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Introduction 
I started studying digital electronics in the first months of year 1989; at that time I wanted to 
build digitally controlled volume and tuning for an AM RADIO. I was a 100&#37; analog 
engineer and digital electronic concepts were new to me. It is an entirely different story so I 
failed miserably the first, second, third, ...... (n+1)th time to design a working model of the 
above. When I started, I was fascinated by the binary system and by the way 
microprocessors work. It took me nearly one year to fully understand the concepts of digital. 
Digital means anything which has to do with digits, but in today's world digital means CMOS, 
TTL gates, flip-flops, processors, computers. In the next few pages I will be sharing my 
knowledge, experience and also some tidbits from my friends and from the net. You are 
always welcome to suggest and help me make this page really useful for the whole digital 
world. 

 
Diagram of analog voltage vs time 
 

 
 
 
Digital Representation 
 
Systems which process discrete values are called digital systems. In digital representation the 
quantities are represented not by proportional quantities but by symbols called digits. As an 
example, consider the digital watch, which provides the time of the day in the form of decimal 
digits representing hours and minutes (and sometimes seconds). As we know, time of day 
changes continuously, but the digital watch reading does not change continuously; rather, it 
changes in steps of one per minute (or per second). In other words, time of day digital 
representation changes in discrete steps, as compared to the representation of time provided 
by an analog watch, where the dial reading changes continuously. 
 
Below is a diagram of digital voltage vs time: here input voltage changes from +4 Volts to -4 
Volts; it can be converted to digital form by Analog to Digital converters (ADC). An ADC 
converts continuous signals into samples per second. Well, this is an entirely different theory. 
 
 

Diagram of Digital voltage vs time 
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The major difference between analog and digital quantities, then, can be stated simply as 
follows: 
 

 Analog = continuous  

 Digital = discrete (step by step) 
 

Advantages of Digital Techniques 
 

 Easier to design. Exact values of voltage or current are not important, only the range 
(HIGH or LOW) in which they fall.  

 Information storage is easy.  

 Accuracy and precision are greater.  

 Operations can be programmed. Analog systems can also be programmed, but the 
available operations variety and complexity is severely limited.  

 Digital circuits are less affected by noise, as long as the noise is not large enough to 
prevent us from distinguishing HIGH from LOW (we discuss this in detail in an 
advanced digital tutorial section).  

 More digital circuitry can be fabricated on IC chips. 
 

Limitations of Digital Techniques 
 
Most physical quantities in real world are analog in nature, and these 
quantities are often the inputs and outputs that are being monitored, operated 
on, and controlled by a system. Thus conversion to digital format and re-
conversion to analog format is needed. 
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Numbering 
System  

  

Many number systems are in use in digital technology. 
The most common are the decimal, binary, octal, and 
hexadecimal systems. The decimal system is clearly the 
most familiar to us because it is a tool that we use every 
day. Examining some of its characteristics will help us to 
better understand the other systems. In the next few 
pages we shall introduce four numerical representation 
systems that are used in the digital system. There are 
other systems, which we will look at briefly. 

  

 Decimal  
 Binary  
 Octal  
 Hexadecimal  

     
   Decimal System  

  

The decimal system is composed of 10 numerals or 
symbols. These 10 symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, 
9. Using these symbols as digits of a number, we can 
express any quantity. The decimal system is also called 
the base-10 system because it has 10 digits. 

     

  

103 102 101 100  10-1 10-2 10-3 

=1000  =100  =10  =1 . =0.1  =0.01  =0.001 

Most 
Significant 
Digit 

   
Decimal 
point 

  
Least 
Significant 
Digit 

 

     
  Even though the decimal system has only 10 symbols, 
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any number of any magnitude can be expressed by 
using our system of positional weighting. 

     
   Decimal Examples  
     

  

 3.1410  
 5210  
 102410  
 6400010  

     
   Binary System  

  

In the binary system, there are only two symbols or 
possible digit values, 0 and 1. This base-2 system can 
be used to represent any quantity that can be 
represented in decimal or other base system. 

     

  

23 22 21 20  2-1 2-2 2-3 

=8  =4  =2  =1 . =0.5  =0.25  =0.125 

Most 
Significant 
Digit 

   
Binary 
point 

  
Least 
Significant 
Digit 

 

     
   Binary Counting  
  The Binary counting sequence is shown in the table: 
     

  

23 22 21 20 Decimal 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 2 

0 0 1 1 3 

0 1 0 0 4 

0 1 0 1 5 

0 1 1 0 6 

0 1 1 1 7 

1 0 0 0 8 

1 0 0 1 9 

1 0 1 0 10 

1 0 1 1 11 

1 1 0 0 12 

1 1 0 1 13 

1 1 1 0 14 

1 1 1 1 15 
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Representi
ng Binary 
Quantities  

  

In digital systems the information that is being processed is 
usually presented in binary form. Binary quantities can be 
represented by any device that has only two operating states 
or possible conditions. E.g.. a switch is only open or closed. 
We arbitrarily (as we define them) let an open switch represent 
binary 0 and a closed switch represent binary 1. Thus we can 
represent any binary number by using series of switches. 

     
   Typical Voltage Assignment  
  Binary 1: Any voltage between 2V to 5V 
  Binary 0: Any voltage between 0V to 0.8V 

  

Not used: Voltage between 0.8V to 2V in 5 Volt CMOS and 
TTL Logic, this may cause error in a digital circuit. Today's 
digital circuits works at 1.8 volts, so this statement may not 
hold true for all logic circuits. 

     

  

 
     

  

We can see another significant difference between digital and 
analog systems. In digital systems, the exact voltage value is 
not important; eg, a voltage of 3.6V means the same as a 
voltage of 4.3V. In analog systems, the exact voltage value is 
important. 

     

  

The binary number system is the most important one in digital 
systems, but several others are also important. The decimal 
system is important because it is universally used to represent 
quantities outside a digital system. This means that there will 
be situations where decimal values have to be converted to 
binary values before they are entered into the digital system. 

     

  

In additional to binary and decimal, two other number systems 
find wide-spread applications in digital systems. The octal 
(base-8) and hexadecimal (base-16) number systems are both 
used for the same purpose- to provide an efficient means for 
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representing large binary system. 
     
   Octal System  

  
The octal number system has a base of eight, meaning that it 
has eight possible digits: 0,1,2,3,4,5,6,7. 

     

  

83 82 81 80  8-1 8-2 8-3 

=512  =64  =8  =1 . =1/8  =1/64 =1/512 

Most 
Significant 
Digit 

   
Octal 
point 

  
Least 
Significant 
Digit 

 

     
   Octal to Decimal Conversion  
     

  

 2378 = 2 x (82) + 3 x (81) + 7 x (80) = 15910  
 24.68 = 2 x (81) + 4 x (80) + 6 x (8-1) = 20.7510  
 11.18 = 1 x (81) + 1 x (80) + 1 x (8-1) = 9.12510  
 12.38 = 1 x (81) + 2 x (80) + 3 x (8-1) = 10.37510  

     
   Hexadecimal System  

  
The hexadecimal system uses base 16. Thus, it has 16 
possible digit symbols. It uses the digits 0 through 9 plus the 
letters A, B, C, D, E, and F as the 16 digit symbols. 

     

  

163 162 161 160  16-1 16-2 16-3 

=4096  =256  =16  =1 . =1/16  =1/256  =1/4096 

Most 
Significant 
Digit 

   
Hexa 
Decimal 
point 

  
Least 
Significant 
Digit 

 

     
   Hexadecimal to Decimal Conversion  
     

  

 24.616 = 2 x (161) + 4 x (160) + 6 x (16-1) = 36.37510  
 11.116 = 1 x (161) + 1 x (160) + 1 x (16-1) = 17.062510  
 12.316 = 1 x (161) + 2 x (160) + 3 x (16-1) = 18.187510  

 

 

Code Conversion  

  

Converting from one code form to another code form 
is called code conversion, like converting from binary 
to decimal or converting from hexadecimal to 
decimal. 

     
   Binary-To-Decimal Conversion  

  
Any binary number can be converted to its decimal 
equivalent simply by summing together the weights 
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of the various positions in the binary number which 
contain a 1.  

     

  

Binary Decimal 

110112  

24+23+01+21+20 =16+8+0+2+1 

Result 2710 
 

     
  and 
     

  

Binary Decimal 

101101012  

27+06+25+24+03+22+01+20 =128+0+32+16+0+4+0+1 

Result 18110 
 

     

  
You should have noticed that the method is to find 
the weights (i.e., powers of 2) for each bit position 
that contains a 1, and then to add them up. 

     
   Decimal-To-Binary Conversion  

     
  There are 2 methods: 
     

  
 Reverse of Binary-To-Decimal Method  
 Repeat Division  

     
   Reverse of Binary-To-Decimal Method  
     

  

Decimal Binary 

4510 =32 + 0 + 8 + 4 +0 + 1 

 =25+0+23+22+0+20 

Result  =1011012 
 

     
     
   Repeat Division-Convert decimal to binary  
  This method uses repeated division by 2. 
     
  Convert 2510 to binary 
     

  

Division Remainder Binary 

25/2  
= 12+ remainder of 
1  

1 (Least Significant 
Bit) 

12/2  
= 6 + remainder of 
0  

0 

6/2  = 3 + remainder of 0 
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0  

3/2  
= 1 + remainder of 
1  

1 

1/2  
= 0 + remainder of 
1  

1 (Most Significant 
Bit) 

Result  2510  = 110012 
 

     

  
The Flow chart for repeated-division method is as 
follows: 

     

  

 
 

 

Binary-To-
Octal / Octal-
To-Binary 
Conversion  
     

  

Octal 
Digit  

0  1  2  3  4  5  6  7 

Binary 
Equivalent  

000  001  010  011  100  101  110  111 
 

     
  Each Octal digit is represented by three binary digits. 
     
  Example: 
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  100 111 0102 = (100) (111) (010)2 = 4 7 28 
     
   Repeat Division-Convert decimal to octal  
     
  This method uses repeated division by 8. 
     
  Example: Convert 17710 to octal and binary 
     

  

Division Result Binary 

177/8  = 22+ remainder of 1  
1 (Least Significant 
Bit) 

22/ 8  = 2 + remainder of 6  6 

2 / 8  = 0 + remainder of 2  
2 (Most Significant 
Bit) 

Result  17710  = 2618 

Binary  = 0101100012 
 

     

   
Hexadecimal to Decimal/Decimal to Hexadecimal 
Conversion  

     
  Example: 
  2AF16 = 2 x (162) + 10 x (161) + 15 x (160) = 68710 
     
   Repeat Division- Convert decimal to hexadecimal  
  This method uses repeated division by 16. 
     
  Example: convert 37810 to hexadecimal and binary: 
     

  

Division Result Hexadecimal 

378/16  = 23+ remainder of 10  
A (Least Significant 
Bit)23 

23/16  = 1 + remainder of 7  7 

1/16  = 0 + remainder of 1  
1 (Most Significant 
Bit) 

Result  37810  = 17A16 

Binary   = 0001 0111 10102 
 

     

   
Binary-To-Hexadecimal /Hexadecimal-To-Binary 
Conversion  

     

  

Hexadecimal 
Digit  

0  1  2  3  4  5  6  7 

Binary 
Equivalent  

0000  0001  0010  0011  0100  0101  0110  0111 
 

     
  Hexadecimal 8  9  A  B  C  D  E  F 
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Digit  

Binary 
Equivalent  

1000  1001  1010  1011  1100  1101  1110  1111 
 

     

  
Each Hexadecimal digit is represented by four bits of 
binary digit. 

     
  Example: 
     
  1011 0010 11112 = (1011) (0010) (1111)2 = B 2 F16 
     

   
Octal-To-Hexadecimal Hexadecimal-To-Octal 
Conversion  

     

  

 Convert Octal (Hexadecimal) to Binary first.  
 Regroup the binary number by three bits per group 

starting from LSB if Octal is required.  
 Regroup the binary number by four bits per group 

starting from LSB if Hexadecimal is required.  

     
  Example: 
     
  Convert 5A816 to Octal. 
     

  

Hexadecimal  Binary/Octal 

5A816  = 0101 1010 1000 (Binary) 

 = 010 110 101 000 (Binary) 

Result  = 2 6 5 0 (Octal) 
 

 

 

Binary Codes  

  

Binary codes are codes which are 
represented in binary system with 
modification from the original ones. 
Below we will be seeing the 
following: 

     

  
 Weighted Binary Systems  
 Non Weighted Codes  

     
   Weighted Binary Systems  

  

Weighted binary codes are those 
which obey the positional 
weighting principles, each position 
of the number represents a specific 
weight. The binary counting 
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sequence is an example. 
     

  

Decimal 8421 2421 5211 
Excess-
3 

0 0000 0000 0000 0011 

1 0001 0001 0001 0100 

2 0010 0010 0011 0101 

3 0011 0011 0101 0110 

4 0100 0100 0111 0111 

5 0101 1011 1000 1000 

6 0110 1100 1010 1001 

7 0111 1101 1100 1010 

8 1000 1110 1110 1011 

9 1001 1111 1111 1100 
 

     
   8421 Code/BCD Code  

  

The BCD (Binary Coded Decimal) 
is a straight assignment of the 
binary equivalent. It is possible to 
assign weights to the binary bits 
according to their positions. The 
weights in the BCD code are 
8,4,2,1. 

     

  
Example: The bit assignment 
1001, can be seen by its weights to 
represent the decimal 9 because: 

     
  1x8+0x4+0x2+1x1 = 9 
     
   2421 Code  

  

This is a weighted code, its 
weights are 2, 4, 2 and 1. A 
decimal number is represented in 
4-bit form and the total four bits 
weight is 2 + 4 + 2 + 1 = 9. Hence 
the 2421 code represents the 
decimal numbers from 0 to 9. 

     
   5211 Code  

  

This is a weighted code, its 
weights are 5, 2, 1 and 1. A 
decimal number is represented in 
4-bit form and the total four bits 
weight is 5 + 2 + 1 + 1 = 9. Hence 
the 5211 code represents the 
decimal numbers from 0 to 9.  
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Reflective Code  

  

A code is said to be reflective 
when code for 9 is 
complement for the code for 
0, and so is for 8 and 1 
codes, 7 and 2, 6 and 3, 5 
and 4. Codes 2421, 5211, 
and excess-3 are reflective, 
whereas the 8421 code is 
not. 

     
   Sequential Codes  

  

A code is said to be 
sequential when two 
subsequent codes, seen as 
numbers in binary 
representation, differ by one. 
This greatly aids 
mathematical manipulation of 
data. The 8421 and Excess-3 
codes are sequential, 
whereas the 2421 and 5211 
codes are not. 

     
   Non Weighted Codes  

  

Non weighted codes are 
codes that are not 
positionally weighted. That is, 
each position within the 
binary number is not 
assigned a fixed value. 

     
   Excess-3 Code  

  

Excess-3 is a non weighted 
code used to express 
decimal numbers. The code 
derives its name from the fact 
that each binary code is the 
corresponding 8421 code 
plus 0011(3). 

     

  
Example: 1000 of 8421 = 
1011 in Excess-3 

     
   Gray Code  

  

The gray code belongs to a 
class of codes called 
minimum change codes, in 
which only one bit in the code 
changes when moving from 
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one code to the next. The 
Gray code is non-weighted 
code, as the position of bit 
does not contain any weight. 
The gray code is a reflective 
digital code which has the 
special property that any two 
subsequent numbers codes 
differ by only one bit. This is 
also called a unit-distance 
code. In digital Gray code 
has got a special place.  

     

  

Decimal 
Number 

Binary 
Code 

Gray 
Code 

0  0000  0000 

1  0001  0001 

2  0010  0011 

3  0011  0010 

4  0100  0110 

5  0101  0111 

6  0110  0101 

7  0111  0100 

8  1000  1100 

9  1001  1101 

10  1010  1111 

11  1011  1110 

12  1100  1010 

13  1101  1011 

14  1110  1001 

15  1111  1000 
 

     
   Binary to Gray Conversion  
     

  

 Gray Code MSB is 
binary code MSB.  

 Gray Code MSB-1 is 
the XOR of binary 
code MSB and MSB-
1.  

 MSB-2 bit of gray 
code is XOR of MSB-1 
and MSB-2 bit of 
binary code.  

 MSB-N bit of gray 
code is XOR of MSB-
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N-1 and MSB-N bit of 
binary code.  

