
 1

Introduction
I started studying digital electronics in the first months of year 1989; at that time I wanted to
build digitally controlled volume and tuning for an AM RADIO. I was a 100% analog
engineer and digital electronic concepts were new to me. It is an entirely different story so I
failed miserably the first, second, third, (n+1)th time to design a working model of the
above. When I started, I was fascinated by the binary system and by the way
microprocessors work. It took me nearly one year to fully understand the concepts of digital.
Digital means anything which has to do with digits, but in today's world digital means CMOS,
TTL gates, flip-flops, processors, computers. In the next few pages I will be sharing my
knowledge, experience and also some tidbits from my friends and from the net. You are
always welcome to suggest and help me make this page really useful for the whole digital
world.

Diagram of analog voltage vs time

Digital Representation

Systems which process discrete values are called digital systems. In digital representation the
quantities are represented not by proportional quantities but by symbols called digits. As an
example, consider the digital watch, which provides the time of the day in the form of decimal
digits representing hours and minutes (and sometimes seconds). As we know, time of day
changes continuously, but the digital watch reading does not change continuously; rather, it
changes in steps of one per minute (or per second). In other words, time of day digital
representation changes in discrete steps, as compared to the representation of time provided
by an analog watch, where the dial reading changes continuously.

Below is a diagram of digital voltage vs time: here input voltage changes from +4 Volts to -4
Volts; it can be converted to digital form by Analog to Digital converters (ADC). An ADC
converts continuous signals into samples per second. Well, this is an entirely different theory.

Diagram of Digital voltage vs time

 2

The major difference between analog and digital quantities, then, can be stated simply as
follows:

 Analog = continuous

 Digital = discrete (step by step)

Advantages of Digital Techniques

 Easier to design. Exact values of voltage or current are not important, only the range
(HIGH or LOW) in which they fall.

 Information storage is easy.

 Accuracy and precision are greater.

 Operations can be programmed. Analog systems can also be programmed, but the
available operations variety and complexity is severely limited.

 Digital circuits are less affected by noise, as long as the noise is not large enough to
prevent us from distinguishing HIGH from LOW (we discuss this in detail in an
advanced digital tutorial section).

 More digital circuitry can be fabricated on IC chips.

Limitations of Digital Techniques

Most physical quantities in real world are analog in nature, and these
quantities are often the inputs and outputs that are being monitored, operated
on, and controlled by a system. Thus conversion to digital format and re-
conversion to analog format is needed.

 3

Numbering
System

Many number systems are in use in digital technology.
The most common are the decimal, binary, octal, and
hexadecimal systems. The decimal system is clearly the
most familiar to us because it is a tool that we use every
day. Examining some of its characteristics will help us to
better understand the other systems. In the next few
pages we shall introduce four numerical representation
systems that are used in the digital system. There are
other systems, which we will look at briefly.

 Decimal
 Binary
 Octal
 Hexadecimal

 Decimal System

The decimal system is composed of 10 numerals or
symbols. These 10 symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8,
9. Using these symbols as digits of a number, we can
express any quantity. The decimal system is also called
the base-10 system because it has 10 digits.

103 102 101 100 10-1 10-2 10-3

=1000 =100 =10 =1 . =0.1 =0.01 =0.001

Most
Significant
Digit

Decimal
point

Least
Significant
Digit

 Even though the decimal system has only 10 symbols,

 4

any number of any magnitude can be expressed by
using our system of positional weighting.

 Decimal Examples

 3.1410
 5210
 102410
 6400010

 Binary System

In the binary system, there are only two symbols or
possible digit values, 0 and 1. This base-2 system can
be used to represent any quantity that can be
represented in decimal or other base system.

23 22 21 20 2-1 2-2 2-3

=8 =4 =2 =1 . =0.5 =0.25 =0.125

Most
Significant
Digit

Binary
point

Least
Significant
Digit

 Binary Counting
 The Binary counting sequence is shown in the table:

23 22 21 20 Decimal

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 1 0 10

1 0 1 1 11

1 1 0 0 12

1 1 0 1 13

1 1 1 0 14

1 1 1 1 15

 5

Representi
ng Binary
Quantities

In digital systems the information that is being processed is
usually presented in binary form. Binary quantities can be
represented by any device that has only two operating states
or possible conditions. E.g.. a switch is only open or closed.
We arbitrarily (as we define them) let an open switch represent
binary 0 and a closed switch represent binary 1. Thus we can
represent any binary number by using series of switches.

 Typical Voltage Assignment
 Binary 1: Any voltage between 2V to 5V
 Binary 0: Any voltage between 0V to 0.8V

Not used: Voltage between 0.8V to 2V in 5 Volt CMOS and
TTL Logic, this may cause error in a digital circuit. Today's
digital circuits works at 1.8 volts, so this statement may not
hold true for all logic circuits.

We can see another significant difference between digital and
analog systems. In digital systems, the exact voltage value is
not important; eg, a voltage of 3.6V means the same as a
voltage of 4.3V. In analog systems, the exact voltage value is
important.

The binary number system is the most important one in digital
systems, but several others are also important. The decimal
system is important because it is universally used to represent
quantities outside a digital system. This means that there will
be situations where decimal values have to be converted to
binary values before they are entered into the digital system.

In additional to binary and decimal, two other number systems
find wide-spread applications in digital systems. The octal
(base-8) and hexadecimal (base-16) number systems are both
used for the same purpose- to provide an efficient means for

 6

representing large binary system.

 Octal System

The octal number system has a base of eight, meaning that it
has eight possible digits: 0,1,2,3,4,5,6,7.

83 82 81 80 8-1 8-2 8-3

=512 =64 =8 =1 . =1/8 =1/64 =1/512

Most
Significant
Digit

Octal
point

Least
Significant
Digit

 Octal to Decimal Conversion

 2378 = 2 x (82) + 3 x (81) + 7 x (80) = 15910
 24.68 = 2 x (81) + 4 x (80) + 6 x (8-1) = 20.7510
 11.18 = 1 x (81) + 1 x (80) + 1 x (8-1) = 9.12510
 12.38 = 1 x (81) + 2 x (80) + 3 x (8-1) = 10.37510

 Hexadecimal System

The hexadecimal system uses base 16. Thus, it has 16
possible digit symbols. It uses the digits 0 through 9 plus the
letters A, B, C, D, E, and F as the 16 digit symbols.

163 162 161 160 16-1 16-2 16-3

=4096 =256 =16 =1 . =1/16 =1/256 =1/4096

Most
Significant
Digit

Hexa
Decimal
point

Least
Significant
Digit

 Hexadecimal to Decimal Conversion

 24.616 = 2 x (161) + 4 x (160) + 6 x (16-1) = 36.37510
 11.116 = 1 x (161) + 1 x (160) + 1 x (16-1) = 17.062510
 12.316 = 1 x (161) + 2 x (160) + 3 x (16-1) = 18.187510

Code Conversion

Converting from one code form to another code form
is called code conversion, like converting from binary
to decimal or converting from hexadecimal to
decimal.

 Binary-To-Decimal Conversion

Any binary number can be converted to its decimal
equivalent simply by summing together the weights

 7

of the various positions in the binary number which
contain a 1.

Binary Decimal

110112

24+23+01+21+20 =16+8+0+2+1

Result 2710

 and

Binary Decimal

101101012

27+06+25+24+03+22+01+20 =128+0+32+16+0+4+0+1

Result 18110

You should have noticed that the method is to find
the weights (i.e., powers of 2) for each bit position
that contains a 1, and then to add them up.

 Decimal-To-Binary Conversion

 There are 2 methods:

 Reverse of Binary-To-Decimal Method
 Repeat Division

 Reverse of Binary-To-Decimal Method

Decimal Binary

4510 =32 + 0 + 8 + 4 +0 + 1

 =25+0+23+22+0+20

Result =1011012

 Repeat Division-Convert decimal to binary
 This method uses repeated division by 2.

 Convert 2510 to binary

Division Remainder Binary

25/2
= 12+ remainder of
1

1 (Least Significant
Bit)

12/2
= 6 + remainder of
0

0

6/2 = 3 + remainder of 0

 8

0

3/2
= 1 + remainder of
1

1

1/2
= 0 + remainder of
1

1 (Most Significant
Bit)

Result 2510 = 110012

The Flow chart for repeated-division method is as
follows:

Binary-To-
Octal / Octal-
To-Binary
Conversion

Octal
Digit

0 1 2 3 4 5 6 7

Binary
Equivalent

000 001 010 011 100 101 110 111

 Each Octal digit is represented by three binary digits.

 Example:

 9

 100 111 0102 = (100) (111) (010)2 = 4 7 28

 Repeat Division-Convert decimal to octal

 This method uses repeated division by 8.

 Example: Convert 17710 to octal and binary

Division Result Binary

177/8 = 22+ remainder of 1
1 (Least Significant
Bit)

22/ 8 = 2 + remainder of 6 6

2 / 8 = 0 + remainder of 2
2 (Most Significant
Bit)

Result 17710 = 2618

Binary = 0101100012

Hexadecimal to Decimal/Decimal to Hexadecimal
Conversion

 Example:
 2AF16 = 2 x (162) + 10 x (161) + 15 x (160) = 68710

 Repeat Division- Convert decimal to hexadecimal
 This method uses repeated division by 16.

 Example: convert 37810 to hexadecimal and binary:

Division Result Hexadecimal

378/16 = 23+ remainder of 10
A (Least Significant
Bit)23

23/16 = 1 + remainder of 7 7

1/16 = 0 + remainder of 1
1 (Most Significant
Bit)

Result 37810 = 17A16

Binary = 0001 0111 10102

Binary-To-Hexadecimal /Hexadecimal-To-Binary
Conversion

Hexadecimal
Digit

0 1 2 3 4 5 6 7

Binary
Equivalent

0000 0001 0010 0011 0100 0101 0110 0111

 Hexadecimal 8 9 A B C D E F

 10

Digit

Binary
Equivalent

1000 1001 1010 1011 1100 1101 1110 1111

Each Hexadecimal digit is represented by four bits of
binary digit.

 Example:

 1011 0010 11112 = (1011) (0010) (1111)2 = B 2 F16

Octal-To-Hexadecimal Hexadecimal-To-Octal
Conversion

 Convert Octal (Hexadecimal) to Binary first.
 Regroup the binary number by three bits per group

starting from LSB if Octal is required.
 Regroup the binary number by four bits per group

starting from LSB if Hexadecimal is required.

 Example:

 Convert 5A816 to Octal.

Hexadecimal Binary/Octal

5A816 = 0101 1010 1000 (Binary)

 = 010 110 101 000 (Binary)

Result = 2 6 5 0 (Octal)

Binary Codes

Binary codes are codes which are
represented in binary system with
modification from the original ones.
Below we will be seeing the
following:

 Weighted Binary Systems
 Non Weighted Codes

 Weighted Binary Systems

Weighted binary codes are those
which obey the positional
weighting principles, each position
of the number represents a specific
weight. The binary counting

 11

sequence is an example.

Decimal 8421 2421 5211
Excess-
3

0 0000 0000 0000 0011

1 0001 0001 0001 0100

2 0010 0010 0011 0101

3 0011 0011 0101 0110

4 0100 0100 0111 0111

5 0101 1011 1000 1000

6 0110 1100 1010 1001

7 0111 1101 1100 1010

8 1000 1110 1110 1011

9 1001 1111 1111 1100

 8421 Code/BCD Code

The BCD (Binary Coded Decimal)
is a straight assignment of the
binary equivalent. It is possible to
assign weights to the binary bits
according to their positions. The
weights in the BCD code are
8,4,2,1.

Example: The bit assignment
1001, can be seen by its weights to
represent the decimal 9 because:

 1x8+0x4+0x2+1x1 = 9

 2421 Code

This is a weighted code, its
weights are 2, 4, 2 and 1. A
decimal number is represented in
4-bit form and the total four bits
weight is 2 + 4 + 2 + 1 = 9. Hence
the 2421 code represents the
decimal numbers from 0 to 9.

 5211 Code

This is a weighted code, its
weights are 5, 2, 1 and 1. A
decimal number is represented in
4-bit form and the total four bits
weight is 5 + 2 + 1 + 1 = 9. Hence
the 5211 code represents the
decimal numbers from 0 to 9.

 12

Reflective Code

A code is said to be reflective
when code for 9 is
complement for the code for
0, and so is for 8 and 1
codes, 7 and 2, 6 and 3, 5
and 4. Codes 2421, 5211,
and excess-3 are reflective,
whereas the 8421 code is
not.

 Sequential Codes

A code is said to be
sequential when two
subsequent codes, seen as
numbers in binary
representation, differ by one.
This greatly aids
mathematical manipulation of
data. The 8421 and Excess-3
codes are sequential,
whereas the 2421 and 5211
codes are not.

 Non Weighted Codes

Non weighted codes are
codes that are not
positionally weighted. That is,
each position within the
binary number is not
assigned a fixed value.

 Excess-3 Code

Excess-3 is a non weighted
code used to express
decimal numbers. The code
derives its name from the fact
that each binary code is the
corresponding 8421 code
plus 0011(3).

Example: 1000 of 8421 =
1011 in Excess-3

 Gray Code

The gray code belongs to a
class of codes called
minimum change codes, in
which only one bit in the code
changes when moving from

 13

one code to the next. The
Gray code is non-weighted
code, as the position of bit
does not contain any weight.
The gray code is a reflective
digital code which has the
special property that any two
subsequent numbers codes
differ by only one bit. This is
also called a unit-distance
code. In digital Gray code
has got a special place.

Decimal
Number

Binary
Code

Gray
Code

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

 Binary to Gray Conversion

 Gray Code MSB is
binary code MSB.

 Gray Code MSB-1 is
the XOR of binary
code MSB and MSB-
1.

 MSB-2 bit of gray
code is XOR of MSB-1
and MSB-2 bit of
binary code.

 MSB-N bit of gray
code is XOR of MSB-

 14

N-1 and MSB-N bit of
binary code.

Floating Point Numbers

A real number or floating
point number is a number
which has both an integer
and a fractional part.
Examples for real real
decimal numbers are 123.45,
0.1234, -0.12345, etc.
Examples for real binary
numbers are 1100.1100,
0.1001, -1.001, etc. In
general, floating point
numbers are expressed in
exponential notation.

