Diploma + Advanced Diploma Level

EE101 DC Circuit Problems

Lesson 1 Lesson 2 Lesson 3

Test \& Assessment

Do the tests and send the answer sheet in soft copy by e-mail to

Week 1

UEECD0044+UEECD0046

E003+E004 Online test

Ref 1
Four resistors 1 ohm, 2 ohm, 3 ohm and 4 ohm are connected in series to 5V. Calculate the circuit current \& potential difference across each resistor.

A	$1 \mathrm{~A}, 3 \mathrm{~V}, 2 \mathrm{~V}, 5 \mathrm{~V} .7 \mathrm{~V}$	B	$0.5 \mathrm{~A}, 0.5 \mathrm{~V}, 1 \mathrm{~V}, 1.5 \mathrm{~V}, 2 \mathrm{~V}$			
C	$3 \mathrm{~A}, 1 \mathrm{~V}, 5 \mathrm{~V}, 6 \mathrm{~V}, 7 \mathrm{~V}$	D	$0 . \mathrm{A}, 1 \mathrm{~V}, 2 \mathrm{~V}, 3 \mathrm{~V}, 4 \mathrm{~V}$			
Answer						

Ref 2

A $2.2 \mathrm{~K} \Omega$ resistor is connected in series with a resistor of unknown value across 16 V supply. If the current is 5 mA , calculate the value of unknown resistor.

A	$2 \mathrm{~K} \Omega$	B	$3 \mathrm{~K} \Omega$
C	$4 \mathrm{~K} \Omega$	D	$1 \mathrm{~K} \Omega$
Answer			

Ref 3

Two resistors are connected in series to a 115 V supply, one is known to have 470Ω and voltage across it is 47 V . Calculate (a) the value of second resistor (b) the circuit current.

A	$680 \Omega, 0.1 \mathrm{~A}$	B	$800 \Omega, 0.2 \mathrm{~A}$
C	$100 \Omega, 1 \mathrm{~A}$	D	$1200 \Omega, 0.1 \mathrm{~A}$
Answer			

Ref 4

Resistors of $5 \Omega, 10 \Omega$ and 3Ω are connected in parallel to 12 V supply. Calculate the supply current.

A	2 A	B	3 A
C	1 A	D	4 A
Answer			

Ref 5

Resistors of $33 \mathrm{~K} \Omega$, and $68 \mathrm{~K} \Omega$ are connected in parallel to 50 V . Calculate (a) total circuit resistance (b) total circuit current (c0 individual branch currents.

A	$44.5 \mathrm{~K} \Omega, 4.5 \mathrm{~mA}, 3 \mathrm{~mA}, 1.58 \mathrm{~mA}$	B	$30 \mathrm{~K} \Omega, 3 \mathrm{~mA}, 2 \mathrm{~mA}, 1 \mathrm{~mA}$
C	$22.2 \mathrm{~K} \Omega, 2.25 \mathrm{~mA}, 1.5 \mathrm{~mA}, 0.79 \mathrm{~mA}$	D	$60 \mathrm{~K} \Omega, 6 \mathrm{~mA}, 4 \mathrm{~mA}, 2 \mathrm{~mA}$
Answer			

Ref 6

Resistors of values 12Ω and 8Ω are connected in parallel with R3 of unknown value across a 6 V supply. When the current from the supply is 2.25 A , calculate (a) the value of R3 (b) current flowing in R3.

A	$6 \Omega, 1 \mathrm{~A}$	B	$12 \Omega, 0.5 \mathrm{~A}$
C	$24 \Omega, 0.25 \mathrm{~A}$	D	$8 \Omega, 1.25 \mathrm{~A}$
Answer			

Ref 7

Five resistors are connected as follows. Find (a)Rt (b) It (c) 2Ω resistor current.

V
$R 1=2 \Omega, R 2=8 \Omega, R 3=3 \Omega, R 4=6 \Omega, R 5=7.2 \Omega . V=6 V$

A	$3.6 \Omega, 5 \mathrm{~A}, 2.66 \mathrm{~A}$	B	$4.8 \Omega, 5 \mathrm{~A}, 7 \mathrm{~A}$
C	$2.4 \Omega, 2.5 \mathrm{~A}, 1.33 \mathrm{~A}$	D	$7.2 \Omega, 7.5 \mathrm{~A}, 4 \mathrm{~A}$
Answer			

Ref 8
Resistors $1.8 \mathrm{~K} \Omega$ and $1.2 \mathrm{~K} \Omega$ are connected in series to 12 V supply. Calculate the power dissipated in each resistor and total power.

A	$0.0288 \mathrm{~W}, 0.0192 \mathrm{~W}, 0.048 \mathrm{~W}$	B	$0.0576 \mathrm{~W}, 0.0384 \mathrm{~W}, 0.096 \mathrm{~W}$
C	$0.0144 \mathrm{~W}, 0.009 \mathrm{~W}, 0.024 \mathrm{~W}$	D	$1 \mathrm{~W}, 0.5 \mathrm{~W}, 0.7 \mathrm{~W}$
Answer			

Ref 9

A 1Ω resistor is connected in series with parallel combination of 6Ω and 3Ω resistors to 6 V supply.
Calculate (a) Rt (b) Each resistor current.

A	$6 \Omega, 1 \mathrm{~A}, 1.32 \mathrm{~A}, 2.66 \mathrm{~A}$	B	$4 \Omega, 1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}$
C	$10 \Omega, 4 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}$	D	$3 \Omega, 2 \mathrm{~A}, 0.66 \mathrm{~A}, 1.33 \mathrm{~A}$
Answer			

Ref 10
Resistors of $2.2 \mathrm{~K} \Omega$ and $7.88 \mathrm{~K} \Omega$ are connected in series and parallel across $3.3 \mathrm{~K} \Omega$ and $2.7 \mathrm{~K} \Omega$ series combination. They are connected to 9 V supply .Calculate (a) Rt (b) It (c) Each resistor current.

A	$3.75 \mathrm{~K} \Omega, 2.4 \mathrm{~mA}, 0.9 \mathrm{~mA}, 1.5 \mathrm{~mA}$	B	$7.5 \mathrm{~K} \Omega, 4.8 \mathrm{~mA}, 1.8 \mathrm{~mA}, 3 \mathrm{~mA}$	
C	$2 \mathrm{~K} \Omega, 1.2 \mathrm{~mA}, 0.5 \mathrm{~mA}, 1 \mathrm{~mA}$	D	$10 \mathrm{~K} \Omega, 8 \mathrm{~mA}, 2 \mathrm{~mA}, 3 \mathrm{~mA}$	
Answer				

Ref 11

3 filament lamp indicators are each rated 12 V and 0.36 w . If they are connected in series, what supply voltage should be used? Find supply voltage, the current and total power dissipated.

A	$72 \mathrm{~V}, 0.06 \mathrm{~A}, 2.16 \mathrm{~W}$	B	$108 \mathrm{~V}, 0.09 \mathrm{~A}, 3.24 \mathrm{~W}$
C	$36 \mathrm{~V}, 0.03 \mathrm{~A}, 108 \mathrm{~W}$	D	$18 \mathrm{~V}, 0.015 \mathrm{~A}, 0.54 \mathrm{~W}$
Answer			

Ref 12

A circuit is fed with a 9 V supply but a 4 V ground potential is required at the base of a transistor. If this voltage is to be derived from $12 \mathrm{~K} \Omega$ resistor connected to ground. Calculate the value of second resistor forming potential divider.

A	$30 \mathrm{~K} \Omega$	B	$20 \mathrm{~K} \Omega$
C	$15 \mathrm{~K} \Omega$	D	$5 \mathrm{~K} \Omega$
Answer			

Ref 13

Find RX
If $R 1=1000 \Omega, R 2=1000 \Omega, R 3=2715 \Omega, V=1.5 \mathrm{~V}$ at bridge balanced condition.

A	2715Ω	B	3000Ω
C	1000Ω	D	2000Ω
Answer		A	

Ref 15
A cell has emf 1.5 V and internal resistance 0.5 ohm. Calculate its terminal voltage at (a) No load (b) providing 200 mA current (c) when connected to a load of 8 ohm.

A	$3 \mathrm{~V}, 2.8 \mathrm{~V}, 2.8 \mathrm{~V}$	B	$1.5 \mathrm{~V}, 1.4 \mathrm{~V}, 1.41 \mathrm{~V}$
C	$6 \mathrm{~V}, 1.4 \mathrm{~V}, 1.4 \mathrm{~V}$	D	$3 \mathrm{~V}, 1.4 \mathrm{~V}, 1.41 \mathrm{~V}$

Answer

Ref 16
A battery is made by connection 8 cells in series. Each has 1.5 V and internal resistance 0.35 ohm. Calculate (a) EMF \& internal resistance of battery. (b) The terminal voltage when supplying 400 mA . (c) The current \& terminal voltage when a load of resistance 20 ohm is connected to battery.

A	$12 \mathrm{~V}, 2.8 \Omega, 10.11 \mathrm{~V}$	B	$15 \mathrm{~V}, 1.4 \Omega, 5.1 \mathrm{~V}$
C	$12 \mathrm{~V}, 2.8 \Omega, 5.1 \mathrm{~V}$	D	$6 \mathrm{~V}, 2.8 \Omega, 10.11 \mathrm{~V}$
Answer			

UEECD0019+UEECD0020

EE102 Basic Electrical Fitting \& Wiring

Lesson 1 Lesson 2 Lesson 3

Test \& Assessment

http://www.classroomclipboard.com/503511/Home/Test/e3b8ef2c72e94d209034f9633e22c26a\#/Initi alizeTest.xaml

Type your name Put the following access code

CEAHU

Study EE102 \& then do the following Exercises

EE102 Exercises

Q1
Ref 575

The tests to be conducted for electrical installation safety are

```
O
    Earthing system test
O
    Insulation resistance test
C
    Polarity test
CAll above
```

Q2

Ref 574

The insulation resistance must be
very high
C very low

Q3
Ref 573

The resistance of earth must be less than

C 2 ohm
0
10 ohm
C 20 ohm

Q4

Ref 572

The switch should be connected on

Q5

Ref 571

The colour of earth wire is

Red
C Black
Green and yellow

Q6

The colour of neutral wire is

Black
C
White
C Green

Q7

Ref 569

The colours of active wire are

Q8

Rer 568

Two types of failure of fixing are

Q9

Ref 567

How many nails should be driven into each brick

O One
0
Two
C Three

Q10

Ref 566

Nail should not be driven into mortar joint
True
C False

Q11

Ref 565

To drill the hole, a pilot hole must have
The same diameter as to the hole that you want to drill
C
Smaller diameter as to the hole that you want to drill
Bigger diameter as to the hole that you want to drill

Q12

Ref 564

It is safe to remove the person who is electrocuted at 1000 V

False

Q13

Ref 563

To use the hand held electrical equipments in the workplace, the insulation must be
Double insulation
C Single insulation

Q14

Ref 562

It is safe to walk in forklift way in the factory and stand under the scaffolding
${ }^{\circ}$ True
C False

Q15

Ref 561

To lift a heavy equipments

Bend the kneel and lift with kneel force
Bend the back and simply lift it

Q16

Ref 560

Safety glass and safety hat are included in

Q19

Ref 559

Employer will not need to take any responsinility to provide the safe operational equipments in the workplace
C
True
C False

UEECD0051

EE103 Basic Electrical Drafting

ElectricalDrawing1.zip

ElectricalDrawing2.zip

ElectricalDrawing3.pdf

GeneralDrawing1.zip
GeneralDrawing2.zip

Test \& Assessment

Stage 1 Electrical workshop practicals.pdf
Draw the diagrams from page 37 to 52 and give it to Highlight Computer Group Manager/ Teacher/ Principal, they will forward your work to the assessor

EE103 Basic Electrical Drafting

Copy \& sketch the diagrams given in Page 37 to 52 of the attached PDF file Stage 1 Electrical workshop practicals for advanced diploma students Version 1.pdf.
Stage 1 Electrical workshop practicals for advanced diploma students Version 1

UEEELO003
 EE104 Electrical Equipments Safety Protection

Lesson 1

Test \& Assessment

Study all lessons in EE104+EE105+EE106+EE107 and EE108 and sit the test for EE106+EE108
Study the notes in EE104 Power Points \& do the following exercises.
Q1.Sketch RCD Connection
Q2.Sketch earthing system and earthing arrangement.
Q3.What is the supplementary system for earthing?
Q4. What are the types of earthing systems?
Q5.Sketch the connection diagram for smoke alarm.
Q6.Why earthing system is provided?
Q7.Sketch the arrangement of an earthing system.
Q8.Write the formula to calculate the voltage drop.
Q9.How will you isolate the live parts?
Q10.What is the meaning of ELCBN

UEEELOO25

EE105 Electrical Installation Design

EE107 Electrical Equipments

Lesson 1 Lesson 2 Lesson 3 Lesson 4

Test \& Assessment

Study all lessons in EE104+EE105+EE106+EE107 and EE108 and sit the test for EE106+EE108 to get the points for all those units.

EE105 Electrical Installation Design
 EE107 Electrical Equipments

Study the powerpoints in
EE105+107 Power Point Part 1
EE105+107 Power Point Part 2
EE105+107 Power Point Part 3
EE105+107 Power Point Part 4
and do the following exercises.

EE105+107 Power Point Part 1

Q1.Describe the structure of wiring rules

Q2.Take the practice on problem in presentation 48.

EE105+107 Power Point Part 2

Q3.Determine the maximum route length of $6 \mathrm{~mm}^{2}$ bare copper single phase consumer main with maximum demand of 80 A and permissible voltage drop of 4.3 V .

EE105+107 Power Point Part 3

Q4.
Calculate the voltage drop in each segment of a 3 phase 400 volt non-domestic installation consisting of the followings.

Consumer main

Phase = $3 \quad$ Maximum demand 45 Amp Route length $=25 \mathrm{~m}$
Cable size $16 \mathrm{~mm}^{2}$
Cable configuration V90 Single core thermo plastic and sheathed copper conductor

Cable installation

The circuit is enclosed in heavy duty rigid thermoplastic conduit with no other circuits. Conduit is buried in the ground having an ambient soil temperature of $25^{\circ} \mathrm{C}$ and has a top cover of 0.65 m .

Sub main

Phase $=3$ Maximum demand $=35 \mathrm{~A}$, Route length $=35 \mathrm{~m}$
Cable size $=10 \mathrm{~mm}^{2}$

Cable configuration

V90 Single core thermoplastic and sheathed copper conductors structure in trefoil formation and installed in single circuit configuration unenclosed in air

Final sub circuit

Phase =1 Maximum demand $=20$ Amp Route length $=35 \mathrm{~m}$
Cable size $=4 \mathrm{~mm}^{2}$
Cable configuration - V90 two cores and earthed thermoplastic and sheathed copper conductors
Cable installation - The cables are clipped to the building structure and installed in single circuit configuration , unenclosed in air.
Does this portion of the installation comply with the voltage drop requirement of AS/NZS 3000 ?

EE105+107 Power Point Part 4

Q5.
A final sub-circuit supplies a load consisting of a range in a domestic installation and is protected by 32A Type C circuit breaker. Determine the maximum internal fault loop impedance of final sub circuit based on 230 V when supply is unavailable.

UEEELOO14

EE106 Advanced Electrical Wiring

EE108 Electrical Fault Finding

Lesson 1 Lesson 2 Lesson 3 Lesson 4

Test \& Assessment

http://www.classroomclipboard.com/503511/Home/Test/334df2651a9440aa8fe25532f0e3d7c5\#/InitializeTest.xaml

Type your name Put the following access code

NY78T
Then do the following exercises.

1) Ref 604

A final subcircuit supplies a load consisting of 25A outlet and protected by 25A HRC fuse. Determine the maximum fault loop impedance of final subcircuit \& based on 230 V .