 

 

Floating Point Numbers  

  

A real number or floating 
point number is a number 
which has both an integer 
and a fractional part. 
Examples for real real 
decimal numbers are 123.45, 
0.1234, -0.12345, etc. 
Examples for real binary 
numbers are 1100.1100, 
0.1001, -1.001, etc. In 
general, floating point 
numbers are expressed in 
exponential notation.  

     

  
For example the decimal 
number  

  

 30000.0 can be written 
as 3 x 104.  

 312.45 can be written 
as 3.1245 x 102.  

     

  
Similarly, the binary number 
1010.001 can be written as 
1.010001 x 103. 

     

  
The general form of a 
number N can be expressed 
as 

     
  N = ± m x b±e. 
     

  

Where m is mantissa, b is the 
base of number system and 
e is the exponent. A floating 
point number is represented 
by two parts. The number 
first part, called mantissa, is 
a signed fixed point number 
and the second part, called 
exponent, specifies the 
decimal or binary position. 

 

Binary  
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Representation 
of Floating 
Point Numbers  

  

A floating point binary number is also represented as in the case 
of decimal numbers. It means that mantissa and exponent are 
expressed using signed magnitude notation in which one bit is 
reserved for sign bit. 

     

  

Consider a 16-bit word used to store the floating point numbers; 
assume that 9 bits are reserved for mantissa and 7 bits for 
exponent and also assume that the mantissa part is represented 
in fraction system. This implies the assumed binary point is at the 
mantissa sign bit immediate right. 

     

  

 
     
   Example  
  A binary number 1101.01 is represented as 
  Mantissa = 110101 = (1101.01)2 = 0.110101 X 24 
     
  Exponent = (4)10 
  Expanding mantissa to 8 bits we get 11010100 
  Binary representation of exponent (4)10 = 000100 
     
  The required representation is 
     

  

 
     
     
     
      

 
 
 
 

 

  

   
 

Symbolic Logic  

  
Boolean algebra derives its 
name from the 
mathematician George 
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Boole. Symbolic Logic uses 
values, variables and 
operations : 

     

  

 True is represented by 
the value 1.  

 False is represented 
by the value 0.  

  

Variables are represented by 
letters and can have one of 
two values, either 0 or 1. 
Operations are functions of 
one or more variables. 

  

 AND is represented by 
X.Y  

 OR is represented by 
X + Y  

 NOT is represented by 
X' . Throughout this 
tutorial the X' form will 
be used and sometime 
!X will be used.  

  
These basic operations can 
be combined to give 
expressions. 

     
  Example : 
     

  

 X  
 X.Y  
 W.X.Y + Z  

     
   Precedence  

  

As with any other branch of 
mathematics, these 
operators have an order of 
precedence. NOT operations 
have the highest precedence, 
followed by AND operations, 
followed by OR operations. 
Brackets can be used as with 
other forms of algebra. e.g. 

     

  
X.Y + Z and X.(Y + Z) are not 
the same function.  
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   Function Definitions  

  
The logic operations given 
previously are defined as 
follows : 

     

  
Define f(X,Y) to be some 
function of the variables X 
and Y.  

     
  f(X,Y) = X.Y 

  
 1 if X = 1 and Y = 1  
 0 Otherwise  

     
  f(X,Y) = X + Y  

  
 1 if X = 1 or Y = 1  
 0 Otherwise  

     
  f(X) = X' 

  
 1 if X = 0  
 0 Otherwise  

     
   Truth Tables  

  

Truth tables are a means of 
representing the results of a 
logic function using a table. 
They are constructed by 
defining all possible 
combinations of the inputs to 
a function, and then 
calculating the output for 
each combination in turn. For 
the three functions we have 
just defined, the truth tables 
are as follows. 

     
  AND 

  

X Y F(X,Y) 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
 

     
  OR 

  
X Y F(X,Y) 

0 0 0 



 18 

0 1 1 

1 0 1 

1 1 1 
 

     
  NOT 

  

X F(X) 

0 1 

1 0 
 

     
 
Symbolic 
Logic  

  

Boolean algebra derives its 
name from the 
mathematician George 
Boole. Symbolic Logic uses 
values, variables and 
operations : 

     

  

 True is represented by 
the value 1.  

 False is represented 
by the value 0.  

  

Variables are represented by 
letters and can have one of 
two values, either 0 or 1. 
Operations are functions of 
one or more variables. 

  

 AND is represented by 
X.Y  

 OR is represented by 
X + Y  

 NOT is represented by 
X' . Throughout this 
tutorial the X' form will 
be used and sometime 
!X will be used.  

  
These basic operations can 
be combined to give 
expressions. 

     
  Example : 
     

  

 X  
 X.Y  
 W.X.Y + Z  

  



 19 

     
   Precedence  

  

As with any other branch of 
mathematics, these 
operators have an order of 
precedence. NOT operations 
have the highest precedence, 
followed by AND operations, 
followed by OR operations. 
Brackets can be used as with 
other forms of algebra. e.g. 

     

  
X.Y + Z and X.(Y + Z) are not 
the same function.  

     
   Function Definitions  

  
The logic operations given 
previously are defined as 
follows : 

     

  
Define f(X,Y) to be some 
function of the variables X 
and Y.  

     
  f(X,Y) = X.Y 

  
 1 if X = 1 and Y = 1  
 0 Otherwise  

     
  f(X,Y) = X + Y  

  
 1 if X = 1 or Y = 1  
 0 Otherwise  

     
  f(X) = X' 

  
 1 if X = 0  
 0 Otherwise  

     
   Truth Tables  

  

Truth tables are a means of 
representing the results of a 
logic function using a table. 
They are constructed by 
defining all possible 
combinations of the inputs to 
a function, and then 
calculating the output for 
each combination in turn. For 
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the three functions we have 
just defined, the truth tables 
are as follows. 

     
  AND 

  

X Y F(X,Y) 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
 

     
  OR 

  

X Y F(X,Y) 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
 

     
  NOT 

  

X F(X) 

0 1 

1 0 
 

     

  
Truth tables may contain as 
many input variables as 
desired 

     
  F(X,Y,Z) = X.Y + Z 

  

X Y Z F(X,Y,Z) 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 
 

     

   
Boolean Switching 
Algebras  

  

A Boolean Switching Algebra 
is one which deals only with 
two-valued variables. Boole's 
general theory covers 
algebras which deal with 
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variables which can hold n 
values.  

     
   Axioms  

  Consider a set S = { 0. 1} 

  

Consider two binary 
operations, + and . , and one 
unary operation, -- , that act 
on these elements. [S, ., +, --
, 0, 1] is called a switching 
algebra that satisfies the 
following axioms S 

     
   Closure  
     

  
If X S and Y S then X.Y 
S 

  
If X S and Y S then X+Y 

S 
     
   Identity  
     

  
an identity 0 for + such that 

X + 0 = X 

  
an identity 1 for . such that 

X . 1 = X 
     
   Commutative Laws  
     
  X + Y = Y + X 
  X . Y = Y . X  
     
   Distributive Laws  
     
  X.(Y + Z ) = X.Y + X.Z 
  X + Y.Z = (X + Y) . (X + Z)  
     
   Complement  
     

  
X S a complement 

X'such that 
  X + X' = 1 
  X . X' = 0 

  
The complement X' is 
unique. 

 

  
Truth tables may contain as 
many input variables as 
desired 

     
  F(X,Y,Z) = X.Y + Z 
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X Y Z F(X,Y,Z) 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 
 

     

   
Boolean Switching 
Algebras  

  

A Boolean Switching Algebra 
is one which deals only with 
two-valued variables. Boole's 
general theory covers 
algebras which deal with 
variables which can hold n 
values.  

     
   Axioms  

  Consider a set S = { 0. 1} 

  

Consider two binary 
operations, + and . , and one 
unary operation, -- , that act 
on these elements. [S, ., +, --
, 0, 1] is called a switching 
algebra that satisfies the 
following axioms S 

     
   Closure  
     

  
If X S and Y S then X.Y 
S 

  
If X S and Y S then X+Y 

S 
     
   Identity  
     

  
an identity 0 for + such that 

X + 0 = X 

  
an identity 1 for . such that 

X . 1 = X 
     
   Commutative Laws  
     
  X + Y = Y + X 
  X . Y = Y . X  
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   Distributive Laws  
     
  X.(Y + Z ) = X.Y + X.Z 
  X + Y.Z = (X + Y) . (X + Z)  
     
   Complement  
     

  
X S a complement 

X'such that 
  X + X' = 1 
  X . X' = 0 

  
The complement X' is 
unique. 

 

 

Theorems  
     

  
A number of theorems may be 
proved for switching algebras 

     
   Idempotent Law  
     
  X + X = X 
  X . X = X 
     
   DeMorgan's Law  
     

  
(X + Y)' = X' . Y', These can be 
proved by the use of truth tables. 

     
  Proof of (X + Y)' = X' . Y' 
     

  

X Y X+Y (X+Y)' 

0 0 0  1 

0 1 1  0 

1 0 1  0 

1 1 1  0 
 

     

  

X Y X' Y' X'.Y' 

0 0 1  1  1 

0 1 1  0  0 

1 0 0  1  0 

1 1 0  0  0 
 

     

  
The two truth tables are identical, 
and so the two expressions are 
identical. 
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(X.Y) = X' + Y', These can be 
proved by the use of truth tables. 

     
  Proof of (X.Y) = X' + Y' 
     

  

X Y X.Y (X.Y)' 

0 0 0 1 

0 1 0 1 

1 0 0 1 

1 1 1 0 
 

     

  

X Y X' Y' X'+Y' 

0 0 1  1  1 

0 1 1  0  1 

1 0 0  1  1 

1 1 0  0  0 
 

     

  
Note : DeMorgans Laws are 
applicable for any number of 
variables. 

     
   Boundedness Law  
     
  X + 1 = 1 
  X . 0 = 0 
     
   Absorption Law  
     
  X + (X . Y) = X 
  X . (X + Y ) = X 
     
   Elimination Law  
     
  X + (X' . Y) = X + Y 
  X.(X' + Y) = X.Y 
     
   Unique Complement theorem  
     

  
If X + Y = 1 and X.Y = 0 then X = 
Y' 

     
   Involution theorem  
     
  X'' = X 
  0' = 1 
     
   Associative Properties  



 25 

     
  X + (Y + Z) = (X + Y) + Z 
  X . ( Y . Z ) = ( X . Y ) . Z 
     
   Duality Principle  

  

In Boolean algebras the duality 
Principle can be is obtained by 
interchanging AND and OR 
operators and replacing 0's by 
1's and 1's by 0's. Compare the 
identities on the left side with the 
identities on the right. 

     
  Example 
     
  X.Y+Z' = (X'+Y').Z 
     
   Consensus theorem  
     
  X.Y + X'.Z + Y.Z = X.Y + X'.Z 
  or dual form as below 

  
(X + Y).(X' + Z).(Y + Z) = (X + 
Y).(X' + Z) 

     

  
Proof of X.Y + X'.Z + Y.Z = X.Y + 
X'.Z: 

     

  

X.Y + X'.Z + 
Y.Z  

= X.Y + X'.Z 

X.Y + X'.Z + 
(X+X').Y.Z  

= X.Y + X'.Z 

X.Y.(1+Z) + 
X'.Z.(1+Y)  

= X.Y + X'.Z 

X.Y + X'.Z  = X.Y + X'.Z 
 

     

  
(X.Y'+Z).(X+Y).Z = X.Z+Y.Z 
instead of X.Z+Y'.Z 

  X.Y'Z+X.Z+Y.Z 
  (X.Y'+X+Y).Z 
  (X+Y).Z 
  X.Z+Y.Z 
     

  
The term which is left out is 
called the consensus term. 

     

  

Given a pair of terms for which a 
variable appears in one term, 
and its complement in the other, 
then the consensus term is 
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formed by ANDing the original 
terms together, leaving out the 
selected variable and its 
complement. 

     
  Example : 

  
The consensus of X.Y and X'.Z is 
Y.Z 

     

  
The consensus of X.Y.Z and 
Y'.Z'.W' is (X.Z).(Z.W') 

     
   Shannon Expansion Theorem  

  

The Shannon Expansion 
Theorem is used to expand a 
Boolean logic function (F) in 
terms of (or with respect to) a 
Boolean variable (X), as in the 
following forms. 

     
  F = X . F (X = 1) + X' . F (X = 0) 
     

  

where F (X = 1) represents the 
function F evaluated with X set 
equal to 1; F (X = 0) represents 
the function F evaluated with X 
set equal to 0. 

     

  
Also the following function F can 
be expanded with respect to X, 

     
  F = X' . Y + X . Y . Z' + X' . Y' . Z 
     
  = X . (Y . Z') + X' . (Y + Y' . Z) 
     

  
Thus, the function F can be split 
into two smaller functions. 

     
  F (X = '1') = Y . Z' 
     

  

This is known as the cofactor of 
F with respect to X in the 
previous logic equation. The 
cofactor of F with respect to X 
may also be represented as F X 
(the cofactor of F with respect to 
X' is F X' ). Using the Shannon 
Expansion Theorem, a Boolean 
function may be expanded with 
respect to any of its variables. 
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For example, if we expand F with 
respect to Y instead of X, 

     
  F = X' . Y + X . Y . Z' + X' . Y' . Z 
     
  = Y . (X' + X . Z') + Y' . (X' . Z) 
     

  

A function may be expanded as 
many times as the number of 
variables it contains until the 
canonical form is reached. The 
canonical form is a unique 
representation for any Boolean 
function that uses only minterms. 
A minterm is a product term that 
contains all the variables of 
F¿such as X . Y' . Z). 

     

  

Any Boolean function can be 
implemented using multiplexer 
blocks by representing it as a 
series of terms derived using the 
Shannon Expansion Theorem. 

     

   
Summary of Laws And 
Theorms  

     

  

Identity  Dual 

Operations with 0 and 
1  

 

X + 0 = X (identity)  X.1 = X 

X + 1 = 1 (null element)  X.0 = 0 

Idempotency theorem   

X + X = X  X.X = X 

Complementarity   

X + X' = 1  X.X' = 0 

Involution theorem   

(X')' = X   

Cummutative law   

X + Y = Y + X  
X.Y = Y 
X 

Associative law  

(X + Y) + Z = X + (Y + 
Z) = X + Y + Z  

(XY)Z = 
X(YZ) = 
XYZ 

Distributive law  

X(Y + Z) = XY + XZ  X + 
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(YZ) = 
(X + 
Y)(X + 
Z) 

DeMorgan's theorem  

(X + Y + Z + ...)' = 
X'Y'Z'... or { f ( 
X1,X2,...,Xn,0,1,+,. ) } = 
{ f ( 
X1',X2',...,Xn',1,0,.,+ ) }  

(XYZ...)' 
= X' + 
Y' + Z' 
+ ...  

Simplification 
theorems 

 

XY + XY' = X (uniting)  
(X + 
Y)(X + 
Y') = X 

X + XY = X 
(absorption)  

X(X + 
Y) = X 

(X + Y')Y = XY 
(adsorption)  

XY' + Y 
= X + Y 

Consensus theorem  

XY + X'Z + YZ = XY + 
X'Z  

(X + 
Y)(X' + 
Z)(Y + 
Z) = (X 
+ Y)(X' 
+ Z) 

Duality  

(X + Y + Z + ...)D = 
XYZ... or 
{f(X1,X2,...,Xn,0,1,+,.)}D 
= f(X1,X2,...,Xn,1,0,.,+)  

(XYZ 
...)D = X 
+ Y + Z 
+ ... 

Shannon Expansion 
Theorem  

 

f(X1,...,Xk,...Xn)  

Xk * 
f(X1,..., 
1 ,...Xn) 
+ Xk' * 
f(X1,..., 
0 ,...Xn) 

f(X1,...,Xk,...Xn)  

[Xk + 
f(X1,..., 
0 ,...Xn)] 
* [Xk' + 
f(X1,..., 
1 ,...Xn)] 

 

 

Algebraic Manipulation  
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   Minterms and Maxterms  

     

  

Any boolean expression may 
be expressed in terms of 
either minterms or maxterms. 
To do this we must first 
define the concept of a literal. 
A literal is a single variable 
within a term which may or 
may not be complemented. 
For an expression with N 
variables, minterms and 
maxterms are defined as 
follows : 

  

 A minterm is the 
product of N distinct 
literals where each 
literal occurs exactly 
once.  