For example the decimal
number

 30000.0 can be written
as 3 x 104.

 312.45 can be written
as 3.1245 x 102.

Similarly, the binary number
1010.001 can be written as
1.010001 x 103.

The general form of a
number N can be expressed
as

 N = ± m x b±e.

Where m is mantissa, b is the
base of number system and
e is the exponent. A floating
point number is represented
by two parts. The number
first part, called mantissa, is
a signed fixed point number
and the second part, called
exponent, specifies the
decimal or binary position.

Binary

 15

Representation
of Floating
Point Numbers

A floating point binary number is also represented as in the case
of decimal numbers. It means that mantissa and exponent are
expressed using signed magnitude notation in which one bit is
reserved for sign bit.

Consider a 16-bit word used to store the floating point numbers;
assume that 9 bits are reserved for mantissa and 7 bits for
exponent and also assume that the mantissa part is represented
in fraction system. This implies the assumed binary point is at the
mantissa sign bit immediate right.

 Example
 A binary number 1101.01 is represented as
 Mantissa = 110101 = (1101.01)2 = 0.110101 X 24

 Exponent = (4)10
 Expanding mantissa to 8 bits we get 11010100
 Binary representation of exponent (4)10 = 000100

 The required representation is

Symbolic Logic

Boolean algebra derives its
name from the
mathematician George

 16

Boole. Symbolic Logic uses
values, variables and
operations :

 True is represented by
the value 1.

 False is represented
by the value 0.

Variables are represented by
letters and can have one of
two values, either 0 or 1.
Operations are functions of
one or more variables.

 AND is represented by
X.Y

 OR is represented by
X + Y

 NOT is represented by
X' . Throughout this
tutorial the X' form will
be used and sometime
!X will be used.

These basic operations can
be combined to give
expressions.

 Example :

 X
 X.Y
 W.X.Y + Z

 Precedence

As with any other branch of
mathematics, these
operators have an order of
precedence. NOT operations
have the highest precedence,
followed by AND operations,
followed by OR operations.
Brackets can be used as with
other forms of algebra. e.g.

X.Y + Z and X.(Y + Z) are not
the same function.

 17

 Function Definitions

The logic operations given
previously are defined as
follows :

Define f(X,Y) to be some
function of the variables X
and Y.

 f(X,Y) = X.Y

 1 if X = 1 and Y = 1
 0 Otherwise

 f(X,Y) = X + Y

 1 if X = 1 or Y = 1
 0 Otherwise

 f(X) = X'

 1 if X = 0
 0 Otherwise

 Truth Tables

Truth tables are a means of
representing the results of a
logic function using a table.
They are constructed by
defining all possible
combinations of the inputs to
a function, and then
calculating the output for
each combination in turn. For
the three functions we have
just defined, the truth tables
are as follows.

 AND

X Y F(X,Y)

0 0 0

0 1 0

1 0 0

1 1 1

 OR

X Y F(X,Y)

0 0 0

 18

0 1 1

1 0 1

1 1 1

 NOT

X F(X)

0 1

1 0

Symbolic
Logic

Boolean algebra derives its
name from the
mathematician George
Boole. Symbolic Logic uses
values, variables and
operations :

 True is represented by
the value 1.

 False is represented
by the value 0.

Variables are represented by
letters and can have one of
two values, either 0 or 1.
Operations are functions of
one or more variables.

 AND is represented by
X.Y

 OR is represented by
X + Y

 NOT is represented by
X' . Throughout this
tutorial the X' form will
be used and sometime
!X will be used.

These basic operations can
be combined to give
expressions.

 Example :

 X
 X.Y
 W.X.Y + Z

 19

 Precedence

As with any other branch of
mathematics, these
operators have an order of
precedence. NOT operations
have the highest precedence,
followed by AND operations,
followed by OR operations.
Brackets can be used as with
other forms of algebra. e.g.

X.Y + Z and X.(Y + Z) are not
the same function.

 Function Definitions

The logic operations given
previously are defined as
follows :

Define f(X,Y) to be some
function of the variables X
and Y.

 f(X,Y) = X.Y

 1 if X = 1 and Y = 1
 0 Otherwise

 f(X,Y) = X + Y

 1 if X = 1 or Y = 1
 0 Otherwise

 f(X) = X'

 1 if X = 0
 0 Otherwise

 Truth Tables

Truth tables are a means of
representing the results of a
logic function using a table.
They are constructed by
defining all possible
combinations of the inputs to
a function, and then
calculating the output for
each combination in turn. For

 20

the three functions we have
just defined, the truth tables
are as follows.

 AND

X Y F(X,Y)

0 0 0

0 1 0

1 0 0

1 1 1

 OR

X Y F(X,Y)

0 0 0

0 1 1

1 0 1

1 1 1

 NOT

X F(X)

0 1

1 0

Truth tables may contain as
many input variables as
desired

 F(X,Y,Z) = X.Y + Z

X Y Z F(X,Y,Z)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Boolean Switching
Algebras

A Boolean Switching Algebra
is one which deals only with
two-valued variables. Boole's
general theory covers
algebras which deal with

 21

variables which can hold n
values.

 Axioms

 Consider a set S = { 0. 1}

Consider two binary
operations, + and . , and one
unary operation, -- , that act
on these elements. [S, ., +, --
, 0, 1] is called a switching
algebra that satisfies the
following axioms S

 Closure

If X S and Y S then X.Y
S

If X S and Y S then X+Y

S

 Identity

an identity 0 for + such that

X + 0 = X

an identity 1 for . such that

X . 1 = X

 Commutative Laws

 X + Y = Y + X
 X . Y = Y . X

 Distributive Laws

 X.(Y + Z) = X.Y + X.Z
 X + Y.Z = (X + Y) . (X + Z)

 Complement

X S a complement

X'such that
 X + X' = 1
 X . X' = 0

The complement X' is
unique.

Truth tables may contain as
many input variables as
desired

 F(X,Y,Z) = X.Y + Z

 22

X Y Z F(X,Y,Z)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Boolean Switching
Algebras

A Boolean Switching Algebra
is one which deals only with
two-valued variables. Boole's
general theory covers
algebras which deal with
variables which can hold n
values.

 Axioms

 Consider a set S = { 0. 1}

Consider two binary
operations, + and . , and one
unary operation, -- , that act
on these elements. [S, ., +, --
, 0, 1] is called a switching
algebra that satisfies the
following axioms S

 Closure

If X S and Y S then X.Y
S

If X S and Y S then X+Y

S

 Identity

an identity 0 for + such that

X + 0 = X

an identity 1 for . such that

X . 1 = X

 Commutative Laws

 X + Y = Y + X
 X . Y = Y . X

 23

 Distributive Laws

 X.(Y + Z) = X.Y + X.Z
 X + Y.Z = (X + Y) . (X + Z)

 Complement

X S a complement

X'such that
 X + X' = 1
 X . X' = 0

The complement X' is
unique.

Theorems

A number of theorems may be
proved for switching algebras

 Idempotent Law

 X + X = X
 X . X = X

 DeMorgan's Law

(X + Y)' = X' . Y', These can be
proved by the use of truth tables.

 Proof of (X + Y)' = X' . Y'

X Y X+Y (X+Y)'

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

X Y X' Y' X'.Y'

0 0 1 1 1

0 1 1 0 0

1 0 0 1 0

1 1 0 0 0

The two truth tables are identical,
and so the two expressions are
identical.

 24

(X.Y) = X' + Y', These can be
proved by the use of truth tables.

 Proof of (X.Y) = X' + Y'

X Y X.Y (X.Y)'

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

X Y X' Y' X'+Y'

0 0 1 1 1

0 1 1 0 1

1 0 0 1 1

1 1 0 0 0

Note : DeMorgans Laws are
applicable for any number of
variables.

 Boundedness Law

 X + 1 = 1
 X . 0 = 0

 Absorption Law

 X + (X . Y) = X
 X . (X + Y) = X

 Elimination Law

 X + (X' . Y) = X + Y
 X.(X' + Y) = X.Y

 Unique Complement theorem

If X + Y = 1 and X.Y = 0 then X =
Y'

 Involution theorem

 X'' = X
 0' = 1

 Associative Properties

 25

 X + (Y + Z) = (X + Y) + Z
 X . (Y . Z) = (X . Y) . Z

 Duality Principle

In Boolean algebras the duality
Principle can be is obtained by
interchanging AND and OR
operators and replacing 0's by
1's and 1's by 0's. Compare the
identities on the left side with the
identities on the right.

 Example

 X.Y+Z' = (X'+Y').Z

 Consensus theorem

 X.Y + X'.Z + Y.Z = X.Y + X'.Z
 or dual form as below

(X + Y).(X' + Z).(Y + Z) = (X +
Y).(X' + Z)

Proof of X.Y + X'.Z + Y.Z = X.Y +
X'.Z:

X.Y + X'.Z +
Y.Z

= X.Y + X'.Z

X.Y + X'.Z +
(X+X').Y.Z

= X.Y + X'.Z

X.Y.(1+Z) +
X'.Z.(1+Y)

= X.Y + X'.Z

X.Y + X'.Z = X.Y + X'.Z

(X.Y'+Z).(X+Y).Z = X.Z+Y.Z
instead of X.Z+Y'.Z

 X.Y'Z+X.Z+Y.Z
 (X.Y'+X+Y).Z
 (X+Y).Z
 X.Z+Y.Z

The term which is left out is
called the consensus term.

Given a pair of terms for which a
variable appears in one term,
and its complement in the other,
then the consensus term is

 26

formed by ANDing the original
terms together, leaving out the
selected variable and its
complement.

 Example :

The consensus of X.Y and X'.Z is
Y.Z

The consensus of X.Y.Z and
Y'.Z'.W' is (X.Z).(Z.W')

 Shannon Expansion Theorem

The Shannon Expansion
Theorem is used to expand a
Boolean logic function (F) in
terms of (or with respect to) a
Boolean variable (X), as in the
following forms.

 F = X . F (X = 1) + X' . F (X = 0)

where F (X = 1) represents the
function F evaluated with X set
equal to 1; F (X = 0) represents
the function F evaluated with X
set equal to 0.

Also the following function F can
be expanded with respect to X,

 F = X' . Y + X . Y . Z' + X' . Y' . Z

 = X . (Y . Z') + X' . (Y + Y' . Z)

Thus, the function F can be split
into two smaller functions.

 F (X = '1') = Y . Z'

This is known as the cofactor of
F with respect to X in the
previous logic equation. The
cofactor of F with respect to X
may also be represented as F X
(the cofactor of F with respect to
X' is F X'). Using the Shannon
Expansion Theorem, a Boolean
function may be expanded with
respect to any of its variables.

 27

For example, if we expand F with
respect to Y instead of X,

 F = X' . Y + X . Y . Z' + X' . Y' . Z

 = Y . (X' + X . Z') + Y' . (X' . Z)

A function may be expanded as
many times as the number of
variables it contains until the
canonical form is reached. The
canonical form is a unique
representation for any Boolean
function that uses only minterms.
A minterm is a product term that
contains all the variables of
F¿such as X . Y' . Z).

Any Boolean function can be
implemented using multiplexer
blocks by representing it as a
series of terms derived using the
Shannon Expansion Theorem.

Summary of Laws And
Theorms

Identity Dual

Operations with 0 and
1

X + 0 = X (identity) X.1 = X

X + 1 = 1 (null element) X.0 = 0

Idempotency theorem

X + X = X X.X = X

Complementarity

X + X' = 1 X.X' = 0

Involution theorem

(X')' = X

Cummutative law

X + Y = Y + X
X.Y = Y
X

Associative law

(X + Y) + Z = X + (Y +
Z) = X + Y + Z

(XY)Z =
X(YZ) =
XYZ

Distributive law

X(Y + Z) = XY + XZ X +

 28

(YZ) =
(X +
Y)(X +
Z)

DeMorgan's theorem

(X + Y + Z + ...)' =
X'Y'Z'... or { f (
X1,X2,...,Xn,0,1,+,.) } =
{ f (
X1',X2',...,Xn',1,0,.,+) }

(XYZ...)'
= X' +
Y' + Z'
+ ...

Simplification
theorems

XY + XY' = X (uniting)
(X +
Y)(X +
Y') = X

X + XY = X
(absorption)

X(X +
Y) = X

(X + Y')Y = XY
(adsorption)

XY' + Y
= X + Y

Consensus theorem

XY + X'Z + YZ = XY +
X'Z

(X +
Y)(X' +
Z)(Y +
Z) = (X
+ Y)(X'
+ Z)

Duality

(X + Y + Z + ...)D =
XYZ... or
{f(X1,X2,...,Xn,0,1,+,.)}D
= f(X1,X2,...,Xn,1,0,.,+)

(XYZ
...)D = X
+ Y + Z
+ ...

Shannon Expansion
Theorem

f(X1,...,Xk,...Xn)

Xk *
f(X1,...,
1 ,...Xn)
+ Xk' *
f(X1,...,
0 ,...Xn)

f(X1,...,Xk,...Xn)

[Xk +
f(X1,...,
0 ,...Xn)]
* [Xk' +
f(X1,...,
1 ,...Xn)]

Algebraic Manipulation

 29

 Minterms and Maxterms

Any boolean expression may
be expressed in terms of
either minterms or maxterms.
To do this we must first
define the concept of a literal.
A literal is a single variable
within a term which may or
may not be complemented.
For an expression with N
variables, minterms and
maxterms are defined as
follows :

 A minterm is the
product of N distinct
literals where each
literal occurs exactly
once.

 A maxterm is the sum
of N distinct literals
where each literal
occurs exactly once.

For a two-variable
expression, the minterms and
maxterms are as follows

X Y Minterm Maxterm

0 0 X'.Y' X+Y

0 1 X'.Y X+Y'

1 0 X.Y' X'+Y

1 1 X.Y X'+Y'

For a three-variable
expression, the minterms and
maxterms are as follows

X Y Z Minterm Maxterm

0 0 0 X'.Y'.Z' X+Y+Z

0 0 1 X'.Y'.Z X+Y+Z'

0 1 0 X'.Y.Z' X+Y'+Z

0 1 1 X'.Y.Z X+Y'+Z'

1 0 0 X.Y'.Z' X'+Y+Z

1 0 1 X.Y'.Z X'+Y+Z'

 30

1 1 0 X.Y.Z' X'+Y'+Z

1 1 1 X.Y.Z X'+Y'+Z'

This allows us to represent
expressions in either Sum of
Products or Product of Sums
forms

 Sum Of Products (SOP)

The Sum of Products form
represents an expression as
a sum of minterms.

