the integral around Γ, we have

2

2πi

þ
Γ

3 z� að Þ � 2h

z� a� hð Þ2 z� að Þ3 f zð Þdz
�����

����� 	 hj j
2π

M 2πð Þ
ε=2ð Þ2 ε3ð Þ ¼

4 hj jM
ε4

Since M exists such that 3 z� að Þ � 2h
�
f zð Þ� ��� �� < M.

In a similar manner we can establish the result for n ¼ 3, 4, . . ..
The Result is equivalent to last paragraph of Example-2

dn

dan
f að Þ ¼ dn

dan
1

2πi

þ
C

f zð Þ
z� að Þ dz

� �
¼ 1

2πi

þ
C

∂n

an
f zð Þ
z� að Þ

� �
dz

Example 4: if f(z) is analytic in region ℜ, prove that f0(z), f00(z), . . .. are analytic

in ℜ.

Solution: This follows from Example-2 and 3

Example 5: Evaluate

(a)

þ
C

sin πz2 þ cos πz2

z� 1ð Þ z� 2ð Þ dz

(b)

þ
C

e2z

zþ 1ð Þ4 dz where C is the circle zj j ¼ 3
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Solution (a) Since 1
z�1ð Þ z�2ð Þ ¼ 1

z�2ð Þ � 1
z�1ð Þ, we haveþ

C

sin πz2 þ cos πz2

z� 1ð Þ z� 2ð Þ dz ¼
þ
C

sin πz2 þ cos πz2

z� 2ð Þ dz�
þ
C

sin πz2 þ cos πz2

z� 1ð Þ dz

By Cauchy’s integral formula with a ¼ 2 and a ¼ 1 respectively, we haveþ
C

sin πz2 þ cos πz2

z� 2ð Þ dz ¼ 2πi sin π 2ð Þ2 þ cos π 2ð Þ2
n o

¼ 2πi

þ
C

sin πz2 þ cos πz2

z� 1ð Þ dz ¼ 2πi sin π 1ð Þ2 þ cos π 1ð Þ2
n o

¼ �2πi

Since z ¼ 1 and z ¼ 2 are inside C and sin πz2 þ cos πz2 is analytic inside C.
Then the required integral has the value 2πi� �2πið Þ ¼ 4πi.

(b) Let f zð Þ ¼ e2z and a ¼ �1 in the Cauchy integral formula

f nð Þ að Þ ¼ n!

2πi

þ
C

f zð Þ
z� að Þnþ1

dz ðD:31Þ

If n ¼ 3, the f
000
zð Þ ¼ 8e2z and f

000 �1ð Þ ¼ 8e�2. Hence Eq. (D.31) becomes

8e�2 ¼ 3!

2πi

þ
C

e2z

zþ 1ð Þ4 dz

From which we see that the required integral has the value 8πie�2=3.

Example 6: Prove Cauchy’s integral formula for multiply-connected regions

Solution: We present a proof for the multiply-connected regionℜ bounded by the

simple closed curves C1 and C2 as indicated in Fig. D.18. Extensions to other

multiply-connected regions are easily made.

Construct a circle Γ having center at any point a inℜ so that Γ lies entirely inℜ.

Let ℜ0 consist of the set of points in ℜ which are exterior to Γ. Then the function
f zð Þ
z�a is analytic inside and on the boundary of ℜ0.

Hence by Cauchy’s theorem for multiply-connected regions

1

2πi

þ
C1

f zð Þ
z� a

dz� 1

2πi

þ
C2

f zð Þ
z� a

dz� 1

2πi

þ
Γ

f zð Þ
z� a

dz ¼ 0 ðD:32Þ

But by Cauchy’s integral formula for simply-connected regions, we have
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f að Þ ¼ 1

2πi

þ
Γ

f zð Þ
z� a

dz ðD:33Þ

So that from (D.32) we have

f að Þ ¼ 1

2πi

þ
C1

f zð Þ
z� a

dz� 1

2πi

þ
C1

f zð Þ
z� a

dz ðD:34Þ

Then if C represents the entire boundary of ℜ (suitably traversed so that

an observer moving around C always has ℜ lying to his left), we can write

Eq. (D.34) as

f að Þ ¼ 1

2πi

þ
C

f zð Þ
z� a

dz

In a similar manner we can show that the other Cauchy integral formulas

f nð Þ að Þ ¼ n!

2πi

þ
C

f zð Þ
z� að Þnþ1

dz n ¼ 0, 1, 2, 3, . . .

holds for multiply-connected regions.

D.8 Classification of Singularities

If is possible to classify the singularities of a function f(z) by examination of its

Laurent series. For this purpose we assume that in Fig. D.18, R2 ¼ 0, so that f(z) is
analytic inside and on C1 except at z ¼ a which is an isolated unless otherwise

indicated.

C1

a ℜ

Γ

C2

Fig. D.18 Contour

Configuration
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D.8.1 Poles

If f(z) has the form Eq. (D.5) Sect. 26.1 in above in which the principal part has only

finite number of terms given by

a�1

z� a
þ a�2

z� að Þ2 þ � � � þ a�n

z� að Þn

where a�n 6¼ 0, then z ¼ a is called a pole of order n. If n ¼ 1, it is called a simple
pole.

If f(z) has a pole at z ¼ a, then lim
x!a

f zð Þ ¼ 1. See Example 1 below.

Example 1: Prove that an analytic function cannot be bounded in the neighbor-

hood of an isolated singularity.

Solution: Let f(z) be analytic inside and on a circle C of radius r, except at
the isolated singularity z ¼ a taken to be the center of C. Then by Laurent’s

Theorem f(z) has a Laurent Expansion of,

f zð Þ ¼
X1
k¼�1

ak z� að Þk ðD:35Þ

where the coefficients ak are given by Eq. (D.34) of Sect. 26.1 in above. In

particular,

a�n ¼ 1

2πi

þ
C

f zð Þ
z� að Þ�nþ1

dz n ¼ 1, 2, 3, . . . ðD:36Þ

Now if f zð Þj j < M for a constant M, i.e., if f(z) is bounded, then from Eq. (D.36)

above,

a�n ¼ 1

2πi

þ
C

f zð Þ
z� að Þ�nþ1

dz

�����
����� 	 1

2π
rn�1 �M� 2πr ¼ Mrn

Hence since r can be made arbitrarily small, we have a�n ¼ 0, n ¼ 1, 2, 3, . . .,
i.e. a�1 ¼ a�2 ¼ a�3 ¼ � � � ¼ 0, and the Laurent series reduces to a Taylor series

about z ¼ a. This shows that f(z) is analytic at z ¼ a so that z ¼ a is not a singularity,
contrary to hypothesis. This contradiction shows that f(z) cannot be bounded in the

neighborhood of an isolated singularity.
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D.8.2 Removable Singularities

If a single-valued function f(z) is not defined at z ¼ abut lim
x!a

f zð Þ exists, then z ¼ a is

called a removable singularity. In such case we define f(z) at z ¼ a as equal to

lim
x!a

f zð Þ.

Example 1: if f zð Þ ¼ sin z

z
, then z ¼ 0 is a removable singularity f(0) is not defined

but lim
x!0

sin z

z
¼ 1. We define f 0ð Þ ¼ lim

x!0

sin z

z
¼ 1. Note that in this case

sin z

z
¼ 1

z
z� z3

3!
þ z5

5!
� z7

7!
þ � � �

� �
¼ 1� z2

3!
þ z4

5!
� z6

7!
þ � � �

D.8.3 Essential Singularities

If f(z) is single-valued, then any singularity which is not a pole or removable

singularity is called an essential singularity. If z ¼ a is an essential singularity of

f(z), the principal part of the Laurent expansion has infinitely many terms.

Example 1: Since e1=z ¼ 1þ 1
z þ 1

2!z2 þ 1
3!z3 þ � � �, z ¼ 0 is an essential singularity.

D.8.4 Brach Point

A point z ¼ z0 is called a branch point of the multiple-valued function f(z) if the
branches of f(z) are interchanged when z describes a closed path about z0. Since
each of the branches of a multiple-valued function is analytic, all of the theorem for

analytic functions, in particular Taylor’s Theorem.

Example 1: The branch of f zð Þ ¼ z1=2 which has the value 1 for z ¼ 1, has a

Taylor series of the form aþ a1 z� 1ð Þ þ a2 z� að Þ2 þ � � � with radius of conver-

gence R ¼ 1 [the distance from z ¼ 1 to the nearest singularity namely the branch

point z ¼ 0].
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D.8.5 Singularities at Infinity

By letting z ¼ 1=w in f(z), we obtain the function f 1=wð Þ ¼ F wð Þ. Then the nature of
singularity at z ¼ 1 [the point at infinity] is defined to be the same as that of F(w) at
w ¼ 0.

Example 1: f zð Þ ¼ z2 has a pole of order 3 at z ¼ 1, since F wð Þ ¼ f 1=wð Þ ¼ 1=

w2 has a pole of order 3 at w ¼ 0. Similarly f zð Þ ¼ ez has an essential singularity at

z ¼ 1, since F wð Þ ¼ f 1=wð Þ ¼ e1=w has an essential singularity at w ¼ 0.

D.9 Entire Functions

A function which is analytic everywhere in the finite plane [i.e., everywhere except

at 1] is called an entire function or integral function. The functions ez, sin z and
cos z are entire functions.

An entire function can be represented by a Taylor Series (See Appendix A)

which has an infinite radius of convergence. Conversely if a power series has an

infinite radius of convergence, it represents an entire function.

Note that by Liouville’s theorem a function which is analytic everywhere
including 1 must be a constant.

D.10 The Residues Theorem, Evaluation of Integrals

In the mathematical field of complex analysis, contour integration is a method of

evaluating certain integrals along paths in the complex plane.

Contour integration is closely related to the calculus of residues,[4] a method-

ology of complex analysis.

One use for contour integrals is the evaluation of integrals along the real line that

are not readily found by using only real variable methods.[5]

Contour integration methods include

• Direct integration of a complex-valued function along a curve in the complex

plane (a contour)

• Application of the Cauchy integral formula

• Application of the residue theorem.

One method can be used, or a combination of these methods or various limiting

processes, for the purpose of finding these integrals or sums.
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D.10.1 Residues

Let f(z) be single-valued and analytic inside and on a circle C except at the point

z ¼ a chosen as the center of C. Then, as we have seen in pervious sections (Laurent
Theorem and Series) f(z) has a Laurent series about z ¼ a given by

f zð Þ ¼
X1
n¼�1

an z� að Þn

¼ a0 þ a1 z� að Þ þ a2 z� að Þ2 þ � � � þ a�1

z� a
þ a�2

z� að Þ2 þ � � �
ðD:37Þ

where an ¼ 1

2πi

þ
C

f zð Þ
z� að Þnþ1

dz n ¼ 0, � 1, � 2, � 3, . . . ðD:38Þ

In the special case n ¼ �1, we have from Eq. D.38þ
C

f zð Þdz ¼ 2πia�1 ðD:39Þ

Formally we obtained Eq. D.39 from 37 by integrating term by term and using the

results (Example 5 and Example 6 Sect. D.6.9)

þ
C

f zð Þ
z� að Þp dz ¼

2πi p ¼ 1

0 p ¼ integer 6¼ 1

(
ðD:40Þ

Because of the fact that Eq. D.39 involves only the coefficient a�1 in Eq. D.37, we

call a�1 the residue of f(z) at z ¼ a.

D.10.2 Calculation of Residues

To obtain residue of a function f(z) at z ¼ a, it may result from Eq. D.37 that the

Laurent Expansion of f(z) about z ¼ amust be obtained. However, in the case where

z ¼ a is a pole of order k there is a simple formula for a�1 given by

a�1 ¼ lim
z!a

1

k � 1ð Þ!
dk�1

dzk�1
z� að Þkf zð Þ

n o
ðD:41Þ

If k ¼ 1 (simple pole) the result is especially simple and is given by
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a�1 ¼ lim
z!a

z� að Þf zð Þ ðD:42Þ

Which is special case of Eq. D.41 with k ¼ 1 if we define 0! ¼ 1.

Example 1: If f zð Þ ¼ z
z�1ð Þ zþ1ð Þ2 then z ¼ 1 and z ¼ �1 are poles of orders one and

two respectively.

Solution: We have, using Eqs. D.41 and D.42 with k ¼ 2

Residue at z ¼ 1 is lim
z!1

z� 1ð Þ z
z�1ð Þ zþ1ð Þ2

n o
¼ 1

4

Residue at z ¼ �1 is lim
z!�1

1
1!

d
dz zþ 1ð Þ2 z

z�1ð Þ zþ1ð Þ2
	 
n o

¼ �1
4

If z ¼ a is an essential singularity, the residue can sometimes be found by using

known series expansions.

Example 2: If f zð Þ ¼ z
zþ2ð Þ z�3ð Þ2 then f(z) has two poles: z ¼ �2 a pole of order

1, and z ¼ 3, a pole of order 2.

Solution: We have, using Eqs. (D.124) and (D.125) with k ¼ 2

Residue at z ¼ �2 is lim
z!�2

zþ 2ð Þ z

zþ 2ð Þ z� 3ð Þ2
( )

¼ � 2

25

Residue at z ¼ 3 is

lim
z!3

1

1!

d

dz
z� 3ð Þ2 z

zþ 2ð Þ z� 3ð Þ2
 !( )

¼ �1

4

lim
z!3

1

zþ 2
� z

zþ 2ð Þ2
( )

¼ � 2

25

Often the order of the pole will not be known in advance.

Example 3: If f zð Þ ¼ e�1=z then z ¼ 0 is an essential singularity.

Solution: From the known expansion for eu with u ¼ �1=z we find

e�1=z ¼ 1� 1

z
þ 1

2!z2
� 1

3!z3
þ � � �

from which we see the residue at z ¼ 0 is the coefficient of 1/z and equals �1.
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D.10.3 The Residue Theorem

Let f(z) be single-valued and analytic inside and on a simple closed curve

C except at the singularities a, b, c, . . . inside C which have residues given by a�1,

b�1, c�1, . . . (See Fig. D.19) then the residues theorem states thatþ
C

f zð Þ ¼ 2πi a�1; b�1; c�1;þ; . . .ð Þ ðD:43Þ

i.e., the integral of f(z) around C is 2πi times the sum of the residues of f(z) at the
singularities enclosed by C. Note that Eq. D.43 is a generalization of Eq. D.39.

Cauchy’s theorem and integral formulas are special cases of this theorem.

D.10.4 Evaluation of Definite Integrals

The evaluation of definite integrals is often achieved by using the residue theorem

together with a suitable function f(z) and a suitable closed path or contour C, the
choice of which may require great ingenuity. The following types are most common

in practice.

Type I:

ð1
�1

F xð Þdx, F(x) is a rational function. In this case consider

þ
C

F zð Þdz
along a contour C consisting of the line along the x axis from �R to þR and the

semicircle Γ above the x axis having this line as diameter (Fig. D.20). Then let

R ! 1. If F(x) is an even function this can be used to evaluate

ð1
�1

F xð Þdx. See
below Examples

y

x

C

a
b

c

Fig. D.19 Contour

Configuration
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Example 1: If

ð
C

f zð Þdz
���� ���� 	 ML for z ¼ Reiθ where k > 1 and M are constants,

prove that lim
R!1

ð
Γ
F zð Þdz ¼ 0 where Γ is the semicircular arc of radius R shown in

Fig. D.20 below.

Solution: If f(z) is integrable along C, then

ð
C

f zð Þdz
���� ���� 	 M where F zð Þj j 	 M,

i.e. M is an upper bound of |F(z)| on C, and L is the length of C. With this in mind

we haveð
Γ
f zð Þdz

���� ���� 	 M
Rk �πR ¼ πM

Rk�1 since the length of arc Γ is L ¼ πR.

Then lim
R!1

ð
Γ
F zð Þdz ¼ lim

R!1
πM
Rk�1 ¼ 0 and so lim

R!1

ð
Γ
F zð Þdz ¼ 0

Example 2: Show that for z ¼ Reiθ, F zð Þj j 	 M=Rk, and k > 1 if f zð Þ ¼ 1
z6þ1

.

Solution: If z ¼ Reiθ, then f zð Þj j ¼ 1
R6e6iθþ1

��� ��� 	 1

R6e6iθj j�1
¼ 1

R6�1
	 2

R6 if R is large

enough (say R > 2, for example) so that M ¼ 2 and k ¼ 6.

Example 3: Evaluate

ð1
0

dx

x6 � 1
.

Solution: Consider

þ
C

dx

x6 � 1
where C is the closed contour of Fig. D.21 consisting

of the line from �R to R and the semicircle Γ, traversed in the positive (counter-

clockwise) sense. Since x6 � 1 ¼ 0 when z ¼ eiπ=6, z ¼ ei3π=6, z ¼ ei5π=6, z ¼ ei7π=6,

z ¼ ei9π=6, z ¼ ei11π=6, these are simple poles of 1= x6 � 1
� �

. Only the poles eiπ/6, e
i3π/6 and ei5π/6 lie within C. Then using L’Hospital’s rule,

Residue at eiπ=6 ¼ lim
z!eiπ=6

z� eiπ=6
� �

1
z6þ1

n o
¼ lim

z!eiπ=6

1
6z5

¼ 1
6
e�5iπ=6

Residue at ei3π=6 ¼ lim
z!ei3π=6

z� ei3π=6
� �

1
z6þ1

n o
¼ lim

z!ei3π=6

1
6z5

¼ 1
6
e�5iπ=2

Residue at ei5π=6 ¼ lim
z!ei5π=6

z� ei5π=6
� �

1
z6þ1

n o
¼ lim

z!ei5π=6

1
6z5

¼ 1
6
e�25iπ=6

y

x

C

z

z R–R

Fig. D.20 Contour

Configuration
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Thus

þ
C

dx

x6 � 1
¼ 2πi

1

6
e�5iπ=6 þ 1

6
e�5iπ=2 þ 1

6
e�25iπ=6

� �
¼ 2π

3
ðD:44Þ

i:e:

ð R
�R

dx

x6 � 1
þ
ð
Γ

dx

x6 � 1
¼ 2π

3
ðD:45Þ

Taking the limit of both side of Eq. (D.44) as R ! 1 and using Example 1 and

Example 2 in above then we have

lim
R!1

ð R
�R

dx

x6 � 1
¼
ð1
�1

dx

x6 � 1
¼ 2π

3

Since

ð1
�1

dx

x6 � 1
¼ 2

ð1
0

dx

x6 � 1
, then required integral has the value π/3.

Formore examples and solved problem reader should refer toReference 1 and 2 of

this section in particular the suggested one that is written by Murray R. Spiegel

where most of these materials are borrowed from.

Type II:

ð2π
0

G sin θ, cos θð Þdθ , G(sin θ, cos θ) is a rational function of sin θ and

cos θ.

Let z ¼ eiθ. The sin θ ¼ eiθ � e�iθ

2i
¼ z� z�1

2i
, cos θ ¼ eiθ � e�iθ

2
¼ zþ z�1

2
and

dz ¼ ieiθdθ or dθ ¼ dz=iz. This given integral is equivalent to

þ
C

F zð Þdz where C is

the unit circle with center at the origin (See Fig. D.22) below. See also the following

Examples

Example 1 Evaluate ð2π
0

dθ

3� 2 cos θ þ sin θ

Solution: Let z ¼ eiθ. Then sin θ ¼ eiθ � e�iθ

2i
¼ z� z�1

2i
, cos θ ¼ eiθþe�iθ

2
¼ zþz�1

2

and dz ¼ izdθ so that

y

x
R

R

Γ

–R

Fig. D.21 Contour

Configuration
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ð2π
0

dθ

3� 2 cos θ þ sin θ
¼
þ
C

dz=iz

3� 2 zþ z�1ð Þ=2þ z� z�1ð Þ=2i

¼
þ
C

2dz

1� 2ið Þz2 þ 6iz� 1� 2i

where C is the circle of unit radius with center at the origin (See Fig. D.22 above).

The poles of 2
1�2ið Þz2þ6iz�1�2i are the simple poles

z ¼
�6i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ið Þ2 � 4 1� 20ið Þ �1� 2ið Þ

q
2 1� 2ið Þ

¼ �6i� 4i

2 1� 2ið Þ ¼ 2� i, 2� ið Þ=5

only 2� ið Þ=5 lies inside C.
by L’Hospital Rule

Residue at

2� ið Þ=5 ¼
lim

z! 2�ið Þ=5
z� 2� ið Þ=5f g 2

1� 2ið Þz2 þ 6iz� 1� 2i

� �

lim
z! 2�ið Þ=5

2

2 1� 2ið Þzþ 6i
¼ 1

2i

8>>><>>>:
Then

þ
C

2dz

1� 2ið Þz2 þ 6iz� 1� 2i
¼ 2πi

1

2i

� �
¼ π, the required value.

For more examples and solved problem readers should refer to Reference 1 and

2 of this section in particular the suggested one that is written by Murray R. Spiegel

where most of these materials borrowed from.

Type III: The integral type I1 ¼
ð1
�1

R xð Þ cosmxdx or I2 ¼
ð1
�1

R xð Þ sinmxdx
where the function R xð Þ ¼ P xð Þ=Q xð Þ is a rational function that has no poles on the
real axis and the degree of the polynomial in the denominator is at least one greater

than that of the polynomial in the numerator.

y

x

C

1

Fig. D.22 Contour

Configuration
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Solution: Let I ¼ I1 þ iI2 ¼
ð1
�1

R xð Þ cosmxþ i sinmxð Þdx ¼
ð1
�1

R xð Þeimxdx
m > 0and consider the function R(z)eimz. Let

X
r be the sum of the residues of R(z)

eimz in the upper half plane. Then

I ¼
ð1
�1

R xð Þeimxdx ¼ 2πi
X

r

I1 and I2 are, respectively, the real and imaginary parts of I. In other wordsð1
�1

R xð Þ cosmxdx ¼ Re 2πi
X

r
n o

ð1
�1

R xð Þ sinmxdx ¼ Im 2πi
X

r
n o

Example 1: Evaluate

ð1
�1

cosmx

1þ x2
dx

Solution: Consider the related function

eimz

1þ z2

Its only pole in the upper half plane is z ¼ i, and its residue that exists is

Residue at z ¼ i ¼ lim
z!i

z� ið Þ eimz

z�ið Þ zþið Þ
h i

¼ e�m

2i

So ð1
�1

cosmx

1þ x2
dx ¼ Re 2πi

e�m

2i

� �
¼ πe�m

Type IV: The integral I1 ¼
ð1
�1

f xð Þ cosmxdx or I2 ¼
ð1
�1

f xð Þ sinmxdx, where
the associated complex function f(z) is a meromorphic function which may have

simple poles on the real axis and which approaches zero uniformly on any circle arc

centered at z ¼ 0 as the radius of the arc approaches infinity. See Fig. D.23

Let a function f(z) satisfy the inequality f zð Þj j < Kρ when z is on a circle arc Γ of

radius ρ, and let Kρ depend only on ρ so that the inequality holds for all z on Γρ,

regardless of the argument of z. If Kρ ! 0 as ρ ! 1, then f(z) approaches zero
uniformly on Γρ as ρ ! 1.

If ρ is allowed to become sufficiently large all poles in the upper half plane will

fall within the contour shown in Fig. D.23.
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Solution: Consider the associated function f zð Þeimz ¼ f zð Þ cosmxþ f zð Þ sinmx.
Let

X
r be the sum of the residues of f(z)eimz at all poles lying in the upper half

plane (not including those on the real axis). Let
X

r
0
be the sum of the residues of f

(z)eimz at all simple poles lying on the real axis. Then

PV

ð1
�1

f xð Þeimxdx ¼ 2πi
X

r þ 1

2

X
r
0

� �

PV

ð1
�1

f xð Þ cos dx ¼ Re 2πi
X

r þ 1

2

X
r
0

� �� �

PV

ð1
�1

f xð Þ sin dx ¼ Im 2πi
X

r þ 1

2

X
r
0

� �� �

Type V: The integral

ð1
0

xa�1Q xð Þdx, where Q(x) is analytic everywhere in the

z plane except at a finite number of poles, none of which lies on the positive half of

the real axis.

Solution: The solution is given by the following theorem

Theorem: Let Q(z) be analytic everywhere in the z plane except at a finite number
of poles, none of which lies on the positive half of the real axis. If |zaQ(z)| converges
uniformly to zero when z ! 0 and when z ! 1, thenð1

0

xa�1Q xð Þdx ¼ π

sin aπ

X
residues of �zð Þa�1Q zð Þ at all its poles

provided arg z is taken in the interval �π, πð Þ.

y

x

Γp

ρ

ρ–ρ

Fig. D.23 Contour
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It should be noted that unless a is an integer, �zð Þa�1 is a multiple-valued

function which, using the defining formula az ¼ ezlna, is given by

�zð Þa�1 ¼ e a�1ð Þln �zð Þ ¼ e a� 1ð Þ
�
ln zþiarg �zð Þ

�� �� �π < argz < π

Type VI: The integral

ð1
0

x�kR xð Þdx where R(x) is a rational function of z which

has no poles at z ¼ 0 nor on the positive part of the real axis and k is not an integer.

Solution: To insure convergence of this integral it is necessary that it have the

proper behavior at zero and infinity. It is sufficient that lim
x!0

x1�kR xð Þ ¼ 0 and

lim
x!1 x1�kR xð Þ ¼ 0. In evaluating the integral we employ the related function z�kR

zð Þ which is a multiple-valued function. The branch of this function that is used is

z�k ¼ e�k ln zj jþiargzð Þ.
Let
X

r be the sum of the residues of z�kR zð Þ at the poles of R(z). The integral is
evaluated by the formula. ð1

0

x�kR xð Þdx ¼ πeiπk

sin πk

X
r

provided z�k ¼ e�k ln zj jþiargzð Þ

For types of integral not covered above, evaluation by the method of residues,

when possible at all, usually requires considerable ingenuity in selecting the

appropriate contour and in eliminating the integrals over all but the selected portion

of the contour.

D.10.5 Few Solved Problems of Residue Integration

Example 1: If F zð Þj j 	 M
Rk for z ¼ Reiθ where k > 0 and M is constant, prove that

lim
R!1

ð
Γ
eimzF zð Þdz ¼ 0

Where Γ is the semicircle arc Fig. D.24 and m is a positive constant.

Solution: If z ¼ Reiθ, and

ð
Γ
eimzF zð Þdz ¼

ð π
0

eimRe
iθ

F Reiθ
� �

iReiθdθ Then we have

the following,
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ð π
0

eimRe
iθ

F Reiθ
� �

iReiθdθ

���� ���� 	 ð π
0

eimRe
iθ

F Reiθ
� �

iReiθ
��� ���dθ

¼
ð π
0

eimR cos θ�mR sin θF Reiθ
� �

iReiθ
�� ��dθ

¼
ð π
0

e�mR sin θ F Reiθ
� �

iReiθ
�� ��dθ

	 M

Rk�1

ð π
0

e�mR sin θdθ ¼ 2M

Rk�1

ðπ=2
0

e�mR sin θdθ

Now sin θ � 2θ=π for 0 	 θ 	 π=2, as can be seen geometrically from Fig. D.59

or analytically by considering the derivative of (sin θ)/θ, showing that it is a

decreasing function.

As R ! 1 this approaches zero, since m and k are positive, and the required

result is proved.

Example 2: Show that

ð1
0

cosmx

x2 þ 1
dx ¼ π

2
e�m m > 0 .

Solution: Consider

þ
C

eimz

z2 þ 1
dz where C is the contour Fig. D.25. The integrand

has simple poles at z ¼ �i, but only z ¼ i lies inside C.

Residue at z ¼ i is lim
z!i

z� ið Þ eimz

z�ið Þ zþið Þ
n o

¼ e�m

2i .

Then þ
C

eimz

z2 þ 1
dz ¼ 2πi

e�m

2i

� �
¼ πe�m

or ð R
�R

eimx

x2 þ 1
dxþ

ð
Γ

eimz

z2 þ 1
dz ¼ πe�m

i.e.,

sin q
sin q

q

pp /2

2q /p

Fig. D.24 Contour

Configuration
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ð R
�R

cosmx

x2 þ 1
dxþ i

ð R
�R

sinmx

x2 þ 1
dxþ

ð
Γ

eimz

z2 þ 1
dz ¼ πe�m

and so

2

ð R
0

cosmx

x2 þ 1
dxþ

ð
Γ

eimz

z2 þ 1
dz ¼ πe�m

Taking the limit asR ! 1 and using Example 1 to show that the integral around

Γ approaches zero, we obtain the required result.

Example 3: Show that

ð1
0

sin x

x
dx ¼ π

2
.

Solution: The method of Example 3 in above leads us to consider the integral of

eiz/z around the contour of Fig. D.26. However, since z ¼ 0 lies on this path of

integration and since we cannot integrate through a singularity, we modify that

contour by indenting the path at z ¼ 0, as shown in Fig. D.26 below, which we

call contour C0 or ABDEFGHJA.
Since z ¼ 0 is outside C0, we haveþ

C
0

eiz

z
dz ¼ 0

or ð�ε

�R

eix

x
dxþ

ð
HJA

eiz

z
þ
ð R
ε

eix

x
dxþ

ð
BDEFG

eiz

z
dz ¼ 0

Replacing x by�x in the first integral and combining with the third integral, we

find ð R
ε

eix � e�ix

x
dxþ

ð
HJA

eiz

z
dzþ

ð
BDEFG

eiz

z
dz ¼ 0

y

x

R

Γ

–R

Fig. D.25 Contour

Configuration
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or

2i

ð R
ε

sin x

x
dx ¼ �

ð
HJA

eiz

z
dz�

ð
BDEFG

eiz

z
dz ¼ 0

Let ε ! 0 and R ! 1. By Example 1 above, the second integral on the right

approaches zero. Letting z ¼ εeiθ in the first integral on the right hand side, we see

that it approaches

� lim
ε!0

2i

ð0
π

eiεe
iθ

εeiθ
iεeiθdθ ¼ � lim

ε!0

ð0
π
iei εe

iθ

dθ ¼ πi

since the limit can be taken under the integral sign.

Then we have

lim
R ! 1
ε ! 0

2i

ð R
ε

sin x

x
dx ¼ πi or

ð1
ε

sin x

x
dx ¼ π

2

Example 4: Show that

ð1
0

xp�1

1þ x
dx ¼ π

sin pπ
0 < p < 1

Solution: Consider

þ
C

zp�1

1þ z
dz. Since z ¼ 0 is a branch point, choose C as the

contour of Fig. D.27 where the positive real axis is the branch line and where AB
and GH are actually coincident with the x axis but are shown separated for visual

purposes.

The integrand has the simple pole z ¼ �1 inside C.

Residue at z ¼ �1 ¼ eiπ is lim
z!�1

zþ 1ð Þ zp�1

1þz ¼ eiπð Þp�1 ¼ e p�1ð Þiπ . Thenþ
C

zp�1

1þ z
dz ¼ 2πie p�1ð Þiπ or, omitting the integrand, then we

D

B x
ε

y

A
”–”

H
R

R

–R

J

E

G

F

Fig. D.26 Contour

Configuration
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ð
AB

þ
ð
BDEFG

þ
ð
GH

þ
ð
HJA

¼ 2πie p�1ð Þiπ

We thus can write

ð R
ε

xp�1

1þ x
dx þ

ð R
0

Reiθ
� �p�1

iReiθ

1þ Reiθ
dθ þ

ð ε
R

xe2iπð Þp�1

1þ xe2iπ
dxþ

ð0
R

εeiθ
� �p�1

iεeiθ

1þ εeiθ
dθ

¼ 2πie p�1ð Þiπ

Where we have used z ¼ xe2πi for the integral along GH, since the argument of

z is increased by 2π in going around the circle BDEFG.
Taking the limit as ε ! 0 and R ! 1, then noting that the second and fourth

integrals approach zero, we findð1
0

xp�1

1þ x
dxþ

ð0
1

e2iπ p�1ð Þxp�1

1þ x
dx ¼ 2πe p�1ð Þiπ

or

1� e2iπ p�1ð Þ
	 
ð1

0

xp�1

1þ x
dx ¼ 2πiθe p�1ð Þiπ

so that ð1
0

xp�1

1þ x
dx ¼ 2πiθe p�1ð Þiπ

1� e2iπ p�1ð Þ ¼
2πi

epπi � e�pπi
¼ π

sin pπ

Example 5: Prove that Γ mð Þ ¼ 2

ð1
0

x2m�1e�x2dx m > 0

Solution: If t ¼ x2, we have

Γ mð Þ ¼ 2

ð1
0

tm�1e�tdt ¼ 2

ð1
0

x2
� �m�1

e�x22xdx ¼ 2

ð1
0

x2m�1e�x2dx

The result also holds if Re mf g > 0.

Example 6: Prove that Γ zð ÞΓ 1� zð Þ ¼ π
sin πz

Solution: We first prove that for real values of z such that 0 < z < 1. By analytic

continuation we can then extend it to other values of z.
From Example 6, we have for 0 < m < 1,
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Γ mð ÞΓ 1� mð Þ ¼ 2

ð1
0

x2m�1e�x2dx

� �
2

ð1
0

y1�2me�y2dy

� �

¼ 4

ð1
0

ð1
0

x2m�1y1�2me� x2þy2ð Þdxdy

In terms of polar coordinate (r, θ) with x ¼ r sin θ this becomes

4

ðπ=2
θ¼0

ð1
r¼0

tan 1�2mθ
� �

re�r2
� �

drdθ ¼ 2

ðπ=2
0

tan 1�2mθdθ ¼ π

sinmπ

See Example 4 in above with x ¼ tan 2θ and p ¼ 1� m

Example 7: Prove that Γ zþ 1ð Þ ¼ zΓ zð Þ and using the definition that for

Re zf g > 0, we define the gamma function by Γ zð Þ ¼
ð1
0

tz�1e�tdt.

Solution: Integrating by parts, we have if Re zf g > 0,

Γ zþ 1ð Þ ¼
ð1
0

tze�tdt ¼ lim
M!1

ðM
0

tze�tdt

¼ lim
M!1

tzð Þ �e�tð ÞjM0 �
ðM
0

ztz�1
� � �e�tð Þdt

� �

¼ z

ð1
0

tz�1e�tdt ¼ zΓ zð Þ

Example 8: Prove that. Γ 1
2

� � ¼ 2

ð1
0

e�u2du ¼ ffiffiffi
π

p

D

–1

B
x

y

A

H
J

R

E

G

F

e

Fig. D.27 Contour
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Solution: From Example 5 in above, letting m ¼ 1
2
, we have

Γ
1

2

� �
¼ 2

ð1
0

e�x2dx

From Example 6 in above, letting

Γ 1
2

� �� �2 ¼ π or Γ
1

2

� �
¼ ffiffiffi

π
p

Since Γ 1
2

� �
> 0. Thus the required result follows.

Another method: As in Example 6, we have

Γ 1
2

� �2n o
¼ 2

ð1
0

e�x2dx

� �
2

ð1
0

e�y2dy

� �

¼ 4

ð1
0

ð1
0

e� x2þy2ð Þdxdy ¼ 4

ðπ=2
θ¼0

ð1
r¼0

re�r2drdθ ¼ π

From which Γ 1
2

� � ¼ ffiffiffi
π

p
.

Example 9: Prove that

ð1
0

sin x2dx ¼
ð1
0

cos x2dx ¼ 1

2

ffiffiffi
π

2

r
.

Solution: The

þ
C

eiz
2

dz ¼ 0 or we can write (See Fig. D.28):

ð
OA

eiz
2

dzþ
ð
AB

eiz
2

dzþ
ð
BO

eiz
2

dz ¼ 0 ðD:46Þ

Now on OA, z ¼ x (from x ¼ 0 to x ¼ R); on AB, z ¼ Reiθ (from θ ¼ 0 to

θ ¼ π=4); on BO,

B

C

A

p /4

R

y

x

R

O

Fig. D.28 Contour

Configuration
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ð R
0

eix
2

dxþ
ðπ=4
0

eiRe
iθ e2iθ iReiθdθ þ

ð0
R

eir
2 eiπ=2eiπ=2eiπ=4dr ¼ 0 ðD:47Þ

i.e. ð R
0

cos x2 þ sin x2
� �

dx ¼ eiπ=4
ð R
0

e�r2dr �
ðπ=4
0

eiR
2 cos 2θ�R2 sin 2θiReiθdθ

ðD:48Þ

We consider the limit of Eq. (D.48) as R ! 1. The first integral on the right

becomes (See Example 7 below),

eiπ=4
ð1
0

e�r2dr ¼
ffiffiffi
π

p
2

eiπ=4 ¼ 1

2

ffiffiffi
π

2

r
þ i

2

ffiffiffi
π

2

r
The absolute value of the second integral on the right of Eq. (D.48) is

ðπ=4
0

eiR
2 cos 2θ�R2 sin 2θiReiθdθ

�����
����� 	

ðπ=4
0

e�R2 sin 2θiReiθdθ

¼
ðπ=4
0

e�R2 sin 2θdθ

	 R

2

ðπ==2
0

e�R2ϕ=πdϕ

¼ π

4R
1� e�R2
	 


Where we have used the transformation2θ ¼ ϕand the inequality sinϕ � 2ϕ=π,
0 	 ϕ 	 π=2 (See Example 1 above). This shows that R ! 1 the second integral

on the right of Eq. (D.48) approaches zero. Then Eq. (D.48) becomesð1
0

cos x2 þ i sin x2
� �

dx ¼ 1

2

ffiffiffi
π

2

r
þ i

ffiffiffi
π

2

r
and so equating real and imaginary parts we have, as requiredð1

0

cos x2dx ¼
ð1
0

sin x2dx ¼ 1

2

ffiffiffi
π

2

r
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Example 10: Prove that.

ð1
0

coshax

coshx
¼ π

2 cos πa=2ð Þ where aj j < 1

Solution: Consider

þ
C

eaz

coshz
dz where C is a rectangle having vertices at �R, R,

Rþ πi and �Rþ πi (see Fig. D.29).
The poles of eaz/cosh z are and occur where coshz ¼ 0, i.e. z ¼ nþ 1

2

� �
πi, n ¼ 0,

�1, � , . . . : The only pole enclosed by C is πi/2.
Residue of eaz

coshz at z ¼ πi=2 is

lim
z!πi=2

z� πi=2ð Þ eaz

coshz
¼ eaπi=2

sinh πi=2ð Þ ¼ i
eaπi=2

sin π=2ð Þ ¼ �ieaπi=2

Then by residue theorem,þ
C

eaz

coshz
dz ¼ 2πi �ieaπi=2

	 

¼ 2πeaπi=2

This can be writtenðþR

�R

eax

coshx
dxþ

ð π
0

ea Rþiyð Þ

cosh Rþ iyð Þ idyþ
ð�R

þR

ea xþπið Þ

cosh xþ πið Þ dx

þ
ð π
0

ea Rþiyð Þ

cosh Rþ iyð Þ idy ¼ 2πeaπi=2

ðD:49Þ

asR ! 1 the second and fourth integrals on the left approach zero. To show this let

us consider the second integral. Since

cosh Rþ iyð Þj j ¼ eRþiy þ e�R�iy
�

2

������
������ � 1

2
eRþiy
�� ��� e�R�iy

�� ��� � ¼ 1

2
eR � e�R
� � � 1

4
eR

–R + pi R + pi
3pi
2

–R R
x

y

pi
2

pi
2

–

Fig. D.29 Contour Configuration
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We have ð π
0

ea Rþiyð Þ

cosh Rþ iyð Þidy
���� ���� 	 ð π

0

eaR

1
4
eR

dy ¼ 4πe a�1ð ÞR

and the result follows on nothing that the right side approaches zero asR ! 1 since

aj j < 1. In a similar manner we can show that the fourth integral on the left of

Eq. (D.49) approaches zero as R ! 1. Hence Eq. (D.49) becomes

lim
R!1

ðþR

�R

eax

coshx
dxþ eaπi=2

ðþR

�R

eax

coshx
dx

� �
¼ 2πeaπi=2

Since cosh xþ πið Þ ¼ �coshx. Thus

lim
R!1

ðþR

�R

eax

coshx
dx ¼

ðþR

�R

eax

coshx
dx ¼ 2πeaπi=2

1þ eaπi
¼ 2π

eaπi=2 þ e�aπi=2
¼ π

cos πa=2ð Þ

Now ð0
�1

eax

coshx
dxþ

ðþ1

0

eax

coshx
dx ¼ π

cos πa=2ð Þ

Then replacing x by �x in the first integral, we haveðþ1

0

e�ax

coshx
dxþ

ðþ1

0

eax

coshx
dx ¼ 2

ðþ1

0

eax

coshx
dx ¼ π

cos πa=2ð Þ

From which the required result follows.

Example 11: Prove that

ð1
0

ln x2 þ 1ð Þ
x2 þ 1

dx ¼ πln2

Solution: Consider

þ
C

ln zþ ið Þ
z2 þ 1

dz around the contour C consisting of the real axis

from �R to R and the semicircle Γ of radius R (See Fig. D.30). The only pole of

ln zþ ið Þ= z2 þ 1ð Þ inside C is the simple pole z ¼ i, and the residue is

y

x

i

C

R

Γ

–R

Fig. D.30 Contour

Configuration
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lim
z!i

z� ið Þ ln zþ ið Þ
z� ið Þ zþ ið Þ ¼

ln 2ið Þ
2i

Hence by the residue theorem,þ
C

ln zþ ið Þ
z2 þ 1

dz ¼ 2πi
ln 2ið Þ
2i

� �
¼ πln 2ið Þ ¼ πln2þ 1

2
π2i ðD:50Þ

on writing ln 2ið Þ ¼ ln2þ lni ¼ ln2þ lneπ=2 ¼ ln2þ πi=2using principal values of
the logarithm. The result can be writtenð R

�R

ln xþ ið Þ
x2 þ 1

dxþ
ð
Γ

ln zþ ið Þ
z2 þ 1

dz ¼ πln2þ 1

2
π2i

or ð0
�R

ln xþ ið Þ
x2 þ 1

dxþ
ð R
0

ln xþ ið Þ
x2 þ 1

dxþ
ð
Γ

ln zþ ið Þ
z2 þ 1

dz ¼ πln2þ 1

2
π2i

Replacing x by �x in the first integral, this can be writtenð0
�R

ln i� xð Þ
x2 þ 1

dxþ
ð R
0

ln iþ xð Þ
x2 þ 1

dxþ
ð
Γ

ln zþ ið Þ
z2 þ 1

dz ¼ πln2þ 1

2
π2i

or, since ln i� xð Þ ¼ ln iþ xð Þ ¼ ln i2 � x2
� � ¼ ln x2 þ 1ð Þ þ πið R

0

ln x2 þ 1ð Þ
x2 þ 1

dxþ
ð R
0

πi

x2 þ 1
dxþ

ð
Γ

ln zþ ið Þ
z2 þ 1

dz ¼ πln2þ 1

2
π2i ðD:51Þ

As R ! 1 we can show that the integral around Γ approaches zero. Hence on

taking real parts we find, as required,

lim
R!1

ð R
0

ln x2 þ 1ð Þ
x2 þ 1

dx ¼
ð1
0

ln x2 þ 1ð Þ
x2 þ 1

dx ¼ πln2

Example 12: Prove that

ðπ
2
ln sin xdx

0

¼
ðπ

2
lncoxdx

0

¼ �1

2
πln2

Solution: Letting x ¼ tan θ in the result of Example 11, we findðπ
2

0

ln tan 2θ þ 1ð Þ
tan 2θ þ 1

sec 2θdθ ¼ �2

ðπ
2

0

ln cos θdθ ¼ πln2

from which
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ðπ
2

0

ln cos θdθ ¼ �1

2
πln2 ðD:52Þ

which establishes part of the required result. Letting θ ¼ π=2� ϕ in Eq. (D.52), we

find ðπ
2

0

ln sin xdx ¼ �1

2
πln2
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Appendix E
Short Course in Fourier and Laplace Transforms

It should be pointed out that both of these topics are far more in depth than what we’ll

be covering here. In fact you can do whole courses on each of these topics. What

we’ll be covering here are simply the basics of these topics that well need in order to

do the work in dealing with our materials that were covered in Chaps. 5 and 6

particularly in order to be able to solve some of our boundary value problems. There

are whole areas of both of these topics that we’ll not be even touching on.What we’ll

be covering here are simply the basics of these topics that well need in order to do the

work in those chapters. There are whole areas of both of these topics that we’ll not be

even touching on. The main point of this appendix is to get some of the basics out of

the way that we’ll need in those chapters where we’ll take a look at one of the more

common solution methods for differential and partial differential equations.

E.1 Fourier Transformation

In mathematics, the Fourier transform (often abbreviated FT) is an operation that

transforms one complex-valued function of a real variable into another. In such

applications as signal processing, the domain of the original function is typically in

time and is accordingly called the time domain. The domain of the new function is

typically called the frequency domain, and the new function itself is called the

frequency domain representation of the original function. It describes which fre-

quencies are present in the original function. This is analogous to describing a

musical chord in terms of the individual notes being played. In effect, the Fourier

transform decomposes a function into oscillatory functions. The term Fourier

transforms refers both to the frequency domain representation of a function, and

to the process or formula that "transforms" one function into the other.

The Fourier transform and its generalizations are the subject of Fourier analysis.

In this specific case, both the time and frequency domains are unbounded linear
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continua. It is possible to define the Fourier transform of a function of several

variables, which is important for instance in the physical study of wave motion and

optics. It is also possible to generalize the Fourier transform on discrete structures

such as finite groups. The efficient computation of such structures, by fast Fourier

transform, is essential for high-speed computing.

E.2 Definition

There are several common conventions for defining the Fourier transform of an

integrable function f : R ! C (Kaiser 1994) [5]. This article will use the definition:

f̂ ξð Þ ¼
ð1

�1
f xð Þe�2πixξdx for every real numberξ:

When the independent variable x represents time (with SI unit of seconds), the

transform variable ξ represents frequency (in hertz). Under suitable conditions,

f can be reconstructed from f̂ by the inverse transform:

f̂ xð Þ ¼
ð1

�1
f ξð Þe�2πixξdξ for every real numberx:

For other common conventions and notations, including using the angular fre-

quency ω instead of the frequency ξ, see Other conventions and Other notations

below. The Fourier transform on Euclidean space is treated separately, in which the

variable x often represents position and ξ momentum.

The motivation for the Fourier transform comes from the study of Fourier series.

In the study of Fourier series, complicated periodic functions are written as the sum

of simple waves mathematically represented by Sines and Cosines. Due to the

properties of sine and cosine it is possible to recover the amount of each wave in the

sum by an integral. In many cases it is desirable to use Euler’s formula, which states

that e2πiθ ¼ cos 2πθ þ i sin 2πθ, to write Fourier series in terms of the basic waves

e2πiθ. This has the advantage of simplifying many of the formulas involved and

providing a formulation for Fourier series that more closely resembles the definition

followed in this article. This passage from Sines and Cosines to complex exponen-

tials makes it necessary for the Fourier coefficients to be complex valued. The usual

interpretation of this complex number is that it gives either the amplitude (or size)

of the wave present in the function and the phase (or the initial angle) of the wave.

This passage also introduces the need for negative “frequencies”. If θ were mea-

sured in seconds then the waves e2πiθ and e2�πiθ would both complete one cycle per
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second, but they represent different frequencies in the Fourier transform. Hence,

frequency no longer measures the number of cycles per unit time, but is closely

related.

We may use Fourier series to motivate the Fourier transform as follows. Suppose

that f is a function which is zero outside of some interval �L=2, L=2½ �. Then for any
T � L we may expand f in a Fourier series on the interval �T=2, T=2½ �, where the
"amount" (denoted by cn) of the wave e

2πinx/T in the Fourier series of f is given by

f̂ n=Tð Þ ¼ cn ¼
ðT=2
�T=2

e�2πinx=Tf xð Þdx

and f should be given by the formula

f xð Þ ¼ 1

T

X1
n¼�1

f̂ n=Tð Þe2πinx=T

If we let ξn ¼ n=T, and we let Δξ ¼ N þ 1ð Þ=T � n=T ¼ 1=T, then this last sum

becomes the Riemann sum

f xð Þ ¼
X1
n¼�1

f̂ ξnð Þe2πixξnΔξ

By letting T ! 1. This Riemann sum converges to the integral for the inverse

Fourier transform given in the Definition section. Under suitable conditions this

argument may be made precise (Stein and Shakarchi 2003) [6]. Hence, as in the

case of Fourier series, the Fourier transform can be thought of as a function that

measures how much of each individual frequency is present in our function, and we

can recombine these waves by using an integral (or "continuous sum") to reproduce

the original function.

The following images provide a visual illustration of how the Fourier transforms

measures whether a frequency is present in a particular function. The function

depicted f tð Þ ¼ cos 6πtð Þe�πt2 oscillates at 3 hertz (if t measures seconds) and tends

quickly to 0. This function was specially chosen to have a real Fourier transform

which can easily be plotted. The first image contains its graph. In order to calculate

f̂ 3ð Þwe must integrate e�2πi 3tð Þf tð Þ. The second image shows the plot of the real and

imaginary parts of this function. The real part of the integrand is almost always

positive, this is because when f(t) is negative, then the real part of e�2πi 3tð Þf tð Þ is

negative as well. Because they oscillate at the same rate, when ƒ(t) is positive, so is
the real part of e�2πi 3tð Þ. The result is that when you integrate the real part of the

integrand you get a relatively large number (in this case 0.5). On the other hand,

when you try to measure a frequency that is not present, as in the case when we look

at , the integrand oscillates enough so that the integral is very small. The general

situation may be a bit more complicated than this, but this in spirit is how the
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Fourier transform measures how much of an individual frequency is present in a

function f(t) (Fig. E.1).

E.3 Periodic Functions and Orthogonal Functions

This is going to be a short section. We just need to have a brief discussion about a

couple of ideas that we’ll be dealing with on occasion as we move into the next

topic of this chapter.

Periodic Function

The first topic we need to discuss is that of a periodic function. A function is said

to be periodic with period T if the following is true,

f xþ Tð Þ ¼ f xð Þ for all x

Fig. E.1 Fourier Analysis of f tð Þ ¼ cos 6πtð Þe�πt2
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The following is a nice little fact about periodic functions.

Fact 1

If f and g are both periodic functions with period T then so is f þ g and fg.

This is easy enough to prove, so let’s do that.

f þ gð Þ xþ Tð Þ ¼ f xþ Tð Þ ¼ f xð Þ þ g xð Þ ¼ f þ gð Þ xð Þ
fgð Þ xþ Tð Þ ¼ f xþ Tð Þg xþ Tð Þ ¼ f xð Þg xð Þ ¼ fgð Þ xð Þ

The two periodic functions that most of us are familiar are sine and cosine and in

fact we’ll be using these two functions regularly in the remaining sections of this

chapter. So, having said that let’s close off this discussion of periodic functions with

the following fact,

Fact 2

sin(ωx) and cos(ωx) are periodic functions with period T ¼ 2π
ω .

E.4 Even and Odd Functions

The next quick idea that we need to discuss is that of even and odd functions.

Recall that a function is said to be even if,

f �xð Þ ¼ �f xð Þ

and a function is said to be odd if,

f �xð Þ ¼ �f xð Þ

The standard examples of even functions are f xð Þ ¼ x2 and g xð Þ ¼ cos xð Þwhile the
standard examples of odd functions are f xð Þ ¼ x3 and g xð Þ ¼ sin xð Þ. The following
fact about certain integrals of even/odd functions will be useful in some of

our work.

The functions portrayed graphically in Figs. E.2 and E.3 below are odd and even

respectively, but that of Fig. E.4 below is neither odd nor even.

In the Fourier series corresponding to an odd function, only sine terms can be

present.