2) Ref 603

Final subcircuit supplies a load consisting of a range in domestic installation \& is protected by 32A CB. Determine maximum internal fault loop impedance of final subcircuit based on 230 V .
3) Ref 602

Write the formula to calculate the voltage drop in electrical cable
4) Ref 601

Describe the overview of AS 3000 Electrical wiring rule.
5) Ref 600

What are the requirements to install the switch board?
6) Ref 599

Explain the installation of switch board
7) Ref 598

Explain the operation principle of RCD with sketch
8) Ref 597

Explain the requirements of switch board in domestic electrical installation
9) Ref 596

Sketch the connection of a typical switch board
10) Ref 595

Describe the followings
(a) Basic protection principle (b) Overload and short circuit protection
11) Ref 594

Explain the explosion protection techniques.
12) Ref 593

Sketch TPS wiring system
13) Ref 592

Explain underground wiring system with sketch
14) Ref 591

Explain the following equipments
(a) Water heater (b) Cooking appliances (c) Motor
15) Ref 590

Sketch earthing system and earthing arrangement
16) Ref 589

Explain electrical installation safety testing procedures
17) Ref 588

Sketch the polarity testing circuits
18) Ref 587

What are the types of RCD?
19) Ref 586

Outline the overload protection devices
20) Ref 585
(a) Explain earthing protection

UEEELO005

EE109 Electrical Control Circuits

Lesson 1 Lesson 2

Test \& Assessment

http://www.classroomclipboard.com/503511/Home/Test/618fafbe4aae4b6ab065df53cf9aebbb\#/InitializeTest.xaml
Type your name Put the following access code

U8FS3Y
And do the following exercises.

1) Ref 610

Sketch the equivalent circuit and vector diagram of
(a) Synchronous generator (b) Synchronous motor
2) Ref 609

Sketch the equivalent circuit of transformer
3) Ref 608

Describe the losses in transformer
4) Ref 607

What is transformer rating?
5) Ref 606

Write the procedure to detect the fault.
6) Ref 605

Explain the operation principle of three phase induction motor

UEECS0033
 EE110 Computer Applications

The students can attend any computer course and take the training in Microsoft Word, Excel, Access, Internet E-mail application. On submission of the completed certificate, the credit for EE110 Computer Applications will be given.

Download the following e-books
WORD
http://www.filefactory.com/file/2s874qnp7jfr/n/word-2007-introduction-part-i_pdf
http://www.filefactory.com/file/7824v6tjha2v/n/word-2010introduction_pdf
Take the practice on application of software.
Do the following assignments \& submit them by e-mail.
ASSIGNMENT (1)

Follow the instruction given in e-Books, you prepare \& present three evidences of documents such as Typed Letters, Table, Diagram etc.
http://www.filefactory.com/file/4lvl2i748egz/n/microsoft-office-excel pdf

Take the practice on application of software.
Do the following assignments \& submit them by e-mail.

ASSIGNMENT (2)

Follow the instruction given in e-Books, you prepare \& present three evidences of documents such as Table, Diagram , inserting the formula, graphics etc. POWERPOINT
http://www.filefactory.com/file/4vuoppxsfki3/n/powerpoint-2007-part-i pdf
Take the practice on application of software.
Do the following assignments \& submit them by e-mail.

ASSIGNMENT (3)

Follow the instruction given in e-Books, you prepare \& present three evidences of documents of power point presentation. You can insert the typing, diagram, picture, sound, video etc.

UEEEL0019+UEEEL0021

EE111 Electromagnetism \& Basic Electrical Machines

Lesson 1

Test \& Assessment

Study the notes

Lesson 1

And do the following exercises.

G001 Online Test

Ref137
The flux is equal to

A	$\phi=\mathrm{Fm} / \mathrm{Rm}$	B	$\phi=\mathrm{Fm} \times \mathrm{Rm}$
C	$\phi=\mathrm{Rm} / \mathrm{Fm}$	D	$\phi=\mathrm{Fm}+\mathrm{Rm}$
Answer			

Ref 138
Rm is equal to

A	$l \mu / A$	B	L/ $\mu \mathrm{A}$	
C	L μ A	D	$\mu \mathrm{A} / \mathrm{I}$	
Answer				

Ref139

Flux density is equal to

A	фA	B	A/ ϕ	
C	ф/A	D	$\Phi+$ A	
Answer				

Ref140

The torque produced in electric motor is equal to

A	$T=B L r$	B	$T=B r / L$	
C	$T=B L / r$	D	$T+B r+L$	
Answer				

Ref141

A plunger brake electro-magnetic operates at a flux density of 12 tesla. If the CSA of the magnetic circuit is 0.04 sq-m and reluctance is 12000 amp-turn / wb, what current is required to operate the magnet if the coil has 1000 turns.

A	0.288 A	B	0.576 A
C	1.3 A	D	2.8 A
Answer			

Ref142

The induced voltage in conductor moving in magnetic field is

A	$E=B L V \sin \Theta$	B	$E=B L V \cos \Theta$
C	$E=B L V$	D	$E=B I \sin \Theta$
Answer			

Ref143

The voltage induced in coil of N turns is

A	$V=N \phi$	B	$V=N I$
C	$V=N \times d \phi / d t$	D	$V=N^{2} \phi$
Answer			

Ref144

What is the velocity of a conductor 150 mm long and moving at right angle to magnetic field having a flux density of 0.4 tesla? The induced voltage is 4 V .

A	$6 \mathrm{~m} / \mathrm{s}$	B	$1.5 \mathrm{~m} / \mathrm{s}$
C	$12 \mathrm{~m} / \mathrm{s}$	D	$3.3 \mathrm{~m} / \mathrm{s}$
Answer			

Ref145

The force between two current carrying conductors is

A	$\mathrm{F}=10^{-7} \mathrm{I} / \mathrm{d}$	B	$\mathrm{F}=\mathrm{NI} / \mathrm{d}$	
C	$\mathrm{F}=2 \times 10^{-7} \mathrm{I} / \mathrm{d}$	D	$\mathrm{F}=4 \Pi 10^{-7} \mathrm{I} / \mathrm{d}$	
Answer				

Ref146

A transformer has 50 turns on the primary and 600 turns on secondary. If a flux of 0.25 wb is induced to zero in 10 ms , calculate the induced emf in each coil.

A	$E 1=250 \mathrm{~V}, \mathrm{E} 2=3000 \mathrm{~V}$	B	$\mathrm{E} 1=2500 \mathrm{~V}, \mathrm{E} 2=30000 \mathrm{~V}$	
C	$\mathrm{E} 1=300 \mathrm{~V}, \mathrm{E} 2=25000 \mathrm{~V}$	D	$\mathrm{E} 1=\mathrm{E} 2=3000 \mathrm{~V}$	
Answer				

Ref147

If a conductor is being rotated at 2000 RPM in magnetic field and induces 400 V . If it is rotated at 1000 RPM.. Find the induced emf.

A	100 V	B	200 V
C	400 V	D	50 V
Answer			

Ref148

A 240 V coil 5000T produces magnetizing force 4000AT/ m. The magnetic circuit is 200 mm long.
CSA $500 \mathrm{sq}-\mathrm{mm}$. Find the resistance of the coil.

A	1500Ω	B	3000Ω
C	750Ω	D	150Ω
Answer			

UEEEL0020

EE112 Alternating Current Principle

Lesson 1 Lesson 2

Test \& Assessment

http://www.filefactory.com/file/7ebmnciqxmf3/n/G002 Online Test 1 Question pdf
http://www.filefactory.com/file/6d3yokhjziur/h/G002 Online Test 1 Answer doc
Do the tests and send the answer sheet in soft copy by e-mail to
iqytechnicalcollege@gmail.com

And do the following exercises.

G002 Online Test

Ref149
A sine wave voltage of 240 V RMS is applied to a resistive circuit of 60Ω. Calculate(a) RMS value of current (b) Maximum value of current.

A	$2 \mathrm{~A}, 4 \mathrm{~A}$	B	$4 \mathrm{~A}, 5.65 \mathrm{~A}$
C	$2 \mathrm{~A}, 2.8 \mathrm{~A}$	D	$1 \mathrm{~A}, 2 \mathrm{~A}$
Answer			

Ref150
A coil of negligible resistance draws a current of 0.2 A (RMS) when connected to $240 \mathrm{~V}, 50 \mathrm{HZ}$.
(a) Determine inductive reactance (b) Coil inductance.

A	$600 \Omega, 3.8 \mathrm{H}$	B	$1200 \Omega, 1.9 \mathrm{H}$
C	$1200 \Omega, 3.8 \mathrm{H}$	D	$1800 \Omega, 7.6 \mathrm{H}$
Answer			

Ref151
A 64 mH inductor is connected in series with a 300Ω resistor to a 1000 HZ AC supply voltage of 10 V rms. Find (a) the impedance (b) The phase angle (c) The current (d) the potential drop across resistor.

A	$\begin{aligned} & \hline 500 \Omega,(53.2 \mathrm{Deg}), \\ & 0.002 \mathrm{~A}(-53.2 \mathrm{Deg}), \\ & 6 \mathrm{~V}, 8 \mathrm{~V} \end{aligned}$	B	$\begin{aligned} & 500 \Omega,(36.8 \mathrm{Deg}), \\ & 0.001 \mathrm{~A}(+53.2 \mathrm{Deg}), \\ & 8 \mathrm{~V}, 6 \mathrm{~V} \end{aligned}$
C	$\begin{aligned} & \hline 500 \Omega,(0 \mathrm{Deg}), \\ & 0.002 \mathrm{~A}(-0 \mathrm{Deg}), \\ & 6 \mathrm{~V}, 8 \mathrm{~V} \end{aligned}$	D	$\begin{aligned} & \text { 500 , (} 90 \mathrm{Deg}), \\ & 0.002 \mathrm{~A}(-90 \mathrm{Deg}), \\ & 6 \mathrm{~V}, 8 \mathrm{~V} \end{aligned}$
Answer			

Ref152

Find the current in the circuit when an AC voltage 10 V rms at 1000 HZ is applied to $2 \mu \mathrm{~F}$ capacitor.

A	0.375 A	B	0.25 A
C	0.125 A	D	0.5 A
Answer			

Ref153

A $1 \mu \mathrm{~F}$ capacitor is connected in series with 200Ω resistor to 10 V rms. 1600 HZ supply. Find (a0 the impedance (b) The phase angle (c) The current (d) Potential drop across resistor (e) Potential drop across capacitor.

A	$111.3 \Omega,(-26.5 \mathrm{Deg})$,	B	$222.6 \Omega,(+26.5 \mathrm{Deg})$,
	$0.0224 \mathrm{~A}(-26.5 \mathrm{Deg})$,		$0.0224 \mathrm{~A}(-26.5 \mathrm{Deg})$,
	$4.5 \mathrm{~V}, 2.24 \mathrm{~V}$		$9 \mathrm{~V}, 4.48 \mathrm{~V}$
C	$222.6 \Omega,(0 \mathrm{Deg})$,	D	$222.6 \Omega,(-26.5 \mathrm{Deg})$,
	0.0224 A (0 Deg),		$0.0448 \mathrm{~A}(+26.5 \mathrm{Deg})$,
	$9 \mathrm{~V}, 4.48 \mathrm{~V}$		$9 \mathrm{~V}, 4.48 \mathrm{~V}$

Ref154

A series circuit is connected to a 10 V rms AC supply. The circuit has resistance 100Ω, inductive reactance 300Ω, capacitive reactance 400Ω. Find (a) Impedance (b) Current (c) Phase angle (d) Voltage drop across resistor (e) Voltage drop across inductor (f) Voltage drop across capacitor.

A	141Ω (Angle -45 Deg), 0.071A, 45 Deg, $7.1 \mathrm{~V}, 21.3 \mathrm{~V}, 28.4 \mathrm{~V}$	B	70.7Ω (Angle +45 Deg), 0.035A, 45 Deg, $3.35 \mathrm{~V}, 10.65 \mathrm{~V}, 14.2 \mathrm{~V}$
C	141Ω (Angle 45 Deg), 0.071A, -45 Deg	D	141Ω (Angle 0 Deg),0.071A, 0 Deg, $7.1 \mathrm{~V}, 28.4 \mathrm{~V}, 21.3 \mathrm{~V}$
Answer			$7.1 \mathrm{~V}, 21.3 \mathrm{~V}, 28.4 \mathrm{~V}$

Ref155

The following is a diagram of a parallel circuit with a supply voltage 100 V rms at 50 Hz . Determine the followings.
(a)Total circuit current (b) Total circuit impedance (c) Phase angle between circuit current and applied voltage (d) Power factor of circuit.

$$
\mathrm{Xc}=318.5 \Omega, \mathrm{R}=100 \Omega, \mathrm{XI}=94.2 \Omega, \mathrm{~V}=100 \mathrm{~V}, 50 \mathrm{~Hz}
$$

A	$\begin{aligned} & \text { 1.8A (Angle -36.8 Deg), } 206 \Omega, 56.86 \text { Deg, } \\ & 0.8 \end{aligned}$	B	$\begin{aligned} & \text { 0.97A (Angle +36.8 Deg),103 } \Omega, 36.8 \text { Deg } \\ & 0.59 \end{aligned}$
C	$\begin{aligned} & \text { 0.97A (Angle -36.8 Deg),103 } \Omega, 36.8 \text { Deg } \\ & 0.59 \end{aligned}$	D	$\begin{aligned} & \text { 0.97A (Angle +53.2 Deg), } 206 \Omega, 53.2 \text { Deg } \\ & 0.59 \end{aligned}$
Answer			

Ref156
A capacitor draws 0.971 Amp at PF 0.34 from 100V supply. Total power is

A	36.8 W	B	100 W
C	52.43 W	D	70.7 W
Answer			

Ref157

The phase voltage and current in 3 phase star connected current are 240 V and 50 A . Find the line voltage and line current.

A	415 V rms, 50A	B	$240 \mathrm{~V} \mathrm{rms}, 50 \mathrm{~A}$
C	415 V rms, 86.5A	D	240 V rms, 86.5A
Answer			

Ref158

A delta connected load takes a line current 40A and line voltage 415V. Find (a) Phase current (b) Phase voltage

A	$40 \mathrm{~A}, 415 \mathrm{~V}$	B	$23.1 \mathrm{~A}, 415 \mathrm{~V}$
C	$40 \mathrm{~A}, 240 \mathrm{~V}$	D	23.1 A .240 V
Answer			

Ref159

Three phase 415V, 37.3 KW, Delta connected alternator has efficiency 90\% and PF 0.88 Lagging. Find (a) Line current (b) Phase current.