 F(X, Y, ...) = Sum (ak.mk)

where ak is 0 or 1 and mk is a
minterm.

To derive the Sum of
Products form from a truth
table, OR together all of the
minterms which give a value
of 1.

 Example - SOP

 Consider the truth table

X Y F Minterm

0 0 0 X'.Y'

0 1 0 X'Y

1 0 1 X.Y'

1 1 1 X.Y

Here SOP is f(X.Y) = X.Y' +
X.Y

 Product Of Sum (POS)

The Product of Sums form
represents an expression as
a product of maxterms.

F(X, Y,) = Product (bk +
Mk), where bk is 0 or 1 and
Mk is a maxterm.

 To derive the Product of

 31

Sums form from a truth table,
AND together all of the
maxterms which give a value
of 0.

Example - POS

Consider the truth table from
the previous example.

X Y F Maxterm

0 0 1 X+Y

0 1 0 X+Y'

1 0 1 X'+Y

1 1 1 X'+Y'

 Here POS is F(X,Y) = (X+Y')

 Exercise

Give the expression
represented by the following
truth table in both Sum of
Products and Product of
Sums forms.

X Y Z F(X,Y,X)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Conversion between POS
and SOP

Conversion between the two
forms is done by application
of DeMorgans Laws.

 Simplification

As with any other form of
algebra you have
encountered, simplification of
expressions can be

 32

performed with Boolean
algebra.

 Example

Show that X.Y.Z' + X'.Y.Z' +
Y.Z = Y

X.Y.Z' + X'.Y.Z' + Y.Z = Y.Z'
+ Y.Z = Y

 Example

Show that (X.Y' + Z).(X +
Y).Z = X.Z + Y.Z

 (X.Y' + Z).(X + Y).Z
 = (X.Y' + Z.X + Y'.Z).Z
 = X.Y'Z + Z.X + Y'.Z
 = Z.(X.Y' + X + Y')
 = Z.(X+Y')

Logic Circuits

Boolean algebra is ideal for
expressing the behavior of
logic circuits.

A circuit can be expressed as
a logic design and
implemented as a collection
of individual connected logic
gates.

 Fixed Logic Systems

A fixed logic system has two
possible choices for
representing true and false.

 Positive Logic

In a positive logic system, a
high voltage is used to
represent logical true (1), and
a low voltage for a logical
false (0).

 Negative Logic

In a negative logic system, a
low voltage is used to

 33

represent logical true (1), and
a high voltage for a logical
false (0).

In positive logic circuits it is
normal to use +5V for true
and 0V for false.

Switchin
g Circuits

The abstract logic described previously can be implemented as
an actual circuit. Switches are left open for logic 0 and closed
for logic 1.

 Two variable AND circuit X.Y

 Two variable OR circuit X + Y

 Four variable circuit U.V.(X + Y)

 Truth Table

 A truth table is a means for describing how a logic circuit's

 34

output depends on the logic levels present at the circuit's inputs.

In the following twos-inputs logic circuit, the table lists all
possible combinations of logic levels present at inputs X and Y
along with the corresponding output level F.

X Y F = X*Y

0 0 0

0 1 0

1 0 0

1 1 1

When either input X AND Y is 1, the output F is 1. Therefore the
"?" in the box is an AND gate.

Logic Gates

A logic gate is an electronic circuit/device which makes the
logical decisions. To arrive at this decisions, the most
common logic gates used are OR, AND, NOT, NAND, and
NOR gates. The NAND and NOR gates are called universal
gates. The exclusive-OR gate is another logic gate which
can be constructed using AND, OR and NOT gate.

Logic gates have one or more inputs and only one output.
The output is active only for certain input combinations.
Logic gates are the building blocks of any digital circuit.
Logic gates are also called switches. With the advent of
integrated circuits, switches have been replaced by TTL
(Transistor Transistor Logic) circuits and CMOS circuits.
Here I give example circuits on how to construct simples
gates.

 Symbolic Logic

Boolean algebra derives its name from the mathematician
George Boole. Symbolic Logic uses values, variables and
operations.

 35

 Inversion

A small circle on an input or an output indicates inversion.
See the NOT, NAND and NOR gates given below for
examples.

 Multiple Input Gates

Given commutative and associative laws, many logic gates
can be implemented with more than two inputs, and for
reasons of space in circuits, usually multiple input, complex
gates are made. You will encounter such gates in real world
(maybe you could analyze an ASIC lib to find this).

 Gates Types

 AND
 OR
 NOT
 BUF
 NAND
 NOR
 XOR
 XNOR

Universal Gates

Universal gates are the ones which can be
used for implementing any gate like AND, OR
and NOT, or any combination of these basic
gates; NAND and NOR gates are universal
gates. But there are some rules that need to
be followed when implementing NAND or
NOR based gates.

To facilitate the conversion to NAND and
NOR logic, we have two new graphic
symbols for these gates.

 NAND Gate

 36

 NOR Gate

Realization of logic function using NAND
gates

Any logic function can be implemented using
NAND gates. To achieve this, first the logic
function has to be written in Sum of Product
(SOP) form. Once logic function is converted
to SOP, then is very easy to implement using
NAND gate. In other words any logic circuit
with AND gates in first level and OR gates in
second level can be converted into a NAND-
NAND gate circuit.

 Consider the following SOP expression

 F = W.X.Y + X.Y.Z + Y.Z.W

The above expression can be implemented
with three AND gates in first stage and one
OR gate in second stage as shown in figure.

If bubbles are introduced at AND gates
output and OR gates inputs (the same for

 37

NOR gates), the above circuit becomes as
shown in figure.

Now replace OR gate with input bubble with
the NAND gate. Now we have circuit which is
fully implemented with just NAND gates.

Realization of logic gates using NAND
gates

Implementing an inverter using NAND
gate

Input Output Rule

(X.X)' = X' Idempotent

 Implementing AND using NAND gates

 38

Input Output Rule

((XY)'(XY)')' = ((XY)')' Idempotent

 = (XY) Involution

 Implementing OR using NAND gates

Input Output Rule

((XX)'(YY)')' = (X'Y')' Idempotent

 = X''+Y'' DeMorgan

 = X+Y Involution

Implementi
ng NOR
using
NAND
gates

Input Output Rule

((XX)'(YY)')' =(X'Y')' Idempotent

 =X''+Y'' DeMorgan

 =X+Y Involution

 =(X+Y)' Idempotent

 Realization of logic function using NOR gates

 Any logic function can be implemented using NOR gates. To

 39

achieve this, first the logic function has to be written in
Product of Sum (POS) form. Once it is converted to POS,
then it's very easy to implement using NOR gate. In other
words any logic circuit with OR gates in first level and AND
gates in second level can be converted into a NOR-NOR gate
circuit.

 Consider the following POS expression

 F = (X+Y) . (Y+Z)

The above expression can be implemented with three OR
gates in first stage and one AND gate in second stage as
shown in figure.

If bubble are introduced at the output of the OR gates and the
inputs of AND gate, the above circuit becomes as shown in
figure.

Now replace AND gate with input bubble with the NOR gate.
Now we have circuit which is fully implemented with just NOR
gates.

 40

 Realization of logic gates using NOR gates

 Implementing an inverter using NOR gate

Input Output Rule

(X+X)' = X' Idempotent

 Implementing AND using NOR gates

Input Output Rule

((X+X)'+(Y+Y)')' =(X'+Y')' Idempotent

 = X''.Y'' DeMorgan

 = (X.Y) Involution

 Implementing OR using NOR gates

Input Output Rule

((X+Y)'+(X+Y)')' = ((X+Y)')' Idempotent

 41

 = X+Y Involution

 Implementing NAND using NOR gates

Input Output Rule

((X+Y)'+(X+Y)')' = ((X+Y)')' Idempotent

 = X+Y Involution

 = (X+Y)' Idempotent

Introduction

Simplification of Boolean
functions is mainly used to
reduce the gate count of a
design. Less number of
gates means less power
consumption, sometimes the
circuit works faster and also
when number of gates is
reduced, cost also comes
down.

There are many ways to
simplify a logic design, some
of them are given below. We
will be looking at each of
these in detail in the next few
pages.

 Algebraic
Simplification.

 ->Simplify
symbolically using
theorems/postulates.

 ->Requires good skills

 42

 Karnaugh Maps.
 ->Diagrammatic

technique using
'Venn-like diagram'.

 ->Limited to no more
than 6 variables.

We have already seen how
Algebraic Simplification
works, so lets concentrate on
Karnaugh Maps or simply k-
maps.

Karnaugh Maps

Karnaugh maps provide a
systematic method to obtain
simplified sum-of-products
(SOPs) Boolean expressions.
This is a compact way of
representing a truth table and
is a technique that is used to
simplify logic expressions. It is
ideally suited for four or less
variables, becoming
cumbersome for five or more
variables. Each square
represents either a minterm or
maxterm. A K-map of n
variables will have 2

squares. For a Boolean
expression, product terms are
denoted by 1's, while sum
terms are denoted by 0's - but
0's are often left blank.

A K-map consists of a grid of
squares, each square
representing one canonical
minterm combination of the
variables or their inverse. The
map is arranged so that
squares representing
minterms which differ by only
one variable are adjacent both
vertically and horizontally.
Therefore XY'Z' would be
adjacent to X'Y'Z' and would
also adjacent to XY'Z and
XYZ'.

 43

 Minimization Technique

 Based on the Unifying
Theorem: X + X' = 1

 The expression to be
minimized should
generally be in sum-of-
product form (If
necessary, the
conversion process is
applied to create the
sum-of-product form).

 The function is mapped
onto the K-map by
marking a 1 in those
squares corresponding
to the terms in the
expression to be
simplified (The other
squares may be filled
with 0's).

 Pairs of 1's on the map
which are adjacent are
combined using the
theorem Y(X+X') = Y
where Y is any Boolean
expression (If two pairs
are also adjacent, then
these can also be
combined using the
same theorem).

 The minimization
procedure consists of
recognizing those pairs
and multiple pairs.

 ->These are circled
indicating reduced
terms.

o Groups which
can be circled
are those which
have two (21) 1's,
four (22) 1's,
eight (23) 1's,
and so on.

 ->Note that because
squares on one edge of
the map are considered
adjacent to those on the
opposite edge, group

 44

can be formed with
these squares.

 ->Groups are allowed to
overlap.

 The objective is to cover
all the 1's on the map in
the fewest number of
groups and to create
the largest groups to do
this.

 Once all possible
groups have been
formed, the
corresponding terms
are identified.

 ->A group of two 1's
eliminates one variable
from the original
minterm.

 ->A group of four 1's
eliminates two variables
from the original
minterm.

 ->A group of eight 1's
eliminates three
variables from the
original minterm, and so
on.

 ->The variables
eliminated are those
which are different in
the original minterms of
the group.

2-
Variable
K-Map

In any K-Map, each square represents a minterm. Adjacent
squares always differ by just one literal (So that the unifying
theorem may apply: X + X' = 1). For the 2-variable case (e.g.:
variables X, Y), the map can be drawn as below. Two variable
map is the one which has got only two variables as input.

 45

 Equivalent labeling

K-map needs not follow the ordering as shown in the figure
above. What this means is that we can change the position of
m0, m1, m2, m3 of the above figure as shown in the two figures
below.

Position assignment is the same as the default k-maps positions.
This is the one which we will be using throughout this tutorial.

 This figure is with changed position of m0, m1, m2, m3.

The K-map for a function is specified by putting a '1' in the square
corresponding to a minterm, a '0' otherwise.

 Example- Carry and Sum of a half adder

In this example we have the truth table as input, and we have two
output functions. Generally we may have n output functions for m
input variables. Since we have two output functions, we need to
draw two k-maps (i.e. one for each function). Truth table of 1 bit
adder is shown below. Draw the k-map for Carry and Sum as

 46

shown below.

X Y Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

 Grouping/Circling K-maps

The power of K-maps is in minimizing the terms, K-maps can be
minimized with the help of grouping the terms to form single
terms. When forming groups of squares, observe/consider the
following:

 Every square containing 1 must be considered at least
once.

 A square containing 1 can be included in as many groups
as desired.

 A group must be as large as possible.

 If a square containing 1 cannot be placed in a group, then
leave it out to include in final expression.

 The number of squares in a group must be equal to 2
 , i.e. 2,4,8,.

 47

 The map is considered to be folded or spherical, therefore
squares at the end of a row or column are treated as
adjacent squares.

 The simplified logic expression obtained from a K-map is
not always unique. Groupings can be made in different
ways.

 Before drawing a K-map the logic expression must be in
canonical form.

 In the next few pages we will see some examples on grouping.

Example of invalid
groups

 48

 Example - X'Y+XY

In this example we have the equation as input,
and we have one output function. Draw the k-map
for function F with marking 1 for X'Y and XY
position. Now combine two 1's as shown in figure
to form the single term. As you can see X and X'
get canceled and only Y remains.

 F = Y

 Example - X'Y+XY+XY'

In this example we have the equation as input,
and we have one output function. Draw the k-map
for function F with marking 1 for X'Y, XY and XY
position. Now combine two 1's as shown in figure
to form the two single terms.

 F = X + Y

 49

 3-Variable K-Map

There are 8 minterms for 3 variables (X, Y, Z).
Therefore, there are 8 cells in a 3-variable K-map.
One important thing to note is that K-maps follow
the gray code sequence, not the binary one.

Using gray code arrangement ensures that
minterms of adjacent cells differ by only ONE
literal. (Other arrangements which satisfy this
criterion may also be used.)

Each cell in a 3-variable K-map has 3 adjacent
neighbours. In general, each cell in an n-variable
K-map has n adjacent neighbours.