In the Fourier series corresponding to an even function, only cosine terms (and

possibly a constant which we shall consider a cosine term) can be present.
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Fact 3

If f(x) is an even function then,ð L
�L

f xð Þdx ¼ 2

ð L
0

f xð Þdx

If f(x) is an odd function then, ð L
�L

f xð Þdx ¼ 0

Note that this fact is only valid on a “symmetric” interval, i.e. an interval in the

form �L, L½ �. If we are not integrating on a “symmetric” interval then the fact may

or may not be true.

Example 1: If f(x) is even, show that;

An ¼ 2

L

ð L
0

f xð Þ cos nπx

L

	 

dx

Bn ¼ 0

F(x)

x

P
er

io
dFig. E.2 Different

Functions Configurations

F(x)

x

P
er

io
dFig. E.3 Different

Functions Configurations

F(x)

x

P
er

io
dFig. E.4 Different

Functions Configurations
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Solution: (a) From Fourier series we know that;

An ¼ 1

L

ð L
�L

f xð Þ cos nπx

L

	 

dx

1

L

ð0
�L

f xð Þ cos nπx

L

	 

dxþ 1

L

ð L
0

f xð Þ cos nπx

L

	 

dx

Letting x ¼ �u,

1

L

ð0
�L

f xð Þ cos nπx

L

	 

dx

¼ �1

L

ð0
�L

f �uð Þ cos �nπx

L

	 

du

¼ 1

L

ð L
0

f �uð Þ cos nπu

L

	 

du

¼ �1

L

ð L
0

f uð Þ cos nπu

L

	 

du

since by definition of an even function f �uð Þ ¼ f uð Þ. Then by substituting for x ¼
�u again, we get the following result;

An ¼ 1

L

ð L
�L

f xð Þ cos nπx

L

	 

dx

¼ 1

L

ð L
0

f uð Þ cos nπx

L

	 

duþ 1

L

ð L
0

f xð Þ cos nπx

L

	 

dx

¼ 2

L

ð L
0

f xð Þ cos nπx

L

	 

dx

(b) Again by Fourier series the coefficient Bn can be defined as follows:

Bn ¼ 1

L

ð L
�L

f xð Þ sin nπx

L

	 

dx

¼ 1

L

ð0
�L

f xð Þ sin nπx

L

	 

dxþ 1

L

ð L
0

f xð Þ sin nπx

L

	 

dx

ðE:1Þ

If we make the transformation of x ¼ �u in the first integral on the right hand

side of Eq. (E.1), we obtain,
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1

L

ð0
�L

f xð Þ sin nπx

L

	 

dx ¼ �1

L

ð0
�L

f �uð Þ sin �nπu

L

	 

du

¼ �1

L

ð L
0

f �uð Þ sin nπu

L

	 

du

¼ �1

L

ð L
0

f uð Þ sin nπu

L

	 

du

¼ �1

L

ð L
0

f xð Þ sin nπx

L

	 

dx

ðE:2Þ

Where we have used the fact that for an even function f �uð Þ ¼ f uð Þ and in the

last step that the dummy variable of integration u can be replaced by any other

symbol, in particular x. Thus from Eq. (E.1), using Eq. (E.2), we have

Bn ¼ 1

L

ð L
�L

f xð Þ sin nπu

L

	 

dx

¼ 1

L

ð0
�L

f xð Þ sin �nπx

L

	 

dxþ 1

L

ð L
0

f xð Þ sin nxπ

L

	 

dx

¼ �1

L

ð L
0

f xð Þ sin nπx

L

	 

dxþ 1

L

ð L
0

f xð Þ sin nxπ

L

	 

dx

¼ 0

E.5 Orthogonal Functions

The final topic that we need to discuss here is that of orthogonal functions. This idea

will be integral to what we will be doing in the remainder of this chapter and in the

next chapter as we discuss one of the basic solution methods for partial differential

equations.

Let us first get the definition of orthogonal functions out of the way

Definition

Two non-zero functions, f(x) and g(x) are said to be orthogonal on a 	 x 	 b
set if , ð b

a

f xð Þg xð Þdx ¼ 0

(continued)
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A set of non-zero functions, {fi(x)} is said to be mutually orthogonal on
a 	 x 	 b (or just an orthogonal set if we are being lazy), fi(x) and fj(x) are
orthogonal for every a 	 x 	 b. In other words,

ð b
a

f i xð Þf j xð Þdx ¼
0 i 6¼ j

c > 0 i ¼ j

(

Note that in the case of i ¼ j for the second definition we know that we will get a

positive value from the integral because,

ð b
a

f i xð Þf j xð Þdx ¼
ð b
a

f i xð Þ½ �
2

dx > 0

Recall that when we integrate a positive function we know the result will be

positive as well.

Also note that the non-zero requirement is important because otherwise the

integral would be trivially zero regardless of the other function we were using.

Before we work some examples there are a nice set of trig formulas that we’ll

need to help us with some of the integrals.

sin α cos β ¼ 1

2
sin α� βð Þ þ sin αþ βð Þ½ �

sin α sin β ¼ 1

2
cos α� βð Þ þ cos αþ βð Þ½ �

cos α cos β ¼ 1

2
cos α� βð Þ þ cos αþ βð Þ½ �

Now let us work some examples that we will need over the course of the next couple

of section

Example 1 Show that cos nπx
L

� �� �1
n¼0

is mutually orthogonal on �L 	 x 	 L.

Solution: This is not too difficult to do. All we really need to do is evaluate the

following integral ð L
�L

cos
nπx

L

	 

cos

mπx

L

	 

dx

Before we start evaluating this integral let us notice that the integrand is the

product of two even functions and so must also be even. This means that we can use

Fact 3 above to write integral as,
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ð L
�L

cos
nπx

L

	 

cos

mπx

L

	 

dx ¼ 2

ð L
0

cos
nπx

L

	 

cos

mπx

L

	 

dx

There are two reasons for doing this. First having a limit of zero will often make the

evaluation step a little easier and will be the case here. We will discuss the second

reason after we are done with the example.

Now, in order to this integral we will actually need to consider three cases as

below;

Case I: n ¼ m ¼ 0

In this case the integral is very easy and isð L
�L

dx ¼ 2

ð L
0

dx ¼ 2L

Case II: n ¼ m 6¼ 0

This integral is a little harder than the first case, but not by much (provided we

recall a simple trigonometry formula). The integral for this case isð L
�L

cos 2
nπx

L

	 

dx ¼

ð L
0

cos
nπx

L

	 

dx ¼

ð L
0

1þ cos
nπx

L

	 

dx

¼ xþ L

2nπ
sin

2nπx

L

� �� �����L
0

¼ Lþ L

2nπ
sin 2nπð Þ

Now, at the point we need to recall that n is an integer and so sin 2nπð Þ ¼ 0 and our

final value for it is,ð L
�L

cos 2
nπx

L

	 

dx ¼ 2

ð L
0

cos 2
nπx

L

	 

dx ¼ L

The first two cases are really just showing that if n ¼ m the integral is not zero (as it

should not be) and depending upon the n (and hence m) we get different values of
the integral. Now we need to handle the third case scenario and this, in some ways,

is the important case so farince.

Case III: n ¼ m 6¼ 0

This is the “messiest” of the three that we have had to do here. Let us just start off

by writing the integral downð L
�L

cos 2
nπx

L

	 

cos

mπx

L

	 

dx ¼ 2

ð L
0

cos
nπx

L

	 

cos

mπx

L

	 

dx

In this case we cannot combine/simplify as we did in the previous two cases. We

can however, acknowledge that we have got a product of two cosines with different
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argument and so we can use one of the trigonometry formulas above to break up the

product as followsð L
�L

cos
nπx

L

	 

cos

mπx

L

	 

dx ¼ 2

ð L
0

cos
nπx

L

	 

cos

mπx

L

	 

dx

¼
ð L
0

cos
n� mð Þπx

L

� �
þ cos

nþ mð Þπx
L

� �� �
dx

¼ L

n� mð Þπ sin
n� mð Þπx

L

� �
þ L

nþ mð Þπ sin
nþ mð Þπx

L

� �� �

¼ L

n� mð Þπ sin n� mð Þπð Þ þ L

nþ mð Þπ sin nþ mð Þπð Þ

Now, we have shown if n and m are both integers and so n� m and nþ m are also

integers and so both of the sines above must be zero all together we get,ð L
�L

cos
nπx

L

	 

cos

mπx

L

	 

dx ¼ 2

ð L
0

cos
nπx

L

	 

cos

mπx

L

	 

dx ¼ 0

So, we have shown that if n 6¼ m the integral is zero and if n ¼ m the value of the

integral is a positive constant and so the set is mutually orthogonal.

In all of the work above we kept both forms of the integral at every step. By

keeping both forms of the integral around we were able to show that not only is

cos
nπx

L

	 
n o1

n¼0
mutually orthogonal on �L 	 x 	 L but it is also mutually

orthogonal on 0 	 x 	 L . The only difference is the value of the integral when

n ¼ m and we can get those values from the work above.

Let us take a look at another example.

Example 2: Show that sin
nπx

L

	 
n o1

n¼1
is mutually orthogonal �L 	 x 	 L and

on 0 	 x 	 L.

Solution: First we will acknowledge from the start this time that we will be

showing orthogonality on both of the intervals. Second, we need to start this set

at n ¼ 1 because if we used n ¼ 0 the first function would be zero and we do not

want the zero function to show on our list.

As with the first example all we really need to do is evaluate the following

integral. ð L
�L

sin
nπx

L

	 

sin

mπx

L

	 

dx
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In this case integrand is the product of two odd functions and so must be even.

This means that we can again use Fact 3 above to write the integral as,ð L
�L

sin
nπx

L

	 

sin

mπx

L

	 

dx ¼ 2

ð L
0

sin
nπx

L

	 

sin

mπx

L

	 

dx

We only have two cases to do for the integral here.

n ¼ m

Not much in case of this integral. It is pretty similar to the previous example second

case ð L
�L

sin 2 nπx

L

	 

dx ¼ 2

ð L
0

sin 2 nπx

L

	 

dx ¼

ð L
0

1� cos
2nπx

L

� �

¼ x� L

2nπ
sin

2nπx

L

� �� �����L
0

¼ L� L

2nπ
sin 2nπð Þ ¼ L

Summarizing up we get,ð L
�L

sin 2 nπx

L

	 

dx ¼ 2

ð L
0

sin 2 nπx

L

	 

dx ¼ L

n 6¼ m

As with the previous example this can be a little messier but it is also nearly

identical to the third case from the previous example so we will not show a lot of

the workð L
�L

sin
nπx

L

	 

sin

mπx

L

	 

dx ¼ 2

ð L
0

sin
nπx

L

	 

sin

mπx

L

	 

dx

¼
ð L
0

cos
n� mð Þπx

L

� �
� cos

n� mð Þπx
L

� �� �
dx

¼ L

n� mð Þπ sin
n� mð Þπx

L

� �
� L

nþ mð Þ sin
n� mð Þπx

L

� �� �����L
0

¼ L

n� mð Þπ sin n� mð Þπð Þ � 1

nþ mð Þπ sin nþ mð Þπð Þ

As with the previous example we know that n andm are both integers and so both of

the sines above must be zero and all together we get,
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ð L
�L

sin
nπx

L

	 

sin

mπx

L

	 

dx ¼ 2

ð L
0

sin
nπx

L

	 

sin

mπx

L

	 

dx ¼ 0

So, we have shown that if n 6¼ m the integral is zero and if n ¼ m the value of the

integral is a positive constant and so the set is mutually orthogonal.

We have now shown that sin
nπx

L

	 
n o1

n¼1
mutually orthogonal on �L 	 x 	 L

and on �L 	 x 	 L.
We need to work one more example in this section

Example 3: Show that sin
nπx

L

	 
n o1

n¼1
and cos

nπx

L

	 
n o1

n¼0
are mutually

orthogonal on �L 	 x 	 L.

Solution: This example is a little different from the previous two examples. Here

we want to show that together both sets are mutually orthogonal on�L 	 x 	 L. To
show this we need to show three things. First (and second actually) we need to show

that individually each set is mutually orthogonal and we have already done that in

the previous two examples. The thirds (and only) thing we need to show here is that

if we take one function from one set and another function from the other set and we

integrate them we will get zero.

Also, note that this time we really do only want to do the one interval as the two

sets, taken together, are not mutually orthogonal on �L 	 x 	 L. You might want

to do the integral on this interval to verify that it will not always be zero.

So, let us take care of the one integral that we need to do here and then there is

not a lot to do. Here is the integralð L
�L

sin
nπx

L

	 

cos

mπx

L

	 

dx

The integral in this case is the product of an off function (the sine) and an even

function (the cosine) and so the integrand is an off function. Therefore, sine the

integral is on a symmetric interval, i.e.�L 	 x 	 Land so by Fact 3 above we know
the integral must be zero or,ð L

�L

sin
nπx

L

	 

cos

mπx

L

	 

dx ¼ 0

So, in previous examples we have shown that on the interval�L 	 x 	 L the two
sets are mutually orthogonal individually and here we have shown that integrating a

product of a sine and a cosine gives zero. Therefore, as a combined set they are also

mutually orthogonal.

We have now worked three examples here dealing with orthogonalily and we

should note that these were not just pulled out of the air as random examples to

work. In the following sections (and Chaps. 4, 5 and 6) we will need the results from

these examples. So, let us summarize those results up here.
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Summary I

cos
nπx

L

	 
n o1

n¼0
and sin

nπx

L

	 
n o1

n¼1
are mutually orthogonal on �L 	 x

	 L as individual sets and as a combined set.

cos
nπx

L

	 
n o1

n¼0
is mutually orthogonal on 0 	 x 	 L.

sin
nπx

L

	 
n o1

n¼1
is mutually orthogonal on 0 	 x 	 L.

We will also are going to need the results of the integrals themselves, both

on �L 	 x 	 L and on 0 	 x 	 L so let us also summarize those up here as

well so we can refer to them when we need to.

Summary II

ð L
�L

cos
nπx

L

	 

cos

mπx

L

	 

dx ¼

L if n ¼ m ¼ 0

L

2
if n ¼ m 6¼ 0

0 if n 6¼ m

8>>><>>>:

ð L
�L

cos
nπx

L

	 

cos

mπx

L

	 

dx ¼

L if n ¼ m ¼ 0

L

2
if n ¼ m 6¼ 0

0 if n 6¼ m

8>>><>>>:
ð L
�L

cos
nπx

L

	 

cos

mπx

L

	 

dx ¼

L if n ¼ m

0 if n 6¼ m

(

ð L
�L

sin
nπx

L

	 

sin

mπx

L

	 

dx ¼

L

2
if n ¼ m

0 if n 6¼ m

8><>:
ð L
�L

sin
nπx

L

	 

cos

mπx

L

	 

dx ¼ 0

With this summary we will leave this section and move off into the second major

topics of this appendix which is Fourier Series.
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E.6 Fourier Sine Series

In this section we are going to start taking a look at Fourier series. We should point

out that this is a subject that can span a whole class and what we’ll be doing in this

section (as well as the next couple of sections) is intended to be nothing more than a

very brief look at the subject. The point here is to do just enough to allow us to do

some basic solutions to partial differential equations in the next chapter. There are

many topics in the study of Fourier series that we’ll not even touch upon here.

So, with that out of the way let’s get started, although we’re not going to start off

with Fourier series. Let’s instead think back to our Calculus class where we looked

at Taylor Series. With Taylor Series we wrote a series representation of a function f
(x), as a series whose terms were powers of x� a for some x ¼ a. With some

conditions we were able to show that,

f xð Þ ¼
X1
n¼0

f nð Þ að Þ
n!

x� að Þn

and that the series will converge to f(x) on x� aj j for some R that will be dependent

upon the function itself. There is nothing wrong with this, but it does require that

derivatives of all orders exist at x ¼ a. Or in other words f(n)(a) exists for n ¼ 0, 1

, 2, . . .Also for some functions the value of R may end up being quite small. These

two issues (along with a couple of others) mean that this is not always the best way

or writing a series representation for a function. In many cases it works fine and

there will be no reason to need a different kind of series. There are times however

where another type of series is either preferable or required.

We’re going to build up an alternative series representation for a function over

the course of the next couple of sections. The ultimate goal for the rest of this

chapter will be to write down a series representation for a function in terms of sines

and cosines.

We’ll start things off by assuming that the function f(x), we want to write a series
representation for is an odd function (i.e. f �xð Þ ¼ �f xð Þ ). Because f(x) is odd it

makes some sense that should be able to write a series representation for this in

terms of sines only (since they are also odd functions).

What we’ll try to do here is write f(x) as the following series representation,

called a Fourier Sine Series, on �L 	 x 	 L.

X1
n¼1

Bn
nπx

L

	 

There are a couple of issues to note here. First, at this point, we are going to assume

that the series representation will converge to f(x) on �L 	 x 	 L. We will be

looking into whether or not it will actually converge in a later section. However,

assuming that the series does converge to f(x) it is interesting to note that, unlike
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Taylor Series, this representation will always converge on the same interval and

that the interval does not depend upon the function.

Second, the series representation will not involve powers of sine (again

contrasting this with Taylor Series) but instead will involve sines with different

arguments.

Finally, the argument of the sines
nπx

L
, may seem like an odd choice that was

arbitrarily chosen and in some ways it was. For Fourier sine series the argument

doesn’t have to necessarily be this but there are several reasons for the choice here.

First, this is the argument that will naturally arise in the next chapter when we use

Fourier series (in general and not necessarily Fourier sine series) to help us solve

some basic partial differential equations.

The next reason for using this argument is that fact that the set of functions that

we chose to work with, sin
nπx

L

	 
n o1

n¼1
in this case, need to be orthogonal on the

given interval,�L 	 x 	 L in this case, and note that in the last section we showed

that in fact they are. In other words, the choice of functions we’re going to be

working with and the interval we’re working on will be tied together in some way.

We can use a different argument, but will need to also choose an interval on which

we can prove that the sines (with the different argument) are orthogonal.

So, let’s start off by assuming that given an odd function, f(x), we can in fact find
a Fourier sine series, of the form given above, to represent the function on

�L 	 x 	 L. This means we will have,

f xð Þ ¼
X1
n¼1

Bn
nπx

L

	 

As noted above we’ll discuss whether or not this even can be done and if the series

representation does in fact converge to the function in later section. At this point

we’re simply going to assume that it can be done. The question now is how to

determine the coefficients, Bn, in the series.

Let’s start with the series above and multiply both sides by sin
mπx

L

	 

wherem is

a fixed integer in the range {0, 1, 2, . . .}. In other words we multiply both sides by

any of the sines in the set of sines that we’re working with here. Doing this gives,

f xð Þ sin mπx

L

	 

¼
X1
n¼1

Bn sin
nπx

L

	 

sin

mπx

L

	 

Now, let’s integrate both sides of this from x� L to x ¼ L.ð L

�L

f xð Þ sin mπx

L

	 

dx ¼

ð L
�L

X1
n¼1

Bn sin
nπx

L

	 

sin

mπx

L

	 

dx

At this point we’ve got a small issue to deal with. We know from Calculus that an

integral of a finite series (more commonly called a finite sum) is nothing more than
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the (finite) sum of the integrals of the pieces. In other words for finite series we can

interchange an integral and a series. For infinite series however, we cannot always

do this. For some integrals of infinite series we cannot interchange an integral and a

series. Luckily enough for us we actually can interchange the integral and the series

in this case. Doing this step and factorig the constant gives, Bn, out of the integral

gives, ð L
�L

f xð Þ sin mπx

L

	 

dx ¼

X1
n¼1

ð L
�L

Bn sin
nπx

L

	 

sin

mπx

L

	 

dx

¼
X1
n¼1

Bn

ð L
�L

sin
nπx

L

	 

sin

mπx

L

	 

dx

Now, recall from the last section we proved that sin
nπx

L

	 
n o1

n¼1
is orthogonal on

�L 	 x 	 L and that,

ð L
�L

sin
nπx

L

	 

sin

mπx

L

	 

dx ¼

L if n ¼ m

0 if n 6¼ m

(

So, what does this mean for us. As we work through the various values of n in the

series and compute the value of the integrals all but one of the integrals will be zero.

The only non-zero integral will come when we have, n ¼ m in which case the

integral has the value of L. Therefore, the only non-zero term in the series will come

when we have n ¼ m and our equation becomes,ð L
�L

f xð Þ sin mπx

L

	 

dx ¼ BmL

Finally all we need to do is divide by L and we know have an equation for each of

the coefficients.

Bm ¼ 1

L

ð L
�L

sin
mπx

L

	 

dx m ¼ 1, 2, 3, . . .

Next, note that because we’re integrating two odd functions the integrand of this

integral is even and so we also know that,

Bm ¼ 2

L

ð L
0

sin
mπx

L

	 

dx m ¼ 1, 2, 3, . . .

Summarizing all this work up the Fourier sine series of an odd function f(x) on
�L 	 x 	 L is given by,
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f xð Þ ¼
X1
n¼1

Bn
nπx

L

	 
 Bn ¼ 2

L

ð L
0

f xð Þ sin nπx

L

	 

dx n ¼ 1, 2, 3, . . .

¼ 2

L

ð L
0

f xð Þ sin nπx

L

	 

dx n ¼ 1, 2, 3, . . .

Let’s take a quick look at an example.

Example 1: Find the Fourier sine series for f xð Þ ¼ x on �L 	 x 	 L.

Solution: First note that the function we’re working with is in fact an odd function

and so this is something we can do. There really isn’t much to do here other than to

compute the coefficients for f xð Þ ¼ x.
Here is that work and note that we’re going to leave the integration by parts

details to you to verify. Don’t forget that n, L, and π are constants!

Bn ¼ 2

L

ð L
0

f xð Þ sin nπx

L

	 

dx ¼ 2

L

L

n2π2

� �
L sin

nπx

L

	 

� nπx cos

nπx

L

	 
	 
���L
0

2

n2π2
L sin nπð Þ � nπL cos nπð Þð Þ

These integrals can, on occasion, be somewhat messy especially when we use a

general L for the endpoints of the interval instead of a specific number.

Now, taking advantage of the fact that n is an integer we know that sin nπð Þ ¼ 0

and that cos nπð Þ ¼ �1ð Þn. We therefore have,

Bn ¼ 2

n2π2
�nπL �1ð Þnð Þ ¼ �1ð Þnþ1

2L

nπ
n ¼ 1, 2, 3, . . .

The Fourier sine series is then,

x ¼
X1
n¼1

�1ð Þnþ1
2L

nπ
sin

nπx

L

	 

¼ 2L

π

X1
n¼1

�1ð Þnþ1

n
sin

nπx

L

	 

At this point we should probably point out that we’ll be doing most, if not all, of

our work here on a general interval (�L 	 x 	 L or 0 	 x 	 L ) instead of intervals
with specific numbers for the endpoints. There are a couple of reasons for this. First,

it gives a much more general formula that will work for any interval of that form

which is always nice. Secondly, when we run into this kind of work in the next

chapter it will also be on general intervals so we may as well get used to them now.

Now, finding the Fourier sine series of an odd function is fine and good but what

if, for some reason, we wanted to find the Fourier sine series for a function that is

not odd? To see how to do this we’re going to have to make a change. The above

work was done on the interval�L 	 x 	 L. In the case of a function that is not odd
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we’ll be working on the interval 0 	 x 	 L. The reason for this will be made

apparent in a bit.

So, we are now going to do is to try to find a series representation for f(x) on the

interval 0 	 x 	 L that is in the form,

X1
n¼1

Bn sin
nπx

L

	 

or in other words,

f xð Þ ¼
X1
n¼1

Bn sin
nπx

L

	 

As we did with the Fourier sine series on �L 	 x 	 L we are going to assume that

the series will in fact converge to f(x) and we’ll hold off discussing the convergence
of the series for a later section.

There are two methods of generating formulas for the coefficients, Bn, although

we’ll see in a bit that they really the same way, just looked at from different

perspectives.

The first method is to just ignore the fact that f(x) is odd and proceed in the same

manner that we did above only this time we’ll take advantage of the fact that we

proved in the previous section that sin
nπx

L

	 
n o1

n¼1
also forms an orthogonal set on

0 	 x 	 L and that,

ð L
0

sin
nπx

L

	 

sin

mπx

L

	 

dx ¼

0

2
if n ¼ m

0 if n 6¼ m

8><>:
So, if we do this then all we need to do is multiply both sides of our series by

sin
mπx

L

	 

, integral from 0 to L and interchange the integral and series to get,

ð L
0

f xð Þ sin mπx

L

	 

dx ¼

X1
n¼1

Bn
2

L

ð L
0

sin
nπx

L

	 

sin

mπx

L

	 

dx

Now, plugging in for the integral we arrive at,ð L
0

f xð Þ sin mπx

L

	 

dx ¼ Bm

L

2

� �
Upon solving for the coefficient we arrive at,
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Bm ¼ 2

L

ð L
0

f xð Þ sin mπx

L

	 

dx m ¼ 1, 2, 3, . . .

Note that this is identical to the second form of the coefficients that we arrived at

above by assuming f(x) was odd and working on the interval�L 	 x 	 L. The fact
that we arrived at essentially the same coefficients is not actually all the surprising

as we’ll see once we’ve looked the second method of generating the coefficients.

Before we look at the second method of generating the coefficients we need to take

a brief look at another concept. Given a function, f(x), we define the odd extension

of f(x) to be the new function,

g xð Þ ¼
f xð Þ if 0 	 x 	 L

�f �xð Þ if � L 	 x 	 L

(

It’s pretty easy to see that this is an odd function.

g �xð Þ ¼ �f � �xð Þð Þ ¼ f xð Þ ¼ �g xð Þ for 0 < x < L

and we can also know that on0 	 x 	 Lwe have that g xð Þ ¼ f xð Þ. Also note that if f
(x) is already an odd function then we in fact get g xð Þ ¼ f xð Þ on �L 	 x 	 L.

Let’s take a quick look at a couple of odd extensions before we proceed any

further.

Example 2: Sketch the odd extension of each of the given functions.

f xð Þ ¼ L� x on 0 	 x 	 L

f xð Þ ¼ 1þ x2 on 0 	 x 	 L

f xð Þ ¼
1

2
if 0 	 x 	 L

2

x� L

2
if
L

2
	 x 	 L

8>><>>:

Solution: Not much to do with this other than to define the odd extension and then

sketch it.

(a) f xð Þ ¼ L� x on 0 	 x 	 L
Here is the odd extension of this function.
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g xð Þ ¼ f xð Þ if 0 	 x 	 L

2

�f �xð Þ if � L 	 x 	 0

8<:
¼

L� x if 0 	 x 	 L

�L� x if �L 	 x 	 0

(

Below is the graph of both the function and its odd extension. Note that we’ve

put the “extension” in with a dashed line to make it clear from the portion of the

function that is being added to allow us to get the odd extension.

Graph of f (x)

–L

–L L

L

Graph of Odd Extension of f (x)

–L

–L L

L

(b) f xð Þ ¼ 1þ x2 on 0 	 x 	 L
First note that this is clearly an even function. That does not however mean that

we can’t define the odd extension for it. The odd extension for this function is:
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g xð Þ ¼ f xð Þ if 0 	 x 	 L

2

�f �xð Þ if � L 	 x 	 0

8<:
¼ 1þ x2 if 0 	 x 	 L

�1� x2 if �L 	 x 	 0

(

The sketch of the original function and its odd extension are:

Graph of f (x)

–L L

Graph of Odd Extension of f (x)

–L L

(c) f xð Þ ¼
l

2
if 0 	 x 	 L

2

x� L

2
if

L

2
	 x 	 L

8>><>>:
Let’s first write down the odd extension for this function.
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g xð Þ ¼ f xð Þ if 0 	 x 	 L

�f �xð Þ if �L 	 x 	 0

�
¼

x� L

2
if

L

2
	 x 	 L

L

2
if 0 	 x 	 L

2

�L

2
if �L

2
	 x 	 L

2

�L

2
if �L 	 x 	 �L

2

8>>>>>>>>>>><>>>>>>>>>>>:
The sketch of the original function and its odd extension are:

Graph of f (x)

–L L
2

– LL
2

L
2

L
2

–

Graph of Odd Extension of f (x)

–L L
2

– LL
2

L
2

L
2

–

With the definition of the odd extension (and a couple of examples) out of the

way we can now take a look at the second method for getting formulas for the

coefficients of the Fourier sine series for a function f(x) on 0 	 x 	 L. First, given
such a function define its odd extension as above. At this point, because g(x) is an
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odd function, we know that on �L 	 x 	 L the Fourier sine series for g(x) (and
NOT f(x) yet) is:

g xð Þ ¼
X1
n¼1

Bn sin
nπx

L

	 

Bn ¼ 2

L

ð L
0

g xð Þ sin nπx

L

	 

dx n ¼ 1, 2, 3, . . .

However, because we know that g xð Þ ¼ f xð Þ on 0 	 x 	 L we can also see that as

long as we are on 0 	 x 	 L we have:

f xð Þ ¼
X1
n¼1

Bn sin
nπx

L

	 

Bn ¼ 2

L

ð L
0

f xð Þ sin nπx

L

	 

dx n ¼ 1, 2, 3, . . .

So, exactly the same formula for the coefficients regardless of how we arrived at

the formula and the second method justifies why they are the same here as they were

when we derived them for the Fourier sine series for an odd function.

Now, let’s find the Fourier sine series for each of the functions that we looked at

in Example 2.

Note that again we are working on general intervals here instead of specific

numbers for the right endpoint to get a more general formula for any interval of this

form and because again this is the kind of work we’ll be doing in the next chapter.

Also, we’ll again be leaving the actually integration details up to you to verify. In

most cases it will involve some fairly simple integration by parts complicated by all

the constants (n,L, π, etc.) that show up in the integral.

Example 3: Find the Fourier sine series for f xð Þ ¼ L� x on �L 	 x 	 L.

Solution: There really isn’t much to do here other than computing the coefficients

so here they are:

Bn ¼ 2

L

ð L
0

f xð Þ sin nπx

L

	 

� dx ¼ 2

L

ð L
0

L� xð Þ sin nπx

L

	 

dx

¼ 2

L
� L

n2π2

� �
L sin

nπx

L

	 

� nπ x� Lð Þ cos nπx

L

	 
h i����L
0

¼ 2

L

L2

n2π2
nπ � sin nπð Þð Þ

� �
¼ 2L

nπ

In the simplification process don’t forget that n is an integer.

So, with the coefficients we get the following Fourier sine series for this

function.

In the next example it is interesting to note that while we started out this section

looking only at odd functions we’re now going to be finding the Fourier sine series
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of an even function on 0 	 x 	 L. Recall however that we’re really finding the

Fourier sine series of the odd extension of this function and so we’re okay.

Example 4: Find the Fourier sine series for f xð Þ ¼ 1þ x2 on 0 	 x 	 L.

Solution: In this case the coefficients are liable to be somewhat messy given the

fact that the integrals will involve integration by parts twice. Here is the work for

the coefficients.

Bn ¼ 2

L

ð L
0

f xð Þ sin nπx

L

	 

� dx ¼ 2

L

ð L
0

L� x2
� �

sin
nπx

L

	 

dx

¼ 2

L

L

n2π2

� �
2L2 � nπ 1þ x2

� �
cos

nπx

L

	 

þ 2Lnπx sin

nπx

L

	 
h i����L
0

¼ 2

L

L2

n2π3

� �
2L2 � n2π2 1þ L2

� �� �
cos nπð Þ þ 2L2nπ sin nπð Þ � 2L2 � n2π2

� �� 
¼ 2

n3π3
2L2 � n2π2 1þ L2

� �� � �1ð Þn � 2L2 þ n2π2
� 

As noted above the coefficients are not the most pleasant ones, but there they are.

The Fourier sine series for this function is then,

f xð Þ ¼
X1
n¼1

2

n3π3
2L2 � n2π2 1þ L2

� �� � �1ð Þn � 2L2 þ n2π2
� 

sin
nπ

L

	 

In the last example of this section we’ll be finding the Fourier sine series of a

piecewise function and this can definitely complicate the integrals a little, but they

do show up on occasion and so we need to be able to deal with them.

Example 5: Find the Fourier sine series for f xð Þ ¼
L

2
if 0 	 x 	 L

x� L

2
if

L

2
	 x 	 L

8>><>>: on

0 	 x 	 L.
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Solution: Here is the integral for the coefficients.

ðL
2

0

sin
nπx

L

	 

dx ¼ � L

2

� �
L

nπ

� �
cos

nπx

L

	 
����L2
0

¼ L2

2πn
1� cos

nπ

2

	 
	 

ð L
L
2

x� L

2

� �
sin nπx L
	 


dx
L

n2π2
L sin

nπx

L

	 

� nπ x� L

2

� �
cos

nπx

L

	 
� ������
L

L
2

¼ L

n2π2
L sin nπð Þ � nπL

2
cos nπð Þ � L sin

nπ

2

	 
� �

¼ � L2

n2π2
nπ �1ð Þn

2
þ sin

nπ

2

	 
� �

Note that we need to split the integral up because of the piecewise nature of the

original function. Let’s do the two integrals separately

Putting all of this together gives,

So, the Fourier sine series for this function is:

f xð Þ ¼
X1
n¼1

L

nπ
1þ �1ð Þnþ1 � cos

nπ

2

	 

þ 2

nπ
sin

nπ

2

	 
� �
sin

nπx

L

	 

As the previous two examples have shown that the coefficients for these can be quite

messy but that will often be the case and so we shouldn’t let that get us too excited.

E.7 Fourier Cosine Series

In this section we are going to take a look at Fourier Cosine Series. We will start off

much as we did in the previous section where we look at Fourier Sine Series. Let us

start by assuming that the function, f(x) that we will be working initially is an even

function (i.e., f(�x)¼ f(λ)) and that we want to write a series representation for this
function on �L 	 x 	 L in terms of cosines (which are also even). In other words

we are going to look for the following:

f xð Þ ¼
X1
n¼0

An cos
nπx

L

	 

This series is called a Fourier Cosine Series and not that in this case (unlike with

Fourier Sine Series) we are able to start the series representation at n ¼ 0 since that

term will not be zero as it was with sines. Also, as with Fourier Sine Series, the

argument of
nπx

L
in the cosines is being used only because it is the argument that we
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will be running into in the next section. The only real requirement here is that the

given set of functions we are using be orthogonal on the interval we are working on.

Note as well that we are assuming that the series will in fact converge to f(x) on
�L 	 x 	 L at this point. In a later section we will be looking into the convergence
of this series in more detail. So, to determine a formula for the coefficient, An,

we will use the fact that cos
nπx

L

	 
n o1

n¼0
do form an orthogonal set on the interval

�L 	 x 	 L as we showed in previous section. In that section we also derived the

following formula that we will need in a bit.

ð L
�L

cos
nπx

L

	 

cos

mπx

L

	 

dx ¼

2L if n ¼ m ¼ 0

L if n ¼ m 6¼ 0

0 if n 6¼ m

8>>><>>>:
We will get a formula for the coefficient in almost exactly the same fashion that we

did in the previous section. We will start with the representation above and multiply

both sides by cos
nπx

L

	 

where m is a fixed integer in the range 0; 1; 2; 3; � � �f g.

Doing this gives:

f xð Þ cos mπx

L

	 

¼
X1
n¼0

An cos
nπx

L

	 

cos

mπx

L

	 

Next, we integrate both sides from x ¼ �L to x ¼ L and as we were able to do with

the Fourier Sine Series we can again interchange the integral and the series.ð L
�L

f xð Þ cos mπx

L

	 

dx ¼

ð L
�L

An cos
nπx

L

	 

cos

mπx

L

	 

dx

¼
X1
n¼0

An

ð L
�L

cos
nπx

L

	 

cos

mπx

L

	 

dx

We now know that the all of the integrals on the right side will be zero except when

because the set of cosines from orthogonal set on the interval �L 	 x 	 L.
However, we need to be careful about the value of m (or n depending on the letter

you want to use). So, after evaluating all of the integrals we arrive at the following

set of formula for the coefficients.
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m ¼ 0

ð L
�L

f xð Þdx ¼ A0 2Lð Þ ) A0 ¼ 1

2L

� �ð L
�L

f xð Þdx

m 6¼ 0

ð L
�L

f xð Þ cos mπx

L

	 

dx ¼ Am Lð Þ ) Am ¼ 1

L

� �ð L
�L

f xð Þ cos mπx

L

	 

dx

Summarizing everything up then, the Fourier Cosine Series of an even function, f(x)
on �L 	 x 	 L is give by,

f xð Þ ¼
X1
n¼0

An cos
nπx

L

	 

An ¼

1

2L

� �ð L
�L

f xð Þdx n ¼ 0

1

L

� �ð L
�L

f xð Þ cos nπx

L

	 

dx n 6¼ 0

8>>>><>>>>:
Finally, before we work an example, let us notice that because both f(x) and the

cosines are even and the integrand in both of the integrals above is even and so we

can write the formula for the An’s as follows,

An ¼

1

L

ð L
�L

f xð Þdx n ¼ 0

2

L

ð L
�L

f xð Þ cos nπx

L

	 

dx n 6¼ 0

8>>>><>>>>:
Now let us take a look at an example.

Example 1: Find the Fourier cosine series of f xð Þ ¼ x2 on �L 	 x 	 L.

Solution: We clearly have an even function here and so all we really need to do is

compute the coefficients and they are liable to be a little messy because we will

need to do integration by parts twice. We will leave most of the actual integration

details to you to verify.

A0 ¼ 1

2L

ð L
�L

f xð Þdx ¼ 1

L

ð L
0

x2dx ¼ 1

L

L3

3

� �
¼ L3

3
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An ¼ 1

L

ð L
�L

f xð Þ cos nπx

L

	 

dx ¼ 2

L

ð L
0

x2 cos
nπx

L

	 

dx

¼ 2
L

L

n3π3

� �
2Lnπ cos

nπx

L

	 

þ nπx2 � 2L2
� �

sin
nπx

L

	 
	 
����L
0

¼ 2

n3π3
2L2nπ cos nπð Þ þ n2π2L2 � 2L2

� �
sin nπð Þ� �

¼ 4L2 �1ð Þn
n2π2

for n ¼ 1, 2, 3, . . .

The coefficients are then,

A0

L2

3
and An ¼ 4L2 �1ð Þn

n2π2
for n ¼ 1, 2, 3, . . .

The Fourier Cosine Series is then given by:

f xð Þ ¼ x2 ¼
X1
n¼0

An cos
nπx

L

	 

¼ A0 þ

X1
n¼0

An cos
nπx

L

	 

¼ L2

3
þ
X1
n¼0

4L2 �1ð Þn
n2π2

cos
nπx

L

	 

Note that we will often strip out the n ¼ 0 from the series as we have done here

because it will almost always be different from the other coefficients and it allows

us to actually plug the coefficients into the series.

Now, just as we did in the previous section let’s ask what we need to do in order to

find the Fourier cosine series of a function that is not even. As with Fourier sine

series whenwemake this change we’ll need tomove onto the interval0 	 x 	 Lnow
instead of�L 	 x 	 L and again we’ll assume that the series will converge to f(x) at
this point and leave the discussion of the convergence of this series to a later section.

We could go through the work to find the coefficients here twice as we did with

Fourier sine series, however there’s no real reason to. So, while we could redo all

the work above to get formulas for the coefficients let’s instead go straight to the

second method of finding the coefficients.

In this case, before we actually proceed with this we’ll need to define the even

extension of a function, f(x) on �L 	 x 	 L. So, given a function f(x) we’ll define
the even extension of the function as,

g xð Þ ¼ f xð Þ if 0 	 x 	 L

f �xð Þ if � L 	 x 	 0

(
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Showing that this is an even function is simple enough.

g �xð Þ ¼ f � �xð Þð Þ ¼ f xð Þ ¼ g xð Þ if 0 < x < L

And we can see that g xð Þ ¼ f xð Þ on 0 	 x 	 L and if f(x) is already an even function
we get g xð Þ ¼ f xð Þ on �L 	 x 	 L.

Let us take a look at some functions and sketch the even extensions for the

functions.

Example 2: Sketch the even extension of each of the given functions.

f xð Þ ¼ L� x on 0 	 x 	 L.

f xð Þ ¼ x3 on 0 	 x 	 L

f xð Þ ¼
L

2
if 0 	 x 	 L

2

x� L

2
if
L

2
	 x 	 L

8>><>>:

Solution:

(a) f xð Þ ¼ L� x on 0 	 x 	 L.
Here is the even extension of this function.

g xð Þ ¼
f xð Þ if 0 	 x 	 L

f �xð Þ if � L 	 x 	 0

(

¼
L� x if 0 	 x 	 L

Lþ x if � L 	 x 	 0

(

Here is the graph of both the original function and its even extension. Note that

we have put the “extension” in with a dashed line to make it clear from the portion

of the function that is being added to allow us to get the even extension

Graph of f (x) Graph of Even Extension of f (x)

–L L

L

–L L

L
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(b) f xð Þ ¼ x3 on 0 	 x 	 L
The even extension of this function is

g xð Þ ¼
f xð Þ if 0 	 x 	 L

f �xð Þ if � L 	 x 	 0

(

¼
x3 if 0 	 x 	 L

�x3 if � L 	 x 	 0

(

The sketch of the function and the even extension is;

Graph of f (x) Graph of Even Extension of f (x)

–L L

L3

–L L

L3

3ð Þ f xð Þ ¼
L

2
if 0 	 x 	 L

2

x� L

2
if
L

2
	 x 	 L

8>><>>:
Here is the even extension of this function;

g xð Þ ¼
f xð Þ if 0 	 x 	 L

f �xð Þ if � L 	 x 	 0

(

¼

x� L

2
if
L

2
	 x 	 0

L

2
if 0 	 x 	 L

2

L

2
if � L

2
	 x 	 0

�x� L

2
if � L 	 x 	 �L

2

8>>>>>>>>>>>><>>>>>>>>>>>>:
The sketch of the function and the even extension is;
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Graph of f (x) Graph of Even Extension of f (x)

–L L

L3

–L L

L3

Now let us think about how we can use the even extension of a function to find

the Fourier Cosine Series of any function f(x) on 0 	 x 	 L.
So, given a function f(x) we will let g(x) be the even extension as defined above.

Now, g(x) is an even function on�L 	 x 	 L and so we can write down its Fourier

cosine series. This;

g xð Þ ¼
X1
n¼0

An cos
nπx

L

	 

An ¼

1

L

ð L
�L

f xð Þdx n ¼ 0

2

L

ð L
�L

f xð Þ cos nπx

L

	 

dx n 6¼ 0

8>>>><>>>>:
Let us take a look at a couple of examples.

Example 3: Find the Fourier cosine series for f xð Þ ¼ L� x on 0 	 x 	 L.

Solution: All we need to do is compute the coefficients, so here is the work for

that:

A0 ¼ 1

L

ð L
0

f xð Þdx ¼ 1

L

ð L
0

L� xð Þdx ¼ L

2

An ¼ 2

L

ð L
0

f xð Þ cos nπx

L

	 

dx ¼ 2

L

ð L
0

L� xð Þ cos nπx

L

	 

dx

¼ 2
L

L

n3π3

� �
nπ L� xð Þ sin nπx

L

	 

� L cos

nπx

L

	 
	 
����L
0

¼ 2

L

L

n2π2

� �
�L cos nπð Þ þ Lð Þ ¼ 2L

n2π2
1þ �1ð Þnþ1
	 


forn ¼ 1, 2, 3, . . .
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The Fourier cosine series is then

f xð Þ ¼ L� x ¼
X1
n¼0

2L

n2π2
1þ �1ð Þnþ1
	 


cos
nπx

L

	 

Note that as we did with the first example in this section we stripped out the A0

term before we plugged in the coefficients.

Next, let us find the Fourier cosine series of an odd function. Note that this is

doable because we are really finding the Fourier cosine series of the even extension

of the function.

Example 4: Find the Fourier cosine series for f xð Þ ¼ x3 on 0 	 x 	 L.

Solution: The integral for A0 is simple enough but the integral for the rest will be

fairly messy as it will require three integration by parts. We will leave most of the

details of the actual integration to you to verify. Here is the work

A0 ¼ 1

L

ð L
0

f xð Þdx ¼ 1

L

ð L
0

x3dx ¼ L3

4

An ¼ 2

L

ð L
0

f xð Þcos nπx

L

	 

dx¼ 2

L

ð L
0

x3 cos
nπx

L

	 

dx

¼ 2
L

L

n4π4

� �
nπ n2π2x2�6L2
� �

sin
nπx

L

	 

� 3Ln2π2x2�6L3
� �

cos
nπx

L

	 
	 
����L
0

¼ 2

L

L

n4π4

� �
nπL n2π2L2�6L2

� �
sin nπð Þþ 3L3n2π2�6L3

� �
cos nπð Þþ6L3

� �
¼ 2

L

L

n4π4

� �
2þ n2π2�2
� � �1ð Þn� �¼ 6L3

n4π4
2þ n2π2�2
� � �1ð Þn� �

forn¼1,2,3, . . .

The Fourier cosine series for this function is then,

f xð Þ ¼ x3 ¼
X1
n¼0

6L3

n4π4
2þ n2π2 � 2

� � �1ð Þnþ1
	 


cos
nπx

L

	 

Finally, let us take a quick look at a piecewise function.

Example 5: Find the Fourier cosine series of f xð Þ ¼
L

2
if 0 	 x 	 L

2

x� L

2
if
L

2
	 x 	 L

8>><>>: on

0 	 x 	 L.
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Solution: We will need to split up the integrals for each of the coefficients here.

Here are the coefficients.

A0 ¼ 1

L

ð L
0

f xð Þdx ¼ 1

4

ðL
2

0

f xð Þdxþ
ð0
L
2

f xð Þdx
" #

¼ 1

L

ðL
2

0

L

2
dxþ

ðL
2

0

x� L

2

� �
dx

" #
¼ 1

L

L2

4
þ L2

8

� �
¼ 3L

8

An ¼ 2

L

ð L
0

f xð Þ cos nπx

L

	 

dx

¼ 2

L

ðL
2

0

f xð Þ cos nπx

L

	 

dxþ

ð L
L
2

f xð Þ cos nπx

L

	 

dx

" #

¼ 2

L

ðL
2

0

L

2
cos

nπx

L

	 

dxþ

ð L
L
2

x� L

2

� �
cos

nπx

L

	 

dx

" #

To make calculation a little easier let us do each of these separately.

ðL
2

0

L

2
cos

nπx

L

	 

dx ¼ L

2

L

nπ

� �
sin

nπx

L

	 
�����
L
2

0

¼ L

2

L

nπ

� �
sin

nπ

2

	 

¼ L2

2nπ
sin

nπ

2

	 


ð0
L
2

�
x� L

2

�
cos

nπx

L

	 

dx ¼ L

nπ

L

nπ
cos

nπx

L

	 

þ xþ nπx

L

	 
� ������
L
2

L

¼ L

nπ

L

nπ
cos nπð Þ � L

2
sin nπð Þ � L

nπ
cos

nπ

2

	 
� �

¼ L2

n2π
�1ð Þn � cos

nπ

2

	 
	 


Putting these together gives

An ¼ 2

L

L2

2nπ
sin

nπ

2

	 

þ L2

n2π2
�1ð Þn � cos

nπ

2

	 
	 
� �
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So, after all that work the Fourier cosine series is then;

f xð Þ ¼ 3L

8
þ
X1
n¼1

2L

nπ
�1ð Þn � cos

nπ

2

	 

þ nπ

2
sin

nπ

2

	 
h i
cos

nπx

L

	 

Note that much as we saw with the Fourier Sine Series many of the coefficients will

quite messy to deal with.

E.8 Fourier Series

In the previous two sections we have looked at the Fourier Sine and Fourier Cosine

Series. It is now time to look at a Fourier Series. With a Fourier series we are going

to try to write a series representation for f(x) on �L 	 x 	 L in the form;

f xð Þ ¼
X1
n¼0

An cos
nπx

L

	 

þ
X1
n¼0

Bn sin
nπx

L

	 

So a Fourier series is, in some way, a combination of the Fourier sine and Fourier

cosine series. Also, like the Fourier sine/cosine series we’ll not worry about

whether or not the series will actually converge to f(x) or not at this point. For

now we’ll just assume that it will converge and we’ll discuss the convergence of the

Fourier series in a later section.

Determining formulas for the coefficients, An and Bn, will be done in exactly the

same manner as we did in the previous two sections. We will take advantage of the

fact that cos
nπx

L

	 
n o
n¼0

1
and sin

nπx

L

	 
n o
n¼1

are mutually orthogonal on �L

	 x 	 L as we proved earlier. We’ll also need the following formulas that we

derived when we proved the two sets were mutually orthogonal.

ð L
�L

cos
nπx

L

	 

cos

mπx

L

	 

dx ¼

2L if n ¼ m ¼ 0

L if n ¼ m 6¼ 0

0 if n 6¼ m

8><>:
ð L
�L

sin
nπx

L

	 

sin

mπx

L

	 

dx ¼ L if n ¼ m

0 if n 6¼ m

�
ð L
�L

sin
nπx

L

	 

cos

mπx

L

	 

dx ¼ 0
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So, let us start off by multiplying both sides of the series above by cos mπx
L

� �
and

integrating from �L to L. Doing this gives:ð L
�L

f xð Þ cos mπx

L

	 

dx ¼

ð L
�L

X1
n¼0

An cos
nπx

L

	 

cos

mπx

L

	 

dx

þ
ð L
�L

X1
n¼1

Bn sin
nπx

L

	 

cos

mπx

L

	 

dx

Now, just as we have been able to do in the last two sections we can interchange the

integral and the summation. Doing this gives:ð L
�L

f xð Þ cos mπx

L

	 

dx ¼

X1
n¼0

An

ð L
�L

cos
nπx

L

	 

cos

mπx

L

	 

dx

þ
X1
n¼1

Bn

ð L
�L

sin
nπx

L

	 

cos

mπx

L

	 

dx

We can now take advantage of the fact that the sines and cosines are mutually

orthogonal. The integral in the second series will always be zero and in the first

series the integral will be zero if and so this reduces to;

ð L
�L

f xð Þ cos mπx

L

	 

dx ¼

Am 2Lð Þ if n ¼ m ¼ 0

Am Lð Þ if n ¼ m 6¼ 0

(

Solving for Am gives;

A0 ¼ 1

2L

ð L
�L

f xð Þdx

Am ¼ 1

L

ð L
�L

f xð Þ cos mπx

L

	 

dx m ¼ 1, 2, 3, . . .

Now, do it all over again only this time multiply both sides by sin
mπx

L

	 

, integrate

both sides from �L to L and interchange the integral and summation to get,ð L
�L

f xð Þ sin mπx

L

	 

dx ¼

X1
n¼0

An

ð L
�L

cos
nπx

L

	 

sin

mπx

L

	 

dx

þ
X1
n¼1

Bn

ð L
�L

sin
nπx

L

	 

sin

mπx

L

	 

dx
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In this case the integral in the first series will always be zero and the second will be

zero if n 6¼ m and so we get,ð L
�L

f xð Þ sin mπx

L

	 

dx ¼ Bm Lð Þ

Finally solving for Bm gives,

Bm ¼ 1

L

ð L
�L

f xð Þ sin mπx

L

	 

dx m ¼ 1, 2, 3, . . .

In the previous two sections we also took advantage of the fact that the integrand was

even to give a second form of the coefficients in terms of an integral from 0 to L.
However, in this case we don’t know anything about whether f(x) will be even, odd,
or more likely neither even nor odd. Therefore, this is the only form of the coeffi-

cients for the Fourier series.

Before we start with the examples let’s remind ourselves of a couple of formulas

that we’ll make a heavy use of here in this section, as we’ve done in the previous

two sections as well. Provided n in an integer then,

cos nπð Þ ¼ �1ð Þn sin nπð Þ

In all of the work that we’ll be doing here n will be an integer and so we’ll use these
without comment in the problems, so be prepared for them.

Also don’t forget that sine is an odd function, i.e. sin �xð Þ ¼ � sin xð Þ and that

cosine is an even function, i.e. cos �xð Þ ¼ cos xð Þ. We will also be making a heavy

use of these ideas without comment in many of the integral evaluations, so be ready

for these as well.