A	$130 \mathrm{~A}, 75.6 \mathrm{~A}$	B	$65.5 \mathrm{~A}, 75.6 \mathrm{~A}$
C	$65.5 \mathrm{~A}, 37.8 \mathrm{~A}$	D	$130 \mathrm{~A}, 37.8 \mathrm{~A}$
Answer			

UEEEL0020+UEECD0005

EE113 Electrical Fundamental

Lesson 1 Lesson 2 Lesson 3

Study the EE113 file notes and then do the following exercises.
E029+G012 Online Test
Ref40
3 voltages, phase to neutral are measured to be $220 \mathrm{~V}, 215 \mathrm{~V}$ and 210 V on nominal $415 \mathrm{~V}, 50 \mathrm{~Hz}$. The percentage voltage imbalance is

A	2.3%	B	6%
C	4.6%	D	10%
Answer			

Ref41

The synchronous speed is

Ref42

Torque is

A	Torque α Voltage	B	Torque α 1/ voltage
C	${\text { Torque } \alpha \text { Voltage }^{2}}^{\text {Answer }}$	D	Torque α Voltage \times Current

Ref43

Permissible starting current for two motors (a) $15 \mathrm{KW}, 415 \mathrm{~V}$ \& (b) $15 \mathrm{KW}, 415 \mathrm{~V}$ are

A	102.5A \& 82.3A	B	200A \& 60A
C	300A \& 100A	D	50A \& 40A
Answer			

Ref44

A simple machine in figure, the load is 450 N , effort is 60 N . the load and effort movement is 100 mm and 1200 mm respectively. The mechanical advantage and velocity ratio are
Effort

$$
X=1200 \mathrm{~mm}, \mathrm{Y}=100 \mathrm{~mm}
$$

A	18,6	B	20,10
C	10,12	D	9,12
Answer			

Ref45

The weight of a tabular steel column 120 mm outside diameter and 100 mm inside diameter and 3 m height is

A	1000 N	B	500 N
C	400 N	D	793.3 N
Answer			

Ref46

A steel specimen 10 mm diameter rupture under 37 KN , the ultimate strength is

A	$800 \mathrm{~N} / \mathrm{mm}^{2}$	B	$1200 \mathrm{~N} / \mathrm{mm}^{2}$
C	$471 \mathrm{~N} / \mathrm{mm}^{2}$	D	$1024 \mathrm{~N} / \mathrm{mm}^{2}$
Answer			

Ref47

Diameter $=10 \mathrm{~mm}^{2}$ Force $(\mathrm{F})=37 \mathrm{KN}$
The stress is

A	$1200 \mathrm{~N} / \mathrm{mm}^{2}$	B	$471 \mathrm{~N} / \mathrm{mm}^{2}$
C	$1000 \mathrm{~N} / \mathrm{mm}^{2}$	D	$200 \mathrm{~N} / \mathrm{mm}^{2}$
Answer			

Ref48

22 Kw , 4 poles , 415 V , full load current 38 amp , three phase induction motor
Locked rotor current $=600 \%$ of Ifl . Locked rotor torque $=155 \% \mathrm{Tfl}$ Starting current and starting torque for (i) Star / delta (ii) Primary resistance starting (iii) Auto transformer starting with 55\% tapping are

A	$200 \%, 51.7 \%, 600 \%, 46.9 \%$	B	$100 \%, 20 \%, 300 \%, 23 \%$
C	$50 \%, 50 \%, 600 \%, 46.9 \%$	D	$100 \%, 51.7 \%, 300 \%, 46.9 \%$
Answer			

Ref49

600 mL sulphuric acid has a mass of 1.11 Kg , The density and relative density are

A	$3000 \mathrm{~kg} / \mathrm{m}^{3}, 3$	B	$4000 \mathrm{~kg} / \mathrm{m}^{3}, 4$
C	$5000 \mathrm{~kg} / \mathrm{m}^{3}, 1$	D	$1850 \mathrm{~kg} / \mathrm{m}^{3}, 1.85$
Answer			

A 100 kg block rests on a plate. The coefficient of friction between all surface is 0.2 . The force required to pull the plate is

A	100 N	B	392.4 N
C	800 N	D	700 N
Answer			

Ref51

The total stopping distance of a car for total time taken from the point where the driver sights the danger if the driver's reaction time before applying the brake is 0.9 sec with initial velocity $60 \mathrm{~km} / \mathrm{hr}$ and retardation due to brake is $7.5 \mathrm{~m} / \mathrm{s}^{2}$

A	60 m	B	33.5 m
C	100 m	D	150 m
Answer			

Ref52

A car starts from the rest at the rate of $1.2 \mathrm{~m} / \mathrm{s}^{2}$ for 15 sec . The velocity reached after 15 second is

A	$36 \mathrm{~m} / \mathrm{s}$	B	$54 \mathrm{~m} / \mathrm{s}$
C	$9 \mathrm{~m} / \mathrm{s}$	D	$18 \mathrm{~m} / \mathrm{s}$
Answer			

Ref53

A flywheel makes 200 revolutions. Torque is $35 \mathrm{~N}-\mathrm{m}$. The work is

A	44000J	B	22000J
C	11000J	D	66000J
Answer			

Ref54

The work done for force 50 N that moves a block to distance 3 m is

A	300 J	B	450 J
C	750 J	D	150 J
Answer			

Ref55

The acceleration of a body of 25 kg mass due entirely to it's own weight is

A	$9.81 \mathrm{~m} / \mathrm{s}^{2}$	B	$16 \mathrm{~m} / \mathrm{s}^{2}$
C	$29 \mathrm{~m} / \mathrm{s}^{2}$	D	$4 \mathrm{~m} / \mathrm{s}^{2}$
Answer			

Ref56

The acceleration of a given mass sliding down the plane is

A	$20 \mathrm{~m} / \mathrm{s}^{2}$	B	$2 \mathrm{~m} / \mathrm{s}^{2}$
C	$5.63 \mathrm{~m} / \mathrm{s}^{2}$	D	$3 \mathrm{~m} / \mathrm{s}^{2}$
Answer			

Ref57

A train of total mass 120 ton is travelling at $60 \mathrm{~km} / \mathrm{hr}$ on level track. The tractive resistance is $80 \mathrm{~N} /$ ton. Calculate the tractive effort required to accelerate the train to $100 \mathrm{~km} / \mathrm{hr}$ in 35 second.

A	108 KN	B	37 KN
C	72 KN	D	54 KN
Answer			

Ref 58

B

$$
A=5 \mathrm{~kg} \quad B=2 \mathrm{~kg}
$$

The acceleration of bodies A and B and the force tension in the cord are

A	$1.51 \mathrm{~m} / \mathrm{s}^{2}, 22.6 \mathrm{~N}$	B	$0.75 \mathrm{~m} / \mathrm{s}^{2}, 11.6 \mathrm{~N}$	
C	$3 \mathrm{~m} / \mathrm{s}^{2}, 30 \mathrm{~N}$	D	$4 \mathrm{~m} / \mathrm{s}^{2}, 40 \mathrm{~N}$	
Answer				

Ref59

Determine the net torque required to give a flywheel with a mass moment of inertia $0.8 \mathrm{~kg}-\mathrm{m}^{2}$, angular acceleration is $18 \mathrm{rad} / \mathrm{s}^{2}$.

A	$24 \mathrm{~N}-\mathrm{m}$	B	$12 \mathrm{~N}-\mathrm{m}$
C	$36 \mathrm{~N}-\mathrm{m}$	D	$54 \mathrm{~N}-\mathrm{m}$
Answer			

Ref60

Determine the torque required to accelerate a turbine rotor under going a dynamic balancing test from rest to a speed of 56000 rpm in 80 sec . If the mass moment of inertia of rotor is $11.5 \mathrm{~kg}-\mathrm{m}^{2}$.

A	$225.8 \mathrm{~N}-\mathrm{m}$	B	$112.5 \mathrm{~N}-\mathrm{m}$
C	$300 \mathrm{~N}-\mathrm{m}$	D	$400 \mathrm{~N}-\mathrm{m}$
Answer			

Ref61

Determine the centrifugal force acting on a passenger of mass 75 kg in a car travelling at $90 \mathrm{~km} / \mathrm{hr}$ around a curve of 100 m radius.

A	900 N	B	600 N
C	468.75 N	D	234 N
Answer			

Ref62

A train moving at $63 \mathrm{~km} / \mathrm{hr}$ requires 40 KN of tractive effort at this speed. Determine the driving power.

A	700 KW	B	350 KW
C	900 KW	D	1000 KW
Answer			

Ref63

Calculate the kinetic energy of mass moment of inertia of $61 \mathrm{~kg}-\mathrm{m}^{2}$ rotating at 250 rpm .

A	10452 J	C	20904 J
C	30000 J	D	40000 J
Answer			

Ref64

A block of mass 2 kg is freely suspended on a string. A bullet of mass 75 g is fired horizontally into the block. If the velocity of the bullet before the impact is $415 \mathrm{~m} / \mathrm{s}$, calculate the velocity of block with the bullet embedded in it immediately after the impact.

A	$30 \mathrm{~m} / \mathrm{s}$	C	$45 \mathrm{~m} / \mathrm{s}$
C	$60 \mathrm{~m} / \mathrm{s}$	D	$15 \mathrm{~m} / \mathrm{s}$
Answer			

Ref65

When a golf ball having a mass 50 g is struck by club. The ball and club are in intact for 0.001 sec immediately after the impact. The ball travels at $45 \mathrm{~m} / \mathrm{s}$. Determine the average force of collision.

A	6000 N	C	3000 N
C	1500 N	D	7500 N
Answer			

UEEELO062
 EE114 Electrical Power Principle

Lesson 1 Lesson 2 Lesson 3

Test \& Assessment

Password- iqytechnicalcollege

Study the files EE114

Do the exercises

Ref163

The measured speed of three phase , 4215V, 50HZ, 2 poles motor is 2700 rpm . Slip and \% slip are

A	$0.2,20 \%$	B	$0.15,15 \%$	
C	$0.3,30 \%$	D	$0.1,10 \%$	
Answer				

Ref164
The relationship between voltage, current and number of turns of a transformer is

A	$\mathrm{V} 1 / \mathrm{V} 2=\mathrm{N} 1 / \mathrm{N} 2=\mathrm{I} 2 / \mathrm{I}=\mathrm{a}$	B	$\mathrm{V} 1 / \mathrm{V} 2=\mathrm{N} 2 / \mathrm{N} 1=\mathrm{I} 2 / \mathrm{I} 1=\mathrm{a}$
C	$\mathrm{V} 1 / \mathrm{V} 2=\mathrm{N} 1 / \mathrm{N} 2=\mathrm{I} 1 / \mathrm{I} 2=\mathrm{a}$	D	
Answer			

Ref165
N

AIR GAP
Core Length
$\mathrm{N}=350$ Turns, Air Gap $=0.15 \mathrm{~mm}$, Core length $=1250 \mathrm{~mm}$, Flux density $=1.105 \mathrm{~T}, \mu=1800$

The current I is

A	6.2 A	B	9.3 A
C	1.26 A	D	3.16 A
Answer			

G012 Online Test

Ref160

The force produced in three phase winding of AC machine is

A	$3 \operatorname{lm} N e^{j w t}$ 2	B	$\operatorname{Im} N e^{j \omega t}$ 2
C	$\mathrm{V} 3 \operatorname{Im} N e^{\mathrm{jwt}}$ 2	D	V3 $\operatorname{lm} N \mathrm{e}^{\mathrm{jwt}}$
	Answer		

Ref161

Three phase , 4 poles, 36 slots, 50 HZ winding . The coil span is

A	7	B	8
C	9	D	10
Answer			

Ref162

The speed of 2 poles, 25 HZ motor is

A	3000 rpm	B	1500 rpm
C	750 rpm	D	1000 rpm
Answer			

Ref166

The voltage regulation of a synchronous generator is

A	$E f-V$ $\text { x } 100 \text { \% }$ V	B	Ef $\text { x } 100 \%$ V
C	$\begin{aligned} & \text { V-Ef } \\ & \text { V --------- } \times 100 \% \end{aligned}$	D	
	Answer		

Ref167

Synchronous impedance is

A	Z s = Voc / Isc	B	Z s = Vsc / Isc
C	Z s = Voc / loc	D	
Answer			

Ref168

The voltage equation for synchronous generator is

A	$\mathrm{Ef}=\mathrm{V}+\mathrm{I} \mathrm{Zs}$	B	$\mathrm{Ef}=\mathrm{V}-\mathrm{IZs}$
C	$\mathrm{Ef}=\mathrm{V} \times \mathrm{IZs}$	D	$\mathrm{Ef}=\mathrm{V} / \mathrm{IZs}$
Answer		A	

The voltage equation for synchronous motor is

A	$\mathrm{Ef}=\mathrm{V}+\mathrm{I} \mathrm{Zs}$	B	$\mathrm{Ef}=\mathrm{V}-\mathrm{IZs}$	
C	$\mathrm{Ef}=\mathrm{V} \times \mathrm{IZs}$	D	$\mathrm{Ef}=\mathrm{V} / \mathrm{IZs}$	
Answer				

Ref45

The weight of a tabular steel column 120 mm outside diameter and 100 mm inside diameter and 3 m height is

A	1000 N	B	500 N
C	400 N	D	793.3 N
Answer			

Ref46
A steel specimen 10 mm diameter rupture under 37 KN , the ultimate strength is

A	$800 \mathrm{~N} / \mathrm{mm}^{2}$	B	$1200 \mathrm{~N} / \mathrm{mm}^{2}$
C	$471 \mathrm{~N} / \mathrm{mm}^{2}$	D	$1024 \mathrm{~N} / \mathrm{mm}^{2}$
Answer			

Ref47

Diameter $=10 \mathrm{~mm}^{2}$ Force $(F)=37 \mathrm{KN}$

The stress is

A	$1200 \mathrm{~N} / \mathrm{mm}^{2}$	B	$471 \mathrm{~N} / \mathrm{mm}^{2}$	
C	$1000 \mathrm{~N} / \mathrm{mm}^{2}$	D	$200 \mathrm{~N} / \mathrm{mm}^{2}$	
Answer				

UEEIC0040+UEEIC0042

E115 Basic Analogue \& Digital Electronics

EE116 Process Control System

Lesson 8 Lesson 9 Lesson 10

Test \& Assessment

http://www.filefactory.com/file/46zzpcym7uqz/n/l006 H012 Online Test 1 Question pdf
http://www.filefactory.com/file/4e2chw2sf343/n/1006 H012 Online Test 1 Answer doc
Do the tests and send the answer sheet in soft copy by e-mail to
iqytechnicalcollege@gmail.com
Password- iqytechnicalcollege

Study the followings

EE115+EE116 Files

And do the following exercises.

I006+ H012 Online Test

Ref501

\qquad provides the operation necessary to transform the sensor output into a form necessary to interface with other elements of process control lop.

A	Analogue signal conditioning	B	Digital signal conditioning		
C		D			
Answer					

Ref504

Vo $V 1=5 \mathrm{~V}, \mathrm{R} 1=\mathrm{R} 2=34 \mathrm{~K} \Omega, \mathrm{R} 3=\mathrm{R} 4=\mathrm{R} 5=10 \mathrm{~K} \Omega$,
Vout for above circuit is

A	Vout $=1.7$ Vin +5	B	Vout $=3.4$ Vin	
C	Vout $=1.7$ Vin	D	Vout $=3.4$ Vin +5	
Answer				

Ref507

TTL 74LS 193 A CMOS 4035 ICs are used for

A	Parallel in / Parallel out function	B	Serial in / Parallel out function
C	Parallel in / Serial out function	D	Serial in / Serial out function
Answer			

Ref510

The number of data signal lines required for 7 segments display is

A	7	B	8
C	9	D	10
Answer			

Ref513

Events occur after the previous event is completed. The device is \qquad .

A	Combinational logic	B	Sequential logic
C	Synchronous logic	D	Asynchronous logic
Answer			

Ref516

$45_{10}=$

A	101101_{2}	B	100101_{2}
C	111001_{2}	D	101010_{2}
Answer			

Ref519

The device in which only one input at a time is activated to produce specific code at output is

A	Decoder	B	Encoder
C	Multiplexer	D	Demultiplexer
Answer			

Ref522

Latch can store

A	Only one bit of information	B	A number of bits at one time
C		D	
Answer			

Ref525

Decimal equivalence of 47 H is

A	71	B	781
C	29	D	112
Answer			

Ref528
Temperature is measured by a sensor with output $0.02 \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Determine ADC Reference \& word size to measure 0 to $100^{\circ} \mathrm{C}$ resolution.

A	$0.039 \mathrm{~V} /$ step	B	$0.078 \mathrm{~V} /$ step
C	$0.156 \mathrm{~V} /$ step	D	$0.312 \mathrm{~V} /$ step
Answer			

Ref531

What is the HEX output of a bipolar 12 bit ADC with a 5 V reference for input -0.85 V

A	54 H	B	108 H
C	27 H	D	39 H
Answer			

Ref534

ADC has been developed to interface with microprocessor. Data from ADC is placed on \qquad -.
When appropriate command is issued.

A	Address bus	B	Data bus	
C	Control bus	D		
Answer				

Ref537

The following is called \qquad .