 A maxterm is the sum 
of N distinct literals 
where each literal 
occurs exactly once.  

  
For a two-variable 
expression, the minterms and 
maxterms are as follows  

     

  

X Y Minterm Maxterm 

0 0 X'.Y' X+Y 

0 1 X'.Y X+Y' 

1 0 X.Y' X'+Y 

1 1 X.Y X'+Y' 
 

     

  
For a three-variable 
expression, the minterms and 
maxterms are as follows 

     

  

X Y Z Minterm  Maxterm 

0 0 0 X'.Y'.Z' X+Y+Z 

0 0 1 X'.Y'.Z  X+Y+Z' 

0 1 0 X'.Y.Z'  X+Y'+Z 

0 1 1 X'.Y.Z  X+Y'+Z' 

1 0 0 X.Y'.Z'  X'+Y+Z 

1 0 1 X.Y'.Z  X'+Y+Z' 
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1 1 0 X.Y.Z'  X'+Y'+Z 

1 1 1 X.Y.Z  X'+Y'+Z'  
 

     

  

This allows us to represent 
expressions in either Sum of 
Products or Product of Sums 
forms 

     
   Sum Of Products (SOP)  
     

  
The Sum of Products form 
represents an expression as 
a sum of minterms.  

     
  F(X, Y, ...) = Sum (ak.mk) 
     

  
where ak is 0 or 1 and mk is a 
minterm. 

     

  

To derive the Sum of 
Products form from a truth 
table, OR together all of the 
minterms which give a value 
of 1. 

     
   Example - SOP  
     
  Consider the truth table  
     

  

X Y F Minterm 

0 0 0 X'.Y' 

0 1 0 X'Y 

1 0 1 X.Y' 

1 1 1 X.Y 
 

  
Here SOP is f(X.Y) = X.Y' + 
X.Y 

     
   Product Of Sum (POS)  
     

  
The Product of Sums form 
represents an expression as 
a product of maxterms. 

     

  
F(X, Y, .......) = Product (bk + 
Mk), where bk is 0 or 1 and 
Mk is a maxterm.  

     
  To derive the Product of 
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Sums form from a truth table, 
AND together all of the 
maxterms which give a value 
of 0.  

 

Example - POS  
     

  
Consider the truth table from 
the previous example. 

     

  

X Y F Maxterm 

0 0 1 X+Y 

0 1 0 X+Y' 

1 0 1 X'+Y 

1 1 1 X'+Y' 
 

  Here POS is F(X,Y) = (X+Y') 
     
   Exercise  
     

  

Give the expression 
represented by the following 
truth table in both Sum of 
Products and Product of 
Sums forms. 

     

  

X Y Z F(X,Y,X) 

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 0 
 

     

   
Conversion between POS 
and SOP  

     

  
Conversion between the two 
forms is done by application 
of DeMorgans Laws. 

     
   Simplification  

  

As with any other form of 
algebra you have 
encountered, simplification of 
expressions can be 
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performed with Boolean 
algebra. 

     
   Example  
     

  
Show that X.Y.Z' + X'.Y.Z' + 
Y.Z = Y 

     

  
X.Y.Z' + X'.Y.Z' + Y.Z = Y.Z' 
+ Y.Z = Y 

     
   Example  
     

  
Show that (X.Y' + Z).(X + 
Y).Z = X.Z + Y.Z 

     
  (X.Y' + Z).(X + Y).Z  
  = (X.Y' + Z.X + Y'.Z).Z 
  = X.Y'Z + Z.X + Y'.Z 
  = Z.(X.Y' + X + Y') 
  = Z.(X+Y') 
 

 

Logic Circuits  
     

  
Boolean algebra is ideal for 
expressing the behavior of 
logic circuits. 

     

  

A circuit can be expressed as 
a logic design and 
implemented as a collection 
of individual connected logic 
gates.  

     
   Fixed Logic Systems  

  
A fixed logic system has two 
possible choices for 
representing true and false. 

     
   Positive Logic  

  

In a positive logic system, a 
high voltage is used to 
represent logical true (1), and 
a low voltage for a logical 
false (0). 

     
   Negative Logic  

  
In a negative logic system, a 
low voltage is used to 
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represent logical true (1), and 
a high voltage for a logical 
false (0). 

     

  
In positive logic circuits it is 
normal to use +5V for true 
and 0V for false.  

 

Switchin
g Circuits  

  
The abstract logic described previously can be implemented as 
an actual circuit. Switches are left open for logic 0 and closed 
for logic 1. 

     
   Two variable AND circuit X.Y  
     

  

 
     
   Two variable OR circuit X + Y  
     

  

 
     
   Four variable circuit U.V.(X + Y)  
     

  

 
     
   Truth Table  

  A truth table is a means for describing how a logic circuit's 
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output depends on the logic levels present at the circuit's inputs. 
     

  
In the following twos-inputs logic circuit, the table lists all 
possible combinations of logic levels present at inputs X and Y 
along with the corresponding output level F. 

     

  

 
     

  

X Y F = X*Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
 

     

  
When either input X AND Y is 1, the output F is 1. Therefore the 
"?" in the box is an AND gate. 

     

 

 

Logic Gates  

  

A logic gate is an electronic circuit/device which makes the 
logical decisions. To arrive at this decisions, the most 
common logic gates used are OR, AND, NOT, NAND, and 
NOR gates. The NAND and NOR gates are called universal 
gates. The exclusive-OR gate is another logic gate which 
can be constructed using AND, OR and NOT gate. 

     

  

Logic gates have one or more inputs and only one output. 
The output is active only for certain input combinations. 
Logic gates are the building blocks of any digital circuit. 
Logic gates are also called switches. With the advent of 
integrated circuits, switches have been replaced by TTL 
(Transistor Transistor Logic) circuits and CMOS circuits. 
Here I give example circuits on how to construct simples 
gates.  

  Symbolic Logic 

  
Boolean algebra derives its name from the mathematician 
George Boole. Symbolic Logic uses values, variables and 
operations. 
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   Inversion  

  
A small circle on an input or an output indicates inversion. 
See the NOT, NAND and NOR gates given below for 
examples.  

     

  

 
     
   Multiple Input Gates  

  

Given commutative and associative laws, many logic gates 
can be implemented with more than two inputs, and for 
reasons of space in circuits, usually multiple input, complex 
gates are made. You will encounter such gates in real world 
(maybe you could analyze an ASIC lib to find this). 

     
   Gates Types  

     

  

 AND  
 OR  
 NOT  
 BUF  
 NAND  
 NOR  
 XOR  
 XNOR  

 

Universal Gates  

  

Universal gates are the ones which can be 
used for implementing any gate like AND, OR 
and NOT, or any combination of these basic 
gates; NAND and NOR gates are universal 
gates. But there are some rules that need to 
be followed when implementing NAND or 
NOR based gates. 

     

  
To facilitate the conversion to NAND and 
NOR logic, we have two new graphic 
symbols for these gates. 

     
  NAND Gate 
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  NOR Gate 

  

 
     

   
Realization of logic function using NAND 
gates  

  

Any logic function can be implemented using 
NAND gates. To achieve this, first the logic 
function has to be written in Sum of Product 
(SOP) form. Once logic function is converted 
to SOP, then is very easy to implement using 
NAND gate. In other words any logic circuit 
with AND gates in first level and OR gates in 
second level can be converted into a NAND-
NAND gate circuit.  

     
  Consider the following SOP expression 
     
  F = W.X.Y + X.Y.Z + Y.Z.W 
     

  
The above expression can be implemented 
with three AND gates in first stage and one 
OR gate in second stage as shown in figure. 

     

  

 
     

  
If bubbles are introduced at AND gates 
output and OR gates inputs (the same for 
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NOR gates), the above circuit becomes as 
shown in figure. 

     

  

 
     

  
Now replace OR gate with input bubble with 
the NAND gate. Now we have circuit which is 
fully implemented with just NAND gates. 

     

  

 
     

   
Realization of logic gates using NAND 
gates  

     
     

   
Implementing an inverter using NAND 
gate  

     

  
Input  Output Rule 

(X.X)'  = X' Idempotent 
 

     

  

 
     
   Implementing AND using NAND gates  
     



 38 

  

Input  Output Rule 

((XY)'(XY)')'  = ((XY)')'  Idempotent  

 = (XY)  Involution 
 

     

  

 
     
   Implementing OR using NAND gates  
     

  

Input  Output Rule 

((XX)'(YY)')'  = (X'Y')'  Idempotent  

 = X''+Y''  DeMorgan  

 = X+Y  Involution 
 

     

  

 
 

Implementi
ng NOR 
using 
NAND 
gates  
     

  

Input  Output Rule 

((XX)'(YY)')'  =(X'Y')'  Idempotent 

 =X''+Y''  DeMorgan 

 =X+Y  Involution 

 =(X+Y)'  Idempotent 
 

     

  

 
     
   Realization of logic function using NOR gates  

  Any logic function can be implemented using NOR gates. To 
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achieve this, first the logic function has to be written in 
Product of Sum (POS) form. Once it is converted to POS, 
then it's very easy to implement using NOR gate. In other 
words any logic circuit with OR gates in first level and AND 
gates in second level can be converted into a NOR-NOR gate 
circuit.  

     
  Consider the following POS expression 
     
  F = (X+Y) . (Y+Z) 
     

  
The above expression can be implemented with three OR 
gates in first stage and one AND gate in second stage as 
shown in figure. 

     

  

 
     

  
If bubble are introduced at the output of the OR gates and the 
inputs of AND gate, the above circuit becomes as shown in 
figure. 

     

  

 
     

  
Now replace AND gate with input bubble with the NOR gate. 
Now we have circuit which is fully implemented with just NOR 
gates. 
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   Realization of logic gates using NOR gates  

     
     
   Implementing an inverter using NOR gate  
     

  
Input  Output Rule 

(X+X)'  = X' Idempotent 
 

     

  

 
     
   Implementing AND using NOR gates  
     

  

Input  Output Rule 

((X+X)'+(Y+Y)')'  =(X'+Y')'  Idempotent 

 = X''.Y''  DeMorgan 

 = (X.Y)  Involution 
 

     

  

 
     
   Implementing OR using NOR gates  
     

  
Input  Output Rule 

((X+Y)'+(X+Y)')' = ((X+Y)')'  Idempotent 
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 = X+Y  Involution 
 

     

  

 
     
   Implementing NAND using NOR gates  
     

  

Input  Output Rule 

((X+Y)'+(X+Y)')' = ((X+Y)')'  Idempotent 

 = X+Y  Involution 

 = (X+Y)'  Idempotent 
 

     

  

 
Introduction  

  

Simplification of Boolean 
functions is mainly used to 
reduce the gate count of a 
design. Less number of 
gates means less power 
consumption, sometimes the 
circuit works faster and also 
when number of gates is 
reduced, cost also comes 
down. 

     

  

There are many ways to 
simplify a logic design, some 
of them are given below. We 
will be looking at each of 
these in detail in the next few 
pages.  

  

 Algebraic 
Simplification.  

 ->Simplify 
symbolically using 
theorems/postulates.  

 ->Requires good skills  
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 Karnaugh Maps.  
 ->Diagrammatic 

technique using 
'Venn-like diagram'.  

 ->Limited to no more 
than 6 variables.  

  

We have already seen how 
Algebraic Simplification 
works, so lets concentrate on 
Karnaugh Maps or simply k-
maps. 

 

 

Karnaugh Maps  

  

Karnaugh maps provide a 
systematic method to obtain 
simplified sum-of-products 
(SOPs) Boolean expressions. 
This is a compact way of 
representing a truth table and 
is a technique that is used to 
simplify logic expressions. It is 
ideally suited for four or less 
variables, becoming 
cumbersome for five or more 
variables. Each square 
represents either a minterm or 
maxterm. A K-map of n 
variables will have 2 

  

squares. For a Boolean 
expression, product terms are 
denoted by 1's, while sum 
terms are denoted by 0's - but 
0's are often left blank. 

     

  

A K-map consists of a grid of 
squares, each square 
representing one canonical 
minterm combination of the 
variables or their inverse. The 
map is arranged so that 
squares representing 
minterms which differ by only 
one variable are adjacent both 
vertically and horizontally. 
Therefore XY'Z' would be 
adjacent to X'Y'Z' and would 
also adjacent to XY'Z and 
XYZ'. 
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   Minimization Technique  

  

 Based on the Unifying 
Theorem: X + X' = 1  

 The expression to be 
minimized should 
generally be in sum-of-
product form (If 
necessary, the 
conversion process is 
applied to create the 
sum-of-product form).  

 The function is mapped 
onto the K-map by 
marking a 1 in those 
squares corresponding 
to the terms in the 
expression to be 
simplified (The other 
squares may be filled 
with 0's).  

 Pairs of 1's on the map 
which are adjacent are 
combined using the 
theorem Y(X+X') = Y 
where Y is any Boolean 
expression (If two pairs 
are also adjacent, then 
these can also be 
combined using the 
same theorem).  

 The minimization 
procedure consists of 
recognizing those pairs 
and multiple pairs.  

 ->These are circled 
indicating reduced 
terms.  

o Groups which 
can be circled 
are those which 
have two (21) 1's, 
four (22) 1's, 
eight (23) 1's, 
and so on.  

 ->Note that because 
squares on one edge of 
the map are considered 
adjacent to those on the 
opposite edge, group 
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can be formed with 
these squares.  

 ->Groups are allowed to 
overlap.  

 The objective is to cover 
all the 1's on the map in 
the fewest number of 
groups and to create 
the largest groups to do 
this.  

 Once all possible 
groups have been 
formed, the 
corresponding terms 
are identified.  

 ->A group of two 1's 
eliminates one variable 
from the original 
minterm.  

 ->A group of four 1's 
eliminates two variables 
from the original 
minterm.  

 ->A group of eight 1's 
eliminates three 
variables from the 
original minterm, and so 
on.  

 ->The variables 
eliminated are those 
which are different in 
the original minterms of 
the group.  

 

 

2-
Variable 
K-Map  

  

In any K-Map, each square represents a minterm. Adjacent 
squares always differ by just one literal (So that the unifying 
theorem may apply: X + X' = 1). For the 2-variable case (e.g.: 
variables X, Y), the map can be drawn as below. Two variable 
map is the one which has got only two variables as input. 
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   Equivalent labeling  

  

K-map needs not follow the ordering as shown in the figure 
above. What this means is that we can change the position of 
m0, m1, m2, m3 of the above figure as shown in the two figures 
below. 

     

  
Position assignment is the same as the default k-maps positions. 
This is the one which we will be using throughout this tutorial. 

     

  

 
     
  This figure is with changed position of m0, m1, m2, m3. 
     

  

 
     

  
The K-map for a function is specified by putting a '1' in the square 
corresponding to a minterm, a '0' otherwise.  

     
   Example- Carry and Sum of a half adder  

  

In this example we have the truth table as input, and we have two 
output functions. Generally we may have n output functions for m 
input variables. Since we have two output functions, we need to 
draw two k-maps (i.e. one for each function). Truth table of 1 bit 
adder is shown below. Draw the k-map for Carry and Sum as 
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shown below. 
     

  

X  Y  Sum  Carry 

0  0  0  0 

0  1  1  0 

1  0  1  0 

1  1  0  1 
 

     

  

 
     
   Grouping/Circling K-maps  

  

The power of K-maps is in minimizing the terms, K-maps can be 
minimized with the help of grouping the terms to form single 
terms. When forming groups of squares, observe/consider the 
following: 

     

  

 Every square containing 1 must be considered at least 
once.  

 A square containing 1 can be included in as many groups 
as desired.  

 A group must be as large as possible.  

     

  

 
     

  

 If a square containing 1 cannot be placed in a group, then 
leave it out to include in final expression.  

 The number of squares in a group must be equal to 2  
 , i.e. 2,4,8,.  
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 The map is considered to be folded or spherical, therefore 
squares at the end of a row or column are treated as 
adjacent squares.  

 The simplified logic expression obtained from a K-map is 
not always unique. Groupings can be made in different 
ways.  

 Before drawing a K-map the logic expression must be in 
canonical form.  

     

  

 
     

  

 
     
  In the next few pages we will see some examples on grouping. 
 

 

Example of invalid 
groups  
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   Example - X'Y+XY  

  

In this example we have the equation as input, 
and we have one output function. Draw the k-map 
for function F with marking 1 for X'Y and XY 
position. Now combine two 1's as shown in figure 
to form the single term. As you can see X and X' 
get canceled and only Y remains. 