 There is wrap-around in the K-map

 X'Y'Z' (m0) is adjacent to X'YZ' (m2)
 XY'Z' (m4) is adjacent to XYZ' (m6)

 50

 Example
 F = XYZ'+XYZ+X'YZ

 F = XY + YZ

 Example
 F(X,Y,Z) = (1,3,4,5,6,7)

 F = X + Z

QUINE-McCLUSKEY MINIMIZATION

Quine-
McCluskey
minimization

 51

method
uses the
same
theorem to
produce the
solution as
the K-map
method,
namely
X(Y+Y')=X

Minimization Technique

 The expression is
represented in the canonical
SOP form if not already in
that form.

 The function is converted into
numeric notation.

 The numbers are converted
into binary form.

 The minterms are arranged in
a column divided into groups.

 Begin with the minimization
procedure.

 -> Each minterm of one group
is compared with each
minterm in the group
immediately below.

 -> Each time a number is
found in one group which is
the same as a number in the
group below except for one
digit, the numbers pair is
ticked and a new composite
is created.

 -> This composite number
has the same number of
digits as the numbers in the
pair except the digit different
which is replaced by an "x".

 The above procedure is
repeated on the second
column to generate a third
column.

 The next step is to identify the
essential prime implicants,
which can be done using a
prime implicant chart.

 52

 -> Where a prime implicant
covers a minterm, the
intersection of the
corresponding row and
column is marked with a
cross.

 -> Those columns with only
one cross identify the
essential prime implicants. ->
These prime implicants must
be in the final answer.

 -> The single crosses on a
column are circled and all the
crosses on the same row are
also circled, indicating that
these crosses are covered by
the prime implicants selected.

 -> Once one cross on a
column is circled, all the
crosses on that column can
be circled since the minterm
is now covered.

 -> If any non-essential prime
implicant has all its crosses
circled, the prime implicant is
redundant and need not be
considered further.

 Next, a selection must be
made from the remaining
nonessential prime
implicants, by considering
how the non-circled crosses
can be covered best.

 -> One generally would take
those prime implicants which
cover the greatest number of
crosses on their row.

 -> If all the crosses in one
row also occur on another
row which includes further
crosses, then the latter is said
to dominate the former and
can be selected.

 -> The dominated prime
implicant can then be deleted.

 Example

Find the minimal sum of products for
the Boolean expression, f=

 53

(1,2,3,7,8,9,10,11,14,15), using
Quine-McCluskey method.

Firstly these minterms are
represented in the binary form as
shown in the table below. The above
binary representations are grouped
into a number of sections in terms of
the number of 1's as shown in the
table below.

 Binary representation of minterms

Minterms U V W X

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

14 1 1 1 0

15 1 1 1 1

Group of minterms for different
number of 1's

No
of
1's

Minterms U V W X

1 1 0 0 0 1

1 2 0 0 1 0

1 8 1 0 0 0

2 3 0 0 1 1

2 9 1 0 0 1

2 10 1 0 1 0

3 7 0 1 1 1

3 11 1 0 1 1

3 14 1 1 1 0

4 15 1 1 1 1

Any two numbers in these groups
which differ from each other by only
one variable can be chosen and

 54

combined, to get 2-cell combination,
as shown in the table below.

 2-Cell combinations

Combinations U V W X

(1,3) 0 0 - 1

(1,9) - 0 0 1

(2,3) 0 0 1 -

(2,10) - 0 1 0

(8,9) 1 0 0 -

(8,10) 1 0 - 0

(3,7) 0 - 1 1

(3,11) - 0 1 1

(9,11) 1 0 - 1

(10,11) 1 0 1 -

(10,14) 1 - 1 0

(7,15) - 1 1 1

(11,15) 1 - 1 1

(14,15) 1 1 1 -

From the 2-cell combinations, one
variable and dash in the same
position can be combined to form 4-
cell combinations as shown in the
figure below.

 4-Cell combinations

Combinations U V W X

(1,3,9,11) - 0 - 1

(2,3,10,11) - 0 1 -

(8,9,10,11) 1 0 - -

(3,7,11,15) - - 1 1

(10,11,14,15) 1 - 1 -

The cells (1,3) and (9,11) form the
same 4-cell combination as the cells
(1,9) and (3,11). The order in which
the cells are placed in a combination
does not have any effect. Thus the
(1,3,9,11) combination could be
written as (1,9,3,11).

 From above 4-cell combination

 55

table, the prime implicants table can
be plotted as shown in table below.

 Prime Implicants Table

Prime
Implicants

1 2 3 7 8 9 10 11 14 15

(1,3,9,11) X - X - - X - X - -

(2,3,10,11) - X X - - - X X - -

(8,9,10,11) - - - - X X X X - -

(3,7,11,15) - - - - - - X X X X

- X X - X X - - - X -

The columns having only one cross
mark correspond to essential prime
implicants. A yellow cross is used
against every essential prime
implicant. The prime implicants sum
gives the function in its minimal SOP
form.

 Y = V'X + V'W + UV' + WX + UW

Decoders

A decoder is a multiple-input, multiple-output logic
circuit that converts coded inputs into coded outputs,
where the input and output codes are different; e.g. n-
to-2n, BCD decoders.

Enable inputs must be on for the decoder to function,
otherwise its outputs assume a single "disabled"
output code word.

Decoding is necessary in applications such as data
multiplexing, 7 segment display and memory address
decoding. Figure below shows the pseudo block of a
decoder.

 56

 Basic Binary Decoder

And AND gate can be used as the basic decoding
element, because its output is HIGH only when all its
inputs are HIGH. For example, if the input binary
number is 0110, then, to make all the inputs to the
AND gate HIGH, the two outer bits must be inverted
using two inverters as shown in figure below.

 Binary n-to-2n Decoders

A binary decoder has n inputs and 2n outputs. Only
one output is active at any one time, corresponding to
the input value. Figure below shows a representation
of Binary n-to-2n decoder

Exampl
e - 2-to-
4
Binary
Decode
r

A 2 to 4 decoder consists of two inputs and four outputs, truth
table and symbols of which is shown below.

 Truth Table

X Y F0 F1 F2 F3

0 0 1 0 0 0

0 1 0 1 0 0

 57

1 0 0 0 1 0

1 1 0 0 0 1

 Symbol

To minimize the above truth table we may use kmap, but doing
that you will realize that it is a waste of time. One can directly write
down the function for each of the outputs. Thus we can draw the
circuit as shown in figure below.

 Note: Each output is a 2-variable minterm (X'Y', X'Y, XY', XY)

 Circuit

 Example - 3-to-8 Binary Decoder

A 3 to 8 decoder consists of three inputs and eight outputs, truth
table and symbols of which is shown below.

 Truth Table

X Y Z F0 F1 F2 F3 F4 F5 F6 F7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

 58

1 1 1 0 0 0 0 0 0 0 1

 Symbol

From the truth table we can draw the circuit diagram as shown in
figure below.

 Circuit

 Implementing Functions Using Decoders

 59

 Any n-variable logic function, in canonical sum-of-minterms
form can be implemented using a single n-to-2n decoder to
generate the minterms, and an OR gate to form the sum.

 ->The output lines of the decoder corresponding to the
minterms of the function are used as inputs to the or gate.

 Any combinational circuit with n inputs and m outputs can
be implemented with an n-to-2n decoder with m OR gates.

 Suitable when a circuit has many outputs, and each output
function is expressed with few minterms.

Introduction

Arithmetic circuits are the
ones which perform
arithmetic operations like
addition, subtraction,
multiplication, division, parity
calculation. Most of the time,
designing these circuits is the
same as designing muxers,
encoders and decoders.

In the next few pages we will
see few of these circuits in
detail.

 Adders

Adders are the basic building
blocks of all arithmetic
circuits; adders add two
binary numbers and give out
sum and carry as output.
Basically we have two types
of adders.

 Half Adder.
 Full Adder.

Half
Adder

Adding two single-bit binary values X, Y produces a
sum S bit and a carry out C-out bit. This operation is
called half addition and the circuit to realize it is called
a half adder.

 60

 Truth Table

X Y SUM CARRY

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

 Symbol

 S (X,Y) = (1,2)
 S = X'Y + XY'
 S = X Y
 CARRY(X,Y) = (3)
 CARRY = XY

 Circuit

 Full Adder

Full adder takes a three-bits input. Adding two single-
bit binary values X, Y with a carry input bit C-in
produces a sum bit S and a carry out C-out bit.

 Truth Table

X Y Z SUM CARRY

0 0 0 0 0

 61

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

 SUM (X,Y,Z) = (1,2,4,7)
 CARRY (X,Y,Z) = (3,5,6,7)

 Kmap-SUM

 SUM = X'Y'Z + XY'Z' + X'YZ'
 SUM = X Y Z

 Kmap-CARRY

 CARRY = XY + XZ + YZ

 Full Adder using AND-OR

The below implementation shows implementing the full
adder with AND-OR gates, instead of using XOR
gates. The basis of the circuit below is from the above
Kmap.

 Circuit-SUM

 62

 Circuit-CARRY

 Full Adder using AND-OR

 Circuit-SUM

 Circuit-CARRY

 63

 Example - Full adder

 Equation
 S(x, y, z) = (1,2,4,7)
 C(x, y, z) = (3,5,6,7)

 Truth Table

X Y Z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

From the truth table we know the values for which the sum (s) is
active and also the carry (c) is active. Thus we have the equation
as shown above and a circuit can be drawn as shown below from
the equation derived.

 Circuit

Encoders

An encoder is a combinational circuit that performs the inverse
operation of a decoder. If a device output code has fewer bits
than the input code has, the device is usually called an
encoder. e.g. 2n-to-n, priority encoders.

The simplest encoder is a 2n-to-n binary encoder, where it has
only one of 2n inputs = 1 and the output is the n-bit binary
number corresponding to the active input.

 64

 Example - Octal-to-Binary Encoder

Octal-to-Binary take 8 inputs and provides 3 outputs, thus
doing the opposite of what the 3-to-8 decoder does. At any
one time, only one input line has a value of 1. The figure
below shows the truth table of an Octal-to-binary encoder.

 Truth Table

I0 I1 I2 I3 I4 I5 I6 I7 Y2 Y1 Y0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

For an 8-to-3 binary encoder with inputs I0-I7 the logic
expressions of the outputs Y0-Y2 are:

 Y0 = I1 + I3 + I5 + I7
 Y1= I2 + I3 + I6 + I7
 Y2 = I4 + I5 + I6 +I7

Based on the above equations, we can draw the circuit as
shown below

 Circuit

 65

Exampl
e -
Decima
l-to-
Binary
Encod
er

Decimal-to-Binary take 10 inputs and provides 4 outputs, thus
doing the opposite of what the 4-to-10 decoder does. At any one
time, only one input line has a value of 1. The figure below shows
the truth table of a Decimal-to-binary encoder.

 Truth Table

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 Y3 Y2 Y1 Y0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1

From the above truth table , we can derive the functions Y3, Y2,
Y1 and Y0 as given below.

 Y3 = I8 + I9

 66

 Y2 = I4 + I5 + I6 + I7
 Y1 = I2 + I3 + I6 + I7
 Y0 = I1 + I3 + I5 + I7 + I9

 Priority Encoder

If we look carefully at the Encoder circuits that we got, we see the
following limitations. If more then two inputs are active
simultaneously, the output is unpredictable or rather it is not what
we expect it to be.

This ambiguity is resolved if priority is established so that only one
input is encoded, no matter how many inputs are active at a given
point of time.

The priority encoder includes a priority function. The operation of
the priority encoder is such that if two or more inputs are active at
the same time, the input having the highest priority will take
precedence.

 Example - 4to3 Priority Encoder

The truth table of a 4-input priority encoder is as shown below. The
input D3 has the highest priority, D2 has next highest priority, D0
has the lowest priority. This means output Y2 and Y1 are 0 only
when none of the inputs D1, D2, D3 are high and only D0 is high.

A 4 to 3 encoder consists of four inputs and three outputs, truth
table and symbols of which is shown below.

 Truth Table

D3 D2 D1 D0 Y2 Y1 Y0

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 x 0 1 0

0 1 x x 0 1 1

1 x x x 1 0 0

Now that we have the truth table, we can draw the Kmaps as
shown below.

 Kmaps

 67

From the Kmap we can draw the circuit as shown below. For Y2,
we connect directly to D3.

 We can apply the same logic to get higher order priority encoders.

Multiplexer

A multiplexer (MUX) is a digital switch which connects data
from one of n sources to the output. A number of select
inputs determine which data source is connected to the
output. The block diagram of MUX with n data sources of b
bits wide and s bits wide select line is shown in below
figure.

 68

MUX acts like a digitally controlled multi-position switch
where the binary code applied to the select inputs controls
the input source that will be switched on to the output as
shown in the figure below. At any given point of time only
one input gets selected and is connected to output, based
on the select input signal.

 Mechanical Equivalent of a Multiplexer

The operation of a multiplexer can be better explained
using a mechanical switch as shown in the figure below.
This rotary switch can touch any of the inputs, which is
connected to the output. As you can see at any given point
of time only one input gets transferred to output.

 Example - 2x1 MUX

A 2 to 1 line multiplexer is shown in figure below, each 2
input lines A to B is applied to one input of an AND gate.
Selection lines S are decoded to select a particular AND
gate. The truth table for the 2:1 mux is given in the table
below.

 Symbol

 Truth Table

S Y

0 A

1 B

Design of a

 69

2:1 Mux

To derive the gate level implementation of 2:1 mux we need
to have truth table as shown in figure. And once we have the
truth table, we can draw the K-map as shown in figure for all
the cases when Y is equal to '1'.

Combining the two 1' as shown in figure, we can drive the
output y as shown below

 Y = A.S' + B.S

 Truth Table

B A S Y

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

 Kmap

 Circuit

 70

 Example : 4:1 MUX

A 4 to 1 line multiplexer is shown in figure below, each of 4
input lines I0 to I3 is applied to one input of an AND gate.
Selection lines S0 and S1 are decoded to select a particular
AND gate. The truth table for the 4:1 mux is given in the table
below.

 Symbol

 Truth Table

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

 Circuit

 71

 Larger Multiplexers

Larger multiplexers can be constructed from smaller ones. An
8-to-1 multiplexer can be constructed from smaller
multiplexers as shown below.