Summary of Fourier Series:

Let f(x) satisfy the following conditions:

f(x) is defined in the interval c < x < cþ 2L.
f(x) and f’(x) are sectionally continuous in c < x < cþ 2L.
f xþ 2xð Þ ¼ f xð Þ, i.e. f(x) is periodic with period 2L.
Then at every period of continuity, we have

f xð Þ ¼ A0

2
þ
X1
n¼1

An cos
nπx

L

	 

þ Bn sin

nπx

L

	 
h i
ðE:3Þ

(continued)
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where

An ¼ 1

L

ðcþ2L

c

f xð Þ cos nπx

L

	 

dx

Bn ¼ 1

L

ðcþ2L

c

f xð Þ sin nπx

L

	 

dx

9>>>>=>>>>; ðE:4Þ

At a point of discontinuity, the left side of Eq. E.4 is replaced by
1
2

f xþ 0ð Þ þ f x� 0ð Þf g, i.e. the mean value at the discontinuity.

The series Eq. E.3 with coefficients Eq. E.5 is called the Fourier Series of f
(x). For many problems, c ¼ 0 or c ¼ �L. In case L ¼ π,

Finite Fourier Sine Transform of f(x), 0 < x < L, is defined. f(x) has period
2π and Eqs. E.3 and E.4 are simplified.

The above conditions are often called Dirichlet Conditions and are suffi-

cient (but not necessary conditions for convergence of Fourier Series.

Now let’s take a look at an example

Example 1: Find that the Fourier series for f xð Þ ¼ L� x on �L 	 x 	 L.

Solution: So let us go ahead and just run through formulas for the coefficients.

A0 ¼ 1

2L

ð L
�L

f xð Þdx ¼ 1

2L

ð L
�L

L� xð Þdx ¼ L

An ¼ 1

L

ð L
�L

f xð Þ cos nπx

L

	 

dx ¼ 1

L

ð L
�L

L� xð Þ cos nπx

L

	 

dx

¼ 1

L

L

n2π2

� �
nπ L� xð Þ sin nπx

L

	 

� L cos

nπx

L

	 
	 
����
�L

L

¼ 1

L

L

n2π2

� �
�2nπL sin �nπð Þð Þ ¼ 0 n ¼ 1, 2, 3, . . .

Bn ¼ 1

L

ð L
�L

f xð Þ sin nπx

L

	 

dx ¼ 1

L

ð L
�L

L� xð Þ sin nπx

L

	 

dx

¼ 1

L

L

n2π2

� �
L sin

nπx

L

	 

� nπ x� Lð Þ cos nπx

L

	 
	 
����
�L

L

¼ 1

L

L2

n2π2

� �
2nπ cos nπð Þ � 2 sin nπð Þð Þ ¼ 2L �1ð Þn

nπ
n ¼ 1, 2, 3, . . .
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Note that in this case we hadA0 6¼ 0 andAn ¼ 0 for.n ¼ 1, 2, 3, . . .This will happen
on occasion.

f xð Þ ¼
X1
n¼0

An cos
nπx

L

	 

þ
X1
n¼1

Bn sin
nπx

L

	 


¼ A0 þ
X1
n¼0

An cos
nπx

L

	 

þ
X1
n¼1

Bn sin
nπx

L

	 

¼ Lþ

X1
n¼1

2L �1ð Þn
nπ

sin
nπx

L

	 

As we saw in the previous example sometime we will get A0 6¼ 0 and An ¼ 0 for.

n ¼ 1, 2, 3, . . .. Whether or not this will happen depend upon the function f(x) and
often will not happen.

Let us take a look at another example

Example 2: Find the Fourier series for f xð Þ ¼
L if � L 	 x 	
2x if0 	 x 	 L

(
on

�L 	 x 	 L:.

Solution: Because of the piecewise nature of the function the work for the

coefficients is going to be a little unpleasant but let us get on with the calculation.

A0 ¼ 1

2L

ð L
�L

f xð Þdx ¼ 1

2L

ð0
�L

f xð Þdxþ
ð L
0

f xð Þdx
� �

¼ 1

2L

ð0
�L

Ldxþ
ð L
0

2xdx

� �
¼ 1

2L
L2 þ L2
�  ¼ L

An ¼ 1

L

ð L
�L

f xð Þ cos nπx

L

	 

dx ¼ 1

2L

ð0
�L

f xð Þ cos nπx

L

	 

dxþ

ð L
0

f xð Þ cos nπx

L

	 

dx

� �

¼ 1

2L

ð0
�L

L cos
nπx

L

	 

dxþ

ðL

0

2x cos
nπx

L

	 

dx

" #

At this point it will probably be easier to do each of these individually.

ð0
�L

L cos
nπx

L

	 

dx ¼ L2

nπ
sin

nπx

L

	 
� �����
�L

0

¼ L2

nπ
sin nπð Þ ¼ 0
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ð L
0

2x cos
nπx

L

	 

dx¼ 2L

n2π2

� �
L cos

nπx

L

	 

þ nπ sin

nπx

L

	 
	 
����L
0

¼ 2L

n2π2

� �
L cos nπxð Þ þ nπ sin nπxð Þ � L cos 0ð Þð Þ

¼ 2L

n2π2

� �
�1ð Þn � 1ð Þ

So if we put all of this together we have

An ¼ 1

L

ð L
�L

f xð Þ cos nπx

L

	 

dx ¼ 1

L
0þ 2L2

n2π2

� �
�1ð Þn � 1ð Þ

� �

¼ 2L

n2π2
�1ð Þn � 1ð Þ n ¼ 1, 2, 3, . . .

So, we have gotten the coefficients for the cosines taken care of and now we need

to take care of the coefficients for the sines.

So, we have gotten the coefficients for the cosines taken care of and now we need

to take care of the coefficients for the sines.

Bn ¼ 1

L

ð L
�L

f xð Þ sin nπx

L

	 

dx ¼ 1

L

ð0
�L

f xð Þ sin nπx

L

	 

dx

� �

¼ 1

L

ð0
�L

L sin
nπx

L

	 

dxþ

ð L
0

2x sin
nπx

L

	 

dx

� �
As with the coefficients for the cosines will probably be easier to do each of these

individually.

ð0
�L

L sin
nπx

L

	 

dx ¼ � L2

nπ
cos

nπx

L

	 
� �����
�L

0

¼ L2

nπ
�1þ cos nπð Þð Þ ¼ L2

nπ
�1ð Þn � 1ð Þ

ð L
0

2x sin
2L

n2π2

� �
dx ¼ 2L

n2π2

� �
L sin

nπx

L

	 

� nπ cos

nπx

L

	 
	 
���
0

L

¼ 2L

n2π2

� �
L sin nπð Þ � nπ cos

nπx

L

	 
	 

¼ 2L

n2π2

� �
�nπ �1ð Þnð Þ ¼ � 2L2

nπ
�1ð Þn

So, if we put all of this together we have
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Bn ¼ 1

L

ð L
�L

f xð Þ sin nπx

L

	 

dx ¼ 1

L

L2

nπ
�1ð Þn � 1ð Þ � 2L2

nπ
�1ð Þn

� �

¼ 1

L

L2

nπ
�1� �1ð Þnð Þ

� �
¼ � L

nπ
1þ �1ð Þnð Þ n ¼ 1, 2, 3, . . .

So, after all that work the Fourier series is;

f xð Þ ¼
X1
n¼0

An cos
nπx

L

	 

þ
X1
n¼1

Bn sin
nπx

L

	 


¼ A0 þ
X1
n¼1

An cos
nπx

L

	 

þ
X1
n¼1

Bn sin
nπx

L

	 


¼ Lþ
X1
n¼1

2L

n2π2
�1ð Þn � 1ð Þ cos nπx

L

	 

�
X1
n¼1

Bn 1þ �1ð Þnð Þ sin nπx

L

	 

As we saw in the previous example there is often quite a bit of work involved in the

computing the integrals involved here.

The next coup a nice observation about some Fourier Series and their relation to

Fourier Sine/Cosine Series.

Example 3: Find the Fourier series for f xð Þ ¼ x on �L 	 x 	 L

Solution: Let us start with the integrals for An.

A0 ¼ 1

2L

ð L
�L

f xð Þdx ¼ 1

2L

ð L
�L

xdx ¼ 0

An ¼ 1

L

ð
L

�L

f xð Þ cos nπx

L

	 

dx ¼ 1

L

ð L
�L

x cos
nπx

L

	 

dx ¼ 0

In both cases note that we are integrating an odd function (x is odd and cosine is
even so the product is odd) over the interval �L, L½ � and so we know that both of

these integrals will be zero.

Next here is the integral for Bn.

Bn ¼ 1

L

ð L
�L

f xð Þ sin nπx

L

	 

dx ¼ 1

L

ð L
�L

x sin
nπx

L

	 

dx ¼ 2

L

ð L
0

x sin
nπx

L

	 

dx

In this case we are integrating an even function (x and sine are both odd so the

product is even) on the interval �L, L½ � so we can “simplify” the integral as shown

above. The reason for doing this here is not actually to simplify the integral

however. It is instead done so that we can note that we did this integral back in
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the Fourier Sine Series section and so do not need to redo it in this section. Using the

previous result we get;

Bn ¼ �1ð Þnþ1
2L

nπ
n ¼ 1, 2, 3, . . .

In this case the Fourier Series is

f xð Þ ¼
X1
n¼0

An cos
nπx

L

	 

þ
X1
n¼1

Bn sin
nπx

L

	 

¼
X1
n¼1

�1ð Þnþ1
2L

nπ
sin

nπx

L

	 

If you go back and take a look at Example 1 in the Fourier Sine Series section, the

same example we used to get the integral out of, you will see that example we were

finding the Fourier Sine series for f xð Þ ¼ x on �L 	 x 	 L. The important thing to

note here is that the answer that we got in that example is identical to the answer we

got here.

If you think about it however, this should not be too surprising. In both cases we

were using an odd function on �L 	 x 	 L and because we know that we had an

odd function the coefficients of the cosines in the Fourier series, An, will involve

integrating and odd function over a symmetric interval,�L 	 x 	 L, and so will be
zero. So, in these cases the Fourier sine series of an odd function on�L 	 x 	 L is

really just a special case of a Fourier series.

Note however that when we moved over to doing the Fourier sine series of any

function on �L 	 x 	 L we should no longer expect to get the same results. You

can see this by comparing Example 1 above with Example 3 in the Fourier sine

series section. In both examples we are finding the series for f xð Þ ¼ x� L and yet

got very different answers.

So, why did we get different answers in this case?. Recall that when we find the

Fourier sine series of a function on 0 	 x 	 Lwe are really finding the Fourier sine

series of the odd extension of the function on �L 	 x 	 L and then just restricting

the result down to 0 	 x 	 L. For a Fourier series we are actually using the whole

function on �L 	 x 	 L instead of its odd extension. We should therefore not

expect to get the same results since we are really using different functions (at least

on part of the interval) in each case.

So, if the Fourier sine series of an odd function is just a special case of a Fourier

series it makes some sense that the Fourier cosine series of an even function should

also be a special case of a Fourier series. Let’s do a quick example to verify this.

Example 4: Find the Fourier series for f xð Þ ¼ x2 on �L 	 x 	 L.

Solution: Here are the integrals for the An and in this case because both the

function and cosine are even we will be integration an even function and so can

“simplify” the integral.
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A0 ¼ 1

2L

ð L
�L

f xð Þdx ¼ 1

2L

ð L
�L

x2dx

An ¼ 1

L

ð L
�L

f xð Þ cos nπx

L

	 

dx ¼ 1

L

ð L
�L

x2 cos
nπx

L

	 

dx ¼ 2

L

ð L
0

x2 cos
nπx

L

	 

dx

As with the previous example both of these integrals were done in Example 1 in

the Fourier Cosine Series and so we will not bother redoing them here. The

coefficient are;

A0 ¼ L2

3
An ¼ 4L2 �1ð Þn

n2π2
n ¼ 1, 2, 3, . . .

Next there is the integral for Bn

In this case the function is even and sine is odd so the product is odd and we are

integrating over �L 	 x 	 L and so the integral is zero.

The Fourier Series is then;

f xð Þ ¼
X1
n¼0

An cos
nπx

L

	 

þ
X1
n¼1

Bn sin
nπx

L

	 

¼ L3

3
þ
X1
n¼1

4L2 �1ð Þn
n2π2

cos
nπx

L

	 

As suggested before we started this example the result here is identical to the

result from Example 1 in the Fourier cosine series section and so we can see that the

Fourier cosine series of an even function is just a special case a Fourier series.

E.9 Convergence of Fourier Series

Over the last few sections we’ve spent a fair amount of time to computing Fourier

series, but we have avoided discussing the topic of convergence of the series. In

other words, will the Fourier series converge to the function on the given interval?

In this section we’re going to address this issue as well as a couple of other issues

about Fourier series. We’ll be giving a fair number of theorems in this section but

are not going to be proving any of them.We’ll also not be doing a whole lot of in the

way of examples in this section.

Before we get into the topic of convergence we need to first define a couple of

terms that we’ll run into in the rest of the section. First, we say that f(x) has a jump

discontinuity at x ¼ a if the limit of the function from the left, denoted f a�ð Þ, and
the limit of the function from the right, denoted f aþð Þ, both exist and

f a�ð Þ 6¼ f aþð Þ.
Next, we say that f(x) is piecewise smooth if the function can be broken into

distinct pieces and on each piece both the function and its derivative, f’(x), are
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continuous. A piecewise smooth function may not be continuous everywhere

however the only discontinuities that are allowed are a finite number of jump

discontinuities.

Let’s consider the function,

f xð Þ ¼
L if � L 	 x 	 0

2x if 0 	 x 	 L

(

We found the Fourier series for this function in Example 2 of the previous section.

Here is sketch of this function on the interval on which it is defined, i.e.
�L 	 x 	 L.

–L L

L

2L

This function has a jump discontinuity at x ¼ 0 because f 0�ð Þ ¼ L 6¼ 0 ¼ f 0þð Þ
and note that on the intervals �L 	 x 	 L and 0 	 x 	 L both the function and its

derivative are continuous. This is therefore an example of a piecewise smooth

function. Note that the function itself is not continuous at x ¼ 0 but because this

point of discontinuity is a jump discontinuity the function is still piecewise smooth.

The last term we need to define is that of periodic extension. Given a function,

f(x), defined on some interval, we’ll be using �L 	 x 	 L exclusively here, the

periodic extension of this function is the new function we get by taking the graph of

the function on the given interval and then repeating that graph to the right and left

of the graph of the original function on the given interval.

It is probably best to see an example of a periodic extension at this point to help

make the words above a little clearer. Here is a sketch of the period extension of the

function we looked at above,
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–5L –4L –3L –2L –L L

L

2L

2L 3L 4L 5L

The original function is the solid line in the range �L 	 x 	 L. We then got the

periodic extension of this by picking this piece up and copying it every interval of

length 2L to the right and left of the original graph. This is shown with the two sets

of dashed lines to either side of the original graph.

Note that the resulting function that we get from defining the periodic extension

is in fact a new periodic function that is equal to the original function on

�L 	 x 	 L.
With these definitions out of the way we can now proceed to talk a little bit about

the convergence of Fourier series. We will start off with the convergence of a

Fourier series and once we have that taken care of the convergence of Fourier Sine/

Cosine series will follow as a direct consequence. Here then is the theorem giving

the convergence of a Fourier series.

Convergence of Fourier Series
Suppose f(x) is a piecewise smooth on the�L 	 x 	 L. The Fourier Series of
f(x) will then converge to;

The periodic extension of f(x) if the periodic extension is continuous.

The average of the two one-sided limit, 1
2
f a�ð Þ þ f aþð Þ½ �, if the periodic

extension has a jump discontinuity at x ¼ a.

The first thing to note about this is that on the interval �L 	 x 	 L both the

function and the periodic extension are equal and so where the function is contin-

uous on �L 	 x 	 L the periodic extension will also be continuous and hence at

these points the Fourier series will in fact converge to the function. The only points

in the interval �L 	 x 	 L where the Fourier series will not converge to the

function is where the function has a jump discontinuity.

Let’s again consider Example 2 of the previous section. In that section we found

that the Fourier series of,
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f xð Þ ¼
L if � L 	 x 	 0

2x if 0 	 x 	 L

(

on �L 	 x 	 L to be,

f xð Þ ¼ Lþ
X1
n¼1

2L

n2π2
�1ð Þn � 1ð Þ cos nπx

L

	 

�
X1
n¼1

L

nπ
1þ �1ð Þnð Þ sin nπx

L

	 

We now know that in the intervals �L < x < 0 and 0 < x < L the function and

hence the periodic extensions are both continuous and so on these two intervals the

Fourier series will converge to the periodic extension and hence will converge to

the function itself.

At the point x ¼ 0 the function has a jump discontinuity and so the periodic

extension will also have a jump discontinuity at this point. That means that at x ¼ 0

the Fourier series will converge to,

1

2
f 0�ð Þ þ f 0þð Þ½ � ¼ 1

2
Lþ 0½ � ¼ L

2

At the two endpoints of the interval, x ¼ �L and x ¼ L, we can see from the sketch

of the periodic extension above that the periodic extension has a jump discontinuity

here and so the Fourier series will not converge to the function there but instead the

averages of the limits.

So, at x ¼ �L the Fourier series will converge to,

1

2
f �L�ð Þ þ f �Lþð Þ½ � ¼ 1

2
2Lþ L½ � ¼ 3L

2

and at x ¼ L the Fourier series will converge to,

1

2
f L�ð Þ þ f Lþð Þ½ � ¼ 1

2
2Lþ L½ � ¼ 3L

2

Now that we have addressed the convergence of a Fourier series we can briefly turn

our attention to the convergence of Fourier sine/cosine series. First, as noted in the

previous section the Fourier sine series of an odd function on �L 	 x 	 L and the

Fourier cosine series of an even function on are both just special cases of a Fourier

series we now know that both of these will have the same convergence as a Fourier

series.

Next, if we look at the Fourier sine series of any function, g(x), on0 	 x 	 L then
we know that this is just the Fourier series of the odd extension of restricted down to

the interval. Therefore we know that the Fourier series will converge to the odd

extension on�L 	 x 	 Lwhere it is continuous and the average of the limits where

the odd extension has a jump discontinuity. However, on 0 	 x 	 L we know that
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g(x) and the odd extension are equal and so we can again see that the Fourier sine

series will have the same convergence as the Fourier series.

Likewise, we can go through a similar argument for the Fourier cosine series

using even extensions to see that Fourier cosine series for a function on 0 	 x 	 L
will also have the same convergence as a Fourier series.

The next topic that we want to briefly discuss here is when will a Fourier Series

be continuous. From the theorem on the convergence of Fourier series we know that

where the function is continuous the Fourier series will converge to the function and

hence be continuous at these points. The only place where the Fourier Series may

not be continuous is if there is a jump discontinuity on the interval�L 	 x 	 L and
potentially at the endpoints as we saw that the periodic extension may introduce a

jump discontinuity there.

So, if we’re going to want the Fourier Series to be continuous everywhere we’ll

need to make sure that the function does not have any discontinuities in

�L 	 x 	 L. Also, in order to avoid having the periodic extension introduce a

jump discontinuity we’ll need to require that f �Lð Þ ¼ f Lð Þ. By doing this the two

ends of the graph will match up when we form the periodic extension and hence we

will avoid a jump discontinuity at the end points.

Here is a summary of these ideas for a Fourier Series.

Suppose f(x) is a piecewise smooth on the�L 	 x 	 L. The Fourier Series of
f(x) will be continuous and will converge to f(x) on�L 	 x 	 L provided f(x)
is continuous on �L 	 x 	 L and f �Lð Þ ¼ f Lð Þ.

Now, how can we use this to get similar statements about Fourier sine/cosine

series on 0 	 x 	 L. Let’s start with a Fourier cosine series. The first thing that we

do is form the even extension of f(x) on �L 	 x 	 L. For the purposes of this

discussion let’s call the even extension g(x). As we saw when we sketched several

even extensions in the Fourier cosine series section that in order for the sketch to be

the even extension of the function we must have both,

g 0�ð Þ ¼ g 0þð Þ g �Lð Þ ¼ g Lð Þ

If one or both of these aren’t true then g(x) will not be an even extension of f(x).
So, in forming the even extension we do not introduce any jump discontinuities

at x ¼ 0 and we get for free that g �Lð Þ ¼ g Lð Þ. If we now apply the above theorem

to the even extension we see that the Fourier series of the even extension is

continuous on�L 	 x 	 L. However, because the even extension and the function

itself are the same on 0 	 x 	 L then the Fourier cosine series of f(x) must also be

continuous on 0 	 x 	 L.
Here is a summary of this discussion for the Fourier cosine series.
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Suppose f(x) is a piecewise smooth on the. 0 	 x 	 L. The Fourier Series of
f(x) will be continuous and will converge to f(x) on 0 	 x 	 L provided f(x) is
continuous on 0 	 x 	 L.

Note that we don’t need any requirements on the end points here because they

are trivially satisfied when we convert over to the even extension.

For a Fourier sine series we need to be a little more careful. Again, the first thing

that we need to do is form the odd extension on�L 	 x 	 Land let’s call it g(x). We

know that in order for it to be the odd extension then we know that at all points in

�L 	 x 	 L it must satisfy g �xð Þ ¼ �g xð Þ and that is what can lead to problems.

As we saw in the Fourier Sine Series section it is very easy to introduce a jump

discontinuity at when we form the odd extension. In fact, the only way to avoid

forming a jump discontinuity at this point is to require that f 0ð Þ ¼ 0.

Next, the requirement that at the endpoints we must have g �Lð Þ ¼ �g Lð Þ will
practically guarantee that we’ll introduce a jump discontinuity here as well when

we form the odd extension. Again, the only way to avoid doing this is to require

0 	 x 	 L.
So, with these two requirements we will get an odd extension that is continuous

and so we know that the Fourier Series of the odd extension on�L 	 x 	 Lwill be

continuous and hence the Fourier Sine Series will be continuous on f Lð Þ ¼ 0.

Here is a summary of all this for the Fourier sine series.

Suppose f (L ) is a piecewise smooth on the. 0 	 x 	 L. The Fourier Series of
f(x) will be continuous and will converge to f (x) on0 	 x 	 Lprovided f (x) is
continuous on 0 	 x 	 L, f 0ð Þ ¼ 0 and f Lð Þ ¼ 0.

The next topic of discussion here is differentiation and integration of Fourier

series. In particular we want to know if we can differentiate a Fourier series term by

term and have the result be the Fourier series of the derivative of the function.

Likewise we want to know if we can integrate a Fourier series term by term and

arrive at the Fourier Series of the integral of the function.

Note that we’ll not be doing much discussion of the details here. All we’re really

going to be doing is giving the theorems that govern the ideas here so that we can

say we’ve given them.

Let’s start off with the theorem for term by term differentiation of a Fourier

Series.
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Given a function f (x) if the derivative f’(x) is a piecewise smooth and the

Fourier series of is continuous then the Fourier Series can be differentiated

term by term. The result of the differentiation is the Fourier Series of the

derivative, f (x).
f �Lð Þ ¼ f Lð Þ then the Fourier series of the function can be differentiated

term by term and the results is the Fourier series of the derivative.

One of the main conditions of this theorem is that the Fourier series be contin-

uous and from above we also know the conditions on the function that will give this.

So, if we add this into the theorem to get this form of the theorem,

Suppose f (x) is a continuous function, its derivative f’(x) is a piecewise

smooth and f �Lð Þ ¼ f Lð Þ then the Fourier series of the function can be

differentiated term by term and the results is the Fourier series of the

derivative.

For Fourier Cosine/Sine Series the basic theorem is the same as for Fourier

series. All that’s required is that the Fourier cosine/sine series is continuous and

then you can differentiate term by term. The theorems that we’ll give here will

merge the conditions for the Fourier cosine/sine series to be continuous into the

theorem.

Let’s start with the Fourier Cosine Series.

Suppose f (x) is a continuous function and its derivative f’(x) is a piecewise

smooth then the Fourier Cosine Series of the function can be differentiated

term by term and the results is the Fourier Sine Series of the derivative.

Next the theorem for Fourier Sine Series

Suppose f (x) is a continuous function, its derivative f’(x) is a piecewise

smooth, f 0ð Þ ¼ 0 and f Lð Þ ¼ 0 then the Fourier Sine Series of the function

can be differentiated term by term and the results is the Fourier Cosine Series

of the derivative.

The theorem for integration of Fourier series term by term is simple so there it is.

Suppose f(x) is a piecewise smooth then the Fourier Sine Series of the

function can be integrated term by term and the result is a convergent infinite

series that will converge to the integral of f(x).
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Note however that the new series that results from term by term integration may

not be the Fourier series for the integral of the function.

E.10 Half Range Fourier Sine and Cosine Series

A half range Fourier sine or cosine series is a series in which only sine terms or only

cosine terms are present respectively. When a half range series corresponding to a

given function is desired; the function is generally defined in the interval (0, L)
[which is half of the interval �L, Lð Þ, thus accounting for the name half range] and
then the function is specified as odd or even, so that it is clearly defined in the other

half of the interval, namely �L, 0ð Þ. In such case, we have

An ¼ 0, then Bn ¼ 2

L

ð L
0

f xð Þ sin nπx

L

	 

dx for half range sine series ðE:5Þ

Bn ¼ 0, then An ¼ 2

L

ð L
0

f xð Þ cos nπx

L

	 

dx for half range sine series

E.11 Complex Form of Fourier Series

In complex notation, the Fourier series Eq. E.3 and coefficients Eq. E.4 of Sect. 1.7

in Appendix E can be written as

f xð Þ ¼
X1
n¼�1

Cne
inπx
L ¼

X1
n¼�1

Cn cos
nπx

L

	 

þ i sin

nπx

L

	 
h i
ðE:6Þ

where c ¼ �L, and

Cn ¼ 1

2L

ð L
�L

f xð Þeinπx
L dx ¼ 1

2L

ð L
�L

f xð Þ cos
inπx

L

� �
� i sin

inπx

L

� �� �
dx ðE:7Þ

E.12 Parseval’s Identify for Fourier Series

Parseval’s identity states that

1

L

ð L
�L

f xð Þg2dx ¼ A2
0

2

�
þ
X1
n¼1

A2
0 þ B2

n

� � ðE:8Þ
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where An and Bn are given by Eq. E.8.

An important consequences is that

lim
x!1

ð L
�L

f xð Þ sin inπx

L

� �
¼ 0

lim
x!1

ð L
�L

f xð Þ cos inπx

L

� �
¼ 0

9>>>>=>>>>; ðE:9Þ

This is called Riemann’s theorem.

E.13 Finite Fourier Transform

Let f(x) satisfy the following conditions:

1. f(x) is defined in the interval c < x < cþ 2L.
2. f(x) and f’(x) are sectionally continuous in c < x < cþ 2L.
3. f xþ 2xð Þ ¼ f xð Þ, i.e. f(x) is periodic with period 2L.

Then at every period of continuity, we have

f xð Þ ¼ A0

2
þ
X1
n¼1

An cos
nπx

L

	 

þ Bn sin

nπx

L

	 
h i
ðE:10Þ

where

AL ¼ 1

L

ðcþ2L

c

f xð Þ cos nπx

L

	 

dx

Bn ¼ 1

L

ðcþ2L

c

f xð Þ sin nπx

L

	 

dx

9>>>>=>>>>; ðE:11Þ

At a point of discontinuity, the left side of Eq. E.11 is replaced by
1
2

f xþ 0ð Þ þ f x� 0ð Þf g, i.e., the mean value at the discontinuity.

The series Eq. E.10 with coefficients Eq. E.11 is called the Fourier Series of f(x).
For many problems, c ¼ 0 or c ¼ �L. In case L ¼ π,

Finite Fourier Sine Transform of f(x), 0 < x < L, is defined. f(x) has period 2π
and Eqs. E.3 and E.4 are simplified.

The above conditions are often called Dirichlet Conditions and are sufficient

(but not necessary conditions for convergence of Fourier Series.

The Finite Fourier Sine Transform of f(x), 0 < x < L, is defined as.
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sine nð Þ ¼ sine f xð Þf g ¼
ð L
0

f xð Þ sin nπx

L

	 

dx ðE:12Þ

The Inverse Finite Fourier Sine Transform of sine nð Þ for integer n.

f xð Þ ¼ 2

L

X1
n¼1

sine nð Þ sin nπx

L
ðE:13Þ

The Finite Fourier Cosine Transform of f(x), 0 < x < L, is defined as.

cosine nð Þ ¼ cosine f xð Þf g ¼
ð L
0

f xð Þ cos nπx

L

	 

dx ðE:14Þ

The Inverse Finite Fourier Cosine Transform of cosine nð Þ for integer n.

f xð Þ ¼ 1

L
cosine 0ð Þ þ 2

L

X1
n¼1

cosine nð Þ cos nπx
L

ðE:15Þ

Example 1: Establish both, (a) Eq. E.13 and (b) Eq. E.15 in above

Solution: (a): If f(x) is an odd function in �L,Lð Þ, then

f xð Þ ¼
X1
n¼1

Bn sin
nπx

L

	 

ðE:16Þ

where

Bn ¼ 2

L

ð L
0

f xð Þ sin nπx

L

	 

dx ðE:17Þ

Thus if we write ð L
0

f xð Þ sin nπx

L

	 

dx ¼ f sine nð Þ

Then Bn ¼ 2
L f sine nð Þ and Eq. (E.16) can be written as required,

f xð Þ ¼ 2

L

X1
n¼1

f sine nð Þ sin nπx

L

	 

ðE:18Þ

We can also write f xð Þ ¼ sine
�1 f sine nð Þf g.
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(b): If f(x) is an odd function in �L,Lð Þ, then

f xð Þ ¼ A0

2
þ
X1
n¼1

An cos
nπx

L

	 

ðE:19Þ

where

An ¼ 2

L

ð L
0

f xð Þ cos nπx

L

	 

dx ðE:20Þ

Thus if we write ð L
0

f xð Þ cos nπx

L

	 

dx ¼ f cosine nð Þ

then A0 ¼ 2

L
f cosine 0ð Þ and Eq. (E.19) can be written, as required,

f xð Þ ¼ 1

L
f cosine 0ð Þ þ 2

L

X1
n¼1

f cosine nð Þ cos nπx

L

	 

ðE:21Þ

We can also write f xð Þ ¼ �1
cosine f cosine nð Þf g.

Example 2: Find the (a) finite Fourier sine transform and (b) finite Fourier cosine

transform of the function f xð Þ ¼ 2x for interval 0 < x < 4.

Solution: (a): Since L ¼ 4, we have

f sine nð Þ ¼
ð L
0

f xð Þ sin nπx

L

	 

dx ¼

ð4
0

2x sin
nπx

4

	 

dx

¼ 2xð Þ � cos nπx=4ð Þ
nπ=4

� �
� 2ð Þ � sin nπx=4ð Þ

n2π2=16

� �� �����4
0

¼ �32

nπ
cos nπ

(b): If n > 0, then we have

f cosine nð Þ ¼
ð L
0

f xð Þ cos nπx

L

	 

dx ¼

ð4
0

2x cos
nπx

4

	 

dx

¼ 2xð Þ � sin nπx=4ð Þ
nπ=4

� �
� 2ð Þ � cos nπx=4ð Þ

n2π2=16

� �� �����4
0

¼ 32
cos nπð Þ � 1

n2π2

� �

If n ¼ 0, the we have

f cosine nð Þ ¼ f cosine 0ð Þ ¼
ð4
0

2xdx ¼ 16
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Example 3: Find f(x) if:

(a): sine f xð Þf g ¼ 16 �1ð Þn�1=n3, n ¼ 1, 2, 3, . . ., where 0 < x < 8;

(b): cosine f xð Þf g sin nπ=2=2nð Þ, n ¼ 1, 2, 3, . . . and π/2 if n ¼ 0, where

0 < x < 2π

Solution: (a): From Eq. (E.18) of Example 1 (a) above with L ¼ 8, we have

f xð Þ ¼ �1
sine

16 �1ð Þn�1

n3

( )

¼ 2

8

X1
n¼1

16 �1ð Þn�1

n3
sin

nπx

8
¼ 4
X1
n¼1

16 �1ð Þn�1

n3
sin

nπx

8

(b): From Eq. (E.21) of Example 1 (b) with L ¼ 2π, we have

f xð Þ ¼ �1
sine

sin nπ=2ð Þ
2n

� �

¼ 1

π
� þ 2

2π

X1
n¼1

sin nπ=2ð Þ
2n

¼ 1

4
þ 1

2π

X1
n¼1

sin nπ=2ð Þ
n

E.14 The Fourier Integral

Let f(x) satisfy the following conditions:

1. f(x) satisfies theDirichlet Condition (See Sect. 1.7 of Appendix E) in every finite

interval �L 	 x 	 L.

2.

ð L
�L

f xð Þj jdx converges, i.e. f(x) is absolutely integrable in �1 < x < 1.

Then Fourier Integral Theorem states that

f xð Þ ¼
ð1
0

A λð Þ cos λxþ B λð Þ sin λxf gdλ ðE:22Þ

where

A λð Þ ¼ 1

π

ð1
�1

f xð Þ cos λxdx

B λð Þ ¼ 1

π

ð1
�1

f xð Þ sin λxdx

9>>>=>>>; ðE:23Þ
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This can be written equivalently as

f xð Þ ¼ 2

π

ð1
λ¼�

ð1
u¼�1

f uð Þ cos λ x� uð Þdudλ ðE:24Þ

The result Eq. E.22 holds if x is a point of continuity of f(x). If is a point of

discontinuity, we must replace f(x) by 1
2

f xþ 0ð Þ þ f x� 0ð Þf g as in the case of

Fourier Series. As for Fourier Series, the above conditions are sufficient but not

necessary. The similarity of Eqs. E.22 and E.23 with corresponding results of

Eqs. E.3 and E.4 for Fourier Series is apparent. The right side of Eq. E.22 is

sometimes called the Fourier Integral Expansion of f(x), or briefly Fourier Integral.
To prove Fourier Integral Theorem we look at the following example.

Example 1: Show a logical demonstration of Fourier’s Integral Theorem by use of

a limiting form of Fourier Series.

Solution: We write Fourier series of function f(x) to be as follows:

f xð Þ ¼ A0

2
þ
X1
n¼1

An cos
nπx

L

	 

þ Bn sin

nπx

L

	 
h i
ðE:25Þ

where An ¼ 1
L

ð L
�L

f uð Þ cos nπx

L

	 

du and Bn ¼ 1

L

ð L
�L

f uð Þ sin nπx

L

	 

du

Then by substituting of these coefficients into Eq. (E.25) and using result of

Example 1, in Sect. 1.12 in above, we find

f xð Þ ¼ 1

2L

ð L
�L

f uð Þduþ 1

L

X1
n¼1

f uð Þ cos nπ
L

u� xð Þdu ðE:26Þ

If we assume that

ð1
�1

f uð Þj jdu converges, the first term on the right of Eq. (E.26)

approaches zero as L ! 1, while the remaining part appears to approach

lim
L!1

1

L

X1
�1

ð1
�1

f uð Þ cos nπ
L

u� xð Þdu ðE:27Þ

This last step is not rigorous andmakes the demonstration of this example logical.

Calling Δa ¼ π=L, Eq. (E.27) can be written

f xð Þ ¼ lim
Δa!0

X1
n¼1

Δαf nΔαð Þ ðE:28Þ

where we have written.

Appendix E: Short Course in Fourier and Laplace Transforms 639



f αð Þ ¼ 1

π

ð1
�1

f uð Þ cos α u� xð Þdu ðE:29Þ

But the limit Eq. (E.28) is equal to

f xð Þ ¼
ð1
0

f αð Þdα ¼ 1

π

ð1
0

dα

ð1
�1

f uð Þ cos u� xð Þdα ðE:30Þ

Which is Fourier’s integral formula.

E.15 Complex Form of Fourier Integrals

In complex notation, the Fourier integral Eq. E.22 with coefficients Eq. E.23 can be

written as

f xð Þ ¼ 1

2π

ð1
λ¼�1

eiλxdλ

ð1
u¼�1

f uð Þeiλu

¼ 1

2π

ð1
λ¼�1

ð1
u¼�1

f uð Þeiλ x�uð Þdudλ

ðE:31Þ

To prove that we can again use Eqs. E.3 and E.4 and define cosines and sines in

Eq. E.4 via Euler formulas (See Appendix D Sect. 1.6) with exponential function,

the series Eq. E.3 attains the form of the following;

f xð Þ ¼
X1
n¼1

Cne
inπx
L ðE:32Þ

The coefficient Cn could be obtained of An and Bn, but they are comfortably derive

directly by multiplying the by e
inπx

L
and integrating it from �L to L one obtains

Cn ¼
ð L
�L

f xð Þe�inπx
L dx n ¼ 0, � 1, � 2, :::: ðE:33Þ

Note: We may say that in Eq. E.32, f(x) has been dissolved to sum of harmonics

(elementary waves) Cne
inπx
L with amplitudes Cn corresponding the frequency n.

Derivation will start with seeing the expansion Eq. E.32 changes when L ! 1,

we put first the Eq. E.33 into Eq. E.32 substituting for Cn:
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f xð Þ ¼
X1
n¼�1

e
inπx
L

ð L
�L

f xð Þe�inπx
L dx

By denoting ωn ¼ nπ
L and Δωn ¼ ωnþ1 � ωn ¼ nþ1ð Þπ

L � π
L ¼ π

L, the last equation in

above takes the form

f xð Þ ¼ 1

2π

X1
n¼�1

eiωnxΔωn

ð L
�L

f xð Þe�iωnxdx

It can be shown that when L ! 1 and thus Δωn ! 0, the limiting form of this

equation is

f xð Þ ¼ 1

2π

ð1
�1

eiωxdω

ð1
�1

f xð Þe�iωxdx ðE:34Þ

Here f(x) has been represented as a Fourier Integral. It can be proved that for

validity of expansion Eq. E.33 it suffices that the function f(x) is piecewise

continuous on every finite interval having at most a finite amount of extremum

points and that the integral

ð1
�1

f xð Þj jdx converges.
For better to compare to the Fourier Series Eq. E.32 and the coefficient Eq. E.33,

we can write Eq. E.34 as;

f xð Þ ¼
ð1
�1

C ωð Þf xð Þeiωxdx

where

C ωð Þ ¼ 1

2π

ð1
�1

f xð Þe�iωxdx

E.16 Fourier Transforms

From Eq. E.31 it follows that if

f λð Þ ¼
ð1
�1

e�iλuf uð Þdu ðE:35Þ
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then

f uð Þ ¼ 1

2π

ð1
�1

eiλuf λð Þdλ ðE:36Þ

which gives f(x) on replacing u by x as follows:

f xð Þ ¼ 1

2π

ð1
�1

eiλxf λð Þdλ ðE:37Þ

The function of f(x) is called the Fourier Transform of f(x) and id sometimes written

as f λð Þ ¼  f xð Þf g. The function f(x) is the Inverse Fourier Transform of f(λ) and is
written f xð Þ ¼ �1 f λð Þf g. We also call Eq. E.37 an Inversion Formula
corresponding to Eq. E.35.

Note that the constants preceding the integral signs can be constants whose

product is 1/2π. If they are each taken as 1=
ffiffiffiffiffi
2π

p
we obtain the so-called symmetric

form.

E.17 Finite and Infinite Fourier Sine and Cosine
Transforms

1. The Finite Fourier Sine Transform of f(x), 0 < x < L, is defined as.

sine nð Þ ¼ sine f xð Þf g ¼
ð L
0

f xð Þ sin nπx

L

	 

dx

2. The Inverse Finite Fourier Sine Transform of sine nð Þ for integer n.

f xð Þ ¼ 2

L

X1
n¼1

sine nð Þ sin nπx

L

3. The Finite Fourier Cosine Transform of f(x), 0 < x < L, is defined as.

cosine nð Þ ¼ cosine f xð Þf g ¼
ð L
0

f xð Þ cos nπx

L

	 

dx

4. The Inverse Finite Fourier Cosine Transform of cosine nð Þ for integer n.
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f xð Þ ¼ 1

L
cosine 0ð Þ þ 2

L

X1
n¼1

cosine nð Þ cos nπx
L

1. The Inverse Finite Fourier Cosine Transform of Fcosine(n) for integer n.

f xð Þ ¼ 1

L
cosine

2

L

X1
n¼1

cosine nð Þ cos nπx

L

2. The (infinite) Fourier Sine Transform of f(x), 0 < x < 1, is defined as

sine λð Þsine f xð Þf g ¼
ð1
0

f xð Þ sin λxð Þdx

The function f(x) is then called the Inverse Fourier Sine Transform of sine λð Þ
and is given by:

f xð Þ ¼ 2

π

ð1
0


sine

λð Þ sin λxð Þdx

3. The (infinite) Fourier Cosine Transform of f(x), 0 < x < 1, is defined as

cosine λð Þ ¼ cosine f xð Þf g ¼
ð1
0

f xð Þ cos λxð Þdx

The function f(x) is then called the Inverse Fourier Cosine Transform of

cosine λð Þ. and is given by:

f xð Þ ¼ 2

π

ð1
0

cosine λð Þ cos λxð Þdx

Example 1:

(a) Find the Fourier transform of f xð Þ ¼
1 xj j < a

0 xj j < a

(
.

(b) Graph f(x) and its Fourier transform for a ¼ 1.

The Fourier transform of f(x) is

Solution: (a) The Fourier transform of f(x) is

f λð Þ ¼
ð1
�1

f uð Þe�iλu du ¼
ð1
�1

1ð Þe�iλu du ¼ e�iλu

�iλ

����þa

�a

¼ eiλu � e�iλu

iλ

� �
¼ 2

sin λa

λ
λ 6¼ 0

For λ ¼ 0, we obtain f λð Þ ¼ 2a.
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(b) The graph of f(x) and f(λ) for a ¼ 1 are shown down below.

–3 –2 –1 1

1

2 3

0

1

2

3

F(x)

x

3

2

1

–1

O a

–3p –2p –p p 2p 3p

f(λ)

Example 2: Use the result of above example (Example 1)

(a) To evaluate

ð1
�1

sin λa cos λx

λ
dλ.

(b) Deduce the value of

ð1
�1

sin u

u
du

Solution: (a) From Fourier’s integral theorem, if

f λð Þ ¼
ð1
�1

f uð Þe�iλudu: then f xð Þ ¼ 1

2π

ð1
�1

f uð Þe�iλudλ

Then from Example 1 above we have;

1

2π

ð1
�1

sin λa

λ
eiλxda ¼ 1=

1 xj j < a

2 xj j ¼ a

0 xj j < a

8><>: ðE:38Þ

The left side of Eq. (E.38) is equal to

1

2π

ð1
�1

sin λa cos λx

λ
daþ i

π

ð1
�1

sin λa sin λx

λ
dλ ðE:39Þ

The integral in the second integral of Eq. (E.39) is odd and so the integral is zero.

Then from Eqs. (E.38) and (E.39), we have
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ð1
�1

sin λa cos λx

λ
dλ ¼ π=

π xj j < a

2 xj j ¼ a

0 xj j < a

8><>: ðE:40Þ

(b) If x ¼ 0 and a ¼ 1 in the result of (a), we haveð1
�1

sin λ

λ
dλ ¼ π or

ð1
�1

sin λ

λ
dλ ¼ π

2

Example 3: If f(x) is an even function show that:

f λð Þ ¼ 2

ð1
�1

f uð Þ cos λuð Þdu

f xð Þ ¼ 1

π

ð1
�1

f λð Þ cos λuð Þdλ

We have

f λð Þ ¼
ð1
�1

f uð Þe�iλudu ¼
ð1
�1

f uð Þ cos λuð Þdu� i

ð1
�1

f uð Þ sin λuð Þdu ðE:41Þ

(a) If f(u) is even, f(u) cos (λu) is even and f(u) sin (λu) is odd. Then the second

integral on the right of Eq. (E.41) is zero and the result can be written

f λð Þ ¼ 2

ð1
�1

f uð Þ cos λuð Þdu

(b) From (a), f �λð Þ ¼ f λð Þ so that f(λ) is an even function. Then by using a proof
exactly analogous to that in (a), the required result follows.

A similar result holds for odd functions and can be obtained by replacing the

cosine by the sine.

E.18 The Convolution Theorem

The convolution of two functions f(x) and g(x), where �1 < x < 1, is defined as

f *g ¼
ð1
�1

f uð Þg x� uð Þdu ¼ h xð Þ ðE:42Þ
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An important result, known as the Convolution Theorem for Fourier Transforms, is
the following.

Theorem. If h(x) is the convolution of f(x) and g(x), thenð1
�1

h xð Þe�iλx dx ¼
ð1
�1

f xð Þe�iλxdx

� � ð1
�1

g xð Þe�iλxdx

� �
ðE:43Þ

or

 f *gf g ¼  ff g gf g ðE:44Þ

This says that the Fourier transform of the convolution of f and g is the product of

the Fourier transform of f and g.

E.19 Parseval’s Identity for Fourier Integrals

If the Fourier transform of f(x) is f(λ), thenð1
�1

f xð Þj j
2

dx ¼ 1

2π

ð1
�1

f λð Þj j2dλ ðE:45Þ

This is called Parseval’s identity for Fourier Integrals. Generalizations of this are
possible.

E.20 Relationships of Fourier and Laplace Transform

Consider the function

f tð Þ ¼
e�xtΦ tð Þ t > 0

0 t < 0

(
ðE:46Þ

Then from Eq. E.35, with λ replaced by y,we see that the Fourier transform of f(t) is

 f tð Þf g ¼
ð1
0

e�iyte�xtΦ tð Þdt ¼
ð1
0

e� xþiyð ÞtΦ tð Þdt t > 0 ðE:47Þ

where we have written s ¼ xþ iy. The right of Eq. E.47 is the Laplace transform of

Φ(t) and the result indicates a relationship of Fourier and Laplace transform. It also

indicates a need for considering s as a complex variable xþ iy.
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The relationship can even be taken further and note that f(t) and g(t) are zero for

t < 0, the convolution of f and g given by Eq. E.42 and can be written as follows:

f tð Þ*g tð Þ ¼
ð t
0

f uð Þg t� uð Þdu ¼ h xð Þ ðE:48Þ

and Eq. E.44 corresponds to

L f *gf g ¼ L ff gL gf g ðE:49Þ

Example 1: Prove that for two function of f(t) and g(t) we have the relationship of
f tð Þ*g tð Þ ¼ g tð Þ*f tð Þ for t > 0.

Solution: Letting t� u ¼ v or u ¼ t� v and using Eq. E.48 for t > 0, we have

f tð Þ*g tð Þ ¼
ð t
0

f uð Þg t� uð Þdu ¼
ð t
0

f t� vð Þg vð Þdv

¼
ð t
0

f vð Þg t� vð Þdv ¼ g tð Þ*f tð Þ

E.21 Summary of Fourier Transforms Series and Integrals

Let f(x) satisfy the following conditions:

f(x) is defined in the interval c < x < cþ 2L.
f(x) and f 0(x) are sectionally continuous in c < x < cþ 2L.
f xþ 2xð Þ ¼ f xð Þ, i.e. f(x) is periodic with period 2L.
Then at every period of continuity, we have

f xð Þ ¼ A0

2
þ
X1
n¼1

An cos
nπx

L

	 

þ Bn sin

nπx

L

	 
h i
ðE:50Þ

where

An ¼ 1

L

ðcþ2L

c

f xð Þ cos nπx

L

	 

dx

Bn ¼ 1

L

ðcþ2L

c

f xð Þ sin nπx

L

	 

dx

9>>>>=>>>>; ðE:51Þ

(continued)
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At a point of discontinuity, the left side of Eq. (E.51) is replaced by
1
2

f xþ 0ð Þ þ f x� 0ð Þf g, i.e., the mean value at the discontinuity.

The series Eq. (E.50) with coefficients Eq. (E.51) is called the Fourier

Series of f(x). For many problems, c ¼ 0 or c ¼ �L. In case L ¼ π,
Finite Fourier Sine Transform of f(x), 0 < x < L, is defined. f(x) has period

2π and Eqs. E.3 and E.4 are simplified.

The above conditions are often called Dirichlet Conditions and are suffi-

cient (but not necessary conditions for convergence of Fourier Series.

The Finite Fourier Sine Transform of f(x), 0 < x < L, is defined as.

sine nð Þ ¼ sine f xð Þf g ¼
ð L
0

f xð Þ sin nπx

L

	 

The Inverse Finite Fourier Sine Transform of sine(n) for integer n.

f xð Þ ¼ 2

L

X1
n¼1

sine nð Þ sin nπx

L

The Finite Fourier Cosine Transform of f(x), 0 < x < L, is defined as.

cosine nð Þ ¼ cosine f xð Þf g ¼
ð L
0

f xð Þ cos nπx

L

	 

dx

The Inverse Finite Fourier Cosine Transform of cosine(n) for integer n.

f xð Þ ¼ 1

L
cosine 0ð Þ þ 2

L

X1
n¼1

cosine nð Þ cos nπx
L

The (infinite) Fourier Sine Transform of f(x) , 0 < x < 1, is defined as

sine λð Þ ¼ sine f xð Þf g ¼
ð1
0

f xð Þ sin λxð Þdx

The function f(x) is then called the Inverse Fourier Sine Transform ofsine

λð Þ and is given by:

f xð Þ ¼ 2

π

ð1
0

sine λð Þ sin λxð Þdx

The (infinite) Fourier Cosine Transform of f(x) , 0 < x < 1, is defined as

(continued)
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cosine λð Þ ¼ cosine f xð Þf g ¼
ð1
0

f xð Þ cos λxð Þdx

The function f(x) is then called the Inverse Fourier Cosine Transform of

cosine λð Þ and is given by:

f xð Þ ¼ 2

π

ð1
0

cosine λð Þ cos λxð Þdx

E.22 More Examples of Fourier Analysis

Example 1: Find (a) the Finite Fourier Sine Transform and (b) the Finite Fourier

Cosine Transform of ∂T x; tð Þ=∂x where T is a function of x and t for 0 < x < L,
t > 0.

Solution: (a) By definition the finite Fourier sine transformation of∂T x; tð Þ=∂x is,
on integrating by parts.

ð L
0

∂T x; tð Þ
∂x

sin
nπx

L

	 

dx ¼ T x; tð Þ sin nπx

L

	 
����L
0

� nπ

L

ð L
0

T x; tð Þ cos nπx

L

	 

dx

Second integral above is just the definition of Fourier Cosine Transform, while

the first integral approaches zero for all the value of n ¼ 1, 2, 3, . . . : and interval of
0 < x < L.

sine

∂T x; tð Þ
∂x

� �
¼
ð L
0

∂T x; tð Þ
∂x

sin
nπx

L

	 

dx

¼ 0� nπ

L

ð L
0

∂T x; tð Þ
∂x

sin
nπx

L

	 

dx ¼ � nπ

L
cosine T x; tð Þf g

(b) The finite Fourier cosine transform is

ð L
0

∂T x; tð Þ
∂x

cos
nπx

L

	 

dx ¼ T x; tð Þ cos nπx

L

	 
����L
0

þ nπ

L

ð L
0

T x; tð Þ sin nπx

L

	 

dx

First equation can be evaluated for the interval of 0 	 x 	 L and second equation
is just the definition of Fourier Sine Transform for all the value of n ¼ 1, 2, 3, . . . :
and interval of 0 < x < L.
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cosine

∂T x; tð Þ
∂x

� �
¼
ð L
0

∂T x; tð Þ
∂x

cos
nπx

L

	 

dx

¼ nπ

L

ð L
0

∂T x; tð Þ
∂x

sin
nπx

L

	 

dxþ nπ

L

ð L
0

T x, tð Þ sin nπx

L

	 

dx

¼ nπ

L
Fsine T x; tð Þf g � T 0; tð Þ � T L; tð Þ cos nπf g

Example 2: Work problem (a) and (b) Example 1 in above for function
∂2

T x; tð Þ
∂x2

where T is a function of x and t for 0 < x < L, t > 0.