     
  F = Y 
     

  

 
     
   Example - X'Y+XY+XY'  

  

In this example we have the equation as input, 
and we have one output function. Draw the k-map 
for function F with marking 1 for X'Y, XY and XY 
position. Now combine two 1's as shown in figure 
to form the two single terms. 

     
  F = X + Y 
     

  

 



 49 

     
   3-Variable K-Map  

  

There are 8 minterms for 3 variables (X, Y, Z). 
Therefore, there are 8 cells in a 3-variable K-map. 
One important thing to note is that K-maps follow 
the gray code sequence, not the binary one. 

     

  

 
     

  

Using gray code arrangement ensures that 
minterms of adjacent cells differ by only ONE 
literal. (Other arrangements which satisfy this 
criterion may also be used.) 

     

  
Each cell in a 3-variable K-map has 3 adjacent 
neighbours. In general, each cell in an n-variable 
K-map has n adjacent neighbours. 

     

  

 
     
  There is wrap-around in the K-map 

  
 X'Y'Z' (m0) is adjacent to X'YZ' (m2)  
 XY'Z' (m4) is adjacent to XYZ' (m6)  
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   Example  
  F = XYZ'+XYZ+X'YZ  
     

  

 
     
  F = XY + YZ 
     
   Example  
  F(X,Y,Z) = (1,3,4,5,6,7)  
     

  

 
     
  F = X + Z 
 

 

QUINE-McCLUSKEY MINIMIZATION  

  
Quine-
McCluskey 
minimization 
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method 
uses the 
same 
theorem to 
produce the 
solution as 
the K-map 
method, 
namely 
X(Y+Y')=X 

 

 

Minimization Technique  
     

  

 The expression is 
represented in the canonical 
SOP form if not already in 
that form.  

 The function is converted into 
numeric notation.  

 The numbers are converted 
into binary form.  

 The minterms are arranged in 
a column divided into groups.  

 Begin with the minimization 
procedure.  

 -> Each minterm of one group 
is compared with each 
minterm in the group 
immediately below.  

 -> Each time a number is 
found in one group which is 
the same as a number in the 
group below except for one 
digit, the numbers pair is 
ticked and a new composite 
is created.  

 -> This composite number 
has the same number of 
digits as the numbers in the 
pair except the digit different 
which is replaced by an "x".  

 The above procedure is 
repeated on the second 
column to generate a third 
column.  

 The next step is to identify the 
essential prime implicants, 
which can be done using a 
prime implicant chart.  
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 -> Where a prime implicant 
covers a minterm, the 
intersection of the 
corresponding row and 
column is marked with a 
cross.  

 -> Those columns with only 
one cross identify the 
essential prime implicants. -> 
These prime implicants must 
be in the final answer.  

 -> The single crosses on a 
column are circled and all the 
crosses on the same row are 
also circled, indicating that 
these crosses are covered by 
the prime implicants selected.  

 -> Once one cross on a 
column is circled, all the 
crosses on that column can 
be circled since the minterm 
is now covered.  

 -> If any non-essential prime 
implicant has all its crosses 
circled, the prime implicant is 
redundant and need not be 
considered further.  

 Next, a selection must be 
made from the remaining 
nonessential prime 
implicants, by considering 
how the non-circled crosses 
can be covered best.  

 -> One generally would take 
those prime implicants which 
cover the greatest number of 
crosses on their row.  

 -> If all the crosses in one 
row also occur on another 
row which includes further 
crosses, then the latter is said 
to dominate the former and 
can be selected.  

 -> The dominated prime 
implicant can then be deleted.  

     
   Example  

  
Find the minimal sum of products for 
the Boolean expression, f=
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(1,2,3,7,8,9,10,11,14,15), using 
Quine-McCluskey method. 

     

  

Firstly these minterms are 
represented in the binary form as 
shown in the table below. The above 
binary representations are grouped 
into a number of sections in terms of 
the number of 1's as shown in the 
table below. 

     
  Binary representation of minterms 
     

  

Minterms U  V  W  X 

1 0 0 0 1 

2 0 0 1 0 

3 0 0 1 1 

7 0 1 1 1 

8 1 0 0 0 

9 1 0 0 1 

10 1 0 1 0 

11 1 0 1 1 

14 1 1 1 0 

15 1 1 1 1 
 

     

  
Group of minterms for different 
number of 1's 

     

  

No 
of 
1's 

Minterms U  V  W  X 

1 1 0 0 0 1 

1 2 0 0 1 0 

1 8 1 0 0 0 

2 3 0 0 1 1 

2 9 1 0 0 1 

2 10 1 0 1 0 

3 7 0 1 1 1 

3 11 1 0 1 1 

3 14 1 1 1 0 

4 15 1 1 1 1 
 

     

  
Any two numbers in these groups 
which differ from each other by only 
one variable can be chosen and 
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combined, to get 2-cell combination, 
as shown in the table below. 

     
  2-Cell combinations 
     

  

Combinations U V W X 

(1,3) 0 0 - 1 

(1,9) - 0 0 1 

(2,3) 0 0 1 - 

(2,10) - 0 1 0 

(8,9) 1 0 0 - 

(8,10) 1 0 - 0 

(3,7) 0 - 1 1 

(3,11) - 0 1 1 

(9,11) 1 0 - 1 

(10,11) 1 0 1  - 

(10,14) 1 - 1 0 

(7,15) - 1 1 1 

(11,15) 1 - 1 1 

(14,15) 1 1 1 - 
 

     

  

From the 2-cell combinations, one 
variable and dash in the same 
position can be combined to form 4-
cell combinations as shown in the 
figure below. 

     
  4-Cell combinations 
     

  

Combinations U V W X 

(1,3,9,11) - 0 - 1 

(2,3,10,11) - 0 1 - 

(8,9,10,11) 1 0 - - 

(3,7,11,15) - - 1 1 

(10,11,14,15) 1 - 1 - 
 

     

  

The cells (1,3) and (9,11) form the 
same 4-cell combination as the cells 
(1,9) and (3,11). The order in which 
the cells are placed in a combination 
does not have any effect. Thus the 
(1,3,9,11) combination could be 
written as (1,9,3,11). 

     
  From above 4-cell combination 



 55 

table, the prime implicants table can 
be plotted as shown in table below. 

     
  Prime Implicants Table 
     

  

Prime 
Implicants 

1 2 3 7 8 9 10 11 14 15 

(1,3,9,11)  X - X - - X - X - - 

(2,3,10,11)  - X X - - - X X - - 

(8,9,10,11)  - - - - X X X X - - 

(3,7,11,15)  - - - - - - X X X X 

-  X X - X X - - - X -  
 

     

  

The columns having only one cross 
mark correspond to essential prime 
implicants. A yellow cross is used 
against every essential prime 
implicant. The prime implicants sum 
gives the function in its minimal SOP 
form. 

     
  Y = V'X + V'W + UV' + WX + UW 
 

Decoders  

  

A decoder is a multiple-input, multiple-output logic 
circuit that converts coded inputs into coded outputs, 
where the input and output codes are different; e.g. n-
to-2n, BCD decoders. 

     

  
Enable inputs must be on for the decoder to function, 
otherwise its outputs assume a single "disabled" 
output code word. 

     

  

Decoding is necessary in applications such as data 
multiplexing, 7 segment display and memory address 
decoding. Figure below shows the pseudo block of a 
decoder. 
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   Basic Binary Decoder  

  

And AND gate can be used as the basic decoding 
element, because its output is HIGH only when all its 
inputs are HIGH. For example, if the input binary 
number is 0110, then, to make all the inputs to the 
AND gate HIGH, the two outer bits must be inverted 
using two inverters as shown in figure below. 

     

  

 
     
   Binary n-to-2n Decoders  

  

A binary decoder has n inputs and 2n outputs. Only 
one output is active at any one time, corresponding to 
the input value. Figure below shows a representation 
of Binary n-to-2n decoder 

     

  

 
 

 

Exampl
e - 2-to-
4 
Binary 
Decode
r  

  
A 2 to 4 decoder consists of two inputs and four outputs, truth 
table and symbols of which is shown below. 

     
  Truth Table 

  

X Y F0 F1 F2 F3 

0 0 1  0 0 0 

0 1 0 1 0 0 
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1 0 0 0 1 0 

1 1 0 0 0 1 
 

     
  Symbol 

  

 
     

  

To minimize the above truth table we may use kmap, but doing 
that you will realize that it is a waste of time. One can directly write 
down the function for each of the outputs. Thus we can draw the 
circuit as shown in figure below. 

     
  Note: Each output is a 2-variable minterm (X'Y', X'Y, XY', XY) 
     
  Circuit 

  

 
     
   Example - 3-to-8 Binary Decoder  
     

  
A 3 to 8 decoder consists of three inputs and eight outputs, truth 
table and symbols of which is shown below. 

     
  Truth Table 

  

X Y Z F0 F1 F2 F3 F4 F5 F6 F7 

0 0 0 1 0 0 0 0 0 0 0 

0 0 1 0 1 0 0 0 0 0 0 

0 1 0 0 0 1 0 0 0 0 0 

0 1 1 0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 1 0 0 0 

1 0 1 0 0 0 0 0 1 0 0 

1 1 0 0 0 0 0 0 0 1 0 
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1 1 1 0 0 0 0 0 0 0 1 
 

     
  Symbol 

  

 
     

  
From the truth table we can draw the circuit diagram as shown in 
figure below. 

     
  Circuit 

  

 
     
   Implementing Functions Using Decoders  
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 Any n-variable logic function, in canonical sum-of-minterms 
form can be implemented using a single n-to-2n decoder to 
generate the minterms, and an OR gate to form the sum.  

 ->The output lines of the decoder corresponding to the 
minterms of the function are used as inputs to the or gate.  

 Any combinational circuit with n inputs and m outputs can 
be implemented with an n-to-2n decoder with m OR gates.  

 Suitable when a circuit has many outputs, and each output 
function is expressed with few minterms.  

 

Introduction  

  

Arithmetic circuits are the 
ones which perform 
arithmetic operations like 
addition, subtraction, 
multiplication, division, parity 
calculation. Most of the time, 
designing these circuits is the 
same as designing muxers, 
encoders and decoders. 

     

  
In the next few pages we will 
see few of these circuits in 
detail. 

     
   Adders  

  

Adders are the basic building 
blocks of all arithmetic 
circuits; adders add two 
binary numbers and give out 
sum and carry as output. 
Basically we have two types 
of adders. 

     

  
 Half Adder.  
 Full Adder.  

 

    

 

 

Half 
Adder  

  

Adding two single-bit binary values X, Y produces a 
sum S bit and a carry out C-out bit. This operation is 
called half addition and the circuit to realize it is called 
a half adder. 



 60 

     
  Truth Table 

  

X Y SUM CARRY  

0 0 0 0 

0 1 1 0 

1 0 1 0  

1 1 0 1  
 

     
  Symbol 
     

  

 
     
  S (X,Y) = (1,2) 
  S = X'Y + XY' 
  S = X Y 
  CARRY(X,Y) = (3) 
  CARRY = XY 
     
  Circuit 
     

  

 
     
   Full Adder  

  
Full adder takes a three-bits input. Adding two single-
bit binary values X, Y with a carry input bit C-in 
produces a sum bit S and a carry out C-out bit.  

     
  Truth Table 

  
X Y Z SUM CARRY  

0 0 0 0 0 
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0 0 1 1 0 

0 1 0 1 0  

0 1 1 0 1  

1 0 0 1 0  

1 0 1 0 1  

1 1 0 0 1  

1 1 1 1 1 
 

     
  SUM (X,Y,Z) = (1,2,4,7) 
  CARRY (X,Y,Z) = (3,5,6,7) 
     
  Kmap-SUM 

  

 
     
  SUM = X'Y'Z + XY'Z' + X'YZ' 
  SUM = X Y Z 
     
  Kmap-CARRY 

  

 
     
  CARRY = XY + XZ + YZ 
     
   Full Adder using AND-OR  

  

The below implementation shows implementing the full 
adder with AND-OR gates, instead of using XOR 
gates. The basis of the circuit below is from the above 
Kmap.  

     
  Circuit-SUM 
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  Circuit-CARRY 

  

 
     
   Full Adder using AND-OR  
     
  Circuit-SUM 

  

 
     
  Circuit-CARRY 
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   Example - Full adder  
     
  Equation 
  S(x, y, z) = (1,2,4,7) 
  C(x, y, z) = (3,5,6,7) 
     
  Truth Table 
     

  

X Y Z C S 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 
 

     

  

From the truth table we know the values for which the sum (s) is 
active and also the carry (c) is active. Thus we have the equation 
as shown above and a circuit can be drawn as shown below from 
the equation derived. 

     
  Circuit 

  

 
 

Encoders  

  

An encoder is a combinational circuit that performs the inverse 
operation of a decoder. If a device output code has fewer bits 
than the input code has, the device is usually called an 
encoder. e.g. 2n-to-n, priority encoders.  

     

  
The simplest encoder is a 2n-to-n binary encoder, where it has 
only one of 2n inputs = 1 and the output is the n-bit binary 
number corresponding to the active input. 
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   Example - Octal-to-Binary Encoder  

  

Octal-to-Binary take 8 inputs and provides 3 outputs, thus 
doing the opposite of what the 3-to-8 decoder does. At any 
one time, only one input line has a value of 1. The figure 
below shows the truth table of an Octal-to-binary encoder. 

     
  Truth Table 
     

  

I0 I1 I2 I3 I4 I5 I6 I7 Y2 Y1 Y0 

1 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 0 1 0 

0 0 0 1 0 0 0 0 0 1 1 

0 0 0 0 1 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 1 0 1 

0 0 0 0 0 0 1 0 1 1 0 

0 0 0 0 0 0 0 1 1 1 1 
 

     

  
For an 8-to-3 binary encoder with inputs I0-I7 the logic 
expressions of the outputs Y0-Y2 are: 

     
  Y0 = I1 + I3 + I5 + I7 
  Y1= I2 + I3 + I6 + I7 
  Y2 = I4 + I5 + I6 +I7 
     

  
Based on the above equations, we can draw the circuit as 
shown below 

     
  Circuit 
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Exampl
e - 
Decima
l-to-
Binary 
Encod
er  

  

Decimal-to-Binary take 10 inputs and provides 4 outputs, thus 
doing the opposite of what the 4-to-10 decoder does. At any one 
time, only one input line has a value of 1. The figure below shows 
the truth table of a Decimal-to-binary encoder. 

     
  Truth Table 
     

  

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 Y3 Y2 Y1 Y0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 1 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 1 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 0 0 0 1 0 1 

0 0 0 0 0 0 1 0 0 0 0 1 1 0 

0 0 0 0 0 0 0 1 0 0 0 1 1 1 

0 0 0 0 0 0 0 0 1 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 1 1 0 0 1 
 

     

  
From the above truth table , we can derive the functions Y3, Y2, 
Y1 and Y0 as given below. 

     
  Y3 = I8 + I9 
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  Y2 = I4 + I5 + I6 + I7 
  Y1 = I2 + I3 + I6 + I7 
  Y0 = I1 + I3 + I5 + I7 + I9 
     
   Priority Encoder  

  

If we look carefully at the Encoder circuits that we got, we see the 
following limitations. If more then two inputs are active 
simultaneously, the output is unpredictable or rather it is not what 
we expect it to be. 

     

  
This ambiguity is resolved if priority is established so that only one 
input is encoded, no matter how many inputs are active at a given 
point of time.  

     

  

The priority encoder includes a priority function. The operation of 
the priority encoder is such that if two or more inputs are active at 
the same time, the input having the highest priority will take 
precedence. 

     
   Example - 4to3 Priority Encoder  

  

The truth table of a 4-input priority encoder is as shown below. The 
input D3 has the highest priority, D2 has next highest priority, D0 
has the lowest priority. This means output Y2 and Y1 are 0 only 
when none of the inputs D1, D2, D3 are high and only D0 is high. 

     

  
A 4 to 3 encoder consists of four inputs and three outputs, truth 
table and symbols of which is shown below. 

     
  Truth Table 
     

  

D3 D2 D1 D0 Y2 Y1 Y0 

0 0 0 0 0 0 0 

0 0 0 1 0 0 1 

0 0 1 x 0 1 0 

0 1 x x 0 1 1 

1 x x x 1 0 0 
 

     

  
Now that we have the truth table, we can draw the Kmaps as 
shown below. 