A	Bellow operated on-off controller	B	On-off pressure control loop
C	Pnuematic force balance proportional controller	D	
Answer			

Ref540

Derivative mode

A	Stabilizes the process	B	Resets the process	
C	Compensates time lag in control loop	D		
Answer				

UEERE0060+UEERE0061

EE117 Solar Electrical System

Lesson 1 Lesson 2 Lesson 3 Lesson 4 Lesson 5 Lesson 6
Password- iqytechnicalcollege

Test \& Assessment

Read the following notes

K025 Note 1

K025 Note 2
And then

K025 Tutorials.zip

Do the exercises and aive them to Hiahliaht Comouter Groun Manaaer/ Teacher/
Study the followings EE117 Lessons
Then do the following exercises
Q1.Explain the operation principle of PV cell
Q2.Sketch the interconnection of PV modules
Q3.Write the equation for PV power conversion.
Q4.Find the output of a module operating at maximum power point giving the followings
Typical maximum power at STC $=77 \mathrm{w}$, NOCT $=49$ deg C Power output coefficient $' ~ \gamma=-0.38 \%$ Ambient temperature $=35$ Deg C
Irradiance $=865 \mathrm{w} / \mathrm{m}^{2}$
Q5. Describe the production procedure of standard silicon solar cell.
Q6. Calculate daily energy output of 77W. Lead acid battery charging ambient temperature f derate $=1$, V module $=14 \mathrm{~V}$, Irradiation $=4 \mathrm{wh} / \mathrm{m}^{2}$, maximum module power rating $=72 \mathrm{~W}, \mathrm{NOCT}=49 \mathrm{deg} \mathrm{C}$.
Q7. Calculate the daily energy output of a 100W poly crystalline module operating under the following conditions.

Maximum power point tracking regulator MPPT, Ambient day time temperature 25 Deg C , Irradiation $5.5 \mathrm{KWH} / \mathrm{m}^{2}$. Environment with annual maintenance only. The manufacturer who tests the modules to international
standard guarantees the maximum modules power rating to be 95W and NOCT = 49 Deg C. ' $\gamma=0.5 \%$
Q8.Describe solar radiation and shading assessment.
Q9.Write the equation for manual calculation of irridation data.
Q10.Sketch the followings (a) Series PV system (b) Parallel PV system (c) PV lighting system
Q11.Sketch PV water pumping system.

UETDRIS 033

EE118 Electrical Energy Supply System

Lesson 1 Lesson 2 Lesson 3

Test \& Assessment

http://www.filefactory.com/file/50ox6xeklufp/n/G015 G046 Online Test 1 Question pdf
http://www.filefactory.com/file/4jzmn6sa4rkd/n/G015 G046 Online Test 1 Answer doc
Do the tests and send the answer sheet in soft copy by e-mail to
iqytechnicalcollege@gmail.com

Then do the following exercises

G015+G046 Online Test

Ref186

The transformer supplies a group of 4 feeders which have individual maximum demands of 2.5, 2.4, 4.3 and 1.6 MVA. If the diversity factor is 1.82 , determine the maximum demand on transformer

A	5.93 MVA	B	4.3MVA
C	10.8 MVA	D	2.4 MVA
Answer			

Ref191
Find the insulation resistance per km of conductor diameter 1.6 cm and internal sheath diameter 5.08 cm . $\&=6 \times 10^{-14} \Omega / \mathrm{cm}$.

A	$500 \mathrm{M} \Omega$	B	$100 \mathrm{M} \Omega$
C	$1103 \mathrm{M} \Omega$	D	$2000 \mathrm{M} \Omega$
Answer			

Ref196

The formula to calculate voltage regulation is

Ref201
Which equipments is not included in trip circuit?

A	Sensor, potential transformer, current transformer	B	Battery
C	Relay contact	D	Circuit breaker
Answer			

Ref206

Differential relay senses

A	Only one input	B	Three inputs
C	Two inputs	D	Four inputs
Answer			

Ref 211.
Maximum reach and maximum reach angle are found in

A	Over current relay	B	Differential relay
C	Directional relay	D	Distance relay
Answer			

Ref212

The operation of distance relay is based on

A	Based on impedance	B	Based on current
C	Based on frequency	D	Based on power
Answer			

Ref213

The characteristics curve of distance relay is

A	Concentric circles	B	Parabola
C	Straight line	D	Hyperbola
Answer			

Ref214.
Zone protection of distance relay is based on

A	Zoning in accordance with voltage	B	Zoning in accordance with current
C	Zoning in accordance with power	D	Zoning in accordance with impedance
Answer			

Ref215.

Operating \& restraining voltage and current are utilized in

A	Over current relay	B	Differential relay
C	Directional relay	D	Thermal over load relay
Answer			

Ref216
Power line can be effectively protected by

A	Over current relay	B	Differential relay
C	Directional relay	D	Distance relay
Answer			

Ref217
Explain the operation of distance relay is based on .

A	Based on impedance	B	Based on current
C	Based on frequency	D	Based on power
Answer			

Ref218.

The shape of characteristics of over current relay is

A	Straight line	B	Circle
C	Curve	D	Pulse
Answer			

Ref219.
Directional relay is also called

A	Distance relay	B	Reverse power relay
C	Differential relay	D	Over current relay
Answer			

Ref220
Earthing transformer is utilized at

A	Star connected winding side	B	Delta connected winding side
C	Zigzag connected winding side	D	None of above
Answer			

Ref225

In CT, primary and secondary windings

A	Closely linked	B	Loosely linked
C		D	
Answer			

Ref230

The following equation
$M c d^{2} \delta / d t^{2}=P_{o}-P_{m} \sin \delta$ is utilized to determine

A	Stability of generation	B	Power flow
C	Phase sequence	D	
Answer			

Ref231

The suitable winding method for earthing transformer is

A	Star/ Delta	B	Delta/Star
C	Delta/Delta	D	Zig Zag
Answer			

Ref232
Reactors are utilized at busbar to

A	Provide inductance	B	Limit short circuit current	
C	Increase disruptive critical voltage	D	Earth leakage current flow path	
Answer				

Ref233

The best way to increase the level of disruptive critical voltage to reduce the possibility of corona is

A	To increase conductor diameter	B	To use longer cross arm	
C	To use hollow conductor that increase the conductor diameter	D	To increase insulation resistance	
Answer				

Ref234

Switching voltage velocity is

A	$V=1 / \mathrm{VLC}$	B	$V=$ VLC
C	$V=$ L/C	D	$V=1 / \mathrm{LC}$
Answer			

Ref235

Which equipment is used in static VAR compensation system?

A	Magnetic contactor	B	Thermal switch
C	Hall effect switch	D	Silicon Controlled Rectifier
Answer			

Ref236
Poor power will cause

A	Unnecessary over current flow in line	B	Smoother voltage
C	Ripple reduction	D	Wrong phase sequence
Answer			

Ref237

Lighting strike near power transformer is protected by

A	Arcing horn	B	Lightning arrester	
C	Surge absorber	D	Arcing ring	
Answer				

Ref238

Lightning protection for power line is provided by

A	Arcing horn	B	Lightning arrester
C	Surge absorber	D	Arcing ring
Answer			

Ref239

Power surge protection is provided by

A	Arcing horn	B	Lightning arrester
C	Surge absorber	D	Arcing ring
Answer			

Ref244
In large power distribution system, reactive power control is provided by

A	Synchronous motor	B	Capacitor bank
C	Static VAR Compensation System	D	Induction motor
Answer			

Ref249

To withstand the voltage surge due to lightning strike, the power system equipments must have

A	High VA value	B	High voltage rating	
C	High current rating	D	Appropriate base impulse insulation level	
Answer				

Ref254

The following formula $E g=m \delta g_{b} r \operatorname{Ln} D / r$ is utilized to calculate

A	Sending end voltage	B	Breakdown voltage to neutral
C	Visual critical voltage	D	Disruptive critical voltage.
Answer			

Ref208
Can over current \& earth fault protections be combined?

A	Not sure	B	No
C	Yes	D	Not applicable
Answer			

Ref222
Buchholz relay should be utilized for

A	Transformer protection	B	Motor protection
C	Generator protection	D	Power line protection
Answer			

Ref224
For given CT , \% composite error, secondary voltage and rated accuracy are 10P 150 F15

A	$10 \%, 150 \mathrm{~V}, 15$	B	$150 \%, 10 \mathrm{~V}, 15$
C	$15 \%, 15 \mathrm{~V}, 10$	D	
Answer			

Ref226
For 2000/1000/500/1 current transformer 10 Ps 250 is classified as

A	2.5 Ps 1000	B	5 Ps 500	
C	2.5 Ps 500	D	10 Ps 250	
Answer				

UEECD0024+UEECD0016

EE119 Electrical Risk Assessment

Lesson 1

Test \& Assessment

http://www.classroomclipboard.com/503511/Home/Test/eafdcf3b16cf46908aad44c6d604b55 0\#/InitializeTest.xaml

Type your name Put the following access code P2PLK

Study WOC Mgt 104-E071 Lessons \& then do the following exercises
2) Ref 584

Explain the features of maintenance and specialist work
3) Ref 583

Explain purchasing procedures in electrical contracting
4) Ref 582

Explain pre-job planning in electrical contracting.
5) Ref 581

Brifely explain the specification for installing the high voltage cable.
6) Ref 580

What are the factors to be considered by electrical contractor before establishing the business?
7) Ref 579

Describe the job accounting system in electrical contracting
8) Ref 578

Explain the required paper works in electrical contracting
9) Ref 577

Explain insurance in electrical contracting
10) Ref 576

Explain contract bid work

UEECD0059
 EE120 Electrical Contracting \& Specifications

Lesson 1 Lesson 2 Lesson 3

Test \& Assessment

http://www.classroomclipboard.com/503511/Home/Test/75fe3cafbd1347eeb991b4629ad23a92\#/InitializeTest.xaml
Type your name Put the following access code

5V4YBGS

UEEIC0040+UEEIC0042

EE121 Electronics Power Control Devices

Lesson 1 Lesson 2

Test \& Assessment

Study EE121 Lessons

Then do the following exercises.

H026 Online Test

Ref473
Gain

The given characteristics curve is

A	High pass filter	B	Low pass filter
C	Band pass filter	D	Band stop filter
Answer			

Ref478
This equation is used for
1
$f_{c}=$

$$
6.28 \overline{\mathrm{~V}} \mathrm{R1} \mathrm{R2} \mathrm{C1}^{\mathrm{C} 2}
$$

A	First order high pass Butterworth filter	B	First order low pass Butterworth filter	
C	Second order low pass Butterworth filter	D	Second order high pass Butterworth filter	
Answer				

Ref479

In 4 quadrant drive system, quadrant 4 is a function of

This characteristics stands for

A	Class A chopper	B	Class B chopper	
C	Class C chopper	D	Class D chopper	
Answer				

Ref481

This is an equivalent circuit for

A	Class A chopper	B	Class B chopper	
C	Class C chopper	D	Class D chopper	
Answer				

A	A-Anode, B= Cathode, C- Gate	B	A-Gate, B= Cathode, C- Anode
C	A-Cathode, B= Anode, C- Gate	D	
Answer			

Ref483

This circuit is

A	Single stage Darlington pair transistor	B	Two stage Darlington pair transistor
C	Three stage Darlington pair transistor	D	
Answer			

Ref484

This circuit makes

A	DC-DC converter	B	AC-DC converter
C	DC-AC Inverter	D	
Answer			

Ref485

These converters are used to obtain a variable AC output voltage from a \qquad and a single phase converter with a triac.

A	Variable dc source	B	Fixed dc source
C	Variable ac source	D	Fixed ac source
Answer			

Ref486

Curve A represents \qquad \& curve B represents \qquad .

A	Hot carrier diode, PN Junction diode	B	PN Junction diode, Hot carrier diode			
C						
Answer						

Ref487

6 steps inverter can be used for

A	Single phase AC motor	B	DC motor	
C	Three phase AC motor			
Answer				

Ref488

RMS current produced by current source inverter is

A	$\mathrm{I}_{1 \mathrm{rms}}=0.5 \mathrm{Id}$	B	$\mathrm{I}_{1 \mathrm{rms}}=0.78 \mathrm{Id}$			
C	$\mathrm{I}_{1 \mathrm{rms}}=0.707 \mathrm{Id}$	D	$\mathrm{I}_{1 \mathrm{rms}}=1.4142 \mathrm{Id}$			
Answer						

UEECD0039+UEECD0049

ADVANCED DIPLOMA IN ELECTRICAL ENGINEERING (LEVEL 2) LEARNING SYSTEM

All units in Diploma in Engineering program must be completed.
Then continue the study in the following units

EE201 Engineering Mathematics

EE201 Part 1 EE201 Part 2 EE201 Part 3 EE201 Part 4

```
Test & Assessment
UEECD0036
EE202 Electrical Circuits
```

EE202 Part 1 EE202 Part 2 EE202 Part 3
Test \& Assessment
UEECD0062
EE203 Three Phase Power Circuits
EE203 Part 1 EE203 Part 2 EE203 Part 3
Test \& Assessment
UEECD0005
EE204 Engineering Physics
EE204 Part 1 EE204 Part 2 EE204 Part 3 EE204 Part 4 EE204 Part 5

```EE204 Part 6
```


Test \& Assessment

UETDRIS027

EE205 Electrical Power System

EE205 Part 1 EE205 Part 2 EE205 Part 3 EE205 Part 4 EE205 Part 5

EE205 Part 6 EE205 Part 7 EE205 Part 8 EE205 Part 9 EE205 Part 10
EE205 Part 11 EE205 Part12 EE205 Part 13

Test \& Assessment

http://www.filefactory.com/file/22ti8gb92ekf/n/G037 G038 G039 Online Test 1 Answer doc
http//www.G037+G038+G039 Test 1 Question,pdf
Do the tests and send the answer sheet in soft copy by e-mail to iqytechnicalcollege@gmail.com

Password- iqytechnicalcollege
Study the notes in the EE205 files \& do the exercise

G037+G038+G039 Online Test

Ref257

Es X Er

$\mathrm{Er}=200 \mathrm{~V}, \mathrm{X}=5 \Omega \mathrm{P}=1000$ watt $\mathrm{Q}=500$ VAR
The value of $E s$ is

A	400 V	B	200 V
C	213.9 V	D	120 V
Answer			

Ref262

To provide physical damage to building \& equipments due to direct and indirect lightning strike.

A	Circuit protection device to be provided	B	Equalizer to be provided
C	Site earthing to be provided	D	PF must be improved.
Answer			

Ref267

Which equipment is not included in power system equipment?

A	Main feeder	B	Consumer main	
C	Sectionalising busbar	D	Recloser	
Answer				

Ref292

The current in a system is 62.5A in which 59 amp is fundamental. Calculate total harmonic distortion . If the harmonic is combination of $3^{\text {rd }}, 5^{\text {th }}$ and $7^{\text {th }}$ and third harmonic is $15.6 \mathrm{~A}, 5^{\text {th }}$ harmonic is 10.3 A , find $7^{\text {th }}$ harmonic.

A	60% 10A	B	34.9% 8.66A
C	70% 3A	D	$15 \% ~ 2 \mathrm{~A}$
Answer			

Ref297
Earthing cable is to be connected to

A	Star point of star connected winding	B	Neutral conductor
C	Circuit breaker	D	
Answer			

Ref302

Arc lengthening, arc splitting and arc cooling functions are provided in

A	Relay	B	Circuit breaker
C	Busbar	D	Recloser
Answer			

Ref307

Switching transient causes

A	Disruption of normal operation	B	Degrading of components
C	Damage to equipments	D	All above
Answer			

Ref312

The lightning strike can directly at

A	SPZOA	B	SPZ1
C	SPZ2	D	SPZ3
Answer			

Ref317
The short duration reduction in the rms voltage between 0.1 and 0.9 pu caused by energizing the heavy load, single line to ground fault and load transfer from one source to remote source is

A	Sag	B	Swell
C	Surge	D	
Answer			

Ref322

Sinusoidal wave becomes other forms of wave is

A	Voltage imbalance	B	Transient
C	Waveform distortion	D	Voltage reduction
Answer			

Ref327

If the voltage is increased , the solution is to provide

A	Use properly tuned filter	B	Use surge detector			
C	Use equalizer busbar	D	Use equipotential bonding			
Answer						

Ref332
The circuit consists of 100 V 60 HZ and $5^{\text {th }}$ harmonic 51 V 300 HZ in series with 24 ohm resistor \& 18.6 mH inductor. Calculate total dissipated power.