Solution: Replacing T(x, t) by ∂T x; tð Þ=∂x in the result of Example 1 above

sine

∂2
T x; tð Þ
∂x2

( )
¼ sine

∂2
T

∂x2

( )
¼ � nπ

L
cosine

∂T
∂x

� �

¼ � n2π2

L2
Fsine Tf g þ nπ

L
T 0; tð Þ � T L; tð Þ cos nπf g

cosine

∂2
T x; tð Þ
∂x2

( )
¼ sine

∂2
T

∂x2

( )

¼ � nπ

L
sine

∂T
∂x

� �
� Tx 0; tð Þ � Tx L; tð Þ cos nπf g

¼ � n2π2

L2
sine

∂T
∂x

� �
� Tx 0; tð Þ � Tx L; tð Þ cos nπf g

where Tx denotes the partial derivative with respect to x.

Example 3: Expand f xð Þ ¼ sin x for interval 0 < x < π, in a Fourier cosine series.

Solution: A Fourier series consisting of sine terms alone is obtained only for an

even function. Hence we extend the definition of f(x) so that it becomes even

(dashed part of figure below). With this extension, f(x) is defined in an interval of

length 2π. Taking the period as 2π, we have 2L ¼ 2π so that L ¼ π.

F(x)

x
O

–2p –p p 2p
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By Example 1 of Sect. 1.3 of this appendix we have Bn ¼ 0 and for An we have

the following analysis;

An ¼ 2

L

ð L
0

f xð Þ cos nπx

L

	 

dx ¼ 2

π

ð π
0

sin xð Þ cos nxð Þdx

¼ 1

π

ð π
0

sin xþ πxð Þ þ sin xþ πxð Þdx

¼ 1
π � cos nþ 1ð Þx

nþ 1
� cos n� 1ð Þx

n� 1

� �����π
0

¼ 1

π
� 1� cos nþ 1ð Þπ

nþ 1
� cos n� 1ð Þπ � 1

n� 1

� �

¼ 1

π
� 1� cos nπð Þ

nþ 1
� cos nπð Þ

n� 1

� �

¼ �2 1þ cos nπð Þ
π n2 � 1ð Þ if n 6¼ 1

For n ¼ 1, A1 ¼ 2

π

ð π
0

sin x cos xdx ¼ 2

π

sin 2x

2

����π
0

¼ 0

For n ¼ 0, A0 ¼ 2

π

ð π
0

sin xdx ¼ 2

π
� cos xð Þ

����π
0

¼ π

4

Then

f xð Þ ¼ 2

π
� 2

π

X1
n¼2

1þ cos nπð Þ
n2 � 1

cos nx

2

π
� 4

π

cos 2x

22 � 1
þ cos 4x

42 � 1
þ cos 6x

62 � 1
þ . . . :

� �
Example 4: Show that

ð1
0

cos λxð Þ
λ2 þ 1

dλ ¼ π

2
e�x for x � 0.

Solution: Letting f xð Þ ¼ e�x in the Fourier integral theorem we obtain the

following;

f xð Þ ¼ 2

π

ð1
0

cos λxð Þdλ
ð1
0

f uð Þ cos λuð Þdu

Then

2

π

ð1
0

cos λxð Þdλ
ð1
0

e�u cos λuð Þdu ¼ e�x
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Since

ð1
0

e�u cos λuð Þdu ¼ 1

λ2 þ 1
, we have

2

π

ð1
0

cos λxð Þ
λ2 þ 1

dλ ¼ e�x or

ð1
0

cos λxð Þ
λ2 þ 1

dλ ¼ π

2
e�x

Example 5: Solve the integral equation

ð1
0

f xð Þ cos λxð Þdx ¼ 1� λ 0 	 λ 	 1

0 λ > 1

(
.

Solution: Let

ð1
0

f xð Þ cos λxð Þdx ¼ f λð Þ and choose f λð Þ ¼ 1� λ 0 	 λ 	 1

0 λ > 1

(
.

Then by Fourier’s integral theorem,

f xð Þ ¼ 2

π

ð1
0

f xð Þ cos λxð Þdxdλ

¼ 2

π

ð1
0

1� λð Þ cos λxð Þdxdλ

¼ 2 1� cos xð Þ
πx2

E.23 Laplace Transformation

A very powerful technique for solving Ordinary and Partial Differential Equation

problems is that of the Laplace transform, which literally transforms the original

differential equation into an elementary algebraic expression. This latter can then

simply be transformed once again, into the solution of the original problem. This

technique is known as the “Laplace transform method”. Solving these ODEs and

PDEs with certain description and quantities vary with time such as the flow of heat

through an insulated conductor. These equations are generally coupled with initial

conditions that describe the state of the system at time t ¼ 0.

Suppose that f(t) is a real or complex variable function of the (time) variable t for
t > 0 and s is real or complex parameter. We define the Laplace Transform of f(t) as

f sð Þ ¼ £ f tð Þf g ¼
ð1
0

e
�st

f tð Þdt

¼ lim
τ!1

ð τ
0

e�stf tð Þdt
ðE:52Þ
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whenever the limit exists (as a finite number). When it does, the integral Eq. E.52 is

said to converge. If the limit does not exist, the integral is said to diverge and there

is no Laplace transform for f(t). The notation £{f} will also be used to denote the

Laplace transform of f, and the integral is the ordinary Riemann (Improper)

integral [4].

The parameter s belongs to some domain on the real line or in the complex plane.

We will choose s appropriately so as to ensure the convergence of the Laplace

integral (Eq. E.52). In a mathematical and technical sense, the domain of s is quite
important. However, in a practical sense, when differential equations are solved, the

domain of s is routinely ignored. When s is complex, we will always use the

notation s ¼ xþ iy.
The symbol £ is the Laplace transformation, which acts on functions f ¼ f tð Þ and

generates a new function, f sð Þ ¼ £ f tð Þf g [4].

Example 1: If f tð Þ�1 for t � 0, then

£ f tð Þf g ¼
ð1
0

e�stdt

¼ lim
x!1

e�st

�s

���� t
0

� �

¼ lim
x!1

e�sτ

�s
þ 1

s

� �
1

s

ðE:53Þ

provide of course that s > 0 (if s is real). Thus we have

£ 1f g ¼ 1

s
s > 0ð Þ ðE:54Þ

If s 	 0, then the integral would diverge and there would be no resulting Laplace

transform. If we had taken s to be a complex variable, the same calculation, with

Re sð Þ > 0, would have given £ 1f g ¼ 1=s. In fact, let us just verify that in the above
calculation the integral can be treated in the same way even if s is a complex

variable. We require the well-known Euler formula (see Appendix D)

eiθ ¼ cos θ þ i sin θ ðE:55Þ

and the fact that eiθ
�� �� ¼ 1. The claim is that (ignoring the minus sign as well as the

limits of integration to simplify the calculation)

Appendix E: Short Course in Fourier and Laplace Transforms 653



ð
estdt ¼ est

s
ðE:56Þ

for s ¼ xþ iy any complex number 6¼ 0. To see this observe thatð
estdt ¼

ð
e xþiyð Þtdt

¼
ð
ext cos ytð Þdtþ i

ð
ext sin ytð Þdt

by Euler’s formula. Performing a double integration by parts on both these integrals

gives ð
estdt ¼ ext

x2 þ y2
x cos ytð Þ þ ysin ytð Þ � y cos ytð Þð Þ½ �

Now the right-hand side of Eq.( E.56) can be expressed as

est ¼ e xþiyð Þt

xþ iy

¼ ext cos ytð Þ þ i sin ytð Þð Þ x� iyð Þ
x2 þ y2

¼ ext

x2 þ y2
x cos ytð Þ þ y sin ytð Þð Þ þ i x sin ytð Þ � y cos ytð Þð Þ½ �

which equals the left-hand side, and (Eq. E.56) follows.

Furthermore, we obtain the result of Eq.( E.54) for s complex if we take

Re sð Þ ¼ x > 0, since then

lim
τ!1 e�sτj j ¼ lim

τ!1 e�xτ ¼ 0

killing off the limit in Eq. E.54. Let us use the preceding to calculate £{cos(ωt)} and
£{sin(ωt)} for ω (ω real).

Example 2: We begin with

£ eiωtf g ¼
ð1
0

esteiωtdt

¼ lim
τ!1

e iω�sð Þtdt
iω� s

���� τ
0

¼ 1

s� iω
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since lim
τ!1 eiωte�stj j ¼ lim

τ!1 e�xt ¼ 0, provided x ¼ Re sð Þ > 0. Similarly,

£ e�iωtf g ¼ 1=sþ iω. Therefore, using the linearity property of £, which follows

from the fact that integrals are linear operators.

£ eiωtð Þ þ £ e�iωtð Þ
2

¼ £
eiωt þ e�iωt

2

� �
¼ £ cos ωtð Þf g

and consequently,

£ cos ωtð Þf g ¼ 1

2

1

s� iω
þ 1

s� iω

� �
¼ 1

s2 � ω2
ðE:57Þ

Similarly,

£ sin ωtð Þf g ¼ 1

2i

1

s� iω
þ 1

s� iω

� �
¼ ω

s2 � ω2
Re sð Þ > 0ð Þ ðE:58Þ

The Laplace transform of functions defined in a piecewise fashion is readily

handled as follows.

Example 3: Let figure below be

f tð Þ ¼
t 0 	 t 	 1

1 t > 1

(

f (t )

tO 1

1

From the definition

£ f tð Þf g ¼
ð1
0

f tð Þe�stdt

¼
ð1
0

te�stdtþ lim
τ!1

ð τ
0

e�stdt

¼ te�st

�s

����1
0

þ 1

s

ð1
0

e�stdtþ lim
τ!1

e�st

�s

���� τ
0
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Example 4: Let f tð Þ ¼ t, then evaluate £{f(t)}

Solution: From definition Eq. E.52 we have £ f tð Þf g ¼
ð1
0

e�sttdt. Integrating by

parts and using lim
t!1 te�st ¼ 0 for s > 0, along with the result from Example 1, we

obtain

£ tf g ¼ �te�st

s

����1
0

þ 1

s

ð1
0

e�stdt ¼ 1

s
£ tf g ¼ 1

s

1

s

� �
¼ 1

s2

Example 5: Let f tð Þ ¼ e�3t
� �

, then evaluate £{f(t)}

Solution: From definition Eq. E.52 we have

£ f tð Þf g ¼
ð1
0

e�ste�3tdt

or

£ f tð Þf g ¼
ð1
0

e�ste�3tdt ¼
ð1
0

e� sþ3ð Þtdt

¼ e� sþ3ð Þt

sþ 3

����1
0

¼ 1

sþ 3
s > �3

E.24 Laplace Transform is a Linear Transform

For a linear combination of functions, we can writeð1
0

e�st αf tð Þ þ βg tð Þ½ �dt ¼ α

ð1
0

e�stf tð Þdtþ β

ð1
0

e�stg tð Þdt

whenever both integrals converge for s > c. Hence it follows that

£ αf tð Þ þ βg tð Þ½ � ¼ α£ f tð Þf g þ β£ f tð Þf g ¼ αf sð Þ þ βg sð Þ ðE:59Þ

Because of the property give in Eq. E.59, £ operator is said to be a Linear

Transform. For example, from Examples of 1 and 4, we can write the following,
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£ 1þ tf g ¼ £ 1f g þ £ tf g ¼ 1

s
þ 1

s2

We state the generalization of some of the preceding examples by means of the next

theorem. It is understood that s is sufficiently restricted to guarantee the conver-

gence of the appropriate Laplace eatf g ¼ 1

s� a
transformation [7].

Theorem: Transforms of Some Basic Functions [7]

(a) £ 1f g ¼ 1

s

(b) £ tnf g ¼ n!

snþ1
n ¼ 1, 2, 3 . . . (c) £ eatf g ¼ 1

s

(d) £ sin ωtð Þf g ¼ ω

s2 þ ω2
(e) £ cos ωtð Þf g ¼ s

s2 þ ω2

(f) £ sinh ωtð Þf g ¼ ω

s2 þ ω2
(g) £ cosh ωtð Þf g ¼ s

s2 þ ω2

Sufficient Conditions for Existence of Laplace Transform £{f(t)} [7]
The integral that defines the Laplace transform does not have to converge. For

example, neither £{f(1/t)} nor £ f er
2

	 
n o
exists. Sufficient conditions

guaranteeing the existence of £{f(t)} are that f be piecewise continuous on�
0,1� and that f be of exponential order for t > T.

Piecewise Continuous Definition [7]

A function f is piecewise continuous on
�
0,1� if, in any interval

0 	 a 	 t 	 b, there are at most a finite number of points tk, k ¼ 1, 2, . . . , n
for tk�1 < tkð Þ at which f has finite discontinuities and is continuous on each

open interval tk�1 < t < tk. See Figure below.

f (t )

ta bt1 t2 t3

The concept of Exponential order is defined in the following manner.

Exponential Order

A function f is said to be of exponential order if there exist constants £{f’},
M > 0, and T > 0 such that f tð Þj j 	 Mect all t > T.
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For more details reader should refer to any Laplace Transform book or refer-

ences at the end of this appendix

E.25 Derivative Theorem

In order to solve differential equations, it is necessary to know the Laplace

transform of the derivative f
0
tð Þ ¼ f

0
of a function f tð Þ ¼ f . The virtue of £{f

0
} is

that it can be written in terms of £{f(t)}.

Derivative Theorem

Suppose that f is continuous on 0;1ð Þ and of exponential order α and that f 0 is
piecewise continuous on 0;1ð Þ. Then

£ f
0
tð Þ

n o
¼ s£ f tð Þf g � f 0ð Þ

As pointed out in any Laplace Transform book or differential equations both

Ordinary Differential Equation (ODE) and Partial Differential Equation (PDE), the

immediate goal is to use the Laplace transform to solve these types of differential

equations. To that end we need to evaluate quantities such as £{dy/dt} and £{d2y/dt2}.
For example, if f ’ is continuous for t � 0 then integration by parts gives

£ f
0
tð Þ� � ¼

ð1
0

e�stf
0
tð Þdt ¼ e�stf tð Þ

����1
0

e�stf tð Þdt

¼ �f 0ð Þ þ s£ f tð Þf g
or

£ f
0
tð Þ

n o
¼ s£ f tð Þf g � f 0ð Þ ðE:60Þ

Here we have assumed that e�stf tð Þ ! 0 as t ! 1. Similarly, with the aid of

Eq. E.60,

£ f } tð Þ� � ¼
ð1
0

e�stf } tð Þdt¼ e�stf
0
tð Þ��1

0
þ s

ð1
0

e�stf
0
tð Þdt

¼ �f
0
0ð Þ þ s£ f

0
tð Þ� �

¼ s sf sð Þ � f 0ð Þ½ � � f
0
0ð Þ
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or

£ f } tð Þ� � ¼ s2f sð Þ � sf 0ð Þ � f
0
0ð Þ ðE:61Þ

In like manner it can be shown [7].

£ f } tð Þ� � ¼ s3f sð Þ � sf 2 0ð Þ � sf
0
0ð Þ � f } 0ð Þ ðE:62Þ

The recursive transform of the derivatives of a function f should be apparent from

the results in Eqs. E.60, E.61 and E.62. The next theorem gives the Laplace

transform of the nth derivative of f. The proof is omitted [7].

Theorem: Transform of a Derivative

If f , f 0, : . . . , f n�1ð Þ are continuous on ½ 0;1ð Þ and are of exponential order and
if is piecewise continuous on , then

£ f n tð Þf g ¼ snf sð Þ � sn�1f 0ð Þ � sn�1f 0ð Þ � sn�2 � � � � � f n�1ð Þ

where f sð Þ ¼ £ f tð Þf g.

We now utilize a theorem know as Translation Theorem to present two very

useful results for determing Laplace transform and their inverses. The first pertains

to a translation in the s-domain and the second to a translation in the t-domain [4].

First Translation Theorem

If f sð Þ ¼ £ f tð Þf g for Re sð Þ > 0, then

f s� að Þ ¼ £ eatf tð Þf g {real, Re sð Þ > a}

Proof:
For Re sð Þ > a, f s� að Þ ¼

ð1
0

e� s�að Þtf tð Þdt

¼
ð1
0

e�steatf tð Þdt

¼ £ eatf tð Þf g
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Example 1: Determine f sð Þ ¼ £ f tð Þf g for f tð Þ ¼ teat and t > 0.

Solution: Since

£ tf g ¼ 1

s
Re sð Þ > 0ð Þ

Then

£ taatf g ¼ 1

s� að Þ2 Re sð Þ > 0

and in general

£ tneatf g ¼ n!

s� að Þnþ1
n ¼ 0, 1, 2, . . . Re sð Þ > 0

This gives a useful inverse

£�1 n!

s� að Þnþ1

( )
¼ 1

n!
tneat

Theorem: Translation Theorem Transforms of Some Basic

Functions [4]

Since £ sin ωtð Þf g ¼ ω

s2 þ ω2
then

£ e2t sin ωtð Þ� � ¼ 3

s� 2ð Þ2 þ 32
¼ 3

s� 2ð Þ2 þ 9
.

In general, we can define for Re sð Þ > að Þ in all below cases.

(a) £ eat sin ωtð Þf g ¼ ω

s� að Þ2 þ ω2
(b) £ eat cos ωtð Þf g ¼ s� a

s� að Þ2 þ ω2

(c) £ eatcosh ωtð Þf g ¼ s� a

s� að Þ2 þ ω2
(d) £ eatsinh ωtð Þf g ¼ ω

s� að Þ2 þ ω2

Example 2: Determine the Laplace transform of the Laguerre polynomials,

defined by

Ln tð Þ ¼ et

n!

dn

dtn
tne�tð Þ n ¼ 0, 1, 2 . . . :
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Solution: Let y tð Þ ¼ tne�t. Then

£ Ln tð Þf g ¼ £ e�t 1

n!
y nð Þ

� �
First, we find by theorem of Transform of a Derivative in above and subsequently

the first translation theorem in above as well coupled with Example 1 here,

£ y nð Þ
n o

¼ sn£ yf g ¼ snn!

sþ 1ð Þnþ1

It follows that

£ Ln tð Þf g ¼ £ et
1

n!
y nð Þ

� �
¼ s� 1ð Þn

sþ 1ð Þnþ1
Re sð Þ > 1ð Þ

again by the first translation theorem.

Second Translation Theorem

f sð Þ ¼ £ f tð Þf g for Re sð Þ > 0, then

£ ua tð Þf t� að Þf g ¼ e�asf sð Þ a � 0

This followins from the basic fact thatð1
0

e�st ua tð Þf t� að Þ½ �dt ¼
ð1
0

e�stf t� að Þdt

and setting τ ¼ t� a, the right-hand integral becomesð1
a

e�s τþað Þf τð Þdτ ¼ e�as

ð1
a

e�stf τð Þdt

Example 3: Let us determine £{g(t)} for the following figure.

g tð Þ ¼
0 0 	 t 	 1

t� 1ð Þ2 t � 1

(
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g (t )

O 1 t

Note that g(t) is just the function f tð Þ ¼ t2 delayed by a ¼ 1ð Þunit of time. Hence

£ g tð Þf g ¼ £ u1 tð Þ t� 1ð Þ2
n o

¼ e�s£ t2
� �

¼ 2e�s

s3

Re sð Þ > 0ð Þ

Theorem: Translation Theorem Transforms of Some Special

Functions [4]

Dirac Delta Function
For t0 > 0, £ δ t� t0ð Þ½ � ¼ e�st0

Beta Function

If f tð Þ ¼ ta�1 and g tð Þ ¼ tb�1 with a, b > 0 then £ taþb�1B a; bð Þ� � ¼
£ ta�1
� �

£ tb�1
� � ¼ Γ að Þ bð Þ

saþb

Error Function

For given t > 0 £ erf
ffiffi
t

p� �� � ¼ 1
s
ffiffiffiffiffiffi
sþ1

p

Gamma Function

Let f tð Þ ¼ tp, with p 	 0. Set F sð Þ ¼ £ f tð Þf g. It is easy to see that F(s) is
defined for s > 0. Consider the new variable r ¼ st. Then we have

£ f tð Þf g ¼
ð1
0

e�sttpdt ¼ 1

spþ1

ð1
0

e�rrpdr

Which implies

£ tpf g ¼ Γ pþ 1ð Þ
spþ1

where the Gamma function Γ(x) is defined by

(continued)
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Γ xð Þ ¼
ð1
0

e�rrx�1dr

The domain of the Gamma function is x > 1. Using integration by part, one

can easily prove the fundamental formula

Γ xþ 1ð Þ ¼ xΓ xð Þ x > 1

which implies (knowing that Γ 1ð Þ ¼ 1)

Γ nþ 1ð Þ ¼ n! n� 1, 2, 3, . . .

Consequently, we have

£ tnf g ¼ n!

snþ1
n� 1, 2, 3, . . .

E.26 The Inverse Laplace Transform

If f(s) represents the Laplace transform of a function f(t)—that is, £ f tð Þf g ¼ f sð Þ—
we then say that f(t) is the Inverse Laplace Transform of f(s) and write

f tð Þ ¼ £�1 f sð Þf g. For example, from Example 1 and Example 2 of Sect. 2.0

above have respectively;

1 ¼ £�1 1

s

� �
t ¼ £�1 1

s2

� �
and e�3t ¼ £�1 1

sþ 3

� �
The analogous of Theorem: Transforms of Some Basic Functions in Sect. 2 here

for the inverse transform is presented as follows:

Theorem: Inverse Transform of Some Basic Functions [7]:

(a) 1 ¼ £�1 1

s

� �
(b) tn ¼ £�1 n!

snþ1

� �
n ¼ 1, 2, 3, . . . (c) eat ¼ £�1 1

s� a

� �
(d) sin ωtð Þ ¼ £�1 ω

s2 þ ω

� �
(e) cos ωtð Þ ¼ £�1 s

s2 þ ω2

� �
(f) sinh ωtð Þ ¼ £�1 ω

s2 þ ω

� �
(g) cosh ωtð Þ ¼ £�1 s

s2 � ω2

n o
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When evaluating inverse transforms, it often happens that a function of s under
consideration does not match exactly the form of a Laplace transform f(s) given in

the above table. It may be necessary to “fix up” the function of s by multiplying and

dividing by an appropriate constant [7].

Example 1: Evaluate (a) £�1 1

s5

� �
(b) £�1 1

s2 þ 4

� �
Solution: Tomatch the form given in part (b) above table, we identifynþ 1 ¼ 5or

n ¼ 4 and then multiply and dived by 4 !;

£�1 1

s5

� �
¼ 1

4!
£�1 4!

s5

� �
¼ 1

24
t4

To match the form given in part (d) of above table, we identify k2 ¼ 8 and so

k ¼ 2. We fix up the expression by multiplying and dividing by 2 then we have:

£�1 1

s2 þ 4

� �
¼ 1

2
£�1 1

s2 þ 4

� �
¼ 1

2
sin 2tð Þ

E.27 The Inverse Laplace is a Linear Transform

The inverse Laplace transform is also a linear transform; that is, for constants

α and β.

£�1 af sð Þ þ βg sð Þf g ¼ a£�1 f sð Þf g þ β£�1 g sð Þf g ðE:63Þ

where f and g are the transforms of some functions f and g, which extends to any

finite linear combination of Laplace transforms.

Example 1: Evaluate £�1 �2sþ 6

s2 þ 4

� �
Solution: We first rewrite the given function of s as two expressions by means of

term-wise division and then use Eq. E.67 and steps in Example 1 in above, we have:

£�1 �2sþ 6

s2 þ 4

� �
¼ £�1 �2s

s2þ þ 6

s2 þ 4

� �

¼ �2£�1 s

s2 þ 4

� �
þ 6£�1 6

s2 þ 4

� �
¼ �2 cos 2tþ 3 sin 2t
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Example 2: Using the partial fraction technique from calculus, evaluate

£�1 s26sþ 9

s� 1ð Þ s� 2ð Þ sþ 4ð Þ
� �

.

Solution: There exist unique real constants A, B and C so that

s2 þ 6sþ 9

s� 1ð Þ s� 2ð Þ sþ 4ð Þ ¼
A

s� 1
þ B

s� 2
þ C

sþ 4

¼ A s� 2ð Þ sþ 4ð Þ þ B s� 1ð Þ sþ 4ð Þ þ C s� 1ð Þ s� 2ð Þ
s� 1ð Þ s� 2ð Þ sþ 4ð Þ

Since the denominators are identical, the numerators are identical, therefore

s2 þ 6sþ 9 ¼ A s� 2ð Þ sþ 4ð Þ þ B s� 1ð Þ sþ 4ð Þ þ C s� 1ð Þ s� 2ð Þ ðE:64Þ

By comparing coefficients of powers of s on both sides of the equality, we know
that Eq. (E.64) is equivalent to a system of three equations in the three unknowns A,
B and C. However, we can do the following analysis and we will find that:

s2 þ 6sþ 9 ¼ A s� 2ð Þ sþ 4ð Þ þ B s� 1ð Þ sþ 4ð Þ þ C s� 1ð Þ s� 2ð Þ
¼ Aþ Bþ Cð Þs2 þ 2Aþ 3B� 3Cð Þsþ �8A� 4Bþ 2Cð Þ

Aþ Bþ C ¼ 1

2Aþ 3B� 3C

�8A� 4Bþ 2C ¼ 9

8>><>>:
A ¼ �16

5

B ¼ 25

6

C ¼ 1

30

8>>>>>>>><>>>>>>>>:

Then we get

s2 þ 6sþ 9

s� 1ð Þ s� 2ð Þ sþ 4ð Þ ¼
16=5

s� 1
þ 25=6

s� 2
þ 1=30

sþ 4
ðE:65Þ

and thus, from the linearity of £�1 and the fact that eat ¼ £�1 1

s� a

� �
we have:
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£�1 s2 þ 6sþ 9

s� 1ð Þ s� 2ð Þ sþ 4ð Þ
� �

¼�16

5
£�1 1

s� 1

� �
þ 25

6
£�1 1

s� 2

� �
þ 1

30
£�1 1

sþ 4

� �

¼�16

5
et þ 25

6
e2t þ 1

30
e�4t

ðE:66Þ

E.28 Solving Linear Ordinary Differential Equations using
Laplace Transform

It is apparent from the general result given in above (Theorem of Transform of a

Derivative) that £{dny/dtn} depends on y sð Þ ¼ £ y tð Þf g and the n� 1 derivative of

y(t) evaluated at t ¼ 0. This property makes the Laplace transform ideally suited for

solving linear initial-value problems in which the differential equation has

constant coefficients. Such a differential equation is simply a linear combination

of terms y, y0, y00,.... y(n):

an
dny

dtn
þ an�1

dn�1y

dtn�1
þ � � � � þ a0y ¼ g tð Þ

y 0ð Þ ¼ y0, y
0
0ð Þ ¼ y1y

} 0ð Þ ¼ y2, ::::, y
n�1ð Þ 0ð Þ ¼ yn�1

where the ai, i ¼ 0, 1, � � � � , n and y0, y1, y1, � � � � , yn�1 are constants. By the

linearity property, the Laplace transform of this linear combination is a linear

combination of Laplace transforms [7]:

an£
dny

dtn

� �
þ an�1£

dn�1y

dtn�1

� �
þ � � � � þ a0£ g tð Þf g ðE:67Þ

From the above theorem and Eq. E.67 becomes

an sny sð Þ � sn�1y 0ð Þ � � � � � � y n�1ð Þ 0ð Þ� 
þan�1 sn�1y sð Þ � sn�2y 0ð Þ � � � � � � y n�2ð Þ 0ð Þ� þ � � � � þ a0y sð Þ ¼ g sð Þ

ðE:68Þ

where £ y tð Þf g ¼ y sð Þ and £ g tð Þf g ¼ g sð Þ. In other words, the Laplace Transform of
a linear differential equation with constant coefficient becomes an algebraic
equation in y(s). If we solve the general transformed Eq. E.68 for the symbol

y(s), we first obtain p sð Þy sð Þ ¼ q sð Þ þ g sð Þ, and then write,
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y sð Þ ¼ q sð Þ
p sð Þ þ

g sð Þ
p sð Þ ðE:69Þ

where p sð Þ ¼ a0s
n þ an�1s

n�1 þ � � � � þ a0, q(s) is a polynomial in s of degree
less than or equal to n� 1 consisting of the various products of the coefficient ai,
i ¼ 0, 1, � � � � , n and the prescribed initial condition y0, y1, � � � � , yn�1, and g(s)
is the Laplace transform of g(t). Typically as we put decompose the expression into

two or more partial fractions. Finally, the solution y(t) of the original initial-value

problem is y tð Þ ¼ £�1 y sð Þf g.
The procedure is summarized in the diagram [7].

Find unknown y(t)
that satisfies DE and
initial conditions

Transformed DE
becomes an algebraic
equation in f (s)

Apply Laplace transform £

Apply inverse transform £–1 Solve transformed
equation for f (s)

Solution y(t) of
original IVP

E.29 The Complex Inversion Formula

In Appendix D we extensively showed the Complex Variable Analysis as well as

the Complex Inversion Formula and we briefly explain it here again [3].

If f sð Þ ¼ £ f tð Þf g, then £�1 f sð Þf g is given by

f tð Þ ¼ £�1 f sð Þf g

¼ 1

2πi
lim
T!1

ðγþit

γ�iT

estf sð Þds ¼ 1

2πi
lim
T!1

ðγþi1

γ�i1
estf sð Þds t > 0 ðE:70Þ

and f tð Þ ¼ 0 for t > 0. This result is called the Complex Inversion Integral or
Formula. It is also known as Bromwich’s integral formula. The result provides a

direct means for obtaining the inverse Laplace transform of given function f(s).
The integration in Eq. E.70 is to be performed along a line s ¼ γ in the complex

plane where s ¼ xþ iy. The real number γ is chosen so that s ¼ γ lies to the right of
all the singularities (poles, branch points or essential singularities) but is otherwise

arbitrary [3].
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Example 1: Establish the validity of the complex inversion formula

Solution: We have, by definition: f sð Þ ¼
ð1
0

e�suf uð Þdu. Then

lim
T!1

1

2πi

ðγ�iT

γ�iT

estf sð Þds ¼ lim
T!1

1

2πi

ðγþiT

γ�iT

ð1
0

e�suf uð Þduds

Letting s ¼ γ þ iy, ds ¼ idy, this becomes

lim
T!1

1

2π
eγt
ð T
�T

eiytdy

ð1
0

e�iyu e�γuf uð Þ½ �du ¼ 1

2π
eγt

2πe�γtf tð Þ t > 0

0 t < 0

(

¼
f tð Þ t > 0

0 t < 0

(

By Fourier’s integral theorem (See Sect. 1.13 of this appendix). Thus we have

f tð Þ ¼ 1
2πi

ðγþi1

γ�i1
estf sð Þds for t > 0

as required.

Note: In the above proof, the assumption is that e�γuf uð Þ is absolutely integrable
in 0;1ð Þ, i.e.

ð1
0

e�γu f uð Þj jdu converges, so that Fourier’s integral theorem can be

applied. To insure this condition it is sufficient that f(t) be of exponential order γ
where the real number γ is chosen so that the line s ¼ γ in the complex plane lies to

the right of all the singularities of f(s). Except for this condition, γ is otherwise

arbitrary.

E.30 The Bromwich Contour

In practice, the integral Eq. E.70 is evaluated by considering the contour integral

Eq. E.71 as follows:

1

2πi

þ
C

e�stF sð Þds ðE:71Þ

where C is the contour of Fig. E.4. This contour, sometimes called the Bromwich
Contour, is composed of the AB and the arc BJKLA of a circle of radius R with

center at the origin O. If we represent arc BJKLA by Γ, it follows from Eq. E.70 that

since T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � γ2

p
,
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f tð Þ ¼ lim
R!1

1

2πi

ðγþiT

γ�iT

estf sð Þds ¼ lim
R!1

1

2πi

þ
C

estf sð Þds� 1

2πi

ð
Γ
estf sð Þds

� �
ðE:72Þ

Example 1: Let Γ denote the curved portion BJPKQLA of the Bromwich contour

(See Fig. E.5 below) with equation s ¼ Riθ, θ0 	 θ 	 2π � θ0, i.e. Γ is the arc of a

circle of radius R with center at O (Fig. E.6).

Solution: Suppose that on Γ we have

f sð Þj j < M

Rk

where k > 0 and M are constants. Show that

lim
R!1

ð
Γ
estf sð Þds ¼ 0

If Γ1, Γ2, Γ3 and Γ4 represent arcs BJ, JPK, KQL and LA respectively, we have

J
B

K

A
L

R

O
x

g + iT

g – iT

g

yFig. E.5 Different

Functions Configurations

J

B
P

K

AQ
L

T

T
R

O
x

g
q0

yFig. E.6 Different

Functions Configurations
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ð
Γ
estf sð Þds ¼

ð
Γ1

f sð Þdsþ
ð
Γ2

estf sð Þdsþ
ð
Γ3

estf sð Þdsþ
ð
Γ4

estf sð Þds

¼
ð
BJ

estf sð Þdsþ
ð
JPK

estf sð Þdsþ
ð
KQL

estf sð Þdsþ
ð
LA

estf sð Þds

What we need to show here that all the integrals on right hand side approach zero as

R ! 1, then we have proved the required result as below.

lim
R!1

ð
Γ
estf sð Þds ¼ 0

Details of these analyses can be found in [4] and [7] of this appendix where readers

should look it if they are interested [4, 7].

E.31 Use of Residue in Finding Inverse Laplace
Transforms

Suppose that the only singularities of f(s) are poles all of which lie to the left of the
line s ¼ γ for some real constant γ. Suppose [3] further that the integral around Γ in

Equation E-46 approaches zero as R ! 1. Then by the residue theorem (See Sect.

30, Appendix D) we can write Eq. E.72 as;

f tð Þ ¼ sumof residuesof estf sð Þatpolesof f sð Þ
¼
X

residuesof estf sð Þatpolesof f sð Þ
ðE:73Þ

Example 1: Suppose that the only singularities of f(s) are poles which all lie to the
left of the line s ¼ γ for some real constant γ. Suppose further that f(s) satisfies the
condition given in Example 1 in pervious section. Prove that the inverse Laplace

transform of f(s) is given by

f(t) ¼sum of residues of estf(s) at all the poles of f(s)

Solution: We have

1

2πi

þ
C

estf sð Þds ¼ 1

2πi

ðγþiT

γ�iT

estf sð Þdsþ 1

2πi

ð
Γ
estf sð Þds

Where C is the Bromwich contour of Example 1 in above and Γ is the circular

arc BJPKQLA of Fig. E.7. By residue theorem,
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1
2πi

þ
C

estf sð Þds ¼ sum of residues of estf(s) at all poles of f(s) inside C ¼
X

residues inside C.

Thus 1
2πi

ðγþiT

γ�iT

estf sð Þds ¼
X

residues insideC-
1

2πi

ð
Γ
estf sð Þds

Taking the limit as R ! 1, we find by Example 1 in previous section,

f tð Þ ¼ sumof residuesof estf sð Þat all thepoles f sð Þ

Example 2: Show that f sð Þ ¼ 1

s� 2
satisfies the condition in Example 1 of Sect. 2.7.

Find the residue of
est

s� 2
at the pole s ¼ 2.

Evaluate £�1 1

s� 2

� �
by using the complex inversion formula.

Solution: (a) For s ¼ Reiθ, we have

1

s� 2

���� ���� ¼ 1

Reiθ � 2

���� ���� 	 1

Reiθj j � 2
¼ 1

R� 2
<

2

R

for large enough R (e.g. R > 4). Thus the condition in Example 1 of Sect. 2.7 is

satisfied when k ¼ 1, M ¼ 2. Note that in establishing the above we have used the

result z1 � z2j j 	 z1j j � z2j j.
(b) The residue at the simple pole s ¼ 2 is

lim
s!2

s� 2ð Þ est

s� 2

� �
¼ e2t

(c) By Example 1 Sect. 2.8 and the results of part (a) and (b), we see that

£�1 1

s� 2

� �
¼ sum of residues of estf sð Þ ¼ e2t

Note that the Bromwich contour in this case is chosen so that is any real number

greater than 2 and the contour encloses the pole s ¼ 2.

J

B
D

K

E

A

L

H

N

R

O
x

g + iT

g – iT

”

yFig. E.7 Different

Functions Configurations
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Example 3: Find the residues of f sð Þ ¼ 1

s s� að Þ
Solution: f(s) has a simple pole at s ¼ 0 and s ¼ a, and f sð Þj j 	 M= sj j2 for all |s|
sufficiently large, say f sð Þj j 	 2= sj j2 if sj j 	 2 aj j. Moreover,

Residue 0ð Þ ¼ lim
s!0

setsf sð Þ

¼ lim
s!0

ets

s� a
¼ �1

a

Residue að Þ ¼ lim
s!a

s� að Þetsf sð Þ

¼ lim
s!a

ets

s
¼ eat

a

Hence

f tð Þ ¼ sumof residuesof etsf sð Þat all thepolesof f sð Þ

f tð Þ ¼ 1

a
eat � 1ð Þ

Of course, f(s) could have been inverted in this case using partial fractions or a

convolution method.

Example 4: Find the residues of f sð Þ ¼ 1

s s2 þ a2ð Þ2

Solution: We can use partial fraction method and write:

f sð Þ ¼ 1

s s2 þ a2ð Þ2 ¼
1

s s� aið Þ2 sþ aið Þ2

Then f(s) has a simple pole at s ¼ 0 and a pole of order 2 at s ¼ �ai.

Residue 0ð Þ ¼ limsets
s!0

f sð Þ

¼ lim
s!0

ets

s2 þ a2ð Þ2 ¼
1

a4

Residue aið Þ ¼ lim
s!ai

d

ds
s� aið Þ2etsf sð Þ

h i
¼ lim

s!ai

d

ds

ets

s sþ aið Þ2
 !

¼ it

4a3
eiat � 1

2a4
eiat
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Similarly we have

Residue �aið Þ ¼ lim
s!�ai

d

ds
sþ aið Þ2etsf sð Þ

h i
¼ lim

s!�ai

d

ds

ets

s s� aið Þ2
 !

¼ �it

4a3
e�iat � 1

2a4
e�iat

f tð Þ ¼ sumof residuesof ets f sð Þatall thepolesof f sð Þ

Residue 0ð Þ þ Residue aið Þ þ Residue �aið Þ

¼ 1

a4
þ it

4a3
� 1

2a4
eiat

� �
þ �it

4a3
e�iat � 1

2a4
e�iat

� �

¼ 1

a4
þ 1

4a3
eiat � e�iat
� �� 1

2a4
eiat � e�iat
� �

¼ 1

a4
1� a

2
t sin at� cos at

	 

¼ f tð Þ

E.32 A Sufficient Condition for the Integral Around Γ

The validity of the result Eq. E.73 hinges on the assumption that the integral around

Γ in Eq. E.72 approaches zero as R ! 1. A sufficient condition under which this

assumption is correct is supplied in the following [3];

Example 1

Theorem: If we can find constantsM > 0, k > 0 such that on Γ (where s ¼ Reiθ),

f sð Þj j < M

Rk
ðE:74Þ

Then the integral around Γ of sstf(s) approaches zero as R ! 1, i.e.,

lim
R!1

ð
Γ
estf sð Þds ¼ 0 ðE:75Þ
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The condition Equation E-48 always holds if f sð Þ ¼ p sð Þ=q sð Þ where p(s) and q(s)
are polynomials and the degree of p(s) is less than the degree of q(s). See example

below

Example 1: Let f sð Þ ¼ p sð Þ=q sð Þwhere p(s) and q(s) are polynomials such that the

degree of p(s) is less than the degree of q(s). Prove that f(s) satisfies the condition of
in Example 1 of Sect. 2.7.

Solution: Let

p sð Þ ¼ a0s
m þ a1s

m�1 þ � � � þ am

q sð Þ ¼ b0s
m þ b1s

n�1 þ � � � þ bn

Where a 6¼ 0, b 6¼ 0 and 0 	 m 	 n. Then if s ¼ Reiθ, we have

f sð Þ ¼ P sð Þ
q sð Þ
���� ���� ¼ a0s

m þ a1s
m�1 þ � � � þ am

b0sn þ b1sn�1 þ � � � þ bn

���� ����
¼ a0R

memiθ þ a1R
m�1e m�1ð Þiθ þ � � � þ am

b0R
neniθ þ b1R

n�1e n�1ð Þiθ þ � � � þ bn

���� ����
¼ a0

b0

���� ���� 1

Rn�m

1þ a1
a0R

� �
e�iθ þ a2

a0R
2

� �
e�2iθ þ � � � þ am

a0R
2

� �
e�miθ

1þ b1
b0R

� �
e�iθ þ b2

b0R
2

� �
e�2iθ þ � � � þ bm

b0R
2

� �
e�miθ

��������
��������

Let A denote the maximum of a1=a0j j, a2=a0j j, � � �, am=a0j j.
Let B denote the maximum of b1=b0j j, b2=b0j j, � � �, bm=b0j j.
Then

1þ a1
a0R

e�iθ þ a2

a0R
2
e�2iθ þ � � � þ am

a0R
2
e�miθ

���� ���� 	 1þ A

R
þ A

R2
þ � � � þ A

Rm

	 1þ A

R
1þ 1

R
þ 1

R2
þ � � �

� �

	 1þ A

R� 1
< 2

for R > Aþ 1.
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Also,

1¼ b1
b0R

e�iθþ b2

b0R
2
e�2iθþ���þ bn

b0R
2
e�niθ

���� �����1� b1
b0R

e�iθ b2

b0R
2
e�2iθþ���þ bn

a0R
2
e�niθ

���� ����
�1� 1þ 1

R
þ 1

R2
þ���þ B

Rn

� �

�1þB

R
1þ 1

R
þ 1

R2
þ���

� �

�1� B

R�1
�1

2

for R > 2Bþ 1

Thus for R larger than either Aþ 1 or 2Bþ 1, we have

f sð Þ 	 a0
b0

���� ����� 1

Rn�m � 1

1=2
	 M

Rk

Where M is any constant greater than 2|a0/b0| and k ¼ n� m � 1. This proves

the required results.

E.33 Modification of Bromwich Contour in case of Branch
Points

If f(s) has branch points, extensions of the above results can be made provided that

the Bromwich contour is suitably modified. For example, if f(s) has only one branch
point at s ¼ 0, then we can use the contour of Fig. E.5. In this figure, BDE and LNA
represent arcs of a circle of radius R with center at origin O, while HJK is the arc of

a circle of radius ε with center at O. For details of evaluating inverse Laplace

transform in such case see below example for case of Inverse Laplace Transform of

function with branch points.

Example 1: Find £�1 e�a
ffiffi
s

p

s

( )
by use of the complex inversion formula.

Solution: By the complex inversion formula, the required inverse Laplace trans-

form is given by

f tð Þ ¼ 1

2πi

ðγþi1

γ�i1

est�a
ffiffi
s

p

s
ds ðE:76Þ

Since s ¼ 0 is a branch point of the integrand, we consider
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1

2πi

þ
c

est�a
ffiffi
s

p

s
ds ¼ 1

2πi

ð
AB

est�a
ffiffi
s

p

s
dsþ 1

2πi

ð
BDE

est�a
ffiffi
s

p

s
dsþ 1

2πi

ð
ER

est�a
ffiffi
s

p

s
ds

þ 1

2πi

ð
HJK

est�a
ffiffi
s

p

s
dsþ 1

2πi

ð
KL

est�a
ffiffi
s

p

s
dsþ 1

2πi

ð
LNA

est�a
ffiffi
s

p

s
ds

where C is the contour of Fig. E.5 consisting of the line AB s ¼ γð Þ, the arcs BDE
and LNA of a circle of radius R and center at origin O, and the arc HJK of a circle ε
with center at O.

Since the only singularity s ¼ 0 of the integrand is not inside C, the integral on
the left is zero by Cauchy’s theorem. Also, the integrand satisfies the condition of

Example 1 of Sect. 2.7 so that on taking the limit asR ! 1 the integrals along BDE
and LNA approach zero. It follows:

f tð Þ ¼ lim
R!1
ε!0

1

2πi

ð
AB

est�a
ffiffi
s

p

s
ds¼ 1

2πi

ðγþi1

γþi1

est�a
ffiffi
s

p

s
ds

¼ lim
R!1
ε!0

1

2πi

ð
EH

est�a
ffiffi
s

p

s
dsþ

ð
HJK

est�a
ffiffi
s

p

s
dsþ

ð
KL

est�a
ffiffi
s

p

s
ds

( ) ðE:77Þ

Along EH, s ¼ xeπi,
ffiffi
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
xeπi=2

p
¼ i

ffiffiffi
x

p
and as s goes from �R to �ε, x goes

from R to ε. Hence we haveð
EH

est�a
ffiffi
s

p

s
ds ¼

ð�R

�ε

est�a
ffiffi
s

p

s
ds ¼

ð ε
R

e�xt�ai
ffiffi
x

p

x
dx

Similarly, along KL, s ¼ xeπi,
ffiffi
s

p ¼ ffiffiffiffiffi
xe

p �π=2 ¼ �i
ffiffiffi
x

p
and as s goes from �ε to

�R, x goes from ε to R. Thenð
KL

est�a
ffiffi
s

p

s
ds ¼

ð�R

�ε

est�a
ffiffi
s

p

s
ds ¼

ð R
ε

e�xtþai
ffiffi
x

p

x
dx

Along HJK, s ¼ εeiθ and we haveð
HJK

est�a
ffiffi
s

p

s
ds¼

ð�π

π

eεe
iθt�a

ffiffi
ε

p
eiθ=2

εeiθ
εeiθdθ

¼ i

ð�π

π
eεe

iθ t�a
ffiffi
ε

p
eiθ=2dθ

Thus Eq. (E.77) becomes
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f tð Þ ¼ � lim
R!1
ε!0

1

2πi

ð ε
R

e�xt�ai
ffiffi
x

p

x
dxþ

ð R
ε

e�xtþai
ffiffi
x

p

x
dxþ i

ð�π

π
eεe

iθt�a
ffiffiffi
εe

p iθ=2

dθ

( )

¼ � lim
R!1
ε!0

1

2πi

ð R
ε

e�xt eai
ffiffi
x

p
� e�ai

ffiffi
x

p� �
x

dxþ i

ð�π

π
eεe

iθ t�a
ffiffiffi
εe

p iθ=2

dθ

( )

¼ � lim
R!1
ε!0

1

2πi
2i

ð R
ε

e�xt sin a
ffiffiffi
x

p
x

dxþ i

ð�π

π
eεe

iθ t�a
ffiffiffi
εe

p iθ=2

dθ

� �

Since the limit can be taken underneath the integral sign, we have

lim
ε!0

ð�π

π
eεe

iθ t�a
ffiffiffi
εe

p iθ=2

dθ ¼
ð�π

π
1dθ ¼ �2π

and so we find

f tð Þ ¼ 1� 1

π

ð1
0

e�xt sin a
ffiffiffi
x

p
x

dx

This can be written as follows (See Example 2 below).

f tð Þ ¼ 1� erf
a

2
ffiffi
t

p
� �

erfc
a

2
ffiffi
t

p
� �

Example 2: Prove that 1π

ð1
0

e�xt sin a
ffiffiffi
x

p
x

dx ¼ erf a
2
ffi
t

p
	 


and thus establish the final

result in pervious example.

Solution: Letting x ¼ u2, the required integral becomes

I ¼ 2

π

ð1
0

e�u2t sin au

u
du

Then differentiating with respect to a we have

∂I
∂a

¼ 2

π

ð1
0

e�u2t cos auð Þdu ¼ 2

π

ffiffiffi
π

p
2
ffiffi
t

p e�a2=4t

� �
¼ 1ffiffiffiffi

πt
p e�a2=4t

Hence, using the fact that I ¼ 0 when a ¼ 0,
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I ¼
ð a
0

1ffiffiffiffi
πt

p e�p2=4tdp ¼ 2ffiffiffi
π

p
ða=2 ffitp

0

e�u2du ¼ erf a=2
ffiffi
t

p� �
and the required result is established.

E.34 Case of Infinitely Many Singularities

If we are planning on finding the inverse Laplace transform of functions which have

infinitely many isolated singularities, the above methods can be applied [3]. In such

case the curved portion of the Bromwich contour is chosen to be of such radius Rm

so as to enclose only a required inverse Laplace transform is then found by taking

an appropriate limit as m ! 1.

E.35 Inverse Laplace Transform of Functions
with Infinitely Many Singularities

We present few examples of a function with infinitely many singularities by first

finding its residue then showing the Inverse Laplace Transform of such function as

follows:

Example 1: Find all the singularities of f sð Þ ¼ cosh x
ffiffi
s

p
scosh

ffiffi
s

p where 0 < x < 1.

Solution: Because of the presence of
ffiffi
s

p
, it would appear that s ¼ 0 is a branch

point. That this is not so, however, can be seen by noting that

f sð Þ ¼ cosh x
ffiffi
s

p
s cosh

ffiffi
s

p ¼ 1þ x
ffiffi
s

pð Þ22!þ x
ffiffi
s

pð Þ44!þ � � �
s 1þ ffiffi

s
pð Þ2 þ 2!;þ ffiffi

s
pð Þ4; 4; !;þ; � � �

n o
¼ 1þ x2s=2!þ x4s=4!þ � � �

s 1þ x2s=2!þ s4=4!þ � � �f g

from which it is evident that there is no branch point as s ¼ 0. However, there is a

simple pole at s ¼ 0. The function f(s) also has infinitely many poles given by the

root of the equation

cosh
ffiffi
s

p ¼ e
ffiffi
s

p
þ e�

ffiffi
s

p

2
¼ 0

These occur where e2
ffiffi
s

p
¼ �1 ¼ eπiþ2kπi k ¼ 0, � 1, � 2, � � �
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from which
ffiffi
s

p ¼ k þ 1
2

� �
πi or s ¼ � k þ 1

2

� �2
π2

Thus f(s) has simple poles at

s ¼ 0 and s ¼ sn where sn ¼ � π � 1
2

� �2
π2 n ¼ 1, 2, 3, � � �

Example 2: Find £�1 cosh x
ffiffi
s

p
scosh

ffiffi
s

p
� �

where 0 < x < 1.

Solution: The required inverse can be bound by using the Bromwich contour of

Fig. E.6. The AB is chosen so as to lie to the right of all the poles which, as seen in

Example 1 above, are given by (Fig. E.8)

s ¼ 0 and s ¼ sn where s ¼ � π � 1
2

� �2
π2 n ¼ 1, 2, 3, � � �

We choose the Bromwich contour so that the curved portion BDEFGHA is an arc

of a circle Γm with center at the origin and radius.

Rm ¼ m2π2

where m is a positive integer. This choice insures that the contour does not pass

through any of the poles.