     
  Kmaps 
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From the Kmap we can draw the circuit as shown below. For Y2, 
we connect directly to D3. 

     

  

 
     
  We can apply the same logic to get higher order priority encoders. 
 

Multiplexer  

  

A multiplexer (MUX) is a digital switch which connects data 
from one of n sources to the output. A number of select 
inputs determine which data source is connected to the 
output. The block diagram of MUX with n data sources of b 
bits wide and s bits wide select line is shown in below 
figure. 
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MUX acts like a digitally controlled multi-position switch 
where the binary code applied to the select inputs controls 
the input source that will be switched on to the output as 
shown in the figure below. At any given point of time only 
one input gets selected and is connected to output, based 
on the select input signal. 

     
   Mechanical Equivalent of a Multiplexer  

  

The operation of a multiplexer can be better explained 
using a mechanical switch as shown in the figure below. 
This rotary switch can touch any of the inputs, which is 
connected to the output. As you can see at any given point 
of time only one input gets transferred to output. 

     

  

 
     
   Example - 2x1 MUX  

  

A 2 to 1 line multiplexer is shown in figure below, each 2 
input lines A to B is applied to one input of an AND gate. 
Selection lines S are decoded to select a particular AND 
gate. The truth table for the 2:1 mux is given in the table 
below. 

     
  Symbol 

  

 
     
  Truth Table 

  

S Y 

0 A 

1 B 
 

 

Design of a 
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2:1 Mux  

  

To derive the gate level implementation of 2:1 mux we need 
to have truth table as shown in figure. And once we have the 
truth table, we can draw the K-map as shown in figure for all 
the cases when Y is equal to '1'. 

     

  
Combining the two 1' as shown in figure, we can drive the 
output y as shown below 

     
  Y = A.S' + B.S 
     
     
  Truth Table 

  

B A S Y  

0 0 0 0  

0 0 1 0  

0 1 0 1  

0 1 1 0  

1 0 0 0  

1 0 1 1  

1 1 0 1  

1 1 1 1 
 

     
  Kmap 

  

 
     
  Circuit 
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   Example : 4:1 MUX  

  

A 4 to 1 line multiplexer is shown in figure below, each of 4 
input lines I0 to I3 is applied to one input of an AND gate. 
Selection lines S0 and S1 are decoded to select a particular 
AND gate. The truth table for the 4:1 mux is given in the table 
below. 

     
  Symbol 

  

 
     
  Truth Table 

  

S1 S0 Y  

0 0 I0  

0 1 I1 

1 0 I2  

1 1 I3  
 

     
  Circuit 
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   Larger Multiplexers  

  
Larger multiplexers can be constructed from smaller ones. An 
8-to-1 multiplexer can be constructed from smaller 
multiplexers as shown below. 

     
   Example - 8-to-1 multiplexer from Smaller MUX  
     
  Truth Table 

  

S2 S1 S0 F  

0 0 0 I0  

0 0 1 I1  

0 1 0 I2  

0 1 1 I3  

1 0 0 I4  

1 0 1 I5  

1 1 0 I6  

1 1 1 I7 
 

     
  Circuit 
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   Example - 16-to-1 multiplexer from 4:1 mux  
     

  

 
 

De-multiplexers  

  

They are digital switches 
which connect data from one 
input source to one of n 
outputs. 

  

Usually implemented by 
using n-to-2n binary decoders 
where the decoder enable 
line is used for data input of 
the de-multiplexer. 



 73 

     

  

The figure below shows a de-
multiplexer block diagram 
which has got s-bits-wide 
select input, one b-bits-wide 
data input and n b-bits-wide 
outputs. 

 

Mechanical 
Equivalent of a De-
Multiplexer  

  

The operation of a de-multiplexer can be better 
explained using a mechanical switch as shown in 
the figure below. This rotary switch can touch any 
of the outputs, which is connected to the input. As 
you can see at any given point of time only one 
output gets connected to input. 

     

  

 
     

  
1-bit 4-output de-multiplexer using a 2x4 binary 
decoder. 

     

  

 
     
   Example: 1-to-4 De-multiplexer  

     
  Symbol 
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  Truth Table 

  

S1 S0 F0 F1 F2 F3 

0 0 D 0 0 0 

0 1 0 D 0 0 

1 0 0 0 D 0 

1 1 0 0 0 D 
 

 

Boolean Function Implementation  

  

Earlier we had seen that it is 
possible to implement 
Boolean functions using 
decoders. In the same way it 
is also possible to implement 
Boolean functions using 
muxers and de-muxers.  

     

   
Implementing Functions 
Multiplexers  

  

Any n-variable logic function 
can be implemented using a 
smaller 2n-1-to-1 multiplexer 
and a single inverter (e.g 4-
to-1 mux to implement 3 
variable functions) as follows. 

     

  

Express function in canonical 
sum-of-minterms form. 
Choose n-1 variables as 
inputs to mux select lines. 
Construct the truth table for 
the function, but grouping 
inputs by selection line 
values (i.e select lines as 
most significant inputs). 

  Determine multiplexer input 



 75 

line i values by comparing 
the remaining input variable 
and the function F for the 
corresponding selection lines 
value i. 

     

  
We have four possible mux 
input line i values: 

     

  

 Connect to 0 if the 
function is 0 for both 
values of remaining 
variable.  

 Connect to 1 if the 
function is 1 for both 
values of remaining 
variable.  

 Connect to remaining 
variable if function is 
equal to the remaining 
variable.  

 Connect to the 
inverted remaining 
variable if the function 
is equal to the 
remaining variable 
inverted.  

 

 

Exampl
e: 3-
variable 
Functio
n Using 
8-to-1 
mux  

  

Implement the function F(X,Y,Z) = S(1,3,5,6) using an 8-to-1 mux. 
Connect the input variables X, Y, Z to mux select lines. Mux data 
input lines 1, 3, 5, 6 that correspond to the function minterms are 
connected to 1. The remaining mux data input lines 0, 2, 4, 7 are 
connected to 0.  
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   Example: 3-variable Function Using 4-to-1 mux  

  
Implement the function F(X,Y,Z) = S(0,1,3,6) using a single 4-to-1 
mux and an inverter. We choose the two most significant inputs 
X, Y as mux select lines. 

  Construct truth table. 
     
  Truth Table 

  

Select i X Y Z F 
Mux 
Input i 

0 0 0 0 1  1 

0 0 0 1 1  1 

1 0 1 0 0  Z 

1 0 1 1 1  Z 

2 1 0 0 0  0 

2 1 0 1 0  0 

3 1 1 0 1  Z' 

3 1 1 1 0  Z' 
 

     
  Circuit 
     

  

 
     

  
We determine multiplexer input line i values by comparing the 
remaining input variable Z and the function F for the 
corresponding selection lines value i 
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 when XY=00 the function F is 1 (for both Z=0, Z=1) thus 
mux input0 = 1  

 when XY=01 the function F is Z thus mux input1 = Z  
 when XY=10 the function F is 0 (for both Z=0, Z=1) thus 

mux input2 = 0  
 when XY=11 the function F is Z' thus mux input3 = Z'  

     
   Example: 2 to 4 Decoder using Demux  

     

  

 
     
   Mux-Demux Application Example  

  
This enables sharing a single communication line among a 
number of devices. At any time, only one source and one 
destination can use the communication line. 

     

  

 
 

 

Introduction  

  

Arithmetic circuits are the 
ones which perform 
arithmetic operations like 
addition, subtraction, 
multiplication, division, parity 
calculation. Most of the time, 
designing these circuits is the 
same as designing muxers, 
encoders and decoders. 
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In the next few pages we will 
see few of these circuits in 
detail. 

     
   Adders  

  

Adders are the basic building 
blocks of all arithmetic 
circuits; adders add two 
binary numbers and give out 
sum and carry as output. 
Basically we have two types 
of adders. 

     

  
 Half Adder.  
 Full Adder.  

 

 

Half Adder  

  

Adding two single-bit binary values X, Y produces a 
sum S bit and a carry out C-out bit. This operation is 
called half addition and the circuit to realize it is called 
a half adder. 

     
  Truth Table 

  

X Y SUM CARRY  

0 0 0 0 

0 1 1 0 

1 0 1 0  

1 1 0 1  
 

     
  Symbol 
     

  

 
     
  S (X,Y) = (1,2) 
  S = X'Y + XY' 
  S = X Y 
  CARRY(X,Y) = (3) 
  CARRY = XY 
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  Circuit 
     

  

 
     
   Full Adder  

  
Full adder takes a three-bits input. Adding two single-
bit binary values X, Y with a carry input bit C-in 
produces a sum bit S and a carry out C-out bit.  

     
  Truth Table 

  

X Y Z SUM CARRY  

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0  

0 1 1 0 1  

1 0 0 1 0  

1 0 1 0 1  

1 1 0 0 1  

1 1 1 1 1 
 

     
  SUM (X,Y,Z) = (1,2,4,7) 
  CARRY (X,Y,Z) = (3,5,6,7) 
     
  Kmap-SUM 

  

 
     
  SUM = X'Y'Z + XY'Z' + X'YZ' 
  SUM = X Y Z 
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  Kmap-CARRY 

  

 
     
  CARRY = XY + XZ + YZ 
     
   Full Adder using AND-OR  

  

The below implementation shows implementing the full 
adder with AND-OR gates, instead of using XOR 
gates. The basis of the circuit below is from the above 
Kmap.  

     
  Circuit-SUM 

  

 
     
  Circuit-CARRY 

  

 
     
   Full Adder using AND-OR  
     
  Circuit-SUM 
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  Circuit-CARRY 

  

 
 

Subtracter  

  

Subtracter circuits take two binary numbers as input and 
subtract one binary number input from the other binary 
number input. Similar to adders, it gives out two outputs, 
difference and borrow (carry-in the case of Adder). There 
are two types of subtracters. 

     

  
 Half Subtracter.  
 Full Subtracter.  

     
   Half Subtracter  

  

The half-subtracter is a combinational circuit which is used 
to perform subtraction of two bits. It has two inputs, X 
(minuend) and Y (subtrahend) and two outputs D 
(difference) and B (borrow). The logic symbol and truth 
table are shown below. 

     
  Symbol 
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  Truth Table 
     

  

X Y D B  

0 0 0 0  

0 1 1 1  

1 0 1 0  

1 1 0 0 
 

     

  
From the above table we can draw the Kmap as shown 
below for "difference" and "borrow". The boolean 
expression for the difference and Borrow can be written. 

     

  

 
     

  
From the equation we can draw the half-subtracter as 
shown in the figure below. 
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Full 
Subtract
er  

  
A full subtracter is a combinational circuit that performs 
subtraction involving three bits, namely minuend, subtrahend, and 
borrow-in. The logic symbol and truth table are shown below. 

     
  Symbol 
     

  

 
     
  Truth Table 
     

  

X Y Bin D Bout  

0 0 0 0 0  

0 0 1 1 1  

0 1 0 1 1  

0 1 1 0 1  

1 0 0 1 0  

1 0 1 0 0  

1 1 0 0 0  

1 1 1 1 1 
 

     

  

 
     

  
From above table we can draw the Kmap as shown below for 
"difference" and "borrow". The boolean expression for difference 
and borrow can be written. 

     
  D = X'Y'Bin + X'YBin' + XY'Bin' + XYBin 
  = (X'Y' + XY)Bin + (X'Y + XY')Bin' 
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  = (X  Y)'Bin + (X  Y)Bin' 
  = X  Y  Bin 
  Bout = X'.Y + X'.Bin + Y.Bin 
     

  
From the equation we can draw the half-subtracter as shown in 
figure below. 

     

  

 
     

  
From the above expression, we can draw the circuit below. If you 
look carefully, you will see that a full-subtracter circuit is more or 
less same as a full-adder with slight modification. 

     

  

 
     
   Parallel Binary Subtracter  

  

Parallel binary subtracter can be implemented by cascading 
several full-subtracters. Implementation and associated problems 
are those of a parallel binary adder, seen before in parallel binary 
adder section. 

     

  
Below is the block level representation of a 4-bit parallel binary 
subtracter, which subtracts 4-bit Y3Y2Y1Y0 from 4-bit 
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X3X2X1X0. It has 4-bit difference output D3D2D1D0 with borrow 
output Bout. 

     

  

 
     
   Serial Binary Subtracter  

  

A serial subtracter can be obtained by converting the serial adder 
using the 2's complement system. The subtrahend is stored in the 
Y register and must be 2's complemented before it is added to the 
minuend stored in the X register. 

     

  
The circuit for a 4-bit serial subtracter using full-adder is shown in 
the figure below. 

     

  

 
     
   Comparators  

  

Comparators can compare either a variable number X (xn xn-1 ... 
x3 x2 x1) with a predefined constant C (cn cn-1 ... c3 c2 c1) or 
two variable numbers X and Y. In the first case the 
implementation reduces to a series of cascaded AND and OR 
logic gates. If the comparator answers the question 'X>C?' then 
its hardware implementation is designed according to the 
following rules: 

     

  

 The number X has two types of binary figures: bits 
corresponding to '1' in the predefined constant and bits 
corresponding to '0' in the predefined constant.  

 The bits of the number X corresponding to '1' are supplied 
to AND gates  
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 The bits corresponding to '0' are supplied to OR logic 
gates  

 If the least significant bits of the predefined constant are 
'10' then bit X0 is supplied to the same AND gate as bit X1.  

     

  

If the least significant bits of the constant are all '1' then the 
corresponding bits of the number X are not included in the 
hardware implementation. All other relations between X and C 
can be transformed in equivalent ones that use the operator '>' 
and the NOT logic operator as shown in the table below. 

     

  

Initial relationship to be 
tested  

Equivalent relationship to be 
implemented 

X&lt;C  NOT (X>C-1) 

X<= C  NOT (X>C) 

X >= C  X>C-1 
 

     

  
The comparison process of two positive numbers X and Y is 
performed in a bit-by-bit manner starting with the most significant 
bit: 

     

  

 If the most significant bits are Xn='1' and Yn='0' then 
number X is larger than Y.  

 If Xn='0' and Yn='1' then number X is smaller than Y.  
 If Xn=Yn then no decision can be taken about X and Y 

based only on these two bits.  

     

  

If the most significant bits are equal then the result of the 
comparison is determined by the less significant bits Xn-1 and 
Yn-1. If these bits are equal as well, the process continues with 
the next pair of bits. If all bits are equal then the two numbers are 
equal. 

 

Multipliers  

  

Multiplication is achieved by adding a list of shifted 
multiplicands according to the digits of the multiplier. An n-
bit X n-bit multiplier can be realized in combinational 
circuitry by using an array of n-1 n-bit adders where each 
adder is shifted by one position. For each adder one input 
is the shifted multiplicand multiplied by 0 or 1 (using AND 
gates) depending on the multiplier bit, the other input is n 
partial product bits.  
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Dividers  

  

The binary divisions are performed in a very similar manner to 
the decimal divisions, as shown in the below figure examples. 
Thus, the second number is repeatedly subtracted from the 
figures of the first number after being multiplied either with '1' or 
with '0'. The multiplication bit ('1' or '0') is selected for each 
subtraction step in such a manner that the subtraction result is 
not negative. The division result is composed from all the 
successive multiplication bits while the remainder is the result of 
the last subtraction step. 

     

  

 
     

  
This algorithm can be implemented by a series of subtracters 
composed of modified elementary cells. Each subtracter 
calculates the difference between two input numbers, but if the 
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result is negative the operation is canceled and replaced with a 
subtraction by zero. Thus, each divider cell has the normal 
inputs of a subtracter unit as in the figure below but a 
supplementary input ('div_bit') is also present. This input is 
connected to the b_req_out signal generated by the most 
significant cell of the subtracter. If this signal is '1', the initial 
subtraction result is negative and it has to be replaced with a 
subtraction by zero. Inside each divider cell the div_bit signal 
controls an equivalent 2:1 multiplexer that selects between bit 'x' 
and the bit included in the subtraction result X-Y. The complete 
division can therefore by implemented by a matrix of divider cells 
connected on rows and columns as shown in figure below. Each 
row performs one multiplication-and-subtraction cycle where the 
multiplication bit is supplied by the NOT logic gate at the end of 
each row. Therefor the NOT logic gates generate the bits of the 
division result. 