A	209 W	B	104.5 W
C	418.6 W	D	836 W
Answer			

Ref337

Two units of generator maintain 66KV and 60KV line at the end of an interconnector of inductive reactance per phase of 40 ohm with negligible resistance and shunt capacitance. A load of 10 MW is to be transferred from 66 KV unit to the other end. Calculate the PF of the current transmitted.

A	0.1	B	0.2
C	0.3	D	0.4
Answer			

UEEEL0041+UEEEL0043

EE206 AC Machines

EE206 Part 1 EE206 Part 2 EE206 Part 3

Test \& Assessment

http://www.filefactory.com/file/5stgiskbar09/n/G043 G045 Online Test 1 Answer doc
http://www.filefactory.com/file/7h9o99zngfa1/n/G043 G045 Online Test 1 Question pdf
Do the tests and send the answer sheet in soft copy by e-mail to iqytechnicalcollege@gmail.com

Study the fEE206 file notes and do the exercises

G043+G045 Online Test
Ref374
Which is correct formula

A	$\begin{aligned} & \mathrm{T}=\mathrm{F} \times \mathrm{r} \\ & \mathrm{P}=9.55 / \mathrm{NT} \end{aligned}$	B	$\begin{aligned} & \mathrm{T}=\mathrm{F} \times \mathrm{r} \\ & \mathrm{P}=\mathrm{NT} / 9.55 \end{aligned}$
C	$\begin{aligned} & \mathrm{T}=\mathrm{F}+\mathrm{r} \\ & \mathrm{P}=\mathrm{NT} / 9.55 \end{aligned}$	D	$\begin{aligned} & \mathrm{T}=\mathrm{F} \times \mathrm{r} \\ & \mathrm{P}=9.55 / \mathrm{N}+\mathrm{T} \end{aligned}$
	Answer		

Ref376

The heat taken away by blower is

A	$P=640 \mathrm{~V}(\mathrm{t} 2-\mathrm{t} 1)$	B	$P=320 \mathrm{~V}(\mathrm{t} 2-\mathrm{t} 1)$
C	$\mathrm{P}=1280 \mathrm{~V}(\mathrm{t} 2-\mathrm{t} 1)$	D	$\mathrm{P}=160 \mathrm{~V}(\mathrm{t} 2-\mathrm{t} 1)$
Answer			

Ref378

The 6 poles wound rotor induction motor is excited by three phase 60 HZ source. Calculate the rotor frequency for (a) Standstill (b) 500 rpm same direction (c) 500 rpm opposite direction.

A	$50 \mathrm{HZ}, 70 \mathrm{HZ}, 170 \mathrm{HZ}$	B	$60 \mathrm{HZ}, 35 \mathrm{HZ}, 85 \mathrm{HZ}$
C	$25 \mathrm{HZ}, 35 \mathrm{HZ}, 40 \mathrm{HZ}$	D	$15 \mathrm{HZ}, 35 \mathrm{HZ}, 125 \mathrm{HZ}$
Answer			

Ref380

A three phase induction motor having synchronous speed of 1200 rpm draws 80 kw from three phase feeder. Copper loss \& iron loss in stator amount to 5 kw . If the motor runs at 11452 rpm , calculate the efficiency of motor.

A	45%	B	87.5%
C	75%	D	35%
Answer			

Ref382

Locked rotor test is performed to determine.

A	Core parameter	B	Winding parameter
C	Load parameter	D	35%
Answer			

Ref384

A three phase 208 V induction motor having synchronous speed 1200 rpm runs at 1140 rpm . When connected to 215 V , driving at constant load, calculate the speed if voltage is 240 V

A	1152 rpm	B	800 rpm
C	700 rpm	D	500 rpm
Answer			

Ref386

The system that reverses the supply connection to the motor terminals when the stop switch is pressed is

A	Dynamic braking	B	Plugging	
C	Forward reverse	D	Time delay starter	
Answer				

Ref388
A 500HP 720 rpm synchronous motor connected to 3980 V three phase line generates an excitation voltage $\mathrm{Ef}=1790 \mathrm{~V}(\mathrm{~L}-\mathrm{N})$ when the dc excitation current is 25 amp . The synchronous reactance is 22Ω, torque angle between $\mathrm{Ef} \& \mathrm{~V}$ is 30°. Calculate shaft torque.

A	$2000 \mathrm{~N}-\mathrm{m}$	B	$3715 \mathrm{~N}-\mathrm{m}$
C	$1500 \mathrm{~N}-\mathrm{m}$	D	$750 \mathrm{~N}-\mathrm{m}$
Answer			

Ref390

In a synchronous motor, when power factor is unity, the line current is

A	Maximum	B	Minimum
C	Unchanged	D	
Answer			

Ref392

Under excitation makes the power factor of a synchronous machine to become

A	Unity	B	Leading
C	Lagging	D	
Answer			

UEEEL0042

EE207 DC Machines

EE207 Part 1 EE207 Part 2 EE207 Part 3

Test \& Assessment

http://www.filefactory.com/file/2ejf6p7o0j0f/n/G044 Online Test 1 Answer doc
http://www.filefactory.com/file/5iyno92bji67/n/G044 Online Test 1 Question pdf

Do the tests and send the answer sheet in soft copy by e-mail to iqytechnicalcollege@gmail.com

Study the EE207 File notes and do the exercises
G044 Online Test
Ref394
Power provided by dc generator is

A	P = B IV	B	P = B LV I
C	P = B I L	D	P = B LV
Answer			

Ref395

This connection is

A	Series	B	Shunt
C	Short shunt compound	D	Long shunt compound
Answer			

Ref396

Calculate the coil span for
(a) 36 slots, 4 poles simplex lap (b) 36 slots, 2 poles, Duplex wave

A	1 to 10,1 to $39 \& 1$ to 35	B	1 to 9,1 to $38 \& 1$ to 34
C	1 to 8,1 to $37 \& 1$ to 33	D	1 to 7,1 to $36 \& 1$ to 32
Answer			

Ref397

The brushes on a 0.4 m diameter commutator are rocked 0.03 m circumferentially. The machine has 6 poles, simplex lap wound, 378 conductors 800 Armature current. Calculate cross magnetizing and de-magnetizing ampere turn / pole.

A	600 AT/pole, 1500 AT /pole	B	1250 AT/pole, 3000 AT /pole
C	300 AT/pole, 750 AT /pole	D	150 AT/pole, 375 AT /pole
Answer			

Ref398

Motor particulars $3.75 \mathrm{KW}, 230 \mathrm{~V}, 18 \mathrm{~A}, 1750 \mathrm{rpm}$ Ra= $=0.3 \Omega$, brush drop 2 V on load.
Calculate final torque if field flux is reduced to 96%

A	$50.56 \mathrm{~N}-\mathrm{m}$	B	$100 \mathrm{~N}-\mathrm{m}$
C	$150 \mathrm{~N}-\mathrm{m}$	D	$40 \mathrm{~N}-\mathrm{m}$
Answer			

Ref399
7.5 KW 230 V 1750 rpm shunt motor, armature resistance 0.35Ω, shunt field resistance 62.2Ω If no load current is 7.7 amp , full load efficiency 86%, brush drop 3 V at full load \& 1 V at no load. Calculate \% regulation.

A	5.7%	B	10%
C	12%	D	15%
Answer			

Ref400

The winding resistance of a 500V, 60KW dc shunt motor are Ra=0.2 $2 \mathrm{Rf}=200 \Omega$, mechanical losses are 1.4 KW .Determine the efficiency of the machine.
(a) When the line current is 102.5A (b) At full load.

A	$70 \%, 75 \%$	B	$90.93 \%, 90.9 \%$
C	$95 \%, 93 \%$	D	$78 \%, 87 \%$
Answer			

Ref401

The resistance of an armature winding at $25^{\circ} \mathrm{C}$ was found to be 0.26Ω. After a heat run, it becomes 0.296Ω. Calculate the temperature rise of the winding.

A	$\Delta \mathrm{t}=70^{\circ} \mathrm{C}$	B	$\Delta \mathrm{t}=36^{\circ} \mathrm{C}$
C	$\Delta \mathrm{t}=15^{\circ} \mathrm{C}$	D	$\Delta \mathrm{t}=12{ }^{\circ} \mathrm{C}$
Answer			

Ref402

A 75KW 500V generator has a voltage regulation 4\%, calculate
(a) The open circuit voltage
(b) Assuming the voltage varies uniformly between no load and full load current. Calculate the KW output of a terminal voltage 510 V .

A	$500 \mathrm{~V}, 20 \mathrm{KW}$	B	$250 \mathrm{~V}, 10 \mathrm{KW}$
C	$520 \mathrm{~V}, 38.25 \mathrm{KW}$	D	$500 \mathrm{~V}, 10 \mathrm{KW}$
Answer			

Ref403

A 4 poles wound armature operating in a field of flux 0.01 wb in wound with360 armature conductors. Determine the expression of torque as a function of speed. If $\mathrm{Vt}=250 \mathrm{~V}$ and $\mathrm{Ra}=0.1 \Omega$.

A	$1000-1.3 \mathrm{~N}$	B	$2000-2 \mathrm{~N}$
C	$3000-4 \mathrm{~N}$	D	$2860-1.38 \mathrm{~N}$
Answer			

Ref404

The resistance of the armature of a 240 V dc shunt motor is 0.5Ω. It is required that the current at starting be limited to 200% of full load current \& full load current is 15A.
Determine
(a) Total resistance of armature current at starting
(b) The number of studs on the starter
(c) r 3 .

A	$8 \Omega, 4,1 \Omega$	B	$10 \Omega, 3,0.5 \Omega$
C	$8 \Omega, 2,1 \Omega$	D	$4 \Omega, 2,1 \Omega$
Answer			

Ref405

Which is not a dc motor braking method?

A	Plugging	B	Dynamic braking
C	Mechanical braking	D	Ward Leonard
Answer			

Ref 406

Which equipment does not produce ripple?

A	PWM Switching	B	Rectifier circuit
C	DC Generator	D	PV Inverter
Answer			

UEEIC0040+UEEIC0042

EE208 Operational Amplifiers

EE208 Part 1 EE208 Part 2 EE208 Part 3

Study the EE207 File notes \& do the exercises

H025+H026+I006 Online Test

Ref451

Differential amplifier can \qquad noise signals that are common to both inputs.

A	accept	B	reject
C	rectify	D	reduce
Answer			

Ref453

> A transducer consists of ___ \&it's associated circuitry to produce an output signal

A	Rectifier	B	Sensor
C	Regulator	D	Divider
Answer			

Ref455

The strain gauge is used for

A	Speed measurement	B	Temperature measurement
C	Force measurement	D	Position measurement
Answer			

Ref457

The water supply to water tank is an example of

A	Open loop control	B	Closed loop control
Answer			D

Ref459

Reset function is

A	Proportional control	B	Integral control
C	Derivative control	D	PID control
Answer			

Ref461

In one shot or monostable circuit, delay time equation is

A	T = 1.1 Ra C	B	T = 2 Ra C
C	T = 3 Ra C	D	
Answer			

Ref463

The following equation is used for

A	Summing amplifier	B	Differential amplifier
C	Cascade amplifier	D	
Answer			

Ref465

In the following circuit, Req is

A	Bias voltage offset resistor	B	Bias current offset resistor
C	Feedback resistor	D	
Answer			

Ref467
Noise gain is

A	(Rf/R1) +1	B	(R1/Rf)+1
C	R1/Rf	D	Rf/R1
Answer			

Ref469

The slew rate of 741 Op is $0.5 \mathrm{~V} / \mu \mathrm{s}$. Find maximum frequency for $20 \mathrm{~V} p-\mathrm{p}$ sine wave

A	3 KHZ	B	10 KHZ
C	7.96 KHZ	D	20 KHZ
Answer			

Ref471

Phase shift oscillator frequency is

A	$f_{o}=1 / 15.4 R C$	B	$f_{o}=1 / 30 R C$	
C	$f_{o}=1 / 60 R C$	D	$f_{o}=1 / 100 R C$	
Answer				

Ref472

The Wien bridge amplifier frequency is

A	$f_{o}=1 / 3.14 R C$	B	$f_{o}=1 / 6.28 R C$			
C	$f_{o}=6.28 R C$	D	$f_{o}=1 / R C$			
Answer						

UEEIC0040+UEEIC0042

EE209 Analogue Electronics

EE209 Part 1 EE209 Part 2 EE209 Part 3 EE209 Part 4 EE209 Part 5
EE209 Part 6 EE209 Part 7

Test \& Assessment

Study the EE209 file notes \& do the exercises

H011 Online Test
Ref435

Ref436

The name of given circuit is

A	Single phase full wave rectifier	B	Single phase half wave rectifier
C	Three phase full wave rectifier	D	Three phase half wave rectifier
Answer			

Ref437

The dc output voltage produced by centre tapped transformer rectifier is

A	Vdc= 0.5 Vmax	B	Vdc $=0.73$ Vmax
C	Vdc= 0.636 Vmax	D	Vdc $=0.707$ Vmax
Answer			

Ref438

For bridge rectifier, ripple frequency is equal to

A	Supply frequency	B	Three times supply frequency
C	Half of supply frequency	D	Two times supply frequency
Answer			

Ref439
Calculate the load resistance \& capacitance size of a full wave rectifier that supplies 40 V dc with 3% ripple voltage at 250 mA to a resistance load. The rectifier circuit is supplied with 60 HZ AC . Ripple frequency 50 HZ .

A	$160 \Omega, 31.25 \mu \mathrm{~F}$	B	$320 \Omega, 62.5 \mu \mathrm{~F}$
C	$100 \Omega, 10 \mu \mathrm{~F}$	D	$60 \Omega, 15 \mu \mathrm{~F}$
Answer			

Ref440
The following circuit is

A	Shunt transistor regulator	B	Regulator with feedback	
C	Operational amplifier	D	Series transistor regulator	
Answer				

Ref441

The regulator with feedback is constructed with the following values. $\mathrm{R} 2=1 \mathrm{~K} \Omega, \mathrm{R} 3=2 \mathrm{~K} \Omega, \mathrm{Rsc}=0.6 \Omega$
Calculate power output Pd

A	30 W	B	60 W
C	90 W	D	15 W
Answer			

H011 Online Test
Ref435

Ref436

The name of given circuit is

A	Single phase half wave rectifier	B	Single phase full wave rectifier	
C	Three phase full wave rectifier	D	Three phase half wave rectifier	
Answer				

Ref437

The dc output voltage produced by centre tapped transformer rectifier is

A	Vdc $=0.5$ Vmax	B	Vdc $=0.73 \mathrm{Vmax}$
C	Vdc $=0.707$ Vmax	D	Vdc $=0.636 \mathrm{Vmax}$
Answer			

Ref438

For bridge rectifier, ripple frequency is equal to

A	Two times supply frequency	B	Three times supply frequency	
C	Half of supply frequency	D	Supply frequency	
Answer				

Ref439
Calculate the load resistance \& capacitance size of a full wave rectifier that supplies 40 V dc with 3% ripple voltage at 250 mA to a resistance load. The rectifier circuit is supplied with 60 HZ AC. Ripple frequency 50 HZ .