 Example - 8-to-1 multiplexer from Smaller MUX

 Truth Table

S2 S1 S0 F

0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3

1 0 0 I4

1 0 1 I5

1 1 0 I6

1 1 1 I7

 Circuit

 72

 Example - 16-to-1 multiplexer from 4:1 mux

De-multiplexers

They are digital switches
which connect data from one
input source to one of n
outputs.

Usually implemented by
using n-to-2n binary decoders
where the decoder enable
line is used for data input of
the de-multiplexer.

 73

The figure below shows a de-
multiplexer block diagram
which has got s-bits-wide
select input, one b-bits-wide
data input and n b-bits-wide
outputs.

Mechanical
Equivalent of a De-
Multiplexer

The operation of a de-multiplexer can be better
explained using a mechanical switch as shown in
the figure below. This rotary switch can touch any
of the outputs, which is connected to the input. As
you can see at any given point of time only one
output gets connected to input.

1-bit 4-output de-multiplexer using a 2x4 binary
decoder.

 Example: 1-to-4 De-multiplexer

 Symbol

 74

 Truth Table

S1 S0 F0 F1 F2 F3

0 0 D 0 0 0

0 1 0 D 0 0

1 0 0 0 D 0

1 1 0 0 0 D

Boolean Function Implementation

Earlier we had seen that it is
possible to implement
Boolean functions using
decoders. In the same way it
is also possible to implement
Boolean functions using
muxers and de-muxers.

Implementing Functions
Multiplexers

Any n-variable logic function
can be implemented using a
smaller 2n-1-to-1 multiplexer
and a single inverter (e.g 4-
to-1 mux to implement 3
variable functions) as follows.

Express function in canonical
sum-of-minterms form.
Choose n-1 variables as
inputs to mux select lines.
Construct the truth table for
the function, but grouping
inputs by selection line
values (i.e select lines as
most significant inputs).

 Determine multiplexer input

 75

line i values by comparing
the remaining input variable
and the function F for the
corresponding selection lines
value i.

We have four possible mux
input line i values:

 Connect to 0 if the
function is 0 for both
values of remaining
variable.

 Connect to 1 if the
function is 1 for both
values of remaining
variable.

 Connect to remaining
variable if function is
equal to the remaining
variable.

 Connect to the
inverted remaining
variable if the function
is equal to the
remaining variable
inverted.

Exampl
e: 3-
variable
Functio
n Using
8-to-1
mux

Implement the function F(X,Y,Z) = S(1,3,5,6) using an 8-to-1 mux.
Connect the input variables X, Y, Z to mux select lines. Mux data
input lines 1, 3, 5, 6 that correspond to the function minterms are
connected to 1. The remaining mux data input lines 0, 2, 4, 7 are
connected to 0.

 76

 Example: 3-variable Function Using 4-to-1 mux

Implement the function F(X,Y,Z) = S(0,1,3,6) using a single 4-to-1
mux and an inverter. We choose the two most significant inputs
X, Y as mux select lines.

 Construct truth table.

 Truth Table

Select i X Y Z F
Mux
Input i

0 0 0 0 1 1

0 0 0 1 1 1

1 0 1 0 0 Z

1 0 1 1 1 Z

2 1 0 0 0 0

2 1 0 1 0 0

3 1 1 0 1 Z'

3 1 1 1 0 Z'

 Circuit

We determine multiplexer input line i values by comparing the
remaining input variable Z and the function F for the
corresponding selection lines value i

 77

 when XY=00 the function F is 1 (for both Z=0, Z=1) thus
mux input0 = 1

 when XY=01 the function F is Z thus mux input1 = Z
 when XY=10 the function F is 0 (for both Z=0, Z=1) thus

mux input2 = 0
 when XY=11 the function F is Z' thus mux input3 = Z'

 Example: 2 to 4 Decoder using Demux

 Mux-Demux Application Example

This enables sharing a single communication line among a
number of devices. At any time, only one source and one
destination can use the communication line.

Introduction

Arithmetic circuits are the
ones which perform
arithmetic operations like
addition, subtraction,
multiplication, division, parity
calculation. Most of the time,
designing these circuits is the
same as designing muxers,
encoders and decoders.

 78

In the next few pages we will
see few of these circuits in
detail.

 Adders

Adders are the basic building
blocks of all arithmetic
circuits; adders add two
binary numbers and give out
sum and carry as output.
Basically we have two types
of adders.

 Half Adder.
 Full Adder.

Half Adder

Adding two single-bit binary values X, Y produces a
sum S bit and a carry out C-out bit. This operation is
called half addition and the circuit to realize it is called
a half adder.

 Truth Table

X Y SUM CARRY

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

 Symbol

 S (X,Y) = (1,2)
 S = X'Y + XY'
 S = X Y
 CARRY(X,Y) = (3)
 CARRY = XY

 79

 Circuit

 Full Adder

Full adder takes a three-bits input. Adding two single-
bit binary values X, Y with a carry input bit C-in
produces a sum bit S and a carry out C-out bit.

 Truth Table

X Y Z SUM CARRY

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

 SUM (X,Y,Z) = (1,2,4,7)
 CARRY (X,Y,Z) = (3,5,6,7)

 Kmap-SUM

 SUM = X'Y'Z + XY'Z' + X'YZ'
 SUM = X Y Z

 80

 Kmap-CARRY

 CARRY = XY + XZ + YZ

 Full Adder using AND-OR

The below implementation shows implementing the full
adder with AND-OR gates, instead of using XOR
gates. The basis of the circuit below is from the above
Kmap.

 Circuit-SUM

 Circuit-CARRY

 Full Adder using AND-OR

 Circuit-SUM

 81

 Circuit-CARRY

Subtracter

Subtracter circuits take two binary numbers as input and
subtract one binary number input from the other binary
number input. Similar to adders, it gives out two outputs,
difference and borrow (carry-in the case of Adder). There
are two types of subtracters.

 Half Subtracter.
 Full Subtracter.

 Half Subtracter

The half-subtracter is a combinational circuit which is used
to perform subtraction of two bits. It has two inputs, X
(minuend) and Y (subtrahend) and two outputs D
(difference) and B (borrow). The logic symbol and truth
table are shown below.

 Symbol

 82

 Truth Table

X Y D B

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

From the above table we can draw the Kmap as shown
below for "difference" and "borrow". The boolean
expression for the difference and Borrow can be written.

From the equation we can draw the half-subtracter as
shown in the figure below.

 83

Full
Subtract
er

A full subtracter is a combinational circuit that performs
subtraction involving three bits, namely minuend, subtrahend, and
borrow-in. The logic symbol and truth table are shown below.

 Symbol

 Truth Table

X Y Bin D Bout

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

From above table we can draw the Kmap as shown below for
"difference" and "borrow". The boolean expression for difference
and borrow can be written.

 D = X'Y'Bin + X'YBin' + XY'Bin' + XYBin
 = (X'Y' + XY)Bin + (X'Y + XY')Bin'

 84

 = (X Y)'Bin + (X Y)Bin'
 = X Y Bin
 Bout = X'.Y + X'.Bin + Y.Bin

From the equation we can draw the half-subtracter as shown in
figure below.

From the above expression, we can draw the circuit below. If you
look carefully, you will see that a full-subtracter circuit is more or
less same as a full-adder with slight modification.

 Parallel Binary Subtracter

Parallel binary subtracter can be implemented by cascading
several full-subtracters. Implementation and associated problems
are those of a parallel binary adder, seen before in parallel binary
adder section.

Below is the block level representation of a 4-bit parallel binary
subtracter, which subtracts 4-bit Y3Y2Y1Y0 from 4-bit

 85

X3X2X1X0. It has 4-bit difference output D3D2D1D0 with borrow
output Bout.

 Serial Binary Subtracter

A serial subtracter can be obtained by converting the serial adder
using the 2's complement system. The subtrahend is stored in the
Y register and must be 2's complemented before it is added to the
minuend stored in the X register.

The circuit for a 4-bit serial subtracter using full-adder is shown in
the figure below.

 Comparators

Comparators can compare either a variable number X (xn xn-1 ...
x3 x2 x1) with a predefined constant C (cn cn-1 ... c3 c2 c1) or
two variable numbers X and Y. In the first case the
implementation reduces to a series of cascaded AND and OR
logic gates. If the comparator answers the question 'X>C?' then
its hardware implementation is designed according to the
following rules:

 The number X has two types of binary figures: bits
corresponding to '1' in the predefined constant and bits
corresponding to '0' in the predefined constant.

 The bits of the number X corresponding to '1' are supplied
to AND gates

 86

 The bits corresponding to '0' are supplied to OR logic
gates

 If the least significant bits of the predefined constant are
'10' then bit X0 is supplied to the same AND gate as bit X1.

If the least significant bits of the constant are all '1' then the
corresponding bits of the number X are not included in the
hardware implementation. All other relations between X and C
can be transformed in equivalent ones that use the operator '>'
and the NOT logic operator as shown in the table below.

Initial relationship to be
tested

Equivalent relationship to be
implemented

X<C NOT (X>C-1)

X<= C NOT (X>C)

X >= C X>C-1

The comparison process of two positive numbers X and Y is
performed in a bit-by-bit manner starting with the most significant
bit:

 If the most significant bits are Xn='1' and Yn='0' then
number X is larger than Y.

 If Xn='0' and Yn='1' then number X is smaller than Y.
 If Xn=Yn then no decision can be taken about X and Y

based only on these two bits.

If the most significant bits are equal then the result of the
comparison is determined by the less significant bits Xn-1 and
Yn-1. If these bits are equal as well, the process continues with
the next pair of bits. If all bits are equal then the two numbers are
equal.

Multipliers

Multiplication is achieved by adding a list of shifted
multiplicands according to the digits of the multiplier. An n-
bit X n-bit multiplier can be realized in combinational
circuitry by using an array of n-1 n-bit adders where each
adder is shifted by one position. For each adder one input
is the shifted multiplicand multiplied by 0 or 1 (using AND
gates) depending on the multiplier bit, the other input is n
partial product bits.

 87

Dividers

The binary divisions are performed in a very similar manner to
the decimal divisions, as shown in the below figure examples.
Thus, the second number is repeatedly subtracted from the
figures of the first number after being multiplied either with '1' or
with '0'. The multiplication bit ('1' or '0') is selected for each
subtraction step in such a manner that the subtraction result is
not negative. The division result is composed from all the
successive multiplication bits while the remainder is the result of
the last subtraction step.

This algorithm can be implemented by a series of subtracters
composed of modified elementary cells. Each subtracter
calculates the difference between two input numbers, but if the

 88

result is negative the operation is canceled and replaced with a
subtraction by zero. Thus, each divider cell has the normal
inputs of a subtracter unit as in the figure below but a
supplementary input ('div_bit') is also present. This input is
connected to the b_req_out signal generated by the most
significant cell of the subtracter. If this signal is '1', the initial
subtraction result is negative and it has to be replaced with a
subtraction by zero. Inside each divider cell the div_bit signal
controls an equivalent 2:1 multiplexer that selects between bit 'x'
and the bit included in the subtraction result X-Y. The complete
division can therefore by implemented by a matrix of divider cells
connected on rows and columns as shown in figure below. Each
row performs one multiplication-and-subtraction cycle where the
multiplication bit is supplied by the NOT logic gate at the end of
each row. Therefor the NOT logic gates generate the bits of the
division result.

 Parity Circuit

Concept
of
Sequentia
l Logic
 A sequential circuit as seen in the last page, is combinational logic

 89

with some feedback to maintain its current value, like a memory
cell. To understand the basics let's consider the basic feedback
logic circuit below, which is a simple NOT gate whose output is
connected to its input. The effect is that output oscillates between
HIGH and LOW (i.e. 1 and 0). Oscillation frequency depends on
gate delay and wire delay. Assuming a wire delay of 0 and a gate
delay of 10ns, then oscillation frequency would be (on time + off
time = 20ns) 50Mhz.

The basic idea of having the feedback is to store the value or hold
the value, but in the above circuit, output keeps toggling. We can
overcome this problem with the circuit below, which is basically
cascading two inverters, so that the feedback is in-phase, thus
avoids toggling. The equivalent circuit is the same as having a
buffer with its output connected to its input.

But there is a problem here too: each gate output value is stable,
but what will it be? Or in other words buffer output can not be
known. There is no way to tell. If we could know or set the value
we would have a simple 1-bit storage/memory element.

The circuit below is the same as the inverters connected back to
back with provision to set the state of each gate (NOR gate with
both inputs shorted is like a inverter). I am not going to explain the
operation, as it is clear from the truth table. S is called set and R
is called Reset.

 90

S R Q Q+

0 0 0 0

0 0 1 1

0 1 X 0

1 0 X 1

1 1 X 0

There still seems to be some problem with the above
configuration, we can not control when the input should be
sampled, in other words there is no enable signal to control when
the input is sampled. Normally input enable signals can be of two
types.

 Level Sensitive or (LATCH)
 Edge Sensitive or (Flip-Flop)

Level Sensitive: The circuit below is a modification of the above
one to have level sensitive enable input. Enable, when LOW,
masks the input S and R. When HIGH, presents S and R to the
sequential logic input (the above circuit two NOR Gates). Thus
Enable, when HIGH, transfers input S and R to the sequential cell
transparently, so this kind of sequential circuits are called
transparent Latch. The memory element we get is an RS Latch
with active high Enable.

Edge Sensitive: The circuit below is a cascade of two level
sensitive memory elements, with a phase shift in the enable input
between first memory element and second memory element. The
first RS latch (i.e. the first memory element) will be enabled when

 91

CLK input is HIGH and the second RS latch will be enabled when
CLK is LOW. The net effect is input RS is moved to Q and Q'
when CLK changes state from HIGH to LOW, this HIGH to LOW
transition is called falling edge. So the Edge Sensitive element we
get is called negative edge RS flip-flop.

Now that we know the sequential circuits basics, let's look at each
of them in detail in accordance to what is taught in colleges. You
are always welcome to suggest if this can be written better in any
way.

Latches and Flip-
Flops
 There are two types types of sequential circuits.

 Asynchronous Circuits.
 Synchronous Circuits.

As seen in last section, Latches and Flip-flops are
one and the same with a slight variation: Latches
have level sensitive control signal input and Flip-
flops have edge sensitive control signal input. Flip-
flops and latches which use this control signals are
called synchronous circuits. So if they don't use
clock inputs, then they are called asynchronous
circuits.