     

  

 
     
   Parity Circuit  
     

  

 
 

Concept 
of 
Sequentia
l Logic  
  A sequential circuit as seen in the last page, is combinational logic 
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with some feedback to maintain its current value, like a memory 
cell. To understand the basics let's consider the basic feedback 
logic circuit below, which is a simple NOT gate whose output is 
connected to its input. The effect is that output oscillates between 
HIGH and LOW (i.e. 1 and 0). Oscillation frequency depends on 
gate delay and wire delay. Assuming a wire delay of 0 and a gate 
delay of 10ns, then oscillation frequency would be (on time + off 
time = 20ns) 50Mhz.  

     

  

 
     

  

The basic idea of having the feedback is to store the value or hold 
the value, but in the above circuit, output keeps toggling. We can 
overcome this problem with the circuit below, which is basically 
cascading two inverters, so that the feedback is in-phase, thus 
avoids toggling. The equivalent circuit is the same as having a 
buffer with its output connected to its input. 

     

  

 
     

  

But there is a problem here too: each gate output value is stable, 
but what will it be? Or in other words buffer output can not be 
known. There is no way to tell. If we could know or set the value 
we would have a simple 1-bit storage/memory element. 

     

  

The circuit below is the same as the inverters connected back to 
back with provision to set the state of each gate (NOR gate with 
both inputs shorted is like a inverter). I am not going to explain the 
operation, as it is clear from the truth table. S is called set and R 
is called Reset. 
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S R Q Q+ 

0 0 0 0 

0 0 1 1 

0 1 X 0 

1 0 X 1 

1 1 X 0 
 

     

  

There still seems to be some problem with the above 
configuration, we can not control when the input should be 
sampled, in other words there is no enable signal to control when 
the input is sampled. Normally input enable signals can be of two 
types. 

     

  
 Level Sensitive or ( LATCH)  
 Edge Sensitive or (Flip-Flop)  

     

  

Level Sensitive: The circuit below is a modification of the above 
one to have level sensitive enable input. Enable, when LOW, 
masks the input S and R. When HIGH, presents S and R to the 
sequential logic input (the above circuit two NOR Gates). Thus 
Enable, when HIGH, transfers input S and R to the sequential cell 
transparently, so this kind of sequential circuits are called 
transparent Latch. The memory element we get is an RS Latch 
with active high Enable. 

     

  

 
     

  

Edge Sensitive: The circuit below is a cascade of two level 
sensitive memory elements, with a phase shift in the enable input 
between first memory element and second memory element. The 
first RS latch (i.e. the first memory element) will be enabled when 
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CLK input is HIGH and the second RS latch will be enabled when 
CLK is LOW. The net effect is input RS is moved to Q and Q' 
when CLK changes state from HIGH to LOW, this HIGH to LOW 
transition is called falling edge. So the Edge Sensitive element we 
get is called negative edge RS flip-flop. 

     

  

 
     

  

Now that we know the sequential circuits basics, let's look at each 
of them in detail in accordance to what is taught in colleges. You 
are always welcome to suggest if this can be written better in any 
way. 

 

 

Latches and Flip-
Flops  
  There are two types types of sequential circuits. 
     

  
 Asynchronous Circuits.  
 Synchronous Circuits.  

     

  

As seen in last section, Latches and Flip-flops are 
one and the same with a slight variation: Latches 
have level sensitive control signal input and Flip-
flops have edge sensitive control signal input. Flip-
flops and latches which use this control signals are 
called synchronous circuits. So if they don't use 
clock inputs, then they are called asynchronous 
circuits. 

     
   RS Latch  

  

RS latch have two inputs, S and R. S is called set 
and R is called reset. The S input is used to produce 
HIGH on Q ( i.e. store binary 1 in flip-flop). The R 
input is used to produce LOW on Q (i.e. store binary 
0 in flip-flop). Q' is Q complementary output, so it 
always holds the opposite value of Q. The output of 
the S-R latch depends on current as well as 
previous inputs or state, and its state (value stored) 
can change as soon as its inputs change. The 
circuit and the truth table of RS latch is shown 
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below. (This circuit is as we saw in the last page, 
but arranged to look beautiful :-) ). 

     

  

 
     

  

S R Q Q+ 

0 0 0 0 

0 0 1 1 

0 1 X 0 

1 0 X 1 

1 1 X 0 
 

     

  
The operation has to be analyzed with the 4 inputs 
combinations together with the 2 possible previous 
states. 

     

  

 When S = 0 and R = 0: If we assume Q = 1 
and Q' = 0 as initial condition, then output Q 
after input is applied would be Q = (R + Q')' = 
1 and Q' = (S + Q)' = 0. Assuming Q = 0 and 
Q' = 1 as initial condition, then output Q after 
the input applied would be Q = (R + Q')' = 0 
and Q' = (S + Q)' = 1. So it is clear that when 
both S and R inputs are LOW, the output is 
retained as before the application of inputs. 
(i.e. there is no state change).  

 When S = 1 and R = 0: If we assume Q = 1 
and Q' = 0 as initial condition, then output Q 
after input is applied would be Q = (R + Q')' = 
1 and Q' = (S + Q)' = 0. Assuming Q = 0 and 
Q' = 1 as initial condition, then output Q after 
the input applied would be Q = (R + Q')' = 1 
and Q' = (S + Q)' = 0. So in simple words 
when S is HIGH and R is LOW, output Q is 
HIGH.  

 When S = 0 and R = 1: If we assume Q = 1 
and Q' = 0 as initial condition, then output Q 
after input is applied would be Q = (R + Q')' = 
0 and Q' = (S + Q)' = 1. Assuming Q = 0 and 
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Q' = 1 as initial condition, then output Q after 
the input applied would be Q = (R + Q')' = 0 
and Q' = (S + Q)' = 1. So in simple words 
when S is LOW and R is HIGH, output Q is 
LOW.  

 When S = 1 and R =1 : No matter what state 
Q and Q' are in, application of 1 at input of 
NOR gate always results in 0 at output of 
NOR gate, which results in both Q and Q' set 
to LOW (i.e. Q = Q'). LOW in both the outputs 
basically is wrong, so this case is invalid.  

     

  
The waveform below shows the operation of NOR 
gates based RS Latch. 

     

  

 
     

  

It is possible to construct the RS latch using NAND 
gates (of course as seen in Logic gates section). 
The only difference is that NAND is NOR gate dual 
form (Did I say that in Logic gates section?). So in 
this case the R = 0 and S = 0 case becomes the 
invalid case. The circuit and Truth table of RS latch 
using NAND is shown below. 
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S R Q Q+ 

1 1 0 0 

1 1 1 1 

0 1 X 0 

1 0 X 1 

0 0 X 1 
 

     

  

If you look closely, there is no control signal (i.e. no 
clock and no enable), so this kind of latches or flip-
flops are called asynchronous logic elements. Since 
all the sequential circuits are built around the RS 
latch, we will concentrate on synchronous circuits 
and not on asynchronous circuits. 

 

JK 
Maste
r 
Slave 
Flip-
Flop  

  

All sequential circuits that we have seen in the last few pages have a 
problem (All level sensitive sequential circuits have this problem). 
Before the enable input changes state from HIGH to LOW (assuming 
HIGH is ON and LOW is OFF state), if inputs changes, then another 
state transition occurs for the same enable pulse. This sort of 
multiple transition problem is called racing. 

     

  
If we make the sequential element sensitive to edges, instead of 
levels, we can overcome this problem, as input is evaluated only 
during enable/clock edges. 

     

  

 
     

  

In the figure above there are two latches, the first latch on the left is 
called master latch and the one on the right is called slave latch. 
Master latch is positively clocked and slave latch is negatively 
clocked. 
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   Sequential Circuits Design  

  

We saw in the combinational circuits section how to design a 
combinational circuit from the given problem. We convert the 
problem into a truth table, then draw K-map for the truth table, and 
then finally draw the gate level circuit for the problem. Similarly we 
have a flow for the sequential circuit design. The steps are given 
below. 

     

  

 Draw state diagram.  
 Draw the state table (excitation table) for each output.  
 Draw the K-map for each output.  
 Draw the circuit.  

     

  
Looks like sequential circuit design flow is very much the same as 
for combinational circuit.  

 

Digital 
Logic 
Families
.  

  
Logic families can be classified broadly according to the 
technologies they are built with. In earlier days we had vast 
number of these technologies, as you can see in the list below. 

     

  

 DL : Diode Logic.  
 RTL : Resistor Transistor Logic.  
 DTL : Diode Transistor Logic.  
 HTL : High threshold Logic.  
 TTL : Transistor Transistor Logic.  
 I2L : Integrated Injection Logic.  
 ECL : Emitter coupled logic.  
 MOS : Metal Oxide Semiconductor Logic (PMOS and 

NMOS).  
 CMOS : Complementary Metal Oxide Semiconductor 
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Logic.  

     

  

Among these, only CMOS is most widely used by the ASIC 
(Chip) designers; we will still try to understand a few of the extinct 
/ less used technologies. More in-depth explanation of CMOS will 
be covered in the VLSI section. 

     
   Basic Concepts  

     

  

Before we start looking at the how gates are built using various 
technologies, we need to understand a few basic concepts. 
These concepts will go long way i.e. if you become a ASIC 
designer or Board designer, you may need to know these 
concepts very well. 

     

  

 Fan-in.  
 Fan-out.  
 Noise Margin.  
 Power Dissipation.  
 Gate Delay.  
 Wire Delay.  
 Skew.  
 Voltage Threshold.  

     
   Fan-in  

  

Fan-in is the number of inputs a gate has, like a two input AND 
gate has fan-in of two, a three input NAND gate as a fan-in of 
three. So a NOT gate always has a fan-in of one. The figure 
below shows the effect of fan-in on the delay offered by a gate for 
a CMOS based gate. Normally delay increases following a 
quadratic function of fan-in. 
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   Fan-out  

  

The number of gates that each gate can drive, while providing 
voltage levels in the guaranteed range, is called the standard 
load or fan-out. The fan-out really depends on the amount of 
electric current a gate can source or sink while driving other 
gates. The effects of loading a logic gate output with more than 
its rated fan-out has the following effects. 

     

  

 In the LOW state the output voltage VOL may increase 
above VOLmax.  

 In the HIGH state the output voltage VOH may decrease 
below VOHmin.  

 The operating temperature of the device may increase 
thereby reducing the reliability of the device and eventually 
causing the device failure.  

 Output rise and fall times may increase beyond 
specifications  

 The propagation delay may rise above the specified value.  

     

  
Normally as in the case of fan-in, the delay offered by a gate 
increases with the increase in fan-out. 

     

  

 
     
   Gate Delay  

  

Gate delay is the delay offered by a gate for the signal appearing 
at its input, before it reaches the gate output. The figure below 
shows a NOT gate with a delay of "Delta", where output X' 
changes only after a delay of "Delta". Gate delay is also known 
as propagation delay.  
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Gate delay is not the same for both transitions, i.e. gate delay will 
be different for low to high transition, compared to high to low 
transition. 

     

  
Low to high transition delay is called turn-on delay and High to 
low transition delay is called turn-off delay. 

     
   Wire Delay  

  

Gates are connected together with wires and these wires do 
delay the signal they carry, these delays become very significant 
when frequency increases, say when the transistor sizes are sub-
micron. Sometimes wire delay is also called flight time (i.e. signal 
flight time from point A to B). Wire delay is also known as 
transport delay. 

     

  

 
 

Skew  

  

The same signal arriving at different parts of the design 
with different phase is known as skew. Skew normally 
refers to clock signals. In the figure below, clock signal 
CLK reaches flip-flop FF0 at time t0, so with respect to the 
clock phase at the source, it has at FF0 input a clock skew 
of t0 time units. Normally this is expressed in 
nanoseconds. 
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The waveform below shows how clock looks at different 
parts of the design. We will discuss the effects of clock 
skew later. 

     

  

 
     
   Logic levels  

  
Logic levels are the voltage levels for logic high and logic 
low. 

     

  

 VOHmin : The minimum output voltage in HIGH state 
(logic '1'). VOHmin is 2.4 V for TTL and 4.9 V for 
CMOS.  

 VOLmax : The maximum output voltage in LOW state 
(logic '0'). VOLmax is 0.4 V for TTL and 0.1 V for 
CMOS.  

 VIHmin : The minimum input voltage guaranteed to 
be recognised as logic 1. VIHmin is 2 V for TTL and 
3.5 V for CMOS.  

 VILmax : The maximum input voltage guaranteed to 
be recognised as logic 0. VILmax is 0.8 V for TTL and 
1.5 V for CMOS.  

     
   Current levels  
     
   IOHmin: The maximum current the output can source 
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in HIGH state while still maintaining the output 
voltage above VOHmin.  

 IOLmax : The maximum current the output can sink 
in LOW state while still maintaining the output 
voltage below VOLmax.  

 IImax : The maximum current that flows into an input 
in any state (1µA for CMOS).  

     
   Noise Margin  

  
Gate circuits are constructed to sustain variations in input 
and output voltage levels. Variations are usually the result 
of several different factors.  

     

  

 Batteries lose their full potential, causing the supply 
voltage to drop  

 High operating temperatures may cause a drift in 
transistor voltage and current characteristics  

 Spurious pulses may be introduced on signal lines 
by normal surges of current in neighbouring supply 
lines.  

     

  

All these undesirable voltage variations that are 
superimposed on normal operating voltage levels are 
called noise. All gates are designed to tolerate a certain 
amount of noise on their input and output ports. The 
maximum noise voltage level that is tolerated by a gate is 
called noise margin. It derives from I/P-O/P voltage 
characteristic, measured under different operating 
conditions. It's normally supplied from manufacturer in the 
gate documentation. 

     

  

 LNM (Low noise margin): The largest noise 
amplitude that is guaranteed not to change the 
output voltage level when superimposed on the 
input voltage of the logic gate (when this voltage is 
in the LOW interval). LNM=VILmax-VOLmax.  

 HNM (High noise margin): The largest noise 
amplitude that is guaranteed not to change the 
output voltage level if superimposed on the input 
voltage of the logic gate (when this voltage is in the 
HIGH interval). HNM=VOHmin-VIHmin  

     
   tr (Rise time)  

  
The time required for the output voltage to increase from 
VILmax to VIHmin. 

     
   tf (Fall time)  
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The time required for the output voltage to decrease from 
VIHmin to VILmax. 

     
   tp (Propagation delay)  

  
The time between the logic transition on an input and the 
corresponding logic transition on the output of the logic 
gate. The propagation delay is measured at midpoints. 

     
   Power Dissipation.  

  

Each gate is connected to a power supply VCC (VDD in 
the case of CMOS). It draws a certain amount of current 
during its operation. Since each gate can be in a High, 
Transition or Low state, there are three different currents 
drawn from power supply. 

     

  

 ICCH: Current drawn during HIGH state.  
 ICCT: Current drawn during HIGH to LOW, LOW to 

HIGH transition.  
 ICCL: Current drawn during LOW state.  

     

  
For TTL, ICCT the transition current is negligible, in 
comparison to ICCH and ICCL. If we assume that ICCH 
and ICCL are equal then, 

     
  Average Power Dissipation = Vcc * (ICCH + ICCL)/2 
     

  
For CMOS, ICCH and ICCL current is negligible, in 
comparison to ICCT. So the Average power dissipation is 
calculated as below. 

     
  Average Power Dissipation = Vcc * ICCT. 
     

  
So for TTL like logics family, power dissipation does not 
depend on frequency of operation, and for CMOS the 
power dissipation depends on the operation frequency. 

     

  

Power Dissipation is an important metric for two reasons. 
The amount of current and power available in a battery is 
nearly constant. Power dissipation of a circuit or system 
defines battery life: the greater the power dissipation, the 
shorter the battery life. Power dissipation is proportional to 
the heat generated by the chip or system; excessive heat 
dissipation may increase operating temperature and cause 
gate circuitry to drift out of its normal operating range; will 
cause gates to generate improper output values. Thus 
power dissipation of any gate implementation must be kept 
as low as possible. 

     
  Moreover, power dissipation can be classified into Static 
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power dissipation and Dynamic power dissipation. 
     

  

 Ps (Static Power Dissipation): Power consumed 
when the output or input are not changing or rather 
when clock is turned off. Normally static power 
dissipation is caused by leakage current. (As we 
reduce the transistor size, i.e. below 90nm, leakage 
current could be as high as 40% of total power 
dissipation).  