We now find the residues of

estcosh x
ffiffi
s

p
s cosh

ffiffi
s

p

at the poles. We have

Residue at s ¼ 0 is lim
s!0

s� 0ð Þ estcosh x
ffiffi
s

p
s cosh

ffiffi
s

p
� �

¼ 1

Residue at sn ¼ � π � 1
2

� �2
π2, n ¼ 1, 2, 3, � � � is

B
Rm

A

E

D

F

G

H

x

yFig. E.8 Different

Functions Configurations
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lim
s!0

s� snð Þ estcosh x
ffiffi
s

p
scosh

ffiffi
s

p
� �

¼ lim
s!0

s� snð Þ
cosh

ffiffi
s

p
� �

lim
s!0

estcosh x
ffiffi
s

p
s

� �

¼ lim
s!0

1

sinh
ffiffi
s

pð Þ 1=2
ffiffi
s

pð Þ
� �

¼ lim
s!0

estcosh x
ffiffi
s

p
s

� �

¼ 4 �1ð Þn
π 2n� 1ð Þ e

� n�1=2ð Þ2π2t cos n� 1

2

� �
πx

If Cm is the contour of Fig. E.6, then

1

2πi

þ
Cm

estcosh x
ffiffi
s

p
s cosh

ffiffi
s

p ds ¼ 1þ 4

π

Xm
n¼1

�1ð Þn
2n� 1ð Þ e

� n�1=2ð Þ2π2t cos n� 1

2

� �
πx

Taking the limit as m ! 1 and noting that the integral around Γm approaches

zero, we find

£�1 cosh x
ffiffi
s

p
s cosh

ffiffi
s

p
� �

¼ 1þ 4

π

Xm
n¼1

�1ð Þn
2n� 1ð Þ e

� n�1=2ð Þ2π2t cos n� 1

2

� �
πx

¼ 1þ 4

π

Xm
n¼1

�1ð Þn
2n� 1ð Þe

� 2n�1ð Þ2π2t=4 cos
2n� 1ð Þπx

2

� �

Example 3: Find £�1 sinh sx

s2coshsa

� �
where 0 < x < a.

Solution: The function f sð Þ ¼ sinh sx

s2cosh sa
has poles ats ¼ 0and at values of s for , i.e.,

s ¼ sk ¼ � π � 1

2

� �
πi=a k ¼ 0, � 1, � 2, � � �

Because of the presence of s2, it would appear that s ¼ 0 is a pole of order two.

However, by observing that near s ¼ 0,

f sð Þ ¼ sinh sx

s2cosh sa
¼ sxþ sxð Þ3=3!þ sxð Þ5=5!þ � � �

s 1þ sað Þ2=2!þ sað Þ4=4!þ � � �
n o

¼ xþ s2x3=3!þ s4x5=5!

s2 1þ s2a2=2!þ s4a4=4!þ � � �f g
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We see that s ¼ 0 is a pole of order one, i.e., a simple pole. The poles sk are also
simple poles.

Proceeding at s ¼ 0 is as in Example 2 above, we obtain the residues of estf(s) at
these poles.

Residue at s ¼ 0 is

lim
s!0

s� 0ð Þ estsinh sx

s2cosh sa

� �
¼ lim

s!0

sinh sx

s

� �
lim
s!0

est

s2cosh sa

� �
¼ x

Using L’Hospital rule.

Residues at s ¼ sk is

lim
s!0

s� skð Þ estsinh sx

s2cosh sa

� �
¼ lim

s!sk

s� sk
cos sa

� �
lim
s!sk

estsinh sx

s2

� �

¼ lim
s!sk

1

asinhsa

� �
lim
s!sk

estsinh sx

s2

� �

¼ 1

ai sin k þ 1=2ð Þπ � e
kþ1=2ð Þπit=ai sin k þ 1=2ð Þ πx=að Þ

� k þ 1=2ð Þ2π2=a2

¼ � a �1ð Þke kþ1=2ð Þπit=ai sin k þ 1=2ð Þ πx=að Þ
π2 k þ 1=2ð Þ2

By and appropriate limiting procedure similar to that used in Example 2 above,

we find on taking the some of the residues the required result,

£�1 sinh sx

s2cosh sa

� �
¼ x� a

π2

X1
k¼�1

�1ð Þke kþ1=2ð Þπit=ai sin k þ 1=2ð Þ πx=að Þ
k þ 1=2ð Þ2

¼ x� 2a

π2

X1
n¼1

�1ð Þk cos n� 1=2ð Þ πt=að Þ sin k þ 1=2ð Þ πx=að Þ
k þ 1=2ð Þ2

¼ xþ 8a

π2

X1
n¼1

�1ð Þk
k þ 1=2ð Þ2 sin

2n� 1ð Þπx
2a

cos
2n� 1ð Þπt

2a
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E.36 Inverse Laplace Transform of Functions
with Branch Point

See Sect. 2.10 of this appendix and related examples that are presented there. More

examples can be found in [4] and [7] of this appendix. We recommend the reader to

refer themselves to them

Example 1: Let f sð Þ ¼ p sð Þ
q sð Þ where p(s) and q(s) are polynomials (having no

common roots) of degree n and m, respectively, m > n, and q(s) has simple roots

at z1, z2, � � �zm. Then f(s) has a simple pole at each s ¼ zk, and writing

f sð Þ ¼ ans
n þ an�1s

n�1 þ � � � þ a0
bmsm þ bm�1sm�1 þ � � � þ b0

¼
an þ an�1

s
þ � � � þ a0

s

sm�n bm þ bm�1

s
þ � � � þ b0

sm

� � an, bm 6¼ 0ð Þ

Solution: It is enough to observe that for |s| suitably large

an þ an�1

s
þ � � � þ a0

sn

��� ��� 	 anj j þ an�1j j þ � � � þ a0j j ¼ c1

bm þ bm�1

s
þ � � � þ b0

sm

���� ���� � bmj j � bm�1j j
sj j � � � � � b0j j

smj j �
bmj j
2

¼ c2

and thus

f sð Þj j 	 c1=c2
sj jm�n

Hence by Example 1 above, we have

Res zkð Þ ¼ ezktp zkð Þ
q0 zkð Þ k ¼ 1, 2, � � �,m

and

f tð Þ ¼
Xm
k¼1

p zkð Þ
q0 zkð Þ e

zkt
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Appendix F
Short Course in Electromagnetic

Electromagnetism is one of the four fundamental interactions of nature, along with

strong interaction, weak interaction, and gravitation. It is the force that causes the

interaction between electrically charged particles; the areas in which this happens

are called electromagnetic fields (Fig. F.1).

Electromagnetism is the force responsible for practically all the phenomena

encountered in daily life (with the exception of gravity). Ordinary matter takes its

form as a result of intermolecular forces between individual molecules in matter.

Electromagnetism is also the force which holds electrons and protons together

inside atoms, which are the building blocks of molecules. This governs the pro-

cesses involved in chemistry, which arise from interactions between the electrons

orbiting atoms.

Electromagnetic field theory has been and will continue to be one of the most

important fundamental courses of electrical engineering curriculum. It is one of the

best-established general theories that provides explanations and solutions to intri-

cate electrical engineering problems when other theories are no longer applicable

F.1 Maxwell’s Equations and Electric Field
of the Electromagnetic Wave

Although Maxwell’s equations were formulated over one hundred years ago, the

subject of electromagnetism has not remained static. Much of modern physics (and

engineering) involves time-dependent electromagnetic fields in which Maxwell’s

displacement current plays a crucial role. Maxwell’s equations contain all the

information necessary to characterize the electromagnetic fields at any point in a

medium.

In order to understand behavior of materials response to a high power laser beam

one needs to consider the coupling of the laser energy to a material. Therefore, we

© Springer International Publishing Switzerland 2016
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need first to know the optical reflectivity R and the transmissivity T for light

incident on a surface which divides two semi-infinite media. To understand reflec-

tivity, we must use some general results from the theory of electromagnetic waves.

For the ElectroMagnetic (EM) fields to exist they must satisfy the four Maxwell

equations at the source where they are generated, at any point in a medium through

which they propagate, and at the load where they received or absorbed As the fields

must satisfy the four coupled Maxwell equations involving four unknown variables,

we first obtain an equation in terms of one unknown variables. Similar equations

can then be obtained for the other variables. We refer to these equations as the

general Wave Equations. It can be shown that the fields generated by time-varying

sources propagate as Spherical Waves. However, in a small region far away from

the radiating source, the spherical wave may be approximated as a Plane Wave, that
is, one in which all the field quantities are in a plane normal to the direction of its

propagation (the transverse plane). Consequently, a plane wave does not have any

field component in its direction of propagation (the longitudinal direction).

We first seek the solution of a plane wave in an unbounded dielectric medium

and show that the wave travels with the speed of light in free space. We then

consider the general case of a finitely conducting medium. We show that the wave

attenuates as a result of loss in energy as it travels in the conducting medium.

Finally, we introduce the concept of reflection and transmission of a plane wave

when it leaves one medium and enters another.

F.2 The Wave Equations for Electric and Magnetic Field

In regions of space where there is no charge or current, Maxwell’s equations read

ið Þ ∇�~E ¼ 0 iiið Þ∇� ~E ¼ �∂~B
∂t

iið Þ∇�~B ¼ 0 ivð Þ∇� ~B ¼ μ0ε0 �
∂~E
∂t

9>>>=>>>; ðF:1Þ

where

E is the Electric Field

B is the Magnetic Field

Fig. F.1 Electricity-

Magnetism
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μ0 is the constant Biot–Savart’s law known as permittivity of free space

4π� 107N=A2

ε0 is the constant Coulomb’s law known as permittivity of free space

8:85� 10�12 C2= N�m2ð Þ
The above equations are constitute a set of coupled, first-order, partial differen-

tial equations for ~E and ~B. They can be decoupled by applying the curl to (iii) and

(iv):

∇� ∇� ~E
� �¼ ∇ ∇�~E� ��∇� �∂~B

∂t

 !

¼ � ∂
∂t

∇� ~B
� � ¼ �μ0ε0

∂2~E

∂t2

∇� ∇� ~B
� �¼ ∇ ∇�~B� ��∇� μ0ε0 �

∂~E
∂t

 !

¼ μ0ε0
∂
∂t

∇� ~E
� � ¼ �μ0ε0

∂2~B

∂t2

Or, since ∇�~E ¼ 0 and ∇�~B ¼ 0.

∇2~E ¼ μ0ε0
∂2~E

∂t2
∇2~B ¼ μ0ε0

∂2~B

∂t2
ðF:2Þ

Equation F.2 is a demonstration of separations between~Eand~B, but they are second

order [1]. In vacuum, then, each Cartesian component of ~E and ~B satisfies the

Three-Dimensional Wave Eq. F.3

∇2f ¼ 1

υ2
∂2

f

∂t2
ðF:3Þ

This supports standard wave equation in general within Cartesian form, which is

similar to a classical wave equation of small disturbance on the string, where υ
represents the speed of propagation and is given by [1];

υ ¼
ffiffiffi
T

μ

s
ðF:4Þ

Where μ the mass per unit length and this equation is admits as solutions all

functions of the form as Eq. F.5 for example in z direction of propagation [1].
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f z; tð Þ ¼ g z� υtð Þ ðF:5Þ

This mathematical derivation can be sort of depicted as Fig. F.2 at two different two

times, once at t ¼ 0, and at later time t. Each point on the wave form simply shifts to

the right by an amount υt, where υ is the velocity.
Then we can see that Maxwell’s equations imply that empty space supports the

propagation of electromagnetic waves, traveling at a speed

υ ¼ 1ffiffiffiffiffiffiffiffiffi
μ0ε0

p ¼ 3:00� 108meter= sec ond ¼ 3:00� 108m=s ¼ c

which is precisely the velocity of light c [1], which Maxwell himself was astonished

and he, himself put it “wave can scarcely avoid the interference that light consists in

the transverse undulations of the same medium which is the cause of electric and

magnetic phenomena”.

F.3 Sinusoidal Waves

Of all possible wave forms, the sinusoidal one form like Eq. F.6 below is for a good

reason the most familiar. Figure F.3 shows this function at time t ¼ 0 with A as

amplitude of the wave.

f z; tð Þ ¼ A cos k z� υtð Þ þ δ½ � ðF:6Þ

Central
maximum f(z, 0)

z

A

δ/k

λ

υ

Fig. F.3 A Sinusoidal

wave propagation [1]

f
f(z, 0) f(z, t)

u

ut
z

Fig. F.2 Wave

Propagation in

z-direction [1]
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(it is positive, and represents the maximum displacement from equilibrium). The

argument of the cosine is called the phase, and δ is the phase constant and one can
add any integer multiple 2π to δ without changing f(z, t). Ordinarily, one uses a

value in the range 0 	 δ < 2π. A point known as Central Maximum on the curve of

takes place at z ¼ υt� δ=k when the phase is zero. If δ ¼ 0, the central maximum

passes the origin at time t ¼ 0; more generally, δ/k is the distance by which the

central maximum (and therefore the entire wave) is “delayed”. Finally, k is the

wave number; It is related to the wavelength λ by the Eq. F.7 for when z advances
by 2π/k, and the cosine executes one complete cycle.

λ ¼ 2π

k
ðF:7Þ

As time passes, the entire wave train proceeds to the right, at speed υ. At any fixed

point z, the string vibrates up and down, undergoing one full cycle in a period.

T ¼ 2π

kυ
ðF:8Þ

If now introduce frequency v as number of oscillations per unit time and show it in

the form of Eq. F.9, then we have:

v ¼ 1

T
¼ kυ

2π
¼ υ

λ
ðF:9Þ

For our purpose it is nicer to write the Eq. F.6 in a nicer form and present that in

terms of angular frequency ω given below in the analogous case of uniform

circular motion that represents the number of radians swept out per unit time.

ω ¼ 2πv ¼ kυ ðF:10Þ

Then the new form of sinusoidal wave in terms of ω rather than υ is given as below:

f z; tð Þ ¼ A cos kz� ωtþ δð Þ ðF:11Þ

If both k and ω traveling to the left then Eq. F.11 can be written in the form of [1];

f z; tð Þ ¼ A cos kzþ ωt� δð Þ ðF:12Þ

This in correspondence to and consistent with our previous convention that δ/k shall
represent the distance by which the wave is “delayed” since the wave is now

moving to the left, and delay means a shift to the right. At t ¼ 0, the wave looks

like Fig. F.4 and since the cosine is an even function, we can just as well write

Eq. F.12 as form of Eq. F.13 as below.
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f z; tð Þ ¼ A cos �kz� ωtþ δð Þ ðF:13Þ

Comparing both Eqs. of 12 and 13 we conclude that we could simply switch the sign
of k to produce a wave with the same amplitude, phase constant, frequency, and

wavelength traveling in opposite direction.

What we have learned in Appendix D about complex in view of Euler’s formula,

we have

eiθ ¼ cos θ þ i sin θ ðF:14Þ

We can now write Eq. C.16 like below;

f z; tð Þ ¼ Re Aei kz�ωtþδð Þ
h i

ðF:15Þ

where Re[ξ] denotes the real part of any complex number such as ξ. This allows us
to introduce the Complex Wave Function of Eq. F.16 as below;

ef z; tð Þ ¼ eAei kz�ωtð Þ ðF:16Þ

with introduction to complex amplitude eA ¼ Aeiδ absorbing the phase constant. The

actual wave function is the real part of ef :
f z; tð Þ ¼ Re ef z; tð Þ

h i
ðF:17Þ

Knowing ef , it is a simple matter to find f.

Example 1: Combine two sinusoidal waves of f1 and f2.

Solution: Let us write the following function f3 as

f 3 ¼ f 1 þ f 2 ¼ Re ef 1	 

þ Re ef 2	 


¼ Re ef 1 þ ef 2	 

¼ Re ef 3	 


Central
maximum

f(z, 0)

zδ/k

υ

Fig. F.4 Sinusoidal wave

traveling to the left [1]
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with ef 3 ¼ ef 1 þ ef 2. You may simply add the corresponding complex wave func-

tions, and then take the real part. In particular, if they have the same frequency and

wave number,

ef 3 ¼ eA1e
i kz�ωtð Þ þ eA2e

i kz�ωtð Þ ¼ eA3e
i kz�ωtð Þ

where

eA3 ¼ eA1 þ eA2 or eA3e
iδ3 ¼ eA1e

iδ1 þ eA2e
iδl2

Now we are going to figure out what A3 and δ3 are as follows:

A3ð Þ2¼ A3e
iδ3ð Þ A3e

iδ3ð Þ¼ A1e
iδ1 þA2e

iδ2ð Þ A1e
iδ1 þA2e

iδ2ð Þ
¼ A1ð Þ2þ A2ð Þ2þA1A2 eiδ1eiδ2 þeiδ1eiδ2ð Þ¼ A1ð Þ2þ A2ð Þ2þA1A2 cos δ1�δ2ð Þ

A3¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1ð Þ2þ A2ð Þ2þA1A2 cos δ1�δ2ð Þ

q
A3e

iδ3 ¼A3 cosδ3þ isinδ3ð ÞA1 cosδ1þ isinδ1ð ÞþA2 cosδ2þ isinδ2ð Þ
¼ A1 cosδ1þA2 cosδ2ð Þþ i A1 sinδ1þA2 sinδ2ð Þ

tanδ3¼ A3 sinδ3
A3 cosδ3

¼ A1 sinδ1þA2 sinδ2
A1 cosδ1þA2 cosδ2

δ3¼ tan�1 A1 sinδ1þA2 sinδ2
A1 cosδ1þA2 cosδ2

� �
As we can see the combined wave still has the same frequency and wavelength is

given by

f 3 z; tð Þ ¼ A3 cos kz� ωtþ δ3ð Þ

F.4 Polarization of the Wave

Polarization, also called wave polarization, is an expression of the orientation of the

lines of electric flux in an electromagnetic field (EM field). Polarization can be

constant—that is, existing in a particular orientation at all times, or it can rotate with

each wave cycle.

Polarization affects the propagation of EM fields at infrared (IR), visible,

ultraviolet (UV), and even X-ray wavelengths. In ordinary visible light, there are

numerous wave components at random polarization angles. When such light is

passed through a special filter, the filter blocks all light except that having a certain
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polarization. When two polarizing filters are placed so that a ray of light passes

through them both, the amount of light transmitted depends on the angle of the

polarizing filters with respect to each other. The most light is transmitted when the

two filters are oriented so they polarize light in the same direction. The least light is

transmitted when the filters are oriented at right angles to each other (Fig. F.5) and

in vector presentation Fig. F.6.

Vertical filter

Horizontal filter

Horizontally
polarized
output

Vertically
polarized
output

Vertical filter and horizontal filter

Little or no output

Fig. F.5 Polarization wave

Fig. F.6 Vector form of polarization wave [1]
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Electromagnetic waves are considered transverse waves in which the vibrations

of electric and magnetic fields are perpendicular to each other and to the direction of

propagation (Fig. F.7). These two fields change with time and space in a sinusoid

fashion. Generally, only the electric field is represented, related to the propagation

direction, because it is with the electric field that detectors (eye, photographic film,

CCD, etc.) interact.

Visible light makes up just a small part of the full electromagnetic spectrum.

Electromagnetic waves with shorter wavelengths and higher energies include

ultraviolet light, x-rays, and gamma rays. Electromagnetic waves with longer

wavelengths and lower energies include infrared light, microwaves, and radio and

television waves. Table F.1 below is presentation of type of radiation along with

their wave length range.

The polarization of an electromagnetic wave refers to the orientation of its

electric field ~E. When the direction of electric field (~E) is randomly varying with

time on a very fast scale, related to the direction of propagation the wave is

considered non-polarized.

In case of a linearly polarized wave, the electric vector has a fixed orientation

related to the propagation direction like in Fig. F.8.

The polarization of electromagnetic wave can be produced by absorption,

scattering, reflection and birefringence.

A linear polarizer is a device that only allows electric field components parallel

to a certain direction (called the polarization axis) to pass through. Any electro-

magnetic wave that comes through such a polarizer is polarized in the direction of

the polarization axis. After leaving the polarizer, the wave’s polarization (~E-field
direction) does not change, and the wave is considered to be linearly polarized.

E

B

λ

x

Fig. F.7 Electromagnetic

wave propagation

Table F.1 Type of radiation

vs. wavelength range
Type of radiation Wavelength range

Gamma rays <1 pm

X-rays 1 nm–1 pm

Ultraviolet 400 nm–1 nm

Visible 750 nm–400 nm

Infrared 2.5 mm–750 nm

Microwaves 1 mm–25 mm

Radio waves >1 mm
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If the linearly polarized light passes through a second polarizer, the transmitted

intensity I(θ) of the waves as it leaves the second polarizer is given by Malus law.

The specific manner in which a beam of electromagnetic wave at a specific

polarization is reflected (and refracted) at interface between two different media can

be used to determine the refractive index of the solid.

Specifically, for a particular interface, there is a particular angle of incidence

(relative to the normal vector of the surface), called the Brewster angle, which is

related to the refractive index of a material. At this angle, the reflection coefficient

of light polarized parallel to the plane of incidence is zero. Thus, if the incident light

is non-polarized and impinges on the material at the Brewster angle, the light

reflected from the solid will be polarized in the plane perpendicular to the plane

of incidence. If the incident light is polarized parallel to the plane of incidence, the

intensity of the reflected light will be theoretically zero at the Brewster angle.

The proposed experiment uses the polarization by reflection due to its simplicity,

but other polarization methods can be used too.

When a light fascicle falls on the M mirror at Brewster angle, the reflected

fascicle is linearly polarized. Using a second rotating mirror M’ the Malus law can

be checked. If mirror M’ is rotated around the PP’ axes, the reflected P’S’ fascicle

has a variable intensity with two minim and two maxim values. When the second

fascicle falls as the first fascicle at the Brewster angle the S’P’ fascicle has a

minimum value (See Fig. F.9).

The experiments with visible light and mirrors were made more than one century

ago, starting with Brewster and repeated in a lot of laboratories.

To date some experiments were made in order to check the phenomena for IR,

and the effect can be accepted as valid for UV and gamma rays. Related to this kind

of experiment, it is worth to be reminded a paper from 1969: Rotatable polarizers

non polarised wave

polarised wave

Fig. F.8 Electric field orientation for polarized and non-polarized electromagnetic wave
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for the near infra-red, R M Lambert et al, J. Phys. E: Sci. Instrum. 2 799-801 doi:

10.1088/0022-3735/2/9/311.

Polarization is an important optical property inherent in all laser beams. Brew-

ster windows, reflective phase retarders, and absorbing thin-film reflectors use the

advantage of polarization. On the other hand, it can cause troublesome and some-

times unpredictable results when ignored. Since virtually all laser sources exhibit

some degree of polarization, understanding this effect is necessary in order to

specify components properly. The following text gives a basic polarization defini-

tion and presents the polarization types most commonly encountered.

Light is a transverse electromagnetic wave; this means that the electric and

magnetic field vectors point perpendicular to the direction of wave travel

(Fig. F.10). When all the electric field vectors for a given wave-train lie in a

plane, the wave is said to be plane or linearly polarized. The orientation of this

plane is the direction of polarization.

Unpolarized light refers to a wave collection which has an equal distribution of

electric field orientations for all directions (Fig.F.11). While each individual wave-

train may be linearly polarized, there’s no preferred direction of polarization when

all the waves are averaged together.

Randomly polarized light is exactly what it says; the light is plane polarized, but

the direction is unknown, and may vary with time. Random polarization causes

problems in optical systems since some components are polarization sensitive. If

the polarization state changes with time, then the components’ transmission, reflec-

tion, and/or absorption characteristics will also vary with time.

Polarization is a vector that has both direction and amplitude. Like any vector,

it’s defined in an arbitrary coordinate system as the sum of orthogonal components.

In Fig. F.12, we see a plane polarized wave which points at 45� to the axes of our

coordinate system. Thus, when described in this coordinate system, it has equal x

and y components. If we then introduce a phase difference of 90� (or one-quarter

M

P

S

N

N�

P�

M� S�

Fig. F.9 Polarization by

reflection
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Plane of
Polarization

Direction of
Propagation

Electric Field
Vector

Magnetic Field
Vector

Fig. F.10 Definition of a polarization vector

Fig. F.11 Unpolarized light

Fig. F.12 Plane polarized

wave which points at 45� to
the axes
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wavelength) between these components, the result is a wave in which the electric

field vector has a fixed amplitude but whose direction varies as we move down the

wave-train (See Fig. F.13). Such a wave is said to be circularly polarized since the

tip of the polarization vector traces out a circle as it passes a fixed point.

If we have two wave-trains with unequal amplitude and with a quarter-wave

phase difference, then the result is elliptical polarization. The tip of the polarization

vector will trace out an ellipse as the wave passes a fixed point. The ratio of the

major to the minor axis is called the ellipticity ratio of the polarization.

Always state the polarization orientation when ordering optical coatings for use

at non-normal incidence. If you are unsure about how to determine the polarization

state of your source, please contact our applications engineers for assistance.

When light strikes an optical surface, such as a beam splitter, at a

non-perpendicular angle, the reflection and transmission characteristics depend

upon polarization. In this case, the coordinate system we use is defined by the

plane containing the input and reflected beams. Light with a polarization vector

lying in this plane is called p-polarized, and light, which is polarized perpendicular

to this plane, is called s-polarized. Any arbitrary state of input polarization can be

expressed as a vector sum of these s and p components. To understand the

significance of s and p polarizations, examine the graph which shows the single

surface reflectance as a function of angle of incidence for the s and p components of

light at a wavelength of 10.6 μm striking a ZnSe surface (Fig. F.14). Note that while

the reflectance of the s component steadily increases with angle, the p component at

first decreases to zero at 67� and then increases after that. The angle at which the p

reflectance drops to zero is called Brewster’s Angle. This effect is exploited in

several ways to produce polarizing components or uncoated windows which have

no transmission loss such as the Brewster windows.

The angle at which p reflectance drops to zero, termed Brewster’s Angle and can

be calculated from θB ¼ tan �1 nð Þ, where θB is Brewster’s Angle and n is the

material’s index of refraction Polarization state is particularly important in laser

cutting application as well as our consideration for purpose of this book and laser

interaction with metal. Figure F.15 shows polarization summary.

Fig. F.13 Circularly

polarized wave
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Also by now we know that if the waves travel down the path of let say z-direction
is called Transverse because the displacement (in case of rope or string) is

perpendicular to the direction of propagation and it will be called Longitudinal if

displacement from equilibrium is along the direction of propagation. Sound waves,

which are nothing but compression wave in air, are longitudinal while electromag-

netic waves as we shall see are transverse (Section 1.4 of this appendix).

Reflected
beams

p-polarization

Transmitted
beams

s-polarization

Polarization

Fig. F.14 For s-polarization, the input polarization is perpendicular to the plane (shown in color)

containing the input and output beams. For p-polarization, the input polarization is parallel to the

plane (shown in color) containing the input and output beams

Polarization Summary

Linear polarization
has constant
amplitude and
orientation.

Random polarization
has an orientation
which varies with time.

Radially polarized
light contains
polarization vectors
oriented radially to
the beam.

Circular polarization
has constant
amplitude, but
orientation vector
describes a circle.

Elliptical polarization
vector traces out an
ellipse over time.

Fig. F.15 Polarization Summary
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F.5 Monochromatic Plane Waves

As we discussed in Section 1.2 of this appendix we now pay our attention to

sinusoidal waves of frequency ω where in visible range, each different frequency

corresponds to different colors. Such waves are called Monochromatic Waves

(See Table F.2). Suppose furthermore, that the waves are traveling in the z-direction
and have no x or y dependencies; these are called Plane Waves [3], because the

fields are uniform over every plane perpendicular to the direction of propagation

Table F.2 The

electromagnetic spectrum
The electromagnetic spectrum

Frequency (Hz) Type Wavelength (m)

1022 10�13

1021 Gamma rays 10�12

1020 10�11

1019 10�10

1018 X rays 10�9

1017 10�8

1017 Ultraviolet 10�7

1015 Visible 10�6

1014 Infrared 10�5

1013 10�4

1012 10�3

1011 10�2

1010 Microwave 10�1

109 1

108 TV, FM 10

107 102

106 AM 103

105 104

104 RF 105

103 106

The Visible Range

Frequency (Hz) Color Wavelength (m)

1:0� 1015 Near ultraviolet 3:0� 10�7

7:5 � 1014 Shortest visible blue 4:0 � 10�7

6:5 � 1014 Blue 4 6 � 10�7

5:6� 1014 Green 5:4 � 10�7

5:1� 1014 Yellow 5:9 � 10�7

4:9 � 1014 Orange 6:1 � 10�7

3:9 � 1014 Longest visible red 7:6 � 10�7

3:0 � 1014 Near infrared 1:0 � 10�6

Appendix F: Short Course in Electromagnetic 699



(See Fig. F.16). We are interested, and then in complex form of both magnetic and

electric filed as follows:

e~E z; tð Þ ¼ e~E0e
i kx�ωtð Þ and

e~B z; tð Þ ¼ e~B0e
i kx�ωtð Þ ðF:18Þ

where
e~E0 and

e~B0 are the complex amplitudes [1]. The physical fields, of course are

the real parts of
e~E and

e~B. Now, the wave equations for ~E and ~BEq. F.2 were derived

from Maxwell’s Equations. However, whereas every solution to Maxwell’s equa-

tions (in empty space) must obey the wave equation, the converse is not true;

Maxwell’s equations impose extra constraints on
e~E0 and

e~B0. In particular, since

∇�~E ¼ 0 and ∇�~B ¼ 0, it follows that:

eE0

	 

z
¼ eB0

	 

z
¼ 0 ðF:19Þ

This is because the real part of
e~E differs from the imaginary part only in the

replacement of Sine by Cosine, if the former obeys Maxwell’s equations, so does

the latter, and hence
e~E as well [1]. Equation F.19 also indicates that, electromag-

netic waves are transverse: the electric and magnetic fields are perpendicular to the

direction of propagation. Moreover, Faraday’s law, ∇� ~E ¼ �∂~B=∂t, implies a

relationship between the electric and magnetic amplitudes in the following

equation;

�k eE0

	 

y
¼ ω eB0

	 

x

and �k eE0

	 

x
¼ ω eB0

	 

y

ðF:20Þ

or in compact form complex variable presentation we have:

Fig. F.16 Plane wave propagation [1]
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e~B0 ¼ k

ω
ẑ � e~E0

	 

ðF:21Þ

From this equation it is evident that, ~E and ~B are in phase and mutually
perpendicular; their (real) amplitudes are related by

B0 ¼ k

ω
E0 ¼ 1

c
E0 ðF:22Þ

The fourth of Maxwell’s equation, ∇� ~B ¼ μ0ε0 ∂~E=∂t
� �

, does not yield an

independent condition; it simply reduces to Eq. F.20.

We can easily generalize to monochromatic plane waves traveling in an arbitrary

direction. The notation is facilitated by the introduction of propagation (or wave)

vector ~k pointing in the direction of propagation, whose magnitude is the wave

number k. The scalar product~k�~r is the appropriate generalization of kzin Fig. F.17,
so we have:

e~E ~r; tð Þ¼ e~E0e
i ~k � ~r�ωtð Þ~̂ne~B ~r; tð Þ ¼ 1

c
e~E0e

i ~k �~r�ωtð Þ ~̂k � ~̂n
	 


¼ 1

c
~̂k � ~̂E
	 
 ðF:23Þ

where ~̂n is the polarization vector. Because ~E is transverse,

~̂n � ~̂k ¼ 0 ðF:24Þ

The transversality of ~B follows automatically from Eq. F.23. The actual (real)

electric and magnetic fields in a monochromatic plane wave with propagation

vector ~k and polarization ~̂n are [1];

Fig. F.17 Scalar product of
~k�~r
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~E ~r; tð Þ ¼ E0 cos ~k�~r � ωtþ δ
	 


~̂n ðF:25Þ

~B ~r; tð Þ ¼ 1

c
E0 cos ~k�~r � ωtþ δ

	 

~̂k � ~̂n
	 


ðF:26Þ

Example 1: If ~E points in the x-direction, then ~B points in the y-direction Eq. F.21.

Solution: Writing the following

e~E z; tð Þ ¼ e~E0e
i ~k �~r�ωtð Þ~̂x and

e~B z; tð Þ ¼ 1

c
e~E0e

i ~k � ~r�ωtð Þ~̂y

or taking the real part we have (Fig. F.18)

~E z; tð Þ ¼ E0 cos kz� ωtþ δð Þ~̂x
~B z; tð Þ ¼ 1

c
E0 cos kz� ωtþ δð Þ~̂y

ðF:27Þ

Example 2: Write down the (real) electric and magnetic fields for a monochro-

matic plane

wave of amplitude E0, frequency ω, and phase angle zero that is (a) traveling in

the negative x-direction and polarized in the z-direction; (b) traveling in the

direction from the origin to the point (I, I, I), with polarization parallel to the

xz-plane. In each case, sketch the wave, and give the explicit Cartesian components

of ~k and ~̂n .

Solution: we can start with the following for part (a)

~k ¼ ω

c
~̂x ~k�~r ¼ �ω

c
~̂x

	 
� x~̂x þ y~̂y þ z~̂z
	 


¼ ω

c
x ~̂k � ~̂n ¼ �~̂x � ~̂z

~E x; tð Þ ¼ E0 cos
ω

c
xþ ωt

	 

~̂z ~B x; tð Þ ¼ E0

c
cos

ω

c
xþ ωt

	 

~̂y

and for part (b) we have the following

x

z

c

y

E0/c

E0

E

B

Fig. F.18 Depiction of

Example 1 solution
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~k ¼ ω
c

~̂x þ ~̂y þ~̂zffiffi
3

p
� �

~̂n ¼ ~̂x � ~̂zffiffi
2

p (since ~̂n is parallel to the xz-plane, it must have the

form α~̂x þ β~̂z ; since ~̂n � ~̂k ¼ 0, β ¼ �α; and since it is a unit vector, α ¼ 1=
ffiffiffi
2

p
1)

~k�~r ¼ ωffiffiffiffiffi
3c

p ~̂x þ ~̂y þ~z
	 
� x~̂x þ y~̂y þ z~̂z

	 

¼ ωffiffiffiffiffi

3c
p xþ yþ xð Þ

~̂k � ~̂n ¼ 1ffiffiffi
6

p ~̂x ~̂y~̂z 11110� 1
��� ��� ¼ 1ffiffiffi

6
p �~̂x þ 2~̂y � ~̂z
	 


, therefore we have the

following as final solution for part (b)

~E x; y; z; tð Þ ¼ E0 cos
ωffiffiffiffiffi
3c

p xþ yþ xð Þ � ωt

� �
~̂x � ~̂zffiffi

2
p

� �

~B x; y; z; tð Þ ¼ E0 cos
ωffiffiffiffiffi
3c

p xþ yþ xð Þ � ωt

� �
�~̂x þ 2~̂y �~̂zffiffi

3
p

� �

F.6 Boundary Conditions: Reflection & Transmission
(Refraction) Dielectric Interface

The important problem of the Reflection and Refraction (Transmission) of a wave

at the interface of two media of different dielectric constants is a boundary value

problem in which the physics is identical in principle to that involved in time

harmonic problems involving conductors. If, for example, one medium is vacuum

and a plane wave is incident on a second (dielectric) medium, the incident harmonic

of plane wave generates oscillating time harmonic dipoles (or dipolar currents) that

produce a field of their own [2]. The strength of the currents is, however, not known

in advance and therein lays the essence of problem. Although this problem is a

boundary value problem, it is especially simple because of the great symmetry and

simple geometry. It turns out that it is solved by a adding to the incident plane

waves only two other plane waves, a reflected and a transmitted (or refracted) one.

The geometry is shown Fig. F.20 with the plane z ¼ 0 taken as the interface between

the two media, labeled 1 and 2.

In terms of the vector propagation constant, ~ki, the incident fields are

~Ei ¼ ~Aei
~ki �~r and ~Bi ¼ ~ki=k

	 

� ~Ei Incident ðF:28Þ

Here~Bi is derived from the assumed~Ei by∇� ~Ei ¼ ik~Bi. The normal ẑ to the plane

z ¼ 0 and the vector ~ki define a plane of incidence which can, without loss of

generality, be taken to be the x, z-plane as we have done in Fig. F.19. We now

postulate the existence of two other plane waves and will show that these suffice to
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solve the boundary value problem. These reflected and transmitted waves, ampli-

tudes ~Er and ~Et, respectively, are [2]

~Er ¼ ~Rei
~kr �~r and ~B ¼ ~kr=k

	 

� ~Er Reflected ðF:29Þ

~Et ¼ ~Tei
~kt �~r and ~Bt

�� ¼ ~kt=k
	 


� ~Et Transmitted ðF:30Þ

The vector~kr and~kt must, for the moment, be considered arbitrary in direction, for

although~ki is in the x, z-plane, we cannot assume the same a priori for~kr and~kt. The

magnitudes ki� ~ki

��� ��� etc. of the wave vectors are, with n1 and n2 the indices of

refraction of the two media and k ¼ ω=c,

ki ¼ kr ¼ n1k

kt ¼ n2k
ðF:31Þ

Considering the boundary conditions which states the tangential components of ~E

and ~B are continuous we have to satisfy the following two steps;

First: If the tangential components of the three fields in Eqs. F.29, F.30 and F.31 are

to be matched at z ¼ 0, it also should be clear that the spatial dependence given by

the exponents must be identical. However, this is a necessary but not a sufficient

condition.

Second: The vector coefficients ~A, ~R, and ~T must be determined.

The first condition, that the spatial variation of the three fields must be identical

at z ¼ 0, leads to the following equation.

a

E

B

b
x

z

k

y

E

B

x

z

y

Fig. F.19 Sketch of the Example 2 solution
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~ki �~r	 

z¼0

¼ ~kr �~r	 

z¼0

¼ ~kt �~r	 

z¼0

ðF:32Þ

The first equality in Eq. F.32 yields kixx ¼ krxxþ kryy. For this condition to hold for

all x and y, we must have kry ¼ 0, showing that~kr lies in the plane of incidence and

also that kixx ¼ krxx. Similarly, from the second equality in Eq. F.32,~ktmust also lie

in this plane, so that ~ki, ~kr, ~kt are all coplanar. Moreover, from the geometry of

Fig. F.19, we have from kix ¼ krx that ki sin θi ¼ kr sin θr. Or since ki ¼ kr, then we

can write the following;

sin θi ¼ sin θr ðF:33Þ

The angle of incidence equals the angle of reflection. Similarly, the equality of kix
and kix yields

ki sin θi ¼ kt sin θt

Or using Eq. F.31, we have

sin θi
sin θt

¼ n2
n1

ðF:34Þ

Equation F.34 is known as Snell’s law of refraction. The condition of Eqs. F.33 and

F.34 are quite general ones that are independent of the detailed vectorial nature of

the wave field.. They hold for reflection and refraction of scalar waves. These

conditions by themselves do not guarantee the continuity of tangential ~E and ~B
across the boundary. To satisfy these conditions, more specification of polarization

of the fields should be analyzed [2]. For convenient we consider the general the

general case of arbitrary incident polarization as a linear combination of a wave

with polarization perpendicular to the plane of incidence and one with polarization

parallel to this plane. The reflected and transmitted waves will then be similarly

polarized. These two cases are sketched as parts (a) and (b) in Fig. F.20.

Consider first the case of ~E perpendicular to the plane of incidence, i.e., in the

y-direction. The vector coefficients ~A, ~R, and ~T becomes scalar ones, with subscript

⊥ to denote this case.

Ei⊥ ¼ A⊥e
i~ki � ~r

Er⊥ ¼ A⊥e
i~kr � ~r

Et⊥ ¼ A⊥e
i~kt � ~r

ðF:35Þ

Then from the continuity of tangential ~E at the boundary, we have
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A⊥ þ R⊥ ¼ T⊥ ðF:36Þ

The condition on tangential~Bbecomes, withBix ¼ �A⊥ cos θi,Brx ¼ R⊥ cos θr, and
Btx ¼ �T⊥ cos θt, also considering that cos θi ¼ �θr we then have:

n1 A⊥ � R⊥ð Þ cos θi ¼ n2T⊥ cos θt ðF:37Þ

Solving Eqs. F.36 and F.37 for the ratios R⊥=A⊥ and T⊥=A⊥, we find, using Snell’s

law, that

R⊥

A⊥
¼

1� tan θi
tan θr

1þ tan θi
tan θr

¼ � sin θi � θtð Þ
sin θi þ θtð Þ

T⊥

A⊥
¼ 2

1þ tan θi
tan θr

¼ 2 cos θi sin θt
sin θi þ θtð Þ

ðF:38Þ

For the second case, incident wave polarized parallel to the plane of incidence, we

use Ajj ¼ ~A
�� �� in Eq. F.28 and, similarly Rjj ¼ ~R

�� �� and Tjj ¼ ~T
�� �� in Eqs. F.29 and

F.30. The boundary condition yield

cos θi Ajj � Rjj
� � ¼ cos θiTjj

n1 Ajj � Rjj
� � ¼ n2Tjj

These equations lead to the results

a b
z

x
1

2

z

x
1

2

qt

qrqiki

ki Et

Bt

qt ki

Et

Bt

Bi kr

Ei
Er

qrqiki
krEi

Bi
Br

Er

Fig. F.20 Reflection and Refraction at a dielectric interface. (a): Electric vector perpendicular to
plane of incidence. (b): Electric vector parallel to plane of incidence
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Rjj
Ajj

¼ tan θi � θtð Þ
tan θi þ θtð Þ

Tjj
Ajj

¼ 2 cos θi sin θt
sin θi þ θtð Þ cos θi � θtð Þ

ðF:39Þ

There are two phenomena worthy of note in connection with the above discussion.

Consider the case of polarization in the plane of incidence. We see from Eq. F.39

that Rjj=Ajj will be zero for θi þ θt ¼ π=2. Putting this condition into Snell’s law,

using sin θt ¼ sin π=2� θið Þ ¼ cos θi, we see that the angle of incidence θB (called
the Brewster angle) for which this happens is defined by

tan θB ¼ n2
n1

ðF:40Þ

If wave with arbitrary polarization is incident on a dielectric interface, it can be

considered to be a linear combination of a wave polarized parallel to, and a wave

polarized perpendicular to, the plane of incident. At the Brewster angle, the parallel

component will not be reflected so that the reflected wave will be plane polarized in

a plane perpendicular to the plane of incidence. This effect can then be made the

basis of a device for polarizing an unpolarized beam of radiation.

The second phenomenon is that of total internal reflection. In either (a) or

(b) of Fig. F.4, suppose that the index n1 is greater than n2. Then, from Snell’s

law, sin θt ¼ n1=n2ð Þ sin θi is always greater than θi.There will then be some value

of θi, call it θint for which θt ¼ π=2; this angle is defined by

sin θint ¼ n2
n1

Since in general

~Et ¼ ~Teikn2 x sin θtþz cos θtð Þ ðF:41Þ

for θt ¼ π=2 there is no wave in the second medium; the z-dependence vanishes.

Now if θi > θint, then sin θt, is larger than unity from Snell’s law and, as a conse-

quence, cos θt is imaginary

cos θt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n1

n2

� �
sin 2θi

s
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1
n2

� �2

sin 2θi � 1

s

Equation F.32 then becomes
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~Et ¼ ~Te�kn2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1=n2ð Þ sin 2θi�1

p
eikn2x sin θt

This corresponds to a wave which is exponentially attenuated as a function of z, and
which propagates as a function of x with propagation constant kn2 sin θt. Such a

wave is the prototype of a surface wave and reader can see further discussion and

more details in Reference 2 of this Appendix 2.
The interesting question is this: What happens when a wave passes from one

transparent medium into another—air to water, say, or glass to plastic? As in the

case of waves on a string, we expect to get a reflected wave and a transmitted wave.

The details depend on the exact nature of the electrodynamics boundary

conditions F.1.

ið Þε1E⊥
1 ¼ ε2E

⊥
x iiið ÞEjj

1 ¼ E
jj
2

iið ÞB⊥
1 ¼ B⊥

2 ivð Þ 1
μ1
B
jj
1 ¼

1

μ2
B
jj
2

9>>=>>; ðF:42Þ

These equations relate the electric and magnetic fields just to the left and just to the

right of the interface between two linear media. In the following sections we use

them to deduce the laws governing reflection and refraction of electromagnetic

waves.

F.7 Electromagnetic Waves in Matter

Some solutions to Maxwell’s Equations have been already discussed in previous

sections. The present section extends the treatment of electromagnetic waves. Since

most regions of interest are free of charge, it will be assumed that charge density

ρ ¼ 0. Moreover, linear isotropic (invariant with respect to direction) materials will

be assumed, with the following relationships:

~D ¼ ε~E

~B ¼ μ~H

~J ¼ σ~E

8>>><>>>: ðF:43Þ

Where
~D ¼ Flux Density (c/m2)
~E ¼ Electric Field (N/C)

ε ¼ Permittivity of the Medium (C2/N.m2) or Equivalent (F/m)
~B ¼ Magnetic Field (T)
~H ¼ Magnetic Filed Strength (A/m)

708 Appendix F: Short Course in Electromagnetic



μ ¼ Mobility within Materials (m2/V. s)
~J ¼ Current Density (A/m2)

σ ¼ Conductivity of Materials (S/m)

ρ ¼ Charge Density (C/m3)

where

A ¼ Ampere

C ¼ Coulomb

N ¼ Newton

F ¼ Farad

S ¼ Siemens

T ¼ Tesla

F.7.1 Electromagnetic Waves in Matter

Inside matter, but in regions where there is no free charge or free current,
Maxwell’s equations become

ið Þ∇� ~D ¼ 0 iiið Þ∇� ~E ¼ �∂~B
∂t

iið Þ∇�~B ¼ 0 ivð Þ∇� ~H ¼ �∂~D

∂t

9>>>=>>>; ðF:44Þ

If the medium is linear

~D ¼ ε~E and ~H ¼ 1

μ
~B ðF:45Þ

and homogeneous (so ε and μ do not vary from point to point), Maxwell’s equations

reduce to

ið Þ∇�~E ¼ 0 iiið Þ∇� ~E ¼ �∂~B
∂t

iið Þ∇�~B ¼ 0 ivð Þ∇� ~B ¼ με
∂~E
∂t

9>>>=>>>; ðF:46Þ

which remarkably differ from the vacuum analogs Eq. F.1 only in the replacement

of μ0ε0 by με. This mathematically is obvious, yet the physical implications are

astonishing [4]. As the wave passes through, the fields busily polarized and mag-

netize all the molecules, and the resulting (oscillating) dipoles create their own

electric and magnetic fields. These combine with the original fields in such a way as

to create a single wave with the same frequency but a different speed. This
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extraordinary conspiracy is responsible for the phenomenon of transparency. It is

a distinctly nontrivial consequence of the linearity of the medium [4]. Looking at

set of Eq. of 45 it is evident electromagnetic waves propagate through a linear

homogeneous medium at a speed

υ ¼ 1ffiffiffiffiffi
εμ

p ¼ c

n
ðF:47Þ

where

n �
ffiffiffiffiffiffiffiffiffi
εμ

ε0μ0

r
ðF:48Þ

is the index of refraction of the material. For most materials, μ is very close to μ0, so

n ffi ffiffiffiffi
εr

p ðF:49Þ

where εr is the dielectric constant or also known as relative permittivity [1] and is

equal to εr ¼ ε=ε0. Since εr is almost always greater than 1, light travels more
slowly through matter—a fact that is well known from optics [1].

F.7.2 Reflection and Transmission at Normal Incidence

Suppose the xy-plane forms the boundary between two linear media. A plane wave

of frequency ω, traveling in the z-direction and polarized in the x-direction,
approaches the interface from the left (Fig. F.21):

e~E1
z; tð Þ ¼ eE0I e

i k1z�ωtð Þ~̂x

~BI z; tð Þ ¼ 1

υ1
eE0I e

i k1z�ωtð Þ~̂y

9>=>; ðF:50Þ

It is given rise to a reflected wave

e~ER
z; tð Þ ¼ eE0Re

i k1z�ωtð Þ~̂x

~BR z; tð Þ ¼ 1

υ1
eE0Re

i �k1z�ωtð Þ~̂y

9>=>; ðF:51Þ

which travels back to the left in medium (F.1), and a transmitted waves
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e~ET
z; tð Þ ¼ eE0T e

i k2z�ωtð Þ~̂x

~BT z; tð Þ ¼ 1

υ2
eE0T e

i k2z�ωtð Þ~̂y

9>=>; ðF:52Þ

which continues on the right in medium (F.2). Note the minus sign in ~BR, as

required by Eq. F.23 or, if you prefer, by the fact that the Poynting vector aims in

the direction of propagation.

At z ¼ 0, the combined fields on the left,
e~EI þ e~ER and

e~BI þ e~BR, must join the

fields on the right,
e~ET and

e~BT , in accordance with the boundary conditions Eq. F.42.

In this case there are no components perpendicular to the surface, so (i) and (ii) are

trivial. However, (iii) requires that

eE0I þ eE0R ¼ eE0T ðF:53Þ

while (iv) says

1

μ1

1

υ1
eE0I �

1

υ1
eE0R

� �
¼ 1

μ2

1

υ2
eE0r

� �
ðF:54Þ

or

eE0I � eE0R ¼ βeE0r ðF:55Þ

where

β� μ1υ1
μ2υ2

¼ μ1n2
μ2n1

ðF:56Þ

Equations F.53 and F.55 are easily solved for the outgoing amplitudes, in terms of

the incident amplitude:

Interface

1 2

x

z

y

ET

BTBI

EI

ER
BR

v1

v1

v2

Fig. F.21 Normal wave

incidence [1]
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~E0R ¼ 1� β

1þ β

� �eE0I and eE0T ¼
2

1þ β

� �eE0I ðF:57Þ

These results are strikingly similar to the ones for waves on a string. Indeed, if the

perrnittivities μ are close to their values in vacuum (as, remember, they are for most

media), then β ¼ υ1
υ2
, and we have [1]

eE0R ¼
υ2 � υ1
υ2 þ υ1

� �eE0I and eE0r ¼
2υ2

υ2 þ υ1

� �eE0I ðF:58Þ

In that case, as before, the reflected wave is in phase (right side up) if υ2 > υ1 and
out of phase (upside down) if υ2 < υ1; the real amplitudes are related by

E0R ¼
υ2 � υ1
υ2 þ υ1

� �
E0I and E0r ¼

2υ2
υ2 þ υ1

� �
E0I ðF:59Þ

or, in terms of the indices of refraction [1],

E0R ¼ n1 � n2
n1 þ n2

� �
E0I and E0T ¼

2n1
n1 þ n2

� �
E0I ðF:60Þ

According to definition of intensity (average power per unit area) that is given by

D. Griffiths [1] as follows, we should ask what fraction of the incident energy is

reflected, and what fraction is transmitted?

I ¼ 1

2
ευE2

0 ðF:61Þ

If again μ1 ¼ μ2 ¼ μ0, then the ratio of the reflected intensity to the incident

intensity is

R�IR
II

¼ E0R

E0I

� �2

¼ n1 � n2
n1 þ n2

� �2

ðF:62Þ

whereas the ratio of the transmitted intensity to the incident intensity is

T�IT
II

¼ ε2υ2
ε1υ1

E0T

E0I

� �2

¼ 4n1n2

n1 þ n2ð Þ2 ðF:63Þ

R is called the Reflection coefficient and T the Transmission coefficient; they
measure the fraction of the incident energy that is reflected and transmitted,

respectively. Notice that [1]
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Rþ T ¼ 1 ðF:64Þ

as conservation of energy, of course, requires. For instance, when light passes from

air n1 ¼ 1ð Þinto glass (n2 ¼ 1:5), R ¼ 0:04 and T ¼ 0:96. Not surprisingly, most of

the light is transmitted [1].

Example 1: Calculate the exact reflection and transmission coefficients, without

assuming μ1μ2 ¼ μ0. Confirm Rþ T ¼ 1.

Solution: From Eq. F.62 we have R ¼ E0R

E0I

� �2

substituting from Eq. F.57 results

where β� μ1υ1
μ2υ2

and using Eq. F.63 T ¼ ε2υ2
ε1υ1

E0r

E0I

� �2

results that T ¼ β
2

1þ β

� �2

which is Eq. F.57. Note that
ε2υ2
ε1υ1

¼ μ1
μ2

ε2υ2
ε1υ1

υ2
υ1

¼ μ1
μ2

υ1
υ2

� �2

¼ μ1υ1
μ2υ2

¼ β

R¼ 2

1þ βð Þ2 4β þ 1� β2
� �� 

¼ 1

1þ βð Þ2 4β þ 1� 2β þ β2
� �

¼ 1

1þ βð Þ2 1þ 2β þ β2
� � ¼ 1

Example 2: In writing Eqs. F.51 and F.52, assumption was the reflected and

transmitted waves have the same polarization as the incident wave—along the x–
direction. Prove that this must be so. [Hint: Let the polarization vector of the

transmitted and reflected wave be ~̂n T ¼ cos θT~̂x þ sin θT~̂y and ~̂n R ¼ cos θR~̂x

þ sin θR~̂y and prove from the boundary condition that θT ¼ θR ¼ 0]

Solution: Equation F.43 is replaced by eE0I~̂x þ eE0R~̂n ¼ eE0T ~̂n T and Eq. F.55eE0I~̂y � eE0R ~̂z � ~̂n R

	 

¼ βeE0T ~̂z � ~̂n T

	 

. The y component of the first equation iseE0R sin θR ¼ eE0T sin θT; the x component of the second is eE0R sin θR ¼ �βeE0T sin θT .