A	$60 \Omega, 15 \mu \mathrm{~F}$	B	$320 \Omega, 62.5 \mu \mathrm{~F}$
C	$100 \Omega, 10 \mu \mathrm{~F}$	D	$160 \Omega, 31.25 \mu \mathrm{~F}$
Answer			

Ref440

The following circuit is

$$
\mathrm{Q}
$$

A	Shunt transistor regulator	B	Regulator with feedback
C	Series transistor regulator	D	Operational amplifier
Answer			

Ref441

The regulator with feedback is constructed with the following values. $\mathrm{R} 2=1 \mathrm{~K} \Omega, \mathrm{R} 3=2 \mathrm{~K} \Omega, \mathrm{Rsc}=0.6 \Omega$ Calculate power output Pd

A	90 W	B	60 W
C	30 W	D	15 W
Answer			

Symbol A
 Symbol B
 Symbol C
 Symbol D
 Symbol E
 Symbol F
 Symbol G

Assessment-In class assessment
E071 MEM09004 Tutorial
E071 MEM09004 Tutorial Mod.zip

Submit the drawing tutorial assignment
(Do not copy the given diagram, it is just a reference, you need to draw your own sketch by computer)

(3) Sketch the given circuit

(4)

Figure 2.5 Main switch controls all circuits.
(5)

Reference: Specification (1)
(1)Write the important aspects of the specifications for electro medical equipments
(2)Draw the following circuits by computer

(2)Reference: Service Rule 3

Job (3)
You need to install a stand by generating plan for a small factory.
Prepare the specifications and design diagram for the following aspects
(1)Condition of use, (2)spacing for conductors, (3)change over equipments, 94)Operating procedure, (5)protection

Reference Diagram (Do not copy the given diagram, it is just a reference, you need to draw your own sketch by computer)

7

(6)

(7)

(a) Live looped at ceiling rose.
(b) Neutral looped at switch.

(8)

(9)

(10)

light in flat

- 24 W fluorescent

58 W fuvorescent
A. 13 A twin socket

C cooker
9 gas boiler
w washing machine point
(11)

Figure 3.2 Distribution to flats.
(13)

Figure 3.5 Landlord's distribution board.

E026 Online test
Ref 27
$\frac{d y}{d x}=8 x^{2} \quad$ Find Y

A	$X^{3}+C$	B	$3 x^{4}+C$
C	$1 / X^{3}+C$	D	$\operatorname{Ln} X+C$
Answer			

Ref 28
Solve $y^{\prime \prime}=3 x-2, y(0)=2 y^{\prime}(1)=-3$, the generalized answer is

A	$x^{4}-x^{3}-x^{2}-5 / 2 x+2$	B	$x^{3}-x^{2}-x^{2}-5 / 2 x+2$
C	$x^{2}-3 x+2$	D	$x^{3}-3 x+2$
Answer			

Ref 29
Find general equation of
$\left(4 X+X Y^{2}\right) d X+\left(Y+X^{2} y\right) d Y=0$

A	$\operatorname{Ln}\left(1+X^{2}\right)+1 / 2 \operatorname{Ln}\left(4+Y^{2}\right)$	B	$\operatorname{Ln}\left(1+X^{2}\right)+1 / 3 \operatorname{Ln}\left(4+Y^{2}\right)$
C	$1 /\left(1+X^{2}\right)+1 /\left(1+Y^{2}\right)$	D	$\left(1+X^{2}\right)+\left(4+Y^{2}\right)$
Answer			

Ref 30
Evaluate the following
「(6)

$2 \Gamma(3)$

A	10	B	30
C	15	D	25
Answer			

Ref 31
Evaluate the following
$\Gamma(5 / 2)$

$\Gamma(1 / 2)$

A	$3 / 4$	B	$3 / 2$
C	3	D	$1 / 3$
Answer			

Ref 32
Find the volume of region R bounded by parabolic cylinder $Z=4-X^{2}$ \& planes $X=0, Y=0, Y=6, Z=0$

A	16	B	32
C	42	D	64
Answer			

Ref33
Laplace transform of $5 \sin 2 t-3 \cos 2 t$ is

A	10-3 S	B	$\frac{3 S-10}{S^{2}+4}$
	$S^{2}+4$		
C	10	D	3 S
	$S^{2}+4$		$S^{2}+4$
	Answer		

. Find

$$
4 S-3
$$

E^{-1}
$S^{2}+4$

A	$3 / 2 \sin 2 t-4 \cos 2 t$	B	$4 \cos 2 t-3 / 2 \sin 2 t$	
C	$4 \sin 2 t-3 / 2 \cos 2 t$	D	$\sin 3 t-\cos 4 t$	
Answer				

Ref 35
Find

$$
4 S-3
$$

t^{-1} \qquad

$$
S^{3 / 2}
$$

A	$8 t^{-1 / 2}-5 t$	B	$5 t^{2}$
	$\vee \square$		$\vee \square$
C	$8 t^{-1 / 2}-5 t^{-1 / 2}$	D	$8 t^{2}-5$
	$\checkmark \square$		$\checkmark \square$
	Answer		

Ref 36
. Find

1
$Ł^{-1}$ \qquad

$$
s^{2}+2 s
$$

A	$1 / 2 t-1 / 2 e^{-2 t}$	B	$t-e^{-t}$
C	$1 / 2 t-1 / 2 e^{t}$	D	$2 t-e^{2 t}$
Answer			

Ref37

The solution of the given differential equation $y^{\prime}-3 y^{\prime}+2 y=2 e^{-t}$ where $y(0)=2, y^{\prime}(00=-1$ by Laplace transform is

A	$7 e^{2 t}+4 e^{t}+e^{-t}$	B	$3 e^{2 t}+e^{t}+3 e^{-t}$
C	$-7 / 3 e^{2 t}+4 e^{t}+1 / 3 e^{-t}$	D	$-7 e^{2 t}+e^{t}+3 e^{-3 t}$
Answer			

Ref38

A resistor $R=10 \Omega$ Inductor $2 H$ and a voltage E volt are connected in series with switch S. At $\mathrm{t}=0$, the switch is closed and $\mathrm{I}=0$.

Find I for $t>0$ if $E=40 \mathrm{~V}$

A	$4 \mathrm{t}-4 \mathrm{e}^{-5 t}$	B	$4-\mathrm{e}^{-\mathrm{t}}$
C	4 t	D	4
Answer			

Ref39
Inverse matrix of the matrix for given equations

$$
\begin{gathered}
3 X_{1}-2 X_{2}+2 X_{3}=10 \\
x_{1}+2 x_{2}-2 x_{3}=-1 \\
4 x_{1}+x_{2}+2 x_{3}=3 \text { is }
\end{gathered}
$$

A	$\left(\begin{array}{ccc}\frac{7}{35} & \frac{6}{15} & \frac{2}{35} \\ \frac{-14}{35} & \frac{-2}{35} & \frac{11}{35} \\ \frac{-7}{35} & \frac{-11}{35} & \frac{8}{35}\end{array}\right)$	B	$\left(\begin{array}{ccc}7 & 6 & 2 \\ 14 & -2 & 11 \\ -7 & -11 & 8\end{array}\right)$
C	$\left(\begin{array}{ccc}\frac{1}{35} & \frac{6}{35} & \frac{1}{35} \\ -14 & -2 & 11 \\ -7 & -11 & -8\end{array}\right)$	D	$\left(\begin{array}{lll}1 & 6 & 1 \\ 2 & 3 & 4 \\ 7 & 11 & 8\end{array}\right)$

E026 Online test

Ref 27
$\frac{d y}{d x}=8 x^{2} \quad$ Find Y

A	$3 x^{4}+C$	B	$x^{3}+C$
C	$1 / x^{3}+C$	D	$\operatorname{Ln} X+C$
Answer			

Ref 28

Solve $y^{\prime \prime}=3 x-2, y(0)=2 y^{\prime}(1)=-3$, the generalized answer is

A	$X^{4}-X^{3}-X^{2}-5 / 2 X+2$	B	$X^{3}-3 X+2$
C	$X^{2}-3 X+2$	D	$X^{3}-X^{2}-X^{2}-5 / 2 X+2$
Answer			

Ref 29
Find general equation of
$\left(4 X+X Y^{2}\right) d X+\left(Y+X^{2} y\right) d Y=0$

A	$\left(1+\mathrm{X}^{2}\right)+\left(4+\mathrm{Y}^{2}\right)$	B	$\operatorname{Ln}\left(1+\mathrm{X}^{2}\right)+1 / 3 \operatorname{Ln}\left(4+\mathrm{Y}^{2}\right)$	
C	$1 /\left(1+\mathrm{X}^{2}\right)+1 /\left(1+\mathrm{Y}^{2}\right)$	D	$\operatorname{Ln}\left(1+\mathrm{X}^{2}\right)+1 / 2 \operatorname{Ln}\left(4+\mathrm{Y}^{2}\right)$	
Answer				

Ref 30

Evaluate the following

「(6)
\qquad

2 「(3)

A	10	B	15
C	30	D	25
Answer			

Ref 31
Evaluate the following
$\Gamma(5 / 2)$
$\Gamma(1 / 2)$

A	$1 / 3$	B	$3 / 2$
C	3	D	$3 / 4$
Answer			

Ref 32
Find the volume of region R bounded by parabolic cylinder $Z=4-X^{2}$ \& planes $X=0, Y=0, Y=6, Z=0$

A	16	B	42
C	32	D	64
Answer			

Ref33
Laplace transform of $5 \sin 2 t-3 \cos 2 t$ is

A	$3 S-10$ $S^{2}+4$	B	$10-3 S$
C	$\frac{10}{S^{2}+4}$	D	3 S
Answer			
$S^{2}+4$			

Ref34
. Find

4S-3
$Ł^{-1}$

$$
S^{2}+4
$$

A	$3 / 2 \sin 2 t-4 \cos 2 t$	B	$4 \cos 2 t-3 / 2 \sin 2 t$	
C	$4 \sin 2 t-3 / 2 \cos 2 t$	D	$\sin 3 t-\cos 4 t$	
Answer				

Ref 35
Find

Ref 36
Find

1
$\begin{array}{cc}\mathrm{L}^{-1} \quad----------- \\ & S^{2}+2 S\end{array}$

A	$1 / 2 t-1 / 2 e^{-2 t}$	B	$1 / 2 t-1 / 2 e^{t}$
C	$t-e^{-t}$	D	$2 t-e^{2 t}$
Answer			

The solution of the given differential equation $y^{\prime}-3 y^{\prime}+2 y=2 e^{-t}$ where $y(0)=2, y^{\prime}(00=-1$ by Laplace transform is

A	$-7 / 3 e^{2 t}+4 e^{t}+1 / 3 e^{-t}$	B	$3 e^{2 t}+e^{t}+3 e^{-t}$
C	$7 e^{2 t}+4 e^{t}+e^{-t}$	D	$-7 e^{-2 t}+e^{t}+3 e^{-3 t}$
Answer			

Ref38
A resistor $R=10 \Omega$ Inductor $2 H$ and a voltage E volt are connected in series with switch S.
At $t=0$, the switch is closed and $\mathrm{I}=0$.
Find I for $t>0$ if $E=40 \mathrm{~V}$

A	$4-\mathrm{e}^{-\mathrm{t}}$	B	$4 \mathrm{t}-4 \mathrm{e}^{-5 \mathrm{t}}$
C	4 t	D	4
Answer			

Ref39
Inverse matrix of the matrix for given equations

$$
3 X_{1}-2 X_{2}+2 X_{3}=10 \quad X_{1}+2 X_{2}-2 X_{3}=-1 \quad 4 X_{1}+X_{2}+2 X_{3}=3 \text { is }
$$

A	$\left(\begin{array}{ccc}\frac{1}{35} & \frac{6}{35} & \frac{1}{35} \\ -14 & -2 & 11 \\ -7 & -11 & -8\end{array}\right)$	B	$\left(\begin{array}{ccc}7 & 6 & 2 \\ 14 & -2 & 11 \\ -7 & -11 & 8\end{array}\right)$
C	$\left(\begin{array}{lll}\frac{7}{35} & \frac{6}{15} & \frac{2}{35} \\ \frac{-14}{35} & \frac{-2}{35} & \frac{11}{35} \\ \frac{-7}{35} & \frac{-11}{35} & \frac{8}{35}\end{array}\right)$	D	$\left(\begin{array}{lll}1 & 6 & 1 \\ 2 & 3 & 4 \\ 7 & 11 & 8\end{array}\right)$

UETDRIS027

EE303 Transmission Lines

G042 Online Test

Ref352

Circuit breaker is

A	To cut off the circuit when fault occurs	B	To cool the arc after disconnecting the circuit	
C	To reclose the switch	D	All above	
Answer				

Ref354

Find the input impedance and VSWR of a transmission line 4.3λ long when $Z o=100 \Omega$ \& $\quad Z 2=200-$ j150 Ω

A	$1+\mathrm{j} 2 \Omega, 0.592 \lambda$	B	$2-\mathrm{j} 1.5 \Omega, 0.592 \lambda$
C	$3+\mathrm{j} 4 \Omega, 1.6 \lambda$	D	$3-\mathrm{j} 4 \Omega, 3.6 \lambda$
Answer			

Ref356

Find A, B, C, D constants

A	$\mathrm{A}=1.8, \mathrm{~B}=180, \mathrm{C}=0.0007, \mathrm{D}=1.8$	B	$\mathrm{~A}=2, \mathrm{~B}=360, \mathrm{C}=0.0012, \mathrm{D}=2$
C	$\mathrm{A}=3, \mathrm{~B}=400, \mathrm{C}=0.015, \mathrm{D}=5$	D	$\mathrm{A}=0.967, \mathrm{~B}=93.5, \mathrm{C}=0.0007, \mathrm{D}=0.967$
Answer			

A 50Ω transmission line is connected to a load impedance $75+j 60 \Omega$. The forward wave voltage RMS value on line is 25 V . Calculate
(a) Power delivered to resistive part of load impedance
(b) RMS current in impedance reflected wave voltage RMS size
(c) Peak voltage, forward and backward waves
(d) Voltage standing wave ratio (VSWR)
(e) Return loss in decibel

A	$12.5 \mathrm{~W}, 0.101 \mathrm{~A}, 35.6 \mathrm{~V}, 16.57 \mathrm{~V}$, $2.764,4.4 \mathrm{~dB}$	B	$25 \mathrm{~W}, 0.38 \mathrm{~A}, 70 \mathrm{~V}, 32 \mathrm{~V}, 5.3,8.8 \mathrm{~dB}$	
C	$5 \mathrm{~W}, 0.39 \mathrm{~A}, 70 \mathrm{~V}, 16 \mathrm{~V}, 3,4 \mathrm{~dB}$	D	$25 \mathrm{~W}, 0.38 \mathrm{~A}, 40 \mathrm{~V}, 32 \mathrm{~V}, 2.764,4.4 \mathrm{~dB}$	
Answer				

Ref360

The sum of $\$ 1000$ is invested at 6% for 10 years at compound interest.
(a 0 Calculate the sum at the end of 10 years (b) If instead of lump sum at the end of 10 years, te loan of $\$ 1000$ is to be paid by fixed amount each year, calculate the annual amount.

A	$\$ 1791, \$ 135.90$	B	$\$ 3400, \$ 270$
C	$\$ 1000, \$ 70$	D	$\$ 500, \$ 35$
Answer			

Ref362
Attenuation is related to

A	Radiation loss	B	Dielectric loss
C	$23 \mathrm{~V}, 24.8 \mathrm{~V},-0.96 \mathrm{~V},-0.76 \mathrm{~V}, 2 \mathrm{~V}$	D	All
Answer			

Ref364

Which is correct?