 RS Latch

RS latch have two inputs, S and R. S is called set
and R is called reset. The S input is used to produce
HIGH on Q (i.e. store binary 1 in flip-flop). The R
input is used to produce LOW on Q (i.e. store binary
0 in flip-flop). Q' is Q complementary output, so it
always holds the opposite value of Q. The output of
the S-R latch depends on current as well as
previous inputs or state, and its state (value stored)
can change as soon as its inputs change. The
circuit and the truth table of RS latch is shown

 92

below. (This circuit is as we saw in the last page,
but arranged to look beautiful :-)).

S R Q Q+

0 0 0 0

0 0 1 1

0 1 X 0

1 0 X 1

1 1 X 0

The operation has to be analyzed with the 4 inputs
combinations together with the 2 possible previous
states.

 When S = 0 and R = 0: If we assume Q = 1
and Q' = 0 as initial condition, then output Q
after input is applied would be Q = (R + Q')' =
1 and Q' = (S + Q)' = 0. Assuming Q = 0 and
Q' = 1 as initial condition, then output Q after
the input applied would be Q = (R + Q')' = 0
and Q' = (S + Q)' = 1. So it is clear that when
both S and R inputs are LOW, the output is
retained as before the application of inputs.
(i.e. there is no state change).

 When S = 1 and R = 0: If we assume Q = 1
and Q' = 0 as initial condition, then output Q
after input is applied would be Q = (R + Q')' =
1 and Q' = (S + Q)' = 0. Assuming Q = 0 and
Q' = 1 as initial condition, then output Q after
the input applied would be Q = (R + Q')' = 1
and Q' = (S + Q)' = 0. So in simple words
when S is HIGH and R is LOW, output Q is
HIGH.

 When S = 0 and R = 1: If we assume Q = 1
and Q' = 0 as initial condition, then output Q
after input is applied would be Q = (R + Q')' =
0 and Q' = (S + Q)' = 1. Assuming Q = 0 and

 93

Q' = 1 as initial condition, then output Q after
the input applied would be Q = (R + Q')' = 0
and Q' = (S + Q)' = 1. So in simple words
when S is LOW and R is HIGH, output Q is
LOW.

 When S = 1 and R =1 : No matter what state
Q and Q' are in, application of 1 at input of
NOR gate always results in 0 at output of
NOR gate, which results in both Q and Q' set
to LOW (i.e. Q = Q'). LOW in both the outputs
basically is wrong, so this case is invalid.

The waveform below shows the operation of NOR
gates based RS Latch.

It is possible to construct the RS latch using NAND
gates (of course as seen in Logic gates section).
The only difference is that NAND is NOR gate dual
form (Did I say that in Logic gates section?). So in
this case the R = 0 and S = 0 case becomes the
invalid case. The circuit and Truth table of RS latch
using NAND is shown below.

 94

S R Q Q+

1 1 0 0

1 1 1 1

0 1 X 0

1 0 X 1

0 0 X 1

If you look closely, there is no control signal (i.e. no
clock and no enable), so this kind of latches or flip-
flops are called asynchronous logic elements. Since
all the sequential circuits are built around the RS
latch, we will concentrate on synchronous circuits
and not on asynchronous circuits.

JK
Maste
r
Slave
Flip-
Flop

All sequential circuits that we have seen in the last few pages have a
problem (All level sensitive sequential circuits have this problem).
Before the enable input changes state from HIGH to LOW (assuming
HIGH is ON and LOW is OFF state), if inputs changes, then another
state transition occurs for the same enable pulse. This sort of
multiple transition problem is called racing.

If we make the sequential element sensitive to edges, instead of
levels, we can overcome this problem, as input is evaluated only
during enable/clock edges.

In the figure above there are two latches, the first latch on the left is
called master latch and the one on the right is called slave latch.
Master latch is positively clocked and slave latch is negatively
clocked.

 95

 Sequential Circuits Design

We saw in the combinational circuits section how to design a
combinational circuit from the given problem. We convert the
problem into a truth table, then draw K-map for the truth table, and
then finally draw the gate level circuit for the problem. Similarly we
have a flow for the sequential circuit design. The steps are given
below.

 Draw state diagram.
 Draw the state table (excitation table) for each output.
 Draw the K-map for each output.
 Draw the circuit.

Looks like sequential circuit design flow is very much the same as
for combinational circuit.

Digital
Logic
Families
.

Logic families can be classified broadly according to the
technologies they are built with. In earlier days we had vast
number of these technologies, as you can see in the list below.

 DL : Diode Logic.
 RTL : Resistor Transistor Logic.
 DTL : Diode Transistor Logic.
 HTL : High threshold Logic.
 TTL : Transistor Transistor Logic.
 I2L : Integrated Injection Logic.
 ECL : Emitter coupled logic.
 MOS : Metal Oxide Semiconductor Logic (PMOS and

NMOS).
 CMOS : Complementary Metal Oxide Semiconductor

 96

Logic.

Among these, only CMOS is most widely used by the ASIC
(Chip) designers; we will still try to understand a few of the extinct
/ less used technologies. More in-depth explanation of CMOS will
be covered in the VLSI section.

 Basic Concepts

Before we start looking at the how gates are built using various
technologies, we need to understand a few basic concepts.
These concepts will go long way i.e. if you become a ASIC
designer or Board designer, you may need to know these
concepts very well.

 Fan-in.
 Fan-out.
 Noise Margin.
 Power Dissipation.
 Gate Delay.
 Wire Delay.
 Skew.
 Voltage Threshold.

 Fan-in

Fan-in is the number of inputs a gate has, like a two input AND
gate has fan-in of two, a three input NAND gate as a fan-in of
three. So a NOT gate always has a fan-in of one. The figure
below shows the effect of fan-in on the delay offered by a gate for
a CMOS based gate. Normally delay increases following a
quadratic function of fan-in.

 97

 Fan-out

The number of gates that each gate can drive, while providing
voltage levels in the guaranteed range, is called the standard
load or fan-out. The fan-out really depends on the amount of
electric current a gate can source or sink while driving other
gates. The effects of loading a logic gate output with more than
its rated fan-out has the following effects.

 In the LOW state the output voltage VOL may increase
above VOLmax.

 In the HIGH state the output voltage VOH may decrease
below VOHmin.

 The operating temperature of the device may increase
thereby reducing the reliability of the device and eventually
causing the device failure.

 Output rise and fall times may increase beyond
specifications

 The propagation delay may rise above the specified value.

Normally as in the case of fan-in, the delay offered by a gate
increases with the increase in fan-out.

 Gate Delay

Gate delay is the delay offered by a gate for the signal appearing
at its input, before it reaches the gate output. The figure below
shows a NOT gate with a delay of "Delta", where output X'
changes only after a delay of "Delta". Gate delay is also known
as propagation delay.

 98

Gate delay is not the same for both transitions, i.e. gate delay will
be different for low to high transition, compared to high to low
transition.

Low to high transition delay is called turn-on delay and High to
low transition delay is called turn-off delay.

 Wire Delay

Gates are connected together with wires and these wires do
delay the signal they carry, these delays become very significant
when frequency increases, say when the transistor sizes are sub-
micron. Sometimes wire delay is also called flight time (i.e. signal
flight time from point A to B). Wire delay is also known as
transport delay.

Skew

The same signal arriving at different parts of the design
with different phase is known as skew. Skew normally
refers to clock signals. In the figure below, clock signal
CLK reaches flip-flop FF0 at time t0, so with respect to the
clock phase at the source, it has at FF0 input a clock skew
of t0 time units. Normally this is expressed in
nanoseconds.

 99

The waveform below shows how clock looks at different
parts of the design. We will discuss the effects of clock
skew later.

 Logic levels

Logic levels are the voltage levels for logic high and logic
low.

 VOHmin : The minimum output voltage in HIGH state
(logic '1'). VOHmin is 2.4 V for TTL and 4.9 V for
CMOS.

 VOLmax : The maximum output voltage in LOW state
(logic '0'). VOLmax is 0.4 V for TTL and 0.1 V for
CMOS.

 VIHmin : The minimum input voltage guaranteed to
be recognised as logic 1. VIHmin is 2 V for TTL and
3.5 V for CMOS.

 VILmax : The maximum input voltage guaranteed to
be recognised as logic 0. VILmax is 0.8 V for TTL and
1.5 V for CMOS.

 Current levels

 IOHmin: The maximum current the output can source

 100

in HIGH state while still maintaining the output
voltage above VOHmin.

 IOLmax : The maximum current the output can sink
in LOW state while still maintaining the output
voltage below VOLmax.

 IImax : The maximum current that flows into an input
in any state (1µA for CMOS).

 Noise Margin

Gate circuits are constructed to sustain variations in input
and output voltage levels. Variations are usually the result
of several different factors.

 Batteries lose their full potential, causing the supply
voltage to drop

 High operating temperatures may cause a drift in
transistor voltage and current characteristics

 Spurious pulses may be introduced on signal lines
by normal surges of current in neighbouring supply
lines.

All these undesirable voltage variations that are
superimposed on normal operating voltage levels are
called noise. All gates are designed to tolerate a certain
amount of noise on their input and output ports. The
maximum noise voltage level that is tolerated by a gate is
called noise margin. It derives from I/P-O/P voltage
characteristic, measured under different operating
conditions. It's normally supplied from manufacturer in the
gate documentation.

 LNM (Low noise margin): The largest noise
amplitude that is guaranteed not to change the
output voltage level when superimposed on the
input voltage of the logic gate (when this voltage is
in the LOW interval). LNM=VILmax-VOLmax.

 HNM (High noise margin): The largest noise
amplitude that is guaranteed not to change the
output voltage level if superimposed on the input
voltage of the logic gate (when this voltage is in the
HIGH interval). HNM=VOHmin-VIHmin

 tr (Rise time)

The time required for the output voltage to increase from
VILmax to VIHmin.

 tf (Fall time)

 101

The time required for the output voltage to decrease from
VIHmin to VILmax.

 tp (Propagation delay)

The time between the logic transition on an input and the
corresponding logic transition on the output of the logic
gate. The propagation delay is measured at midpoints.

 Power Dissipation.

Each gate is connected to a power supply VCC (VDD in
the case of CMOS). It draws a certain amount of current
during its operation. Since each gate can be in a High,
Transition or Low state, there are three different currents
drawn from power supply.

 ICCH: Current drawn during HIGH state.
 ICCT: Current drawn during HIGH to LOW, LOW to

HIGH transition.
 ICCL: Current drawn during LOW state.

For TTL, ICCT the transition current is negligible, in
comparison to ICCH and ICCL. If we assume that ICCH
and ICCL are equal then,

 Average Power Dissipation = Vcc * (ICCH + ICCL)/2

For CMOS, ICCH and ICCL current is negligible, in
comparison to ICCT. So the Average power dissipation is
calculated as below.

 Average Power Dissipation = Vcc * ICCT.

So for TTL like logics family, power dissipation does not
depend on frequency of operation, and for CMOS the
power dissipation depends on the operation frequency.

Power Dissipation is an important metric for two reasons.
The amount of current and power available in a battery is
nearly constant. Power dissipation of a circuit or system
defines battery life: the greater the power dissipation, the
shorter the battery life. Power dissipation is proportional to
the heat generated by the chip or system; excessive heat
dissipation may increase operating temperature and cause
gate circuitry to drift out of its normal operating range; will
cause gates to generate improper output values. Thus
power dissipation of any gate implementation must be kept
as low as possible.

 Moreover, power dissipation can be classified into Static

 102

power dissipation and Dynamic power dissipation.

 Ps (Static Power Dissipation): Power consumed
when the output or input are not changing or rather
when clock is turned off. Normally static power
dissipation is caused by leakage current. (As we
reduce the transistor size, i.e. below 90nm, leakage
current could be as high as 40% of total power
dissipation).

 Pd (Dynamic Power Dissipation): Power
consumed during output and input transitions. So
we can say Pd is the actual power consumed i.e.
the power consumed by transistors + leakage
current.

 Thus

Total power dissipation = static power dissipation +
dynamic power dissipation.

Diode Logic

In DL (diode logic), all the logic is implemented
using diodes and resistors. One basic thing about
the diode, is that diode needs to be forward biased
to conduct. Below is the example of a few DL logic
circuits.

When no input is connected or driven, output Z is
low, due to resistor R1. When high is applied to
either X or Y, or both X and Y are driven high, the
corresponding diode get forward biased and thus
conducts. When any diode conducts, output Z
goes high.

 Points to Ponder
 Diode Logic suffers from voltage

 103

degradation from one stage to the next.
 Diode Logic only permits OR and AND

functions.
 Diode Logic is used extensively but not in

integrated circuits.

 Resistor Transistor Logic

In RTL (resistor transistor logic), all the logic are
implemented using resistors and transistors. One
basic thing about the transistor (NPN), is that
HIGH at input causes output to be LOW (i.e. like a
inverter). Below is the example of a few RTL logic
circuits.

A basic circuit of an RTL NOR gate consists of two
transistors Q1 and Q2, connected as shown in the
figure above. When either input X or Y is driven
HIGH, the corresponding transistor goes to
saturation and output Z is pulled to LOW.

 Diode Transistor Logic

In DTL (Diode transistor logic), all the logic is
implemented using diodes and transistors. A basic
circuit in the DTL logic family is as shown in the

 104

figure below. Each input is associated with one
diode. The diodes and the 4.7K resistor form an
AND gate. If input X, Y or Z is low, the
corresponding diode conducts current, through the
4.7K resistor. Thus there is no current through the
diodes connected in series to transistor base .
Hence the transistor does not conduct, thus
remains in cut-off, and output out is High.

If all the inputs X, Y, Z are driven high, the diodes
in series conduct, driving the transistor into
saturation. Thus output out is Low.

 Transistor Transistor Logic

In Transistor Transistor logic or just TTL, logic
gates are built only around transistors. TTL was
developed in 1965. Through the years basic TTL
has been improved to meet performance
requirements. There are many versions or families
of TTL.

 Standard TTL.
 High Speed TTL
 Low Power TTL.
 Schhottky TTL.

Here we will discuss only basic TTL as of now;
maybe in the future I will add more details about
other TTL versions. As such all TTL families have
three configurations for outputs.