Comparing these two, we conclude that sin θR ¼ sin θT ¼ 0, and hence

θT ¼ θR ¼ 0.
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F.7.3 Reflection and Transmission at Normal Incidence

In the last section Reflection and Transmission was treated at Normal incidence—
that is, when the incoming wave hits the interface head-on at 90 degree incident

angle [1]. The more general case ofOblique incidence, in which the incoming wave

meets the boundary at an arbitrary angle θI also is treated by David Griffiths

reference 1 of this appendix. We just write the result of his conclusion here and

we encourage the reader to refer to his book section 9.3.3 page 386 for more details

[1]. Although the angle of incidence θI ¼ 0 is special case of the oblique incidence,

but we did treat that separately for some cases that we are dealing with high power

laser interaction with matter in this book. The treatment by Griffiths is done based

on monochromatic plane wave with such arbitrary angle of incidence. See Fig. F.22

here.

Suppose that a monochromatic plane wave (incident wave) approaches from the

left as follow

e~EI ~r; tð Þ ¼ e~E0I e
i ~kI � ~r�ωtð Þ and

e~BI ~r; tð Þ ¼ 1

υ1
~̂k I � e~EI

	 

ðF:65Þ

And giving rise to a reflected wave of the form in Eq. F.66

e~ER ~r; tð Þ ¼ e~E0Re
i ~kR � ~r�ωtð Þ and

e~BR ~r; tð Þ ¼ 1

υ1
~̂k R � e~ER

	 

ðF:66Þ

and a transmitted set of wave Eq. of 66;

e~ET ~r; tð Þ ¼ e~E0T e
i ~kT �~r�ωtð Þ and

e~BT ~r; tð Þ ¼ 1

υ2
~̂k T � e~ET

	 

ðF:67Þ

Plane of Incidence

1 2

z

θI

qT
qR

kR

kT

kI

Fig. F.22 Incidence at

oblique angle [1]
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All three waves have the same frequency ω—that is determined once for all at the

source (the laser beam, flashlight or whatever, that produces the incident beam).

The three wave numbers are related per Eq. F.11;

kIυ1 ¼ kRυ1 ¼ kTυ2 ¼ ω or kI ¼ kR ¼ υ2
υ1

kT ¼ n1
n2

kT ðF:68Þ

The combined fields in medium (F.1),
e~EI þ e~ER and

e~BI þ e~BR, must now be joined to

the fields
e~ET and

e~BT in medium (F.2), using the boundary conditions Eq. F.42. These

all share the generic structure. Boundary conditions should hold at all points on the
plane, and for all times for all above three plane wave equations when z ¼ 0.

Otherwise, a slight change in x, would destroy the equality (See Example 1 below)

[1]. The time factors in this case already equal, in fact we can regard this as an

independent confirmation that the transmitted and reflected frequencies must match

the incident frequency. So for spatial case we have the following relation;

~kI �~r ¼ ~kR �~r ¼ ~kT �~r when z ¼ 0 ðF:69Þ

or more explicitly,

x kIð Þx þ y kRð Þx þ y kRð Þy ¼ x kTð Þx þ y kTð Þy ðF:70Þ

for all z and y. But Eq. F.70 can only hold if the components are separately equal, for

if x ¼ 0, we get

kIð Þy ¼ kRð Þy ¼ kTð Þy ðF:71Þ

While y ¼ 0 gives

kIð Þx ¼ kRð Þx ¼ kTð Þx ðF:72Þ

We may as well orient our axes so that ~k lies in the xy plane (i.e. kIð Þy ¼ 0 );

according to Eq. F.71, so too will ~kR and ~kT . Conclusion:
First Law: The incident, reflected, and transmitted wave vectors form a plane

(called the plane of incidence), which also includes the normal to the surface (here,

the z-axis).
Meanwhile, Eq. F.72 implies that

kI sin θI ¼ kR sin θR ¼ kT sin θT ðF:73Þ

where θI is the angle of incidence, θR is the angle of reflection, and θT is the angle
of transmission, more commonly known as the angle of refraction, all of them

measured with respect to the normal (Fig. F.22). In view of Eq. F.68, then,
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Second Law: The angle of incidence is equal to the angle of reflection,

θI ¼ θT ðF:74Þ

This is the law of reflection.
As for the transmitted angle,

Third Law:

sin θT
sin θI

¼ n1
n2

ðF:75Þ

This is the law of refraction, or Snell’s law.
These are the three fundamental laws of geometrical optics. It is remarkable how

little actual electrodynamics went into them: we have yet to invoke any specific

boundary conditions. Now that we have taken care of the exponential factors—they

cancel, given Eq. F.69 the boundary conditions Eq. F.42 become [1]:

ið Þ ε1
e~E0I þ e~E0R

	 

z
¼ ε2

e~E0T

	 

z

iið Þ e~B0I þ e~B0R

	 

z
¼ e~B0T

	 

z

iiið Þ e~E0I þ e~E0R

	 

x,y

¼ e~E0T

	 

x,y

ivð Þ 1

μ1

e~B0I þ e~B0R

	 

x,y

¼ 1

μ2

e~B0T

	 

x,y

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
ðF:76Þ

where
e~B0 ¼ 1=υð Þ~̂k � e~E0 in each case. The last two (iii) and (iv) represent pairs of

equations, one for the x–direction and one for the y–direction.
Suppose that the polarization of the incident wave is parallel to the plane of

incidence (the xz plane in Fig. F.23 below); it follows (See Example 2, Section 1.6.2

of this appendix in above) that the reflected and transmitted waves are also

polarized in this plane. We will present that in an example to analyze the case of

polarization perpendicular to the plane of incidence (See Example 2 below.) Then

(i) reads;

ε1 �e~E0I sin θI þ e~E0R sin θR
	 


¼ ε2 �e~E0T sin θT
	 


ðF:77Þ

(ii) adds nothing (0 ¼ 0), since the magnetic fields have no z components; (iii)

becomes [1];

e~E cos θI þ e~E0R cos θR ¼ e~E0T cos θT ðF:78Þ

and (iv) says
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1

μ1υ1

e~E0I � e~E0R

	 

¼ 1

μ2υ2

e~E0T

	 

ðF:79Þ

Given the laws of reflection and refraction, Eqs. F.76 and F.79 both reduce to

e~E0I � e~E0R ¼ βe~E0T ðF:80Þ

Where again

β� μ1υ1
μ2υ2

¼ μ1n2
μ2n1

ðF:81Þ

Equation F.78 says

e~E0I þ e~E0R ¼ αe~E0T ðF:82Þ

where again

α ¼ cos θT
cos θI

ðF:83Þ

Solving Eqs. F.80 and F.82 for the reflected and transmitted amplitudes, we

obtain [1];

e~E0R
¼ α� β

αþ β

� �e~E0I

e~E0T ¼
2

αþ β

� �e~E0I

ðF:84Þ

1 2

z

x

θI

θT
qR

kT

kI

BI

EI

ER ET

BT

BR
kR

Fig. F.23 Incident

Oblique Wave
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These are known as Fresnel’s equations, for the case of polarization in the plane of

incidence. (There are two other Fresnel equations, giving the reflected and trans-

mitted amplitudes when the polarization is perpendicular to the plane of incidence-

see Prob. 9.16.). Notice that the transmitted wave is always in phase with the

incident one; the reflected wave is either in phase ("right side up"), if α > β, or
180� out of phase ("upside down"). if α < β.

Note that the, there is an unavoidable ambiguity in the phase of the reflected

wave. The convention that David Griffiths [1] has used in his book under Chapter 9,

which is reflecting here and adopted in Fig. F.23 with
e~ER positive “upward” is

consistent with some, but not all, of the standard optics text. Changing the sign of

the polarization vector is equivalent to a 180� phase shift.
The amplitudes of the transmitted and reflected waves depend on the angle of

incidence α because a is a function of θI:

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin 2θT

cos θI

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n1=n2ð Þ sin θI½ �2

q
cos θI

ðF:85Þ

In the case of normal incidence (θI ¼ 0),α ¼ 1, and we recover Eq. F.57. At grazing

incidence (θI ¼ 90Þ, α diverges, and the wave is totally reflected (a fact that is

painfully familiar to anyone who has driven at night on a wet road). Interestingly,

there is an intermediate angle, θB (called Brewster’s angle), at which the reflected

wave is completely extinguished [1]. Because waves polarized perpendicular to the

plane of incidence exhibit no corresponding quenching of the reflected component,

an arbitrary beam incident at Brewster’s angle yields a reflected beam that is totally

polarized parallel to the interface. That’s why Polaroid glasses, with the transmis-

sion axis vertical, help to reduce glare off a horizontal surface [1].

According to Eq. F.84, this occurs when α ¼ β, or

sin 2θB ¼ 1� β2

n1=n2ð Þ2 � β2
ðF:86Þ

For the typical case μ1 ffi μ2, so β ffi n2=n1, sin
2θB ffi β2= 1þ β2

� �
, and hence

tan θB ffi n2
n1

ðF:87Þ

Figure F.24 shows a plot of the transmitted and reflected amplitudes as functions of

eI, for light incident on glass (n2 ¼ 1:5) from air (n1 ¼ 1:0). (On the graph, a

negative number indicates that the wave is 180
�
out of phase with the incident

beam—the amplitude itself is the absolute value.)

The power per unit area striking the interface is ~S�~̂z . Thus the incident

intensity is
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II ¼ 1

2
ε1υ1E

2
0I
cos θI ðF:88Þ

while the Reflected and Transmitted intensities are

II ¼ 1

2
ε1υ1E

2
0I
cos θI and IT

1

2
ε2υ2E

2
0I
cos θT ðF:89Þ

(The cosines are there because we are talking about the average power per unit area

of interface, and the interface is at an angle to the wave front.) [1]. The reflection

and transmission coefficients for waves polarized parallel to the plane of incidence

are

R�IR
II

¼ E0R

E0I

� �2

¼ α� β

αþ β

� �2

ðF:90Þ

T�IT
II

¼ ε2υ2
ε1υ1

E0T

E0I

� �2
cos θT
cos θI

¼ αβ
2

αþ β

� �2

ðF:91Þ

They are plotted as functions of the angle of incidence in Fig. F.25 (for the air/glass

interface). R is the fraction of the incident energy that is reflected-naturally, it goes

to zero at Brewster’s angle; T is the fraction transmitted—it goes to 1 at θB. Note
that Rþ T ¼ 1 as required by conservation of energy: the energy per unit time

reaching a particular patch of area on the surface is equal to the energy per unit time

leaving the patch [1].

Example 1: Suppose Aeiax þ Beibx � Ceicx, for some nonzero constant A, B, C, a,
b, c, and for all x. Prove that a ¼ b ¼ c and Aþ B ¼ C.

–0.4

20� 40� 60�

E0T

E0I

E0I

θB

θI

E0R

80�

–0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. F.24 Plot of the transmitted and reflected amplitude [1]
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Solution: Aeiax þ Beibx ¼ Ceicx, for all x, so (using x ¼ 0), Aþ B ¼ C.

Differentiate: iaAeiax þ ibBeibx ¼ icCeicx, so (using x ¼ 0), aAþ bB ¼ cC.

Differentiating again: �a2Aeiax � b2Beibx ¼ �c2Ceicx, so (using x ¼ 0 ),

a2Aþ b2B ¼ c2C.

a2Aþ b2B ¼ c cCð Þ ¼ c aAþ bBð Þ, or
Aþ Bð Þ a2Aþ b2B

� � ¼ Aþ Bð Þc aAþ bBð Þ ¼ cC aAþ bBð Þ, or
a2Aþ b2ABþ a2ABþ b2B2 ¼ aAþ bBð Þ2 ¼ a2A2 þ 2abABþ b2B2, or

a2 þ b2 � 2ab
� �

AB ¼ 0, or a� bð Þ2AB ¼ 0. But A and B are nonzero, so a ¼ b.

Therefore Aþ Bð Þeiax ¼ Ceicx. a Aþ Bð Þ ¼ cC, or aC ¼ cC, so (sinceC 6¼ 0) a ¼ c.
Conclusion: a ¼ b ¼ c is driven.

Example 2: Analyze the case of polarization perpendicular to the plane of inci-

dence (i.e., electric fields in the y direction, in Fig. F.22). Impose the boundary

condition Eq. F.76, and obtain the Fresnel equations for
e~E0R and

e~E0T . Sketch (
e~E0R

=
e~E0I ) and (

e~E0T=
e~E0I ) as functions of , for the case β ¼ n2=n1 ¼ 1:5. (Note that for

this β the reflected wave is always 180
�
out of phase). Show that there is no

Brewster’s angle for any n1 and n2:
e~E0R is never zero (unless, of course, n1 ¼ n2

and μ1 ¼ μ2, in which case the two media are optically indistinguishable). Confirm

that your Fresnel equations reduce to the proper forms at normal incidence.

Compute the reflection and transmission coefficients, and check that they add up

to 1.

0�
0.0

0.2

0.4

0.6

0.8

1.0

10� 20� 30�

R

T

θB

θI
40� 50� 60� 70� 80� 90�

Fig. F.25 Plot of reflection and transmission coefficient for polarized waves
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Solution: We start with the following relationships

F

e~EI
¼ eE0I e

i ~kI � ~r�ωtð Þ~̂ye~BI ¼ 1

υ1
eE0I e

i ~kI � ~r�ωtð Þ�� cos θ1~̂x þ sin θ1~̂z

8><>:
9>=>;

e~ER
¼ eE0Re

i ~kR � ~r�ωtð Þ~̂ye~BI ¼ 1

υ1
eE0Re

i ~kR � ~r�ωtð Þ�� cos θ1~̂x þ sin θ1~̂z

8><>:
9>=>;

e~ET
¼ eE0T e

i ~kT � ~r�ωtð Þ~̂ye~BT ¼ 1

υ1
eE0Re

i ~kT �~r�ωtð Þ�� cos θ1~̂x þ sin θ1~̂z

8><>:
9>=>;

θ1

θ1 θ2 z

1 2

x

kR

BR

Br

BI

kI

kr

Boundary conditions:

ið Þ ε1E
⊥
1 ¼ ε2E

⊥
2 iiið Þ E

jj
1 ¼ E

jj
2

iið Þ B⊥
1 ¼ B⊥

2 ivð Þ 1

μ1
B
jj
1 ¼

1

μ1
B
jj
2

8>><>>:
Law of refractions:

sin θ2
sin θ1

¼ υ2
υ1
. [Note: ~kI �~r � ωt ¼ ~kR �~r � ωt ¼ ~kT �~r � ωt,

at z ¼ 0so we can drop all exponential factors in applying the boundary conditions].

Boundary condition (i): 0¼0 (trivial). Boundary condition (iii):eE0I þ eE0R ¼ eE0T .

Boundary condition (ii):
1

υ1
eE0I sin θ1 þ

1

υ1
eE0R sin θ1 ¼

1

υ2
eE0r sin θ2 )

eE0I þ eE0R ¼
υ1 sin θ2
υ2 sin θ1

� �eE0r

But the term in parentheses is 1, by the law of refraction, so this is the same as (ii).
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Boundary condition (iv):
1

μ1

1

υ1
eE0I � cos θ1ð Þ þ 1

υ1
eE0x � cos θ1ð Þ

� �
¼

1

μ2υ2
eE0r � cos θ2ð Þ or we can write eE0I � eE0x ¼

μ1υ1 sin θ2
μ2υ2 sin θ1

� �eE0T . Let

α � cos θ2
cos θ1

and β � μ1υ1
μ2υ2

. Then we have eE0I � eE0R ¼ αβeE0T . Solving for eE0R and

eE0T : 2eE0I ¼ 1þ αβð ÞeE0T or eE0T ¼
2

1þ αβ

� �eE0I and eE0R ¼ eE0T � eE0I ¼
2

1þ αβ
� 1þ αβ

1þ αβ

� �eE0I then we have eE0T ¼
1� αβ

1 αβ

� �eE0I . Since α and β are

positive, it follows that 2= 1þ αβð Þ is positive, and hence the transmitted wave is

in phase with the incident wave, and the (real) amplitudes are related by

E0T ¼
2

1þ αβ

� �
E0I . The reflected wave is in phase if αβ < 1 and 180

�
out of

phase if αβ < 1; the (real) amplitudes are related byEoR ¼ 1� αβ

1þ αβ

� �
E0I . These are

the Fresnel Equations for polarization perpendicular to the plane of incidence. To

construct the graphs, note that αβ ¼ β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:25� sin 2θ

p

cos θ
, where θ is the angle of

incidence, so, for β ¼ 1:5 and αβ ¼ β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin 2θ

p

cos θ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � sin 2θ

p
cos θ

0�

–1

–2
–3

–4
–5

–6

–7
–8
–9

1

10 20 30 40 50

ET
0

EI
0

60 70 80 90 θI

ER
0

EI
0

Is there a Brewster’s angle?.Well,E0R ¼ 0wouldmean thatαβ ¼ 1, and hence that

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� υ2=υ1ð Þ2 sin 2θ

q
cos θ

¼ 1

β
¼ μ2υ2

μ1υ1
or 1� υ2

υ1

� �2

sin 2θ ¼ μ2υ2
μ1υ1

� �
cos 2θ, so

1 ¼ υ2
υ1

� �2

sin 2θ þ μ2=μ1ð Þ cos 2θ½ �. Since μ1 � μ2, this means 1 � υ2=υ1ð Þ2,
which is only true for optically indistinguishable media, in which case there is of
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course no reflection—but that would be true at any angle, not just at a special

“Brewster’s angle”. [If μ2 were substantially different from μ1, and the relative

velocitieswere just right, itwould be possible to get a Brewster’s angle for this case, at.

υ2
υ1

� �2

¼ 1� cos 2θ þ μ2
μ1

� �
cos 2θ

) cos 2θ¼ υ1=υ2ð Þ2 � 1

μ2=μ1ð Þ2 � 1
¼ μ2ε2=μ1ε1ð Þ � 1

μ2=μ12ð Þ � 1

¼ ε2=ε1ð Þ � μ1=μ2ð Þ
μ2=μ1ð Þ � μ1=μ2ð Þ

But the media would be very peculiar. By the same token, δR is either always

0, or always π, for a given interface—it does not switch over as you change θ,
the way it does for polarization in the plane of incidence. In particular, if β ¼ 3=2,

then αβ > 1,for αβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin 2θ

p

cos θ
> 1 if 2:25� sin 2θ > cos 2θ, or

2:25 > sin 2θ þ cos 2θ ¼ 1:0. In general, for β > 1, αβ > 1, and hence δR ¼ π.
For β < 1, αβ < 1, and δR ¼ 0. At normal incidence, α ¼ 1, so Fresnel’s equations

reduce to E0T ¼
2

1þ β

� �
E0I and E0R ¼ 1� β

1þ β

� �
E0I consistent with Eq. F.57.

Reflection and Transmission Coefficients: R ¼ E0R

E0I

� �2

¼ 1� αβ

1þ αβ

� �2

. Referring to

Eq. F.91, T ¼ ε2υ2
ε1υ1

α
E0T

E0I

� �
¼ αβ

2

αþ β

� �2

, therefore

Rþ T ¼ 1� αβð Þ2 þ 4αβ

1þ αβð Þ2 ¼ 1� 2αβ þ α2β2 þ 4αβ

1þ αβð Þ2 ¼ 1þ αβð Þ2
1þ αβð Þ2 ¼ 1

Example 3: The index of refraction of diamond is 2.42. Construct the graph

analogous to Fig. F.23 for the air/diamond interface. (Assume μ1 ¼ μ2 ¼ μ0 ) In
particular, calculate (a) the amplitudes at normal incidence, (b) Brewster’s angle, and

(c) the “crossover” angle, atwhich the reflected and transmitted amplitudes are equal.

Solution: EquationF.81wesee thatβ ¼ 2:42,EquationF.85α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin θ=2:42ð Þ2

q
cos θ

θ ¼ 0 ) α ¼ 1. Equation 9:109 ) E0R

E0I

� �
¼ α� β

αþ β
¼ 1� 2:42

1þ 2:42
¼ �1:42

3:42
¼

�0:415

E0T

E0I

� �
¼ 2

αþ β
¼ 2

3:42
¼ 0:585

Equation F.87 ) θBtn�1 2:42ð Þ ¼ 67:5�
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E0R ¼ E0T ) α� β ¼ 2 ; α ¼ β þ 2 ¼ 4:42 and 4:42ð Þ2 cos 2θ ¼
1� sin 2θ= 2:42ð Þ2

4:42ð Þ2 1� sin 2θ
� � ¼ 4:42ð Þ2 � 4:42ð Þ2 sin 2θ ¼ 1� 0:171 sin 2θ

19:5� 1 ¼ 19:5� 017ð Þ sin 2θ

18:5 ¼ 19:3 sin 2θ; sin 2θ ¼ 18:5=19:3 ¼ 0:959 ) sin θ ¼ 0:979; θ ¼ 78:3�

0� 20� 30� 40� 50� 60� 70� 80�
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0

F.8 Absorption and Dispersion

Expressions for the stored energy, energy flow, and power dissipated are derived for

electromagnetic waves in terms of the complex permittivityeε and permeability eμ for
a frequency-dispersive absorbingmedium. This is shown to be possible wheneε andeμ
are known functions not only of frequency but also of all the loss factors—e.g.,

collision frequencies, etc. The derivation is not restricted to media with small losses.

In physics and electrical engineering, dispersion most often refers to frequency-

dependent effects in wave propagation. Note, however, that there are several other

uses of the word "dispersion" in the physical sciences. In the presence of dispersion,

wave velocity is no longer uniquely defined, giving rise to the distinction of phase

velocity and group velocity. A well-known effect of phase velocity dispersion is the

color dependence of light refraction that can be observed in prisms and rainbows.

Dispersion relations describe the interrelations of wave properties like wavelength,

frequency, velocities, refraction index, and attenuation coefficient. Besides geometry-

andmaterial-dependent dispersion relations, there are theoverarchingKramers–Kronig

relations that connect the frequency dependences of propagation and attenuation.

Dispersion may be caused either by geometric boundary conditions (wave-

guides, shallow water) or by interaction of the waves with the transmitting medium.

724 Appendix F: Short Course in Electromagnetic



F.8.1 Electromagnetic Waves in Conductors

Previous sections were stipulating that the free charge density ρf and the free current

density~Jf are zero, and everything that followed was predicated on that assumption.

Such a restriction is perfectly reasonable when you’re talking about wave propa-

gation through a vacuum or through insulating materials such as glass or (pure)

water. But in the case of conductors we do not independently control the flow of

charge, and in general ~Jf is certainly not zero. In fact, according to Ohm’s law, the

(free) current density in a conductor is proportional to the electric field:

~Jf ¼ σ~E ðF:92Þ

With this, Maxwell’s equations for linear media assume the form

ið Þ ∇�~E ¼ 1

ε
ρf iiið Þ ∇� ~E ¼ ∂~B

∂t

iið Þ ∇�~B ¼ 0 ivð Þ ∇� ~B ¼ μσ~Eþ με
∂~E
∂t

9>>>=>>>; ðF:93Þ

Now the continuity equation for free charge,

∇�~Jf ¼ �∂ρf
∂t

ðF:94Þ

together with Ohm’s law and Gauss’s law (i), gives

∂ρf
∂t

¼ �σ ∇�~E� � ¼ �σ

ε
ρf ðF:95Þ

for a homogeneous linear medium, from which it follows that

ρf tð Þ ¼ e� σ=εð Þtρf 0ð Þ ðF:96Þ

Thus any initial free charge density ρf(0) dissipates in a characteristic time τ � ε=σ.
This reflects the familiar fact that if you put some free charge on a conductor, it will

flow out to the edges. The time constant τ affords a measure of how "good" a

conductor is: For a “perfect” conductor σ ¼ 1 and τ ¼ 0; for a “good” conductor, τ
is much less than the other relevant times in the problem (in oscillatory systems,

that means τ � 1=ω; for a "poor" conductor, τ is greater than the characteristic

times in the problem (τ  1=ω) [5]. N. Ashby [5] points out that for good conductor
conductors, is absurdly short ( 10�19s, for copper, whereas the time between

collisions is τc ¼ 10�14s). The problem is that Ohm’s law itself breaks down on

time scales shorter than τc; actually, the time it takes free charge to dissipate in a
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good conductor is of order τc, not T. Moreover [6], shows that it takes even longer

for the fields and currents to equilibrate. But none of this is relevant to our present

purpose; the free charge density in a conductor does eventually dissipate, and

exactly how long the process takes is beside the point.

At present we’re not interested in this transient behavior-we’ll wait for any

accumulated free charge to disappear. From then on ρf ¼ 0, and we have

ið Þ ∇�~E ¼ 0 iiið Þ ∇� ~E ¼ ∂~B
∂t

iið Þ ∇�~B ¼ 0 ivð Þ ∇� ~B ¼ μσ~Eþ με
∂~E
∂t

9>>>=>>>; ðF:97Þ

These differ from the corresponding equations for non-conducting media (Eq. F.46)

only in the addition of the last term in (iv). Applying the curl to (iii) and (iv), as

before, we obtain modified wave equations for ~E and ~B:

∇~E ¼ με
∂2~E

∂t2
þ μσ

∂~E
∂t

and ∇~B ¼ με
∂2~B

∂t2
þ μσ

∂~B
∂t

ðF:98Þ

These equations still admit plane-wave solutions,

e~E z; tð Þ ¼ e~E0e
i ~kz�ωtð Þ and

e~B z; tð Þ ¼ e~B0e
i ~kz�ωtð Þ ðF:99Þ

but this time the “wave number” ek is complex:

ek2 ¼ μεω2 þ iμσω ðF:100Þ

as you can easily check by plugging Eq. F.99 into Eq. F.98. Taking the square root,

ek ¼ k þ iκ ðF:101Þ

where

k � ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εμ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

εω

	 
2r
þ 1

" #vuut 1=2

and κ � ω

ffiffiffiffiffi
εμ

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

εω

	 
2r
� 1

" #1=2
ðF:102Þ

The imaginary part of k results in an attenuation of the wave (decreasing amplitude

with increasing z):

e~E z; tð Þ ¼ e~E0e
�κzei kz�ωtð Þ and

e~B z; tð Þ ¼ e~B0e
�κzei kz�ωtð Þ ðF:103Þ
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The distance it takes to reduce the amplitude by a factor of 1/e (about a third) is

called the skin depth:

d � 1

κ
ðF:104Þ

it is a measure of how far the wave penetrates into the conductor [1]. Meanwhile,

the real part ofek determines the wavelength, the propagation speed, and the index of

refraction, in the usual way:

λ ¼ 2π

k
, υ ¼ ω

k
, n ¼ ck

ω
ðF:105Þ

The attenuated plane waves (Eq. F.103) satisfy the modified wave Eq. (F.98) for

any
e~E0 and

e~B0. But Maxwell’s equations (F.97) impose further constraints, which

serve to determine the relative amplitudes, phases, and polarizations of ~E and ~B. As
before, (i) and (ii) rule out any z components: the fields are transverse. We may as

well orient our axes so that ~E is polarized along the x-direction:

e~E z; tð Þ ¼ eE0e
�κzei kz�ωtð Þ~̂x ðF:106Þ

Then (iii) gives

e~B z; tð Þ ¼
ek
ω
eE0e

�κzei kz�ωtð Þ~̂y ðF:107Þ

Equation (iv) says the same thing). Once again, the electric and magnetic fields are

mutually perpendicular. Like any complex number, ek can be expressed in terms of

its modulus and phase [1]:

k ¼ Keiϕ ðF:108Þ

where

K ¼ ��ek�� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ κ2

p
¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

εω

	 
2rs
ðF:109Þ

and

ϕ � tan �1 κ=kð Þ

According to Eqs. F.104 and F.107, the complex amplitudes eE0 ¼ E0e
iδE and eB0 ¼

B0e
iδB are related by
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B0e
iδB ¼ Keiϕ

ω
eiδB ðF:110Þ

Evidently the electric and magnetic fields are no longer in phase; in fact,

δB � δE ¼ ϕ ðF:111Þ

The magnetic field lags behind the electric filed [1]. Meanwhile, the (real) ampli-

tudes of ~E and ~B are related by

B0

E0

¼ K

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

εω

	 
2rs
ðF:112Þ

The (real) electric and magnetic filds are, finally,

~E z; tð Þ ¼ E0e
�κz cos kz� ωtþ δEð Þ~̂x

~B z; tð Þ ¼ B0e
�κz cos kz� ωtþ δE þ ϕð Þ~̂y

9=; ðF:113Þ

These fields are shown in Fig. F.26 below.

Example 1: Suppose you imbedded some free charge in a piece of glass. About

how long would it take for the charge to flow to the surface?

Silver is an excellent conductor, but it’s expensive. Suppose you were designing

a microwave experiment to operate at a frequency of 1010 Hz. How thick would

you make the silver coatings?

Find the wavelength and propagation speed in copper for radio waves at 1 MHz.

Compare the corresponding values in air (or vacuum).

Solution: Equation F.96) τ ¼ ε=σ. But ε ¼ ε0εr and from Eq. F.49, we have

εr ffi n2, and for glass the index of refraction is typically around 1.5, so

ε ’ 1:5ð Þ2kt8:85� 10�12C2=Nm2, while σ ¼ 1=ρ ’ 10�12Ωm (Table F.3 below).

Then τ ¼ 2� 10�11
� �

=10�12 ¼ 20 sec . (But the resistivity of glass varies enor-

mously from one type to another, so this answer could be off by a factor of 100 in

either direction).

Fig. F.26 Presentation of

electric and magnetic fields
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For silver, ρ ¼ 1:59� 10�8 (Table F.3), and ε � ε0, so

ωε ¼ 2π � 1010 � 8:85� 10�12 ¼ 0:56. Since σ ¼ 1=ρ ¼ 6:25� 107Ωm  ωε,

the skin depth (Eq. F.104) is d ¼ 1
κ ffi

ffiffiffiffiffiffiffiffiffi
2

ωσμ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2π � 1010 � 6:25� 107 � 4π�

r
10�7 ¼ 6:4� 10�77m ¼ 6:4� 10�4mm we place plate silver to a depth of about

0.001 mm; there is no point in making it any thicker, since the fields do not

penetrate much beyond this anyway.

For copper, Table F.3 above gives σ ¼ 1= 1:68� 10�8
� � � 6� 107,

ωε0 ¼ 2π � 106
� �� 8:85� 10�12

� � ¼ 8:85� 10�5. Sinceσ  ωε, Eq. F.103) k

� 2π

ffiffiffiffiffiffiffiffiffiffiffi
2

ωσμ0

r
¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2π � 106 � 6� 107 � 4π � 10�7

r
¼ 4� 10�7m ¼ 0:4mm

From Eq. F.103, the propagation speed is υ ¼ ω

k
¼ ω

2π
λ ¼ λν ¼

4� 10�4
� �� 106 ¼ 400m=s. In vacuum, λ ¼ c

ν
¼ 4� 108

106
¼ 300m ; υ ¼ c ¼

44� 108m=s. (But really, in a good conductor the skin depth is so small, compared

to the wavelength, that the notions of “wavelength” and “propagation speed” lose

their meaning.

F.8.2 Reflection at a Conducting Surface

The boundary conditions we used to analyze reflection and refraction at an interface

between two dielectrics do not hold in the presence of free charges and currents.

Instead, we have the more general relations (Eq. F.42) with addition term of surface

current ~kf in (iv) [1]:

Table F.3 Resistivities, in ohm-meters (all values are for 1 atm, 200 �C) [7]

Material Resistivity Material Resistivity

Conductors: Semiconductors:

Silver 1:59 � 10�8 Salt water (saturated) 4:4 � 10�2

Copper 1:68 � 10�8 Germanium 4:6 � 10�1

Gold 2:21 � 10�8 Diamond 2.7

Aluminum 2:65 � 10�8 Silicon 2:5 � 103

Iron 9:61 � 10�7 Insulators:

Mercury 9:58 � 10�7 Water (pure) 2:5 � 105

Nichrome 1:00 � 10�6 Wood 108 – 1011

Manganese 1:44 � 10�6 Glass 1010 � 1014

Graphite 1:4 � 10�5 Quartz (fused) e 1016
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ið Þ ε1E
⊥
1 � ε2E

⊥
2 ¼ 0 iiið Þ E

jj
1 � E

jj
2 ¼ 0

iið Þ B⊥
1 � B⊥

2 ¼ 0 ivð Þ 1

μ1
B
jj
1

1

μ2
B
jj
2 ¼ ~Kf � ~̂n

9>>=>>; ðF:114Þ

In this case σf (not to be confused with conductivity) is the free surface charge~kf the

free surface current, and ~̂n (not to be confused with the polarization of the wave) is a

unit vector perpendicular to the surface, pointing from medium (F.2) into medium

(F.1). For ohmic conductors (~Jf ¼ σ~E) there can be no free surface current, since

this would require an infinite electric field at the boundary [1].

Suppose now that the xy-plane forms the boundary between a non-conducting

linear medium (F.1) and a conductor (F.2). A monochromatic plane wave, traveling

in the z-direction and polarized in the x direction, approaches from the left, as in

Fig. F.20:

e~EI z; tð Þ ¼ eE0I e
i k1z�ωtð Þ~̂x and

e~BI z; tð Þ ¼ 1

υ1
eB0I e

i k1z�ωtð Þ~̂y ðF:115Þ

This incident wave gives rise to a reflected wave [1]

e~ER z; tð Þ ¼ eE0Re
i �k1z�ωtð Þ~̂x and

e~BR z; tð Þ ¼ 1

υ1
eB0Re

i �k1z�ωtð Þ~̂y ðF:116Þ

Propagating back to the left in medium (F.1), and a transmitted wave

e~ET z; tð Þ ¼ eE0T e
i ek2z�ωt
� �

~̂x and
e~BT z; tð Þ ¼ 1

υ1
eB0T e

i ek2z�ωt
� �

~̂y ðF:117Þ

which is attenuated as it penetrates into the conductor.

At z ¼ 0, the combined wave in medium (F.1) must join the wave in medium

(F.2), pursuant to the boundary conditions Eq. F.114. Since E⊥ ¼ 0 on both sides,

boundary condition (i) yields σf ¼ 0. Since B⊥ ¼ 0, (ii) is automatically satisfied.

Meanwhile, (iii) gives;

eE0I þ eE0R ¼ eE0T ðF:118Þ

and (iv) (with Kf ¼ 0) says

1

μ1υ1
eE0I � eE0R

	 

�
ek2
μ2ω

eE0T ¼ 0 ðF:119Þ

or
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eE0I � eE0R ¼ eβeE0T ðF:120Þ

where

eβ � μ1υ1
μ2ω

ek2 ðF:121Þ

It follows that

eE0R ¼ 1� eβ
1þ β

 !eE0I and eE0T ¼
2

1þ β

� �eE0I ðF:122Þ

These results are formally identical to the ones that apply at the boundary between

nonconductors (Eq. F.57), but the resemblance is deceptive since eβ is now a

complex number.

For a perfect conductor (σ ¼ 1), k2 ¼ 1 (Eq. F.102), so eβ is infinite, and

eE0R ¼ �eE0I and eE0T ¼ 0 ðF:123Þ

In this case the wave is totally reflected, with a 180
�
phase shift. (That’s why

excellent conductors make good mirrors. In practice, you paint a thin coating of

silver onto the back of a pane of glass—the glass has nothing to do with the

reflection; it’s just there to support the silver and to keep it from tarnishing. Since

the skin depth in silver at optical frequencies is on the order of 100 A
�
, you don’t

need a very thick layer).

Example 1: Calculate the reflection coefficient for light at an air-to-silver interface (

μ1 ¼ μ2 ¼ μ0, ε1 ¼ ε0, σ ¼ 6� 107 Ω�mð Þ�1
, at optical frequencies (ω ¼ 4� 1015

s�1)

Solution: According to Eq. F.122, R ¼ eE0ReE0I

���� ����2 ¼ 1�eβ
1þeβ
���� ����2 ¼ 1�eβ

1�eβ
� �

1�eβ*

1þeβ*

� �
, where

eβ* is complex conjugate of eβ and eβ ¼ μ1υ1
μ2ω
ek2 ¼ μ1υ1

μ2ω
k2 þ iκ2ð Þ (Eqs. F.101 and

F.121). Since silver is a good conductor ( σ  εω ), Eq. F.102 reduces to

κ2 ffi k2 ffi ω
ffiffiffiffiffiffiffi
ε2μ2
2

q ffiffiffiffiffiffi
σ

ε2ω

q
¼

ffiffiffiffiffiffiffiffi
σωμ2
2

q
, so eB ¼ μ1υ1

μ2ω

ffiffiffiffiffiffiffiffi
σωμ2
2

q
1þ ið Þ ¼ μ1υ1

ffiffiffiffiffiffiffiffi
σ

2μ2ω

q
1þ ið Þ.

Now let γ � μ1υ1
ffiffiffiffiffiffiffiffi
σ

2μ2ω

q
¼ μ0c

ffiffiffiffiffiffiffiffi
σ

2μ0ω

q
¼ c

ffiffiffiffiffi
σμ0
2ω

q
¼ 3� 108
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3�107ð Þ 4π�10�7ð Þ
2ð Þ 4�1015ð Þ ¼ 29

r
R ¼ 1�γ�iγ

1þγþiγ

	 

1�γþiγ
1þγ�iγ

	 

¼ 1�γð Þ2þγ2

1þλð Þ2þγ2
¼ 0:93. Evidently 93% of the light is reflected.
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F.8.3 The Frequency Dependence of Permittivity

In the preceding sections, we have seen that the propagation of electromagnetic

waves through matter is governed by three properties of the material, which we took

to be constants and they are as follows:

1. The permittivity ε
2. The permeability μ
3. The conductivity σ

Actually, each of these parameters depends to some extent on the frequency of

the waves you are considering. Indeed, if the permittivity were truly constant, then
the index of refraction in a transparent medium, n ffi ffiffiffiffi

εr
p

, would also be constant.

But it is well known from optics that n is a function of wavelength (Fig. F.27 shows
the graph for a typical glass). A prism or a raindrop bends blue light more sharply

than red, and spreads white light out into a rainbow of colors. This phenomenon is

called dispersion. By extension, whenever the speed of a wave depends on its

frequency, the supporting medium is called dispersive. Conductors, incidentally,

are dispersive, see Eqs. F.102 and F.103.

Because waves of different frequency travel at different speeds in a dispersive

medium, a wave form that incorporates a range of frequencies will change shape as

it propagates. A sharply peaked wave typically flattens out, and whereas each

sinusoidal component travels at the ordinary wave (or phase) velocity,

υ ¼ ω

k
ðF:124Þ

the packet as a whole (the "envelope") travels at the so-called group velocity [8].

Also for more information refer to Appendix G of this book.
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υg ¼ dω

dk
ðF:125Þ

Figure F.28 is a typical depict of these two wave velocities.

Our purpose in this section is to account for the frequency dependence of ε in

nonconductors, using a simplified model for the behavior of electrons in dielectrics.

The electrons in nonconductor are bound to specific molecules [1]. The actual

binding forces can be quite complicated, but we shall picture each electron as

attached to the end of an imaginary spring, with force constant kspring (Fig. F.29).

Fbinding ¼ kspringx ¼ �mω2
0x ðF:126Þ

where x is displacement from equilibrium, m is the electron’s mass, and ω0 is the

natural oscillation frequency,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kspring=m

p
. Utilizing Taylor series and expanding the

potential energy about equilibrium point for sufficiently small displacement we

have [1]:

U xð Þ ¼ U 0ð Þ þ xU
0
0ð Þ þ 1

2
x2U

00
0ð Þ þ � � �

The first term is a constant, with no dynamical significance (you can always adjust

the zero of potential energy so that U 0ð Þ ¼ 0 ). The second term automatically

vanishes, since dU=dx ¼ �F, and by the nature of an equilibrium the force at that

point is zero. The third term is precisely the potential energy of a spring with force

constant kspring ¼ d2U=dx2
��
0
(the second derivative is positive, for a point of stable

equilibrium). As long as the displacements are small, the higher terms in the series

can be neglected [1]. Meanwhile, there will presumably be some damping force on

the electron:

υ

υgFig. F.28 Phase and group

velocity [1]

Electron

E

z

x

kspringυ

Fig. F.29 Electron

movement [1]
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Fdamping ¼ �my
dx

dt
ðF:127Þ

The damping must be opposite in direction to the velocity, and making it propor-
tional to the velocity is the easiest way to accomplish this. The cause often damping

does not concern us here—among other things, an oscillating charge radiates, and

the radiation siphons off energy.

In the presence of an electromagnetic wave of frequency ω, polarized in the

x (Fig. F.29) direction, the electron is subject to a driving force

Fdriving ¼ qE ¼ qEo cos ωtð Þ ðF:128Þ

where q is the charge of the electron and E0 is the amplitude of the wave at the point

z where the electron is situated. If we concentrate only at one point and one point

only so that the maximum E occurs there at t ¼ 0, then by Newton’s second law we

have:

m
d2x

dt2
¼ Ftotal ¼ Fbinding þ Fdamping þ Fdriving

m
d2x

dt2
þ my

dx

dt
þ mω2

0x ¼ qE0 cos ωtð Þ
ðF:129Þ

Our model, then, describes the electron as a damped harmonic oscillator, driven at

frequency ω. (assumption is that the much more massive nuclei remain at rest) [1].

Equation F.129 is easier to handle if we regard it as the real part of a complex
equation:

d2ex
dt2

þ γ
dex
dt

þ ω2
0ex ¼ q

m
E0e

�iωt ðF:130Þ

In steady state, the system oscillates at the driving frequency:

ex tð Þ ¼ ex0e�iωt ðF:131Þ

Inserting this into Eq. F.130, we obtain

ex0 ¼ q=m

ω2
0 � ω2 � iγω

E0 ðF:132Þ

The dipole moment is the real part of
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ep tð Þ ¼ qex tð Þ ¼ q=m

ω2
0 � ω2 � iγω

E0e
�iωt ðF:133Þ

The imaginary term in the denominator means that p is out of phase with E—

lagging behind by angle tan �1 γω= ω2
0 � ω2

� �� 
that is very small whenω � ω0 and

rises to π when ω  ω0.

In general, differently situated electrons within a given molecule experience

different natural frequencies and damping coefficients. Let’s say there are fj elec-
trons with frequency ωj and damping γj in each molecule. If there are N molecules

per unit volume, the polarization P is given by the real part of

e~P ¼¼ Nq2

m

X
j

f j
ω2
j � ω2 � iγjω

 !e~E ðF:134Þ

This applies directly to the case of a dilute gas; for denser materials the theory is

modified slightly, in accordance with the Clausius–Mossotti Equation. Note that we

should not confuse the “polarization” of a medium, ~P, with the “polarization” of a

wave—same word, but two completely unrelated meanings.

Now we define the electric susceptibility as the proportionality constant between

~P and
e~E (specifically, ~P ¼ ε0χe~E) [1]. In the present case ~P is not proportional to

e~E
(this is not, strictly speaking, a linear medium) because of the difference in phase.

However, the complex polarization~P is proportional to the complex field
e~E, and this

suggests that we introduce a complex susceptibility, eχ e:
~P ¼ ε0eχ e~E ðF:135Þ

From all these we conclude that the physical polarization is the real part of
e~P, just as

the physical field is the real part of
e~E. In particular, the proportionality between

e~D
and

e~E is the complex permittivity eε ¼ ε0 1þ eχ eð Þ, and the complex dielectric

constant in this model is

eεr ¼ 1þ Nq2

mε0

X
j

f j
ω2
j � ω2 � iγjω

ðF:136Þ

Ordinarily, the imaginary term is negligible; however, when ω is very close to one

of the resonant frequencies (ωj) it plays an important role, as we shall see. In a

dispersive medium the wave equation for a given frequency reads
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∇2e~E ¼ eεμ0∂2e~E
∂t2

ðF:137Þ

This provides plane wave solutions, as before;

e~E z; tð Þ ¼ e~E0e
i ekz�ωt
� �

ðF:138Þ

with the complex wave number

ek �
ffiffiffiffiffiffiffiffiffiffiffieεμ0ωp

ðF:139Þ

Writing ek in terms of its real and imaginary parts,

ek ¼ k þ iκ ðF:140Þ

Equation F.138 becomes

e~E z; tð Þ ¼ eE0e
�κzei kz�ωtð Þ ðF:141Þ

Evidently the wave is attenuated which is not surprising, since the damping absorbs

energy [1]. Because the intensity is proportional to E2 and hence to 0e
�2κz, the

quantity

α � 2κ ðF:142Þ

is called the absorption coefficient. Meanwhile, the wave velocity is ω/k, and the

index of refraction is

n ¼ ck

ω
ðF:143Þ

However, in the present case k and κ have nothing to do with conductivity; rather,

they are determined by the parameters of our damped harmonic oscillator. For

gases, the second term in Eq. F.136 is small, and we can approximate the square

root (Eq. F.139) by the first term in the binomial expansion,
ffiffiffiffiffiffiffiffiffiffiffi
1þ ε

p ffi 1þ 1
2
ε. Then

ek ¼ ω

c

ffiffiffiffieεrp
ffi ω

c
1þ Nq2

2mε0

X
j

f j
ω2
j � ω2 � iγjω

" #
ðF:144Þ

or
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n ¼ ck

ω
ffi 1þ Nq2

mε0

X
j

f j ω2
j � ω2

	 

ω2
j � ω2

	 
2
� iγ2jω

2

ðF:145Þ

and

α ¼ 2κ ffi Nq2ω2

mε0c

X
j

f jγj

ω2
j � ω2

	 
2
� iγ2jω

2

ðF:146Þ

Griffiths [1] has plotted the index of refraction and the absorption coefficient in the

vicinity of one of the resonances. Most of the time the index of refraction rises
gradually with increasing frequency, consistent with our experience from optics

Fig. F.27. However, in the immediate neighborhood of a resonance the index of

refraction drops sharply. Because this behavior is atypical, it is called anomalous

dispersion. Notice that the region of anomalous dispersion (ω1 < ω < ω2, in the

figure) coincides with the region of maximum absorption; in fact, the material may

be practically opaque in this frequency range. The reason is that we are now driving

the electrons at their "favorite" frequency; the amplitude of their oscillation is

relatively large, and a correspondingly large amount of energy is dissipated by

the damping mechanism.

In Fig. F.30, n runs below 1above the resonance, suggesting that the wave speed

exceeds c. This is no cause for alarm, since energy does not travel at the wave

velocity but rather at the group velocity (see Example 1 below)). Moreover, the

graph does not include the contributions of other terms in the sum, which add a

relatively constant "background" that, in some cases, keeps n > 1 on both sides of

the resonance.

If you agree to stay away from the resonances, the damping can be ignored, and

the formula for the index of refraction simplifies:

n ¼ 1þ Nq2

mε0

X
j

f j
ω2
j � ω2

ðF:147Þ

For most substances the natural frequencies ωj are scattered all over the spectrum in

a rather chaotic fashion. But for transparent materials, the nearest significant

resonances typically lie in the ultraviolet, so that gw < ωj. In that case

1

ω2
j � ω2

¼ 1

ω2
j

1� ω2

ω2
j

 !�1

ffi 1

ω2
j

1þ ω2

ω2
j

 !

and Eq. F.147 takes the form
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n ¼ 1þ Nq2

mε0

X
j

f j
ω2
j

 !
þ ω2 Nq2

2mε0

X
j

f j
ω4
j

 !
ðF:148Þ

Or, in terms of the wavelength in vacuum (λ ¼ 2πc=ω):

n ¼ 1þ A 1þ B

λ2

� �
ðF:149Þ

This is known as Cauchy’s formula; the constant A is called the coefficient of

refraction and B is called the coefficient of dispersion. Cauchy’s equation applies

reasonably well to most gases, in the optical region.

What Griffiths [1] has described in here is certainly not the complete story of

dispersion in nonconducting media. Nevertheless, it does indicate how the damped

harmonic motion of electrons can account for the frequency dependence of the

index of refraction, and it explains why n is ordinarily a slowly increasing function

of ω, with occasional "anomalous" regions where it precipitously drops.

Example 1: Assuming negligible damping (γj ¼ 0), calculate the group velocity

υg ¼ dω

dk

� �
of the waves described by Eqs. F.141 and F.144. Show that υg < c,even

when υ > c.

ωjωj – 2χ j ωj + 2χ jω1

α

ω2

n – 1

Fig. F.30 Plot of the index of refraction and absorption coefficient in the vicinity of one of the

resonances [1]

738 Appendix F: Short Course in Electromagnetic



Solution: k ¼ ω
c 1þ Nq2

2mε0

X
j

f j

ω2
j � ω2

	 
2
264

375 and υg ¼ dω
dk ¼ 1

dk=dωð Þ

dω

dk
¼ 1

c
1þ Nq2

2mε0

X
j

f j

ω2
j � ω2

	 
2 þ ω
X

f j
� �2ωð Þ
ω2
j � ω2

	 
2
264

375

¼ 1

c
1þ Nq2

2mε0

X
f j

ω2
j þ ω2

	 

ω2
j þ ω2

	 
2
264

375

υg ¼ c 1þ Nq2

2mε0

X
f j

ω2
j þ ω2

	 

ω2
j � ω2

	 
2
264

375. Since the second term in square brackets is

positive, it follows that υg < c, whereas υ ¼ ω

k
¼ c 1þ Nq2

2mε0

X f j

ω2
j � ω2

	 
2
264

375
�1

is greater than c or less than c, depending on ω.

F.9 Electromagnetic Waves in Conductors

In our previous discussions of EM waves in matter, we have been assuming there

are no free charges (ρfree ¼ ρf) or free currents (~Jfree ¼ ~Jf); the only charges present

were the bound charges in the dielectric. When dealing with conductors, there are

plenty of electrons that are free to move about when an external electric field is

applied. There are still bound charges in a conductor (atoms in a conductor

generally only contribute one or two conduction electrons each), but we will find

that (in a good conductor) the interaction of the fields with the free charges and

currents will dominate over everything else.

In an ohmic materials which obeys Ohm’s Law, we can write

~J ~r; tð Þ ¼ σc~E ~r; tð Þ ðF:150Þ

where σc is the conductivity of the conducting materials (not to be mistaken for the

surface charge density!) and σc ¼ 1=ρc, which we will take to be uniform inside the

conductor (ρc¼ resistivity of the metal conductor with dimension of Ohm-meter).