A	$\lambda=v / f$	B	$\lambda=f / v$
C	$\lambda=f v$	D	$\lambda=f+v$
Answer			

Ref366
In short transmission line,

A	Load impedance dominates the circuit	B	Line impedance dominates the circuit	
C	Load \& line impedance equally influence the circuit	D	Load \& line impedance do not influence the circuit	
Answer				

Ref368

Reflection coefficient is

A	($\mathrm{ZI}-\mathrm{Zo}$) / ($\mathrm{ZI}+\mathrm{Zo}$)	B	(ZI + Zo) / (ZI-Zo)
C	ZI Zo / (ZI +Zo)	D	ZI Zo / (Zl-Zo)
	Answer		

Ref 370
No magnetic field in direction of propagation is

A	TM mode	B	TE mode	
C	TEM mode	D	Hybrid mode	
Answer				

Ref372

G1-1000VA $250 \mathrm{~V} \quad Z=j 0.2 \mathrm{pu}$
G2-2000VA $250 \mathrm{~V} \quad \mathrm{Z}=\mathrm{j} 0.8 \mathrm{pu}$
$T 1=4000 \mathrm{VA} 250 / 800 \mathrm{~V} \quad \mathrm{z}=\mathrm{j} 0.1 \mathrm{pu}$
Line $Z=50+j 200$ ohm
$T 2=8000 \mathrm{VA} 800 / 400 \mathrm{~V} \mathrm{Z}=\mathrm{j} 0.08 \mathrm{pu}$
Load---2500VA 400V

Calculate PU impedance referred to base 5000VA 250 V Base

A	$\begin{aligned} & \text { Generator }=\mathrm{j} 0.75 \mathrm{pu} \\ & \text { TrA }=\mathrm{j} 0.125 \mathrm{pu}, \operatorname{Tr} \mathrm{~B}=\mathrm{j} 0.125 \mathrm{pu} \\ & \text { Line }=0.39+\mathrm{j} 1.56 \mathrm{pu} \\ & \text { Load } 0.5 \mathrm{pu} \end{aligned}$	B	$\begin{aligned} & \text { Generator }=\mathrm{j} 1.5 \mathrm{pu} \\ & \text { TrA }=j 0.25 \mathrm{pu}, \operatorname{Tr} B=j 0.25 \mathrm{pu} \\ & \text { Line }=0.78+\mathrm{j} 3 \mathrm{pu} \\ & \text { Load } 1 \mathrm{pu} \end{aligned}$
C	$\begin{aligned} & \text { Generator= j } 3 \mathrm{pu} \\ & \text { TrA }=\mathrm{j} 0.5 \mathrm{pu}, \operatorname{Tr} B=\mathrm{j} 0.5 \mathrm{pu} \\ & \text { Line }=1.56+\mathrm{j} 6 \mathrm{pu} \\ & \text { Load } 2 \mathrm{pu} \end{aligned}$	D	$\begin{aligned} & \text { Generator= j } 3 \mathrm{pu} \\ & \operatorname{TrA}=j 0.5 \mathrm{pu}, \operatorname{Tr} B=j 1 \mathrm{pu} \\ & \text { Line }=3+j 4 \mathrm{pu} \\ & \text { Load 3pu } \end{aligned}$
	Answer		

G042 Online Test

Ref353

300 km line, the conductor diameter is 1 cm , the conductor diameter is 1 cm , the distance between conductor is 1 m . Line inductance and line capacitance.

A	$0.276 \mathrm{H}, 0.012 \times 10^{-9} \mathrm{~F} / \mathrm{m}$	B	$0.54 \mathrm{H}, 0.024 \times 10^{-9} \mathrm{~F} / \mathrm{m}$	
C	$0.81 \mathrm{H}, 0.072 \times 10^{-9} \mathrm{~F} / \mathrm{m}$	D	$01.8 \mathrm{H}, 0.014 \times 10^{-9} \mathrm{~F} / \mathrm{m}$	
Answer				

Ref355

A load of $75+\mathrm{j} 50 \Omega$ is to be matched to a 50Ω transmission line using a $\lambda / 4$ matching section. Determine the proper location and characteristics impedance of the matching section.

A	$120 \Omega, 50 \Omega$	B	$240 \Omega, 10 \Omega$			
C	$360 \Omega, 15 \Omega$	D	$480 \Omega, 20 \Omega$			
Answer						
Ref357						

The following is the arrangement of 240 V dc supply, calculate the efficiency.

$R a=0.2 \Omega, R b=0.6 \Omega, R c=0.4 \Omega, R d=0.6 \Omega, R e=0.4 \Omega \quad l a=30 A, l b=20 A, l c=30 A, I d=40 A, l e=50 A$

A	50%	B	15%
C	25%	D	75%
Answer			

Ref359

In above circuit, the load consumes 1500 watt at PF 0.8 \& voltage of 460 V . Line impedance Z in $2+j 5$ ohm. Find (a) Vs for lagging PF (b) Leading PF.

A	$300 \mathrm{~V}, 200 \mathrm{~V}$	B	$150 \mathrm{~V}, 100 \mathrm{~V}$
C	$490 \mathrm{~V}, 445 \mathrm{~V}$	D	$700 \mathrm{~V}, 600 \mathrm{~V}$
Answer			

L
A 10 V dc source with internal resistance 25 ohm is connected to a transmission line of length (L) having an impedance of 100 ohm by the switch. The transmission line is terminated with 900 ohm resistor. $\mathrm{T}=$ amount of time required for a signal to travel the length of transmission line. Calculate V1+, V1-, V2+, V2-, Vt

A	$8 \mathrm{~V}, 6.4 \mathrm{~V},-3.84 \mathrm{~V},-3.072 \mathrm{~V}, 7.488 \mathrm{~V}$	B	$12 \mathrm{~V}, 12.8 \mathrm{~V},-1.92 \mathrm{~V},-1.536 \mathrm{~V}, 3.744 \mathrm{~V}$
C	$23 \mathrm{~V}, 24.8 \mathrm{~V},-0.96 \mathrm{~V},-0.76 \mathrm{~V}, 2 \mathrm{~V}$	D	$12 \mathrm{~V}, 12.8 \mathrm{~V},--0.96 \mathrm{~V},-0.76 \mathrm{~V}, 2 \mathrm{~V}$
Answer			

Ref363

Below surge impedance loading, power factor is

A	Lagging	B	Leading
C	Unity	D	
Answer			

Ref365
Which is correct?

A	$\mathrm{V} 2 / \mathrm{V} 1=\mathrm{I} 1 / \mathrm{I} 2=\mathrm{e}^{\text {r }}$	B	V2/V1 $=11 / 12=r$
C	$\mathrm{V} 1 / \mathrm{V} 2=11 / \mathrm{I} 2=\mathrm{e}^{\mathrm{r}}$	D	$\mathrm{V} 2 / \mathrm{V} 1=11 / 12=\mathrm{e}^{-r}$
	Answer		

Ref367
In long transmission line,

A	Load impedance dominates the circuit	B	Line impedance dominates the circuit	
C	Load \& line impedance equally influence the circuit	D	Load \& line impedance do not influence the circuit	
Answer				

Ref369

No electric field in direction of propagation is

A	TM mode	B	TE mode	
C	TEM mode	D	Hybrid mode	
Answer				

Ref371

No electric field and magnetic field in direction of propagation is

A	TM mode	B	TE mode	
C	TEM mode	D	Hybrid mode	
Answer				

Ref372

G1-1000VA 250V $\mathrm{Z}=\mathrm{j} 0.2 \mathrm{pu}$
G2-2000VA 250V $Z=j 0.8 \mathrm{pu}$
$T 1=4000 \mathrm{VA} 250 / 800 \mathrm{~V} \quad \mathrm{z}=\mathrm{j} 0.1 \mathrm{pu}$
Line $Z=50+j 200$ ohm
$\mathrm{T} 2=8000 \mathrm{VA} 800 / 400 \mathrm{~V} \quad \mathrm{Z}=\mathrm{j} 0.08 \mathrm{pu}$
Load---2500VA 400V

Calculate PU impedance referred to base 5000VA 250V Base

A	$\begin{aligned} & \text { Generator= j } 0.75 \mathrm{pu} \\ & \text { TrA }=j 0.125 \mathrm{pu}, \operatorname{Tr} \mathrm{~B}=\mathrm{j} 0.125 \mathrm{pu} \\ & \text { Line }=0.39+j 1.56 \mathrm{pu} \\ & \text { Load } 0.5 \mathrm{pu} \end{aligned}$	B	$\begin{aligned} & \text { Generator= j } 1.5 \mathrm{pu} \\ & \operatorname{TrA}=j 0.25 \mathrm{pu}, \operatorname{Tr} B=j 0.25 \mathrm{pu} \\ & \text { Line }=0.78+\mathrm{j} 3 \mathrm{pu} \\ & \text { Load } 1 \mathrm{pu} \end{aligned}$
C	$\begin{aligned} & \text { Generator= } \mathrm{j} 3 \mathrm{pu} \\ & \operatorname{TrA}=j 0.5 \mathrm{pu}, \operatorname{Tr} B=\mathrm{j} 0.5 \mathrm{pu} \\ & \text { Line }=1.56+\mathrm{j} 6 \mathrm{pu} \\ & \text { Load } 2 \mathrm{pu} \end{aligned}$	D	$\begin{aligned} & \text { Generator= j } 3 \text { pu } \\ & \operatorname{TrA}=j 0.5 \mathrm{pu}, \operatorname{Tr} B=j 1 \mathrm{pu} \\ & \text { Line }=3+j 4 \mathrm{pu} \\ & \text { Load 3pu } \end{aligned}$
	Answer		

UETDRIS033

EE304 Power System Protection

The students who complete EE 205 also complete EE304

G015+G046 Online Test

Ref186

The transformer supplies a group of 4 feeders which have individual maximum demands of 2.5, 2.4,
4.3 and 1.6 MVA. If the diversity factor is 1.82 , determine the maximum demand on transformer

A	5.93 MVA	B	4.3 MVA
C	10.8 MVA	D	2.4 MVA
Answer			

Ref191

Find the insulation resistance per km of conductor diameter 1.6 cm and internal sheath diameter 5.08 cm . $\Omega=6 \times 10^{-14} \Omega / \mathrm{cm}$.

A	$500 \mathrm{M} \Omega$	B	$100 \mathrm{M} \Omega$
C	$1103 \mathrm{M} \Omega$	D	$2000 \mathrm{M} \Omega$
Answer			

Ref196

The formula to calculate voltage regulation is

Ref201
Which equipments is not included in trip circuit?

A	Sensor, potential transformer, current transformer	B	Battery
C	Relay contact	D	Circuit breaker
Answer			

Ref206

Differential relay senses

A	Only one input	B	Three inputs	
C	Two inputs	D	Four inputs	
Answer				

Ref 211.
Maximum reach and maximum reach angle are found in

A	Over current relay	B	Differential relay	
C	Directional relay	D	Distance relay	
Answer				

Ref212
The operation of distance relay is based on

A	Based on impedance	B	Based on current	
C	Based on frequency	D	Based on power	
Answer				

Ref213
The characteristics curve of distance relay is

A	Concentric circles	B	Parabola
C	Straight line	D	Hyperbola
Answer			

Ref214.

Zone protection of distance relay is based on

A	Zoning in accordance with voltage	B	Zoning in accordance with current
C	Zoning in accordance with power	D	Zoning in accordance with impedance
Answer			

Ref215.

Operating \& restraining voltage and current are utilized in

A	Over current relay	B	Differential relay		
C	Directional relay	D	Thermal over load relay		
Answer					
Ref216					

Power line can be effectively protected by

A	Over current relay	B	Differential relay
C	Directional relay	D	Distance relay
Answer			

Ref217

Explain the operation of distance relay is based on .

A	Based on impedance	B	Based on current	
C	Based on frequency	D	Based on power	
Answer				

Ref218.
The shape of characteristics of over current relay is

A	Straight line	B	Circle
C	Curve	D	Pulse
Answer			

Ref219.

Directional relay is also called

A	Distance relay	B	Reverse power relay	
C	Differential relay	D	Over current relay	
Answer				

Ref220

Earthing transformer is utilized at

A	Star connected winding side	B	Delta connected winding side	
C	Zigzag connected winding side	D	None of above	
Answer				

Ref225

In CT, primary and secondary windings

A	Closely linked	B	Loosely linked
C		D	
Answer			

Ref230

The following equation
$M c d^{2} \delta / d t^{2}=P_{o}-P_{m} \sin \delta$ is utilized to determine

A	Stability of generation	B	Power flow	
C	Phase sequence	D		
Answer				

Ref231

The suitable winding method for earthing transformer is

A	Star/ Delta	B	Delta/Star
C	Delta/Delta	D	Zig Zag
Answer			

Ref232
Reactors are utilized at busbar to

A	Provide inductance	B	Limit short circuit current	
C	Increase disruptive critical voltage	D	Earth leakage current flow path	
Answer				

Ref233
The best way to increase the level of disruptive critical voltage to reduce the possibility of corona is

A	To increase conductor diameter	B	To use longer cross arm
C	To use hollow conductor that increase the conductor diameter	D	To increase insulation resistance
Answer			

Ref234

Switching voltage velocity is

A	$V=1 / V L C$	B	$V=$ VLC
C	$V=L / C$	D	$V=1 / L C$
Answer			

Ref235
Which equipment is used in static VAR compensation system?

A	Magnetic contactor	B	Thermal switch	
C	Hall effect switch	D	Silicon Controlled Rectifier	
Answer				

Ref236
Poor power will cause

A	Unnecessary over current flow in line	B	Smoother voltage	
C	Ripple reduction	D	Wrong phase sequence	
Answer				

Ref237
Lighting strike near power transformer is protected by

A	Arcing horn	B	Lightning arrester	
C	Surge absorber	D	Arcing ring	
Answer				

Ref238

Lightning protection for power line is provided by

A	Arcing horn	B	Lightning arrester	
C	Surge absorber	D	Arcing ring	
Answer				

Ref239
Power surge protection is provided by

A	Arcing horn	B	Lightning arrester
C	Surge absorber	D	Arcing ring
Answer			

Ref244

In large power distribution system, reactive power control is provided by

A	Synchronous motor	B	Capacitor bank
C	Static VAR Compensation System	D	Induction motor
Answer			

Ref249
To withstand the voltage surge due to lightning strike, the power system equipments must have

A	High VA value	B	High voltage rating
C	High current rating	D	Appropriate base impulse insulation level
Answer			

Ref254

The following formula $\mathrm{Eg}=\mathrm{m} \delta \mathrm{g}_{\mathrm{b}} \mathrm{r} \operatorname{Ln} \mathrm{D} / \mathrm{r}$ is utilized to calculate

A	Sending end voltage	B	Breakdown voltage to neutral	
C	Visual critical voltage	D	Disruptive critical voltage.	
Answer				

Ref208
Can over current \& earth fault protections be combined?

A	Not sure	B	No
C	Yes	D	Not applicable
Answer			

Ref222
Buchholz relay should be utilized for

A	Transformer protection	B	Motor protection
C	Generator protection	D	Power line protection
Answer			

Ref224
For given CT , \% composite error, secondary voltage and rated accuracy are 10P 150 F15

A	$10 \%, 150 \mathrm{~V}, 15$	B	$150 \%, 10 \mathrm{~V}, 15$	
C	$15 \%, 15 \mathrm{~V}, 10$	D		
Answer				

Ref226
For 2000/1000/500/1 current transformer 10 Ps 250 is classified as

A	2.5 Ps 1000	B	5 Ps 500	
C	2.5 Ps 500	D	10 Ps 250	
Answer				

G015+G046 Online Test

Ref187

Calculate allowable sag of $7 / 3.50$ hard drawn copper overhead line conductor span of 150 m . The wind loading is 500 pa. Maximum tension is 60% of ultimate strength

Ultimate strength $=26600 \mathrm{~N}$

Gravitational force $=5.94 \mathrm{~N} / \mathrm{m}$

Diameter of conductor $=10.5 \mathrm{~mm}$

A	3.2 m	B	5 m
C	1.678 m	D	0.8 m
Answer			

Ref192

In above problem, if the cable is subject to 66 KV , three phase line, find the dielectric loss.

A	3 watt	B	1.316 watt
C	7 watt	D	10 watt
Answer			

Ref197
Which one is not a voltage control equipment?

A	Off load tap changer	B	On load tap changer
C	Booster transformer	D	Lightning arrester
Answer			

Ref202
Which is not included in basic qualities of power system?

A	Speed	B	Future forecast of load	
C	Discrimination	D	Reliability	
Answer				

Ref207

The grading of time is

A	Directly proportional to the grading of current	B	Inversely proportional to the grading of current			
C						
Answer						

Ref221
In given specification, $10 \mathrm{amp} / 150 / 40 / 200$ the relay contacts close in

A	150 cycle	B	40 cycle
C	200 cycle	D	10 cycle
Answer			

Ref226
For 2000/1000/500/1 current transformer 10 Ps 250 is classified as

A	2.5 Ps 1000	B	5 Ps 500
C	2.5 Ps 500	D	10 Ps 250
Answer			

Ref240

Equal areas criterion is utilized for

A	Calculating phase sequence	B	Calculating power flow
C	Calculating stability	D	Calculating power factor
Answer			

Ref245

Fuel cell is a

A	Electromechanical conversion device	B	Electromagnetic device	
C	Electrohydraulic device	D	Electrochemical conversion device	
Answer				

Ref250

In parallel operation of two generators which equipment is utilized to determine to connect them?