 Pd (Dynamic Power Dissipation): Power 
consumed during output and input transitions. So 
we can say Pd is the actual power consumed i.e. 
the power consumed by transistors + leakage 
current.  

     
  Thus 
     

  
Total power dissipation = static power dissipation + 
dynamic power dissipation. 

 

Diode Logic  

  

In DL (diode logic), all the logic is implemented 
using diodes and resistors. One basic thing about 
the diode, is that diode needs to be forward biased 
to conduct. Below is the example of a few DL logic 
circuits. 

     

  

 
     

  

When no input is connected or driven, output Z is 
low, due to resistor R1. When high is applied to 
either X or Y, or both X and Y are driven high, the 
corresponding diode get forward biased and thus 
conducts. When any diode conducts, output Z 
goes high. 

     
  Points to Ponder 
   Diode Logic suffers from voltage 
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degradation from one stage to the next.  
 Diode Logic only permits OR and AND 

functions.  
 Diode Logic is used extensively but not in 

integrated circuits.  

     
   Resistor Transistor Logic  

  

In RTL (resistor transistor logic), all the logic are 
implemented using resistors and transistors. One 
basic thing about the transistor (NPN), is that 
HIGH at input causes output to be LOW (i.e. like a 
inverter). Below is the example of a few RTL logic 
circuits. 

     

  

 
     

  

A basic circuit of an RTL NOR gate consists of two 
transistors Q1 and Q2, connected as shown in the 
figure above. When either input X or Y is driven 
HIGH, the corresponding transistor goes to 
saturation and output Z is pulled to LOW. 

     
   

     
   Diode Transistor Logic  

     

  
In DTL (Diode transistor logic), all the logic is 
implemented using diodes and transistors. A basic 
circuit in the DTL logic family is as shown in the 



 104 

figure below. Each input is associated with one 
diode. The diodes and the 4.7K resistor form an 
AND gate. If input X, Y or Z is low, the 
corresponding diode conducts current, through the 
4.7K resistor. Thus there is no current through the 
diodes connected in series to transistor base . 
Hence the transistor does not conduct, thus 
remains in cut-off, and output out is High. 

     

  
If all the inputs X, Y, Z are driven high, the diodes 
in series conduct, driving the transistor into 
saturation. Thus output out is Low.  

     

  

 
     
   Transistor Transistor Logic  

  

In Transistor Transistor logic or just TTL, logic 
gates are built only around transistors. TTL was 
developed in 1965. Through the years basic TTL 
has been improved to meet performance 
requirements. There are many versions or families 
of TTL. 

     

  

 Standard TTL.  
 High Speed TTL  
 Low Power TTL.  
 Schhottky TTL.  

     

  

Here we will discuss only basic TTL as of now; 
maybe in the future I will add more details about 
other TTL versions. As such all TTL families have 
three configurations for outputs. 

     

  
 Totem - Pole output.  
 Open Collector Output.  
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 Tristate Output.  

     

  

Before we discuss the output stage let's look at the 
input stage, which is used with almost all versions 
of TTL. This consists of an input transistor and a 
phase splitter transistor. Input stage consists of a 
multi emitter transistor as shown in the figure 
below. When any input is driven low, the emitter 
base junction is forward biased and input 
transistor conducts. This in turn drives the phase 
splitter transistor into cut-off. 

     

  

 
     
   Totem - Pole Output  

  
Below is the circuit of a totem-pole NAND gate, 
which has got three stages. 

     

  

 Input Stage  
 Phase Splitter Stage  
 Output Stage  

     

  
Input stage and Phase splitter stage have already 
been discussed. Output stage is called Totem-
Pole because transistor Q3 sits upon Q4. 

     

  

Q2 provides complementary voltages for the 
output transistors Q3 and Q4, which stack one 
above the other in such a way that while one of 
these conducts, the other is in cut-off. 

     

  
Q4 is called pull-down transistor, as it pulls the 
output voltage down, when it saturates and the 
other is in cut-off (i.e. Q3 is in cut-off). Q3 is called 
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pull-up transistor, as it pulls the output voltage up, 
when it saturates and the other is in cut-off (i.e. Q4 
is in cut-off). 

     

  
Diodes in input are protection diodes which 
conduct when there is large negative voltage at 
input, shorting it to the ground. 

     

  

 
     
   Tristate Output.  

  

Normally when we have to implement shared bus 
systems inside an ASIC or externally to the chip, 
we have two options: either to use a MUX/DEMUX 
based system or to use a tri-state base bus 
system. 

     

  

In the latter, when logic is not driving its output, it 
does not drive LOW neither HIGH, which means 
that logic output is floating. Well, one may ask, 
why not just use an open collector for shared bus 
systems? The problem is that open collectors are 
not so good for implementing wire-ANDs. 

     

  

The circuit below is a tri-state NAND gate; when 
Enable En is HIGH, it works like any other NAND 
gate. But when Enable En is driven LOW, Q1 
Conducts, and the diode connecting Q1 emitter 
and Q2 collector, conducts driving Q3 into cut-off. 
Since Q2 is not conducting, Q4 is also at cut-off. 
When both pull-up and pull-down transistors are 
not conducting, output Z is in high-impedance 
state.  
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Note : I will try to add more details when I find 
time. 

 

Diode Logic  

  

In DL (diode logic), all the logic is implemented 
using diodes and resistors. One basic thing 
about the diode, is that diode needs to be 
forward biased to conduct. Below is the 
example of a few DL logic circuits. 

     

  

 
     

  

When no input is connected or driven, output 
Z is low, due to resistor R1. When high is 
applied to either X or Y, or both X and Y are 
driven high, the corresponding diode get 
forward biased and thus conducts. When any 
diode conducts, output Z goes high. 

     
  Points to Ponder 
   Diode Logic suffers from voltage 
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degradation from one stage to the next.  
 Diode Logic only permits OR and AND 

functions.  
 Diode Logic is used extensively but not 

in integrated circuits.  

     
   Resistor Transistor Logic  

  

In RTL (resistor transistor logic), all the logic 
are implemented using resistors and 
transistors. One basic thing about the 
transistor (NPN), is that HIGH at input causes 
output to be LOW (i.e. like a inverter). Below is 
the example of a few RTL logic circuits. 

     

  

 
     

  

A basic circuit of an RTL NOR gate consists of 
two transistors Q1 and Q2, connected as 
shown in the figure above. When either input 
X or Y is driven HIGH, the corresponding 
transistor goes to saturation and output Z is 
pulled to LOW. 

 

Diode Transistor 
Logic  
     

  
In DTL (Diode transistor logic), all the logic is 
implemented using diodes and transistors. A basic 
circuit in the DTL logic family is as shown in the 
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figure below. Each input is associated with one 
diode. The diodes and the 4.7K resistor form an 
AND gate. If input X, Y or Z is low, the 
corresponding diode conducts current, through the 
4.7K resistor. Thus there is no current through the 
diodes connected in series to transistor base . 
Hence the transistor does not conduct, thus 
remains in cut-off, and output out is High. 

     

  
If all the inputs X, Y, Z are driven high, the diodes 
in series conduct, driving the transistor into 
saturation. Thus output out is Low.  

     

  

 
     
   Transistor Transistor Logic  

  

In Transistor Transistor logic or just TTL, logic 
gates are built only around transistors. TTL was 
developed in 1965. Through the years basic TTL 
has been improved to meet performance 
requirements. There are many versions or families 
of TTL. 

     

  

 Standard TTL.  
 High Speed TTL  
 Low Power TTL.  
 Schhottky TTL.  

     

  

Here we will discuss only basic TTL as of now; 
maybe in the future I will add more details about 
other TTL versions. As such all TTL families have 
three configurations for outputs. 

     

  
 Totem - Pole output.  
 Open Collector Output.  
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 Tristate Output.  

     

  

Before we discuss the output stage let's look at the 
input stage, which is used with almost all versions 
of TTL. This consists of an input transistor and a 
phase splitter transistor. Input stage consists of a 
multi emitter transistor as shown in the figure 
below. When any input is driven low, the emitter 
base junction is forward biased and input 
transistor conducts. This in turn drives the phase 
splitter transistor into cut-off. 

     

  

 
     
   Totem - Pole Output  

  
Below is the circuit of a totem-pole NAND gate, 
which has got three stages. 

     

  

 Input Stage  
 Phase Splitter Stage  
 Output Stage  

     

  
Input stage and Phase splitter stage have already 
been discussed. Output stage is called Totem-
Pole because transistor Q3 sits upon Q4. 

     

  

Q2 provides complementary voltages for the 
output transistors Q3 and Q4, which stack one 
above the other in such a way that while one of 
these conducts, the other is in cut-off. 

     

  
Q4 is called pull-down transistor, as it pulls the 
output voltage down, when it saturates and the 
other is in cut-off (i.e. Q3 is in cut-off). Q3 is called 
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pull-up transistor, as it pulls the output voltage up, 
when it saturates and the other is in cut-off (i.e. Q4 
is in cut-off). 

     

  
Diodes in input are protection diodes which 
conduct when there is large negative voltage at 
input, shorting it to the ground. 

     

  

 
     
   Tristate Output.  

  

Normally when we have to implement shared bus 
systems inside an ASIC or externally to the chip, 
we have two options: either to use a MUX/DEMUX 
based system or to use a tri-state base bus 
system. 

     

  

In the latter, when logic is not driving its output, it 
does not drive LOW neither HIGH, which means 
that logic output is floating. Well, one may ask, 
why not just use an open collector for shared bus 
systems? The problem is that open collectors are 
not so good for implementing wire-ANDs. 

     

  

The circuit below is a tri-state NAND gate; when 
Enable En is HIGH, it works like any other NAND 
gate. But when Enable En is driven LOW, Q1 
Conducts, and the diode connecting Q1 emitter 
and Q2 collector, conducts driving Q3 into cut-off. 
Since Q2 is not conducting, Q4 is also at cut-off. 
When both pull-up and pull-down transistors are 
not conducting, output Z is in high-impedance 
state.  
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Emitter coupled logic  

  

Emitter coupled logic (ECL) is a non 
saturated logic, which means that transistors 
are prevented from going into deep 
saturation, thus eliminating storage delays. 
Preventing the transistors from going into 
saturation is accomplished by using logic 
levels whose values are so close to each 
other that a transistor is not driven into 
saturation when its input switches from low 
to high. In other words, the transistor is 
switched on, but not completely on. This 
logic family is faster than TTL. 

     

  
Voltage level for high is -0.9 Volts and for 
low is -1.7V; thus biggest problem with ECL 
is a poor noise margin. 

     

  

A typical ECL OR gate is shown below. 
When any input is HIGH (-0.9v), its 
connected transistor will conduct, and hence 
will make Q3 off, which in turn will make Q4 
output HIGH. 

     

  

When both inputs are LOW (-1.7v), their 
connected transistors will not conduct, 
making Q3 on, which in turn will make Q4 
output LOW. 
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   Metal Oxide Semiconductor Logic  

  

MOS or Metal Oxide Semiconductor logic 
uses nmos and pmos to implement logic 
gates. One needs to know the operation of 
FET and MOS transistors to understand the 
operation of MOS logic circuits. 

     

  

The basic NMOS inverter is shown below: 
when input is LOW, NMOS transistor does 
not conduct, and thus output is HIGH. But 
when input is HIGH, NMOS transistor 
conducts and thus output is LOW.  

     

  

 
     

  

Normally it is difficult to fabricate resistors 
inside the chips, so the resistor is replaced 
with an NMOS gate as shown below. This 
new NMOS transistor acts as resistor. 
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Complementary Metal Oxide 
Semiconductor Logic  

  

CMOS or Complementary Metal Oxide 
Semiconductor logic is built using both 
NMOS and PMOS. Below is the basic 
CMOS inverter circuit, which follows these 
rules: 

  

 NMOS conducts when its input is 
HIGH.  

 PMOS conducts when its input is 
LOW.  

  
So when input is HIGH, NMOS conducts, 
and thus output is LOW; when input is LOW 
PMOS conducts and thus output is HIGH.  

     

  

 
 

Introduction  

  
Combinatorial Circuits are circuits which can be considered to 
have the following generic structure. 
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Whenever the same set of inputs is fed in to a combinatorial 
circuit, the same outputs will be generated. Such circuits are said 
to be stateless. Some simple combinational logic elements that 
we have seen in previous sections are "Gates". 

     

  

 
     

  

All the gates in the above figure have 2 inputs and one output; 
combinational elements simplest form are "not" gate and "buffer" 
as shown in the figure below. They have only one input and one 
output. 

     

  

 
    
   Introduction 
     
   Decoders 

    

 Basic Binary Decoder 

 Binary n-to-2n Decoders 

   Example - 2-to-4 Binary Decoder 

 Example - 3-to-8 Binary Decoder 
 

 Implementing Functions Using Decoders 
   Example - Full adder 

  

http://www.asic-world.com/digital/combo1.html#Introduction
http://www.asic-world.com/digital/combo2.html#Decoders
http://www.asic-world.com/digital/combo2.html#Basic_Binary_Decoder
http://www.asic-world.com/digital/combo2.html#Binary_n-to-2<sup>n</sup>_Decoders
http://www.asic-world.com/digital/combo2.html#Example_-__2-to-4_Binary_Decoder
http://www.asic-world.com/digital/combo2.html#Example_-_3-to-8__Binary_Decoder
http://www.asic-world.com/digital/combo2.html#Implementing_Functions_Using_Decoders
http://www.asic-world.com/digital/combo2.html#Example_-_Full_adder


 116 

     
   Encoders 

     Example - Octal-to-Binary Encoder 

 Example - Decimal-to-Binary Encoder  
 

     
   Priority Encoder  
     Example - 4to3 Priority Encoder 

 

     
   Multiplexer 

    

 Mechanical Equivalent of a Multiplexer 

 Example - 2x1 MUX 

   Design of a 2:1 Mux 
 

 Example : 4:1 MUX 

 Larger Multiplexers 

   Example - 8-to-1 multiplexer from Smaller MUX 

 Example - 16-to-1 multiplexer from 4:1 mux  
  

     
   De-multiplexers 

     Mechanical Equivalent of a De-Multiplexer 

 Example: 1-to-4 De-multiplexer 
 

     
   Boolean Function Implementation 

    

 Implementing Functions Multiplexers 

   Example: 3-variable Function Using 8-to-1 mux 

 Example: 3-variable Function Using 4-to-1 mux 
 

 Example: 2 to 4 Decoder using Demux 
 

     
   Mux-Demux Application Example 

 

   
Digital Logic 
Families. 

    

 Basic Concepts 

  

 Fan-in 

 Fan-out 

 Gate Delay 

 Wire Delay 

 Skew 

 Logic levels 

 Current levels 

 Noise Margin 

 tr (Rise time) 

 tf (Fall time) 

 

tp 
(Propagation 
delay) 

 
Power 
Dissipation. 