 Totem - Pole output.
 Open Collector Output.

 105

 Tristate Output.

Before we discuss the output stage let's look at the
input stage, which is used with almost all versions
of TTL. This consists of an input transistor and a
phase splitter transistor. Input stage consists of a
multi emitter transistor as shown in the figure
below. When any input is driven low, the emitter
base junction is forward biased and input
transistor conducts. This in turn drives the phase
splitter transistor into cut-off.

 Totem - Pole Output

Below is the circuit of a totem-pole NAND gate,
which has got three stages.

 Input Stage
 Phase Splitter Stage
 Output Stage

Input stage and Phase splitter stage have already
been discussed. Output stage is called Totem-
Pole because transistor Q3 sits upon Q4.

Q2 provides complementary voltages for the
output transistors Q3 and Q4, which stack one
above the other in such a way that while one of
these conducts, the other is in cut-off.

Q4 is called pull-down transistor, as it pulls the
output voltage down, when it saturates and the
other is in cut-off (i.e. Q3 is in cut-off). Q3 is called

 106

pull-up transistor, as it pulls the output voltage up,
when it saturates and the other is in cut-off (i.e. Q4
is in cut-off).

Diodes in input are protection diodes which
conduct when there is large negative voltage at
input, shorting it to the ground.

 Tristate Output.

Normally when we have to implement shared bus
systems inside an ASIC or externally to the chip,
we have two options: either to use a MUX/DEMUX
based system or to use a tri-state base bus
system.

In the latter, when logic is not driving its output, it
does not drive LOW neither HIGH, which means
that logic output is floating. Well, one may ask,
why not just use an open collector for shared bus
systems? The problem is that open collectors are
not so good for implementing wire-ANDs.

The circuit below is a tri-state NAND gate; when
Enable En is HIGH, it works like any other NAND
gate. But when Enable En is driven LOW, Q1
Conducts, and the diode connecting Q1 emitter
and Q2 collector, conducts driving Q3 into cut-off.
Since Q2 is not conducting, Q4 is also at cut-off.
When both pull-up and pull-down transistors are
not conducting, output Z is in high-impedance
state.

 107

Note : I will try to add more details when I find
time.

Diode Logic

In DL (diode logic), all the logic is implemented
using diodes and resistors. One basic thing
about the diode, is that diode needs to be
forward biased to conduct. Below is the
example of a few DL logic circuits.

When no input is connected or driven, output
Z is low, due to resistor R1. When high is
applied to either X or Y, or both X and Y are
driven high, the corresponding diode get
forward biased and thus conducts. When any
diode conducts, output Z goes high.

 Points to Ponder
 Diode Logic suffers from voltage

 108

degradation from one stage to the next.
 Diode Logic only permits OR and AND

functions.
 Diode Logic is used extensively but not

in integrated circuits.

 Resistor Transistor Logic

In RTL (resistor transistor logic), all the logic
are implemented using resistors and
transistors. One basic thing about the
transistor (NPN), is that HIGH at input causes
output to be LOW (i.e. like a inverter). Below is
the example of a few RTL logic circuits.

A basic circuit of an RTL NOR gate consists of
two transistors Q1 and Q2, connected as
shown in the figure above. When either input
X or Y is driven HIGH, the corresponding
transistor goes to saturation and output Z is
pulled to LOW.

Diode Transistor
Logic

In DTL (Diode transistor logic), all the logic is
implemented using diodes and transistors. A basic
circuit in the DTL logic family is as shown in the

 109

figure below. Each input is associated with one
diode. The diodes and the 4.7K resistor form an
AND gate. If input X, Y or Z is low, the
corresponding diode conducts current, through the
4.7K resistor. Thus there is no current through the
diodes connected in series to transistor base .
Hence the transistor does not conduct, thus
remains in cut-off, and output out is High.

If all the inputs X, Y, Z are driven high, the diodes
in series conduct, driving the transistor into
saturation. Thus output out is Low.

 Transistor Transistor Logic

In Transistor Transistor logic or just TTL, logic
gates are built only around transistors. TTL was
developed in 1965. Through the years basic TTL
has been improved to meet performance
requirements. There are many versions or families
of TTL.

 Standard TTL.
 High Speed TTL
 Low Power TTL.
 Schhottky TTL.

Here we will discuss only basic TTL as of now;
maybe in the future I will add more details about
other TTL versions. As such all TTL families have
three configurations for outputs.

 Totem - Pole output.
 Open Collector Output.

 110

 Tristate Output.

Before we discuss the output stage let's look at the
input stage, which is used with almost all versions
of TTL. This consists of an input transistor and a
phase splitter transistor. Input stage consists of a
multi emitter transistor as shown in the figure
below. When any input is driven low, the emitter
base junction is forward biased and input
transistor conducts. This in turn drives the phase
splitter transistor into cut-off.

 Totem - Pole Output

Below is the circuit of a totem-pole NAND gate,
which has got three stages.

 Input Stage
 Phase Splitter Stage
 Output Stage

Input stage and Phase splitter stage have already
been discussed. Output stage is called Totem-
Pole because transistor Q3 sits upon Q4.

Q2 provides complementary voltages for the
output transistors Q3 and Q4, which stack one
above the other in such a way that while one of
these conducts, the other is in cut-off.

Q4 is called pull-down transistor, as it pulls the
output voltage down, when it saturates and the
other is in cut-off (i.e. Q3 is in cut-off). Q3 is called

 111

pull-up transistor, as it pulls the output voltage up,
when it saturates and the other is in cut-off (i.e. Q4
is in cut-off).

Diodes in input are protection diodes which
conduct when there is large negative voltage at
input, shorting it to the ground.

 Tristate Output.

Normally when we have to implement shared bus
systems inside an ASIC or externally to the chip,
we have two options: either to use a MUX/DEMUX
based system or to use a tri-state base bus
system.

In the latter, when logic is not driving its output, it
does not drive LOW neither HIGH, which means
that logic output is floating. Well, one may ask,
why not just use an open collector for shared bus
systems? The problem is that open collectors are
not so good for implementing wire-ANDs.

The circuit below is a tri-state NAND gate; when
Enable En is HIGH, it works like any other NAND
gate. But when Enable En is driven LOW, Q1
Conducts, and the diode connecting Q1 emitter
and Q2 collector, conducts driving Q3 into cut-off.
Since Q2 is not conducting, Q4 is also at cut-off.
When both pull-up and pull-down transistors are
not conducting, output Z is in high-impedance
state.

 112

Emitter coupled logic

Emitter coupled logic (ECL) is a non
saturated logic, which means that transistors
are prevented from going into deep
saturation, thus eliminating storage delays.
Preventing the transistors from going into
saturation is accomplished by using logic
levels whose values are so close to each
other that a transistor is not driven into
saturation when its input switches from low
to high. In other words, the transistor is
switched on, but not completely on. This
logic family is faster than TTL.

Voltage level for high is -0.9 Volts and for
low is -1.7V; thus biggest problem with ECL
is a poor noise margin.

A typical ECL OR gate is shown below.
When any input is HIGH (-0.9v), its
connected transistor will conduct, and hence
will make Q3 off, which in turn will make Q4
output HIGH.

When both inputs are LOW (-1.7v), their
connected transistors will not conduct,
making Q3 on, which in turn will make Q4
output LOW.

 113

 Metal Oxide Semiconductor Logic

MOS or Metal Oxide Semiconductor logic
uses nmos and pmos to implement logic
gates. One needs to know the operation of
FET and MOS transistors to understand the
operation of MOS logic circuits.

The basic NMOS inverter is shown below:
when input is LOW, NMOS transistor does
not conduct, and thus output is HIGH. But
when input is HIGH, NMOS transistor
conducts and thus output is LOW.

Normally it is difficult to fabricate resistors
inside the chips, so the resistor is replaced
with an NMOS gate as shown below. This
new NMOS transistor acts as resistor.

 114

Complementary Metal Oxide
Semiconductor Logic

CMOS or Complementary Metal Oxide
Semiconductor logic is built using both
NMOS and PMOS. Below is the basic
CMOS inverter circuit, which follows these
rules:

 NMOS conducts when its input is
HIGH.

 PMOS conducts when its input is
LOW.

So when input is HIGH, NMOS conducts,
and thus output is LOW; when input is LOW
PMOS conducts and thus output is HIGH.

Introduction

Combinatorial Circuits are circuits which can be considered to
have the following generic structure.

 115

Whenever the same set of inputs is fed in to a combinatorial
circuit, the same outputs will be generated. Such circuits are said
to be stateless. Some simple combinational logic elements that
we have seen in previous sections are "Gates".

All the gates in the above figure have 2 inputs and one output;
combinational elements simplest form are "not" gate and "buffer"
as shown in the figure below. They have only one input and one
output.

 Introduction

 Decoders

 Basic Binary Decoder

 Binary n-to-2n Decoders

 Example - 2-to-4 Binary Decoder

 Example - 3-to-8 Binary Decoder

 Implementing Functions Using Decoders
 Example - Full adder

http://www.asic-world.com/digital/combo1.html#Introduction
http://www.asic-world.com/digital/combo2.html#Decoders
http://www.asic-world.com/digital/combo2.html#Basic_Binary_Decoder
http://www.asic-world.com/digital/combo2.html#Binary_n-to-2ⁿ_Decoders
http://www.asic-world.com/digital/combo2.html#Example_-__2-to-4_Binary_Decoder
http://www.asic-world.com/digital/combo2.html#Example_-_3-to-8__Binary_Decoder
http://www.asic-world.com/digital/combo2.html#Implementing_Functions_Using_Decoders
http://www.asic-world.com/digital/combo2.html#Example_-_Full_adder

 116

 Encoders

 Example - Octal-to-Binary Encoder

 Example - Decimal-to-Binary Encoder

 Priority Encoder
 Example - 4to3 Priority Encoder

 Multiplexer

 Mechanical Equivalent of a Multiplexer

 Example - 2x1 MUX

 Design of a 2:1 Mux

 Example : 4:1 MUX

 Larger Multiplexers

 Example - 8-to-1 multiplexer from Smaller MUX

 Example - 16-to-1 multiplexer from 4:1 mux

 De-multiplexers

 Mechanical Equivalent of a De-Multiplexer

 Example: 1-to-4 De-multiplexer

 Boolean Function Implementation

 Implementing Functions Multiplexers

 Example: 3-variable Function Using 8-to-1 mux

 Example: 3-variable Function Using 4-to-1 mux

 Example: 2 to 4 Decoder using Demux

 Mux-Demux Application Example

Digital Logic
Families.

 Basic Concepts

 Fan-in

 Fan-out

 Gate Delay

 Wire Delay

 Skew

 Logic levels

 Current levels

 Noise Margin

 tr (Rise time)

 tf (Fall time)

tp
(Propagation
delay)

Power
Dissipation.

 Diode Logic

Resistor
Transistor

http://www.asic-world.com/digital/combo3.html#Encoders
http://www.asic-world.com/digital/combo3.html#Example_-_Octal-to-Binary_Encoder
http://www.asic-world.com/digital/combo3.html#Example_-_Decimal-to-Binary_Encoder
http://www.asic-world.com/digital/combo3.html#Priority_Encoder
http://www.asic-world.com/digital/combo3.html#Example_-_4to3_Priority_Encoder
http://www.asic-world.com/digital/combo4.html#Multiplexer
http://www.asic-world.com/digital/combo4.html#Mechanical_Equivalent_of_a_Multiplexer
http://www.asic-world.com/digital/combo4.html#Example_-_2x1_MUX
http://www.asic-world.com/digital/combo4.html#Design_of_a_2:1_Mux
http://www.asic-world.com/digital/combo4.html#Example_:_4:1_MUX
http://www.asic-world.com/digital/combo4.html#Larger_Multiplexers
http://www.asic-world.com/digital/combo4.html#Example_-_8-to-1_multiplexer_from_Smaller_MUX
http://www.asic-world.com/digital/combo4.html#Example_-__16-to-1_multiplexer_from_4:1_mux
http://www.asic-world.com/digital/combo5.html#De-multiplexers
http://www.asic-world.com/digital/combo5.html#Mechanical_Equivalent_of_a_De-Multiplexer
http://www.asic-world.com/digital/combo5.html#Example:_1-to-4_De-multiplexer
http://www.asic-world.com/digital/combo6.html#Boolean_Function_Implementation
http://www.asic-world.com/digital/combo6.html#Implementing_Functions_Multiplexers
http://www.asic-world.com/digital/combo6.html#Example:_3-variable_Function_Using_8-to-1_mux
http://www.asic-world.com/digital/combo6.html#Example:_3-variable_Function_Using_4-to-1_mux
http://www.asic-world.com/digital/combo6.html#Example:_2_to_4_Decoder_using_Demux
http://www.asic-world.com/digital/combo6.html#Mux-Demux_Application_Example
http://www.asic-world.com/digital/logic1.html#Digital_Logic_Families.
http://www.asic-world.com/digital/logic1.html#Digital_Logic_Families.
http://www.asic-world.com/digital/logic1.html#Basic_Concepts
http://www.asic-world.com/digital/logic1.html#Fan-in
http://www.asic-world.com/digital/logic1.html#Fan-out
http://www.asic-world.com/digital/logic1.html#Gate_Delay
http://www.asic-world.com/digital/logic1.html#Wire_Delay
http://www.asic-world.com/digital/logic1.html#Skew
http://www.asic-world.com/digital/logic1.html#Logic_levels
http://www.asic-world.com/digital/logic1.html#Current_levels
http://www.asic-world.com/digital/logic1.html#Noise_Margin
http://www.asic-world.com/digital/logic1.html#tr_(Rise_time)
http://www.asic-world.com/digital/logic1.html#tf_(Fall_time)
http://www.asic-world.com/digital/logic1.html#tp_(Propagation_delay)
http://www.asic-world.com/digital/logic1.html#tp_(Propagation_delay)
http://www.asic-world.com/digital/logic1.html#tp_(Propagation_delay)
http://www.asic-world.com/digital/logic1.html#Power_Dissipation.
http://www.asic-world.com/digital/logic1.html#Power_Dissipation.
http://www.asic-world.com/digital/logic2.html#Diode_Logic
http://www.asic-world.com/digital/logic2.html#Resistor_Transistor_Logic
http://www.asic-world.com/digital/logic2.html#Resistor_Transistor_Logic

 117

Logic

Diode
Transistor
Logic

Transistor
Transistor
Logic

Totem - Pole
Output

Tristate
Output.