For any free charge that might build up in the conductor due to these currents, we

know from charge conservation:
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~∇ �~J ~r; tð Þ ¼ �∂ρf
∂t

ðF:151Þ

Thus inside such a conductor, we can assume that the linear/homogeneous/isotropic

conducting medium has electric permittivity ε and magnetic permeability μ. Com-

bine this with Gauss Law for electric fields in matter ~∇ � ε~E ~r; tð Þ
	 


¼ �ρf , to find

how quickly the free charge distribution would dissipate. Bear in your mind that

Maxwell’s equations are always true, in matter or not; splitting things up into free

and bound charges (or for that matter current) can be convenient for solving for the

fields, but we do not have to do things this way. Now substitution of these relations

into Eq. F.151, we can write:

∂ρf
∂t

¼ ~∇ � ε~E ~r; tð Þ
	 


¼ �σc
ε

ε~E ~r; tð Þ
	 
h i

¼ �σc
ε
ρf ðF:152Þ

or

∂ρf
∂t

¼ �σc
ε
ρf ðF:153Þ

The solution to this first-order differential equation is:

ρf tð Þ ¼ ρ 0ð Þexp �σct=εð Þ ¼ ρ ~r, t ¼ 0ð Þe�t=τrelax ðF:154Þ

This is damped exponential type function. This also tells us that any free charge that

might build up in a conductor will dissipate (due to the mutual repulsion of the

charges) with a time constant τc ¼ ε=σc. The “time constant” represents the amount

of time for the initial density to reduce to 1=e 
 37%ð Þ of its original value. For a
perfect conductor σc ! 1ð Þ, the time constant goes to zero, meaning the charge

density instantly dissipate. For a “good” conductor (like copper), where the con-

ductivity is typically on the order of 108 Ω:mð Þ�1
, the time constant is somewhere

around10�19 seconds, which is actually much smaller than the typical time between

collisions of the electrons with the atoms making up the conductor, which is

τce10�14. For frequencies higher than 1/τc, Ohm’s Law starts to break down, so

τc is the important time constant here. Therefore, the assumption of dealing with the

linear/homogeneous/isotropic conducting medium, is a valid assumption for the

rest of this discussion and let us assume we are working with good conductors, and

with frequencies that are at or below the optical range (1015Hz, which is pushing the

use of Ohm’s law, but not so much that our results are no good). In other words, we

should have ω � σc=ε, or εω=σc � 1. It turns out this assumption will make our

calculation much easier as we go along.

Note that going for forward with further analysis of Electromagnetic Wave

through Conduction we write the symbol of σc for conductivity of conducting
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materials as σc, now that we know that is the case it is not indeed the surface charge

density. Also we start using vector notation rather than bold character as well.

Now again assuming a conductor of linear, homogeneous and isotropic

conducting material that has electric permittivity ε and magnetic permeability μ,
we substitute ρf ¼ 0, which means free charges dissipate very rather quick and

~J ~r; tð Þ ¼ σ~E ~r; tð Þ, which also means that ~J ~r; tð Þ 6¼ 0, then we can write the

Maxwell’s Equations inside such conductor are as follow:

~∇ �~E ~r; tð Þ ¼ ρ ~r; tð Þ
ε

~∇ �~B ~r; tð Þ ¼ 0

~∇ � ~E ~r; tð Þ ¼ �∂~B ~r; tð Þ
∂t

and using Ohm’s Law relation of ~J ~r; tð Þ ¼ σ~E ~r; tð Þ, we have the 4th Equation of

Maxwell, as:

~∇ � ~B ~r; tð Þ ¼ μ~J ~r; tð Þ þ με
∂~E ~r; tð Þ

∂t
¼ μσ~E ~r; tð Þ þ με

∂~E ~r; tð Þ
∂t

(Solution of Eq. F.154)

Since electric charge is always conserved, thus the continuity equation inside the

conductor is ends up with a homogeneous differential equation of first order as

Eq. F.151b where the solution is provided as per Eq. F.154 and depicted in

Fig. F.31, which is a damped exponential curve.

of initial value
1/e

tτ

rfree (r,t)Fig. F.31 Sketch of Free

Density Dissipated

vs. Characteristic Time
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Example 2: Calculate the charge relaxation time for copper

Solution: Assume the following data for cupper:

ρCu ¼ 1=
σCu

¼ 1:68� 10�8Ω� m ) σCu ¼ 1=
ρCu

¼ 5:95� 107 siemens=m

If we assume εCu � 3ε0 ¼ 3� 8:85� 10�8F=mw for cupper metal, then:

τ relaxCu ¼ εCu=σCuð Þ ¼ ρCuεCu ¼ 4:5� 10�19 sec

However, knowing that the characteristic/mean collision time of free electros in

pure copper is τ collCu ’ λ collCu =vCuthermal where λ collCu ’ 3:9� 10�8m ¼ mean free path

(between successive collisions) in pure copper, and vCuthermal ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kBT=me

p ’ 12�
105m= sec and thus we obtain τ collCu ’ 3:2� 10�13 sec .

Hence we see that the calculated charge relaxation time in pure copper, τ relaxCu

’ 4:5� 10�19 sec is much less than the calculated collision in pure copper,

τ collCu ’ 3:2� 10�13 sec . Furthermore, the experimentally measured charge relaxa-

tion time in pure copper is τ relaxCu experimentalð Þ ’ 4:0� 10�19 sec , which is

roughly 5 fold magnitude larger than the calculated charge relaxation time

τ relaxCu ’ 4:5� 10�19sec .

The problem here is that {the macroscopic} Ohm’s Law is simply out of its

range of validity on such short time scales! Two additional facts here are that both

and C å ó are frequency-dependent quantities { i.e. ε ¼ ε ωð Þ and σ ¼ σ ωð Þ}, which
becomes increasingly important at the higher frequencies ( f ¼ 2π=ωe1=τrelax )
associated with short time-scale, transient-type phenomena!

So in reality, if we are willing to wait even a short time (e.g.Δte1ps ¼ 10�12 sec)

then any initial free charge density ρfree ~r, t ¼ 0ð Þ accumulated inside the conductor

at t ¼ 0 will have dissipated away/damped out, and from that time onwards, ρfree
~r; tð Þ ¼ 0 can be safely assumed.

Thus, after many charge relaxation time constants, e.g.

20τrelax 	 Δt ’ 1ps ¼ 10�12 sec , then

Maxwell’s equations for a conductor become {with ρfree ~r, t � Δtð Þ ¼ 0 from

then onwards}:

New Sets of Maxwell’s equation for a Charged-equilibrated Conductor

~∇ �~E ~r; tð Þ ¼ 0

~∇ �~B ~r; tð Þ ¼ 0

~∇ � ~E ~r; tð Þ ¼ �∂~B ~r; tð Þ
∂t
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~∇ � ~B ~r; tð Þ ¼ μ~J ~r; tð Þ þ με
∂~E ~r; tð Þ

∂t
¼ μ σ~E ~r; tð Þ þ ε

∂~E ~r; tð Þ
∂t

 !

Now because these equations are different from the previous derivation(s) of

monochromatic plane Electro-Magnetic (EM) waves propagating in free space/

vacuum and/or in linear/homogeneous/isotropic nonconducting materials {only

Eq. F.4) has changed}, we re-derive the wave equations for ~E and ~B from scratch.

As before, we apply curl operation to Eqs. (F.3) and (F.4) and using the following

vector identity, we get:

~∇ � ~∇ � ~EÞ ¼ ~∇ �~EÞ~∇ � ~∇ � ~∇Þ~Eþ ~E� ~∇Þ~∇ � ~∇ � ~∇Þ~E
					

~∇ � ~∇ � ~E
	 


¼ � ∂
∂t

~∇ � ~B
	 


¼ ~∇ ~∇ �~E	 
0
�∇2~E ¼ � ∂

∂t
μσ~Eþ με

∂~E
∂t

 !

¼ ~∇2~E ¼ με
∂2~E

∂t2
þ μσ

∂~E
∂t

~∇ � ~∇ � ~B
	 


¼ μ σ ~∇ � ~E
	 
h i

þ ε
∂
∂t

~∇ � ~E
	 


¼ ~∇ ~∇ �~B	 

�∇2~B ¼ μσ

∂~B
∂t

� με
∂2~B

∂t2

¼ ~∇
2
~B ¼ με

∂2~B

∂t2
þ μσ

∂~B
∂t

Again, we can write:

∇2~E ~r; tð Þ ¼ με
∂2~E ~r; tð Þ

∂t2
þ μσ

∂~E ~r; tð Þ
∂t

and

∇2~B ~r; tð Þ ¼ με
∂2~B ~r; tð Þ

∂t2
þ μσ

∂~B ~r; tð Þ
∂t
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Note that these 3D wave equations for ~E and ~B in a conductor have an additional

term that has a single time derivative—which is analogous to a velocity-dependent

damping term, e.g., for a mechanical harmonic oscillator.

The general solution(s) to the above wave equations are usually in the form of an

oscillatory function * a damping term (i.e., a decaying exponential)—in the direc-

tion of the propagation of the EM wave, e.g., complex plane-wave type solutions

for ~E and ~B associated with the above wave equation(s) are of the general form:

e~E z; tð Þ ¼ e~E0e
i ekx�ωt
� �

and
e~B z; tð Þe~B0e

ekz�ωt
� �

¼
ek
ω

 !
k̂ � e~E z; tð Þ

¼ 1

ω
k̂ � e~E z; tð Þ ðF:155Þ

With {frequency-dependent} complex wave number: ek ωð Þ ¼ k ωð Þ þ iκ wð Þ
Where k ωð Þ ¼ Re ek ωð Þ

	 

and κ wð Þ ¼ Jm ek ωð Þ

	 

and corresponding complex

vector in the positive þẑ direction here is
e~k ωð Þ ¼ ek ωð Þk̂ ¼ ek ωð Þẑ , i.e.e~k ωð Þ ¼ k ωð Þ þ iκ ωð Þ½ �̂z .

We plug in
e~E z; tð Þ ¼ e~E0e

i ekx�ωt
� �

and
e~B z; tð Þ ¼ e~B0e

i ekz�ωt
� �

into their respective

wave equations above, and obtain from each wave equation the same/identical

characteristic equation {dispersion relation} between complex ek ωð Þ and ω, we get
the following relation as:

ek2 ωð Þ ¼ μεω2 þ iμσω ðF:156Þ

Thus, since ek ωð Þ ¼ k ωð Þ þ iκ ωð Þ, then:

ek2 ωð Þ ¼ k ωð Þ þ iκ ωð Þ½ �2 ¼ k2 ωð Þ � κ2 ωð Þ þ 2ik ωð Þκ ωð Þ ¼ μεω2 þ iμσω

ðF:157Þ

If we temporarily suppress the ω-dependence of complex ek ωð Þ, this relation

becomes as:

ek2 ωð Þ ¼ k þ iκð Þ2 ¼ k2 � κ2 þ 2ikκ ¼ μεω2 þ iμσω ðF:158Þ

We can solve this relation to determine ωð Þ ¼ Re ek ωð Þ
	 


and κ ωð Þ ¼ Tm ek ωð Þ
	 


as

follows:

First, separate this relation into two relations by separating out its real and

imaginary parts as:
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ek2 ωð Þ ¼ k þ iκð Þ ¼ k2 � κ2 þ 2ikκ ¼ iμσω ðF:159Þ

Now we have two separate independent equations k2 � κ2 ¼ μεω2 and 2kκ ¼ μσω,
and we have two unknowns such as k and κ. Hence, solving these two equations

simultaneously we find the following results:

κ ¼ 1

2
μσω=k

k2 � k2 ¼ k2 � 1

2
μσω=k

� �2

¼ k2 ¼ 1

k2
1

2
μσω

� �2

¼ μεω2

ðF:160Þ

Then multiply by k2 and rearrange the terms to obtain the following relation:

k4 � μεω2
� �

k2 � 1

2
μσω

� �2

¼ 0 ðF:161Þ

To solve this equation we let x � k2, a � 1, b � � μωω2ð Þ and c � � 1

2
μσω

� �2

,

then Eq. F.161 reduces to the form of a quadratic equation of ax2 þ bxþ c ¼ 0with

solution roots of

x ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
or k2 ¼ 1

2
þ μεω2
� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μεω2ð Þ2 þ 4
1

2
μσω

� �s 2
24 35

k ¼ 1

2
μσω2
� �

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

μ2σ2ω2ð Þ
4 μ2ε2ω4ð Þ

s" #
¼ 1

2
μσω2
� �

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2ð Þ

ε2ω2ð Þ

s" #

¼ 1

2
μσω2
� �� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

εω

	 
2r" #

Now we can see that on physical grounds (k2 > 0), wemust select the + sign, hence:

k2 ¼ 1

2
μσω2
� �

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

εω

	 
2r" #

and thus:

k ¼
ffiffiffiffiffi
k2

p
¼ ω

ffiffiffiffiffi
εμ

2

r
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

εω

	 
2r" #1=2
¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εμ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

εω

	 
2r" #1=2vuut ðF:162Þ
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Having thus solved for k (or equivalently k2), then we can use either of our original

two relations to solve for κ, e.g. k2 � κ2 ¼ μεω2, then:

κ2 ¼ k2 � μεω2 ¼ 1

2
μεω2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ σ

εω

	 
2r" #
� μεω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

εω

	 
2
� 1

r" #

Thus, we obtain

k ωð Þ ¼ Re ek ωð Þ
	 


¼ ω

ffiffiffiffiffi
εμ

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

εω

� �2q
þ 1

� �1=2

κ ωð Þ ¼ Jm ek ωð Þ
	 


¼ ω

ffiffiffiffiffi
εμ

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

εω

� �2q
� 1

� �1=2 ðF:163Þ

Note that the imaginary part of ek, κ ωð Þ ¼ Jm ek ωð Þ
	 


results in an exponential

attenuation and damping of the monochromatic plan EM wave with increasing z as:

e~E z; tð Þ ¼ e~E0e
�κzei kz�ωtð Þ forElectricFielde~B z; tð Þ¼e~B0e�κzei kz�ωtð Þ ¼ 1

ω
e~k � e~E0e

�κzei kz�ωtð Þ forMagneticField
ðF:164Þ

These solution (Eq. F.164) satisfy the above wave equations for any choice of
e~E0.

The characteristic distance over which ~E and ~B are attenuated, and reduced to

1=e ¼ e�1 ¼ 0:3679 of their initial value at z ¼ 0 is known as the skin depth and

shown as δskin depth ¼ δsc � 1=κ ωð Þ and SI unit has dimension of meter.

δsc ωð Þ ¼ 1

κ ωð Þ ¼
1

ω

ffiffiffiffiffi
εμ

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

εω

	 
2r
� 1

" #1=2 )
e~E z ¼ δsc, tð Þ ¼ e~E0

e�1ei kz�ωtð Þ

e~B z ¼ δsc, tð Þ ¼ e~B0e�1ei kz�ωtð Þ

The real part of ek, i.e. k ωð Þ ¼ Re ek ωð Þ
	 


determines the spatial wavelength λ(ω),

the propagation speed v(ω) of the monochromatic EM plane wave (See Fig. F.26)

in the conductor, and also the index of refraction:
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λ ωð Þ ¼ 2π

k ωð Þ ¼
2π

Re ek ωð Þ
	 


v ωð Þ ¼ ω

k ωð Þ ¼
ω

Re ek ωð Þ
	 


n ωð Þ ¼ ω

v ωð Þ ¼
ck ωð Þ
ω

¼
cRe ek ωð Þ
	 

ω

The above plane wave solutions satisfy the above wave equations for any choice ofe~E0. As we have also seen before, it can similarly be shown here that Maxwell’s

Eqs. (F.1) and (F.2) {∇�~E ¼ 0 and ∇�~B ¼ 0} rule out the presence of any

(longitudinal) z-components for ~E and ~B for EM waves propagating in the +ẑ-

direction ) ~E and ~B are purely transverse wave.

If we consider, for example, a linearly polarized monochromatic plane EM wave

propagating in the +ẑ-direction in a conducting medium, e.g.,e~E z; tð Þ ¼ e~E0e
�κzei kz�ωtð Þx̂ , then:

e~B z; tð Þ ¼ 1

ω
e~k � e~E z; tð Þ ¼

ek
ω

 !eE0e
�κzei kz�ωtð Þŷ

¼ k þ iκ

ω

� �eE0e
�κzei kz�ωtð Þŷ

) e~E z; tð Þ⊥e~B z; tð Þ⊥̂z þ̂z ¼ propagationdirectionð Þ ðF:165Þ

The complex wave-number ek ¼ k þ ik ¼ Keiϕk where: K � ��ek�� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ κ2

p
and

ϕk � tan 1 κ=kð Þ, See Fig. F.32 below:

k = Im (k)

k

~

~

~
í

k = Re (k)

K

K = k = k 2 + k 2

k
fk

Fig. F.32 In the Complexek
-plane
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Then we see that:e~E z; tð Þ ¼ e~E0e
�κzei kz�ωtð Þx̂ has eE0 ¼ E0e

iδE

and that:
e~B z; tð Þ ¼ eB0e

�κzei kz�ωtð Þŷ ¼ ekω eE0e
�κzei kz�ωtð Þŷ haseB0e

�iδR ¼ ekω eE0 ¼ Keiϕk
ω E0e

iδE

Thus, we see that: B0e
�iδB ¼ Keiϕk

ω E0e
iδE ¼ K

ωE0e
i δEþϕkð Þ ¼

ffiffiffiffiffiffiffiffiffi
k2þκ2

p
ω E0e

i δEþϕkð Þ

i.e., inside a conductor, ~E and ~B are no longer in phase with each other.

Phases of ~E and ~B: δB ¼ δE þ ϕk

We also see that: δφB�E � δB � δE ¼ ϕk magnetic field lags behind electric

field.

We also see that: B0

E0
¼ K

ω ¼ εμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

εω

� �2q� �1=2
6¼ 1

c

The real physical ~E and ~B fields associated with linearly polarized monochro-

matic plane EM waves propagating in a conducting medium are exponentially
damped:

~E z; tð Þ ¼ Re
e~E z; tð Þ
	 


¼ E0e
�κz cos kz� ωtþ δEð Þx̂

~B z; tð Þ ¼ Re ~B z; tð Þ� � ¼ B0e
�κz cos kz� ωtþ δBð Þŷ

¼ B0 cos kz� ωtþ δE þ ϕkf gð Þŷ

B0

E0

¼ K ωð Þ
ω

¼ εμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

εω

	 
2r" #1=2

K ωð Þ � k̂ ωð Þ�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 ωð Þ þ κ2 ωð Þ

q
¼ ω εμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

εω

� �2q� �1=2 ðF:166Þ

δB ¼ δE þ ϕk
e~k ωð Þ ¼ k ωð Þ þ iκ ωð Þ½ �̂z

ϕk ωð Þ � tan �1
κ ωð Þ
k ωð Þ
� �

and ek ωð Þ ¼ e~k ωð Þ
��� ��� ¼ k ωð Þ þ iκ ωð Þ

Definition of the skin depth in a conductor:
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δsc ωð Þ � 1

κ ωð Þ ¼
1

ω

ffiffiffiffiffi
εμ

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

εω

	 
2r
� 1

" #1=2 ¼

Distance over which

the ~E and ~B fields fall to

1=e ¼ e�1 ¼ 0:3679 of

their initial values

Example 3: What is the skin depth of fine silver at microwave frequency of 1010

HZ, which is common microwave region; assume the silver has conductivity of

g ¼ 1010HZ

Solution: The skin depth is presented by the following equation as:

δ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

μ0ωg

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2π � 1010
� �

4π � 10�7
� �

3� 103
� �s

¼ 9:2� 10�5 cm

Thus at microwave frequencies the skin depth in silver is very small, and

consequently, the difference in performance between a pure silver component and

a silver-plated brass component would be expected to be negligible.

Example 4: For seawater case, we calculate the frequency at which the skin depth

is one meter. For seawater, μ ¼ μ0 and g � 4:3S=m.

Solution: The expression for the frequency corresponding to a given skin depth

δ is:

ω ¼ 2

gμ0δ
2
¼ 2

4:3� 4π � 10�7δ2
¼ 3:70� 105

δ2
secð Þ�1

which yields:

f ¼ 58� 103 HZ

or frequency of 60 kHz for a skin depth of one meter. If a submarine is equipped

with a very sensitive receiver and if a very powerful transmitter is used, it is

possible to communicate with a submerged submarine. However, a low

radiofrequency must be used, and even then an extremely sever attenuation of the

signal occurs. At five skin depths (5 meter in the case calculated above), only

1 percent of the initial electric field remains and only 0.01 percent of the incident

power.
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Appendix G
Short Course in Optics

One of the major goals of physics and so as ours in case of laser in particular and its

interaction with materials is to understand the nature of light. Due to the complexity

nature of the light this goal is very difficult to fully achieve but this complication

means that light offers many opportunities for different applications including

optical interferences and in our case response of materials to laser radiation and

its interaction with matter and specifically metallic materials.

G.1 Light as a Wave

It is a great advantages that if we can account for the laws of reflection and

refraction in terms of waves and give some physical meaning to the index of

refraction and then later on be able to tight them down to Maxwell’s electromag-

netic theory for the purpose of laser interaction with materials where we need to

understand response of materials to laser radiation. Huygens’ wave theory is based

on a geometrical construction that allows us to tell where a given wave front will be

at any time in the future if we know its present position. This construction is based

on Huygens Principle, which is:

All points on a wave front serve as point sources of spherical secondary

wavelets. After a time t, the new position of the wave front will be that of a

surface to these secondary wavelets.

A simple example of Huygens’ Principle can be presented by Fig. G.1 where the

present location of a wavefront of a plane wave traveling to the right in vacuum is

represented by plane ab, perpendicular to the page22. Then question is, where will

the wavefront be at time Δt later?.
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We let several points on plane ab (the dots) serve as sources of spherical

secondary wavelets that are emitted at t ¼ 0. At time Δt, the radius of all these

spherical wavelets will grown to cΔt, where c is the speed of light in vacuum. We

draw plane de tangent to these wavelets at time Δt. This plane represents the

wavefront of the plane wave at timeΔt; it is parallel to plane ab and a perpendicular
distance cΔt from it.

G.2 Refraction of Light

Another phenomenon which can be analyzed using the Huygens principle is the

refraction of light—that is, the change in direction of a light beam it passes from

one medium to another in which its speed is different. This can be evaluated with

the help of the wave front diagram of Fig. G.2. At t ¼ 0 the wave front he just comes

in contact with the boundary between the two media. We suppose that the speed of

light, v2, in the new medium is less than that in the first one, so that secondary

wavelets generated at the interface travel a shorter distance in the same time

interval than do wavelets in the first medium. At the moment t ¼ 0 when the end

h of the wave front he reaches the boundary, end e is still the distance ec away.
Since the speed of light in the first medium is v1, end e requires the time t ¼ ec

v1
to

reach the boundary at c. In this period of time the end h of the wave front proceeds

to g, where hg is smaller than ec. Evidently

ec ¼ v1t and hg ¼ v2t

The angle θ1 between an approaching wave front and the boundary between two

media is called the angle of incident of the wave front; this angle is equal to that

made by an approaching ray with the normal to the boundary as in Fig. G.3. The

New position
of wavefront
at time t = Δt

a e

c Δt

b d

Wavefront at
t = 0

Fig. G.1 The propagation

of a plane wave in vacuum,

as portrayed by Huygens’

principle [1]
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Incident wave

a

b

c

Air
Glass

Refraction wave

n1

n2

q1

l1

n1t

q1
q2

l1

l2

l2

h

e

c

g

n2t

Fig. G.2 The refraction of

a plane wave at media 1 and

2 interface, as portrayed by

Huygens’ principal. Parts

(a) through (c) represent
three successive stages of

the refraction [1]

Normal

q1

q2

Fig. G.3 Ray treatment of

refraction [2]
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angle θ2 between a receding wave front and the boundary between two media

through which it has passed is called the angle of refraction; this angle is equal to
that made by a receding ray with the normal.

From Fig. G.2 we see that

sin θ1 ¼ ec

hc
¼ v1t

hc

and

sin θ2 ¼ hg

hc
¼ v2t

hc

So that

sin θ1
sin θ2

¼ v1
v2

ðG:1Þ

From Eq. (G.1) we can conclude that the ratio of the sines of the angles of incidence
and refraction is equal to the ratio of the speeds of light in the two media. Equation
(G.1) is known as Snell’s law after its discoverer, the seventeenth-century Dutch

astronomer Willebrord Snell.

The ratio between the speed of light c in free space and its speed v in a particular
medium is called the index of refraction of the medium, the symbol for which is

n and that is written as follows:

n ¼ c

v
ðG:2Þ

Since v1 ¼ c=n1 and v2 ¼ c=n2, where n1 and n2 are the indexes of refraction of the

two media, Snell’s law, Eq. (G.1) can be written in the alternative form as;

n1 sin θ1 ¼ n2 sin θ2 ðG:3Þ

Table G.1 is a list of the values of n for a number of substances. The greater the

index of refraction, the greater the extent to which a light is deflected upon entering

or leaving that medium.

G.3 Wave Equation

The wave equation is an important second-order linear partial differential equation

of waves, such as sound waves, light waves and water waves. It arises in fields such

as acoustics, electromagnetics, and fluid dynamics. Historically, the problem of a

vibrating string such as that of a musical instrument was studied by Jean le Rond
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d’Alembert, Leonhard Euler, Daniel Bernoulli, and Joseph-Louis Lagrange

(Fig. G.4).

The wave equation is the prototypical example of a hyperbolic partial differen-

tial equation. In its simplest form, the wave equation refers to a scalar function u¼
(x1, x2,. . .,xn, t) that satisfies:

∂2
u

∂t2
¼ c2∇2u ðG:4Þ

where ∇2 is the (spatial) Laplacian and where c is a fixed constant equal to the

propagation speed of the wave. This is known as the non-dispersive wave equation.

For a sound wave in air at 20�C this constant is about 343 m/s (see speed of sound).

For the vibration of a string the speed can vary widely, depending upon the linear

density of the string and the tension on it. For a spiral spring (a slinky) it can be as

slow as a meter per second. More realistic differential equations for waves allow for

the speed of wave propagation to vary with the frequency of the wave, a phenom-

enon known as dispersion. In such a case, c must be replaced by the phase velocity:

vp ¼ ω

k
ðG:5Þ

Where

ω ¼ Angular Frequency:
k ¼ Wave number

Table G.1 Indexes of

refraction for number of

substances

Substance n Substance n

Air 1.0003 Glass, flint 1.63

Benzene 1.50 Glycerin 1.47

Carbon disulfide 1.63 Ice 1.31

Diamond 2.42 Quartz 1.46

Ethyl alcohol 1.36 Water 1.34

Glass crown 1.52

Fig. G.4 A pulse traveling through a string with fixed endpoints as modeled by the wave

equation [3]
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G.3.1 Dispersion in Optics

In optics, dispersion is the phenomenon in which the phase velocity of a wave

depends on its frequency, or alternatively when the group velocity depends on the

frequency. Media having such a property are termed dispersive media. Dispersion is

sometimes called chromatic dispersion to emphasize its wavelength-dependent

nature, or group-velocity dispersion (GVD) to emphasize the role of the group

velocity.

The most familiar example of dispersion is probably a rainbow, in which

dispersion causes the spatial separation of a white light into components of different

wavelengths (different colors). However, dispersion also has an effect in many

other circumstances: for example, GVD causes pulses to spread in optical fibers,

degrading signals over long distances; also, a cancellation between group-velocity

dispersion and nonlinear effects leads to soliton waves. Dispersion is most often

described for light waves, but it may occur for any kind of wave that interacts with a

medium or passes through an inhomogeneous geometry (e.g., a waveguide), such as

sound waves (Fig. G.5).

There are generally two sources of dispersion: material dispersion and wave-

guide dispersion. Material dispersion comes from a frequency-dependent response

of a material to waves. For example, material dispersion leads to undesired chro-

matic aberration in a lens or the separation of colors in a prism. Waveguide

dispersion occurs when the speed of a wave in a waveguide (such as an optical

fiber) depends on its frequency for geometric reasons, independent of any fre-

quency dependence of the materials from which it is constructed. More generally,

“waveguide” dispersion can occur for waves propagating through any inhomoge-

neous structure (e.g., a photonic crystal), whether or not the waves are confined to

some region. In general, both types of dispersion may be present, although they are

not strictly additive. Their combination leads to signal degradation in optical fibers

for telecommunications, because the varying delay in arrival time between different

components of a signal “smears out” the signal in time.

Fig. G.5 In a prism,

material dispersion

(a wavelength-dependent

refractive index) causes

different colors to refract at

different angles, splitting

white light into a

rainbow [3]
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G.3.2 Material Dispersion in Optics

Material dispersion can be a desirable or undesirable effect in optical applications.

The dispersion of light by glass prisms is used to construct spectrometers and

spectroradiometers. Holographic gratings are also used, as they allow more accu-

rate discrimination of wavelengths. However, in lenses, dispersion causes chro-

matic aberration, an undesired effect that may degrade images in microscopes,

telescopes and photographic objectives.

The phase velocity, v, of a wave in a given uniform medium is given by

v ¼ c

n

where c is the speed of light in a vacuum and n is the refractive index of the

medium.

In general, the refractive index is some function of the frequency f of the light,

thus n¼ n( f ), or alternatively, with respect to the wave’s wavelength n¼ n(?). The
wavelength dependence of a material’s refractive index is usually quantified by an

empirical formula, the Cauchy or Sellmeier equations.

Because of the Kramers–Kronig relations, the wavelength dependence of the

real part of the refractive index is related to the material absorption, described by

the imaginary part of the refractive index (also called the extinction coefficient). In
particular, for non-magnetic materials (μ ¼ μ0), the susceptibility χ that appears in

the Kramers–Kronig relations is the electric susceptibility χe ¼ n2 � 1.

The most commonly seen consequence of dispersion in optics is the separation

of white light into a color spectrum by a prism. From Snell’s law it can be seen that

the angle of refraction of light in a prism depends on the refractive index of the

prism material. Since that refractive index varies with wavelength, it follows that

the angle that the light is refracted by will also vary with wavelength, causing an

angular separation of the colors known as angular dispersion.
For visible light, most transparent materials (e.g., glasses) have:

1 < n λredð Þ < n λyellow
� �

< n λblueð Þ

or alternatively:

dn

dλ
< 0

that is, refractive index n decreases with increasing wavelength λ. In this case, the

medium is said to have normal dispersion. Whereas, if the index increases with

increasing wavelength the medium has anomalous dispersion (Fig. G.6).
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At the interface of such a material with air or vacuum (index of ~1), Snell’s law

predicts that light incident at an angle θ to the normal will be refracted at an angle

arcsin
�
sin θð Þ=n. Thus, blue light, with a higher refractive index, will be bent more

strongly than red light, resulting in the well-known rainbow pattern (Fig. G.7).
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G.3.3 Phase Velocity

The phase speed (or phase velocity when considered as a vector) of a wave is the

rate at which the phase of the wave propagates in space. This is the speed at which

the phase of any one frequency component of the wave travels. For such a

component, any given phase of the wave (for example, the crest) will appear to

travel at the phase speed. The phase speed is given in terms of the wavelength λ
(lambda) and period T as

vp ¼ λ

T

Or, equivalently, in terms of the wave’s angular frequency ω and wave number k by

vp ¼ ω

k

In a dispersive medium, the phase speed varies with frequency and is not neces-

sarily the same as the group speed of the wave, which is the rate that changes in

amplitude (known as the envelope of the wave) propagate.

The phase speed of electromagnetic radiation may, under certain circumstances,

(for example anomalous dispersion) exceed the speed of light in a vacuum, but this

does not indicate any superluminal information or energy transfer. It was theoret-

ically described by physicists such as Arnold Summerfield and Léon Brillouin

(Fig. G.8).

G.3.4 Group Velocity

The group velocity of a wave is the velocity with which the overall shape of the

wave’s amplitudes—known as the modulation or envelope of the wave—propa-

gates through space.

For example, imagine what happens if a stone is thrown into the middle of a very

still pond. When the stone hits the surface of the water, a circular pattern of waves

appears. It soon turns into a circular ring of waves with a quiescent center. The ever

expanding ring of waves is the wave group, within which one can discern individual

wavelets of differing wavelengths traveling at different speeds. The longer waves

travel faster than the group as a whole, but they die out as they approach the leading

Fig. G.8 Phase velocity in periodic gravity waves on the surface of deep water. The red dot
moves with the phase velocity, and is located at a fixed wave phase: the crest for the case shown [3]
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edge. The shorter waves travel slower and they die out as they emerge from the

trailing boundary of the group.

The group velocity vg is defined by the equation

vg ¼ ∂ω
∂k

where

ω ¼ is the wave’s angular frequency;

k ¼ is the wave number.

The function ω(k), which gives ω as a function of k, is known as the dispersion

relation. If ω is directly proportional to k, then the group velocity is exactly equal to
the phase velocity. Otherwise, the envelope of the wave will become distorted as it

propagates. This “group velocity dispersion” is an important effect in the propaga-

tion of signals through optical fibers and in the design of high-power, short-pulse

lasers.

Note: The above definition of group velocity is only useful for wave packets,

which is a pulse that is localized in both real space and frequency space. Because

waves at different frequencies propagate at differing phase velocities in dispersive

media, for a large frequency range (a narrow envelope in space) the observed pulse

would change shape while traveling, making group velocity an unclear or useless

quantity (Fig. G.9).

Note: The red dot moves with the phase velocity, and the green dots propagate

with the group velocity. In this deep-water case, the phase velocity is twice the

group velocity. The red dot overtakes two green dots, when moving from the left to

the right of the figure.

New waves seem to emerge at the back of a wave group, grow in amplitude until

they are at the center of the group, and vanish at the wave group front. For surface

gravity waves, the water particle velocities are much smaller than the phase

velocity, in most cases.

G.3.4.1 Physical Interpretation

The group velocity is often thought of as the velocity at which energy or informa-

tion is conveyed along a wave. In most cases this is accurate, and the group velocity

can be thought of as the signal velocity of the waveform. However, if the wave is

travelling through an absorptive medium, this does not always hold. Since the

1980s, various experiments have verified that it is possible for the group velocity

of laser light pulses sent through specially prepared materials to significantly

Fig. G.9 Frequency dispersion in groups of gravity waves on the surface of deep water [3]
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exceed the speed of light in vacuum. However, superluminal communication is not

possible in this case, since the signal velocity remains less than the speed of light. It

is also possible to reduce the group velocity to zero, stopping the pulse, or have

negative group velocity, making the pulse appear to propagate backwards. How-

ever, in all these cases, photons continue to propagate at the expected speed of light

in the medium.

Anomalous dispersion happens in areas of rapid spectral variation with respect

to the refractive index. Therefore, negative values of the group velocity will occur

in these areas. Anomalous dispersion plays a fundamental role in achieving back-

ward propagating and superluminal light. Anomalous dispersion can also be used to

produce group and phase velocities that are in different directions. Materials that

exhibit large anomalous dispersion allow the group velocity of the light to exceed c

and/or become negative23.

G.3.4.2 History

The idea of a group velocity distinct from a wave’s phase velocity was first

proposed by W.R. Hamilton in 1839, and the first full treatment was by Rayleigh

in his “Theory of Sound” in 187724.

G.3.4.3 Matter-Wave Group Velocity

Albert Einstein first explained the wave–particle duality of light in 1905. Louis de

Broglie hypothesized that any particle should also exhibit such a duality. The

velocity of a particle, he concluded then (but may be questioned today, see

above), should always equal the group velocity of the corresponding wave. De

Broglie deduced that if the duality equations already known for light were the same

for any particle, then his hypothesis would hold. This means that

vg ¼ ∂ω
∂k

¼ ∂ E=hð Þ
∂ p=hð Þ ¼

∂E
∂p

where

E is the total energy of the particle,

p is its momentum,

h is the reduced Planck constant.

For a free non-relativistic particle it follows that

vg ¼ ∂E
∂p

¼ ∂
∂p

1

2

p2

m

� �
¼ p

m
¼ v
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where

m is the mass of the particle and

v its velocity.
Also in special relativity we find that

vg ¼ ∂E
∂p

¼ ∂
∂p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þ m2c4

p	 

¼ pc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2c2 þ m2c4
p

¼ p

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p= mcð Þð Þ2 þ 1

q
¼ p

mγ

¼ mvλ

mγ

¼ v

where

m is the rest mass of the particle,

c is the speed of light in a vacuum,

γ is the Lorentz factor.
and v is the velocity of the particle regardless of wave behavior.

Group velocity (equal to an electron’s speed) should not be confused with phase

velocity (equal to the product of the electron’s frequency multiplied by its

wavelength).

Both in relativistic and non-relativistic quantum physics, we can identify the

group velocity of a particle’s wave function with the particle velocity. Quantum

mechanics has very accurately demonstrated this hypothesis, and the relation has

been shown explicitly for particles as large as molecules.

G.4 Angular Frequency

In physics, angular frequency ω (also referred to by the terms angular speed, radial

frequency, circular frequency, orbital frequency, and radian frequency) is a scalar

measure of rotation rate. Angular frequency (or angular speed) is the magnitude of

the vector quantity angular velocity. The term angular frequency vector ~ω is

sometimes used as a synonym for the vector quantity angular velocity

In SI units, angular frequency is measured in radians per second, with units s�1

since radians are unit less.
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One revolution is equal to 2π radians, hence

ω ¼ 2π

T
¼ 2πf ¼ vj j

rj j ðG:6Þ

Where

ω ¼ is the angular frequency or angular speed (measured in radians per second),

T ¼ is the period (measured in seconds),

f ¼ is the ordinary frequency (measured in hertz),

v ¼ is the tangential velocity of a point about the axis of rotation (measured in

meters per second),

r ¼ is the radius of rotation (measured in meters).

Angular frequency is therefore a simple multiple of ordinary frequency. How-

ever, using angular frequency is often preferable in many applications, as it avoids

the excessive appearance of π. In fact, it is used in many fields of physics involving

periodic phenomena, such as quantum mechanics and electrodynamics (Fig. G.10).

For example:

a ¼ �ω2x

Using ‘ordinary’ revolutions-per-second frequency, this equation would be:

a ¼ �4π2f 2x

Another often encountered expression when dealing with small oscillations or

where damping is negligible is:

ω2 ¼ k

m

Where

k ¼ is the spring constant.

m ¼ is the mass of the object.

dq

dq
dt

w =

Fig. G.10 Angular

frequency is a measure

of how fast an object

is rotating around its axis
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This is referred to as the natural frequency.

Angular frequency inside an LC circuit can also be defined as the square root of

the inverse of capacitance (measured in farads), times the inductance of the circuit

(in henrys)

ω ¼
ffiffiffiffiffiffi
1

LC

r

G.5 Wave Number

Wave number is in the physical sciences a property of a wave proportional to the

reciprocal of the wavelength. It can be defined as either

the number of wavelengths per unit distance, that is, 1/λ where λ ¼ wavelength,

or alternatively as 2π/λ, sometimes termed the angular wave number or circular

wave number or, simply wave number.

For electromagnetic radiation, wave number is proportional to frequency and to

photon energy.

Because of this, wave numbers are used as a unit of energy in spectroscopy. In

the SI units, wave number is expressed in units of reciprocal meters (m�1), but in

spectroscopy it is usual to give wave numbers in inverse centimeters (cm�1). For

the special case of an electromagnetic wave,

k � 2π

λ
¼ 2πν

υp
¼ ω

υp
¼ ω

ffiffiffiffiffi
με

p ¼ E

hc

Where ν is the frequency of the wave, υp is the phase velocity of the wave (if it

travels in vacuum, υp ¼ c), ω is the angular frequency of the wave, E is the energy

of the wave, h ¼ h
2π is the reduced Planck constant, and c is the velocity of light in

vacuum. The angular wave number is the magnitude of the wave vector.

For the special case of a matter wave, for example an electron wave, in the

non-relativistic approximation:

k � 2π

λ
¼ p

h
¼

ffiffiffiffiffiffiffiffiffi
2mE

p

h

Here p is the momentum of the particle,m is the mass of the particle, E is the kinetic

energy of the particle, and h is the reduced Planck’s constant.
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Appendix H
Short Course in Heat Conduction

One of the major goals of physics and so as ours in case of laser in particular and its

interaction with materials is to understand the nature of light. Due to the complexity

nature of the light this goal is very difficult to fully achieve but this complication

means that light offers many opportunities for different applications including

optical interferences and in our case response of materials to laser radiation and

its interaction with matter and specifically metallic materials. This leads to dealing

with heat conduction equation in a very complex form, therefore we need to deal

with Heat Transport from aspect of Conduction, Convection and Radiation.

H.1 Fourier Law of Heat Conduction

When there exists a temperature gradient within a body, heat energy will flow from

the region of high temperature to the region of low temperature. This phenomenon

is known as conduction heat transfer, and is described by Fourier’s Law (named

after the French physicist Joseph Fourier),

q ¼ �k∇
*
T

This equation determines the heat flux vector q for a given temperature profile T and

thermal conductivity k. The minus sign ensures that heat flows down the temper-

ature gradient.

Heat Equation (Temperature Determination)

The temperature profile within a body depends upon the rate of its internally-

generated heat, its capacity to store some of this heat, and its rate of thermal

conduction to its boundaries (where the heat is transferred to the surrounding

environment). Mathematically this is stated by the Heat Equation,

© Springer International Publishing Switzerland 2016
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∇
* 2

T � 1

α

∂T
∂t

¼ �1

k
qgen

along with its boundary conditions, equations that prescribe either the temperature

T on, or the heat flux q through, all of the body boundaries

T Ωað Þ ¼ Tprescribed

q Ωbð Þ ¼ qprescribed

Ωa [Ωb ¼ Ω

In the Heat Equation, the power generated per unit volume is expressed by qgen. The
thermal diffusivity α is related to the thermal conductivity k, the specific heat c, and
the density ρ by,

α ¼ k

ρc

For Steady State problems, the Heat Equation simplifies to,

∇
* 2

T ¼ �1

k
qgen

Derivation of the Heat Equation

The heat equation follows from the conservation of energy for a small element

within the body,

heat conducted in + heat generated within ¼ heat conducted + change in energy

stored within

We can combine the heats conducted in and out into one “net heat conducted

out” term to give,

Net heat conducted out ¼ heat generated within – change in energy stored within

Mathematically, this equation is expressed as,

∇
* 2 �q ¼ qgen �

de

dt

The change in internal energy e is related to the body’s ability to store heat by

raising its temperature, given by,
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de

dt
¼ ρc

dT

dt

One can substitute for q using Fourier’s Law of heat conduction from above to

arrive at the Heat Equation,

∇
* � �k∇

*
T

� �
¼ qgen � ρc

dT

dt

�k∇
* 2

T þ ρc
∂T
∂t

¼ qgen

∇
* 2

T � 1

α

∂T
∂t

¼ �1

k
qgen

Blackbody A body with a surface emissivity of 1. Such a body will emit all of the

thermal radiation it can (as described by theory), and will absorb 100%

of the thermal radiation striking it. Most physical objects have surface

emissivities less than 1 and hence do not have blackbody surface

properties.

density, ρ The amount of mass per unit volume. In heat transfer problems, the

density works with the specific heat to determine how much energy a

body can store per unit increase in temperature. Its units are kg/m3.

emissive power The heat per unit time (and per unit area) emitted by an object. For a

blackbody, this is given by the Stefan-Boltzmann relation σ *T4

graybody A body that emits only a fraction of the thermal energy emitted by an

equivalent blackbody. By definition, a graybody has a surface

emissitivy less than 1, and a surface reflectivity greater than zero.

heat flux, q The rate of heat flowing past a reference datum. Its units are W/m2.

internal energy, e A measure of the internal energy stored within a material per unit

volume. For most heat transfer problems, this energy consists just of

thermal energy. The amount of thermal energy stored in a body is

manifested by its temperature.

radiation view factor,
F12

The fraction of thermal energy leaving the surface of object 1 and

reaching the surface of object 2, determined entirely from geometrical

considerations. Stated in other words, F12 is the fraction of object

2 visible from the surface of object 1, and ranges from zero to 1. This

quantity is also known as the Radiation Shape Factor. Its units are

dimensionless.

rate of heat genera-
tion, qgen

A function of position that describes the rate of heat generation within

a body. Typically, this new heat must be conducted to the body

boundaries and removed via convection and/or radiation heat transfer.

Its units are W/m3.

specific heat, c A material property that indicates the amount of energy a body stores

for each degree increase in temperature, on a per unit mass basis. Its

units are J=kg� K.

Stefan-Boltzmann
constant, σ

Constant of proportionality used in radiation heat transfer, whose value

is 5:669� 10�8W=m2 � K4. For a blackbody, the heat flux emitted is

given by the product of σ and the absolute temperature to the fourth

power.

(continued)
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surface emissitivy The relative emissive power of a body compared to that of an ideal

blackbody. In other words, the fraction of thermal radiation emitted

compared to the amount emitted if the body were a blackbody. By

definition, a blackbody has a surface emissivity of 1. The emissivity is

also equal to the absorption coefficient, or the fraction of any thermal

energy incident on a body that is absorbed.

thermal conductivity,
k

A material property that describes the rate at which heat flows within a

body for a given temperature difference. Its units are W=m� k.

thermal diffusivity, α A material property that describes the rate at which heat diffuses

through a body. It is a function of the body’s thermal conductivity and

its specific heat. A high thermal conductivity will increase the body’s

thermal diffusivity, as heat will be able to conduct across the body

quickly. Conversely, a high specific heat will lower the body’s thermal

diffusivity, since heat is preferentially stored as internal energy within

the body instead of being conducted through it. Its units are m2/s

H.1.1 Heat Transport: Conduction, Convection, Radiation

Here we will define and explain each of heat transport conditions such as Conduc-

tion, Convection and Radiation briefly.

H.1.1.1 Conduction

If different parts of an isolated solid are at different temperatures, heat will flow

from the hot places to the cold ones until eventually all is at the same temperature.

By “isolated” here we mean that the solid is not able to exchange heat with the

outside world.

Experimentally, it is found that for most substances the rate of heat flow at any

point is proportional to the temperature gradient—how fast the temperature is

changing with position. To give an example, consider heat flowing down a thin

rod, heated at one end, and assume the rod is wrapped in insulation so all the heat

flows down the rod, none escapes from the surface. The natural unit of heat flow

down the rod is how many joules per second pass a fixed point in the rod. It is found

that:

dQ

dt
/ dT

dx

where Q is in joules, T in degrees Kelvin, x is meters down the rod. The heat flow

rate is then in joules per second, or watts. It is evident from this equation that if heat

is supplied at a steady rate to one end of the rod, and drains from the other end, the

temperature distribution will ultimately settle down to dT=dx ¼ constant, a linear

drop along the rod from one end to the other.
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It is also found experimentally that a rod of double the cross-section carries twice

the heat current at the same temperature difference. (This is also true for electric

current, but remember it is not true for water in a pipe—the “caloric” fluid evidently

doesn’t act like a viscous liquid.)

This makes it possible to define a coefficient of κ thermal conductivity κ for a

particular material by

dQ

dt
¼ κA

dT

dx

for heat flow across an area A (in square meters) for a given temperature gradient

dT/dx.
The units of κ are watts/K�meters. Some values: copper 390, stainless steel

13, glass around 0.8, white pine 0.11, air 0.026.

H.1.1.2 Microscopic Picture of Conduction

When a solid is warmed, the atoms jiggle around more—the heat energy is partially

their kinetic energy of motion, partly the extra energy stores in the springy bonds

between them as a result of their motion. If one end of a solid is heated, the more

vigorously moving atoms there bounce against their neighbors, which then begin to

move more vigorously, and the motion diffuses down the line. Obviously, this

cannot be the whole story, because if we hit one end of the rod, a sound wave travels

down by neighbor hitting neighbor, and moves far faster than heat. A more accurate

picture (for a nonmetal) is that when one end is heated, tiny sound waves (called

phonons) are generated by the fast moving atoms near the surface. These phonons

travel into the solid at the speed of sound, but, unlike the massive compression wave

when the end of the rod is hit, these phonons bounce off impurities or imperfections

in the solid and follow random paths, only a few tens of atomic spaces between hits,

typically. This, then, is very like the diffusion of a molecule in a gas we studied

earlier, and it takes several minutes for heat to make its way through, say, half a

centimeter of glass. The picture is different for metals: the electrons which conduct

electricity so efficiently do the same for heat. However, heat transport by electrons

cannot be understood without quantum mechanics: Pauli’s Exclusion Principle

means only about 1% of the electrons take part in the heat conduction, but it also

means that they travel far faster. The thing to remember at this stage is that the

electrons carry the heat, phonons do too, but make a negligible contribution. As you

might expect, good conductors of electricity are also good conductors of heat. This

is why copper is used in saucepans (also, it doesn’t corrode too badly).

Conductivity in liquids and gases can be measured—but usually heat transport in

fluids is dominated by convection, see below. Exceptions are, for example, a fluid

heated from above, or a pond below 4� Celsius being cooled from above on a winter

night.
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H.1.1.3 American Units

In the real world out there, the units are different. Heat flow (in construction jobs,

for example) is measureds in BTU’s per hour, temperature gradients in degrees

Fahrenheit per inch thickness, and cross-sectional area in square feet!. The R-value
of “thermal resistance” is the inverse of the thermal conductivity. For one square

foot of material, one inch thick, R relates the heat current to the temperature drop by

an Ohm’s Law equation ΔT ¼ IR. Different areas and thicknesses scale in the

obvious way. For a wall made of layers of different materials, the R-values just add.

H.1.1.4 Convection

Convection is gravitationally-induced heat transport, driven by the expansion of a

fluid on heating. The hot expanded fluid has lower density, so will rise to the top of

colder, and therefore denser, fluid. The simplest example is water in a kettle heated

from below: hot water will rise in a central column, spread through the top layer,

cooling, then flow back down around the outside. The pattern becomes more

complicated if a fluid is being heated over a large area, with no obvious center.

Convection cells can arise, each having a pattern like that in the kettle, the cells in a

hexagonal pattern. This can happen in weather: a storm can be such a cell.

However, many patterns are possible: the fluid mechanics is extremely complex.

One important example of convection currents is inside the earth. Such currents

deep inside are believed drive the surface movement of plates, causing earthquakes,

tsunamis, etc.

H.1.1.5 Radiation

Heat from the sun reaches us as radiation, much of it visible light, the rest similar

electromagnetic waves but at wavelengths our eyes are not sensitive to. All bodies

not at absolute zero temperature radiate, at room temperature the radiation is in the

infrared, wavelengths longer than those of the visible spectrum. Microscopically,

the radiation comes about because the oscillating ions and electrons in a warm solid

are accelerating electric charges, and as you will find next semester, such charges

radiate. Different substances radiate with different efficiencies, those that radiate

better also absorb incoming radiation better. A perfect absorber is called a black

body (such perfection is not found in nature, but some things are close). This, then,

is also a perfect radiator. It was found experimentally that for a perfect black body

at an even temperature, the radiant energy output in watts per square meter of

surface went as the fourth power of the absolute temperature:
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P ¼ σT4

P being power per square meter, σ is Stefan’s constant,5:67 � 10�8Watts=sq:m:=K4.

For a given T, the radiant power peaks at a certain wavelength,λmaxT ¼ constant.

This was well established: on heating a piece of metal, say, such as turning a

dimmer on an ordinary light bulb, the first visible radiation is in the red, and an

extremely hot object becomes white or even bluish. However, this was theoretically

incomprehensible without quantum mechanics, and in fact the mystery of black

body radiation led Planck to the first formulation of the idea of the quantum.

H.1.2 Heat Equation with Conduction and Convection

We consider the heat equation on the (0,1) with two extra terms that correspond to

heat conduction and convection.

ut x; tð Þ ¼ k
�
uxx x; tð Þ � 2au x; tð Þx þ bu x; tð Þ� 

0 < x < L, t > 0 ðH:1Þ

u 0; tð Þ ¼ 0 ðH:2Þ

u a; tð Þ ðH:3Þ

u x; 0ð Þ ¼ φ xð Þ ðH:4Þ

There are many different ways to approach this problem given the boundary and

initial condition and one would be able to apply separation of variable directly. The

disadvantage to this is that one gets a more complicated ODE for X(x) and there is a
more difficult analysis of the eigenvalue and eigenvectors.