 

 Diode Logic 

 
Resistor 
Transistor 

http://www.asic-world.com/digital/combo3.html#Encoders
http://www.asic-world.com/digital/combo3.html#Example_-_Octal-to-Binary_Encoder
http://www.asic-world.com/digital/combo3.html#Example_-_Decimal-to-Binary_Encoder
http://www.asic-world.com/digital/combo3.html#Priority_Encoder
http://www.asic-world.com/digital/combo3.html#Example_-_4to3_Priority_Encoder
http://www.asic-world.com/digital/combo4.html#Multiplexer
http://www.asic-world.com/digital/combo4.html#Mechanical_Equivalent_of_a_Multiplexer
http://www.asic-world.com/digital/combo4.html#Example_-_2x1_MUX
http://www.asic-world.com/digital/combo4.html#Design_of_a_2:1_Mux
http://www.asic-world.com/digital/combo4.html#Example_:_4:1_MUX
http://www.asic-world.com/digital/combo4.html#Larger_Multiplexers
http://www.asic-world.com/digital/combo4.html#Example_-_8-to-1_multiplexer_from_Smaller_MUX
http://www.asic-world.com/digital/combo4.html#Example_-__16-to-1_multiplexer_from_4:1_mux
http://www.asic-world.com/digital/combo5.html#De-multiplexers
http://www.asic-world.com/digital/combo5.html#Mechanical_Equivalent_of_a_De-Multiplexer
http://www.asic-world.com/digital/combo5.html#Example:_1-to-4_De-multiplexer
http://www.asic-world.com/digital/combo6.html#Boolean_Function_Implementation
http://www.asic-world.com/digital/combo6.html#Implementing_Functions_Multiplexers
http://www.asic-world.com/digital/combo6.html#Example:_3-variable_Function_Using_8-to-1_mux
http://www.asic-world.com/digital/combo6.html#Example:_3-variable_Function_Using_4-to-1_mux
http://www.asic-world.com/digital/combo6.html#Example:_2_to_4_Decoder_using_Demux
http://www.asic-world.com/digital/combo6.html#Mux-Demux_Application_Example
http://www.asic-world.com/digital/logic1.html#Digital_Logic_Families.
http://www.asic-world.com/digital/logic1.html#Digital_Logic_Families.
http://www.asic-world.com/digital/logic1.html#Basic_Concepts
http://www.asic-world.com/digital/logic1.html#Fan-in
http://www.asic-world.com/digital/logic1.html#Fan-out
http://www.asic-world.com/digital/logic1.html#Gate_Delay
http://www.asic-world.com/digital/logic1.html#Wire_Delay
http://www.asic-world.com/digital/logic1.html#Skew
http://www.asic-world.com/digital/logic1.html#Logic_levels
http://www.asic-world.com/digital/logic1.html#Current_levels
http://www.asic-world.com/digital/logic1.html#Noise_Margin
http://www.asic-world.com/digital/logic1.html#tr_(Rise_time)
http://www.asic-world.com/digital/logic1.html#tf_(Fall_time)
http://www.asic-world.com/digital/logic1.html#tp_(Propagation_delay)
http://www.asic-world.com/digital/logic1.html#tp_(Propagation_delay)
http://www.asic-world.com/digital/logic1.html#tp_(Propagation_delay)
http://www.asic-world.com/digital/logic1.html#Power_Dissipation.
http://www.asic-world.com/digital/logic1.html#Power_Dissipation.
http://www.asic-world.com/digital/logic2.html#Diode_Logic
http://www.asic-world.com/digital/logic2.html#Resistor_Transistor_Logic
http://www.asic-world.com/digital/logic2.html#Resistor_Transistor_Logic
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Logic 

 

Diode 
Transistor 
Logic 

 

Transistor 
Transistor 
Logic 

  
 
Totem - Pole 
Output 

 
Tristate 
Output. 

 

 
Integrated 
Injection Logic 

 
Emitter coupled 
logic 

 

Metal Oxide 
Semiconductor 
Logic 

 

Complementary 
Metal Oxide 
Semiconductor 
Logic 

 

 Numbering System 

    

 Decimal System 
   Decimal Examples 

 

 Binary System 

  

 Binary Counting 

 
Representing Binary 
Quantities 

 
Typical Voltage 
Assignment 

 

 Octal System 

   
Octal to Decimal 
Conversion 

 

 Hexadecimal System 

   
Hexadecimal to Decimal 
Conversion 

  

     
   Code Conversion 

    

 
Binary-To-Decimal 
Conversion 

 
Decimal-To-Binary 
Conversion 

  
 
Reverse of Binary-To-
Decimal Method 

 
Repeat Division-Convert 
decimal to binary 

 

 
Binary-To-Octal / Octal-To-
Binary Conversion 

   Repeat Division-Convert 

http://www.asic-world.com/digital/logic2.html#Diode_Transistor_Logic
http://www.asic-world.com/digital/logic2.html#Diode_Transistor_Logic
http://www.asic-world.com/digital/logic2.html#Diode_Transistor_Logic
http://www.asic-world.com/digital/logic2.html#Transistor_Transistor_Logic
http://www.asic-world.com/digital/logic2.html#Transistor_Transistor_Logic
http://www.asic-world.com/digital/logic2.html#Transistor_Transistor_Logic
http://www.asic-world.com/digital/logic2.html#Totem_-_Pole_Output
http://www.asic-world.com/digital/logic2.html#Totem_-_Pole_Output
http://www.asic-world.com/digital/logic2.html#Tristate_Output.
http://www.asic-world.com/digital/logic2.html#Tristate_Output.
http://www.asic-world.com/digital/logic3.html#Integrated_Injection_Logic
http://www.asic-world.com/digital/logic3.html#Integrated_Injection_Logic
http://www.asic-world.com/digital/logic3.html#Emitter_coupled_logic
http://www.asic-world.com/digital/logic3.html#Emitter_coupled_logic
http://www.asic-world.com/digital/logic3.html#Metal_Oxide_Semiconductor_Logic
http://www.asic-world.com/digital/logic3.html#Metal_Oxide_Semiconductor_Logic
http://www.asic-world.com/digital/logic3.html#Metal_Oxide_Semiconductor_Logic
http://www.asic-world.com/digital/logic3.html#Complementary_Metal_Oxide_Semiconductor_Logic
http://www.asic-world.com/digital/logic3.html#Complementary_Metal_Oxide_Semiconductor_Logic
http://www.asic-world.com/digital/logic3.html#Complementary_Metal_Oxide_Semiconductor_Logic
http://www.asic-world.com/digital/logic3.html#Complementary_Metal_Oxide_Semiconductor_Logic
http://www.asic-world.com/digital/numbering1.html#Numbering_System
http://www.asic-world.com/digital/numbering1.html#Decimal_System
http://www.asic-world.com/digital/numbering1.html#Decimal_Examples
http://www.asic-world.com/digital/numbering1.html#Binary_System
http://www.asic-world.com/digital/numbering1.html#Binary_Counting
http://www.asic-world.com/digital/numbering1.html#Representing_Binary_Quantities
http://www.asic-world.com/digital/numbering1.html#Representing_Binary_Quantities
http://www.asic-world.com/digital/numbering1.html#Typical_Voltage_Assignment
http://www.asic-world.com/digital/numbering1.html#Typical_Voltage_Assignment
http://www.asic-world.com/digital/numbering1.html#Octal_System
http://www.asic-world.com/digital/numbering1.html#Octal_to_Decimal_Conversion
http://www.asic-world.com/digital/numbering1.html#Octal_to_Decimal_Conversion
http://www.asic-world.com/digital/numbering1.html#Hexadecimal_System
http://www.asic-world.com/digital/numbering1.html#Hexadecimal_to_Decimal_Conversion
http://www.asic-world.com/digital/numbering1.html#Hexadecimal_to_Decimal_Conversion
http://www.asic-world.com/digital/numbering2.html#Code_Conversion
http://www.asic-world.com/digital/numbering2.html#Binary-To-Decimal_Conversion
http://www.asic-world.com/digital/numbering2.html#Binary-To-Decimal_Conversion
http://www.asic-world.com/digital/numbering2.html#Decimal-To-Binary_Conversion
http://www.asic-world.com/digital/numbering2.html#Decimal-To-Binary_Conversion
http://www.asic-world.com/digital/numbering2.html#Reverse_of_Binary-To-Decimal_Method
http://www.asic-world.com/digital/numbering2.html#Reverse_of_Binary-To-Decimal_Method
http://www.asic-world.com/digital/numbering2.html#Repeat_Division-Convert_decimal_to_binary
http://www.asic-world.com/digital/numbering2.html#Repeat_Division-Convert_decimal_to_binary
http://www.asic-world.com/digital/numbering2.html#Binary-To-Octal_/_Octal-To-Binary_Conversion
http://www.asic-world.com/digital/numbering2.html#Binary-To-Octal_/_Octal-To-Binary_Conversion
http://www.asic-world.com/digital/numbering2.html#Repeat_Division-Convert_decimal_to_octal
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decimal to octal 
 

 

Hexadecimal to 
Decimal/Decimal to 
Hexadecimal Conversion 

   
Repeat Division- Convert 
decimal to hexadecimal 

 

 

Binary-To-Hexadecimal 
/Hexadecimal-To-Binary 
Conversion 

 

Octal-To-Hexadecimal 
Hexadecimal-To-Octal 
Conversion 

 

     
   Binary Codes 

    

 Weighted Binary Systems 

  

 8421 Code/BCD Code  

 2421 Code 

 5211 Code 

 Reflective Code 

 Sequential Codes 
 

 Non Weighted Codes 

   Excess-3 Code 

 Gray Code 
  

     

   
Error Detecting and 
Correction Codes 

    

 Error Detecting Codes 

   Parity 

 Check Sums  
 

 Error-Correcting Codes 
   Hamming Code 

 

 Alphanumeric Codes  

   ASCII Code  

 EBCDIC Code 
  

     
   Floating Point Numbers 

     
Binary Representation of 
Floating Point Numbers 

   Example 
  

 

 

Basic Logic Gates 

All digital systems can be constructed by only three basic logic gates. These 

basic gates are called the AND gate, the OR gate, and the NOT gate. Some 

textbooks also include the NAND gate, the NOR gate and the EOR gate as 

the members of the family of basic logic gates. The description of the 

operations of these gates are listed below [Ref.2]:  

http://www.asic-world.com/digital/numbering2.html#Hexadecimal_to_Decimal/Decimal_to_Hexadecimal_Conversion
http://www.asic-world.com/digital/numbering2.html#Hexadecimal_to_Decimal/Decimal_to_Hexadecimal_Conversion
http://www.asic-world.com/digital/numbering2.html#Hexadecimal_to_Decimal/Decimal_to_Hexadecimal_Conversion
http://www.asic-world.com/digital/numbering2.html#Repeat_Division-_Convert_decimal_to_hexadecimal
http://www.asic-world.com/digital/numbering2.html#Repeat_Division-_Convert_decimal_to_hexadecimal
http://www.asic-world.com/digital/numbering2.html#Binary-To-Hexadecimal_/Hexadecimal-To-Binary_Conversion
http://www.asic-world.com/digital/numbering2.html#Binary-To-Hexadecimal_/Hexadecimal-To-Binary_Conversion
http://www.asic-world.com/digital/numbering2.html#Binary-To-Hexadecimal_/Hexadecimal-To-Binary_Conversion
http://www.asic-world.com/digital/numbering2.html#Octal-To-Hexadecimal_Hexadecimal-To-Octal_Conversion
http://www.asic-world.com/digital/numbering2.html#Octal-To-Hexadecimal_Hexadecimal-To-Octal_Conversion
http://www.asic-world.com/digital/numbering2.html#Octal-To-Hexadecimal_Hexadecimal-To-Octal_Conversion
http://www.asic-world.com/digital/numbering3.html#Binary_Codes
http://www.asic-world.com/digital/numbering3.html#Weighted_Binary_Systems
http://www.asic-world.com/digital/numbering3.html#8421_Code/BCD_Code
http://www.asic-world.com/digital/numbering3.html#2421_Code
http://www.asic-world.com/digital/numbering3.html#5211_Code
http://www.asic-world.com/digital/numbering3.html#Reflective_Code
http://www.asic-world.com/digital/numbering3.html#Sequential_Codes
http://www.asic-world.com/digital/numbering3.html#Non_Weighted_Codes
http://www.asic-world.com/digital/numbering3.html#Excess-3_Code
http://www.asic-world.com/digital/numbering3.html#Gray_Code
http://www.asic-world.com/digital/numbering4.html#Error_Detecting_and_Correction_Codes
http://www.asic-world.com/digital/numbering4.html#Error_Detecting_and_Correction_Codes
http://www.asic-world.com/digital/numbering4.html#Error_Detecting_Codes
http://www.asic-world.com/digital/numbering4.html#Parity
http://www.asic-world.com/digital/numbering4.html#Check_Sums
http://www.asic-world.com/digital/numbering4.html#Error-Correcting_Codes
http://www.asic-world.com/digital/numbering4.html#Hamming_Code
http://www.asic-world.com/digital/numbering4.html#Alphanumeric_Codes
http://www.asic-world.com/digital/numbering4.html#ASCII_Code
http://www.asic-world.com/digital/numbering4.html#EBCDIC_Code
http://www.asic-world.com/digital/numbering5.html#Floating_Point_Numbers
http://www.asic-world.com/digital/numbering5.html#Binary_Representation_of_Floating_Point_Numbers
http://www.asic-world.com/digital/numbering5.html#Binary_Representation_of_Floating_Point_Numbers
http://www.asic-world.com/digital/numbering5.html#Example
http://www.ied.edu.hk/has/phys/de/de-ref.htm
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AND gate   

The AND gate is a circuit which gives a high output (logic 1) if all its 

inputs are high. A dot ( ) is used to indicate the AND operation. In 

practice, however, the dot is usually omitted.  

OR gate   

The OR gate is a circuit which gives a high output if one or more of 

its inputs are high. A plus sign (+) is used to indicate the OR 

operation.  

NOT gate   

The NOT gate is a circuit which produces at its output the negated 

(inverted) version of its input logic. The circuit is also known as an 

inverter. If the input variable is A, the inverted output is written as .  

NAND gate   

The NAND gate is a NOT-AND circuit which is equivalent to an 

AND circuit followed by a NOT circuit. The output of the NAND 

gate is high if any of its inputs is low.  

NOR gate   

The NOR gate is a NOT-OR circuit which is equivalent to an OR 

circuit followed by a NOT circuit. The output of the NOR gate is low 

if any of its inputs is high.  

EOR gate   

The Exclusive-OR gate is a circuit which gives a high output if either 

of its two inputs is high, but not both. A encircled plus sign ( ) is 

used to indicate the EOR operation 

A NAND gate can be used as a NOT gate by the following wiring:  

 

Figure 1.2 Wiring the NAND gate as an inverter 

http://www.ied.edu.hk/has/phys/de/lg/and.jpg
http://www.ied.edu.hk/has/phys/de/lg/or.jpg
http://www.ied.edu.hk/has/phys/de/lg/not.jpg
http://www.ied.edu.hk/has/phys/de/lg/nand.jpg
http://www.ied.edu.hk/has/phys/de/lg/nor.jpg
http://www.ied.edu.hk/has/phys/de/lg/basic.htm#nandgate
http://www.ied.edu.hk/has/phys/de/lg/basic.htm#notgate
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Symbols for logic gates 

 

Truth table representation of logic gates 

The functions of these basic building blocks are summarized by means of a 

Truth Table as shown in Table 1.1. The table shows all possible input/output 

combinations for two inputs. A truth table with n inputs (logic variables) has 

2n rows.  

Not Gate  

 

 

Table 1.1 Truth table representation of logic gates  

Digital Signals and Logic Gates 

Engineers know that it is easier to design two-state devices than multi-state devices. 

In logic systems, variables, circuits, statements, etc., can be treated in one of two 

distinct states: true or false, yes or no, on or off, present or absent, energized or not 

energized, conducting or non-conducting, high voltage or low voltage, and so on.  

http://www.ied.edu.hk/has/phys/de/lg/truth.htm#table11
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In digital electronics, we distinguish two distinct values of voltage, VH corresponding 

to the higher of the two voltages and VL corresponding to the lower of the two 

voltages. There are three ways in which we can assign binary values to these voltages 

:  

1. Positive logic assignment :  True [ 1 ] : VH 
                                False [ 0 ] : VL 

 

2. Negative logic assignment :  True [ 1 ] : VL 

                                False [ 0 ] : VH 

 

3. Mixed logic assignment :     Allow the designers to 

use positive 

                                or negative logic at any 

point in  

                                their design, as they 

desire. 
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http://www.asic-world.com/digital/seq1.html#Introduction
http://www.asic-world.com/digital/seq1.html#Asynchronous_sequential_circuit
http://www.asic-world.com/digital/seq1.html#Synchronous_sequential_circuits
http://www.asic-world.com/digital/seq2.html#Concept_of_Sequential_Logic
http://www.asic-world.com/digital/seq3.html#Latches_and_Flip-Flops
http://www.asic-world.com/digital/seq3.html#RS_Latch
http://www.asic-world.com/digital/seq4.html#RS_Latch_with_Clock
http://www.asic-world.com/digital/seq4.html#Setup_and_Hold_Time
http://www.asic-world.com/digital/seq4.html#D_Latch
http://www.asic-world.com/digital/seq4.html#JK_Latch
http://www.asic-world.com/digital/seq4.html#T_Latch
http://www.asic-world.com/digital/seq5.html#JK_Master_Slave_Flip-Flop
http://www.asic-world.com/digital/seq5.html#Sequential_Circuits_Design
http://www.asic-world.com/digital/seq5.html#State_Diagram
http://www.asic-world.com/digital/seq5.html#State_Table
http://www.asic-world.com/digital/seq5.html#K-map
http://www.asic-world.com/digital/seq5.html#Circuit