Integrated
Injection Logic

Emitter coupled
logic

Metal Oxide
Semiconductor
Logic

Complementary
Metal Oxide
Semiconductor
Logic

 Numbering System

 Decimal System
 Decimal Examples

 Binary System

 Binary Counting

Representing Binary
Quantities

Typical Voltage
Assignment

 Octal System

Octal to Decimal
Conversion

 Hexadecimal System

Hexadecimal to Decimal
Conversion

 Code Conversion

Binary-To-Decimal
Conversion

Decimal-To-Binary
Conversion

Reverse of Binary-To-
Decimal Method

Repeat Division-Convert
decimal to binary

Binary-To-Octal / Octal-To-
Binary Conversion

 Repeat Division-Convert

http://www.asic-world.com/digital/logic2.html#Diode_Transistor_Logic
http://www.asic-world.com/digital/logic2.html#Diode_Transistor_Logic
http://www.asic-world.com/digital/logic2.html#Diode_Transistor_Logic
http://www.asic-world.com/digital/logic2.html#Transistor_Transistor_Logic
http://www.asic-world.com/digital/logic2.html#Transistor_Transistor_Logic
http://www.asic-world.com/digital/logic2.html#Transistor_Transistor_Logic
http://www.asic-world.com/digital/logic2.html#Totem_-_Pole_Output
http://www.asic-world.com/digital/logic2.html#Totem_-_Pole_Output
http://www.asic-world.com/digital/logic2.html#Tristate_Output.
http://www.asic-world.com/digital/logic2.html#Tristate_Output.
http://www.asic-world.com/digital/logic3.html#Integrated_Injection_Logic
http://www.asic-world.com/digital/logic3.html#Integrated_Injection_Logic
http://www.asic-world.com/digital/logic3.html#Emitter_coupled_logic
http://www.asic-world.com/digital/logic3.html#Emitter_coupled_logic
http://www.asic-world.com/digital/logic3.html#Metal_Oxide_Semiconductor_Logic
http://www.asic-world.com/digital/logic3.html#Metal_Oxide_Semiconductor_Logic
http://www.asic-world.com/digital/logic3.html#Metal_Oxide_Semiconductor_Logic
http://www.asic-world.com/digital/logic3.html#Complementary_Metal_Oxide_Semiconductor_Logic
http://www.asic-world.com/digital/logic3.html#Complementary_Metal_Oxide_Semiconductor_Logic
http://www.asic-world.com/digital/logic3.html#Complementary_Metal_Oxide_Semiconductor_Logic
http://www.asic-world.com/digital/logic3.html#Complementary_Metal_Oxide_Semiconductor_Logic
http://www.asic-world.com/digital/numbering1.html#Numbering_System
http://www.asic-world.com/digital/numbering1.html#Decimal_System
http://www.asic-world.com/digital/numbering1.html#Decimal_Examples
http://www.asic-world.com/digital/numbering1.html#Binary_System
http://www.asic-world.com/digital/numbering1.html#Binary_Counting
http://www.asic-world.com/digital/numbering1.html#Representing_Binary_Quantities
http://www.asic-world.com/digital/numbering1.html#Representing_Binary_Quantities
http://www.asic-world.com/digital/numbering1.html#Typical_Voltage_Assignment
http://www.asic-world.com/digital/numbering1.html#Typical_Voltage_Assignment
http://www.asic-world.com/digital/numbering1.html#Octal_System
http://www.asic-world.com/digital/numbering1.html#Octal_to_Decimal_Conversion
http://www.asic-world.com/digital/numbering1.html#Octal_to_Decimal_Conversion
http://www.asic-world.com/digital/numbering1.html#Hexadecimal_System
http://www.asic-world.com/digital/numbering1.html#Hexadecimal_to_Decimal_Conversion
http://www.asic-world.com/digital/numbering1.html#Hexadecimal_to_Decimal_Conversion
http://www.asic-world.com/digital/numbering2.html#Code_Conversion
http://www.asic-world.com/digital/numbering2.html#Binary-To-Decimal_Conversion
http://www.asic-world.com/digital/numbering2.html#Binary-To-Decimal_Conversion
http://www.asic-world.com/digital/numbering2.html#Decimal-To-Binary_Conversion
http://www.asic-world.com/digital/numbering2.html#Decimal-To-Binary_Conversion
http://www.asic-world.com/digital/numbering2.html#Reverse_of_Binary-To-Decimal_Method
http://www.asic-world.com/digital/numbering2.html#Reverse_of_Binary-To-Decimal_Method
http://www.asic-world.com/digital/numbering2.html#Repeat_Division-Convert_decimal_to_binary
http://www.asic-world.com/digital/numbering2.html#Repeat_Division-Convert_decimal_to_binary
http://www.asic-world.com/digital/numbering2.html#Binary-To-Octal_/_Octal-To-Binary_Conversion
http://www.asic-world.com/digital/numbering2.html#Binary-To-Octal_/_Octal-To-Binary_Conversion
http://www.asic-world.com/digital/numbering2.html#Repeat_Division-Convert_decimal_to_octal

 118

decimal to octal

Hexadecimal to
Decimal/Decimal to
Hexadecimal Conversion

Repeat Division- Convert
decimal to hexadecimal

Binary-To-Hexadecimal
/Hexadecimal-To-Binary
Conversion

Octal-To-Hexadecimal
Hexadecimal-To-Octal
Conversion

 Binary Codes

 Weighted Binary Systems

 8421 Code/BCD Code

 2421 Code

 5211 Code

 Reflective Code

 Sequential Codes

 Non Weighted Codes

 Excess-3 Code

 Gray Code

Error Detecting and
Correction Codes

 Error Detecting Codes

 Parity

 Check Sums

 Error-Correcting Codes
 Hamming Code

 Alphanumeric Codes

 ASCII Code

 EBCDIC Code

 Floating Point Numbers

Binary Representation of
Floating Point Numbers

 Example

Basic Logic Gates

All digital systems can be constructed by only three basic logic gates. These

basic gates are called the AND gate, the OR gate, and the NOT gate. Some

textbooks also include the NAND gate, the NOR gate and the EOR gate as

the members of the family of basic logic gates. The description of the

operations of these gates are listed below [Ref.2]:

http://www.asic-world.com/digital/numbering2.html#Hexadecimal_to_Decimal/Decimal_to_Hexadecimal_Conversion
http://www.asic-world.com/digital/numbering2.html#Hexadecimal_to_Decimal/Decimal_to_Hexadecimal_Conversion
http://www.asic-world.com/digital/numbering2.html#Hexadecimal_to_Decimal/Decimal_to_Hexadecimal_Conversion
http://www.asic-world.com/digital/numbering2.html#Repeat_Division-_Convert_decimal_to_hexadecimal
http://www.asic-world.com/digital/numbering2.html#Repeat_Division-_Convert_decimal_to_hexadecimal
http://www.asic-world.com/digital/numbering2.html#Binary-To-Hexadecimal_/Hexadecimal-To-Binary_Conversion
http://www.asic-world.com/digital/numbering2.html#Binary-To-Hexadecimal_/Hexadecimal-To-Binary_Conversion
http://www.asic-world.com/digital/numbering2.html#Binary-To-Hexadecimal_/Hexadecimal-To-Binary_Conversion
http://www.asic-world.com/digital/numbering2.html#Octal-To-Hexadecimal_Hexadecimal-To-Octal_Conversion
http://www.asic-world.com/digital/numbering2.html#Octal-To-Hexadecimal_Hexadecimal-To-Octal_Conversion
http://www.asic-world.com/digital/numbering2.html#Octal-To-Hexadecimal_Hexadecimal-To-Octal_Conversion
http://www.asic-world.com/digital/numbering3.html#Binary_Codes
http://www.asic-world.com/digital/numbering3.html#Weighted_Binary_Systems
http://www.asic-world.com/digital/numbering3.html#8421_Code/BCD_Code
http://www.asic-world.com/digital/numbering3.html#2421_Code
http://www.asic-world.com/digital/numbering3.html#5211_Code
http://www.asic-world.com/digital/numbering3.html#Reflective_Code
http://www.asic-world.com/digital/numbering3.html#Sequential_Codes
http://www.asic-world.com/digital/numbering3.html#Non_Weighted_Codes
http://www.asic-world.com/digital/numbering3.html#Excess-3_Code
http://www.asic-world.com/digital/numbering3.html#Gray_Code
http://www.asic-world.com/digital/numbering4.html#Error_Detecting_and_Correction_Codes
http://www.asic-world.com/digital/numbering4.html#Error_Detecting_and_Correction_Codes
http://www.asic-world.com/digital/numbering4.html#Error_Detecting_Codes
http://www.asic-world.com/digital/numbering4.html#Parity
http://www.asic-world.com/digital/numbering4.html#Check_Sums
http://www.asic-world.com/digital/numbering4.html#Error-Correcting_Codes
http://www.asic-world.com/digital/numbering4.html#Hamming_Code
http://www.asic-world.com/digital/numbering4.html#Alphanumeric_Codes
http://www.asic-world.com/digital/numbering4.html#ASCII_Code
http://www.asic-world.com/digital/numbering4.html#EBCDIC_Code
http://www.asic-world.com/digital/numbering5.html#Floating_Point_Numbers
http://www.asic-world.com/digital/numbering5.html#Binary_Representation_of_Floating_Point_Numbers
http://www.asic-world.com/digital/numbering5.html#Binary_Representation_of_Floating_Point_Numbers
http://www.asic-world.com/digital/numbering5.html#Example
http://www.ied.edu.hk/has/phys/de/de-ref.htm

 119

AND gate

The AND gate is a circuit which gives a high output (logic 1) if all its

inputs are high. A dot () is used to indicate the AND operation. In

practice, however, the dot is usually omitted.

OR gate

The OR gate is a circuit which gives a high output if one or more of

its inputs are high. A plus sign (+) is used to indicate the OR

operation.

NOT gate

The NOT gate is a circuit which produces at its output the negated

(inverted) version of its input logic. The circuit is also known as an

inverter. If the input variable is A, the inverted output is written as .

NAND gate

The NAND gate is a NOT-AND circuit which is equivalent to an

AND circuit followed by a NOT circuit. The output of the NAND

gate is high if any of its inputs is low.

NOR gate

The NOR gate is a NOT-OR circuit which is equivalent to an OR

circuit followed by a NOT circuit. The output of the NOR gate is low

if any of its inputs is high.

EOR gate

The Exclusive-OR gate is a circuit which gives a high output if either

of its two inputs is high, but not both. A encircled plus sign () is

used to indicate the EOR operation

A NAND gate can be used as a NOT gate by the following wiring:

Figure 1.2 Wiring the NAND gate as an inverter

http://www.ied.edu.hk/has/phys/de/lg/and.jpg
http://www.ied.edu.hk/has/phys/de/lg/or.jpg
http://www.ied.edu.hk/has/phys/de/lg/not.jpg
http://www.ied.edu.hk/has/phys/de/lg/nand.jpg
http://www.ied.edu.hk/has/phys/de/lg/nor.jpg
http://www.ied.edu.hk/has/phys/de/lg/basic.htm#nandgate
http://www.ied.edu.hk/has/phys/de/lg/basic.htm#notgate

 120

Symbols for logic gates

Truth table representation of logic gates

The functions of these basic building blocks are summarized by means of a

Truth Table as shown in Table 1.1. The table shows all possible input/output

combinations for two inputs. A truth table with n inputs (logic variables) has

2n rows.

Not Gate

Table 1.1 Truth table representation of logic gates

Digital Signals and Logic Gates

Engineers know that it is easier to design two-state devices than multi-state devices.

In logic systems, variables, circuits, statements, etc., can be treated in one of two

distinct states: true or false, yes or no, on or off, present or absent, energized or not

energized, conducting or non-conducting, high voltage or low voltage, and so on.

http://www.ied.edu.hk/has/phys/de/lg/truth.htm#table11

 121

In digital electronics, we distinguish two distinct values of voltage, VH corresponding

to the higher of the two voltages and VL corresponding to the lower of the two

voltages. There are three ways in which we can assign binary values to these voltages

:

1. Positive logic assignment : True [1] : VH
 False [0] : VL

2. Negative logic assignment : True [1] : VL

 False [0] : VH

3. Mixed logic assignment : Allow the designers to

use positive

 or negative logic at any

point in

 their design, as they

desire.

 Introduction

 Asynchronous sequential circuit

 Synchronous sequential circuits

 Concept of Sequential Logic

 Latches and Flip-Flops

 RS Latch

 RS Latch with Clock

 Setup and Hold Time

 D Latch

 JK Latch

 T Latch

 JK Master Slave Flip-Flop

 Sequential Circuits Design

 State Diagram

 State Table

 K-map

 Circuit

http://www.asic-world.com/digital/seq1.html#Introduction
http://www.asic-world.com/digital/seq1.html#Asynchronous_sequential_circuit
http://www.asic-world.com/digital/seq1.html#Synchronous_sequential_circuits
http://www.asic-world.com/digital/seq2.html#Concept_of_Sequential_Logic
http://www.asic-world.com/digital/seq3.html#Latches_and_Flip-Flops
http://www.asic-world.com/digital/seq3.html#RS_Latch
http://www.asic-world.com/digital/seq4.html#RS_Latch_with_Clock
http://www.asic-world.com/digital/seq4.html#Setup_and_Hold_Time
http://www.asic-world.com/digital/seq4.html#D_Latch
http://www.asic-world.com/digital/seq4.html#JK_Latch
http://www.asic-world.com/digital/seq4.html#T_Latch
http://www.asic-world.com/digital/seq5.html#JK_Master_Slave_Flip-Flop
http://www.asic-world.com/digital/seq5.html#Sequential_Circuits_Design
http://www.asic-world.com/digital/seq5.html#State_Diagram
http://www.asic-world.com/digital/seq5.html#State_Table
http://www.asic-world.com/digital/seq5.html#K-map
http://www.asic-world.com/digital/seq5.html#Circuit