We will take a different approach which allows us to use our earlier work after a

change of dependent variable. So to this end let us define another variable such as

ϑ(x, t) via

u x; tð Þ ¼ eaxþβtϑ x; tð Þ, β ¼ k b� a2ð Þ ðH:5Þ

Thus we have

ϑ x; tð Þ ¼ e� axþβtð Þu x; tð Þ

and we can compute
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ϑt � kϑxx¼ e� axþβtð Þ �βuþ utð Þ � k
�
e� axþβtð Þ �auþ uxð Þ� 

x

¼ e� axþβtð Þ �βuþ utð Þ � k �a �auþ uxð Þ þ �aux þ uxxð Þ½ �f g
¼ e� axþβtð Þ ut � k uxx � 2aux þ a2uð Þ þ βu½ �
¼ e� axþβtð Þ ut � k uxx � 2aux þ a2uþ a2u b� a2ð Þuð Þ½ �
¼ e� axþβtð Þ ut � k uxx � aux þ a2uþ buð Þ½ � ¼ 0

Furthermore

ϑ 0; tð Þ ¼ e�βtu 0; tð Þ ¼ 0, ϑ 1; tð Þ ¼ e�a�βtu 1; tð Þ ¼ 0

and

ϑ x; 0ð Þ ¼ e�axu x; 0ð Þ ¼ e�axφ xð Þ

Therefore, ϑ(x, t) is the solution of the following?

ϑt ¼ kϑxx

ϑ 0; tð Þ ¼ 0 and ϑ 1; tð Þ ¼ 0

ϑ x; 0ð Þ ¼ e�axφ xð Þ

With λn ¼ � nπð Þ2 the solution to this problem is

ϑ x; tð Þ ¼
X1
n¼1

bne
λnt sin nπxð Þ with bn2

ð1
0

e�axφ xð Þ sin nπxð Þ dx

Finally our solution to Eqs. (H.1)–(H.4) can be written as

u x; tð Þ ¼ eaxþβt
X1
n¼1

bne
λnt sin nπxð Þ

H.2 Solving Heat Equation using Different Methods

For simplicity of this approach we deal with solving Heat Conduction in the

Cartesian Coordinate System and we do it for one-dimensional case and then

extended it to more variables (3D) and other coordinate systems. In this section

we examine the solution of boundary-value problems of heat conduction in the

Cartesian coordinate system for the 1D, 2D, and 3D finite, semi-finite, and infinite
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regions. Separation of Variables Method will be utilized, so long as the problem

falls within Homogeneous type Boundary-Value Problems. The Integral-Transform

technique such as Fourier, Laplace and other transformation will be applied for the

solution of nonhomogeneous problems.

As we said the method of separation of variables has been used in the solution of

homogeneous heat conduction problem. The multidimensional steady-state heat

conduction problems with no heat flux or generation can also be solved with this

method if only one of the boundary conditions is nonhomogeneous; Problem

involving more than one non-homogeneous boundary conditions can be split up

into simpler problems each containing only one nonhomogeneous boundary

condition

H.2.1 Separation of Variables Method

The method of Separation of Variables cannot always be used and even when it can

be used it will not always be possible to get much past the first step in the method.

However, it can be used to easily solve the 1D heat equation with no sources, the 1D

wave equation, and the 2D version of Laplace’s Equation, ∇2T ¼ 0.

In order to use the method of separation of variables we must be working with a

linear homogenous partial differential equations with linear homogeneous bound-

ary conditions. At this point we’re not going to worry about the initial condition

(s) because the solution that we initially get will rarely satisfy the initial condition

(s). As we’ll see however there are ways to generate a solution that will satisfy

initial condition(s) provided they meets some fairly simple requirements.

The method of separation of variables relies upon the assumption that a function

of the form,

T x; tð Þ ¼ X xð ÞY tð Þ ðH:6Þ

will be a solution to a linear homogeneous partial differential equation in x and

t. This is called a product solution and provided the boundary conditions are also

linear and homogeneous this will also satisfy the boundary conditions. However, as

noted above this will only rarely satisfy the initial condition, but that is something

for us to worry about in the next section.

Now, before we get started on some examples there is probably a question that

we should ask at this point and that is: Why?. Why did we choose this solution and

how do we know that it will work? This seems like a very strange assumption to

make. After all there really isn’t any reason to believe that a solution to a partial

differential equation will in fact be a product of a function of only x’s and a function
of only t’s. This seems more like a hope than a good assumption/guess.

Unfortunately the best answer is that we chose it because it will work. As we’ll

see it works because it will reduce our partial differential equation down to two

ordinary differential equations and provided we can solve those then we’re in
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business and the method will allow us to get a solution to the partial differential

equations [1].

So, let’s do a couple of examples to see how this method will reduce a partial

differential equation down to two ordinary differential equations.

Example 1:

Use Separation of Variables on the following Partial Differential Equation.

∂T x; Tð Þ
∂t

¼ k
∂2

T x; tð Þ
∂x2

Initial Condition I:C:T x; 0ð Þ ¼ f xð Þ

Boundary Condition:B:C:
T 0; tð Þ ¼ 0

T L; tð Þ ¼ 0

Solution:

So, we have the heat equation with no sources, fixed temperature boundary

conditions (that are also homogeneous) and an initial condition. The initial

condition is only here because it belongs here, but we will be ignoring it until

we get to the next section.

The method of separation of variables tells us to assume that the solution

will take the form of the product,

T x; tð Þ ¼ X xð ÞY tð Þ

so all we really need to do here is plug this into the differential equation and

see what we get.

∂
∂t

X xð ÞY tð Þð Þ ¼ k
∂2

∂x2
X xð ÞY tð Þð Þ

X xð Þ∂Y tð Þ
∂t

¼ kY tð Þ∂
2
X xð Þ
∂x2

As shown above we can factor the X(x) out of the time derivative and we can

factor the Y(t) out of the spatial derivative. Also notice that after we’ve

factored these out we no longer have a partial derivative left in the problem.

In the time derivative we are now differentiating only Y(t) with respect to t

(continued)
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and this is now an ordinary derivative. Likewise, in the spatial derivative we

are now only differentiating X(x) with respect to x and so we again have an

ordinary derivative.

At this point it probably doesn’t seem like we’ve done much to simplify the

problem. However, just the fact that we’ve gotten the partial derivatives down

to ordinary derivatives is liable to be good thing even if it still looks like

we’ve got a mess to deal with.

Speaking of that apparent (and yes I said apparent) mess, is it really the

mess that it looks like?. The idea is to eventually get all the t’s on one side of
the equation and all the x’s on the other side. In other words we want to

“separate the variables” and hence the name of the method. In this case let’s

notice that if we divide both sides by X(x)Y(t) we get want we want and we

should point out that it won’t always be as easy as just dividing by the product

solution. So, dividing out gives us,

1

Y

dY

dt
¼ k

1

X

d2X

dx2
) 1

kY

dY

dt
¼ 1

X

d2X

dx2

Notice that we also divided both sides by k. This was done only for conve-

nience down the road. It doesn’t have to be done and nicely enough if it turns

out to be a bad idea we can always come back to this step and put it back on

the right side. Likewise, if we don’t do it and it turns out to maybe not be such

a bad thing we can always come back and divide it out. For the time being

however, please accept our word that this was a good thing to do for this

problem. We will discuss the reasoning for this after we’re done with this

example.

Now, while we said that this is what we wanted it still seems like we’ve got

a mess. Notice however that the left side is a function of only t and the right

side is a function only of x as we wanted. Also notice these two functions

must be equal.

Let’s think about this for a minute. How is it possible that a function of

only t’s can be equal to a function of only x’s regardless of the choice of t and/
or x that we have?. This may seem like impossibility until you realize that

there is one way that this can be true. If both functions (i.e., both sides of the

equation) were in fact constant and not only a constant, but the same constant

then they can in fact be equal.

So we must have:

1

kY

dY

dt
¼ 1

X

d2X

dx2
¼ �λ

where the �λ is called the Separation Constant and is arbitrary.

(continued)
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The next question that we should now address is why the minus sign?.

Again, much like the dividing out the k above, the answer is because it will be

convenient down the road to have chosen this. The minus sign doesn’t have to

be there and in fact there are times when we don’t want it there.

So how do we know it should be there or not?. The answer to that is to

proceed to the next step in the process (which we’ll see in the next section)

and at that point we’ll know if would be convenient to have it or not and we

can come back to this step and add it in or take it our depending what we

chose to do here.

Okay, let’s proceed with the process. The next step is to acknowledge that

we can take the equation above and split it into the following two ordinary

differential equations.

dY

dt
¼ �kλY

d2X

dx2
¼ �λX

Both of these are very simple differential equations; however, because we

don’t know what λ is, we actually can’t solve the spatial one yet. The time

equation however could be solved at this point if we wanted to, although that

won’t always be the case. At this point we don’t want to actually think about

solving either of these yet however.

The last step in the process that we’ll be doing in this section is to also

make sure that our product solution,T x; tð Þ ¼ X xð ÞY tð Þ, satisfies the boundary
conditions, so let’s plug it into both equations of those.

T 0; tð Þ ¼ X 0ð ÞY tð Þ ¼ 0 T L; tð Þ ¼ X Lð ÞY tð Þ ¼ 0

Let’s consider the first one for a second. We have two options here. Either

X 0ð Þ ¼ 0 or Y tð Þ ¼ 0 for every t. However, if we have Y tð Þ ¼ 0 for every t

then we’ll also haveT x; tð Þ ¼ 0, i.e. the trivial solution, and as we discussed in
the previous section this is definitely a solution to any linear homogeneous

equation we would really like a non-trivial solution.

Therefore we will assume that in fact we must have X 0ð Þ ¼ 0. Likewise,

from the second boundary condition we will get Y tð Þ ¼ 0 to avoid the trivial

solution. Note as well that we were only able to reduce the boundary

conditions down like this because they were homogeneous. Had they not

been homogeneous we could not have done this.

So, after applying separation of variables to the given partial differential

equation we arrive at a 1st order differential equation that we’ll need to solve

for and a 2nd order boundary value problem that we’ll need to solve for X(x).
The point of this section however is just to get to this point and we’ll hold off

solving these until the next section.

(continued)
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Let’s summarize everything up that we’ve determined here.

dY

dt
¼ �kλY

d2X

dx2
þ λX ¼ 0

X 0ð Þ ¼ 0 X Lð Þ ¼ 0

and note that we don’t have a condition for the time differential equation and

is not a problem. Also note that we rewrote the second one a little.

The time dependent equation can really be solved at any time, but since we

do not know what λ is yet let’s hold off on that one. Also note that in many

problems only the boundary value problem can be solved at this point so do

not always expect to be able to solve either one at this point.

The spatial equation is a Boundary Value Problem (BVP) and we know

from our work in Sect. 1.10 Appendix C that it will only have non-trivial

solution (which we want) for certain values of λ, which we will recall are

called eigenvalue. Once we have those we can determine the non-trivial

solutions for each λ, i.e. eigenfunctions.
Now, we actually solved the spatial problem,

d2X

dx2
þ λX ¼ 0

X 0ð Þ ¼ 0 X Lð Þ ¼ 0

In Example 1 of the Sect. 3.0 of Appendix C for L ¼ 2π. So, because we have
solved this once for a specific L and the work is not all that much different for

a general L we are not going to put a lot of effort here and if you need to

review just go to Example 1 from Sect. 3.0 of Appendix C.

We have three cases to deal with as follows:

λ > 0

In this case we know the solution to the differential equation is,

X xð Þ ¼ c1 cos
ffiffiffiffiffi
λx

p	 

þ c2 sin

ffiffiffiffiffi
λx

p	 

Applying again the first boundary condition gives,

0 ¼ X 0ð Þ ¼ c1
Now applying the second boundary condition, and using the above result of

course, gives,

(continued)
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0 ¼ X Lð Þ ¼ c2 sin L
ffiffiffi
λ

p	 

Now, we are after nontrivial solutions and this means we must have:

sin L
ffiffiffi
λ

p� � ¼ 0 ) Xn xð Þ ¼ sin
nπx

L

	 

n ¼ 1, 2, 3, . . .

Note that we did not need the c2 in the eigenfunction as it will just get

absorbed into another constant that we will picking up later on.

λ > 0

The solution to the differential equation in this case is

X xð Þ ¼ c1 þ c2x

Applying the boundary conditions gives,

0 ¼ X 0ð Þ ¼ c1 0 ¼ X Lð Þ ¼ c2L c2 ¼ 0

So, in this case the only solution is the trivial solution and so λ ¼ 0 is not an

eigenvalue for this boundary value problem.

λ > 0

Here the solution to the differential equation is:

X xð Þ ¼ c1cosh
ffiffiffiffiffiffiffiffiffi
�λx

p	 

þ c2sinh

ffiffiffiffiffiffiffiffiffi
�λx

p	 

Applying the first boundary condition gives,

0 ¼ X 0ð Þ ¼ c1

and applying the second gives,

0 ¼ X Lð Þ ¼ c2sinh L
ffiffiffiffiffiffi
�λ

p	 

So, we are assuming λ < 0 and so L

ffiffiffiffiffiffi�λ
p 6¼ 0 and this means

sinh L
ffiffiffiffiffiffi�λ

p� � 6¼ 0. We therefore we must have and so we can only get the

trivial solution in this case.

(continued)
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Therefore, there will be no negative eigenvalues for this boundary value

problem. The complete list of eigenvalues and eigenfunctions for this prob-

lem are then,

λn ¼ nπ
L

� �2
Xn xð Þ ¼ sin

nπx

L

	 

n ¼ 1, 2, 3, . . .

Now let us solve the time differential equation,

dY

dt
¼ kλnY

And note that even though we know λ we are not going to plug it in quite yet

to keep the mess to a minimum.We will however now use λn to remind us that

we actually have an infinite number of possible values here. This is a simple

linear (and separable for that matter) 1st order differential equation and so we

will let you verify that the solution is:

Y tð Þ ¼ ce�kλnt ¼ ce�k nπ

L

	 
2
t

Now that we have both ODEs solved we can finally write down a solution.

Note however that we have in fact found infinitely many solutions since there

are infinitely many solutions (i.e. eigenfunctions) to the spatial problem. Our

solution is a product of both solutions are then

un x; tð Þ ¼ Bn sin
nπx

L

	 

e�k nπ

Lð Þ2t n ¼ 1, 2, 3, . . .

We’ve denoted the product solution un to acknowledge that each value of

n will yield a different solution. Also note that we’ve changed the c in the

solution to the time problem to Bn and to denote the fact that it will probably

be different for each value of n as well and because had we kept the c2 with
the eigenfunction we’d have absorbed it into the c to get a single constant in

our solution. The function above will satisfy the heat equation and the

boundary condition of zero temperature on the ends of the bar.

Okay, so just what have we learned here?. By using separation of variables we

were able to reduce our linear homogeneous partial differential equation with linear

homogeneous boundary conditions down to an ordinary differential equation for

one of the functions in our product solution (Eq. H.6), Y(t) in this case, and a

boundary value problem that we can solve for the other function, X(x) in this case.
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Note as well that the boundary value problem is in fact an eigenvalue/

eigenfunction problem. When we solve the boundary value problem we will be

identifying the eigenvalues, λ, that will generate non-trivial solutions the their

corresponding eigenfunctions. Again, we’ll look into this more in the next section.

At this point all we want to do is identify the two ordinary differential equations that

we need to solve to get a solution.

Before we do a couple of other examples we should take a second to address the

fact that we made two very arbitrary seeming decisions in the above work. We

divided both sides of the equation by k at one point and chose to use�λ instead of λ
as the separation constant.

Both of these decisions were made to simplify the solution to the boundary value

problem we got from our work. The addition of the k in the boundary value problem
would just have complicated the solution process with another letter we’d have to

keep track of so we moved it into the time problem were it won’t cause as many

problems in the solution process. Likewise, we chose �λ because we’ve already

solved that particular boundary value problem (albeit with a specific L, but the work
will be nearly identical) when we first looked at finding eigenvalues and

eigenfunctions. This by the way was the reason we rewrote the boundary value

problem to make it a little clearer that we have in fact solved this one already.

We can now at least partially answer the question of how do we know to make

these decisions. We wait until we get the ordinary differential equations and then

look at them and decide of moving things like the k or which separation constant to
use based on how it will affect the solution of the ordinary differential equations.

There is also, of course, a fair amount of experience that comes into play at this

stage. The more experience you have in solving these easier it often is to make these

decisions.

Again, we need to make clear here that we’re not going to go any farther in this

section than getting things down to the two ordinary differential equations. Of

course we will need to solve them in order to get a solution to the partial differential

equation but that is the topic of the remaining sections in this chapter. All we’ll say

about it here is that we will need first to solve the boundary value problem, which

will tell us what λ must be and then we can solve the other differential equation.

Once that is done we can then turn our attention to the initial condition.

Okay, we need to work a couple of other examples and these will go a lot quicker

because we won’t need to put in all the explanations. After the first example this

process always seems like a very long process but it really isn’t. It just looked that

way because of all the explanation that we had to put into it.
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Example 2:

Use Separation of Variable on the following partial differential equation

∂u
∂t

¼ k
∂2

u

∂t2

u x; 0ð Þ ¼ f xð Þ ∂u 0; tð Þ
∂x

¼ 0
∂u L; tð Þ

∂x
¼ 0

Solution:

In this case we are looking at the heat equation with no sources and perfectly

insulated boundaries

So, we will start off by again assuming that our product solution will have

the form

u x; tð Þ ¼ φ xð ÞT tð Þ

and because the differential itself has not changed here we will get the same

result from plugging this in as we did in the previous example so the two

ordinary differential equation that we will need to solve are:

dT

dt
¼ �kλT

d2φ

dx2
¼ �λφ

Now, the point of this example was really to deal with the boundary condi-

tions so let us plug the product solution into them to get,

∂ T tð Þφ xð Þð Þ 0; tð Þ
∂x

¼ 0
∂ T tð Þφ xð Þð Þ L; tð Þ

∂x
¼ 0

T tð Þ dφ 0ð Þ
dx

¼ 0 T tð Þ dφ Lð Þ
dx

¼ 0

Now, just as with the first example if we want to avoid the trivial solution and

so we cannot have T tð Þ ¼ 0 for every t and so we must have

dφ 0ð Þ
dx

¼ 0
dφ Lð Þ
dx

¼ 0

Here is a summary of what we get by applying separation of variables to this

problem.

(continued)

Appendix H: Short Course in Heat Conduction 783



dT

dt
¼ �kλT

d2φ

dx2
þ λφ ¼ 0

dφ 0ð Þ
dx

¼ 0
dφ Lð Þ
dx

¼ 0

Next, let us see what we get if use periodic boundary conditions with the heat

equation.

Example 3:

Use Separation of Variable on the following partial differential equation

∂u
∂t

¼ k
∂2

u

∂t2

u x; 0ð Þ ¼ f xð Þ u �L, tð Þ ¼ u L; tð Þ ∂u �L, tð Þ
∂x

¼ ∂u L; tð Þ
∂x

Solution:

First note that these boundary conditions really are homogeneous boundary

conditions. If we rewrite them as,

u �L, tð Þ � u L; tð Þ ¼ 0
∂u �L, tð Þ

∂x
� ∂u L; tð Þ

∂x
¼ 0

It is a little easier to see.

Now, again we have done this partial differential equation so we will start

off with,

u x; tð Þ ¼ φ xð ÞT tð Þ

and the two ordinary differential equations that we will need to solve are:

dT

dt
¼ �kλT

d2φ

dx2
¼ �λφ

Plugging the product solution into the rewritten boundary conditions gives,

(continued)
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T tð Þφ �Lð Þ � T tð Þφ Lð Þ ¼ T tð Þ φ �Lð Þ � φ Lð Þ½ � ¼ 0

T tð Þφ �Lð Þ
dx

� T tð Þφ Lð Þ
dx

¼ T tð Þ dφ �Lð Þ
dx

� dφ Lð Þ
dx

� �
¼ 0

And we can see that we will only get non-trivial solution if,

φ �Lð Þ � φ Lð Þ ¼ 0
dφ �Lð Þ

dx
� dφ Lð Þ

dx
¼ 0

φ �Lð Þ ¼ φ Lð Þ dφ �Lð Þ
dx

¼ dφ Lð Þ
dx

So, here is what we get by applying separation of variables to this problem

dT

dt
¼ �kλT

d2φ

dx2
þ λφ ¼ 0

φ �Lð Þ ¼ φ Lð Þ φ �Lð Þ
dx

¼ φ Lð Þ
dx

http://tutorial.math.lamar.edu/Classes/DE/SolvingHeatEquation.

aspx#PDE_HeatEqn_Ex1 [2]

H.2.2 Solving Heat Equation using Fourier Transform
Method

The heat equation is a partial differential equation. Prior to Fourier’s work, there

was no known solution to the heat equation in a general situation, although

particular solutions were known if the heat source behaved in a simple way, in

particular, if the heat source was a sine or cosine wave. These simple solutions are

now sometimes called eigensolutions. Fourier’s idea was to model a complicated

heat source as a superposition (or linear combination) of simple sine and cosine

waves, and to write the solution as a superposition of the corresponding

eigensolutions. This superposition or linear combination is called the Fourier series.

Although the original motivation was to solve the heat equation, it later became

obvious that the same techniques could be applied to a wide array of mathematical

and physical problems

Appendix H: Short Course in Heat Conduction 785



Example 1: Use finite Fourier transforms to solve

∂2
u x; tð Þ
∂x2

¼ ∂u x; tð Þ
∂t

B:C:
U o; tð Þ ¼ 0

U 4; tð Þ ¼ 0

(

I:C: U x; 0ð Þ ¼ 2xf where 0 < x < 4and t > 0

Solution: Take the finite Fourier Sine Transform (with L ¼ 4) (See Appendix E

and Sect. 1.15) of both sides of the partial differential equation to obtainð4
0

∂2
U x; tð Þ
∂x2

sin
nπx

4
dx ¼

ð4
0

∂U x; tð Þ
∂t

sin
nπx

4
dx

Writing u ¼ sine Tf g and using [See Appendix E and Sect. 1.21 Example 2(a)] with

the conditions U 0; tð Þ ¼ 0 and U 4; tð Þ ¼ 0, we find

du

dt
¼ � n2π2

16
u ðH:7Þ

where u ¼ u n; tð Þ.
Taking the finite Fourier sine transform of the conditionT x; 0ð Þ ¼ 2x, we have as

in Example 2 (a), Sect. 1.12 of Appendix E

u n; 0ð Þ ¼ f sine 2xð Þ ¼
ð4
0

2x sin
nπx

4

	 

dx

¼ 2xð Þ � cos nπx=4ð Þ
nπ=4

	 

� 2

� sin nπx=4ð Þ
n2π2=16

	 
n o���4
0

¼ 32 1� cos nπð Þð Þ
nπ

ðH:8Þ

Solving the differential Eq. (H.8), we find if c is an arbitrary constant, then we have

u ¼ u n; tð Þ ¼ ce�n2π2t=16 ðH:9Þ

But if use the initial condition for t ¼ 0, then c ¼ u n; 0ð Þ which from (H.11) and

(H.12) results;

u ¼ 32 1� cos nπð Þð Þ
nπ

e� n2π2ð Þt=16
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Thus from Example 1 (a) Sect. 1.12 of Appendix E, the inverse Fourier sine

transform is

U x; tð Þ ¼ 2

4

X1
n¼1

32 1� cos nπð Þð Þ
nπ

e� n2π2ð Þt=16

¼ 2

4

X1
n¼1

1� cos nπð Þð Þ
n

e� n2π2ð Þt=16

Physically U(x, t) represents the temperature at any point x at any time t in a solid

bounded by the point x ¼ 0 and x ¼ 4. The conditions u 0; tð Þ ¼ 0 and u 4; tð Þ ¼ 0

express the fact that the ends are kept at temperature zero, while u x; 0ð Þ ¼ 2x
express the initial temperature as a function of x. Equivalently, the solid can be

replaced by a bar on the axis with endpoint at x ¼ 0 and x ¼ 4 whose surface is

insulated.

Example 4: Solve ∂U
∂t ¼ ∂2

U
∂x2 for x > 0, t > 0 subject to the condition

U 0; tð Þ ¼ 0 U x; 0ð Þ ¼
1 0 < x < 1

0 x � 1

(
U x; tð Þ isbounded

Taking the Fourier sine transform of both sides of the given partial differential

equation, we find ð1
0

∂U x; tð Þ
∂t

sin λxð Þdx ¼
ð1
0

∂2
U

∂x2
sin λxð Þdx ðH:10Þ

Then if u ¼ u λ; tð Þ ¼
ð1
0

U x; tð Þ sin λxð Þdx

This becomes
du

dt
¼ ∂U x; tð Þ

∂x
sin λxð Þ � λU x; tð Þ cos λxð Þ

� �����1
0

�λ2
ð1
0

U x; tð Þ sin λxð Þdx ¼ λU 0; tð Þ � λ2u

ðH:11Þ

on integrating the right hand side of Eq. (H.10) by parts and assuming that u(x, t)
and U x; tð Þ=∂x approach zero as x ! 1.

From the condition for U(x, 0), we have on taking the Fourier sine transform

U λ; 0ð Þ ¼
ð1
0

U x; 0ð Þ sin λxð Þdx

¼
ð1
0

sin λxð Þdx ¼ 1� cos λ

λ

ðH:12Þ
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Solving Eq. (H.11) subject to the condition Eq. (H.12) and U 0; tð Þ ¼ 0, we find

u λ; tð Þ ¼ 1� cos λ

λ
e� λ2t

Then taking the inverse Fourier sine transform, we find the required solution

u λ; tð Þ ¼ 2

π

ð1
0

1� cos λ

λ
e�λ2t sin λxð Þdxdλ

Physically, this can represent the temperature in a solid x > 0. See Example 1 above

H.2.3 Solving Heat Equation using Laplace Transform
Method

Partial differential equations, like their one-variable counterpart, ordinary differen-

tial equations, are ubiquitous throughout the scientific spectrum. However, they are,

in general, more difficult to

solve. Yet here again, we may apply the Laplace transform method to solve

PDEs by reducing the initial problem to a simpler ODE.

Partial differential equations come in three types. For a function of two variables

u ¼ u x; tð Þwhere we have replace Twith u, the general second-order linear PDE has

the form Equation C.75 of Sect. 6.1 of Appendix C and in this section we are much

interested in parabolic aspect of PDE which is in the form of one-dimensional Heat
Equation as follows [3];

∂u x; tð Þ
∂t

¼ c
∂2

u x; tð Þ
∂x2

parabolic formð Þ ðH:13Þ

In its simple form, we have assumed the above partial differential equation is

function of one variable x and it is a linear class.

Laplace Transform Method is thoroughly explained in Sect. 2.0 Appendix E and

we remind of it here in a very brief steps. We consider the function u ¼ u x; tð Þ,
where t � 0 is a time variable. Denote by U(x, s) the Laplace transform of u with
respect to t, that is, to say

U x; sð Þ ¼ £ u x; tð Þf g ¼
ð1
0

e�stu x; tð Þdt

Here x is the “gun transformed variable”. There are few examples that are given in

Appendix E under Sect. 2 that readers should refer to them for more familiarity.

Here we provide few example given by J. Schiff [3].
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The heat flow in a finite or semi-infinite thin rod is governed by the PDE

∂u x; tð Þ
∂t

¼ c
∂2

u x; tð Þ
∂x2

where c is a constant (called the diffusitivity), and u(x, t) is the temperature at

position x and time t over cross-section of this rod. The temperature over this

cross-section at is taken to be uniform (See Fig. H.1).

Example 5: Solve

∂u x; tð Þ
∂t

¼ ∂2
u x; tð Þ
∂x2

x > 0 and t > 0 Heat PDE ðH:14Þ

For Boundary and Initial conditions as follows:

ið Þf u x; 0ð Þ ¼ 1 for x > 0 IntitialCondition I: C:ð Þ

iið Þ ∂u 0; tð Þ
∂x

¼ 0 for t > 0

iiið Þ lim
x!1 u x; tð Þ ¼ 1

8><>: BoundaryCondition B: C:ð Þ

Solution: Take Laplace Transform of above heat PDE and Eq. (H.14) yields

d2U x; sð Þ
dx2

¼ sU x; sð Þ � u x; 0ð Þ ¼ sU x; sð Þ � 1 ðH:15Þ

Laplace transform of B.C. (ii) and (iii) provides

O x

Fig. H.1 Finite or semi-

infinite thin rod
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U 0; sð Þ ¼ £ u 0; tð Þf g ¼ 0

lim
x!1U x; sð Þ ¼ lim

x!1 £ u x; tð Þf g ¼ £ lim
x!1 u x; tð Þ
n o

¼ 1

s

Now Eq. (H.15) is just and Ordinary Differential Equation (ODE) whose solu-

tion is given by:

U x; sð Þ ¼ c1e
ffiffiffi
sx

p
þ c2e

� ffiffiffi
sx

p
þ 1

s

The boundary condition lim
x!1U x; sð Þ ¼ 1=s implies c1 ¼ 0 and U 0; sð Þ ¼ 0

implies

U x; sð Þ ¼ 1

s
� e

ffiffiffi
sx

p

s

By Example 1 Sect. 2.10 of Appendix E we have

u x; tð Þ ¼ erf
x

2
ffiffi
t

p
� �

¼ 2ffiffiffi
π

p
ðx=2 ffitp

0

e�u2du

Direct calculation shows that indeed satisfies Eq. (H.14) above and that the

initial and boundary conditions are satisfied.

Example 6: Solve

∂u x; tð Þ
∂t

¼ ∂2
u x; tð Þ
∂x2

indomain x > 0 and t > 0

For

ið Þf u x; 0ð Þ ¼ f xð Þ I:C:

iið Þ u 0; tð Þ ¼ 0 for t > 0

iiið Þ u 1; tð Þ ¼ 0for t > 0

(

d2U x; sð Þ
dx2

� sU x; sð Þ ¼ �f xð Þ

Y xð Þ ¼ U x; sð Þ
Y 0ð Þ ¼ U 0; sð Þ ¼ 0
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Solution: The transformed equation is

d2U x; sð Þ
dx2

� sU x; sð Þ ¼ 0

Whose solution is given by

U x; sð Þ ¼ c2e
� ffiffiffi

sx
p

in view of condition (iii). By (ii)

U 0; sð Þ ¼ £ f tð Þf g ¼ F sð Þ

so that c2 ¼ F sð Þ and

U x; sð Þ ¼ F sð Þe�
ffiffiffi
sx

p

Invoking the fact that £�1 e�a
ffiffi
s

p� � ¼ a
2
ffiffiffiffiffi
πt3

p e�a=4t for a > 0 and the convolution

theorem, we have the following results:

u x; tð Þ ¼
ð t
0

x

2
ffiffiffiffiffiffiffi
πτ3

p e�x2=4τf t� τð Þdτ

Making the substitution σ2 ¼ x2=4τ then we have:

u x; tð Þ ¼ 2ffiffiffi
π

p
ð1
x=2

ffi
t

p
x

2
ffiffiffiffiffiffiffi
πτ3

p e�σ2 f t� x2

4σ2

� �
dσ

Which is the desired solution.

Example 7 Solve

∂u x; tð Þ
∂t

¼ ∂2
u x; tð Þ
∂x2

indomain0 < x < 1and t > 0

For

ið Þ u x; 0ð Þ ¼ f xð Þf I:C:

iið Þ u 0; tð Þ ¼ 0 for t > 0

iiið Þ u 1; tð Þ ¼ 0for t > 0

(
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Solution Therefore,

d2U x; sð Þ
dx2

� sU x; sð Þ ¼ �f xð Þ

Here we solve this ODE by the Laplace transform method as well. To this end,

let Y xð Þ ¼ U x; sð Þ. Then Y 0ð Þ ¼ U 0; sð Þ ¼ 0, Y 1ð Þ ¼ U 1; sð Þ ¼ 0. Setting a2 ¼ s,
we obtain

σ2£ Yð Þ � σY 0ð Þ � Y
0
0ð Þ � a2σ Yð Þ ¼ �£ fð Þ ¼ �F σð Þ

that is

£ Yð Þ ¼ Y
0
0ð Þ

σ2 � a2
� F σð Þ
σ2 � a2

Inverting gives

Y xð Þ U x; sð Þ ¼ Y
0
0ð Þsinhax
a

� 1

a

ð x
0

f uð Þ sin ga x� uð Þdu

¼ Y
0
0ð Þsinh ffiffiffiffiffi

sx
pffiffi

s
p � 1ffiffi

s
p
ð x
0

f uð Þsinh ffiffi
s

p
x� uð Þdu

Thus,

U x; sð Þ ¼
ð1
0

f uð Þ
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sxsinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 1� uð Þpq

ffiffi
s

p
sinh

ffiffi
s

p du

�
ð x
0

f uð Þ sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s x� uð Þp ffiffi
s

p du

We can write

ð1
0

¼
ð x
0

þ
ð1
x

and use the fact that sinh z� wð Þ
sinh zcoshw� cosh zsinhw
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Then

U x; sð Þ ¼
ð x
0

f uð Þ
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sxsinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� uð Þpq

ffiffi
s

p
sinh

ffiffi
s

p � sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 1� uð Þp ffiffi
s

p
24 35du

þ
ð x
0

f uð Þ sinh
ffiffi
s

p
xsinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 1� uð Þpffiffi

s
p

sinh
ffiffi
s

p du

¼
ð x
0

f uð Þ sinh
ffiffi
s

p
1� xð Þsinh ffiffiffiffiffi

su
pffiffi

s
p

sinh
ffiffi
s

p du

þ
ð1
0

f uð Þ sinh
ffiffi
s

p
xsinh

ffiffi
s

p
1� uð Þffiffi

s
p

sinh
ffiffi
s

p du

To determine the inverse we use the complex inversion formula (See Appendix

D Sect. 30.3). When it is applied to the first integral, we have:

1

2πi

ðx0þi00

x0�i00

ets
ð x
0

f uð Þ sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 1� xð Þsinh ffiffiffiffiffi

su
pp ffiffi

s
p

sinh
ffiffi
s

p du

( )
ds ¼

X
Res

There are simple poles in this case at s0 ¼ 0 and sn ¼ �n2π2 n� 1, 2, 3, � � �
Res 0ð Þ ¼ lim

s!0
s

ð x
0

f uð Þ sinh
ffiffi
s

p
1� xð Þsinh ffiffiffiffiffi

su
pffiffi

s
p

sinh
ffiffi
s

p du ¼ 0

Res �n2π2ð Þ

¼ lim
s!�n2π2

sþ n2π2
� �

ets
ð x
0

f uð Þ sinh
ffiffi
s

p
1� xð Þsinh ffiffiffiffiffi

su
pffiffi

s
p

sinh
ffiffi
s

p du

¼ lim
s!�n2π2

sþ n2π2

sinh
ffiffi
s

p lim
s!�n2π2

ets
ð x
0

f uð Þ sinh
ffiffi
s

p
1� xð Þsinh ffiffiffiffiffi

su
pffiffi

s
p

sinh
ffiffi
s

p du

¼ 2e�n2π2t

ð x
0

f uð Þ sinh nπið Þ 1� xð Þ½ �sinh nπið Þu
cosh nπið Þ du

¼ 2e�n2π2t

ð x
0

f uð Þ sinh nπ 1� xð Þ½ � sin nπu
� cos nπ

du

Where we have used the properties from Appendix D with z ¼ xþ iy
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sinhz ¼ cos ysinhyþ i sin y cosh x

coshz ¼ cos ycosh xþ i sin y sinhx

To obtain the last equality. Therefore, we have

X
Res ¼ 2

X1
n�1

e�n2π2t

ð x
0

f uð Þ sin nπudu
� �

sin nπx

Similarly, the inverse of the second integral is given by:

2
X1
n¼1

e�n2π2t

ð1
0

f uð Þ sin nπudu
� �

sin nπx

Finally

u x; tð Þ ¼ 2
X1
n¼1

e�n2π2t

ð1
0

f uð Þ sin nπudu
� �

sin nπx

The same result is obtained when we solve this example by using separation of

variables method.

H.3 References

1. http://tutorial.math.lamar.edu/Classes/DE/DE.aspx

2. http://tutorial.math.lamar.edu/Classes/DE/SolvingHeatEquation.aspx

3. Schiff JL (1991) The laplace transform, theory and applications. Springer
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Appendix I
Data and Plots of Thermal Parameters
of Different Materials

One of the major goals of physics and so is ours in case of laser in particular and its

interaction with materials is to understand the nature of light. Due to the complexity

nature of the light this goal is very difficult to fully achieve, but this complication

means that light offers many opportunities for different applications including

optical interferences and in our case response of materials to laser radiation and

its interaction with matter and specifically metallic materials.

I.1 Thermal Conductivity Data

Plots of K versus T are given for aluminum, copper, chromium, cobalt, gold, iron,

lead, molybdenum, nickel, platinum, rhodium, silver, tantalum, tin, titanium, tung-

sten, uranium, vanadium, zinc, zirconium, Armco iron, 302, 303, and 304 stainless

steel, aluminum oxide, fused quartz, magnesium oxide, and titanium dioxide. K is

in units of W/cm �C.
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I.2 Heat Capacities

Plots of Cp versus T are given for aluminum, chromium, copper, gold, iron, lead,

molybdenum, nickel, platinum, silver, tantalum, tin, titanium, tungsten, uranium,

vanadium, zinc, zirconium, Armco iron, 304 stainless steel, aluminum oxide,

magnesium oxide, fused quartz, and titanium dioxide. Cp is in units of J/g �C.
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I.3 Thermal Diffusivity Data

Plots of κ versus T are given for aluminum, chromium, copper, gold, iron, lead,

molybdenum, nickel, platinum, silver, tantalum, titanium, tungsten, uranium, vana-

dium, zinc, zirconium, 304 stainless steel, aluminum oxide, magnesium oxide,

fused quartz, and titanium dioxide. κ in units of cm2/s.
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Appendix J
Acronyms and Definitions

DOF The depth of focus is the distance over which the focused beam has about the

same intensity; it is defined as the distance over which the focal spot size

changes �5%~5%.

Electronic assembly A number of electronic components (i.e., “circuit elements”,

“discrete components”, integrated circuits, etc.) connected together to perform

(a) specific function(s), replaceable as an entity and normally capable of being

disassembled.

Evaporative Laser Cutting Evaporative laser cutting is the laser cutting process

that target material is ablated through direct vaporization, typical applications

are laser cutting of low vaporization temperature and low thermal conduction

materials.

Excimer Lasers Lasers which use the noble gas compounds for lasing. Excimer

lasers generate laser light in ultraviolet to near-ultraviolet spectra, from 0.193 to

0.351 μm. Gas Laser, a laser in which the active medium is a gas. The gas can be

composed of molecules (like CO2), Atoms (like He-Ne), or ions (like Ar+).

Laser Fusion cutting Laser fusion cutting is laser cutting through melting and gas

jet blowing.

Ground State Lowest energy level of an atom or molecule.

Heat Affected Zone Heat affected zone is the region close to the laser-irradiated

area where obvious temperature change from original area happens, or obvious

strain state change happens.

Hologram An interference phenomenona captured on a plate (or film). It can

contain enormous amount of information and a three-dimensional image can

be constructed from it.

Knudesen layer In laser processing, strong evaporation occurs. The gas near the

phase interface is not in translational equilibrium and the translational equilib-

rium is achieved within a few mean free paths by collisions between particles in

a thin region. This region is called Knudsen layer

Laser Laser is the acronym of Light Amplification by Stimulated Emission of

Radiation. Laser is light of special properties, and light is electromagnetic
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(EM) wave in visible range. Lasers, broadly speaking, are devices that generate

or amplify light, just as transistors generate and amplify electronic signals at

audio, radio, or microwave frequencies. Here light must be understood broadly,

since lasers have covered radiation at wavelengths ranging from infrared range

to ultraviolet and even soft X-ray range.

Laser machining Laser machining is material removal accomplished by laser–

material interaction, generally speaking, these processes include laser drilling,

laser cutting and laser grooving, marking or scribing.

Laser Mode Laser mode is the possible standing EM waves in laser cavity.

Longitudinal (Axial) Modes Axial standing EM waves within the laser cavity.

Laser Resonator or Laser Cavity The optical mirrors, active medium and

pumping system form the laser resonator, which is also called Laser Cavity.

Laser cavities can be divided into Stable Cavities and Unstable Cavities

according to whether they make the oscillating beam converge into the cavity

or spread out from the cavity.

Line width The line width of laser is the width of laser beam frequency. Laser line

width is much narrower than normal light.

Liquid Laser Lasers which use large organic dye molecules as the active lasing

medium.

M2 of the beam M2 is a beam quality index that measures the difference between

an actual beam and the Gaussian beam.

Matrix A substantially continuous phase that fills the space between particles,

whiskers or fibers.

Marangoni Mechanism Liquid surface force due to temperature gradient (ther-

mal) or composition gradient (chemical)

Microcircuit A “monolithic integrated circuit” or “multichip integrated circuit”

containing an arithmetic logic unit (ALU) capable of executing a series of

general purpose instructions from an external storage. N.B.1: The “micropro-

cessor microcircuit” normally does not contain integral user-accessible storage,

although storage present on-the-chip may be used in performing its logic func-

tion. N.B.2: This definition includes chip sets which are designed to operate

together to provide the function of a “microprocessor microcircuit”.

Multichip A “integrated circuit” where two or more “monolithic integrated cir-

cuits” bonded to a common “substrate”.

Mode Locking A method to create very short laser pulses. It makes the phase

difference of many modes (frequencies) in the laser cavity fixed, or locked, and

thus very narrow pulses (in time) are created.

Mushy region Phase changes happen over a temperature region in general, and

thus solid and liquid states coexists during phase changes. The region of this

mixture of solid and liquid is called Mushy region.

Photon The minimum quantity of light energy that can be exchanged is called a

light quantum or photon.
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Polarized Light If the light has a dominant direction of the E vector, we say the

light is polarized. Natural light is not polarized, while laser beam is polarized.

Polarization can be created and adjusted by a polarizer.

Population Inversion Normally the number of atoms at high-energy level(E1) is

less than those in low-energy level(E1), N2(E2) < N1(E1). If N2>N1, we say

population inversion exists, which is a necessary condition for lasing.

Pumping The process to raise atoms from lower level to upper level is called

pumping.

Q-Switching A method to create laser pulses. It modualates the Q (Quality) of

laser cavity to build population inversion first, then release the accumulated

energy suddenly, in this way high-energy pulses can be created.

Recombination Radiation In semiconductors, when the electrons combine with

the holes, photons are emitted, and this is called Recombination Radiation.

Semiconductor Lasers are based on this mechanism.

Resolution The least increment of a measuring device; on digital instruments, the

least significant bit. (Reference: ANSI B-89.1.12)

Solid State Laser A laser in which the active medium is in solid state (usually not

including semiconductor lasers).

Semiconductor Lasers Lasers which use semiconductor as active medium. The

majority of semiconductor materials are based on a combination of elements in

the third group of the Periodic Table (such as Al, Ga, In) and the fifth group (such

as N, P, As, Sb), hence referred to as the III–V compounds.

Spontaneous Radiation According to quantum mechanics, the electrons of atoms

can take different energy states, say E1, E2, and E3, etc., E1<E2<E3<. . ..
Lower energy level is more stable than higher energy levels, so electrons at high-

energy levels tend to decay to low-energy levels, and the energy difference

between the two levels can be given out as electromagnetic radiation. This

process is called Spontaneous Radiation.

Stable Cavity and Unstable Cavity Cavities can be identified as stable or unsta-

ble according to whether they make the oscillating beam converge into the cavity

or spread out of the cavity, if converge it is stable, if spread out, it is unstable.

Stimulated Absorption When the atoms at lower energy levels absorb the inci-

dent energy with corresponding frequency, they jump to upper level states, and

this is called Stimulated Absorption.

Stimulated Emission Under the action of the incident electromagnetic field with

the corresponding frequency, the atoms at upper level have a certain possibility

to jump to the corresponding lower levels, emitting electromagnetic waves or

photons with the same frequency, direction, and phase with the incident waves.

This process is called Stimulated Emission.

Substrate A sheet of base material with or without an interconnection pattern and

on which or within which “discrete components” or integrated circuits or both

can be located.
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Super alloy Nickel-, cobalt-, or iron-base alloys having strengths superior to any

alloys in the AISI 300 series at temperatures over 922 K (649 �C) under severe
environmental and operating conditions.

TEM Mode Transverse Electromagnetic Mode (TEM) of laser beam is called

TEM mode. Three indexes are used to indicate the TEM modes. TEMplq, p is

the number of radial zero fields, l is the number of angular zero fields, q is the

number of longitudinal fields.

YAG Yttrium/aluminum garnet

Ultra short Pulsed Laser Laser whose pulse duration time is very short, below

1 ns, usually in the fs scale.
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Index

A
Absorption coefficients, 125

Absorptivity, 91

Acoustic gradient index, 222

Adaptive optical system (AOS), 173, 175, 383

Adaptive optics, 380, 383, 394, 400, 403

Airborne laser (ABL), 2, 28, 46, 57, 68, 175,

261, 411

Airborne laser laboratory (ALL), 150

Air combat command, 59

Air force research laboratory (AFRL), 177, 384

Air force weapons laboratory (AFWL), 5

American National Standards Institute

(ANSI), 45

Anomalous behavior, 149

Anti-satellite (ASAT) weapons, 148

Argon laser beam, 44

Atmospheric decision aid (ADA), 384,

409, 410

Atmospheric transmission, 51

Attenuation coefficient, 386

Avogadro’s number, 262, 316

B
Back door coupling, 152

Beam waist, 164

Beam wander/jitter, 155

Beam weapons, 145

Beer-Lambert’s law, 255

Bidirectional reflectivity distribution function

(BRDF), 36, 44, 45

Boltzmann’s constant, 165, 262, 366

Bouguer’s Law, 386

Bragg condition, 185, 186

Bragg diffractor, 185

Brewster angle, 223

C
Center for devices and radiological health

(CDRH), 39

Chirped pulse amplification (CPA), 227

Clapeyron-Clausius equation, 256

Cloud-free line-of-sight (CFLOS), 384, 410

COIL laser, 59

Collimation in a laser, 30

Continental U.S. (CONUS), 73

Continuous wave (CW), 32, 82, 174,

293, 374, 375

Controlled thermonuclear fusion, 102

Coupling coefficient, 357

Cross-section, 387

D
Death ray, 1, 47

de Broglie wavelength, 202

Debye temperature, 317

Defense support program (DSP), 72–74

Department of defense (DOD), 18

Department of energy (DOE), 18

Depth of focus (DOF), 228

Depth of melting, 141

Deuterium fluoride (DF), 38, 388

Diffraction, 30, 169

Dirac constant, 202

Directed energy weapon (DEW), 2, 28, 81, 149

Directional hemispherical reflectance

(DHR), 193
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Divergence, 30–32, 148, 155, 164, 166

Drude-Lorentz theory, 239

Drude-Zener theory, 255, 293

E
Electromagnetic pulse weapons, 152

Electro optic (EO), 384, 410

Electrophoretic light scattering (ELS), 163

Equations of state (EOS), 21

Excimer laser, 135

F
Finite difference method (FDM), 264, 352

Finite element method (FEM), 264

Flash Gordon, 1

Flux density, 102

Focal spot size, 225

Fourier conduction, 329

Fourier heating model, 330

Free electron laser (FEL), 54

Free space optical (FSO), 158

Frequency-dependent dielectric constant, 126

G
Gaussian beam propagates, 164

Gaussian laser beam, 329

Geosynchronous (GEO), 72

Ground based laser (GBL), 54, 169, 260

H
Hagen-Rubens limit, 246

Hagen-Rubens reflectivity, 246

Hazardous diffuse reflection area (HDRA), 42

Hazards, 36

High energy lasers (HELs), 1, 32, 80, 411

High-energy laser system-tactical army

(HELSTAR), 411

Highly elliptical orbit (HEO), 72

High power microwave (HPM), 80, 152

High power radiation laser, 201, 379

Hydrogen fluoride (HF) laser, 53

I
Incident radiation absorbed, 117

Index of refraction, 128

Infrared radiation (IR), 201, 384

Integrated product teams (IPTs), 73

K
Kill confirmation, 151

Kinetic energy weapons (KEW), 81

L
Ladar, 68

Lambert’s law, 386

Laplace transform, 294, 295

Large advanced mirror program (LAMP), 181

Large optics demonstration experiment

(LODE), 181

Laser beam, 30

Laser cavity, 28, 176

Laser range safety tool (LRST), 28, 36, 45, 62

Laser supported absorption (LSA), 113–115

Laser supported detonation (LSD), 120, 359,

360, 365, 367, 371

Laser weapon, 1

Latent heat, 258

Latent heat of sublimation, 333, 334

Lawrence Livermore National Laboratory

(LLNL), 14, 17, 23

Lidar, 68

Localized absorption, 215

Low earth orbit (LEO), 72

M
Magnetic resonance image (MRI), 18

Material parameters, 129

Maximum permissible exposures, 40, 42

Maxwell equation, 116

Maxwell’s law, 257

Mechanical damage, 49

Mesosphere, 52

Metastable, 205

Mid-infrared advanced chemical laser

(MIRACL), 63

Mie scattering, 43, 51

Mie scattering theory, 393

Mirror conjugation, 383

Mirror juddering, 383

N
Naval research laboratory (NRL), 155

Nd:YAG lasers, 55

Near-filed, 168

Newtonian law of cooling, 260

Night vision goggle operations weather

software (NOWS), 69

814 Index



Nominal ocular hazard distance (NOHD), 41

No phase change, 264

Nusselt number, 260

O
Ohm’s law, 239

Optical depth, 386

P
Parallel polarization, 219

Partial differential equation (PDE), 196

Peclet number, 261

Perpendicular polarization, 219

Persian Gulf war, 1

Phase compensation instability, (PCI), 170

Phase front, 164

Phillips research site, 177

Photon correlation spectroscopy (PCS), 162

Physical damage, 149

Plank-Einstein relation, 202

Plank’s constant, 366

Plank’s distribution, 211

Plank’s energy density distribution, 208

Plank’s postulate, 210

Plank’s quantization rule, 210

Plasma, 101

Plasma resonance, 246

Potential energy weapons (PEW), 81

Prandtl number, 261

Propagation efficiency, 160

Pulse repetition frequency (PRF), 32

Pulsed mode laser, 32

Q
Q-switched, 138

Q-switched laser, 107

Quasi-elastic light scattering (QLS), 162

R
Radomes (plastic radar domes), 50

Random molecular motions, 83

Rayleigh-Jeans rule, 209

Rayleigh range, 31, 32

Rayleigh scattering, 50, 51

Rayleigh’s energy distribution, 208

Recession velocity, 316

Reconnaissance, surveillance, and targeting

acquisition (RSTA), 147

Reduced Plank constant, 202

Reflectivity, 91

Reflectivity coefficient, 115

Refractive index, 127

Relay mirror experiment, 154

Reynolds number, 261

Ruby laser beam, 44

S
Saha equation, 366

Sandia Corporation, 20

Scientific & Technical, 384, 411

Semi-infinite solid, 264

Skin depth, 127, 207, 246

Space and strategic defense command

(SSDC), 63

Space-based infrared system (SBIRS), 72

Space-based laser (SBL), 411

Spherical aberration, 228

Spot size, 206, 217

Standard temperature and pressure

(STP), 353

Stefan boundary, 262

Stefan-Boltzmann constant, 261

Stephan-Boltzmann’s law, 375

Strategic defense, 79

Stratosphere, 52

Stratospheric particle injection for climate

engineering (SPICE), 154

Surface hardening, 91

Surface vaporization, 114

T
Tactical high energy laser (THEL), 56

Target acquisition, 67

Target acquisition weather software

(TAWS), 409

Temperature-dependent reflectance

of aerospace materials (TRAM), 193

Thermal blooming, 147,

168, 405

Thermal blooming effects, 150

Thermal conductivity, 105

Thermal lens, 228

Thermal parameters, 104

Thermosphere, 53

Thermophysical properties, 195

Transmissivity plus, 127

Troposphere, 52

Turbulent eddies, 156
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U
Ultraviolet catastrophe, 209, 247

V
Vaporizing a target, 29

VAX/VMS computer, 21

W
Wave equation, 204

Wien’s rule, 209

X
X-rays, 149
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