A	Synchroscope	B	Power meter	
C	Voltmeter	D	Frequency meter	
Answer				

Ref255

A transmission line has $0.0125 \mu \mathrm{~F}$ capacitance 1.5 mH inductance. It is joined with a cable of $0.3 \mu \mathrm{~F}$ capacitance \& 0.25 mH inductance. Calculate Maximum voltage at junction.
Line to line voltage $=50 \mathrm{KV}$

A	50 KV	B	30 KV
C	25 KV	D	92.5 KV
Answer			

Ref 211.

Maximum reach and maximum reach angle are found in

A	Over current relay	B	Differential relay	
C	Directional relay	D	Distance relay	
Answer				

Ref212

The operation of distance relay is based on

A	Based on impedance	B	Based on current	
C	Based on frequency	D	Based on power	
Answer				

Ref213
The characteristics curve of distance relay is

A	Concentric circles	B	Parabola
C	Straight line	D	Hyperbola
Answer			

Ref214.
Zone protection of distance relay is based on

A	Zoning in accordance with voltage	B	Zoning in accordance with current	
C	Zoning in accordance with power	D	Zoning in accordance with impedance	
Answer				

Ref215.
Operating \& restraining voltage and current are utilized in

A	Over current relay	B	Differential relay	
C	Directional relay	D	Thermal over load relay	
Answer				

Ref216

Power line can be effectively protected by

A	Over current relay	B	Differential relay
C	Directional relay	D	Distance relay
Answer			

Ref217

Explain the operation of distance relay is based on .

A	Based on impedance	B	Based on current	
C	Based on frequency	D	Based on power	
Answer				

Ref218.

The shape of characteristics of over current relay is

A	Straight line	B	Cirde
C	Curve	D	Pulse
Answer			

Ref219.
Directional relay is also called

A	Distance relay	B	Reverse power relay	
C	Differential relay	D	Over current relay	
Answer				

Ref220

Earthing transformer is utilized at

A	Star connected winding side	B	Delta connected winding side
C	Zigzag connected winding side	D	None of above
Answer			

Ref231

The suitable winding method for earthing transformer is

A	Star/ Delta	B	Delta/Star
C	Delta/Delta	D	Zig Zag
Answer			

Ref232
Reactors are utilized at busbar to

A	Provide inductance	B	Limit short circuit current	
C	Increase disruptive critical voltage	D	Earth leakage current flow path	
Answer				

UEEELOO25

EE305 Power Transformers

```
EE305 Part 1 EE305 Part 2 EE305 Part 3
```


G040 Online Test

Ref339

Req $=0.3 \Omega, \mathrm{Xeq}=0.4 \Omega, \mathrm{Rc}=200 \Omega, \mathrm{Xc}=400 \Omega, \mathrm{~V}=200 \mathrm{~V}, \mathrm{Zl}=2.7+\mathrm{j} 3.6 \Omega$
Find efficiency

A	47%	B	86.4%
C	99%	D	35%
Answer			

Ref340

200/400V Transformer

Open circuit test $-\mathrm{lo}=0.7 \mathrm{~A}, \mathrm{Po}=60 \mathrm{~W}$
Short circuit test $--\mathrm{Vsc}=9 \mathrm{~V}, \mathrm{Isc}=6 \mathrm{~A}, \mathrm{Psc}=26 \mathrm{w}$. Find $\mathrm{Re}^{\prime}, \mathrm{Xe}{ }^{\prime}, \mathrm{Rc}$ and Xc

A	$0.12 \Omega 0.4 \Omega, 666.7 \Omega, 317.8 \Omega$	B	$0.06 \Omega 0.2 \Omega, 333.35 \Omega, 156 \Omega$
C	$1 \Omega, 4 \Omega, 666.7 \Omega, 317.8 \Omega$	D	$2 \Omega, 8 \Omega, 500 \Omega, 400 \Omega$
Answer			

Ref341

$K V A=500$, Copper loss $=4 \mathrm{KW}$, Iron loss $=2.4 \mathrm{KW}$. Find $1 ⁄ 2$ load efficiency at 0.8 PF lagging.

A	66%	B	98.1%
C	75%	D	40%
Answer			

Ref342
$\% R e g=\%$ Req $\cos \theta+/-\% X e q \sin \theta$

+ for

A	Leading	B	Lagging
C	Unity	D	
Answer			

Ref343
Dy, Yd connection is suitable for

A	Small HV transformer	B	Large LV transformer
C	Power supply transformer	D	Earthing transformer
Answer			

Ref344
10MVA Star/ Star connected transformer. $33 \mathrm{KV} / 11 \mathrm{KV}$
No load test Line voltage $=11 \mathrm{KV}_{L}$ Line current $=15 \mathrm{~A}_{\llcorner }$Power $=75 \mathrm{KW}$
Short circuit test Line voltage $=1650 \mathrm{~V}$ L-L $L_{\llcorner }$Line current $=$rated current ${ }_{\llcorner }$Power $=90 \mathrm{KW}$
Find Req, Xeq, Ro', Xo^{\prime}

A	$0.98 \Omega, 5.3 \Omega, 14.5 \mathrm{~K} \Omega, 2.93 \mathrm{~K} \Omega$	B	$2 \Omega, 10 \Omega, 20 \mathrm{~K} \Omega, 5 \mathrm{~K} \Omega$
C	$4 \Omega, 20 \Omega, 40 \mathrm{~K} \Omega, 15 \mathrm{~K} \Omega$	D	$1 \Omega, 5 \Omega, 30 \mathrm{~K} \Omega, 15 \mathrm{~K} \Omega$
Answer			

Ref345

Find the load at maximum efficiency of the following single phase transformer. KVA =5000, Voltage ratio $=6600 / 440$, Iron loss $=2.9 \mathrm{KW}$, Full load copper loss $=4 \mathrm{KW}$, Maximum efficiency is achieved at 0.8 PF lagging. Find maximum efficiency

A	$0.7,90 \%$	B	$0.851,98.38 \%$
C	$0.35,75 \%$	D	$0.45,85 \%$
Answer			

Ref346

Find all day efficiency of the following transformer 100 KVA , single phase, Iron loss=750W Full load copper loss $=750 \mathrm{~W} 24 \mathrm{hr}$ load cycle.

Time	Power factor	Output
8 hr	0.8 Lag	80 KW
4 hr	0.9 lag	50 KVA
3 hr	$25 \mathrm{KVA} \& 20 \mathrm{KW}$	
The rest of time	Energized with no load	

Calculate all day efficiency.

A	98.1%	B	75%
C	60%	D	50%
Answer			

Ref347
To operate two transformers in parallel, it needs

A	Same voltage ratio	B	Same \% impedance	
C	Like polarity	D	All above	
Answer				

Ref348

2700KVA load PF 0.9 lagging is supplied by two transformers connected in parallel.
$\operatorname{Tr} \mathrm{A}=2000 \mathrm{KVA} \quad \mathrm{Z}=3+\mathrm{J} 2 \mathrm{ohm}$
$\mathrm{TrB}=1000 \mathrm{KVA} \quad \mathrm{X}=3+\mathrm{j} 5$ ohm
Find load A transformer load share, B load share.

A	1350,1350 KVA	B	900,1800 KVA
C	$1000 \mathrm{KVA}, 1700 \mathrm{KVA}$	D	$721 \mathrm{KVA}, 2332 \mathrm{KVA}$
Answer			

Ref349
Which winding can not take away harmonic ?

A	Star/Star without neutral	B	Star/Star with neutral
C	Delta/Delta	D	Star/Delta
Answer			

Ref350

$400 / 200 \mathrm{~V}, 50 \mathrm{VA}$ transformer needs to supply $600 / 200 \mathrm{~V}$. Find the rating.

A	The same rating	B	100 VA
C	33.3 VA	D	11 VA
Answer			

Ref351
ONAF is

A	Oil is naturally cooled by force air	B	Forced oil is cooled by forced air	
C	Oil is naturally cooled by force oil	D	Oil is naturally cooled by natural air	
Answer				

EE306 Electro-mechanical Control
The students can study Programming language
UEERE0066
EE307 Energy Efficient Building Design
EE307 Part 1 EE307 Part $2 \quad$ EE307 Part $3 \quad$ EE307 Part 4
EE307 Part 5 EE307 Part 6
Test \& Assessmenthttp://www.filefactory.com/file/5laxij9trib1/n/K041 Test pdf
Do the tests and send the answer sheet in soft copy by e-mail toiavtechnicalcollege@gmail.com

K041 Test
Ref 616

What are two types of solar design?

Ref 617
Explain passive solar design

Ref 618
What is comfort?

Ref 619
Calculate U value for a pitched and vented tile roof with reflective foil laminate under the tiles.

Ref 620

Calculate net gain or loss of heat through a month for north facing single glass window for January \& July in Sydney. The window is 0.9 m height and 0.2 m from the bottom of the eaves which are 0.6 m wide. Assume for window that 90% of it is glass. Transmittance is 0.76 and U value is 6.14 .

Ref 621
Define the insulation
Ref 622
Explain how the heat is transferred in brick veneer dwelling
Ref 623
Explain thermal mass and storage
Ref 624

Calculate heat gain per day from the customers in a $150 \mathrm{~m}^{2}$ gym, If the gym capacity is 50 customers and the gym is full between 6 am to 8 am and 5 pm to $8: 30 \mathrm{pm}$. At all other times, it is 30% full on average.

Ref 625
A 4000 sq ft retail store near Tuson, Arizona has been calculated to have sensible heat gain of 100,000 Btuh at summer design condition. (105 DB, 66 WB for this location). Calculate heat removed and air flow rate indoor.

Ref 626

Based on above, 4000 sq ft needs 13227 cfm air .Calculate air requirement for the 44 sqft bed room. 66\% of air is applied

Ref 627
Calculate total heat loss by conduction for a simple one room house in Melbourne during the months of January \& July.

Roof: 15 Degree. Thickness of tile $19 \mathrm{~mm} . \mathrm{K}=0.81$. Plaster board $13 \mathrm{~mm}, \mathrm{~K}=0.17$.
Wall Aerated concrete 200 mm thick.

Outside air (R out) $0.12 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$ Inside air (Rin) $0.04 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$

The house has $1 \mathrm{~m}^{2}$ window on each wall, average ceiling, no open fire space and weather stripping at the bottom of external doors. The house is $4 \mathrm{~m} \times 5 \mathrm{~m}$ with 2.4 m ceiling height. The windows are single glazed. U_{1} and U_{2} are $U_{\text {summer }}$ and $U_{\text {winter }}$ respectively.

The roof is a double pitched and vented tile roof with reflective foil laminate under the tile. Floor is carpet on a concrete slab on ground.
(30) In the above problem, calculate infiltration heat loss/ gain in this building. (Timber window, average ceiling, no open fire place).
$Q_{V}=A_{C} V\left(T_{1}-T_{a}\right) N \times 0.0286$
Ref 628
Explain the design and assessment tools
Ref 629
Explain the design for climate
Ref 630
What are the factors contributing thermal comfort inside building
Ref 631
Describe the domestic solar hot water system
Ref 632
Explain the building energy efficiency
Ref 633
What kinds of materials are used for water piping system of the building?
Ref 634
Explain the followings
(a) Automatic control for electrical heating (b) Thermostatic control (c) Water heater (d) Space heating

Ref 635
Explain the basic psychrometric chart
Ref 636
Explain the step by step approach for building electrical design system

Ref 637

Describe the types of building construction materials
Ref 638

Write the steps of building construction sequence

Ref 639

How do you understand thermal neutrality?

Ref 640

Write the formula for (a) Thermodynamic second law (b) Heat conduction (c) Heat convection (d) Heat radiation

UEERE0001+UEERE0060+UEERE0061+UEERE0013

EE308 Sustainability (Grid Connected PV Inverter)

EE308 Part 1 EE308 Part 2 EE308 Part 3

K035 Tests

Ref 605
Inverter is
(a) Electrical device that converts direct current to alternating current
(b) Electrical device that converts alternating current to direct current
(c) Electrical device that converts alternating current to another level of alternating current
(d) Electrical device that converts direct current to another level of direct current

A		B	
C		D	
Answer			

Ref 606

By switching the DC current rapidly, it can form
(a) Wave with higher value
(b) Alternating wave
(c) Nothing coming out
(d) Constant wave

A		B	
C		D	
Answer			

Ref 607

PWM-Pulse width modulating is to provide
(a) The regulated out put voltage
(b) To fix the output value at constant
(c) To regulate the width of a square wave pulse to regulate or adjust the inverter's output voltage
(d) To amplify the voltage

A		B	
C		D	
Answer			

Ref 608

Which type of oscillator is utilized in sine wave inverter
(a) Budbba oscillator
(b) Wien bridge oscillator
(c) Butterworth oscillator
(d) Carrier wave oscillator

A		B	
C		D	
Answer			

Ref 609
Which type of switch is mostly utilized in PWM inverter driver circuit?
(a) H Bridge MOSFET switch
(b) Change over switch
(c) Cascaded transistor switches
(d) By pass switch

A		B	
C		D	
Answer			

Ref 610

Which order is correct to arrange the solar inverter system?
(a) Solar array, ac filter, inverter, line
(b) Solar array, inverter, ac filter, line
(c) Solar array, inverter, dc regulator, line
(d) Solar array, dc regulator, line

A		B	
C		D	
Answer			

Ref 611
What is the correct operating of islanding protection?
(a) Detect the position of sun and rotate the solar arrays to face the direction of sun
(b) Detect the shadow and regulate the current flow into solar array
(c) Detect the grid voltage when the grid voltage is zero, it switches off the inverter circuit
(d) Detect the grid voltage, when the grid voltage is zero, it switches on the inverter circuit

A		B	
C		D	
Answer			

Ref 612

MOST FET driver circuit is connected to operate
(a) MOSFET Switches
(b) Filter
(c) Oscillator
(d) Voltage regulator

A		B	
C		D	
Answer			

Ref 613

Which operation is the one that best describes the operation of filter
(a) In order to optimize the frequency, a switching frequency must be chosen which is low enough to keep the switches in line but high enough to make sure the filter inductor is not unnecessarily large
(b) In order to optimize the voltage, a switching voltage must be chosen which is low enough to keep the switches in line but high enough to make sure the filter inductor is not unnecessarily large
(c) In order to optimize the frequency, a switching frequency must be chosen which is high enough to keep the switches in line but high enough to make sure the filter inductor is not unnecessarily low
(d) In order to optimize the current, a switching current must be chosen which is low enough to keep the switches in line but high enough to make sure the filter inductor is not unnecessarily large

A		B	
C		D	
Answer			

Ref 614
Which type of filter is suitable for inverter filter design
(a) High pass filter
(b) Band pass filter
(c) Band stop filter
(d) Square wave low pass two pole filter

A		B	
C		D	
Answer			

Ref 615

Which is the correct arrangement of Grid connected PV inverter system?
(a) PV Modules, Inverter, AC isolator, DC isolator, meter/outlet, power grid
(b) PV Modules, DC isolator, inverter, ac isolator, meter/ outlet, power grid
(c) PV Modules, DC isolator, power grid
(d) PV modules, DC Isolator, Battery charger, Inverter, AC isolator, power grid

Project Management

UEECD0014	Develop design briefs for electrotechnology projects	40
UEEEL0015	Manage large electrical projects*	40
UEEEL0058	Plan large electrical projects*	60
UEECD0026	Manage risk in electrotechnology activities	60
UEECD0059	Write specifications for electrical engineering projects	40

Test \& Assessment

Submit the project work advised by the teacher

Week 8+9-EE309 Project Management

Study the notes \& submit the project. The topic will be given by the teacher.

UEECD0003+UEECD0056

Week 10+11+12-EE310 Engineering Officer Competency Report

The topic will be given by the teacher.

